WO2011122261A1 - Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery - Google Patents

Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
WO2011122261A1
WO2011122261A1 PCT/JP2011/055337 JP2011055337W WO2011122261A1 WO 2011122261 A1 WO2011122261 A1 WO 2011122261A1 JP 2011055337 W JP2011055337 W JP 2011055337W WO 2011122261 A1 WO2011122261 A1 WO 2011122261A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte secondary
mixture
secondary battery
carboxyl group
polymer
Prior art date
Application number
PCT/JP2011/055337
Other languages
French (fr)
Japanese (ja)
Inventor
京平 萩原
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to KR1020127018065A priority Critical patent/KR101464841B1/en
Priority to CN201180005985.1A priority patent/CN102725889B/en
Priority to JP2012508179A priority patent/JP5684235B2/en
Publication of WO2011122261A1 publication Critical patent/WO2011122261A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a mixture for a nonaqueous electrolyte secondary battery, an electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain large energy with a small volume and weight. ing.
  • PVDF Polyvinylidene fluoride
  • Binder resin binder resin
  • PVDF has excellent electrochemical stability, mechanical properties, slurry properties, and the like.
  • PVDF has poor adhesion to a metal foil that is a current collector. Therefore, a method has been proposed in which a functional group such as a carboxyl group is introduced into PVDF to improve the adhesiveness to the metal foil (see, for example, Patent Documents 1 to 5).
  • PVDF tends to be unevenly distributed on the electrode surface when the amount of the binder added is small and when the electrode is manufactured by rapid drying.
  • the amount of the binder in the vicinity of the current collector is reduced, and the adhesion to the current collector is reduced.
  • the binding force between the active materials is reduced at a location where the amount of PVDF is small. Therefore, when the binder is unevenly distributed, an electrode having a low peel strength can be obtained even when PVDF having a functional group such as a carboxyl group is used.
  • an electrode using only polyacrylic acid as a binder is known (see, for example, Patent Documents 12 and 13).
  • the higher the molecular weight, the greater the adhesion, and the use of polyacrylic acid with a weight average molecular weight of 300,000 or more improves the cycle durability of the battery. It has been known.
  • the electrode becomes hard, and in the battery manufacturing process, the electrode may break when the electrode is wound, and the yield of the battery deteriorates.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and can produce a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery with high productivity.
  • non-aqueous electrolyte secondary batteries that can suppress the uneven distribution of the binder in the mixture layer and has excellent peel strength between the mixture layer and the current collector when the battery electrode is manufactured
  • the purpose is to provide a mixture.
  • it aims at providing the electrode for nonaqueous electrolyte secondary batteries obtained by apply
  • the present inventors have used a specific unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) as a binder.
  • the present invention was completed by finding that the mixture for non-aqueous electrolyte secondary batteries used in the above could solve the above problems.
  • the mixture for non-aqueous electrolyte secondary batteries of the present invention comprises at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, a carboxyl group-containing vinylidene fluoride polymer ( B), containing an electrode active material and an organic solvent, and having a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 150,000.
  • GPC gel permeation chromatography
  • the weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 100,000.
  • the unsaturated carboxylic acid polymer (A) is 0.5 to 15% by weight per 100% by weight in total of the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B). It is preferably 0.8 to 6% by weight.
  • the specific surface area of the electrode active material is preferably 1 to 10 m 2 / g, and more preferably 2 to 6 m 2 / g.
  • the carboxyl group-containing vinylidene fluoride polymer (B) is at least one carboxyl group-containing monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, and vinylidene fluoride And a copolymer thereof.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention can be obtained by applying and drying the mixture for a non-aqueous electrolyte secondary battery on a current collector.
  • the nonaqueous electrolyte secondary battery electrode preferably has a mixture layer having a thickness of 20 to 150 ⁇ m formed from the nonaqueous electrolyte secondary battery mixture.
  • the non-aqueous electrolyte secondary battery of the present invention has the non-aqueous electrolyte secondary battery electrode.
  • the mixture for a non-aqueous electrolyte secondary battery of the present invention can produce a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery with high productivity.
  • the uneven distribution of the binder in the mixture layer can be suppressed, and the peel strength between the mixture layer and the current collector is excellent.
  • the electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of this invention are manufactured using this mixture for nonaqueous electrolyte secondary batteries, they are manufactured with high productivity.
  • the mixture for a non-aqueous electrolyte secondary battery of the present invention comprises at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, and a carboxyl group-containing vinylidene fluoride polymer (B).
  • a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 150, 000.
  • the mixture of the present invention is usually used as a negative electrode mixture, that is, a negative electrode mixture.
  • the mixture for nonaqueous electrolyte secondary batteries of the present invention contains at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid.
  • unsaturated carboxylic acid polymer (A) a polymer having a polyethylene oxide equivalent weight average molecular weight of 1,000 to 150,000 measured by gel permeation chromatography (GPC) is used.
  • the unsaturated carboxylic acid polymer (A) contained in the nonaqueous electrolyte secondary battery of the present invention may be polyacrylic acid, polymethacrylic acid, or polyacrylic acid and polymethacrylic acid. It may be a mixture.
  • the unsaturated carboxylic acid polymer (A) used in the present invention may be used alone or in combination of two or more.
  • polyacrylic acid is preferable from the viewpoint of availability.
  • polyacrylic acid examples include a homopolymer of acrylic acid and a copolymer of acrylic acid and other monomers.
  • polyacrylic acid a polymer having, in 100% by weight of the polymer, a structural unit derived from acrylic acid is usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight or more.
  • polyacrylic acid a homopolymer of acrylic acid is preferable.
  • a monomer that can be copolymerized with acrylic acid can be used.
  • other monomers include: methacrylic acid; ⁇ -olefins such as ethylene, propylene, and 1-butene; acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate; methyl methacrylate, ethyl methacrylate, and the like Examples thereof include alkyl methacrylates; vinyl acetate; aromatic vinyl compounds such as styrene.
  • polymethacrylic acid examples include a homopolymer of methacrylic acid and a copolymer of methacrylic acid and other monomers.
  • polymethacrylic acid a polymer having a structural unit derived from methacrylic acid in an amount of usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight or more in 100% by weight of the polymer is used.
  • polymethacrylic acid a homopolymer of methacrylic acid is preferable.
  • monomers capable of copolymerizing with methacrylic acid can be used.
  • the other monomers include acrylic acid; ⁇ -olefins such as ethylene, propylene, and 1-butene; acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate; methyl methacrylate, ethyl methacrylate, and the like. Examples thereof include alkyl methacrylates; vinyl acetate; aromatic vinyl compounds such as styrene.
  • the unsaturated carboxylic acid polymer (A) used in the present invention preferably contains 8 ⁇ 10 ⁇ 3 to 1.4 ⁇ 10 ⁇ 2 mol / g of carboxyl groups.
  • the unsaturated carboxylic acid polymer (A) used in the present invention has a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of 1,000 to 150,000. A polymer is used.
  • the weight average molecular weight of the unsaturated carboxylic acid polymer (A) is preferably 1,000 to 100,000. When the weight average molecular weight is less than 1,000, the electrolyte solution resistance of the unsaturated carboxylic acid polymer (A) is insufficient.
  • the unsaturated carboxylic acid polymer (A) used in the present invention a part of the carboxyl group may be neutralized.
  • the mixture for nonaqueous electrolyte secondary batteries of the present invention contains a carboxyl group-containing vinylidene fluoride polymer (B) and the aforementioned unsaturated carboxylic acid polymer (A) as a binder resin (binder).
  • the carboxyl group-containing vinylidene fluoride polymer (B) is a polymer containing a carboxyl group in a polymer and obtained using at least vinylidene fluoride as a monomer.
  • the carboxyl group-containing vinylidene fluoride polymer (B) is a polymer that is usually obtained using vinylidene fluoride and a carboxyl group-containing monomer, and other monomers may be used.
  • carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention may be used alone or in combination of two or more.
  • the carboxyl group-containing vinylidene fluoride polymer (B) is a polymer having usually 80 parts by weight or more, preferably 85 parts by weight or more of structural units derived from vinylidene fluoride per 100 parts by weight of the polymer.
  • the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention is usually (1) a method of copolymerizing vinylidene fluoride and a carboxyl group-containing monomer and, if necessary, another monomer (hereinafter referred to as (1) And (2) polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and other monomers, polymerizing vinylidene fluoride polymer and carboxyl group-containing monomer, or carboxyl
  • a method of grafting a carboxyl group-containing polymer onto a vinylidene fluoride polymer using a carboxyl group-containing polymer obtained by copolymerizing a group-containing monomer and another monomer hereinafter referred to as (2) (3) Polymerization of vinylidene fluoride or copolymerization of vinylidene fluoride and other monomers to produce a vinylidene fluoride polymer After the, the vinylidene fluoride-based polymer,
  • the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention has a carboxyl group, the adhesion to the current collector is improved as compared with polyvinylidene fluoride not having a carboxyl group.
  • the carboxyl group-containing vinylidene fluoride polymer (B) has an electrolytic solution resistance equivalent to that of polyvinylidene fluoride having no carboxyl group.
  • the method (1) is used from the viewpoint of the number of steps and production cost. Is preferred. That is, the carboxyl group-containing vinylidene fluoride polymer (B) is preferably a copolymer of vinylidene fluoride and a carboxyl group-containing monomer.
  • the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention is usually 80 to 99.9 parts by weight of vinylidene fluoride, preferably 95 to 99.7 parts by weight, and a carboxyl group-containing monomer. Usually 0.1 to 20 parts by weight, preferably 0.3 to 5 parts by weight (provided that the total of vinylidene fluoride and carboxyl group-containing monomers is 100 parts by weight) copolymerized vinylidene fluoride based weight It is a coalescence.
  • the carboxyl group-containing vinylidene fluoride polymer (B) may be a polymer obtained by copolymerizing another monomer in addition to the vinylidene fluoride and the carboxyl group-containing monomer.
  • the other monomers are usually used in an amount of 0.1 to 20 parts by weight, assuming that the total of the vinylidene fluoride and carboxyl group-containing monomers is 100 parts by weight.
  • carboxyl group-containing monomer unsaturated monobasic acid, unsaturated dibasic acid, monoester of unsaturated dibasic acid and the like are preferable.
  • Examples of the unsaturated monobasic acid include acrylic acid and methacrylic acid.
  • Examples of the unsaturated dibasic acid include maleic acid and citraconic acid.
  • the unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
  • the carboxyl group-containing monomer is preferably at least one monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, maleic acid, citraconic acid, maleic acid monomethyl ester, Citraconic acid monomethyl ester, acrylic acid and methacrylic acid are more preferred.
  • the other monomer that can be copolymerized with the vinylidene fluoride and the carboxyl group-containing monomer means a monomer other than the vinylidene fluoride and the carboxyl group-containing monomer, and examples of the other monomer include a copolymer with vinylidene fluoride.
  • examples thereof include polymerizable fluorine monomers and hydrocarbon monomers such as ethylene and propylene.
  • Examples of the fluorine-based monomer copolymerizable with vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and perfluoromethyl vinyl ether.
  • the said other monomer may be used individually by 1 type, and may use 2 or more types.
  • methods such as suspension polymerization, emulsion polymerization, and solution polymerization can be employed. From the viewpoint of ease of post-treatment, aqueous suspension polymerization and emulsion polymerization are preferred, and aqueous suspension is preferred. Turbid polymerization is particularly preferred.
  • all monomers used for copolymerization with suspension agents such as methylcellulose, methoxymethylcellulose, propoxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, and gelatin (Vinylidene fluoride and a carboxyl group-containing monomer, and other monomers copolymerized as necessary) 0.005 to 1.0 part by weight, preferably 0.01 to 0.4 part by weight based on 100 parts by weight Add in the range of.
  • diisopropyl peroxydicarbonate dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, Di (perfluoroacyl) peroxide and the like can be used.
  • the amount used is 0.1 to 5 parts by weight, assuming that 100 parts by weight of all monomers used for copolymerization (vinylidene fluoride and carboxyl group-containing monomers, and other monomers copolymerized as necessary)
  • the amount is preferably 0.3 to 2 parts by weight.
  • a carboxyl group-containing vinylidene fluoride system obtained by adding a chain transfer agent such as ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, etc. It is also possible to adjust the degree of polymerization of the polymer (B).
  • the amount used is usually 0.1 to 5 when 100 parts by weight of all monomers used for copolymerization (vinylidene fluoride, carboxyl group-containing monomers, and other monomers copolymerized as necessary) are used. Part by weight, preferably 0.5 to 3 parts by weight.
  • the total amount of monomers used for copolymerization is usually in the weight ratio of the total monomer: water.
  • the ratio is 1: 1 to 1:10, preferably 1: 2 to 1: 5, the polymerization is at a temperature of 10 to 80 ° C., the polymerization time is 10 to 100 hours, and the polymerization pressure is usually carried out under pressure. Preferably, it is 2.0 to 8.0 MPa-G.
  • a group-containing vinylidene fluoride polymer (B) can be obtained.
  • the carboxyl group-containing vinylidene fluoride polymer (B) is produced by the method (2), for example, the following method can be used.
  • the carboxyl group-containing vinylidene fluoride polymer (B) is produced by the method (2), first, vinylidene fluoride is polymerized or vinylidene fluoride is copolymerized with another monomer to obtain vinylidene fluoride. A polymer is obtained. The polymerization or copolymerization is usually performed by suspension polymerization or emulsion polymerization. In addition to the vinylidene fluoride polymer, a carboxyl group-containing polymer is obtained by polymerizing a carboxyl group-containing monomer or copolymerizing a carboxyl group-containing monomer and another monomer. The carboxyl group-containing polymer is usually obtained by emulsion polymerization or suspension polymerization.
  • the carboxyl group-containing vinylidene fluoride polymer (B) is obtained by grafting the carboxyl group-containing polymer onto the vinylidene fluoride polymer using the vinylidene fluoride polymer and the carboxyl group-containing polymer.
  • the grafting may be performed using a peroxide or may be performed using radiation.
  • a mixture of a vinylidene fluoride polymer and a carboxyl group-containing polymer is heated in the presence of a peroxide. It is done by processing.
  • the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention has an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter).
  • a value in the range of 0.5 to 5.0 dl / g is preferable, and a value in the range of 1.1 to 4.0 dl / g is more preferable. If it is a viscosity within the said range, it can use suitably for the mixture for nonaqueous electrolyte secondary batteries.
  • the inherent viscosity ⁇ i is calculated by dissolving 80 mg of the carboxyl group-containing vinylidene fluoride polymer (B) in 20 ml of N, N-dimethylformamide and using an Ubbelote viscometer in a constant temperature bath at 30 ° C. Can be performed.
  • ⁇ i (1 / C) ⁇ ln ( ⁇ / ⁇ 0 )
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of the solvent N, N-dimethylformamide alone
  • C is 0.4 g / dl.
  • the carboxyl group-containing vinylidene fluoride polymer (B) has a polystyrene-equivalent weight average molecular weight measured by GPC usually in the range of 50,000 to 2,000,000, preferably in the range of 200,000 to 1,500,000. It is.
  • the carboxyl group-containing vinylidene fluoride polymer (B) has an absorbance ratio (I R ) represented by the following formula (1) when an infrared absorption spectrum is measured, in the range of 0.1 to 5.0. Preferably, it is 0.3 to 2.5. If I R is less than 0.1, there is a case where adhesion between the current collector becomes insufficient. On the other hand, if I R exceeds 5.0, electrolyte resistance of the resulting polymer tends to decrease. In addition, the measurement of the infrared absorption spectrum of this polymer is performed by measuring an infrared absorption spectrum about the film manufactured by hot-pressing this polymer.
  • I 1650-1800 I 3000-3100
  • I 1650-1800 is the absorbance from the carbonyl group which is detected in the range of 1650 ⁇ 1800cm -1
  • I 3000-3100 are derived from CH structures detected in the range of 3000 ⁇ 3100 cm -1 Absorbance.
  • I R becomes a measure of the abundance of the carbonyl group in the carboxyl group-containing vinylidene fluoride-based polymer (B), a measure of the abundance of the resulting carboxyl group.
