WO2011121819A1 - ループ型ヒートパイプ - Google Patents

ループ型ヒートパイプ Download PDF

Info

Publication number
WO2011121819A1
WO2011121819A1 PCT/JP2010/066329 JP2010066329W WO2011121819A1 WO 2011121819 A1 WO2011121819 A1 WO 2011121819A1 JP 2010066329 W JP2010066329 W JP 2010066329W WO 2011121819 A1 WO2011121819 A1 WO 2011121819A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
evaporator
working fluid
heat pipe
loop
Prior art date
Application number
PCT/JP2010/066329
Other languages
English (en)
French (fr)
Inventor
内田 浩基
塩賀 健司
重憲 青木
晋 尾形
秀明 長岡
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN2010800652950A priority Critical patent/CN102792119A/zh
Priority to JP2012508014A priority patent/JPWO2011121819A1/ja
Publication of WO2011121819A1 publication Critical patent/WO2011121819A1/ja
Priority to US13/591,397 priority patent/US20120312506A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/12Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a loop heat pipe used for cooling electronic devices and the like.
  • a loop heat pipe in which a steam pipe and a liquid pipe are connected in a loop shape see, for example, Patent Document 1.
  • FIGS. 1B and 1C are diagrams showing the structure of a conventional evaporator 1000.
  • FIG. 1A is a cross-sectional view in the direction in which the working fluid flows
  • FIGS. 1B and 1C are cross-sectional views along AA ′.
  • Many of the heating elements 1010 such as electronic components are planar. Therefore, the heat receiving surface 1002 is a flat type so that the evaporator 1000 of the loop heat pipe is also in close contact with the heating element 1010.
  • the wall surface of the evaporator case 1001 is pressed to the outside by the internal pressure of the working fluid.
  • a loop heat pipe is used at room temperature and normal pressure
  • an evaporator is used when a working fluid having a boiling point at room temperature or higher (eg, pentane, R141B, butane, ammonia, etc.) under atmospheric pressure is used.
  • the case 1001 is deformed. If the shape of the evaporator is cylindrical, the internal pressure is dispersed in the circumferential direction and the expansion of the evaporator case is small.
  • a flat plate heat pipe as shown in FIG.
  • the case wall surface expands.
  • the evaporator body 1001 has sufficient rigidity to withstand internal pressure in order to make the evaporator body as thin as possible. It is difficult to ensure the thickness.
  • the adhesiveness between the contact surface of the evaporator case 1001 and the internal wick 1007 (particularly, the upper surface of the evaporator case 1001 rather than the lower surface fixed to the heating element 1010 such as a CPU). Gets worse.
  • a gap 1020 is generated between the evaporator case 1001 and the wick 1007. In this state, heat is not transferred from the evaporator case 1001 to the wick 1007, and a problem arises that the working fluid cannot evaporate from the surface of the wick 1007 and the cooling performance deteriorates.
  • the present invention maintains the thermal contact between the evaporator case and the wick even when the working fluid inside the evaporator becomes high temperature and high pressure during the operation of the loop heat pipe. It is an object to provide a loop heat pipe that realizes stable cooling performance.
  • an evaporator that vaporizes a working fluid by heat from a heating element and a condenser that condenses the gasified working fluid are looped with a connecting pipe.
  • the evaporator is A first space having a contact surface with the heating element and evaporating the working fluid supplied from the connecting pipe; A second space provided on at least one surface other than the contact surface among the surfaces constituting the first space;
  • the partition wall that separates the first space and the second space is provided with a communication hole that communicates the first space and the second space.
  • a loop heat pipe in which an evaporator that vaporizes the working fluid with heat from the heating element and a condenser that condenses the gasified working fluid are connected in a loop with a connecting pipe
  • the evaporator A first space having a contact surface with the heating element and evaporating the working fluid supplied from the liquid pipe; A second space which is provided on at least one surface other than the contact surface among the surfaces constituting the first space and seals a second fluid having a higher saturated vapor pressure than the working fluid at the same temperature.
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A, showing a state when operation is stopped. It is AA 'sectional drawing of FIG. 1A, and is a figure for demonstrating the problem at the time of the heating in the conventional flat evaporator. It is a figure showing the whole loop type heat pipe composition to which the present invention is applied. It is a figure which shows the structure of the evaporator of 1st Example, and is sectional drawing along the direction through which a working fluid flows.
  • FIG. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A, showing a state when operation is stopped. It is AA 'sectional drawing of FIG. 1A, and is a figure for demonstrating the problem at the time of the heating in the conventional flat evaporator. It is a figure showing the whole loop type heat pipe composition to which the present invention is applied. It is a figure which shows the structure of the evaporator of 1st Example, and is
  • 3B is a sectional view taken along line AA ′ of FIG. 3A. It is a graph of the temperature-saturated vapor pressure curve of each working fluid. It is a schematic diagram for demonstrating the effect of 1st Example, and is a figure which shows the evaporator state at the time of operation stop. It is a schematic diagram for demonstrating the effect of 1st Example, and is a figure which shows the state of the evaporator at the time of a heating. It is a schematic sectional drawing which shows the example of mounting of the evaporator of 1st Example. It is a perspective view of the example of mounting of the evaporator of Drawing 6A.
  • FIG. 10B is a cross-sectional view taken along the line AA ′ of FIG. 10A.
  • FIG. 12A It is a figure which shows the state at the time of the heating in the modification 1 of FIG. 12A. It is a schematic sectional drawing which shows the example of mounting of the evaporator of 2nd Example. It is a perspective view which shows the example of mounting of the evaporator of FIG. 13A. It is a graph which shows the effect of the loop type heat pipe using the evaporator of the 2nd example.
  • FIG. 2 is a diagram showing an overall configuration of a loop heat pipe 1 to which the present invention is applied.
  • the loop heat pipe 1 includes an evaporator 10 for vaporizing a working fluid in a liquid state by heat from a heating element (electronic component or the like), and a condenser 11 for condensing the working fluid in a gas state by heat dissipation.
  • a vapor pipe 14 for supplying the working fluid from the evaporator 10 to the condenser 11 and a liquid pipe 13 for supplying the working fluid from the condenser 11 to the evaporator 10. It is.
  • the liquid pipe 13 and the vapor pipe 14 are combined to form a connecting pipe.
  • a cooling fan 12 is provided in the vicinity of the condensing unit 11 to promote cooling.
  • the fluid inside the steam pipe 14 and the liquid pipe 13 is not necessarily 100% steam or 100% liquid, and both are mixed phase flows.
  • most of the inside of the steam pipe 14 is steam, and most of the inside of the liquid pipe 13 is liquid. Therefore, for convenience, “steam pipe”, “liquid pipe” Called.
  • FIG. 3A and 3B are diagrams showing the configuration of the evaporator 10 of the first embodiment.
  • 3A is a cross-sectional view along the direction in which the working fluid flows
  • FIG. 3B is a cross-sectional view along the line AA ′ in FIG. 3A.
  • the evaporator 10 has an evaporation chamber (first space) 40A having a liquid supply passage 46 and a pressure adjustment chamber (second space) 40B for adjusting the pressure of the evaporation chamber, and evaporates.
  • a pressure adjusting hole 55 that connects the evaporation chamber 40A and the pressure adjusting chamber 40B is formed in the partition wall 51 that partitions the chamber 40A and the pressure adjusting chamber 40B.
  • the bottom surface of the evaporator case 40 is the heat receiving surface 42.
  • the evaporator 10 is mounted on the heating element such that the heat receiving surface 42 is in contact with the heating element such as an electronic component (see FIG. 6A), and receives heat from the electronic component.
  • a wick (porous body) 47 is in mechanical and thermal contact with the inner wall of the evaporation chamber 40A.
  • the working fluid (liquid working fluid) 49 supplied to the evaporation chamber 40 ⁇ / b> A by the liquid pipe 13 is impregnated in the wick 47. The impregnated liquid is heated by the heat transferred from the evaporator case 40 to the wick.
  • the inside of the evaporator 10 is maintained at the saturated vapor pressure of the working fluid, and evaporates and vaporizes when the temperature of the working fluid exceeds the boiling point at the internal saturated vapor pressure.
  • the working fluid takes in latent heat energy.
  • the steam that has taken in the latent heat energy passes through the groove (steam discharge groove) 45 formed in the wick 47 and flows into the steam pipe 14, and part of the steam flows into the pressure adjusting chamber 40 ⁇ / b> B through the pressure adjusting hole 55.
  • the evaporation chamber 40A and the pressure adjustment chamber 40B have substantially the same pressure.
