WO2011118398A1 - Terahertz light-receiving/light-emitting module - Google Patents

Terahertz light-receiving/light-emitting module Download PDF

Info

Publication number
WO2011118398A1
WO2011118398A1 PCT/JP2011/055581 JP2011055581W WO2011118398A1 WO 2011118398 A1 WO2011118398 A1 WO 2011118398A1 JP 2011055581 W JP2011055581 W JP 2011055581W WO 2011118398 A1 WO2011118398 A1 WO 2011118398A1
Authority
WO
WIPO (PCT)
Prior art keywords
hemispherical lens
antenna element
terahertz light
emitting module
light receiving
Prior art date
Application number
PCT/JP2011/055581
Other languages
French (fr)
Japanese (ja)
Inventor
松本直樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012506929A priority Critical patent/JPWO2011118398A1/en
Publication of WO2011118398A1 publication Critical patent/WO2011118398A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a terahertz light receiving and emitting module used as a terahertz light emitter or detector.
  • a terahertz light receiving and emitting module is used as a terahertz light emitter or detector.
  • the terahertz light receiving / emitting module includes a photoconductive antenna element, a hemispherical lens, and a module housing (see, for example, Patent Documents 1 to 3).
  • the photoconductive antenna element is obtained by forming an antenna pattern of a predetermined shape such as a dipole antenna or a bow tie antenna on a GaAs substrate provided with a low temperature growth GaAs film.
  • An antenna pattern of a photoconductive antenna element generally has an electrode gap portion where electrodes are opposed to each other with a minute gap, and pulse pulse laser light is irradiated to the electrode gap portion in a state where a bias voltage is applied.
  • photoexcited carriers generated instantaneously are accelerated by a bias electric field and emitted as terahertz light.
  • a pulsed laser beam for excitation is irradiated onto the electrode gap portion in a state where the terahertz light is irradiated, so that a minute current corresponding to the electric field intensity by the terahertz light is generated in the electrode gap portion.
  • the intensity of the terahertz light can be detected based on this minute current.
  • the hemispherical lens has a flat surface and a spherical surface, and is provided so that the flat surface is in close contact with the photoconductive antenna element, suppressing reflection at the interface with the photoconductive antenna element and free from the photoconductive antenna element.
  • Terahertz light is radiated into space, or terahertz light is collected from free space onto a photoconductive antenna element.
  • the photoconductive antenna element When the photoconductive antenna element emits terahertz light, it emits terahertz light using the electrode gap portion as a point light source.
  • the point light source When the point light source is deviated from the optical axis of the hemispherical lens, the wavefronts of the terahertz light propagating in the hemispherical lens are not matched, and the radiation efficiency and band characteristics of the terahertz light to free space are deteriorated. The same applies to the case where terahertz light is detected.
  • the electrode gap When the electrode gap is displaced from the optical axis of the hemispherical lens, the condensing efficiency and detection efficiency of the terahertz light are reduced.
  • the terahertz light receiving and emitting module it is necessary to position the photoconductive antenna element and the hemispherical lens very precisely in units of micrometers, and to place the point light source of the photoconductive antenna element on the optical axis of the hemispherical lens. Yes.
  • Patent Document 1 employs a configuration in which a holding member that independently holds a hemispherical lens and a photoconductive antenna element is used, and both are fixed to the module housing by a plurality of members.
  • Patent Document 2 a photoconductive antenna element is fixed to a wiring board, a hemispherical lens is fitted into a module housing provided with a buffer member, and the wiring board on which the photoconductive antenna element is attached is attached to the flat surface of the hemispherical lens.
  • the structure which is pressed and fixed from the side is adopted.
  • the module housing has a recess for positioning the wiring board.
  • a hemispherical lens is fixed to a module housing by a holding member made of plastic or rubber, and a photoconductive antenna element is fitted into an aperture having a positioning structure provided in the module housing.
  • the structure fixed by is adopted.
  • Patent Document 2 it is necessary to fix the photoconductive antenna element to the wiring board, but no mention is made of a method for positioning the photoconductive antenna element with respect to the wiring board.
  • a lens is fitted into an opening provided in a module housing, and a photoconductive antenna element is fitted into an opening provided on the opposite side of the lens. Since the opening portion has a depth substantially equal to the thickness of the module housing, it cannot be physically assembled unless the opening size has a margin. Therefore, as described in paragraph 0044 of the same document, even if the position of the photoconductive antenna element can be regulated to some extent by the wall surface of the opening, the positioning accuracy is not sufficient, and the hemispherical lens It is difficult to sufficiently increase the matching accuracy between the optical axis and the point light source of the photoconductive antenna element.
  • the single lens type objective lens has a high magnification, but generally requires a working distance of about 1.3 mm, and needs to be placed very close to the photoconductive antenna element.