  • the mixture for nonaqueous electrolyte secondary batteries of the present invention contains an electrode active material.
  • the electrode active material is not particularly limited, and conventionally known electrode active materials for negative electrodes can be used, and specific examples include carbon materials, metal / alloy materials, metal oxides, etc. Material is preferred.
  • the carbon material artificial graphite, natural graphite, non-graphitizable carbon, graphitizable carbon, or the like is used. Moreover, the said carbon material may be used individually by 1 type, or may use 2 or more types.
  • the energy density of the battery can be increased.
  • the artificial graphite can be obtained, for example, by carbonizing an organic material, heat-treating it at a high temperature, pulverizing and classifying it.
  • MAG series manufactured by Hitachi Chemical Co., Ltd.
  • MCMB manufactured by Osaka Gas
  • the specific surface area of the electrode active material is preferably 1 to 10 m 2 / g, and more preferably 2 to 6 m 2 / g.
  • the specific surface area is less than 1 m 2 / g, even when a conventional binder is used, the uneven distribution of the binder is unlikely to occur, so the effect of the present invention is small. If the specific surface area exceeds 10 m 2 / g, the amount of decomposition of the electrolytic solution increases and the initial irreversible capacity increases, which is not preferable.
  • the specific surface area of the electrode active material can be determined by a nitrogen adsorption method.
  • the mixture for nonaqueous electrolyte secondary batteries of the present invention contains an organic solvent.
  • the organic solvent those having an action of dissolving the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are used, and a solvent having polarity is preferably used.
  • Specific examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea, triethyl phosphate.
  • N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide are preferable.
  • the organic solvent may be used alone or in combination of two or more.
  • the non-aqueous electrolyte secondary battery mixture of the present invention contains the unsaturated carboxylic acid polymer (A), a carboxyl group-containing vinylidene fluoride polymer (B), an electrode active material, and an organic solvent.
  • the mixture for a non-aqueous electrolyte secondary battery of the present invention includes an unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B), but the unsaturated carboxylic acid polymer (A) and
  • the unsaturated carboxylic acid polymer (A) is preferably 0.5 to 15% by weight, preferably 0.8 to 6% by weight, per 100% by weight of the total of the carboxyl group-containing vinylidene fluoride polymer (B). More preferably.
  • the binder resin is 0.5 to 15 weights per 100 parts by weight in total of the binder resin (unsaturated carboxylic acid polymer (A) and carboxyl group-containing vinylidene fluoride polymer (B)) and the electrode active material. Parts, preferably 1 to 10 parts by weight, and the active material is preferably 85 to 99.5 parts by weight, and more preferably 90 to 99 parts by weight. Further, when the total of the binder resin (unsaturated carboxylic acid polymer (A) and carboxyl group-containing vinylidene fluoride polymer (B)) and the electrode active material is 100 parts by weight, the organic solvent is 20 to 300 weights. Parts, preferably 50 to 200 parts by weight.
  • the mixture for a non-aqueous electrolyte secondary battery of the present invention is other than the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), the electrode active material, and the organic solvent.
  • the component may be contained.
  • a conductive aid such as carbon black, a pigment dispersant such as polyvinylpyrrolidone, and the like may be included.
  • polymers other than the said unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) may be included.
  • Examples of the other polymer include fluorides such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-perfluoromethyl vinyl ether copolymer.
  • Examples include vinylidene polymers.
  • the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are usually used. It is contained in an amount of 25 parts by weight or less with respect to a total of 100 parts by weight.
  • the viscosity of the mixture for a non-aqueous electrolyte secondary battery of the present invention when measured with an E-type viscometer at 25 ° C. and a shear rate of 2 s ⁇ 1 is usually 2000 to 50000 mPa ⁇ s, preferably Is 5000 to 30000 mPa ⁇ s.
  • the method for producing the mixture for a non-aqueous electrolyte secondary battery of the present invention includes the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), the electrode active material, and the organic solvent.
  • the order at the time of mixing is not specifically limited,
  • the said unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) Dissolving in a part of the organic solvent to obtain a binder solution, adding the electrode active material and the remaining organic solvent to the binder solution, mixing by stirring, and obtaining a mixture for a non-aqueous electrolyte secondary battery,
  • the saturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are each dissolved in a part of an organic solvent to obtain two binder solutions. Ndoshi, was added blended binder solution in the electrode active material and the remaining organic solvent, stirring and mixing, a method may be mentioned of obtaining a nonaqueous electrolyte secondary battery mixture.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention is obtained by applying and drying the mixture for a non-aqueous electrolyte secondary battery on a current collector, and the current collector and for the non-aqueous electrolyte secondary battery And a layer formed from a mixture.
  • the electrode for a nonaqueous electrolyte secondary battery of the present invention is usually used as a negative electrode.
  • a layer formed from a mixture for a nonaqueous electrolyte secondary battery which is formed by applying and drying a mixture for a nonaqueous electrolyte secondary battery on a current collector, a mixture layer I write.
  • the current collector used in the present invention includes, for example, copper, and the shape thereof includes, for example, a metal foil, a metal net, and the like.
  • a copper foil is preferable.
  • the thickness of the current collector is usually 5 to 100 ⁇ m, preferably 5 to 20 ⁇ m.
  • the thickness of the mixture layer is usually 20 to 250 ⁇ m, preferably 20 to 150 ⁇ m.
  • the mixture for nonaqueous electrolyte secondary battery is applied to at least one surface, preferably both surfaces of the current collector.
  • the method for coating is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater.
  • drying performed after the coating is usually performed at a temperature of 50 to 150 ° C. for 1 to 300 minutes.
  • the pressure at the time of drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure.
  • heat treatment may be performed after drying. When heat treatment is performed, it is usually performed at a temperature of 100 to 250 ° C. for 1 to 300 minutes. In addition, although the temperature of heat processing overlaps with the said drying, these processes may be a separate process and the process performed continuously.
  • press processing may be performed.
  • the pressing process it is normally performed at 1 to 200 MP-G. It is preferable to perform the press treatment because the electrode density can be improved.
  • the electrode for nonaqueous electrolyte secondary batteries of the present invention can be produced.
  • the layer structure of the mixture layer / current collector is Yes, when the mixture for a non-aqueous electrolyte secondary battery is applied on both sides of the current collector, it has a three-layer structure of a mixture layer / current collector / mixture layer.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer by using the mixture for a non-aqueous electrolyte secondary battery, so that press, slit, winding, etc. In this process, cracks and peeling are unlikely to occur in the electrode, which is preferable because it leads to an improvement in productivity.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer as described above.
  • the peel strength between the current collector and the mixture layer is According to JIS K6854, it is usually 0.5 to 20 gf / mm, preferably 1 to 10 gf / mm when measured by a 180 ° peel test.
  • the electrode for a non-aqueous electrolyte secondary battery of the present invention has a mixture layer formed from the mixture for the non-aqueous electrolyte secondary battery, and the mixture layer suppresses uneven distribution of the binder. ing. Therefore, the peel strength between the current collector and the mixture layer is excellent.
  • Nonaqueous electrolyte secondary battery The non-aqueous electrolyte secondary battery of the present invention is characterized by having the non-aqueous electrolyte secondary battery electrode.
  • the nonaqueous electrolyte secondary battery of the present invention is not particularly limited except that it has the electrode for nonaqueous electrolyte secondary battery.
  • the electrode for a nonaqueous electrolyte secondary battery is usually used as a negative electrode, and conventionally known ones other than the negative electrode, such as a positive electrode and a separator, can be used.
  • Shodex KD-806M (made by Showa Denko KK) is used for the separation column
  • RI-930 (differential refractive index detector) made by JASCO Corporation is used for the detector
  • the flow rate of the eluent is 1 mL. / Min and column temperature of 40 ° C.
  • Na 2 HPO 4 / CH 3 CN 90/10 (weight ratio) was used as the eluent, and TSK standard POLY (ETHYLENE OXIDE) (standard polyethylene oxide) (Tosoh Corporation) was used as the standard polymer for the calibration curve. Used).
  • the specific surface area of the active material was measured by a nitrogen adsorption method.
  • Vm 1 / (v (1-x)
  • the specific surface area of the sample (active material) was calculated by the following formula.
  • Vm is an adsorption amount (cm 3 / g) necessary for forming a monomolecular layer on the sample surface
  • v is an actually measured adsorption amount (cm 3 / g)
  • x is a relative pressure.
  • the adsorption amount (v) of nitrogen on the active material at the liquid nitrogen temperature was measured as follows.
  • the sample tube is filled with the active material, and while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, the sample tube is cooled to ⁇ 196 ° C. to adsorb nitrogen to the active material.
  • the test tube is then returned to room temperature.
  • the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and was defined as the adsorption amount (v).
  • Example 1 (Preparation of non-aqueous electrolyte secondary battery mixture) 9.9 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.1 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (1).
  • a non-aqueous electrolyte secondary battery mixture (1) obtained by using a spacer and a bar coater so as to have a basis weight after drying of 150 g / m 2 was used as a current collector of copper having a thickness of 10 ⁇ m. It was applied on the foil. After drying at 110 ° C. in a nitrogen atmosphere, heat treatment was performed at 130 ° C. Subsequently, pressing is performed at 40 MPa, and the electrode layer for nonaqueous electrolyte secondary battery (1) having a bulk density of 1.6 g / cm 3 of the mixture layer formed from the mixture for nonaqueous electrolyte secondary battery (1). Got. The thickness of the mixture layer was calculated by subtracting the thickness of the current collector from the thickness of the electrode.
  • [Comparative Example 1] 10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c1). Except having used this binder solution (c1), it carried out similarly to Example 1 and obtained the mixture for nonaqueous electrolyte secondary batteries (c1) and the electrode for nonaqueous electrolyte secondary batteries (c1). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c1) was 12000 mPa ⁇ s.
  • Example 2 9.75 g of a carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.25 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (2). Except having used this binder solution (2), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (2) and the electrode for nonaqueous electrolyte secondary batteries (2) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (2) was 11800 mPa ⁇ s.
  • Example 3 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (3). Except having used this binder solution (3), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (3) and the electrode for nonaqueous electrolyte secondary batteries (3) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (3) was 11500 mPa ⁇ s.
  • Example 4 9.0 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 1.0 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (4). Except having used this binder solution (4), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (4) and the electrode for nonaqueous electrolyte secondary batteries (4) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (4) was 11500 mPa ⁇ s.
  • Example 5 8.7 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 1.3 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (5). Except having used this binder solution (5), it carried out similarly to Example 1 and obtained the mixture (5) for nonaqueous electrolyte secondary batteries, and the electrode (5) for nonaqueous electrolyte secondary batteries. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (5) was 11000 mPa ⁇ s.
  • Example 6 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 15,000 (trade name “Julimer AC-10P”, manufactured by Nippon Pure Chemical Co., Ltd., carboxyl group amount: 1. (4 ⁇ 10 ⁇ 2 mol / g) (0.5 g) was dissolved in N-methyl-2-pyrrolidone (90 g) to obtain a 10 wt% binder solution (6). Except having used this binder solution (6), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (6) and the electrode for nonaqueous electrolyte secondary batteries (6) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (6) was 12000 mPa ⁇ s.
  • Example 7 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 25,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (7). Except having used this binder solution (7), it carried out similarly to Example 1 and obtained the mixture (7) for nonaqueous electrolyte secondary batteries, and the electrode (7) for nonaqueous electrolyte secondary batteries. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (7) was 12300 mPa ⁇ s.
  • Example 8 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 73,000 (trade name “Julimer AC-10LP”, manufactured by Nippon Pure Chemical Co., Ltd., carboxyl group amount: 1. (4 ⁇ 10 ⁇ 2 mol / g) (0.5 g) was dissolved in N-methyl-2-pyrrolidone (90 g) to obtain a 10 wt% binder solution (8). Except having used this binder solution (8), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (8) and the electrode for nonaqueous electrolyte secondary batteries (8) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (8) was 12500 mPa ⁇ s.
  • [Comparative Example 10] 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 250,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c10). Except having used this binder solution (c10), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c10) and the electrode for nonaqueous electrolyte secondary batteries (c10) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c10) was 13000 mPa ⁇ s.
  • Example 2 The same procedure as in Example 1 was conducted except that the binder solution (c12) was used and that N-methyl-2-pyrrolidone for adjusting the viscosity of the mixture was changed to 3 g, and a mixture for a nonaqueous electrolyte secondary battery ( c12) and a non-aqueous electrolyte secondary battery electrode (c12) were obtained.
  • the viscosity of the mixture for nonaqueous electrolyte secondary batteries (c12) was 8500 mPa ⁇ s.
  • Example 2 The same procedure as in Example 1 was performed except that the nonaqueous electrolyte secondary battery mixture (c13) was used to obtain a nonaqueous electrolyte secondary battery electrode (c13).
  • the viscosity of the mixture for nonaqueous electrolyte secondary batteries (c13) was 13500 mPa ⁇ s.
  • Example 9 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (9).
  • Example 2 The same procedure as in Example 1 was performed except that the non-aqueous electrolyte secondary battery mixture (9) was used to obtain a non-aqueous electrolyte secondary battery electrode (9).
  • [Comparative Example 14] 10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c14). 8 g of the obtained binder solution (c14), 9.2 g of spherical natural graphite (produced in China, average particle size 24 ⁇ m, specific surface area 5.4 m 2 / g), and N-methyl-2-pyrrolidone 5 for adjusting the mixture viscosity .8 g was mixed with stirring to obtain a nonaqueous electrolyte secondary battery mixture (c14). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c14) was 13000 mPa ⁇ s.
  • Example 2 The same procedure as in Example 1 was performed except that the nonaqueous electrolyte secondary battery mixture (c14) was used to obtain a nonaqueous electrolyte secondary battery electrode (c14).
  • Example 10 9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 ⁇ 10 ⁇ 2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (10).
  • Example 2 The same procedure as in Example 1 was performed except that the non-aqueous electrolyte secondary battery mixture (10) was used to obtain a non-aqueous electrolyte secondary battery electrode (10).
  • the gauge pressure was set to 7 MPa, the electrode on which the damplon tape was attached was pressed for 20 seconds, and then the mixture layer was peeled from the current collector. Similar to the fluorine strength of the electrode surface, the release surface of the mixture layer from which the current collector has been peeled off and the release surface of the current collector from which the mixture layer has been peeled off from the mixture layer. The fluorine intensity was measured by this method.
  • release surface of the mixture layer from which the current collector has been peeled off is also referred to as the “release surface of the mixture layer”, and the current collector layer from which the mixture layer has been peeled off This peeling surface is also referred to as a “current collector peeling surface”.
  • Tables 1 and 2 show the compositions of the binder solution and the non-aqueous electrolyte secondary battery mixture used in Examples and Comparative Examples, the thickness of the obtained electrode mixture layer, and the electrode evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An object of the present invention is to provide a mixture layer and mixture for a non-aqueous electrolyte secondary battery with excellent peeling strength from a power collector, that is highly productive in manufacturing a non-aqueous secondary battery electrode and a non-aqueous secondary battery, and suppresses mal-distribution of a binding agent in the mixture layer when manufacturing the electrode. The non-aqueous secondary battery mixture contains at least one type of unsaturated carboxylic acid polymer (A) selected from a polyacrylic acid and polymethacrylic acid, vinylidene fluoride polymer containing carboxyl (B), an electrode active material, and a weight-average molecular weight of 1,000 - 150,000 of polyethylene oxide conversion measured by GPC of the unsaturated carboxylic acid polymer (A).

Description

非水電解質二次電池用合剤、非水電解質二次電池用電極および非水電解質二次電池Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery
 本発明は、非水電解質二次電池用合剤、非水電解質二次電池用電極および非水電解質二次電池に関する。 The present invention relates to a mixture for a nonaqueous electrolyte secondary battery, an electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.