  • the saturated vapor pressure in the operating temperature range of the working fluid 49 is equal to or higher than the atmospheric pressure under the environment in which the loop heat pipe 1 is used.
  • the evaporator case 40 is a flat plate type having an overall height of 18 mm, a width of 60 mm, and a length of 70 mm.
  • the pressure adjusting chamber 40B is provided with a pressure adjusting chamber 40B on the upper surface side of the evaporation chamber 40A, and the pressure adjusting chamber 40B constitutes a space having a height of 1 mm, a width of 56 mm, and a length of 66 mm.
  • the pressure control chamber 40B is separated from the evaporation chamber 40A by a partition wall 51 having a thickness of 2 mm, and the partition wall 51 is provided with a pressure control hole 55 having a diameter of 1 mm leading to the vapor side of the evaporation chamber 40A.
  • the interior dimensions of the evaporation chamber 40A are 11 mm in height, 56 mm in width, and 66 mm in length, and the overall wall thickness is 2 mm.
  • the material of the evaporator case 40 and the partition wall 51 is oxygen-free copper in the first embodiment.
  • a material such as stainless steel having a high rigidity is often used so as to withstand a high internal pressure, but in the first embodiment, it is not always necessary to use a material having a high rigidity as will be described later. . Rather, it is preferable to use a material having a higher thermal conductivity than stainless steel so that the temperature distribution of the evaporator case 40 is uniform.
  • a material such as an aluminum alloy may be used for weight reduction.
  • the wick 47 disposed inside the evaporation chamber 40A is made of sintered nickel, has a porous diameter of 10 ⁇ m, and a porosity of about 50%.
  • the outer dimensions of the wick 47 are 11 mm in height, 56 mm in width, and 50 mm in length, and the height dimension is particularly precisely manufactured so as to fit in close contact with the inner wall of the evaporation chamber 40A.
  • 15 steam passages (grooves) 45 each having a width of 1 mm and a depth of 2 mm are formed on the upper surface and the lower surface of the wick 47 (surfaces in contact with the upper surface and the lower surface of the evaporation chamber 40A) at a pitch of 3 mm.
  • a liquid supply passage 46 having a height of 3 mm, a width of 40 mm, and a length of 40 mm is provided in the central portion of the wick 47 in order to draw the hydraulic fluid 49 supplied from the liquid pipe 13 into the wick 47.
  • the steam pipe 14 and the liquid pipe 13 that connect the evaporator 10 and the condensing unit 11 are both copper pipes having an outer diameter of 6 mm, an inner diameter of 5 mm, and a length of about 300 mm.
  • the condensing unit 11 is a copper pipe having an outer diameter of 6 mm, an inner diameter of 5 mm, and a length of 400 mm, similarly to the steam pipe 14 and the liquid pipe 13, and heat radiation fins are thermally connected around the pipe and cooled by the blower fan 12. (See FIG. 2).
  • n-pentane is used as the working fluid 49, but a fluid having a high vapor pressure such as butane or ammonia may be used.
  • FIG. 4 is a graph showing vapor pressure curves of various fluids.
  • n-butane is used as the working fluid 49
  • the boiling point under atmospheric pressure is about 36 ° C.
  • the temperature of the working fluid 49 is in the vicinity of 50 to 70 ° C. Therefore, when butane or pentane is used as the working fluid 49, the vapor pressure becomes atmospheric pressure or higher.
  • the adhesion between the evaporator case 1000 and the wick 1007 inside deteriorates and the performance decreases. It was.
  • the evaporator 10 has a double structure and the pressure adjusting chamber 40A is provided on the upper surface side of the evaporation chamber 40A so that the vapor evaporating from the surface of the wick 47 flows into the pressure adjusting chamber 40B.
  • the pressure adjusting hole 55 is provided in the partition wall 51, the evaporation chamber 40A and the pressure adjusting chamber 40B have the same pressure.
  • FIG. 5A and FIG. 5B are schematic diagrams for explaining the effects of the first embodiment.
  • butane is used as the working fluid 49
  • the working fluid impregnated in the wick 47 is heated by heat released from the electronic component 20
  • the vapor pressure in the evaporation chamber 40A increases. Since the vaporized working fluid flows into the pressure adjustment chamber 40B from the pressure adjustment hole 55, the vapor pressure applied from the evaporation chamber 40A to the partition wall 51 is substantially equal to the vapor pressure applied from the pressure adjustment chamber 40B to the partition wall 51, as shown in FIG.
  • the partition wall 51 that contacts the wick 47 is not deformed by the internal pressure.
  • the upper surface 53 of the evaporator case 40 (which is also the upper surface of the pressure adjusting chamber 40B in the first embodiment) has a higher butane saturated vapor pressure than the external atmospheric pressure, and thus expands outward. Then bend.
  • the partition wall 51 itself is not deformed, even when the internal pressure of the evaporation chamber 40A is increased by the vapor pressure of the working fluid 49, the evaporation chamber 40A and the wick 47 can maintain good thermal contact.
  • FIG. 6A and FIG. 6B are diagrams showing an example of mounting the evaporator 10 of the first embodiment.
  • the evaporator 10 of the loop heat pipe 1 is disposed on the electronic component 20 on the printed circuit board 30 via the thermal grease 21 and is fixed to the printed circuit board 30 with an attachment screw 31.
  • the calorific value of the evaporator 10 is about 60 W in the first embodiment.
  • the condenser 11 (not shown) is cooled at room temperature (25 ° C.) by the blower fan ( ⁇ 90 mm, 12 V drive) 12.
  • FIG. 7 is a graph showing the cooling performance of the loop heat pipe configured as described above.
  • a loop heat pipe incorporating the evaporator having the conventional structure shown in FIG. 1 was manufactured, and an operation experiment was performed to compare the cooling performance with the loop heat pipe 1 of the first embodiment.
  • the horizontal axis of the graph indicates the heater heating amount (heat generation amount of the electronic component), and the vertical axis indicates the thermal resistance of the evaporator 10 and the condensing unit 11.
  • the thermal resistance is a value obtained by dividing the difference between the temperature of the heat receiving surface 42 of the evaporator 10 and the average temperature of the condenser 11 by the amount of heat of the heating element 20. The lower the thermal resistance value, that is, the smaller the temperature difference between the heat receiving surface 42 and the condensing unit 11, the more efficiently heat is transferred from the evaporator 10 to the condensing unit 11, indicating a higher cooling performance.
  • FIG. 8A and 8B are diagrams showing a first modification of the first embodiment.
  • the outer wall (for example, the upper surface) 63 of the evaporator case 60 constituting the pressure control chamber 60B is set thinner than the partition wall 61 that partitions the evaporation chamber 60A and the pressure control chamber 60B.
  • the thickness of the partition wall 61 is 2 mm
  • the thickness of the upper surface 63 of the evaporator case 60 is 1 mm.
  • the outer wall surface (upper surface) 63 By making the outer wall surface (upper surface) 63 thinner than the inner partition wall 61, the outer wall surface 63 is deformed to the outside (atmosphere side) due to the vapor pressure flowing into the pressure regulating chamber 60B. Almost no deformation occurs. This configuration is effective in keeping the adhesion between the inner partition wall 61 and the wick 47 constant.
  • the thickness of the outer wall 63 is 1 ⁇ 2 of the thickness of the partition wall 61.
  • the thickness is not limited to this example, and the outer wall 63 can be appropriately deformed without affecting the shape of the partition wall 61. Can be set to any thickness. Depending on the type of working fluid used, for example, the thickness of the outer wall 63 can be appropriately set within the range of 1/5 to 2/3 of the thickness of the partition wall 61 (check if there is no problem in this range). Please give me).
  • FIG. 9A and FIG. 9B are diagrams showing a second modification of the first embodiment.
  • the upper surface 73 of the evaporator case 70 and the inner partition wall 71 have the same thickness, but the partition wall 71 is slightly curved toward the evaporation chamber 70A where the wick 47 is disposed.
  • the pressure regulation chamber 70B is not deformed as shown in FIG. 9A.
  • the pressure adjustment chamber 70B expands as shown in FIG. 9B.
  • the inner partition wall 71 is also curved to the wick 47 side. Deforms in a direction to increase As a result, a force that presses the partition wall 71 against the wick 47 works. Thereby, the adhesiveness of the partition 71 and the wick 47 further increases, and the cooling performance of the loop heat pipe is improved.
  • the cooling performance of the loop heat pipe can be improved and stabilized with a simple configuration, and a stable operation of the electronic apparatus can be realized.
  • FIGS. 10A and 10B are diagrams showing the configuration of the evaporator 80 according to the second embodiment of the present invention.
  • 10A is a cross-sectional view along the direction in which the working fluid flows
  • FIG. 10B is a cross-sectional view along the line AA ′ in FIG. 10A.