  • a double-lens type high-magnification objective lens has a long working distance, so it can be arranged farther from the photoconductive antenna element than a single-lens objective lens. It is desirable to avoid using the terahertz light that is generated by expanding the pulse width because the band is narrowed.
  • the present invention has been made in view of the above circumstances, has a simple structure, can achieve sufficient positioning accuracy without performing position adjustment work, and a single-lens objective lens for a photoconductive antenna element.
  • An object of the present invention is to provide a terahertz light receiving and emitting module that can be brought close to each other.
  • the invention according to claim 1 is a terahertz light receiving and emitting module including a hemispherical lens, a photoconductive antenna element, and a module housing, and includes a mount element and a fixed cover.
  • the hemispherical lens is made of a material that transmits terahertz light, and is provided with a flat surface perpendicular to the optical axis and a spherical surface having a center on the optical axis.
  • the photoconductive antenna element has a flat plate shape, an antenna pattern is formed on the front main surface, and the back main surface contacts the flat surface of the hemispherical lens so that the point light source position of the antenna pattern is on the optical axis.
  • the module housing holds a photoconductive antenna element and a mount element equipped with a hemispherical lens.
  • the mount element has an opening, an element holding recess, and a lens holding recess along the optical axis.
  • the opening exposes the point light source position of the antenna pattern.
  • the element holding recess is provided with an opening at the bottom of the recess and abuts on the front main surface of the photoconductive antenna element, and abuts on the side surface of the photoconductive antenna element on the side surface of the recess and the photoconductive antenna element is perpendicular to the optical axis. Regulating displacement in any direction.
  • the lens holding concave portion is provided with an element holding concave portion on the bottom surface of the concave portion, and abuts against the spherical surface of the hemispherical lens on the side surface of the concave portion to restrict the hemispherical lens from being displaced in a direction perpendicular to the optical axis.
  • the fixed cover is in contact with the spherical surface of the hemispherical lens and holds the photoconductive antenna element and the hemispherical lens between the mounting element.
  • the hemispherical lens can be positioned in the vertical direction of the optical axis and the photoconductive antenna element can be positioned in the vertical direction of the optical axis only by the mount element.
  • the positioning accuracy of both is determined according to the shape accuracy of the recess. That is, the accuracy of matching the optical axis of the hemispherical lens with the point light source of the photoconductive antenna element can be increased only by the shape accuracy of the mount element, hemispherical lens, and photoconductive antenna element.
  • the photoconductive antenna element and the hemispherical lens can be fixed in the direction along the optical axis by holding the mount element and the fixed cover.
  • the antenna element and the hemispherical lens can be fixed, and the number of work steps for assembly can be reduced.
  • the depth of the concave portion for holding the element can be made as shallow as the thickness of the photoconductive antenna element, thereby allowing the photoconductive antenna to be provided in the concave portion for holding the element without giving a margin to the opening size of the concave portion for holding the element.
  • the element can be assembled. This eliminates the need to adjust the position of the photoconductive antenna element, increases the matching accuracy between the optical axis of the hemispherical lens and the point light source of the photoconductive antenna element without requiring special techniques for assembly, and reduces the manufacturing cost. Can be reduced.
  • the recess depth of the element holding recess is shallower than the thickness of the photoconductive antenna element.
  • the thickness dimension of the opening is 1 mm or less.
  • the single lens objective lens close to the photoconductive antenna element up to a distance (for example, 1.3 mm) at which sufficient focusing can be performed with the single lens objective lens, and the single lens objective lens is used.
  • a distance for example, 1.3 mm
  • the terahertz light receiving and emitting module of the invention according to claim 4 includes a buffer member in a gap surrounded by the mount element, the photoconductive antenna element, and the hemispherical lens.
  • the buffer member of the invention according to claim 5 is preferably an elastic member.
  • the gap surrounded by the mount element, photoconductive antenna element, and hemispherical lens becomes large, and photoconductive during assembly. It may be difficult to maintain the parallelism of the hemispherical lens with respect to the antenna element. Therefore, by providing a buffer material in the gap, it becomes easy to maintain the parallelism of the hemispherical lens with respect to the photoconductive antenna element during assembly, and the hemispherical lens can be held more stably.
  • the fixed cover of the invention according to claim 6 has an opening having an opening diameter smaller than the diameter of the hemispherical lens.
  • the fixing cover of the invention according to claim 7 is preferably made of resin.
  • the fixed cover is made of resin and has a certain elasticity, it is possible to prevent the photoconductive antenna element from being damaged due to excessive stress during assembly. Furthermore, since it can be easily manufactured by an injection molding method or the like if it is made of resin, the cost can be reduced by mass production.
  • a module housing includes an attachment part for attaching the mount element, an opening for exposing the antenna pattern, and a connector part for electrically connecting the antenna pattern to an external circuit. It is preferable that the connector portion and the antenna pattern are connected via a wiring wire passing through the opening and the opening of the mount element. With this configuration, wiring to the antenna pattern can be performed after the hemispherical lens and the photoconductive antenna element are attached to the mount element. Then, it is possible to prevent the assembling work and the assembling structure from becoming complicated due to restrictions on the wiring structure.