 近年電子技術の発展はめざましく、各種の機器が小型化、軽量化されている。この電子機器の小型化、軽量化と相まって、その電源となる電池の小型化、軽量化が求められている。小さい容積および重量で大きなエネルギーを得ることが出来る電池として、リチウムを用いた非水電解質二次電池が、主として携帯電話やパーソナルコンピュータ、ビデオカムコーダなどの家庭で用いられる小型電子機器の電源として用いられている。 In recent years, the development of electronic technology has been remarkable, and various devices have become smaller and lighter. Along with the reduction in size and weight of the electronic device, there is a demand for reduction in size and weight of the battery serving as the power source. Non-aqueous electrolyte secondary batteries using lithium are mainly used as power sources for small electronic devices used in homes such as mobile phones, personal computers, and video camcorders as batteries that can obtain large energy with a small volume and weight. ing.
 非水電解質二次電池の電極には、結着剤(バインダー樹脂)として、ポリフッ化ビニリデン(PVDF)が主に使用されている。PVDFは優れた電気化学安定性、機械物性およびスラリー特性などを有している。しかしながら、PVDFは集電体である金属箔との接着性が弱い。そのため、カルボキシル基等の官能基をPVDF中に導入し、金属箔との接着性を改良する方法が提案されている(例えば、特許文献1~5参照)。 Polyvinylidene fluoride (PVDF) is mainly used as a binder (binder resin) for electrodes of nonaqueous electrolyte secondary batteries. PVDF has excellent electrochemical stability, mechanical properties, slurry properties, and the like. However, PVDF has poor adhesion to a metal foil that is a current collector. Therefore, a method has been proposed in which a functional group such as a carboxyl group is introduced into PVDF to improve the adhesiveness to the metal foil (see, for example, Patent Documents 1 to 5).
 ところで、比表面積が大きい活物質を用いる場合、結着剤の添加量が少ない場合および電極を急速乾燥により製造した場合などに、PVDFは電極表面に偏在し易くなる。表面偏在の結果、集電体近傍の結着剤量が少なくなり、集電体との接着性が低下する。また、PVDFが表面偏在するとPVDF量が少ない箇所で活物質同士の結着力が低下する。よって、結着剤の偏在が起きる場合は、カルボキシル基等の官能基を導入したPVDFを使用しても、剥離強度が低い電極が得られる。 By the way, when an active material having a large specific surface area is used, PVDF tends to be unevenly distributed on the electrode surface when the amount of the binder added is small and when the electrode is manufactured by rapid drying. As a result of the uneven distribution of the surface, the amount of the binder in the vicinity of the current collector is reduced, and the adhesion to the current collector is reduced. Moreover, when PVDF is unevenly distributed on the surface, the binding force between the active materials is reduced at a location where the amount of PVDF is small. Therefore, when the binder is unevenly distributed, an electrode having a low peel strength can be obtained even when PVDF having a functional group such as a carboxyl group is used.
 結着剤の偏在を抑制するために、様々な方法が提案されている。 Various methods have been proposed to suppress the uneven distribution of the binder.
 乾燥条件を穏やかにすることにより、結着剤の表面への移動を抑制し、表面偏在を抑制する方法が提案されている(例えば、特許文献6、7参照)。しかしながら、該方法では乾燥条件を穏やかにする必要があるため、合剤の乾燥速度が低下し、電極の生産性が低下する。 A method has been proposed in which the drying condition is moderated to suppress the movement of the binder to the surface and suppress the uneven distribution of the surface (for example, see Patent Documents 6 and 7). However, in this method, since it is necessary to moderate the drying conditions, the drying speed of the mixture is lowered, and the productivity of the electrode is lowered.
 結着剤の含有量が異なる合剤を用意し、基材(集電体)に近い方に、結着剤含有量の多い合剤が塗布されるように、同時に多層塗布することによって、結着剤の分布が均一な電極を作製する方法が提案されている(例えば、特許文献8参照)。しかしながら、この方法では、合剤を数種類準備する必要があり、電極作製の工程数が多くなり、生産性が低下する。さらに、多層塗布するには特殊な装置が必要となる。 By preparing a mixture with a different binder content and applying multiple layers at the same time so that a mixture with a higher binder content is applied closer to the substrate (current collector), A method for producing an electrode with a uniform distribution of an adhesive has been proposed (see, for example, Patent Document 8). However, in this method, it is necessary to prepare several kinds of mixtures, which increases the number of electrode manufacturing steps and decreases productivity. Furthermore, a special apparatus is required for multilayer coating.
 電極を作製後、結着剤を溶解できる有機溶媒を電極群に注入し、加圧密着状態で熱処理することにより、結着剤を電極内で再溶解させ、結着剤の偏在を抑制する方法が提案されている(例えば、特許文献9、10参照)。しかしながら、この方法も電池を製造するための工程が増えるため、電池の生産性が低下する。 After producing the electrode, a method of suppressing the uneven distribution of the binder by injecting an organic solvent capable of dissolving the binder into the electrode group and re-dissolving the binder in the electrode by performing a heat treatment in a pressure contact state. Has been proposed (see, for example, Patent Documents 9 and 10). However, this method also increases the number of steps for manufacturing the battery, which reduces battery productivity.
 ところで、PVDFおよびポリアクリル酸を結着剤として併用すると、集電体との接着性が向上することが知られている(例えば、特許文献11参照)。しかしながら、PVDFおよびポリアクリル酸を結着剤として併用した場合であっても、電極表面への結着剤の偏在は抑制できないため、集電体との接着性は充分ではなかった。 By the way, it is known that when PVDF and polyacrylic acid are used together as a binder, the adhesion to the current collector is improved (for example, see Patent Document 11). However, even when PVDF and polyacrylic acid are used in combination as a binder, the uneven distribution of the binder on the electrode surface cannot be suppressed, so that the adhesion to the current collector was not sufficient.
 一方、ポリアクリル酸だけを結着剤に使用した電極が知られている(例えば、特許文献12および13参照)。結着剤としてポリアクリル酸のみを用いた場合には、分子量が高いほど、接着性が大きくなり、重量平均分子量が30万以上のポリアクリル酸を用いると、電池のサイクル耐久性が向上することが知られている。しかしながら、結着剤としてポリアクリル酸のみを用いた場合には、電極が固くなり、電池の製造工程において、電極の巻回時に電極が切れてしまう場合があり、電池の歩留まりが悪化する。 On the other hand, an electrode using only polyacrylic acid as a binder is known (see, for example, Patent Documents 12 and 13). When only polyacrylic acid is used as the binder, the higher the molecular weight, the greater the adhesion, and the use of polyacrylic acid with a weight average molecular weight of 300,000 or more improves the cycle durability of the battery. It has been known. However, when only polyacrylic acid is used as the binder, the electrode becomes hard, and in the battery manufacturing process, the electrode may break when the electrode is wound, and the yield of the battery deteriorates.
 また、官能基含有PVDFおよびカルボニル基を含有する有極性重合体を結着剤として併用すると、電池の内部短絡時の安全性が向上することが知られている(例えば、特許文献14参照)。特許文献14の実施例2では、カルボキシル基含有PVDFおよびポリアクリル酸を結着剤として併用することが記載されている。しかしながら、該実施例では、ポリアクリル酸として、分子量が非常に大きい架橋型のポリアクリル酸を用いており、得られる電極の剥離強度は充分ではなかった。 Also, it is known that when a functional group-containing PVDF and a polar polymer containing a carbonyl group are used in combination as a binder, the safety at the time of internal short circuit of the battery is improved (for example, see Patent Document 14). In Example 2 of Patent Document 14, it is described that carboxyl group-containing PVDF and polyacrylic acid are used in combination as a binder. However, in this example, cross-linked polyacrylic acid having a very large molecular weight was used as polyacrylic acid, and the peel strength of the obtained electrode was not sufficient.
特開平6-172452号公報Japanese Patent Application Laid-Open No. 6-172452 特開2005-47275号公報JP 2005-47275 A 特開平9-231977号公報Japanese Patent Laid-Open No. 9-231977 特開昭56-133309号公報JP 56-133309 A 特開2004-200010号公報Japanese Patent Laid-Open No. 2004-200010 特開平5-89871号公報Japanese Patent Laid-Open No. 5-89871 特開平10-321235号公報Japanese Patent Laid-Open No. 10-32235 特開平11-339772号公報Japanese Patent Application Laid-Open No. 11-337772 特開2000-268872号公報JP 2000-268872 A 特開2004-95538号公報JP 2004-95538 A 特開平11-45720号公報Japanese Patent Laid-Open No. 11-45720 特開2005-216502号公報Japanese Patent Laying-Open No. 2005-216502 特開2007-35434号公報JP 2007-35434 A 国際公開第2004/049475号パンフレットInternational Publication No. 2004/049475 Pamphlet
 本発明は上記従来技術の有する課題を鑑みてされたものであり、非水電解質二次電池用電極および非水電解質二次電池を生産性よく製造することが可能であり、非水電解質二次電池用電極を製造した際に、合剤層における結着剤の偏在を抑制することが可能であり、かつ合剤層と、集電体との剥離強度に優れる、非水電解質二次電池用合剤を提供することを目的とする。また、該合剤を集電体に塗布・乾燥することにより得られる非水電解質二次電池用電極および該電極を有する非水電解質二次電池を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and can produce a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery with high productivity. For non-aqueous electrolyte secondary batteries that can suppress the uneven distribution of the binder in the mixture layer and has excellent peel strength between the mixture layer and the current collector when the battery electrode is manufactured The purpose is to provide a mixture. Moreover, it aims at providing the electrode for nonaqueous electrolyte secondary batteries obtained by apply | coating and drying this mixture to a collector, and the nonaqueous electrolyte secondary battery which has this electrode.
 本発明者らは上記課題を達成するために鋭意研究を重ねた結果、特定の不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)を結着剤として併用して用いた、非水電解質二次電池用合剤は、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have used a specific unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) as a binder. The present invention was completed by finding that the mixture for non-aqueous electrolyte secondary batteries used in the above could solve the above problems.
 すなわち、本発明の非水電解質二次電池用合剤は、ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有し、前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~150,000である。 That is, the mixture for non-aqueous electrolyte secondary batteries of the present invention comprises at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, a carboxyl group-containing vinylidene fluoride polymer ( B), containing an electrode active material and an organic solvent, and having a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 150,000.
 前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~100,000であることが好ましい。 It is preferable that the weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 100,000.
 前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量%あたり、不飽和カルボン酸重合体(A)が0.5~15重量%であることが好ましく、0.8~6重量%であることがより好ましい。 The unsaturated carboxylic acid polymer (A) is 0.5 to 15% by weight per 100% by weight in total of the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B). It is preferably 0.8 to 6% by weight.
 前記電極活物質の比表面積が、1~10m2/gであることが好ましく、2~6m2/gであることがより好ましい。 The specific surface area of the electrode active material is preferably 1 to 10 m 2 / g, and more preferably 2 to 6 m 2 / g.
 前記カルボキシル基含有フッ化ビニリデン系重合体(B)が、不飽和二塩基酸、不飽和二塩基酸モノエステル、アクリル酸およびメタクリル酸から選択される少なくとも一種のカルボキシル基含有モノマーと、フッ化ビニリデンとの共重合体であることが好ましい。 The carboxyl group-containing vinylidene fluoride polymer (B) is at least one carboxyl group-containing monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, and vinylidene fluoride And a copolymer thereof.
 本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤を、集電体に塗布・乾燥することにより得られる。 The electrode for a non-aqueous electrolyte secondary battery of the present invention can be obtained by applying and drying the mixture for a non-aqueous electrolyte secondary battery on a current collector.
 前記非水電解質二次電池用電極は、前記非水電解質二次電池用合剤から形成される、厚さ20~150μmの合剤層を有することが好ましい。 The nonaqueous electrolyte secondary battery electrode preferably has a mixture layer having a thickness of 20 to 150 μm formed from the nonaqueous electrolyte secondary battery mixture.
 本発明の非水電解質二次電池は、前記非水電解質二次電池用電極を有する。 The non-aqueous electrolyte secondary battery of the present invention has the non-aqueous electrolyte secondary battery electrode.
 本発明の非水電解質二次電池用合剤は、非水電解質二次電池用電極および非水電解質二次電池を生産性よく製造することが可能であり、非水電解質二次電池用電極を製造した際に、合剤層における結着剤の偏在を抑制することが可能であり、かつ合剤層と、集電体との剥離強度に優れる。また、本発明の非水電解質二次電池用電極および非水電解質二次電池は、該非水電解質二次電池用合剤を用いて製造されるため、生産性よく製造される。 The mixture for a non-aqueous electrolyte secondary battery of the present invention can produce a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte secondary battery with high productivity. When manufactured, the uneven distribution of the binder in the mixture layer can be suppressed, and the peel strength between the mixture layer and the current collector is excellent. Moreover, since the electrode for nonaqueous electrolyte secondary batteries and the nonaqueous electrolyte secondary battery of this invention are manufactured using this mixture for nonaqueous electrolyte secondary batteries, they are manufactured with high productivity.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 本発明の非水電解質二次電池用合剤は、ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有し、前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~150,000である。本発明の合剤は、通常負極用の合剤、すなわち、負極合剤として用いる。 The mixture for a non-aqueous electrolyte secondary battery of the present invention comprises at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, and a carboxyl group-containing vinylidene fluoride polymer (B). A weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) is 1,000 to 150, 000. The mixture of the present invention is usually used as a negative electrode mixture, that is, a negative electrode mixture.
 〔不飽和カルボン酸重合体(A)〕
 本発明の非水電解質二次電池用合剤は、ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)を含む。前記不飽和カルボン酸重合体(A)としては、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~150,000である重合体が用いられる。
[Unsaturated carboxylic acid polymer (A)]
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid. As the unsaturated carboxylic acid polymer (A), a polymer having a polyethylene oxide equivalent weight average molecular weight of 1,000 to 150,000 measured by gel permeation chromatography (GPC) is used.
 本発明の非水電解質二次電池に含まれる不飽和カルボン酸重合体(A)は、ポリアクリル酸であってもよく、ポリメタクリル酸であってもよく、ポリアクリル酸とポリメタクリル酸との混合物であってもよい。本発明に用いる不飽和カルボン酸重合体(A)は、1種単独でも2種以上を用いてもよい。不飽和カルボン酸重合体(A)としては、入手容易性の観点からポリアクリル酸が好ましい。 The unsaturated carboxylic acid polymer (A) contained in the nonaqueous electrolyte secondary battery of the present invention may be polyacrylic acid, polymethacrylic acid, or polyacrylic acid and polymethacrylic acid. It may be a mixture. The unsaturated carboxylic acid polymer (A) used in the present invention may be used alone or in combination of two or more. As the unsaturated carboxylic acid polymer (A), polyacrylic acid is preferable from the viewpoint of availability.
 ポリアクリル酸としては、アクリル酸の単独重合体、アクリル酸と他のモノマーとの共重合体が挙げられる。ポリアクリル酸としては、重合体100重量%中に、アクリル酸由来の構成単位を、通常は60重量%以上、好ましくは75重量%以上、より好ましくは90重量%以上有する重合体を用いる。ポリアクリル酸としてはアクリル酸の単独重合体が好ましい。 Examples of the polyacrylic acid include a homopolymer of acrylic acid and a copolymer of acrylic acid and other monomers. As polyacrylic acid, a polymer having, in 100% by weight of the polymer, a structural unit derived from acrylic acid is usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight or more. As the polyacrylic acid, a homopolymer of acrylic acid is preferable.
 アクリル酸以外の他のモノマーとしては、アクリル酸と共重合することが可能なモノマーを用いることができる。具体的には、他のモノマーとしては、メタクリル酸;エチレン、プロピレン、1-ブテン等のα‐オレフィン;アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;酢酸ビニル;スチレン等の芳香族ビニル化合物等が挙げられる。 As the monomer other than acrylic acid, a monomer that can be copolymerized with acrylic acid can be used. Specifically, other monomers include: methacrylic acid; α-olefins such as ethylene, propylene, and 1-butene; acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate; methyl methacrylate, ethyl methacrylate, and the like Examples thereof include alkyl methacrylates; vinyl acetate; aromatic vinyl compounds such as styrene.