  • the evaporator 80 has an evaporation chamber (first space) 90A having a liquid supply passage 86 and a second fluid chamber (second space) 90B having airtightness.
  • the second fluid chamber 90B is a space for accommodating the second fluid 100 having a saturated vapor pressure higher than the saturated vapor pressure of the working fluid supplied to the evaporation chamber 90A at the same temperature. At least a part of the second fluid 100 is the liquid phase 100b.
  • the bottom surface of the evaporator case 90 is the heat receiving surface 82.
  • the evaporator 80 is mounted on the heating element 20 so that the heat receiving surface 82 is in contact with the heating element 20 such as an electronic component, and receives heat from the electronic component (see FIGS. 11A and 11B).
  • a wick (porous body) 47 is in mechanical and thermal contact with the inner wall of the evaporation chamber 90A.
  • the working fluid 89 supplied to the evaporation chamber 90 ⁇ / b> A through the liquid pipe 83 is impregnated in the wick 47, heated by the heat transmitted from the evaporator case 40 to the wick 47, and vaporized.
  • the vaporized vapor flows from the groove 45 formed in the wick 47 into the vapor pipe 84.
  • a part of the second fluid sealed in the second fluid chamber 90B is vaporized by the heat transmitted through the evaporator case 90, and both the gas phase 100a and the liquid phase 100b exist. It is in a state.
  • the evaporator case 80 is a flat plate having an overall height of 18 mm, a width of 60 mm, and a length of 70 mm.
  • the double fluid structure 90B is provided on the upper surface side of the evaporation chamber 90A, and the second fluid quality 90B is a sealed space having a height of 1 mm, a width of 56 mm, and a length of 66 mm.
  • the second fluid chamber 90B is separated from the evaporation chamber 90A by a partition wall 91 having a thickness of 2 mm.
  • the indoor dimensions of the evaporation chamber 90A are 11 mm in height, 56 mm in width, and 66 mm in length, and the overall wall thickness is 2 mm.
  • the material of the evaporator case 90 and the partition wall 91 is oxygen-free copper in the second embodiment.
  • a material such as stainless steel having a high rigidity is often used so as to withstand a high internal pressure, but in the second embodiment, it is not always necessary to use a material having a high rigidity as will be described later. . Rather, it is preferable to use a material having a higher thermal conductivity than stainless steel so that the evaporator case 90 has a uniform temperature.
  • a material such as an aluminum alloy may be used for weight reduction.
  • the wick 47 disposed inside the evaporation chamber 90A is made of sintered nickel, has a porous diameter of 10 ⁇ m, and a porosity of about 50%.
  • the outer dimensions of the wick 47 are 11 mm in height, 56 mm in width, and 50 mm in length, and the height dimension is particularly precisely manufactured so as to fit in close contact with the inner wall of the evaporation chamber 90A.
  • 15 steam passages (grooves) 45 each having a width of 1 mm and a depth of 2 mm are formed at a pitch of 3 mm.
  • a liquid supply passage 86 having a height of 3 mm, a width of 40 mm, and a length of 40 mm is provided in the center of the wick 47 in order to draw the hydraulic fluid 49 supplied from the liquid pipe 13 into the wick 47.
  • the vapor pipe 84 and the liquid pipe 83 connecting the evaporator 80 and the condensing unit 11 are both copper pipes having an outer diameter of 6 mm, an inner diameter of 5 mm, and a length of about 300 mm.
  • the condensing unit 11 is a copper pipe having an outer diameter of 6 mm, an inner diameter of 5 mm, and a length of 400 mm, like the steam pipe 84 and the liquid pipe 83, and thermally radiating fins around the pipe, and is cooled by the blower fan 12. I tried to do it.
  • n-pentane is used as the working fluid 89.
  • the boiling point of pentane under atmospheric pressure is about 36 ° C.
  • the temperature of the working fluid 89 is about 50 to 70 ° C., so that the vapor pressure of pentane is over atmospheric pressure.
  • 1 cc of butane is sealed in advance in the second fluid chamber 90B as the second fluid.
  • the butane is sealed in the second fluid chamber 90B in the same manner as the working fluid of the loop heat pipe is sealed, and only the second fluid (butane) is sealed after the internal space is evacuated.
  • the second fluid has a predominant gas phase when the heating element (electronic component) 20 is operated, but at least a part of the second fluid is in a liquid phase throughout the operation and non-operation.
  • FIG. 11A and FIG. 11B are schematic diagrams for explaining the effect of the second embodiment.
  • the saturated vapor pressure of butane at the same temperature is higher than the saturated vapor pressure of n-pentane, which is the working fluid, but the second fluid chamber 90B is not deformed when the operation is stopped.
  • the partition wall 91 has a lower pressure, It is pressed to the evaporation chamber 90A side where the wick 47 is installed.
  • the partition wall 91 comes into close contact with the wick 47 as the evaporator case 90 receives heat from the heating element 20 and becomes higher in temperature.
  • the upper surface of the second fluid chamber 90B. 93 curves toward the outside, but the partition wall 91 also expands toward the evaporation chamber 90 ⁇ / b> A, so that the adhesion with the wick 47 is improved.
  • FIG. 12A and FIG. 12B are diagrams showing a modification of the evaporator of the second embodiment.
  • the thickness of the partition wall 91 is 2 mm, which is the same as the wall thickness of the evaporator case 90.
  • the thickness of the partition wall 91a that separates the evaporation chamber 90A and the second fluid chamber 90B of the evaporator 80a. Is thinner than the wall thickness of the evaporator case 90, for example, 1 mm.
  • FIG. 13A and FIG. 13B are diagrams showing an example of mounting the evaporator 80 of the second embodiment.
  • the evaporator 80 of the loop heat pipe 1 is disposed on the electronic component 20 on the printed circuit board 30 via the thermal grease 21, and is fixed to the printed circuit board 30 by the mounting screws 31.
  • the calorific value of the evaporator 80 is about 60 W in the second embodiment.
  • the condensing part 11 (not shown) is cooled at room temperature (25 ° C.) by a blower fan ( ⁇ 90 mm, 12 V drive) 12.
  • the heat transferred from the heat generating component 20 to the evaporator case 90 vaporizes the working fluid impregnated in the wick 47, and the second fluid having a higher saturated vapor pressure than the working fluid sealed in the second fluid material 90B. It vaporizes and presses the partition wall 91 against the wick 47 on the evaporation chamber 90A side.
  • FIG. 14 is a graph showing the cooling performance of the loop heat pipe of the second embodiment.
  • a loop heat pipe incorporating the conventional wick structure shown in FIGS. 1A to 1C was manufactured, and an operation experiment was performed to compare the cooling performance with the loop heat pipe 1 of the second embodiment.
  • the horizontal axis of the graph indicates the heater heating amount (heat generation amount of the electronic component), and the vertical axis indicates the thermal resistance of the evaporator 80 and the condensing unit 11.
  • the thermal resistance is a value obtained by dividing the difference between the temperature of the heat receiving surface 82 of the evaporator 80 and the average temperature of the condenser 11 by the amount of heat of the heating element 20. The lower the thermal resistance value, that is, the smaller the temperature difference between the heat receiving surface 82 and the condensing unit 11, the more efficiently heat is transferred from the evaporator 80 to the condensing unit 11, indicating a higher cooling performance.
  • the amount of deformation of the Cu evaporator case 90 having a width of 56 mm when pentane was used as the working fluid was calculated.
  • the case expands to the outside by 95 ⁇ m. Deform.
  • the thermal contact between the case and the wick cannot be obtained and the thermal resistance increases.
  • the internal pressure of the evaporation chamber 90 ⁇ / b> A is 0.5 MPa lower than the internal pressure of the second fluid chamber 90. If there is no wick in the evaporation chamber 90A, the partition wall 91 of the evaporator case protrudes 140 ⁇ m to the evaporation chamber 90A side. However, since the wick 47 is in the evaporation chamber 90A, the partition wall 91 is pressed against the wick 47. It is considered that the adhesion is improved.
  • the second space is provided only on the upper surface of the evaporator case having a large heat conduction area, that is, the surface opposite to the heat receiving surface.
  • the second space may be formed so as to cover one or both side walls of the (space).
  • the second space is formed by covering the upper surface and both side walls of the evaporation chamber (first space)
  • a double structure is adopted over three surfaces excluding the heat receiving surface of the evaporator. In this case, the thermal adhesion between the wick and the evaporation chamber is further improved.
  • the loop heat pipe according to the present invention can be applied to various heat generator cooling devices such as electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 ループ型ヒートパイプの作動時に、作動流体が高温・高圧になった場合にも蒸発器ケースとウィックの熱的な密着を維持し安定した冷却性能を実現する。 発熱体からの熱で作動流体を気化させる蒸発器と、気体された作動流体を凝縮させる凝縮器とを連結管でループ状に接続したループ型ヒートパイプにおいて、前記蒸発器は、前記発熱体との接触面を有し前記連結管から供給される前記作動流体を蒸発させる第1空間と、前記第1空間を構成する面のうち、前記接触面以外の少なくとも1つの面に設けられる第2空間とを有し、前記第1空間と第2空間を隔てる隔壁に、前記第1空間と第2空間を連通する連通穴を設けた構成とする。