 ポリメタクリル酸としては、メタクリル酸の単独重合体、メタクリル酸と他のモノマーとの共重合体が挙げられる。ポリメタクリル酸としては、重合体100重量%中に、メタクリル酸由来の構成単位を、通常は60重量%以上、好ましくは75重量%以上、より好ましくは90重量%以上有する重合体を用いる。ポリメタクリル酸としてはメタクリル酸の単独重合体が好ましい。 Examples of polymethacrylic acid include a homopolymer of methacrylic acid and a copolymer of methacrylic acid and other monomers. As polymethacrylic acid, a polymer having a structural unit derived from methacrylic acid in an amount of usually 60% by weight or more, preferably 75% by weight or more, more preferably 90% by weight or more in 100% by weight of the polymer is used. As the polymethacrylic acid, a homopolymer of methacrylic acid is preferable.
 メタクリル酸以外の他のモノマーとしては、メタクリル酸と共重合することが可能なモノマーを用いることができる。具体的には、他のモノマーとしては、アクリル酸;エチレン、プロピレン、1-ブテン等のα‐オレフィン;アクリル酸メチル、アクリル酸エチル等のアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;酢酸ビニル;スチレン等の芳香族ビニル化合物等が挙げられる。 As other monomers other than methacrylic acid, monomers capable of copolymerizing with methacrylic acid can be used. Specifically, the other monomers include acrylic acid; α-olefins such as ethylene, propylene, and 1-butene; acrylic acid alkyl esters such as methyl acrylate and ethyl acrylate; methyl methacrylate, ethyl methacrylate, and the like. Examples thereof include alkyl methacrylates; vinyl acetate; aromatic vinyl compounds such as styrene.
 本発明に用いる不飽和カルボン酸重合体(A)としては8×10-3~1.4×10-2モル/gのカルボキシル基を含有することが好ましい。 The unsaturated carboxylic acid polymer (A) used in the present invention preferably contains 8 × 10 −3 to 1.4 × 10 −2 mol / g of carboxyl groups.
 本発明に用いる不飽和カルボン酸重合体(A)としては前述のように、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~150,000である重合体が用いられる。不飽和カルボン酸重合体(A)の重量平均分子量は1,000~100,000であることが好ましい。重量平均分子量が1000未満の場合は、不飽和カルボン酸重合体(A)の耐電解液性が不充分である。一方で、分子量が150,000を超えると、不飽和カルボン酸重合体(A)とカルボキシル基含有フッ化ビニリデン系重合体(B)との相溶性が劣るため、剥離強度の向上は見られない。 As described above, the unsaturated carboxylic acid polymer (A) used in the present invention has a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of 1,000 to 150,000. A polymer is used. The weight average molecular weight of the unsaturated carboxylic acid polymer (A) is preferably 1,000 to 100,000. When the weight average molecular weight is less than 1,000, the electrolyte solution resistance of the unsaturated carboxylic acid polymer (A) is insufficient. On the other hand, when the molecular weight exceeds 150,000, the compatibility between the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) is inferior, and thus the peel strength is not improved. .
 本発明に用いる不飽和カルボン酸重合体(A)としてはカルボキシル基の一部が中和されていても良い。 As the unsaturated carboxylic acid polymer (A) used in the present invention, a part of the carboxyl group may be neutralized.
 本発明に用いる不飽和カルボン酸重合体(A)としては、市販品を用いてもよい。 Commercially available products may be used as the unsaturated carboxylic acid polymer (A) used in the present invention.
 〔カルボキシル基含有フッ化ビニリデン系重合体(B)〕
 本発明の非水電解質二次電池用合剤は、カルボキシル基含有フッ化ビニリデン系重合体(B)および前述の不飽和カルボン酸重合体(A)をバインダー樹脂(結着剤)として含む。
[Carboxyl group-containing vinylidene fluoride polymer (B)]
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains a carboxyl group-containing vinylidene fluoride polymer (B) and the aforementioned unsaturated carboxylic acid polymer (A) as a binder resin (binder).
 本発明において、カルボキシル基含有フッ化ビニリデン系重合体(B)とは、重合体中にカルボキシル基を含有し、モノマーとして少なくともフッ化ビニリデンを用いて得られる重合体である。また、カルボキシル基含有フッ化ビニリデン系重合体(B)は、通常フッ化ビニリデンおよびカルボキシル基含有モノマーを用いて得られる重合体であり、さらに他のモノマーを用いてもよい。 In the present invention, the carboxyl group-containing vinylidene fluoride polymer (B) is a polymer containing a carboxyl group in a polymer and obtained using at least vinylidene fluoride as a monomer. The carboxyl group-containing vinylidene fluoride polymer (B) is a polymer that is usually obtained using vinylidene fluoride and a carboxyl group-containing monomer, and other monomers may be used.
 また本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)は、1種単独でも2種以上を用いてもよい。 Moreover, the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention may be used alone or in combination of two or more.
 カルボキシル基含有フッ化ビニリデン系重合体(B)は、該重合体100重量部あたり、フッ化ビニリデン由来の構成単位を通常は80重量部以上、好ましくは85重量部以上有する重合体である。 The carboxyl group-containing vinylidene fluoride polymer (B) is a polymer having usually 80 parts by weight or more, preferably 85 parts by weight or more of structural units derived from vinylidene fluoride per 100 parts by weight of the polymer.
 本発明に用いる、カルボキシル基含有フッ化ビニリデン系重合体(B)は通常、(1)フッ化ビニリデンおよびカルボキシル基含有モノマー、必要に応じて他のモノマーを共重合する方法(以下、(1)の方法とも記す)、(2)フッ化ビニリデンを重合または、フッ化ビニリデンと他のモノマーとを共重合して得られた、フッ化ビニリデン系重合体と、カルボキシル基含有モノマーを重合または、カルボキシル基含有モノマーと他のモノマーとを共重合して得られた、カルボキシル基含有重合体とを用いて、フッ化ビニリデン系重合体にカルボキシル基含有重合体をグラフトする方法(以下、(2)の方法とも記す)、(3)フッ化ビニリデンを重合または、フッ化ビニリデンと他のモノマーとを共重合し、フッ化ビニリデン系重合体を得た後に、該フッ化ビニリデン系重合体を、アクリル酸等のカルボキシル基含有モノマーを用いてグラフト重合する方法(以下、(3)の方法とも記す)のいずれかの方法により製造される。 The carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention is usually (1) a method of copolymerizing vinylidene fluoride and a carboxyl group-containing monomer and, if necessary, another monomer (hereinafter referred to as (1) And (2) polymerizing vinylidene fluoride or copolymerizing vinylidene fluoride and other monomers, polymerizing vinylidene fluoride polymer and carboxyl group-containing monomer, or carboxyl A method of grafting a carboxyl group-containing polymer onto a vinylidene fluoride polymer using a carboxyl group-containing polymer obtained by copolymerizing a group-containing monomer and another monomer (hereinafter referred to as (2) (3) Polymerization of vinylidene fluoride or copolymerization of vinylidene fluoride and other monomers to produce a vinylidene fluoride polymer After the, the vinylidene fluoride-based polymer, a method of graft-polymerization using a carboxyl group-containing monomers such as acrylic acid is produced by any method (hereinafter, (3) referred to as method).
 本発明に用いる、カルボキシル基含有フッ化ビニリデン系重合体(B)は、カルボキシル基を有するため、カルボキシル基を有さないポリフッ化ビニリデンと比べ、集電体との接着性が改善される。またカルボキシル基含有フッ化ビニリデン系重合体(B)は、カルボキシル基を有さないポリフッ化ビニリデンと同等の耐電解液性を有する。 Since the carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention has a carboxyl group, the adhesion to the current collector is improved as compared with polyvinylidene fluoride not having a carboxyl group. The carboxyl group-containing vinylidene fluoride polymer (B) has an electrolytic solution resistance equivalent to that of polyvinylidene fluoride having no carboxyl group.
 カルボキシル基含有フッ化ビニリデン系重合体(B)の製造方法としては、前記(1)~(3)の方法の中でも、工程数、および生産コストの観点から、(1)の方法で製造することが好ましい。すなわち、カルボキシル基含有フッ化ビニリデン系重合体(B)は、フッ化ビニリデンと、カルボキシル基含有モノマーとの共重合体であることが好ましい。 As the method for producing the carboxyl group-containing vinylidene fluoride polymer (B), among the methods (1) to (3), the method (1) is used from the viewpoint of the number of steps and production cost. Is preferred. That is, the carboxyl group-containing vinylidene fluoride polymer (B) is preferably a copolymer of vinylidene fluoride and a carboxyl group-containing monomer.
 本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)は、フッ化ビニリデンを、通常は80~99.9重量部、好ましくは95~99.7重量部、およびカルボキシル基含有モノマーを、通常は0.1~20重量部、好ましくは0.3~5重量部(但し、フッ化ビニリデンおよびカルボキシル基含有モノマーの合計を100重量部とする)共重合して得られるフッ化ビニリデン系重合体である。なお、前記カルボキシル基含有フッ化ビニリデン系重合体(B)としては、前記フッ化ビニリデンおよびカルボキシル基含有モノマーに加えて、さらに他のモノマーを共重合して得られる重合体であってもよい。なお、他のモノマーを用いる場合には、前記フッ化ビニリデンおよびカルボキシル基含有モノマーの合計を100重量部とすると、他のモノマーは通常0.1~20重量部用いられる。 The carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention is usually 80 to 99.9 parts by weight of vinylidene fluoride, preferably 95 to 99.7 parts by weight, and a carboxyl group-containing monomer. Usually 0.1 to 20 parts by weight, preferably 0.3 to 5 parts by weight (provided that the total of vinylidene fluoride and carboxyl group-containing monomers is 100 parts by weight) copolymerized vinylidene fluoride based weight It is a coalescence. The carboxyl group-containing vinylidene fluoride polymer (B) may be a polymer obtained by copolymerizing another monomer in addition to the vinylidene fluoride and the carboxyl group-containing monomer. When other monomers are used, the other monomers are usually used in an amount of 0.1 to 20 parts by weight, assuming that the total of the vinylidene fluoride and carboxyl group-containing monomers is 100 parts by weight.
 前記カルボキシル基含有モノマーとしては、不飽和一塩基酸、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が好ましい。 As the carboxyl group-containing monomer, unsaturated monobasic acid, unsaturated dibasic acid, monoester of unsaturated dibasic acid and the like are preferable.
 前記不飽和一塩基酸としては、アクリル酸、メタクリル酸等が挙げられる。前記不飽和二塩基酸としては、マレイン酸、シトラコン酸等が挙げられる。また、前記不飽和二塩基酸のモノエステルとしては、炭素数5~8のものが好ましく、例えばマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。 Examples of the unsaturated monobasic acid include acrylic acid and methacrylic acid. Examples of the unsaturated dibasic acid include maleic acid and citraconic acid. The unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
 中でも、カルボキシル基含有モノマーとしては、不飽和二塩基酸、不飽和二塩基酸モノエステル、アクリル酸およびメタクリル酸から選択される少なくとも一種のモノマーが好ましく、マレイン酸、シトラコン酸、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステル、アクリル酸、メタクリル酸がより好ましい。 Among them, the carboxyl group-containing monomer is preferably at least one monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, maleic acid, citraconic acid, maleic acid monomethyl ester, Citraconic acid monomethyl ester, acrylic acid and methacrylic acid are more preferred.
 前記フッ化ビニリデンおよびカルボキシル基含有モノマーと共重合することが可能な他のモノマーとは、フッ化ビニリデンおよびカルボキシル基含有モノマー以外のモノマーを意味し、他のモノマーとしては、例えばフッ化ビニリデンと共重合可能なフッ素系単量体あるいはエチレン、プロピレン等の炭化水素系単量体が挙げられる。フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロメチルビニルエーテルに代表されるパーフルオロアルキルビニルエーテル等を挙げることができる。なお、前記他のモノマーは、1種単独で用いてもよく、2種以上を用いてもよい。 The other monomer that can be copolymerized with the vinylidene fluoride and the carboxyl group-containing monomer means a monomer other than the vinylidene fluoride and the carboxyl group-containing monomer, and examples of the other monomer include a copolymer with vinylidene fluoride. Examples thereof include polymerizable fluorine monomers and hydrocarbon monomers such as ethylene and propylene. Examples of the fluorine-based monomer copolymerizable with vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, and perfluoromethyl vinyl ether. . In addition, the said other monomer may be used individually by 1 type, and may use 2 or more types.
 また、(1)の方法としては、懸濁重合、乳化重合、溶液重合等の方法が採用できるが、後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましく、水系の懸濁重合が特に好ましい。 As the method (1), methods such as suspension polymerization, emulsion polymerization, and solution polymerization can be employed. From the viewpoint of ease of post-treatment, aqueous suspension polymerization and emulsion polymerization are preferred, and aqueous suspension is preferred. Turbid polymerization is particularly preferred.
 水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)100重量部に対して0.005~1.0重量部、好ましくは0.01~0.4重量部の範囲で添加して使用する。 In suspension polymerization using water as a dispersion medium, all monomers used for copolymerization with suspension agents such as methylcellulose, methoxymethylcellulose, propoxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, and gelatin (Vinylidene fluoride and a carboxyl group-containing monomer, and other monomers copolymerized as necessary) 0.005 to 1.0 part by weight, preferably 0.01 to 0.4 part by weight based on 100 parts by weight Add in the range of.
 重合開始剤としては、ジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、ジノルマルヘプタフルオロプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、イソブチリルパーオキサイド、ジ(クロロフルオロアシル)パーオキサイド、ジ(パーフルオロアシル)パーオキサイド等が使用できる。その使用量は、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)を100重量部とすると、0.1~5重量部、好ましくは0.3~2重量部である。 As the polymerization initiator, diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, diisopropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, Di (perfluoroacyl) peroxide and the like can be used. The amount used is 0.1 to 5 parts by weight, assuming that 100 parts by weight of all monomers used for copolymerization (vinylidene fluoride and carboxyl group-containing monomers, and other monomers copolymerized as necessary) The amount is preferably 0.3 to 2 parts by weight.
 また、酢酸エチル、酢酸メチル、炭酸ジエチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られるカルボキシル基含有フッ化ビニリデン系重合体(B)の重合度を調節することも可能である。その使用量は、通常は、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)を100重量部とすると、0.1~5重量部、好ましくは0.5~3重量部である。 Also, a carboxyl group-containing vinylidene fluoride system obtained by adding a chain transfer agent such as ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, etc. It is also possible to adjust the degree of polymerization of the polymer (B). The amount used is usually 0.1 to 5 when 100 parts by weight of all monomers used for copolymerization (vinylidene fluoride, carboxyl group-containing monomers, and other monomers copolymerized as necessary) are used. Part by weight, preferably 0.5 to 3 parts by weight.
 また、共重合に使用する全モノマー(フッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマー)の仕込量は、単量体の合計:水の重量比で通常は1:1~1:10、好ましくは1:2~1:5であり、重合は温度10~80℃であり、重合時間は10~100時間であり、重合時の圧力は通常加圧下で行われ、好ましくは2.0~8.0MPa‐Gである。 The total amount of monomers used for copolymerization (vinylidene fluoride and carboxyl group-containing monomers, and other monomers copolymerized as necessary) is usually in the weight ratio of the total monomer: water. The ratio is 1: 1 to 1:10, preferably 1: 2 to 1: 5, the polymerization is at a temperature of 10 to 80 ° C., the polymerization time is 10 to 100 hours, and the polymerization pressure is usually carried out under pressure. Preferably, it is 2.0 to 8.0 MPa-G.
 上記の条件で水系の懸濁重合を行うことにより、容易にフッ化ビニリデンおよび、カルボキシル基含有モノマー、必要に応じて共重合される他のモノマーを共重合することができ、本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)を得ることができる。 By performing aqueous suspension polymerization under the above conditions, it is possible to easily copolymerize vinylidene fluoride, a carboxyl group-containing monomer, and other monomers copolymerized as necessary. A group-containing vinylidene fluoride polymer (B) can be obtained.
 また、前記(2)の方法によりカルボキシル基含有フッ化ビニリデン系重合体(B)を製造する場合には例えば以下の方法で行うことができる。 Further, when the carboxyl group-containing vinylidene fluoride polymer (B) is produced by the method (2), for example, the following method can be used.