Description

ループ型ヒートパイプ
 本発明は、電子機器等の冷却に用いられるループ型ヒートパイプに関する。
 各種発熱体を冷却するためのデバイスとして、作動液(液体状態にある作動流体)を発熱体からの熱で気化させるための蒸発器と、気化した作動液を放熱により凝縮させるための凝縮器とを、蒸気管及び液管によりループ状に接続したループ型ヒートパイプが知られている(たとえば、特許文献1参照)。
 図1A~図1Cは従来の蒸発器1000の構造を示す図である。図1Aは作動流体が流れる方向の断面図、図1B及び図1CはそのA-A'断面図である。電子部品等の発熱体1010は、多くが平面型をしている。そのため、ループ型ヒートパイプの蒸発器1000も発熱体1010と密着しやすいように、受熱面1002が平面型となっている。ループ型ヒートパイプの冷却性能を向上するために蒸発器1000の内部容積をできるだけ大きくする必要があるが、外形をできるだけコンパクトにする要請もあることから、双方の要求を満たす平板型ヒートパイプが用いられる。
 作動時(加熱時)に発熱体1010を効率よく冷却するためには、液管1003から蒸発器1000に供給された作動液1006を効率よく蒸発させる必要がある。そのため、蒸発器ケース1001とウィック1007とを熱的に密着させて、蒸発器ケース1001からの熱をウィック1007に効率よく伝え、ウィック1007に含浸された作動液1006を迅速に気化させる必要がある。蒸発、気化された作動流体は、ウィック1007に形成されたグルーブ1005を通って蒸気管1004に導かれる。しかし、蒸発器1000が加熱され、内部の作動流体が高温となった場合に、蒸発器ケース1001とウィック1007の密着性が低下する場合が生ずる。この様子を図1Cに示す。
 図1Cにおいて、作動流体の飽和蒸気圧がループ型ヒートパイプの作動温度下で大気圧を超えた場合、蒸発器ケース1001の壁面は、作動流体の内圧によって外部に押圧される。具体的には、ループ型ヒートパイプを常温、常圧下で用いる場合、大気圧下における沸点が室温以上である作動流体(例えば、ペンタンやR141B、ブタン、アンモニアなど)を用いた場合に、蒸発器ケース1001に変形が生じる。蒸発器の形状が円筒型であれば、円周方向に内圧が分散されるため蒸発器ケースの膨張は少ないが、図1Cのように平板型ヒートパイプの場合、面積が大きい上面に内圧が集中し、ケース壁面が膨張する。特に電子機器の小型・軽量化の要求から平板型の蒸発器とした場合には、蒸発器本体をできるだけ薄型にしたいため、蒸発器ケース1001において、内圧に耐えられるだけの十分な剛性が得られる厚さを確保することが難しい。蒸発器ケース1001が内圧により膨張した場合、蒸発器ケース1001と内部のウィック1007の接触面(特に、CPU等の発熱体1010に固定されている下面よりも蒸発器ケース1001の上面)の密着性が悪化する。さらに高温下では、蒸発器ケース1001とウィック1007の間に隙間1020が生ずる。この状態では蒸発器ケース1001からウィック1007へ熱が伝わらず、ウィック1007の表面から作動流体が蒸発できずに冷却性能が低下するといった問題が生じる。
特開2004-218887
 そこで本発明は、ループ型ヒートパイプの作動時に蒸発器内部の作動流体が高温・高圧となった場合でも、蒸発器ケースとウィックの熱的な密着を維持し、ループ型ヒートパイプの作動状態において安定した冷却性能を実現するループ型ヒートパイプを提供することを課題とする。
 上記の目的を達成するために、本発明のひとつの側面では、発熱体からの熱で作動流体を気化させる蒸発器と、気体された作動流体を凝縮させる凝縮器とを連結管でループ状に接続したループ型ヒートパイプにおいて、前記蒸発器は、
 前記発熱体との接触面を有し、前記連結管から供給される前記作動流体を蒸発させる第1空間と、
 前記第1空間を構成する面のうち、前記接触面以外の少なくとも1つの面に設けられる第2空間と、
を有し、前記第1空間と第2空間を隔てる隔壁に、前記第1空間と第2空間を連通する連通穴が設けられている構成とする。
 本発明の別の側面では、発熱体からの熱で作動流体を気化させる蒸発器と、気体された作動流体を凝縮させる凝縮器とを連結管でループ状に接続したループ型ヒートパイプにおいて、前記蒸発器は、
 前記発熱体との接触面を有し、前記液管から供給される前記作動流体を蒸発させる第1空間と、
 前記第1空間を構成する面のうち、前記接触面以外の少なくとも1つの面に設けられ、同一温度において前記作動流体よりも飽和蒸気圧の高い第2の流体を密封する第2空間と
を有する構成とする。
 上述した構成により、ループ型ヒートパイプの作動時に蒸発器内部の作動流体が高温・高圧になった場合でも、蒸発器ケースとウィックの密着性を良好に維持して、安定した冷却性能を実現することができる。
ループ型ヒートパイプで用いられる従来の平板型蒸発器の構成を示す図であり作動流体の流れる方向に沿った断面図である。 図1AのA-A'断面図であり、動作停止時の状態を示す図である。 図1AのA-A'断面図であり、従来の平板型蒸発器における加熱時の問題点を説明するための図である。 本発明が適用されるループ型ヒートパイプの全体構成を示す図である。 第1実施例の蒸発器の構成を示す図であり、作動流体の流れる方向に沿った断面図である。 図3AのA-A'断面図である。 各作動流体の温度-飽和蒸気圧曲線のグラフである。 第1実施例の効果を説明するための模式図であり、動作停止時の蒸発器状態を示す図である。 第1実施例の効果を説明するための模式図であり、加熱時の蒸発器の状態を示す図である。 第1実施例の蒸発器の搭載例を示す概略断面図である。 図6Aの蒸発器の搭載例の斜視図である。 第1実施例の蒸発器を用いたループ型ヒートパイプの効果を示すグラフである。 第1実施例の蒸発器の変形例1を示す図であり、動作停止時の蒸発器の状態を示す図である。 図8Aの変形例1における加熱時の蒸発器の状態を示す図である。 第1実施例の蒸発器の変形例2を示す図であり、動作停止時の蒸発器の状態を示す図である。 図9Aの変形例2における加熱時の蒸発器の状態を示す図である。 第2実施例の蒸発器の構成を示す図であり、作動流体の流れる方向に沿った断面図である。 図10AのA-A'断面図である。 第2実施例の効果を説明するための模式図であり、動作停止時の蒸発器の状態を示す図である。 第2実施例の効果を説明するための模式図であり、加熱時の蒸発器の状態を示す図である。 第2実施例の変形例1を示す図であり、動作停止時の蒸発器の状態を示す図である。 図12Aの変形例1における加熱時の状態を示す図である。 第2実施例の蒸発器の搭載例を示す概略断面図である。 図13Aの蒸発器の搭載例を示す斜視図である。 第2実施例の蒸発器を用いたループ型ヒートパイプの効果を示すグラフである。
 図2は、本発明が適用されるループ型ヒートパイプ1の全体構成を示す図である。ループ型ヒートパイプ1は、液体状態にある作動流体を発熱体(電子部品等)からの熱で気化させるための蒸発器10と、気体状態にある作動流体を放熱により凝縮させるための凝縮器11とを、蒸発器10からの作動流体を凝縮器11に供給するための蒸気管14、及び凝縮器11からの作動流体を蒸発器10に供給するための液管13によりループ状に接続したものである。液管13と蒸気管14を合わせて連結管とする。図2の例では、凝縮部11近傍に送風ファン12を設けて冷却を促進する構成としている。
 なお、蒸気管14と液管13の内部の流体は、必ずしも100%蒸気、あるいは100%液体ということではなく、いずれも混相流である。ループ型ヒートパイプ1が作動しているときは、蒸気管14の内部はほとんどが蒸気であり、液管13の内部はほとんどが液体であるため、便宜上、「蒸気管」、「液管」と称する。
 図3A及び図3Bは第1実施例の蒸発器10の構成を示す図である。図3Aは作動流体が流れる方向に沿った断面図、図3Bは図3AのA-A'ラインに沿った断面図である。第1実施例では、蒸発器10は、液供給通路46を有する蒸発室(第1空間)40Aと、蒸発室の圧力を調整するための圧力調整室(第2空間)40Bを有し、蒸発室40Aと圧力調整室40Bとを仕切る隔壁51には、蒸発室40Aと圧力調整室40Bを連通する圧力調整穴55が形成されている。
 図3A及び図3Bの例では、蒸発器ケース40の底面が受熱面42となっている。蒸発器10は、受熱面42が電子部品等の発熱体と接触するように発熱体上に搭載され(図6A参照)、電子部品からの熱を受け取る。蒸発室40Aの内壁にはウィック(多孔質体)47が機械的・熱的に接触している。液管13によって蒸発室40Aに供給された作動液(液体状態の作動流体)49は、ウィック47に含浸される。含浸された液体は、蒸発器ケース40からウィックに伝わった熱によって加熱される。蒸発器10の内部は、作動流体の飽和蒸気圧に保たれており、作動液の温度が内部の飽和蒸気圧における沸点を超えた時点で蒸発気化する。このとき、作動流体は潜熱エネルギーを取り込む。潜熱エネルギーを取り込んだ蒸気は、ウィック47に形成されたグルーブ(蒸気排出用溝)45を通過し蒸気管14に流れ込むとともに、その一部は圧力調整穴55を通って圧力調整室40Bに流れ込む。これによって、蒸発室40Aと圧力調整室40Bは、ほぼ同じ圧力になる。なお、作動流体49の使用温度範囲における飽和蒸気圧は、ループ型ヒートパイプ1を使用する環境下の大気圧以上である。
 図3A及び図3Bに示す蒸発器10の具体的な構成例を説明する。蒸発器ケース40は、全体の高さが18mm、幅60mm、長さ70mm平板型である。蒸発室40Aの上面側に圧力調整室40Bを設けた二重構造とし、圧力調整室40Bは、高さ1mm、幅56mm、長さ66mmの空間を構成する。圧力調節室40Bは、蒸発室40Aと厚さ2mmの隔壁51で隔てられており、隔壁51には、蒸発室40Aの蒸気側に通ずる直径1mmの圧力調節穴55が設けられている。蒸発室40Aの室内寸法は、高さ11mm、幅56mm、長さ66mmであり、壁面の厚さは全体的に2mmである。
 蒸発器ケース40や隔壁51の材質は、第1実施例においては無酸素銅を用いた。従来の平板型蒸発器は高い内圧に耐えられるように剛性率が高いステンレスなどの材料が用いられることが多いが、第1実施例では、後述するように必ずしも剛性が高い材料を使う必要はない。むしろ蒸発器ケース40の温度分布が均一となるようにステンレスよりも熱伝導率の高い材料を用いるのが好ましい。たとえば軽量化のためにアルミ合金などの材料を用いても良い。
 蒸発室40Aの内部に配置されるウィック47は焼結ニッケル製であり、ポーラス径は10μm、空孔率は約50%である。ウィック47の外形寸法は高さ11mm、幅56mm、長さ50mmであり、蒸発室40Aの内壁に密着した状態で収まるように、特に高さ寸法が精密に作製されている。またウィック47の上面と下面(蒸発室40Aの上面と下面に接する面)には幅1mm、深さ2mmの蒸気通路(グルーブ)45が、3mmピッチで15本ずつ形成されている。ウィック47の中央部には、液管13から供給される作動液49をウィック47の内部に引き込むため、高さ3mm、幅40mm、長さ40mmの液供給通路46が設けられている。
 蒸発器10と凝縮部11を結ぶ蒸気管14、液管13は、ともに外径6mm、内径5mm、長さ約300mmの銅パイプである。凝縮部11は、蒸気管14や液管13と同様に、外径6mm、内径5mm、長さ400mmの銅パイプであり、パイプの周囲に放熱フィンを熱的に接続し、送風ファン12で冷却する構成としている(図2参照)。
 第1実施例では、作動流体49としてn-ペンタンを使用しているが、ブタンやアンモニアなどの蒸気圧が高い流体を用いても良い。
 図4は、各種流体の蒸気圧曲線を示すグラフである。作動流体49としてn-ブタンを用いたときの大気圧下での沸点は、約36℃である。ループ型ヒートパイプ1の作動時には、作動流体49の温度は50~70℃付近となるため、作動流体49にブタンまたはペンタンを用いた場合、その蒸気圧は大気圧以上となる。図1Aに示す従来の蒸発器構成の場合、図1Cのように作動流体の内圧によりケース1001の上面が膨れるため、蒸発器ケース1000と内部のウィック1007の密着性が悪化し、性能が低下していた。これに対し、第1実施例では、蒸発器10を二重構造にして蒸発室40Aの上面側に圧力調節室40Aを設け、ウィック47の表面から蒸発する蒸気が圧力調節室40Bに流れるように隔壁51に圧力調整穴55を設けた場合、蒸発室40Aと圧力調節室40Bは、同じ圧力になる。
 図5A及び図5Bは、第1実施例の効果を説明するための模式図である。作動流体49にブタンを用いた場合、電子部品20から放出される熱によりウィック47に含浸された作動流体が加熱されると、蒸発室40A内の蒸気圧は上昇する。気化した作動流体は圧力調整穴55から圧力調整室40B内へ流れ込むので、蒸発室40Aから隔壁51にかかる蒸気圧と、圧力調節室40Bから隔壁51にかかる蒸気圧とはほぼ等しくなり、図5Bに示すように、ウィック47と接触する隔壁51が内圧によって変形することはない。一方、蒸発器ケース40の上面53(第1実施例では、圧力調整室40Bの上面でもある)は、外部の大気圧に比べてブタンの飽和蒸気圧の方が高いので、外側に向かって膨張し湾曲する。しかし、隔壁51自体には変形はないので、作動液49の蒸気圧によって蒸発室40Aの内圧が高くなった場合でも、蒸発室40Aとウィック47は良好な熱接触を保つことができる。
 図6A及び図6Bは、第1実施例の蒸発器10の搭載例を示す図である。ループ型ヒートパイプ1の蒸発器10は、サーマルグリース21を介して、プリント基板30上の電子部品20上に配置され、取り付けネジ31によりプリント基板30に固定される。蒸発器10の発熱量は、第1実施例では約60Wである。このとき、図示しない凝縮部11を送風ファン(φ90mm、12V駆動)12によって室温下(25℃)で冷却する。