 (2)の方法によりカルボキシル基含有フッ化ビニリデン系重合体(B)を製造する場合には、まずフッ化ビニリデンを重合またはフッ化ビニリデンと他のモノマーとを共重合することにより、フッ化ビニリデン系重合体を得る。該重合または共重合は通常懸濁重合あるいは乳化重合により行われる。また、前記フッ化ビニリデン系重合体とは別に、カルボキシル基含有モノマーを重合または、カルボキシル基含有モノマーと他のモノマーとを共重合することによりカルボキシル基含有重合体を得る。該カルボキシル基含有重合体は通常、乳化重合あるいは懸濁重合により得られる。さらに上記フッ化ビニリデン系重合体およびカルボキシル基含有重合体を用いて、フッ化ビニリデン系重合体にカルボキシル基含有重合体をグラフトすることにより、カルボキシル基含有フッ化ビニリデン系重合体(B)を得ることができる。該グラフトは、過酸化物を用いて行ってもよく、放射線を用いて行ってもよいが、好ましくはフッ化ビニリデン系重合体およびカルボキシル基含有重合体の混合物を過酸化物の存在下で加熱処理することにより行われる。 When the carboxyl group-containing vinylidene fluoride polymer (B) is produced by the method (2), first, vinylidene fluoride is polymerized or vinylidene fluoride is copolymerized with another monomer to obtain vinylidene fluoride. A polymer is obtained. The polymerization or copolymerization is usually performed by suspension polymerization or emulsion polymerization. In addition to the vinylidene fluoride polymer, a carboxyl group-containing polymer is obtained by polymerizing a carboxyl group-containing monomer or copolymerizing a carboxyl group-containing monomer and another monomer. The carboxyl group-containing polymer is usually obtained by emulsion polymerization or suspension polymerization. Further, the carboxyl group-containing vinylidene fluoride polymer (B) is obtained by grafting the carboxyl group-containing polymer onto the vinylidene fluoride polymer using the vinylidene fluoride polymer and the carboxyl group-containing polymer. be able to. The grafting may be performed using a peroxide or may be performed using radiation. Preferably, a mixture of a vinylidene fluoride polymer and a carboxyl group-containing polymer is heated in the presence of a peroxide. It is done by processing.
 本発明に用いるカルボキシル基含有フッ化ビニリデン系重合体(B)は、インヘレント粘度(樹脂4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度。以下、同様)が0.5~5.0dl/gの範囲内の値であることが好ましく、1.1~4.0dl/gの範囲内の値であることがより好ましい。上記範囲内の粘度であれば、非水電解質二次電池用合剤に好適に用いることができる。 The carboxyl group-containing vinylidene fluoride polymer (B) used in the present invention has an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter). A value in the range of 0.5 to 5.0 dl / g is preferable, and a value in the range of 1.1 to 4.0 dl / g is more preferable. If it is a viscosity within the said range, it can use suitably for the mixture for nonaqueous electrolyte secondary batteries.
 インヘレント粘度ηiの算出は、カルボキシル基含有フッ化ビニリデン系重合体(B)80mgを20mlのN,N-ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローテ粘度計を用いて次式により行うことができる。 The inherent viscosity η i is calculated by dissolving 80 mg of the carboxyl group-containing vinylidene fluoride polymer (B) in 20 ml of N, N-dimethylformamide and using an Ubbelote viscometer in a constant temperature bath at 30 ° C. Can be performed.
   ηi=(1/C)・ln(η/η0
 ここでηは重合体溶液の粘度、η0は溶媒のN,N-ジメチルホルムアミド単独の粘度、Cは0.4g/dlである。
η i = (1 / C) · ln (η / η 0 )
Where η is the viscosity of the polymer solution, η 0 is the viscosity of the solvent N, N-dimethylformamide alone, and C is 0.4 g / dl.
 また、カルボキシル基含有フッ化ビニリデン系重合体(B)は、GPCで測定されるポリスチレン換算の重量平均分子量が、通常は5万~200万の範囲であり、好ましくは20万~150万の範囲である。 In addition, the carboxyl group-containing vinylidene fluoride polymer (B) has a polystyrene-equivalent weight average molecular weight measured by GPC usually in the range of 50,000 to 2,000,000, preferably in the range of 200,000 to 1,500,000. It is.
 また、カルボキシル基含有フッ化ビニリデン系重合体(B)は、赤外線吸収スペクトルを測定した際の下記式(1)で表される吸光度比(IR)が、0.1~5.0の範囲であることが好ましく、0.3~2.5であることがより好ましい。IRが0.1未満の場合は、集電体との接着性が不充分となる場合がある。一方で、IRが5.0を超えると、得られる重合体の耐電解液性が低下する傾向がある。なお、該重合体の赤外線吸収スペクトルの測定は、該重合体に熱プレスを施すことにより製造したフィルムについて、赤外線吸収スペクトルを測定することにより行われる。 The carboxyl group-containing vinylidene fluoride polymer (B) has an absorbance ratio (I R ) represented by the following formula (1) when an infrared absorption spectrum is measured, in the range of 0.1 to 5.0. Preferably, it is 0.3 to 2.5. If I R is less than 0.1, there is a case where adhesion between the current collector becomes insufficient. On the other hand, if I R exceeds 5.0, electrolyte resistance of the resulting polymer tends to decrease. In addition, the measurement of the infrared absorption spectrum of this polymer is performed by measuring an infrared absorption spectrum about the film manufactured by hot-pressing this polymer.
 IR=I1650-1800/I3000-3100 ・・・(1)
 上記式(1)において、I1650-1800は1650~1800cm-1の範囲に検出されるカルボニル基由来の吸光度であり、I3000-3100は3000~3100cm-1の範囲に検出されるCH構造由来の吸光度である。IRはカルボキシル基含有フッ化ビニリデン系重合体(B)中のカルボニル基の存在量を示す尺度となり、結果的にカルボキシル基の存在量を示す尺度となる。
I R = I 1650-1800 / I 3000-3100 (1)
In the above formula (1), I 1650-1800 is the absorbance from the carbonyl group which is detected in the range of 1650 ~ 1800cm -1, I 3000-3100 are derived from CH structures detected in the range of 3000 ~ 3100 cm -1 Absorbance. I R becomes a measure of the abundance of the carbonyl group in the carboxyl group-containing vinylidene fluoride-based polymer (B), a measure of the abundance of the resulting carboxyl group.
 〔電極活物質〕
 本発明の非水電解質二次電池用合剤は、電極活物質を含む。電極活物質としては、特に限定は無く、従来公知の負極用の電極活物質を用いることができ、具体例としては、炭素材料、金属・合金材料、金属酸化物などが挙げられるが、中でも炭素材料が好ましい。
[Electrode active material]
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains an electrode active material. The electrode active material is not particularly limited, and conventionally known electrode active materials for negative electrodes can be used, and specific examples include carbon materials, metal / alloy materials, metal oxides, etc. Material is preferred.
 前記炭素材料としては、人造黒鉛、天然黒鉛、難黒鉛化炭素、易黒鉛化炭素などが用いられる。また、前記炭素材料は、1種単独で用いても、2種以上を用いてもよい。 As the carbon material, artificial graphite, natural graphite, non-graphitizable carbon, graphitizable carbon, or the like is used. Moreover, the said carbon material may be used individually by 1 type, or may use 2 or more types.
 このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。 When such a carbon material is used, the energy density of the battery can be increased.
 前記人造黒鉛としては、例えば、有機材料を炭素化しさらに高温で熱処理を行い、粉砕・分級することにより得られる。人造黒鉛としては、MAGシリーズ(日立化成工業製)、MCMB(大阪ガス製)等が用いられる。 The artificial graphite can be obtained, for example, by carbonizing an organic material, heat-treating it at a high temperature, pulverizing and classifying it. As the artificial graphite, MAG series (manufactured by Hitachi Chemical Co., Ltd.), MCMB (manufactured by Osaka Gas) and the like are used.
 前記電極活物質の比表面積は、1~10m2/gであることが好ましく、2~6m2/gであることがより好ましい。比表面積が1m2/g未満の場合は、従来の結着剤を用いた場合であっても、結着剤の偏在は起こりにくいため、本発明の効果は小さい。比表面積が10m2/gを超えると、電解液の分解量が増加し、初期の不可逆容量が増えるため好ましくない。 The specific surface area of the electrode active material is preferably 1 to 10 m 2 / g, and more preferably 2 to 6 m 2 / g. When the specific surface area is less than 1 m 2 / g, even when a conventional binder is used, the uneven distribution of the binder is unlikely to occur, so the effect of the present invention is small. If the specific surface area exceeds 10 m 2 / g, the amount of decomposition of the electrolytic solution increases and the initial irreversible capacity increases, which is not preferable.
 なお、電極活物資の比表面積は、窒素吸着法により求めることができる。 The specific surface area of the electrode active material can be determined by a nitrogen adsorption method.
 〔有機溶剤〕
 本発明の非水電解質二次電池用合剤は、有機溶剤を含有する。有機溶剤としては前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)を溶解する作用を有するものが用いられ、好ましくは極性を有する溶剤が用いられる。有機溶剤の具体例としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェイト、トリメチルホスフェイトなどが挙げられ、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドが好ましい。また、有機溶剤は1種単独でも、2種以上を混合してもよい。
〔Organic solvent〕
The mixture for nonaqueous electrolyte secondary batteries of the present invention contains an organic solvent. As the organic solvent, those having an action of dissolving the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are used, and a solvent having polarity is preferably used. Specific examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoamide, dioxane, tetrahydrofuran, tetramethylurea, triethyl phosphate. And N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and dimethyl sulfoxide are preferable. Moreover, the organic solvent may be used alone or in combination of two or more.
 本発明の非水電解質二次電池用合剤は、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有する。 The non-aqueous electrolyte secondary battery mixture of the present invention contains the unsaturated carboxylic acid polymer (A), a carboxyl group-containing vinylidene fluoride polymer (B), an electrode active material, and an organic solvent.
 本発明の非水電解質二次電池用合剤は、不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)を含むが、不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量%あたり、不飽和カルボン酸重合体(A)が0.5~15重量%であることが好ましく、0.8~6重量%であることがより好ましい。また、バインダー樹脂(不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B))と、電極活物質との合計100重量部あたり、バインダー樹脂は0.5~15重量部であることが好ましく、1~10重量部であることがより好ましく、活物質は85~99.5重量部であることが好ましく、90~99重量部であることがより好ましい。また、バインダー樹脂(不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B))と、電極活物質との合計を100重量部とすると、有機溶剤は20~300重量部であることが好ましく、50~200重量部であることがより好ましい。 The mixture for a non-aqueous electrolyte secondary battery of the present invention includes an unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B), but the unsaturated carboxylic acid polymer (A) and The unsaturated carboxylic acid polymer (A) is preferably 0.5 to 15% by weight, preferably 0.8 to 6% by weight, per 100% by weight of the total of the carboxyl group-containing vinylidene fluoride polymer (B). More preferably. In addition, the binder resin is 0.5 to 15 weights per 100 parts by weight in total of the binder resin (unsaturated carboxylic acid polymer (A) and carboxyl group-containing vinylidene fluoride polymer (B)) and the electrode active material. Parts, preferably 1 to 10 parts by weight, and the active material is preferably 85 to 99.5 parts by weight, and more preferably 90 to 99 parts by weight. Further, when the total of the binder resin (unsaturated carboxylic acid polymer (A) and carboxyl group-containing vinylidene fluoride polymer (B)) and the electrode active material is 100 parts by weight, the organic solvent is 20 to 300 weights. Parts, preferably 50 to 200 parts by weight.
 上記範囲内で各成分を含有すると、本発明の非水電解質二次電池用合剤を用いて、非水電解質二次電池用電極を生産性よく製造することが可能であり、非水電解質二次電池用電極を製造した際に、合剤層における結着剤の偏在を充分に抑制することが可能であり、かつ合剤層と、集電体との剥離強度に優れる。 When each component is contained within the above range, it is possible to produce a nonaqueous electrolyte secondary battery electrode with high productivity using the nonaqueous electrolyte secondary battery mixture of the present invention. When the secondary battery electrode is produced, the uneven distribution of the binder in the mixture layer can be sufficiently suppressed, and the peel strength between the mixture layer and the current collector is excellent.
 また、本発明の非水電解質二次電池用合剤は、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤以外の他の成分を含有していてもよい。他の成分としては、カーボンブラックなどの導電助剤やポリビニルピロリドンなどの顔料分散剤等を含んでいてもよい。前記他の成分としては、前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)以外の他の重合体を含んでいてもよい。前記他の重合体としては、例えばポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル共重合体等のフッ化ビニリデン系重合体が挙げられる。本発明の非水電解質二次電池用合剤に、他の重合体が含まれる場合には、通常前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量部に対して25重量部以下の量で含まれる。 The mixture for a non-aqueous electrolyte secondary battery of the present invention is other than the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), the electrode active material, and the organic solvent. The component may be contained. As other components, a conductive aid such as carbon black, a pigment dispersant such as polyvinylpyrrolidone, and the like may be included. As said other component, polymers other than the said unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B) may be included. Examples of the other polymer include fluorides such as polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-perfluoromethyl vinyl ether copolymer. Examples include vinylidene polymers. When the non-aqueous electrolyte secondary battery mixture of the present invention contains other polymers, the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are usually used. It is contained in an amount of 25 parts by weight or less with respect to a total of 100 parts by weight.
 本発明の非水電解質二次電池用合剤の、E型粘度計を用いて、25℃、せん断速度2s-1で測定を行った際の粘度は、通常2000~50000mPa・sであり、好ましくは5000~30000mPa・sである。 The viscosity of the mixture for a non-aqueous electrolyte secondary battery of the present invention when measured with an E-type viscometer at 25 ° C. and a shear rate of 2 s −1 is usually 2000 to 50000 mPa · s, preferably Is 5000 to 30000 mPa · s.
 本発明の非水電解質二次電池用合剤の製造方法としては、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を均一なスラリーとなるように混合すればよく、混合する際の順序は特に限定されないが、例えば前記不飽和カルボン酸重合体(A)、およびカルボキシル基含有フッ化ビニリデン系重合体(B)を、有機溶剤の一部に溶解し、バインダー溶液を得て、該バインダー溶液に電極活物質および残りの有機溶剤を添加し、攪拌混合し、非水電解質二次電池用合剤を得る方法、前記不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)をそれぞれ有機溶剤の一部に溶解し、2つのバインダー溶液を得て、該2つのバインダー溶液をブレンドし、ブレンドしたバインダー溶液に電極活物質および残りの有機溶剤を添加し、攪拌混合し、非水電解質二次電池用合剤を得る方法が挙げられる。 The method for producing the mixture for a non-aqueous electrolyte secondary battery of the present invention includes the unsaturated carboxylic acid polymer (A), the carboxyl group-containing vinylidene fluoride polymer (B), the electrode active material, and the organic solvent. What is necessary is just to mix so that it may become a uniform slurry, and the order at the time of mixing is not specifically limited, For example, the said unsaturated carboxylic acid polymer (A) and a carboxyl group-containing vinylidene fluoride polymer (B), Dissolving in a part of the organic solvent to obtain a binder solution, adding the electrode active material and the remaining organic solvent to the binder solution, mixing by stirring, and obtaining a mixture for a non-aqueous electrolyte secondary battery, The saturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B) are each dissolved in a part of an organic solvent to obtain two binder solutions. Ndoshi, was added blended binder solution in the electrode active material and the remaining organic solvent, stirring and mixing, a method may be mentioned of obtaining a nonaqueous electrolyte secondary battery mixture.
 〔非水電解質二次電池用電極〕
 本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤を、集電体に塗布・乾燥することにより得られ、集電体と、非水電解質二次電池用合剤から形成される層とを有する。本発明の非水電解質二次電池用電極は通常は、負極として用いる。
[Electrode for non-aqueous electrolyte secondary battery]
The electrode for a non-aqueous electrolyte secondary battery of the present invention is obtained by applying and drying the mixture for a non-aqueous electrolyte secondary battery on a current collector, and the current collector and for the non-aqueous electrolyte secondary battery And a layer formed from a mixture. The electrode for a nonaqueous electrolyte secondary battery of the present invention is usually used as a negative electrode.
 なお、本発明において、非水電解質二次電池用合剤を集電体に塗布・乾燥することにより形成される、非水電解質二次電池用合剤から形成される層を、合剤層と記す。 In the present invention, a layer formed from a mixture for a nonaqueous electrolyte secondary battery, which is formed by applying and drying a mixture for a nonaqueous electrolyte secondary battery on a current collector, a mixture layer I write.
 本発明に用いる集電体としては、例えば銅が挙げられ、その形状としては例えば金属箔や金属網等が挙げられる。集電体としては、銅箔が好ましい。 The current collector used in the present invention includes, for example, copper, and the shape thereof includes, for example, a metal foil, a metal net, and the like. As the current collector, a copper foil is preferable.
 集電体の厚さは、通常は5~100μmであり、好ましくは5~20μmである。 The thickness of the current collector is usually 5 to 100 μm, preferably 5 to 20 μm.
 また、合剤層の厚さは、通常は20~250μmであり、好ましくは20~150μmである。 Further, the thickness of the mixture layer is usually 20 to 250 μm, preferably 20 to 150 μm.
 本発明の非水電解質二次電池用電極を製造する際には、前記非水電解質二次電池用合剤を前記集電体の少なくとも一面、好ましくは両面に塗布を行う。塗布する際の方法としては特に限定は無く、バーコーター、ダイコーター、コンマコーターで塗布する等の方法が挙げられる。 When producing the electrode for nonaqueous electrolyte secondary battery of the present invention, the mixture for nonaqueous electrolyte secondary battery is applied to at least one surface, preferably both surfaces of the current collector. The method for coating is not particularly limited, and examples thereof include a method using a bar coater, a die coater, or a comma coater.
 また、塗布した後に行われる乾燥としては、通常50~150℃の温度で1~300分行われる。また、乾燥の際の圧力は特に限定はないが、通常は、大気圧下または減圧下で行われる。 Further, the drying performed after the coating is usually performed at a temperature of 50 to 150 ° C. for 1 to 300 minutes. Moreover, the pressure at the time of drying is not particularly limited, but it is usually carried out under atmospheric pressure or reduced pressure.
 さらに、乾燥を行ったのちに、熱処理が行われてもよい。熱処理を行う場合には、通常100~250℃の温度で1~300分行われる。なお、熱処理の温度は前記乾燥と重複するが、これらの工程は、別個の工程であってもよく、連続的に行われる工程であってもよい。 Furthermore, heat treatment may be performed after drying. When heat treatment is performed, it is usually performed at a temperature of 100 to 250 ° C. for 1 to 300 minutes. In addition, although the temperature of heat processing overlaps with the said drying, these processes may be a separate process and the process performed continuously.
 また、さらにプレス処理を行ってもよい。プレス処理を行う場合には、通常1~200MP‐Gで行われる。プレス処理を行うと電極密度を向上できるため好ましい。 Further, press processing may be performed. When the pressing process is performed, it is normally performed at 1 to 200 MP-G. It is preferable to perform the press treatment because the electrode density can be improved.
 以上の方法で、本発明の非水電解質二次電池用電極を製造することができる。なお、非水電解質二次電池用電極の層構成としては、非水電解質二次電池用合剤を集電体の一面に塗布した場合には、合剤層/集電体の二層構成であり、非水電解質二次電池用合剤を集電体の両面に塗布した場合には、合剤層/集電体/合剤層の三層構成である。 By the above method, the electrode for nonaqueous electrolyte secondary batteries of the present invention can be produced. In addition, as a layer structure of the electrode for nonaqueous electrolyte secondary batteries, when the mixture for nonaqueous electrolyte secondary batteries is applied to one surface of the current collector, the layer structure of the mixture layer / current collector is Yes, when the mixture for a non-aqueous electrolyte secondary battery is applied on both sides of the current collector, it has a three-layer structure of a mixture layer / current collector / mixture layer.
 本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤を用いることにより、集電体と合剤層との剥離強度に優れるため、プレス、スリット、捲回などの工程で電極に亀裂や剥離が生じにくく、生産性の向上に繋がるために好ましい。 The electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in peel strength between the current collector and the mixture layer by using the mixture for a non-aqueous electrolyte secondary battery, so that press, slit, winding, etc. In this process, cracks and peeling are unlikely to occur in the electrode, which is preferable because it leads to an improvement in productivity.
 本発明の非水電解質二次電池用電極は、前述のように集電体と合剤層との剥離強度に優れるが、具体的には、集電体と合剤層との剥離強度は、JIS K6854に準拠して、180°剥離試験により測定を行った際に通常は0.5~20gf/mmであり、好ましくは1~10gf/mmである。 The electrode for a non-aqueous electrolyte secondary battery of the present invention is excellent in the peel strength between the current collector and the mixture layer as described above. Specifically, the peel strength between the current collector and the mixture layer is According to JIS K6854, it is usually 0.5 to 20 gf / mm, preferably 1 to 10 gf / mm when measured by a 180 ° peel test.
 本発明の非水電解質二次電池用電極は、前記非水電解質二次電池用合剤から形成される合剤層を有しており、該合剤層は、結着剤の偏在が抑制されている。そのために集電体と合剤層との剥離強度に優れる。 The electrode for a non-aqueous electrolyte secondary battery of the present invention has a mixture layer formed from the mixture for the non-aqueous electrolyte secondary battery, and the mixture layer suppresses uneven distribution of the binder. ing. Therefore, the peel strength between the current collector and the mixture layer is excellent.
 〔非水電解質二次電池〕
 本発明の非水電解質二次電池は、前記非水電解質二次電池用電極を有することを特徴とする。
[Nonaqueous electrolyte secondary battery]
The non-aqueous electrolyte secondary battery of the present invention is characterized by having the non-aqueous electrolyte secondary battery electrode.
 本発明の非水電解質二次電池としては、前記非水電解質二次電池用電極を有していること以外は特に限定は無い。非水電解質二次電池としては、前記非水電解質二次電池用電極を通常は負極として有し、負極以外の部位、例えば正極、セパレータ等は従来公知のものを用いることができる。 The nonaqueous electrolyte secondary battery of the present invention is not particularly limited except that it has the electrode for nonaqueous electrolyte secondary battery. As the nonaqueous electrolyte secondary battery, the electrode for a nonaqueous electrolyte secondary battery is usually used as a negative electrode, and conventionally known ones other than the negative electrode, such as a positive electrode and a separator, can be used.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 [製造例1](カルボキシル基含有フッ化ビニリデン系重合体(1)の製造)
 内容量2リットルのオートクレーブに、イオン交換水1040g、メチルセルロース0.8g、ジイソプロピルパーオキシジカーボネート3.0g、フッ化ビニリデン396gおよびマレイン酸モノメチルエステル4.0gを仕込み、28℃で45時間懸濁重合をおこなった。この間の最高圧力は4.1MPaに達した。重合完了後、重合体スラリーを脱水、水洗した。その後、80℃で20時間乾燥をおこない、粉末状のカルボキシル基含有フッ化ビニリデン系重合体(1)(重合体(1))を得た。重合体(1)の重量平均分子量は50万であり、インヘレント粘度は1.7dl/gであり、IR(=I1650-1800/I3000-3100)(なお、カルボニル基由来の吸光度は1750cm-1に観察され、CH構造由来の吸光度は3025cm-1に観察された)は0.5であった。
[Production Example 1] (Production of carboxyl group-containing vinylidene fluoride polymer (1))
An autoclave having an internal volume of 2 liters was charged with 1040 g of ion-exchanged water, 0.8 g of methylcellulose, 3.0 g of diisopropyl peroxydicarbonate, 396 g of vinylidene fluoride and 4.0 g of maleic acid monomethyl ester, and suspension polymerization at 28 ° C. for 45 hours. I did it. The maximum pressure during this period reached 4.1 MPa. After completion of the polymerization, the polymer slurry was dehydrated and washed with water. Then, it dried at 80 degreeC for 20 hours, and obtained the powdery carboxyl group containing vinylidene fluoride polymer (1) (polymer (1)). The weight average molecular weight of the polymer (1) is 500,000, the inherent viscosity is 1.7 dl / g, and I R (= I 1650-1800 / I 3000-3100 ) ( note that the absorbance derived from the carbonyl group is 1750 cm). -1 and the absorbance derived from the CH structure was observed at 3025 cm -1 ).
 [製造例2](ポリフッ化ビニリデンの製造)
 内容量2リットルのオートクレーブに、イオン交換水1075g、メチルセルロース0.4g、ジノルマルプロピルパーオキシジカーボネート2.5g、酢酸エチル5g、フッ化ビニリデン420gを仕込み、25℃で14時間懸濁重合をおこなった。この間の最高圧力は4.0MPaに達した。重合完了後、重合体スラリーを脱水、水洗した。その後、80℃で20時間乾燥をおこない、粉末状のポリフッ化ビニリデン(PVDF)を得た。PVDFの重量平均分子量は50万であり、インヘレント粘度は1.7dl/gであった。
[Production Example 2] (Production of polyvinylidene fluoride)
An autoclave with an internal volume of 2 liters was charged with 1075 g of ion-exchanged water, 0.4 g of methylcellulose, 2.5 g of dinormalpropyl peroxydicarbonate, 5 g of ethyl acetate, and 420 g of vinylidene fluoride, and subjected to suspension polymerization at 25 ° C. for 14 hours. It was. The maximum pressure during this period reached 4.0 MPa. After completion of the polymerization, the polymer slurry was dehydrated and washed with water. Then, it dried at 80 degreeC for 20 hours, and obtained the powdery polyvinylidene fluoride (PVDF). PVDF had a weight average molecular weight of 500,000 and an inherent viscosity of 1.7 dl / g.
 [カルボキシル基含有フッ化ビニリデン系重合体(1)およびポリフッ化ビニリデンの重量平均分子量の測定]
 カルボキシル基含有フッ化ビニリデン系重合体(1)およびポリフッ化ビニリデンのポリスチレン換算の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[Measurement of weight average molecular weight of carboxyl group-containing vinylidene fluoride polymer (1) and polyvinylidene fluoride]
The weight average molecular weight in terms of polystyrene of the carboxyl group-containing vinylidene fluoride polymer (1) and polyvinylidene fluoride was measured by gel permeation chromatography (GPC).
 測定は、分離カラムには、Shodex KD-806M(昭和電工株式会社製)を用い、検出器には、日本分光株式会社製RI-930(示差屈折率検出器)を用い、溶離液の流速1mL/min、カラム温度40℃の条件で行った。 For the measurement, Shodex KD-806M (made by Showa Denko KK) is used for the separation column, RI-930 (differential refractive index detector) made by JASCO Corporation is used for the detector, and the flow rate of the eluent is 1 mL. / Min and column temperature of 40 ° C.
 なお、測定では、溶離液として濃度10mMのLiBr―NMP溶液を用い、検量線用の標準ポリマーとしては、TSK standard POLY(STYRENE)(標準ポリスチレン)(東ソー株式会社製)を用いた。 In the measurement, a LiBr-NMP solution having a concentration of 10 mM was used as the eluent, and TSK standard POLY (STYRENE) (standard polystyrene) (manufactured by Tosoh Corporation) was used as the standard polymer for the calibration curve.
 [ポリアクリル酸の重量平均分子量の測定]
 実施例、比較例で用いたポリアクリル酸のポリエチレンオキサイド換算の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[Measurement of weight average molecular weight of polyacrylic acid]
The weight average molecular weight in terms of polyethylene oxide of the polyacrylic acid used in Examples and Comparative Examples was measured by gel permeation chromatography (GPC).
 測定は、分離カラムには、Shodex Asahipak GF-7M HQ(昭和電工株式会社製)を用い、検出器には、株式会社島津製作所製RID-6A(示差屈折率検出器)を用い、溶離液の流速0.6mL/min、カラム温度40℃の条件で行った。 For the measurement, Shodex Asahipak GF-7M HQ (made by Showa Denko KK) was used for the separation column, and RID-6A (differential refractive index detector) made by Shimadzu Corporation was used for the detector. The measurement was performed under conditions of a flow rate of 0.6 mL / min and a column temperature of 40 ° C.
 なお、測定では、溶離液としてNa2HPO4/CH3CN=90/10(重量比)を用い、検量線用の標準ポリマーとしては、TSK standard POLY(ETHYLENE OXIDE)(標準ポリエチレンオキサイド)(東ソー株式会社製)を用いた。 In the measurement, Na 2 HPO 4 / CH 3 CN = 90/10 (weight ratio) was used as the eluent, and TSK standard POLY (ETHYLENE OXIDE) (standard polyethylene oxide) (Tosoh Corporation) was used as the standard polymer for the calibration curve. Used).
 [活物質の比表面積測定]
 活物質の比表面積は、窒素吸着法によって測定した。
[Specific surface area measurement of active material]
The specific surface area of the active material was measured by a nitrogen adsorption method.
 BETの式から誘導された近似式:Vm=1/(v(1-x))を用いて液体窒素温度における、窒素吸着による1点法(相対圧力x=0.3)によりVmを求め、次式により試料(活物質)の比表面積を計算した。 Using an approximate expression derived from the BET equation: Vm = 1 / (v (1-x)), Vm is determined by a one-point method by nitrogen adsorption (relative pressure x = 0.3) at liquid nitrogen temperature. The specific surface area of the sample (active material) was calculated by the following formula.
 比表面積[m2/g]=4.35×Vm
 ここで、Vmは試料表面に単分子層を形成するに必要な吸着量(cm3/g)、vは実測される吸着量(cm3/g)、xは相対圧力である。
Specific surface area [m 2 /g]=4.35×Vm
Here, Vm is an adsorption amount (cm 3 / g) necessary for forming a monomolecular layer on the sample surface, v is an actually measured adsorption amount (cm 3 / g), and x is a relative pressure.
 具体的には、MICROMETRITICS社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における活物質への窒素の吸着量(v)を測定した。活物質を試料管に充填し、窒素ガスを20モル%濃度で含有するヘリウムガスを流しながら、試料管を-196℃に冷却し、活物質に窒素を吸着させる。次に試験管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着量(v)とした。 Specifically, using a “Flow Sorb II2300” manufactured by MICROMETRITICS, the adsorption amount (v) of nitrogen on the active material at the liquid nitrogen temperature was measured as follows. The sample tube is filled with the active material, and while flowing a helium gas containing nitrogen gas at a concentration of 20 mol%, the sample tube is cooled to −196 ° C. to adsorb nitrogen to the active material. The test tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and was defined as the adsorption amount (v).
 〔実施例1〕
 (非水電解質二次電池用合剤の調製)
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.9gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.1gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(1)を得た。得られたバインダー溶液(1)8g、人造黒鉛(日立化成工業製、MAG、平均粒径20μm、比表面積4.2m2/g)9.2g、および合剤粘度調整用のN-メチル-2-ピロリドン5.8gを攪拌混合し、非水電解質二次電池用合剤(1)を得た。非水電解質二次電池用合剤(1)の粘度は12000mPa・sであった。
[Example 1]
(Preparation of non-aqueous electrolyte secondary battery mixture)
9.9 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.1 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (1). 8 g of the obtained binder solution (1), artificial graphite (manufactured by Hitachi Chemical Co., Ltd., MAG, average particle size 20 μm, specific surface area 4.2 m 2 / g) 9.2 g, and N-methyl-2 for adjusting the viscosity of the mixture -5.8 g of pyrrolidone was stirred and mixed to obtain a nonaqueous electrolyte secondary battery mixture (1). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (1) was 12000 mPa · s.
 (電極の作製)
 乾燥後の目付量が150g/m2になるように、スペーサーおよびバーコーターを使用して得られた非水電解質二次電池用合剤(1)を、集電体である厚さ10μmの銅箔上に塗布した。窒素雰囲気中、110℃で乾燥後、130℃で熱処理をおこなった。つづいて、40MPaでプレスをおこない、非水電解質二次電池用合剤(1)から形成される合剤層の嵩密度が1.6g/cm3の非水電解質二次電池用電極(1)を得た。合剤層の厚さを、電極の厚みから集電体の厚みを差し引くことにより算出した。
(Production of electrodes)
A non-aqueous electrolyte secondary battery mixture (1) obtained by using a spacer and a bar coater so as to have a basis weight after drying of 150 g / m 2 was used as a current collector of copper having a thickness of 10 μm. It was applied on the foil. After drying at 110 ° C. in a nitrogen atmosphere, heat treatment was performed at 130 ° C. Subsequently, pressing is performed at 40 MPa, and the electrode layer for nonaqueous electrolyte secondary battery (1) having a bulk density of 1.6 g / cm 3 of the mixture layer formed from the mixture for nonaqueous electrolyte secondary battery (1). Got. The thickness of the mixture layer was calculated by subtracting the thickness of the current collector from the thickness of the electrode.