 図7は、このように構成したループ型ヒートパイプの冷却性能を示すグラフである。比較例として、図1に示した従来構造の蒸発器を組み込んだループ型ヒートパイプを作製し、作動実験を行って、第1実施例のループ型ヒートパイプ1と冷却性能を比較した。グラフの横軸は、ヒータ加熱量(電子部品の発熱量)、縦軸は、蒸発器10と凝縮部11の熱抵抗を示す。熱抵抗は、蒸発器10の受熱面42の温度と凝縮部11の平均温度の差を発熱体20の熱量で除した値である。熱抵抗値が低いほど、すなわち、受熱面42と凝縮部11の温度差が小さいほど、蒸発器10から凝縮部11に効率よく熱が伝達され、高い冷却性能を持つことを示す。
 従来技術のループ型ヒートパイプの場合、発熱量が高くなるほど蒸発器の内圧が高まり、図1Cのように蒸発器ケース1001とウィック1007の隙間が拡大し、冷却性能が低下(熱抵抗が増大)する。これに対し、第1実施例の場合は、発熱量が高くなって蒸発器の温度が高温となった場合でも、図5に示すように、蒸発器ケース40内の隔壁51とウィック47の熱接触が良好に維持された状態を確保できるため、高い冷却性能を保つこと(熱抵抗を低く維持)が可能である。
 図8A及び図8Bは、第1実施例の変形例1を示す図である。変形例1では、圧力調節室60Bを構成する蒸発器ケース60の外壁(たとえば上面)63を、蒸発室60Aと圧力調節室60Bを仕切る隔壁61よりも薄く設定する。たとえば、隔壁61の厚さを2mm、蒸発器ケース60の上面63の厚さを1mmとする。動作停止時は図8Aに示すように圧力調整室60Bの変形はない。一方、加熱時には、図8Bに示すように圧力調整室60Bが膨張する。内側の隔壁61よりも外側壁面(上面)63を薄くすることで、圧力調整室60Bに流れ込んだ蒸気圧を受けて外側壁面63は外側(大気側)に変形するが、内側の隔壁61にはほとんど変形が生じない。この構成は、内側隔壁61とウィック47の密着性を一定に保持するのに効果的である。なお、図8では外壁63の厚さを隔壁61の厚さの1/2としているが、この例に限定されず、隔壁61の形状に影響を与えることなく外壁63が変形することのできる適切な厚さに設定することができる。用いる作動流体の種類にもよるが、たとえば外壁63の厚さを隔壁61の厚さの1/5~2/3の範囲で適切にに設定することができる(この範囲で問題がないかご確認ください)。
 図9A及び図9Bは、第1実施例の変形例2を示す図である。変形例2では、蒸発器ケース70の上面73と内側の隔壁71の厚さは同程度であるが、隔壁71をウィック47が配置されている蒸発室70A側にわずかに湾曲させておく。動作停止時は図9Aに示すように圧力調整室70Bの変形はない。一方、加熱時には、図9Bに示すように圧力調整室70Bが膨張する。この構成では、圧力調節穴75から圧力調節室70Bに流れ込んだ蒸気により蒸発器ケース70の外側壁面(上面)73が外側に膨張するときに、内側の隔壁71もウィック47側への湾曲の度合いを増す方向に変形する。その結果、隔壁71をウィック47に対して押圧する力が働く。これにより、隔壁71とウィック47の密着性がより高まり、ループ型ヒートパイプの冷却性能が向上する。
 以上のように、第1実施例の構成によれば、簡単な構成でループ型ヒートパイプの冷却性能を向上・安定させ、電子機器の安定した動作が実現する。
 図10A及び図10Bは、本発明の第2実施例の蒸発器80の構成を示す図である。図10Aは作動流体が流れる方向に沿った断面図、図10Bは図10AのA-A'ラインに沿った断面図である。第2実施例では、蒸発器80は、液供給通路86を有する蒸発室(第1空間)90Aと、気密性を有する第2流体室(第2空間)90Bを有する。第2流体室90Bは、同一温度において蒸発室90Aに供給される作動流体の飽和蒸気圧よりも高い飽和蒸気圧を有する第2流体100を収容するための空間である。第2流体100の少なくとも一部は液相100bである。図4のグラフを参照するならば、作動流体としてエタノールを用いる場合は、第2流体として、エタノール、ペンタン、ブタン、アンモニア等を一部液相の状態で封入する。作動流体がペンタンである場合は、第2流体とペンタン、ブタン、アンモニア等を一部液相の状態で封入する。
 図10A及び図10Bの例では、蒸発器ケース90の底面が受熱面82となっている。蒸発器80は、受熱面82が電子部品等の発熱体20と接触するように発熱体20上に搭載されて、電子部品からの熱を受け取る(図11A及び図11B参照)。蒸発室90Aの内壁にはウィック(多孔質体)47が機械的・熱的に接触している。液管83によって蒸発室90Aに供給された作動液89は、ウィック47に含浸され、蒸発器ケース40からウィック47に伝わった熱によって加熱され、気化される。気化された蒸気は、ウィック47に形成されたグルーブ45から蒸気管84に流れ込む。一方、電子機器の作動時には、第2流体室90Bに封入されている第2流体も蒸発器ケース90を伝達する熱によってその一部が気化し、気相100aと液相100bの両方が存在する状態となっている。
 図10A及び図10Bに示す蒸発器80の具体的な構成例を説明する。蒸発器ケース80は、全体の高さが18mm、幅60mm、長さ70mm平板型である。蒸発室90Aの上面側に第2流体質90Bを設けた二重構造とし、第2流体質90Bは、高さ1mm、幅56mm、長さ66mmの密閉空間とする。第2流体室90Bは、蒸発室90Aと厚さ2mmの隔壁91で隔てられている。蒸発室90Aの室内寸法は、高さ11mm、幅56mm、長さ66mmであり、壁面の厚さは全体的に2mmである。
 蒸発器ケース90や隔壁91の材質は、第2実施例においては無酸素銅を用いている。従来の平板型蒸発器は高い内圧に耐えられるように剛性率が高いステンレスなどの材料が用いられることが多いが、第2実施例では、後述するように必ずしも剛性が高い材料を使う必要はない。むしろ蒸発器ケース90が均一な温度となるようにステンレスよりも熱伝導率の高い材料を用いるのが好ましく、たとえば軽量化のためにアルミ合金などの材料を用いても良い。
 蒸発室90Aの内部に配置されるウィック47は焼結ニッケル製であり、ポーラス径は10μm、空孔率は約50%である。ウィック47の外形寸法は高さ11mm、幅56mm、長さ50mmであり、蒸発室90Aの内壁に密着した状態で収まるように、特に高さ寸法が精密に作製されている。ウィック47の上面と下面(蒸発室90Aの上面と下面に接する面)には幅1mm、深さ2mmの蒸気通路(グルーブ)45が、3mmピッチで15本ずつ形成されている。ウィック47の中央部には、液管13から供給される作動液49をウィック47の内部に引き込むため、高さ3mm、幅40mm、長さ40mmの液供給通路86が設けられている。