 〔比較例1〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)10.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c1)を得た。該バインダー溶液(c1)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c1)および非水電解質二次電池用電極(c1)を得た。非水電解質二次電池用合剤(c1)の粘度は12000mPa・sであった。
[Comparative Example 1]
10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c1). Except having used this binder solution (c1), it carried out similarly to Example 1 and obtained the mixture for nonaqueous electrolyte secondary batteries (c1) and the electrode for nonaqueous electrolyte secondary batteries (c1). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c1) was 12000 mPa · s.
 〔実施例2〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.75gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.25gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(2)を得た。該バインダー溶液(2)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(2)および非水電解質二次電池用電極(2)を得た。非水電解質二次電池用合剤(2)の粘度は11800mPa・sであった。
[Example 2]
9.75 g of a carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.25 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (2). Except having used this binder solution (2), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (2) and the electrode for nonaqueous electrolyte secondary batteries (2) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (2) was 11800 mPa · s.
 〔実施例3〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(3)を得た。該バインダー溶液(3)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(3)および非水電解質二次電池用電極(3)を得た。非水電解質二次電池用合剤(3)の粘度は11500mPa・sであった。
Example 3
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (3). Except having used this binder solution (3), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (3) and the electrode for nonaqueous electrolyte secondary batteries (3) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (3) was 11500 mPa · s.
 〔実施例4〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.0gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)1.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(4)を得た。該バインダー溶液(4)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(4)および非水電解質二次電池用電極(4)を得た。非水電解質二次電池用合剤(4)の粘度は11500mPa・sであった。
Example 4
9.0 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 1.0 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (4). Except having used this binder solution (4), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (4) and the electrode for nonaqueous electrolyte secondary batteries (4) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (4) was 11500 mPa · s.
 〔実施例5〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)8.7gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)1.3gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(5)を得た。該バインダー溶液(5)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(5)および非水電解質二次電池用電極(5)を得た。非水電解質二次電池用合剤(5)の粘度は11000mPa・sであった。
Example 5
8.7 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 1.3 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (5). Except having used this binder solution (5), it carried out similarly to Example 1 and obtained the mixture (5) for nonaqueous electrolyte secondary batteries, and the electrode (5) for nonaqueous electrolyte secondary batteries. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (5) was 11000 mPa · s.
 〔比較例2〕
 PVDF10.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c2)を得た。該バインダー溶液(c2)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c2)および非水電解質二次電池用電極(c2)を得た。非水電解質二次電池用合剤(c2)の粘度は12500mPa・sであった。
[Comparative Example 2]
10.0 g of PVDF was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c2). Except having used this binder solution (c2), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c2) and the electrode for nonaqueous electrolyte secondary batteries (c2) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c2) was 12500 mPa · s.
 〔比較例3〕
 PVDF9.9gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.1gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c3)を得た。該バインダー溶液(c3)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c3)および非水電解質二次電池用電極(c3)を得た。非水電解質二次電池用合剤(c3)の粘度は12500mPa・sであった。
[Comparative Example 3]
9.9 g of PVDF and 0.1 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) were added to N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10% by weight binder solution (c3) was obtained. Except having used this binder solution (c3), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c3) and the electrode for nonaqueous electrolyte secondary batteries (c3) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c3) was 12500 mPa · s.
 〔比較例4〕
 PVDF9.75gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.25gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c4)を得た。該バインダー溶液(c4)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c4)および非水電解質二次電池用電極(c4)を得た。非水電解質二次電池用合剤(c4)の粘度は12000mPa・sであった。
[Comparative Example 4]
9.75 g of PVDF, 0.25 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g), N-methyl-2-pyrrolidone Dissolved in 90 g, a 10 wt% binder solution (c4) was obtained. Except having used this binder solution (c4), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c4) and the electrode for nonaqueous electrolyte secondary batteries (c4) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c4) was 12000 mPa · s.
 〔比較例5〕
 PVDF9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c5)を得た。該バインダー溶液(c5)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c5)および非水電解質二次電池用電極(c5)を得た。非水電解質二次電池用合剤(c5)の粘度は11800mPa・sであった。
[Comparative Example 5]
9.5 g of PVDF and 0.5 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) are mixed with N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10 wt% binder solution (c5) was obtained. Except having used this binder solution (c5), it carried out similarly to Example 1 and obtained the mixture for nonaqueous electrolyte secondary batteries (c5) and the electrode for nonaqueous electrolyte secondary batteries (c5). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c5) was 11800 mPa · s.
 〔比較例6〕
 PVDF9.0gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)1.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c6)を得た。該バインダー溶液(c6)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c6)および非水電解質二次電池用電極(c6)を得た。非水電解質二次電池用合剤(c6)の粘度は11500mPa・sであった。
[Comparative Example 6]
9.0 g of PVDF and 1.0 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) were added to N-methyl-2-pyrrolidone. Dissolved in 90 g, a 10% by weight binder solution (c6) was obtained. Except having used this binder solution (c6), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c6) and the electrode for nonaqueous electrolyte secondary batteries (c6) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c6) was 11500 mPa · s.
 〔比較例7〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.75gと、架橋型ポリアクリル酸(商品名「AQUPEC HV-501」、住友精化社製、カルボキシル基量:1.3×10-2モル/g)0.25gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c7)を得た。該バインダー溶液(c7)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c7)および非水電解質二次電池用電極(c7)を得た。非水電解質二次電池用合剤(c7)の粘度は13000mPa・sであった。
[Comparative Example 7]
9.75 g of carboxyl group-containing vinylidene fluoride polymer (1) and cross-linked polyacrylic acid (trade name “AQUPEC HV-501”, manufactured by Sumitomo Seika Co., Ltd., carboxyl group content: 1.3 × 10 −2 mol) / G) 0.25 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c7). Except having used this binder solution (c7), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c7) and the electrode for nonaqueous electrolyte secondary batteries (c7) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c7) was 13000 mPa · s.
 〔比較例8〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、架橋型ポリアクリル酸(商品名「AQUPEC HV-501」、住友精化社製、カルボキシル基量:1.3×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c8)を得た。該バインダー溶液(c8)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c8)および非水電解質二次電池用電極(c8)を得た。非水電解質二次電池用合剤(c8)の粘度は13500mPa・sであった。
[Comparative Example 8]
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and cross-linked polyacrylic acid (trade name “AQUPEC HV-501”, manufactured by Sumitomo Seika Co., Ltd., carboxyl group content: 1.3 × 10 −2 mol) / G) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c8). Except having used this binder solution (c8), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c8) and the electrode for nonaqueous electrolyte secondary batteries (c8) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c8) was 13500 mPa · s.
 〔比較例9〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.2gと、架橋型ポリアクリル酸(商品名「AQUPEC HV-501」、住友精化社製、カルボキシル基量:1.3×10-2モル/g)0.8gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c9)を得た。該バインダー溶液(c9)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c9)および非水電解質二次電池用電極(c9)を得た。非水電解質二次電池用合剤(c9)の粘度は14000mPa・sであった。
[Comparative Example 9]
9.2 g of carboxyl group-containing vinylidene fluoride polymer (1) and cross-linked polyacrylic acid (trade name “AQUPEC HV-501”, manufactured by Sumitomo Seika Co., Ltd., carboxyl group content: 1.3 × 10 −2 mol) / G) 0.8 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c9). Except having used this binder solution (c9), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c9) and the electrode for nonaqueous electrolyte secondary batteries (c9) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c9) was 14000 mPa · s.
 〔実施例6〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量15,000のポリアクリル酸(商品名「ジュリマーAC-10P」、日本純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(6)を得た。該バインダー溶液(6)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(6)および非水電解質二次電池用電極(6)を得た。非水電解質二次電池用合剤(6)の粘度は12000mPa・sであった。
Example 6
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 15,000 (trade name “Julimer AC-10P”, manufactured by Nippon Pure Chemical Co., Ltd., carboxyl group amount: 1. (4 × 10 −2 mol / g) (0.5 g) was dissolved in N-methyl-2-pyrrolidone (90 g) to obtain a 10 wt% binder solution (6). Except having used this binder solution (6), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (6) and the electrode for nonaqueous electrolyte secondary batteries (6) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (6) was 12000 mPa · s.
 〔実施例7〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量25,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(7)を得た。該バインダー溶液(7)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(7)および非水電解質二次電池用電極(7)を得た。非水電解質二次電池用合剤(7)の粘度は12300mPa・sであった。
Example 7
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 25,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (7). Except having used this binder solution (7), it carried out similarly to Example 1 and obtained the mixture (7) for nonaqueous electrolyte secondary batteries, and the electrode (7) for nonaqueous electrolyte secondary batteries. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (7) was 12300 mPa · s.
 〔実施例8〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量73,000のポリアクリル酸(商品名「ジュリマーAC-10LP」、日本純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(8)を得た。該バインダー溶液(8)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(8)および非水電解質二次電池用電極(8)を得た。非水電解質二次電池用合剤(8)の粘度は12500mPa・sであった。
Example 8
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 73,000 (trade name “Julimer AC-10LP”, manufactured by Nippon Pure Chemical Co., Ltd., carboxyl group amount: 1. (4 × 10 −2 mol / g) (0.5 g) was dissolved in N-methyl-2-pyrrolidone (90 g) to obtain a 10 wt% binder solution (8). Except having used this binder solution (8), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (8) and the electrode for nonaqueous electrolyte secondary batteries (8) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (8) was 12500 mPa · s.
 〔比較例10〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量250,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c10)を得た。該バインダー溶液(c10)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c10)および非水電解質二次電池用電極(c10)を得た。非水電解質二次電池用合剤(c10)の粘度は13000mPa・sであった。
[Comparative Example 10]
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 250,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c10). Except having used this binder solution (c10), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c10) and the electrode for nonaqueous electrolyte secondary batteries (c10) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c10) was 13000 mPa · s.
 〔比較例11〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量800,000のポリアクリル酸(商品名「アクアリック」、日本触媒株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c11)を得た。該バインダー溶液(c11)を用いた以外は実施例1と同様に行い、非水電解質二次電池用合剤(c11)および非水電解質二次電池用電極(c11)を得た。非水電解質二次電池用合剤(c11)の粘度は13000mPa・sであった。
[Comparative Example 11]
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 800,000 (trade name “AQUALIC”, manufactured by Nippon Shokubai Co., Ltd., carboxyl group amount: 1.4 × 10 -2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c11). Except having used this binder solution (c11), it carried out like Example 1 and the mixture for nonaqueous electrolyte secondary batteries (c11) and the electrode for nonaqueous electrolyte secondary batteries (c11) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c11) was 13000 mPa · s.
 〔比較例12〕
 重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)10.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c12)を得た。該バインダー溶液(c12)を用いたのと、合剤粘度調整用のN-メチル-2-ピロリドンを3gに変更した以外は実施例1と同様に行い、非水電解質二次電池用合剤(c12)および非水電解質二次電池用電極(c12)を得た。非水電解質二次電池用合剤(c12)の粘度は8500mPa・sであった。
[Comparative Example 12]
10.0 g of polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) was dissolved in 90 g of N-methyl-2-pyrrolidone, A 10% by weight binder solution (c12) was obtained. The same procedure as in Example 1 was conducted except that the binder solution (c12) was used and that N-methyl-2-pyrrolidone for adjusting the viscosity of the mixture was changed to 3 g, and a mixture for a nonaqueous electrolyte secondary battery ( c12) and a non-aqueous electrolyte secondary battery electrode (c12) were obtained. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c12) was 8500 mPa · s.
 〔比較例13〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)10.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c13)を得た。得られたバインダー溶液(c13)4g、人造黒鉛(大阪ガス製、MCMB、平均粒径6.5μm、比表面積2.9m2/g)9.6g、および合剤粘度調整用のN-メチル-2-ピロリドン7.0gを攪拌混合し、非水電解質二次電池用合剤(c13)を得た。
[Comparative Example 13]
10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c13). 4 g of the obtained binder solution (c13), artificial graphite (manufactured by Osaka Gas, MCMB, average particle size 6.5 μm, specific surface area 2.9 m 2 / g), 9.6 g, and N-methyl for adjusting the mixture viscosity 7.0 g of 2-pyrrolidone was stirred and mixed to obtain a nonaqueous electrolyte secondary battery mixture (c13).
 該非水電解質二次電池用合剤(c13)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(c13)を得た。非水電解質二次電池用合剤(c13)の粘度は13500mPa・sであった。 The same procedure as in Example 1 was performed except that the nonaqueous electrolyte secondary battery mixture (c13) was used to obtain a nonaqueous electrolyte secondary battery electrode (c13). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c13) was 13500 mPa · s.
 〔実施例9〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(9)を得た。得られたバインダー溶液(9)4g、人造黒鉛(大阪ガス株式会社製、MCMB、平均粒径6.5μm、比表面積2.9m2/g)9.6g、および合剤粘度調整用のN-メチル-2-ピロリドン7.0gを攪拌混合し、非水電解質二次電池用合剤(9)を得た。非水電解質二次電池用合剤(9)の粘度は13000mPa・sであった。
Example 9
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (9). 4 g of the obtained binder solution (9), artificial graphite (manufactured by Osaka Gas Co., Ltd., MCMB, average particle size 6.5 μm, specific surface area 2.9 m 2 / g) 9.6 g, and N— 7.0 g of methyl-2-pyrrolidone was mixed with stirring to obtain a mixture (9) for a nonaqueous electrolyte secondary battery. The viscosity of the mixture for nonaqueous electrolyte secondary batteries (9) was 13000 mPa · s.
 該非水電解質二次電池用合剤(9)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(9)を得た。 The same procedure as in Example 1 was performed except that the non-aqueous electrolyte secondary battery mixture (9) was used to obtain a non-aqueous electrolyte secondary battery electrode (9).
 〔比較例14〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)10.0gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(c14)を得た。得られたバインダー溶液(c14)8g、球状天然黒鉛(中国産、平均粒径24μm、比表面積5.4m2/g)9.2g、および合剤粘度調整用のN-メチル-2-ピロリドン5.8gを攪拌混合し、非水電解質二次電池用合剤(c14)を得た。非水電解質二次電池用合剤(c14)の粘度は13000mPa・sであった。
[Comparative Example 14]
10.0 g of the carboxyl group-containing vinylidene fluoride polymer (1) was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (c14). 8 g of the obtained binder solution (c14), 9.2 g of spherical natural graphite (produced in China, average particle size 24 μm, specific surface area 5.4 m 2 / g), and N-methyl-2-pyrrolidone 5 for adjusting the mixture viscosity .8 g was mixed with stirring to obtain a nonaqueous electrolyte secondary battery mixture (c14). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (c14) was 13000 mPa · s.
 該非水電解質二次電池用合剤(c14)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(c14)を得た。 The same procedure as in Example 1 was performed except that the nonaqueous electrolyte secondary battery mixture (c14) was used to obtain a nonaqueous electrolyte secondary battery electrode (c14).
 〔実施例10〕
 カルボキシル基含有フッ化ビニリデン系重合体(1)9.5gと、重量平均分子量5,000のポリアクリル酸(和光純薬株式会社製、カルボキシル基量:1.4×10-2モル/g)0.5gを、N-メチル-2-ピロリドン90gに溶解し、10重量%のバインダー溶液(10)を得た。得られたバインダー溶液(10)8g、球状天然黒鉛(中国産、平均粒径24μm、比表面積5.4m2/g)9.2g、および合剤粘度調整用のN-メチル-2-ピロリドン5.8gを攪拌混合し、非水電解質二次電池用合剤(10)を得た。非水電解質二次電池用合剤(10)の粘度は13000mPa・sであった。
Example 10
9.5 g of carboxyl group-containing vinylidene fluoride polymer (1) and polyacrylic acid having a weight average molecular weight of 5,000 (manufactured by Wako Pure Chemical Industries, Ltd., carboxyl group amount: 1.4 × 10 −2 mol / g) 0.5 g was dissolved in 90 g of N-methyl-2-pyrrolidone to obtain a 10 wt% binder solution (10). 8 g of the obtained binder solution (10), 9.2 g of spherical natural graphite (produced in China, average particle size 24 μm, specific surface area 5.4 m 2 / g), and N-methyl-2-pyrrolidone 5 for adjusting the mixture viscosity .8 g was mixed by stirring to obtain a nonaqueous electrolyte secondary battery mixture (10). The viscosity of the mixture for nonaqueous electrolyte secondary batteries (10) was 13000 mPa · s.