 蒸発器80と凝縮部11(図2参照)を結ぶ蒸気管84、液管83は、ともに外径6mm、内径5mm、長さ約300mmの銅パイプとした。凝縮部11は、蒸気管84や液管83と同様に、外径6mm、内径5mm、長さ400mmの銅パイプであり、パイプの周囲に放熱フィンを熱的に接続し、送風ファン12で冷却するようにした。
 第2実施例では、作動流体89としてn-ペンタンを使用する。ペンタンの大気圧下での沸点は約36℃であるが、ループ型ヒートパイプ1の作動時には、作動流体89の温度は50~70℃付近となるため、ペンタンの蒸気圧は大気圧以上となる。一方、第2流体室90Bには、あらかじめ第2流体として1ccのブタンが封入されている。第2流体室90Bへのブタンの封入は、ループ型ヒートパイプの作動流体を封入するのと同様の手法で、内部空間を真空状態にしたのち、第2流体(ブタン)のみを封入する。第2流体は、発熱体(電子部品)20の作動時には気相が優勢となるが、作動時、非作動時を通してその少なくとも一部は液相である。
 図11A及び図11Bは、第2実施例の効果を説明するための模式図である。第2流体にブタンを用いた場合、同一温度におけるブタンの飽和蒸気圧は、作動流体であるn-ペンタンの飽和蒸気圧よりも高いが、動作停止時には第2流体室90Bに変形はない。加熱時には、蒸発器ケース90の作動流体側(蒸発室90A)と第2流体側(第2流体室90B)の温度がほぼ同一であるとするならば、隔壁91は、圧力が低い側、すなわちウィック47が設置されている蒸発室90A側に押圧される。温度が高くなるほど作動流体89と第2流体100の圧力差は大きくなるため、蒸発器ケース90が発熱体20からの熱を受けて高温になるにつれて、隔壁91はウィック47により密着する。このとき、図11Bに示すように、蒸発室90Aと第2流体室90Bとの内圧の差よりも、第2流体室90Bと大気圧との差のほうが大きいため、第2流体室90Bの上面93は外側に向けて湾曲するが、隔壁91もまた、蒸発室90A側に向かって膨張するのでウィック47との密着性は向上する。
 図12A及び図12Bは、第2実施例の蒸発器の変形例を示す図である。第2実施例では、隔壁91の厚さを蒸発器ケース90の壁厚と同じ2mmとしたが、変形例では、蒸発器80aの蒸発室90Aと第2流体室90Bを隔てる隔壁91aの厚さを、蒸発器ケース90の壁厚よりも薄く、たとえば1mmに設定する。このように構成することによって、動作停止時には第2流体室90Bに変形はないが(図12A)、加熱時には隔壁91aが変形しやすくなり、より強い力で隔壁91aとウィック47を密着させることができる(図12B)。
 図13A及び図13Bは、第2実施例の蒸発器80の搭載例を示す図である。ループ型ヒートパイプ1の蒸発器80は、サーマルグリース21を介して、プリント基板30上の電子部品20上に配置され、取り付けネジ31によりプリント基板30に固定される。蒸発器80の発熱量は、第2実施例では約60Wである。このとき、図示しない凝縮部11を送風ファン(φ90mm、12V駆動)12によって室温下(25℃)で冷却する。発熱部品20から蒸発器ケース90に伝わる熱により、ウィック47に含浸された作動液が気化されるとともに、第2流体質90Bに封入されている作動液よりも飽和蒸気圧の大きい第2流体も気化し、隔壁91を蒸発室90A側のウィック47に対して押圧する。
 図14は、第2実施例のループ型ヒートパイプの冷却性能を示すグラフである。比較例として、図1A~図1Cに示した従来のウィック構造を組み込んだループ型ヒートパイプを作製し、作動実験を行って、第2実施例のループ型ヒートパイプ1と冷却性能を比較した。グラフの横軸は、ヒータ加熱量(電子部品の発熱量)、縦軸は、蒸発器80と凝縮部11の熱抵抗を示す。熱抵抗は、蒸発器80の受熱面82の温度と凝縮部11の平均温度の差を発熱体20の熱量で除した値である。熱抵抗値が低いほど、すなわち、受熱面82と凝縮部11の温度差が小さいほど、蒸発器80から凝縮部11に効率よく熱が伝達され、高い冷却性能を持つことを示す。
 従来技術のループ型ヒートパイプの場合、発熱量が高くなるほど、蒸発器の温度が高くなることによって、図1Cのように蒸発器ケース1001とウィック1007の隙間が拡大し、冷却性能が低下(熱抵抗が増大)する。これに対し、第2実施例の場合は、発熱量が高くなって蒸発器の温度が高温となった場合でも、図11Bあるいは図12Bに示すように、蒸発器ケース90内の隔壁91、91aとウィック47の熱接触は良好に保たれた状態を維持できるため、高い冷却性能を保つこと(熱抵抗を低く維持)が可能である。
 このような効果を裏付けるために、作動流体にペンタンを用いた場合の幅56mmのCu製蒸発器ケース90の変形量を計算した。図1に示す従来の構成では、LHP作動時(70℃付近)における大気圧と蒸発器ケース内の圧力との差は0.2MPaとなるため(図4参照)、ケースは外側に95μm膨張・変形する。これにより、ケースとウィックの熱接触が得られず、熱抵抗が増大すると考えられる。他方、図11に示すように、第2流体室90Bにブタンを封入した場合、第2流体室90の内圧に比べて、蒸発室90Aの内圧は0.5MPa低くなる。蒸発室90A内にウィックがないとしたら、蒸発器ケースの隔壁91は蒸発室90A側に140μm張り出すことになるが、蒸発室90A内にウィック47があるため、隔壁91がウィック47に押し付けられ、密着性が向上すると考えられる。
 また、図14のグラフと図7のグラフを比較するとわかるように、第2実施例の蒸発器構成を採用した場合、第1実施例の蒸発器構成よりも、さらに高い冷却効果を達成することができる。
 第1実施例及び第2実施例では、熱伝導面積の大きい蒸発器ケースの上面、すなわち受熱面と反対側の面にだけ第2空間を設けて二重構造としたが、蒸発室(第1空間)の一方または両方の側壁をもカバーするように第2空間を形成してもよい。蒸発室(第1空間)の上面及び両側壁をカバーして第2空間を形成する場合は、蒸発器の受熱面を除く3面にわたって二重構造が採用されることになる。この場合、ウィックと蒸発室との熱密着はさらに向上する。
 この国際出願は、2010年3月29日に日本国に出願された特許出願2010-075443の優先権を主張し、その全内容はこの国際出願に参照により組み込まれるものとする。
 本発明にかかるループ型ヒートパイプは、電子機器等、種々の発熱体の冷却装置に適用可能である。
1 ループ型ヒートパイプ
10、80 蒸発器
13、83 液管
14、84 蒸気管
20 発熱体(電子機器)
40、60、70、90 蒸発器ケース
40A,60A、70A、90A 蒸発室(第1空間)
42、82 受熱面
47 ウィック
49、89 作動流体
40B、60B、70B 圧力調整室(第2空間)
51、61、71、91、91a 隔壁
55、65、75 圧力調整穴(連通穴)
90B 第2流体室(第2空間)
100 第2流体
100a 気相状態の第2流体
100b 液相状態の第2流体