 該非水電解質二次電池用合剤(10)を用いた以外は実施例1と同様に行い、非水電解質二次電池用電極(10)を得た。 The same procedure as in Example 1 was performed except that the non-aqueous electrolyte secondary battery mixture (10) was used to obtain a non-aqueous electrolyte secondary battery electrode (10).
 <電極の評価>
 〔剥離強度〕
 実施例および比較例で得られた電極を試料とし、合剤層と集電体との剥離強度をJISK6854に準拠して180°剥離試験により測定した。
<Evaluation of electrode>
[Peel strength]
Using the electrodes obtained in Examples and Comparative Examples as samples, the peel strength between the mixture layer and the current collector was measured by a 180 ° peel test in accordance with JISK6854.
 〔フッ素強度〕
 (電極表面のフッ素強度)
 実施例および比較例で得られた電極を、40mm角に切断し、蛍光X線測定装置(Shimadzu製、蛍光X線装置、XRF-1700)を使用して、40kV、60mA、照射直径30mmの条件で、合剤層側における電極表面のフッ素強度を測定した。
[Fluorine strength]
(Fluorine strength on electrode surface)
The electrodes obtained in Examples and Comparative Examples were cut into 40 mm square, and using a fluorescent X-ray measuring device (manufactured by Shimadzu, fluorescent X-ray device, XRF-1700), conditions of 40 kV, 60 mA, irradiation diameter 30 mm Then, the fluorine intensity of the electrode surface on the mixture layer side was measured.
 (合剤層の剥離面および、集電体の剥離面のフッ素強度)
 実施例および比較例で得られた電極を、40mm角に切断し、合剤層側の電極表面にダンプロン(登録商標)テープ(NO375)(日東電工CSシステム社製)を貼り付けた。
(Fluorine strength of the release surface of the mixture layer and the release surface of the current collector)
The electrodes obtained in Examples and Comparative Examples were cut into 40 mm squares, and Damplon (registered trademark) tape (NO375) (manufactured by Nitto Denko CS System Co., Ltd.) was attached to the electrode surface on the mixture layer side.
 ゲージ圧を7MPaに設定し、ダンプロンテープが貼り付けられた電極に、20秒間プレスをおこない、その後、合剤層を集電体から剥がした。集電体が剥がされた合剤層の、集電体との剥離面、および合剤層が剥がされた集電体の、合剤層との剥離面について、前記電極表面のフッ素強度と同様の方法で、フッ素強度を測定した。 The gauge pressure was set to 7 MPa, the electrode on which the damplon tape was attached was pressed for 20 seconds, and then the mixture layer was peeled from the current collector. Similar to the fluorine strength of the electrode surface, the release surface of the mixture layer from which the current collector has been peeled off and the release surface of the current collector from which the mixture layer has been peeled off from the mixture layer. The fluorine intensity was measured by this method.
 なお、集電体が剥がされた合剤層の、集電体との剥離面を、「合剤層の剥離面」とも記し、合剤層が剥がされた集電体の、合剤層との剥離面を、「集電体の剥離面」とも記す。 In addition, the release surface of the mixture layer from which the current collector has been peeled off is also referred to as the “release surface of the mixture layer”, and the current collector layer from which the mixture layer has been peeled off This peeling surface is also referred to as a “current collector peeling surface”.
 実施例、比較例で用いたバインダー溶液および非水電解質二次電池用合剤の組成、得られた電極の合剤層の厚さ、電極の評価結果を表1、2に示す。 Tables 1 and 2 show the compositions of the binder solution and the non-aqueous electrolyte secondary battery mixture used in Examples and Comparative Examples, the thickness of the obtained electrode mixture layer, and the electrode evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  ポリアクリル酸およびポリメタクリル酸から選択される少なくとも一種の不飽和カルボン酸重合体(A)、カルボキシル基含有フッ化ビニリデン系重合体(B)、電極活物質、および有機溶剤を含有し、
     前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~150,000である非水電解質二次電池用合剤。
    Containing at least one unsaturated carboxylic acid polymer (A) selected from polyacrylic acid and polymethacrylic acid, a carboxyl group-containing vinylidene fluoride polymer (B), an electrode active material, and an organic solvent,
    Nonaqueous electrolyte secondary battery mixture having a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of the unsaturated carboxylic acid polymer (A) of 1,000 to 150,000. .
  2.  前記不飽和カルボン酸重合体(A)のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリエチレンオキサイド換算の重量平均分子量が、1,000~100,000である請求項1に記載の非水電解質二次電池用合剤。 The non-aqueous electrolyte according to claim 1, wherein the unsaturated carboxylic acid polymer (A) has a weight average molecular weight in terms of polyethylene oxide measured by gel permeation chromatography (GPC) of 1,000 to 100,000. Secondary battery mix.
  3.  前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量%あたり、不飽和カルボン酸重合体(A)が0.5~15重量%である請求項1または2に記載の非水電解質二次電池用合剤。 The unsaturated carboxylic acid polymer (A) is 0.5 to 15% by weight per 100% by weight in total of the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B). Item 3. A mixture for a non-aqueous electrolyte secondary battery according to Item 1 or 2.
  4.  前記不飽和カルボン酸重合体(A)およびカルボキシル基含有フッ化ビニリデン系重合体(B)の合計100重量%あたり、不飽和カルボン酸重合体(A)が0.8~6重量%である請求項1または2に記載の非水電解質二次電池用合剤。 The unsaturated carboxylic acid polymer (A) is 0.8 to 6% by weight per 100% by weight in total of the unsaturated carboxylic acid polymer (A) and the carboxyl group-containing vinylidene fluoride polymer (B). Item 3. A mixture for a non-aqueous electrolyte secondary battery according to Item 1 or 2.
  5.  前記電極活物質の比表面積が、1~10m2/gである請求項1~4のいずれか一項に記載の非水電解質二次電池用合剤。 The mixture for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the specific surface area of the electrode active material is 1 to 10 m 2 / g.
  6.  前記電極活物質の比表面積が、2~6m2/gである請求項1~4のいずれか一項に記載の非水電解質二次電池用合剤。 The mixture for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein the specific surface area of the electrode active material is 2 to 6 m 2 / g.
  7.  前記カルボキシル基含有フッ化ビニリデン系重合体(B)が、不飽和二塩基酸、不飽和二塩基酸モノエステル、アクリル酸およびメタクリル酸から選択される少なくとも一種のカルボキシル基含有モノマーと、フッ化ビニリデンとの共重合体である請求項1~6のいずれか一項に記載の非水電解質二次電池用合剤。 The carboxyl group-containing vinylidene fluoride polymer (B) is at least one carboxyl group-containing monomer selected from unsaturated dibasic acid, unsaturated dibasic acid monoester, acrylic acid and methacrylic acid, and vinylidene fluoride The mixture for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, which is a copolymer of
  8.  請求項1~7のいずれか一項に記載の非水電解質二次電池用合剤を、集電体に塗布・乾燥することにより得られる非水電解質二次電池用電極。 An electrode for a non-aqueous electrolyte secondary battery obtained by applying the mixture for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 7 to a current collector and drying.
  9.  前記非水電解質二次電池用合剤から形成される、厚さ20~150μmの合剤層を有する請求項8に記載の非水電解質二次電池用電極。 The electrode for a non-aqueous electrolyte secondary battery according to claim 8, comprising a mixture layer having a thickness of 20 to 150 µm formed from the mixture for non-aqueous electrolyte secondary batteries.
  10.  請求項8または9に記載の非水電解質二次電池用電極を有する非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the electrode for a nonaqueous electrolyte secondary battery according to claim 8 or 9.
PCT/JP2011/055337 2010-03-30 2011-03-08 Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery WO2011122261A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127018065A KR101464841B1 (en) 2010-03-30 2011-03-08 Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery
CN201180005985.1A CN102725889B (en) 2010-03-30 2011-03-08 Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery
JP2012508179A JP5684235B2 (en) 2010-03-30 2011-03-08 Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-077694 2010-03-30
JP2010077694 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122261A1 true WO2011122261A1 (en) 2011-10-06

Family

ID=44711987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055337 WO2011122261A1 (en) 2010-03-30 2011-03-08 Mixture for non-aqueous electrolyte secondary battery, electrode for same, and non-aqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (1) JP5684235B2 (en)
KR (1) KR101464841B1 (en)
CN (1) CN102725889B (en)
TW (1) TWI436522B (en)
WO (1) WO2011122261A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182673A (en) * 2012-02-29 2013-09-12 Sekisui Chem Co Ltd Negative electrode agent for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014065407A1 (en) * 2012-10-26 2014-05-01 和光純薬工業株式会社 Binder for lithium cell, composition for producing electrode, and electrode
WO2014109366A1 (en) * 2013-01-11 2014-07-17 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
KR20150042147A (en) * 2012-08-10 2015-04-20 제온 코포레이션 Slurry composition for lithium-ion secondary cell negative electrode
JP2015125988A (en) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 Method for manufacturing negative electrode for lithium ion battery
WO2016038682A1 (en) * 2014-09-09 2016-03-17 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
WO2017098682A1 (en) * 2015-12-10 2017-06-15 株式会社カネカ Nonaqueous electrolyte secondary battery
JP2017224463A (en) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition, backing layer-attached current collector for power storage device, electrode for power storage device, and power storage device
JP2018529206A (en) * 2015-09-29 2018-10-04 エー123 システムズ エルエルシーA123 Systems LLC High capacity anode electrode with mixed binder for energy storage device
JP2018535533A (en) * 2015-11-24 2018-11-29 アルケマ フランス Binder containing polyvinylidene fluoride capable of fixing to metal and related lithium ion battery electrode
JP2019189781A (en) * 2018-04-26 2019-10-31 株式会社クレハ particle
EP3796430A4 (en) * 2018-05-15 2021-05-19 Kureha Corporation Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE064159T2 (en) * 2016-03-24 2024-02-28 Zeon Corp Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145720A (en) * 1997-07-25 1999-02-16 Hitachi Maxell Ltd Lithium secondary battery
JP2003268053A (en) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd Binder resin for battery and electrode and battery comprising the same
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery
JP2004281055A (en) * 2003-01-23 2004-10-07 Hitachi Chem Co Ltd Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group
JP2006054096A (en) * 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp Slurry for electrode of lithium secondary battery and manufacturing method of electrode for lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1145720A (en) * 1997-07-25 1999-02-16 Hitachi Maxell Ltd Lithium secondary battery
JP2003268053A (en) * 2002-03-13 2003-09-25 Hitachi Chem Co Ltd Binder resin for battery and electrode and battery comprising the same
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery
JP2004281055A (en) * 2003-01-23 2004-10-07 Hitachi Chem Co Ltd Binder resin composition for battery, mix slurry, electrode and battery using resin containing carboxyl group
JP2006054096A (en) * 2004-08-11 2006-02-23 Mitsubishi Chemicals Corp Slurry for electrode of lithium secondary battery and manufacturing method of electrode for lithium secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182673A (en) * 2012-02-29 2013-09-12 Sekisui Chem Co Ltd Negative electrode agent for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20150042147A (en) * 2012-08-10 2015-04-20 제온 코포레이션 Slurry composition for lithium-ion secondary cell negative electrode
KR102142441B1 (en) 2012-08-10 2020-08-07 제온 코포레이션 Slurry composition for lithium-ion secondary cell negative electrode
WO2014065407A1 (en) * 2012-10-26 2014-05-01 和光純薬工業株式会社 Binder for lithium cell, composition for producing electrode, and electrode
US10862127B2 (en) 2012-10-26 2020-12-08 Tokyo University Of Science Foundation Binder for lithium cell, composition for producing electrode, and electrode
US10044040B2 (en) 2012-10-26 2018-08-07 Tokyo University Of Science Foundation Binder for lithium cell, composition for producing electrode, and electrode
WO2014109366A1 (en) * 2013-01-11 2014-07-17 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2015125988A (en) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 Method for manufacturing negative electrode for lithium ion battery
WO2016038682A1 (en) * 2014-09-09 2016-03-17 株式会社 東芝 Nonaqueous electrolyte battery and battery pack
JPWO2016038682A1 (en) * 2014-09-09 2017-04-27 株式会社東芝 Nonaqueous electrolyte battery and battery pack
US10862158B2 (en) 2015-09-29 2020-12-08 A123 Systems Llc High capacity anode electrodes with mixed binders for energy storage devices
JP2018529206A (en) * 2015-09-29 2018-10-04 エー123 システムズ エルエルシーA123 Systems LLC High capacity anode electrode with mixed binder for energy storage device
JP2018535533A (en) * 2015-11-24 2018-11-29 アルケマ フランス Binder containing polyvinylidene fluoride capable of fixing to metal and related lithium ion battery electrode
US20180366733A1 (en) 2015-12-10 2018-12-20 Kaneka Corporation Nonaqueous electrolyte secondary battery
EP3386007B1 (en) * 2015-12-10 2020-03-25 Kaneka Corporation Nonaqueous electrolyte secondary battery
JPWO2017098682A1 (en) * 2015-12-10 2018-09-27 株式会社カネカ Non-aqueous electrolyte secondary battery
US10790512B2 (en) 2015-12-10 2020-09-29 Kaneka Corporation Nonaqueous electrolyte secondary battery
WO2017098682A1 (en) * 2015-12-10 2017-06-15 株式会社カネカ Nonaqueous electrolyte secondary battery
JP2017224463A (en) * 2016-06-15 2017-12-21 東洋インキScホールディングス株式会社 Conductive composition, backing layer-attached current collector for power storage device, electrode for power storage device, and power storage device
JP2019189781A (en) * 2018-04-26 2019-10-31 株式会社クレハ particle
WO2019207833A1 (en) 2018-04-26 2019-10-31 株式会社クレハ Particles
EP3786193A4 (en) * 2018-04-26 2021-06-23 Kureha Corporation Particles
JP7083690B2 (en) 2018-04-26 2022-06-13 株式会社クレハ particle
EP3796430A4 (en) * 2018-05-15 2021-05-19 Kureha Corporation Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery

Also Published As

Publication number Publication date
CN102725889A (en) 2012-10-10
CN102725889B (en) 2015-07-01
JP5684235B2 (en) 2015-03-11
KR101464841B1 (en) 2014-11-25
KR20120104322A (en) 2012-09-20
TWI436522B (en) 2014-05-01
JPWO2011122261A1 (en) 2013-07-08
TW201140924A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5684235B2 (en) Nonaqueous electrolyte secondary battery mixture, nonaqueous electrolyte secondary battery electrode, and nonaqueous electrolyte secondary battery
KR101351206B1 (en) Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
KR101520560B1 (en) Vinylidene-fluoride-based copolymer and application of said copolymer
KR101298300B1 (en) Negative-electrode mix for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2019087652A1 (en) Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
KR102325232B1 (en) Binder composition, electrode mixture, electrode and non-aqueous electrolyte secondary battery
KR20050085095A (en) Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same
KR102362769B1 (en) Binder composition, electrode mixture, electrode, non-aqueous electrolyte secondary battery, and binder composition production method
JP6891346B2 (en) Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery and its manufacturing method
JPWO2016167294A1 (en) Electrode structure and manufacturing method thereof
JP5697660B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5548131B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP7062476B2 (en) Binder composition, electrode mixture raw material, electrode mixture, electrode, non-aqueous electrolyte secondary battery and method for manufacturing electrode mixture
JP5400058B2 (en) Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180005985.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127018065

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012508179

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762501

Country of ref document: EP

Kind code of ref document: A1