Claims (10)

  1.  発熱体からの熱で作動流体を気化させる蒸発器と、気化された作動流体を凝縮させる凝縮器とを連結管でループ状に接続したループ型ヒートパイプであって、
     前記蒸発器は、
     前記発熱体との接触面を有し、前記連結管から供給される前記作動流体を蒸発させる第1空間と、
     前記第1空間を構成する面のうち、前記接触面以外の少なくとも1つの面に設けられる第2空間と、
    を有し、前記第1空間と第2空間を隔てる隔壁に、前記第1空間と第2空間を連通する連通穴が設けられていることを特徴とするループ型ヒートパイプ。
  2.  前記第2空間は、少なくとも前記第1空間の前記発熱体との接触面と反対側の面に形成されることを特徴とする請求項1に記載のループ型ヒートパイプ。
  3.  前記作動流体の蒸気圧は大気圧よりも高く、前記第2空間と大気を隔てる外壁の厚さが、前記第1空間と第2空間を隔てる隔壁の厚さよりも薄いことを特徴とする請求項2に記載のループ型ヒートパイプ。
  4.  前記作動流体の蒸気圧は大気圧よりも高く、前記第1空間と第2空間を隔てる隔壁が、前記第1空間側に向かって湾曲していることを特徴とする請求項2に記載のループ型ヒートパイプ。
  5.  前記作動流体は、ペンタン、ブタン、及びアンモニアから選択されることを特徴とする請求項4に記載のループ型ヒートパイプ。
  6.  発熱体からの熱で作動流体を気化させる蒸発器と、気化された作動流体を凝縮させる凝縮器とを連結管でループ状に接続したループ型ヒートパイプであって、
     前記蒸発器は、
     前記発熱体との接触面を有し、前記液管から供給される前記作動流体を蒸発させる第1空間と、
     前記第1空間を構成する面のうち、前記接触面以外の少なくとも1つの面に設けられ、同一温度において前記作動流体よりも飽和蒸気圧の高い第2の流体を密封する第2空間と、
    を有することを特徴とするループ型ヒートパイプ。
  7.  前記ループ型ヒートパイプの非作動時には、前記第2の流体の少なくとも一部は液相であることを特徴とする請求項6に記載のループ型ヒートパイプ。
  8.  前記第1空間と第2空間を隔てる隔壁の厚さが、前記第2空間と大気を隔てる外壁の厚さよりも薄いことを特徴とする請求項7に記載のループ型ヒートパイプ。
  9.  前記第1空間の内部には、前記第1空間の内壁に沿って多孔質体が設けられ、前記多孔質体の中に、前記連結管により供給される作動流体の通路が形成されていることを特徴とする請求項1又は6に記載のループ型ヒートパイプ。
  10.  前記蒸発器はステンレスよりも熱伝導率の高い材料で形成されていることを特徴とする請求項1又は6に記載のループ型ヒートパイプ。
PCT/JP2010/066329 2010-03-29 2010-09-21 ループ型ヒートパイプ WO2011121819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800652950A CN102792119A (zh) 2010-03-29 2010-09-21 环型热管
JP2012508014A JPWO2011121819A1 (ja) 2010-03-29 2010-09-21 ループ型ヒートパイプ
US13/591,397 US20120312506A1 (en) 2010-03-29 2012-08-22 Loop heat pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-075443 2010-03-29
JP2010075443 2010-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/591,397 Continuation US20120312506A1 (en) 2010-03-29 2012-08-22 Loop heat pipe

Publications (1)

Publication Number Publication Date
WO2011121819A1 true WO2011121819A1 (ja) 2011-10-06

Family

ID=44711595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066329 WO2011121819A1 (ja) 2010-03-29 2010-09-21 ループ型ヒートパイプ

Country Status (4)

Country Link
US (1) US20120312506A1 (ja)
JP (2) JPWO2011121819A1 (ja)
CN (1) CN102792119A (ja)
WO (1) WO2011121819A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036891A1 (en) 2013-09-11 2015-03-19 Žilinská Univerzita V Žiline Compact evaporator with closed loop
JP2022518854A (ja) * 2019-01-29 2022-03-16 株洲智▲熱▼技▲術▼有限公司 相転移放熱装置
JP2022518864A (ja) * 2019-01-29 2022-03-16 株洲智▲熱▼技▲術▼有限公司 相転移放熱装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM512883U (zh) * 2015-05-05 2015-11-21 Cooler Master Co Ltd 散熱模組、水冷式散熱模組及散熱系統
WO2016201080A1 (en) * 2015-06-09 2016-12-15 Hamilton Sunstrand Corporation Modular heat exchanger design
US10622282B2 (en) * 2017-07-28 2020-04-14 Qualcomm Incorporated Systems and methods for cooling an electronic device
US20190360759A1 (en) * 2018-05-25 2019-11-28 Purdue Research Foundation Permeable membrane microchannel heat sinks and methods of making
US10985085B2 (en) * 2019-05-15 2021-04-20 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method for manufacturing the same
CN113776371B (zh) * 2020-11-03 2022-12-16 山东交通学院 一种直线壁导引环路热管
CN113776370B (zh) * 2020-11-03 2022-12-16 山东交通学院 一种弯曲弧壁引流环路热管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201493A (ja) * 1987-02-16 1988-08-19 Furukawa Electric Co Ltd:The ヒ−トパイプ
JP2005259747A (ja) * 2004-03-09 2005-09-22 Sony Corp 熱輸送装置及び電子機器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816814A (en) * 1987-02-12 1989-03-28 International Business Machines Corporation Vector generator with direction independent drawing speed for all-point-addressable raster displays
JP2005079483A (ja) * 2003-09-03 2005-03-24 Hitachi Ltd 電子機器装置
US20060162903A1 (en) * 2005-01-21 2006-07-27 Bhatti Mohinder S Liquid cooled thermosiphon with flexible partition
CN101307996B (zh) * 2007-05-17 2010-06-02 私立淡江大学 平板蒸发器结构及具有平板蒸发器结构的回路式热管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201493A (ja) * 1987-02-16 1988-08-19 Furukawa Electric Co Ltd:The ヒ−トパイプ
JP2005259747A (ja) * 2004-03-09 2005-09-22 Sony Corp 熱輸送装置及び電子機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015036891A1 (en) 2013-09-11 2015-03-19 Žilinská Univerzita V Žiline Compact evaporator with closed loop
JP2022518854A (ja) * 2019-01-29 2022-03-16 株洲智▲熱▼技▲術▼有限公司 相転移放熱装置
JP2022518864A (ja) * 2019-01-29 2022-03-16 株洲智▲熱▼技▲術▼有限公司 相転移放熱装置
JP7413387B2 (ja) 2019-01-29 2024-01-15 株洲智▲熱▼技▲術▼有限公司 相転移放熱装置

Also Published As

Publication number Publication date
US20120312506A1 (en) 2012-12-13
JP2013231597A (ja) 2013-11-14
JPWO2011121819A1 (ja) 2013-07-04
CN102792119A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2011121819A1 (ja) ループ型ヒートパイプ
WO2019131589A1 (ja) 放熱モジュール
US9696096B2 (en) Loop heat pipe and electronic equipment using the same
JP6191137B2 (ja) 冷却装置
JP4718350B2 (ja) 蒸発器及びこの蒸発器を使用したループ型ヒートパイプ
US10976112B2 (en) Heat pipe
TW201447199A (zh) 蒸發器、冷卻裝置及電子設備
JP5637216B2 (ja) ループ型ヒートパイプ及び電子機器
JP2008091884A (ja) 電気的オペレーティング手段のための冷却装置
US20130098583A1 (en) Heat pipe dissipating system and method
WO2019131599A1 (ja) 放熱モジュール
Wang et al. Transition between thin film boiling and evaporation on nanoporous membranes near the kinetic limit
JP2020516845A (ja) 最適化された気化インタフェースを備えるエバポレータ
JP2007263427A (ja) ループ型ヒートパイプ
JP4718349B2 (ja) 蒸発器及びこの蒸発器を使用したループ型ヒートパイプ
JP2013242111A (ja) ループ型ヒートパイプ及び電子機器
WO2012161002A1 (ja) 平板型冷却装置及びその使用方法
CN112161501B (zh) 可控热管
WO2016051569A1 (ja) 蒸発器、冷却装置及び電子装置
US20120037344A1 (en) Flat heat pipe having swirl core
JP7444704B2 (ja) 伝熱部材および伝熱部材を有する冷却デバイス
US20100006267A1 (en) Covered plate-type heat pipe
JP3209501U (ja) 放熱ユニット
JP2017083130A (ja) 蒸発器及び冷却装置
KR20050121128A (ko) 히트파이프

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065295.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848992

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508014

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848992

Country of ref document: EP

Kind code of ref document: A1