  • the positioning of the hemispherical lens in the vertical direction of the optical axis and the positioning of the photoconductive antenna element in the vertical direction of the optical axis are performed only by the element holding recess and the lens holding recess provided coaxially on the mount element.
  • the matching accuracy between the optical axis and the point light source can be increased.
  • the photoconductive antenna element and the hemispherical lens in the direction along the optical axis by holding the mount element and the fixed cover, the photoconductive antenna element can be obtained only by fixing the mount element and the fixed cover.
  • hemispherical lens can be fixed, and the number of work steps for assembly can be reduced.
  • the depth of the concave portion for holding the element can be made as shallow as the thickness of the photoconductive antenna element, thereby allowing the photoconductive antenna to be provided in the concave portion for holding the element without giving a margin to the opening size of the concave portion for holding the element.
  • the element can be reliably positioned and assembled. This eliminates the need to adjust the position of the photoconductive antenna element, increases the matching accuracy between the optical axis of the hemispherical lens and the point light source of the photoconductive antenna element without requiring special techniques for assembly, and reduces the manufacturing cost. Can be reduced.
  • FIG. 1 is a schematic assembly diagram of a terahertz light receiving and emitting module 11 according to the present embodiment.
  • 2A is a schematic front view of the terahertz light receiving / emitting module 11
  • FIG. 2B is a schematic rear view of the terahertz light receiving / emitting module 11
  • FIG. 2C is a terahertz light receiving / emitting light.
  • FIG. 3 is a schematic cross-sectional view of the module 11 taken along the line AA ′ in FIG.
  • FIGS. 1 and 2 display the photoconductive antenna element 14 and the mount element 15 of the terahertz light receiving and emitting module 11 rotated by 90 degrees.
  • the terahertz light receiving / emitting module 11 includes a fixed cover 12, a hemispherical lens 13, a photoconductive antenna element 14, a mount element 15, and a module housing 16.
  • the module housing 16 has a box shape excluding the rear side wall surface, and is made of a metal that is easy to process such as aluminum and has little corrosiveness.
  • the module housing 16 is provided with a circular opening in the center of the front, and a screw hole serving as a mounting portion for the mount element along the outer periphery of the circular opening.
  • an SMA connector 17 is provided on the side wall surface of the module housing 16. As shown in FIG. 2B, the SMA connector 17 is connected to the positive electrode (+) of the antenna pattern 18 by a wiring wire 19A.
  • the negative electrode ( ⁇ ) of the antenna pattern 18 is connected to the module housing 16 by a wiring wire 19B and grounded.
  • the fixed cover 12 is made of an annular resin plate, and has a circular opening at the center and a screw hole along the outer periphery of the circular opening.
  • the circular opening has an opening diameter smaller than that of the hemispherical lens 13.
  • the fixed cover 12 is assembled to the mount element 15 by a fixing screw, and when assembled to the mount element 15, the edge of the opening side surface contacts the spherical surface of the hemispherical lens 13 over the entire circumference. For this reason, the opening center axis of the fixed cover 12 passes through the center of the spherical surface of the hemispherical lens 13.
  • the fixed cover 12 is made of resin and has elasticity, it can prevent the hemispherical lens 13 and the photoconductive antenna element 14 from being damaged due to excessive stress when the fixing screw is tightened. In addition, it can be mass-produced by an injection molding method and manufactured at a low cost.
  • the hemispherical lens 13 is made of a material that has substantially the same refractive index as the constituent material of the photoconductive antenna element 14 (here, mainly GaAs) and transmits terahertz light, such as high-resistance silicon, and has a flat surface and a center of the flat surface. And a spherical surface having a center on a perpendicular line passing through. A perpendicular passing through the center of the flat surface becomes the optical axis of the hemispherical lens 13.
  • a so-called hemispherical lens in which the center of the spherical surface is located on a flat surface is used as the hemispherical lens 13.
  • a so-called super hemispherical lens in which the center of the spherical surface is located inside the hemispherical lens 13 may be used.
  • the directivity region of the irradiated terahertz light can be controlled in a beam shape.
  • the hemispherical lens 13 is assembled to the mount element 15 so that the spherical surface faces the front side and the flat surface faces the back side.
  • the photoconductive antenna element 14 is a rectangular flat plate having a thickness of about 0.35 mm, the diagonal dimension of the flat plate is smaller than the diameter of the hemispherical lens 13, and the antenna pattern 18 is formed on the surface as shown in FIG. Prepare.
  • the photoconductive antenna element 14 is assembled to the mount element 15 so that the back surface is in contact with the flat surface of the hemispherical lens 13.
  • FIG. 2B also shows a surface view of the photoconductive antenna element 14 alone.
  • the photoconductive antenna element 14 is formed by forming a low-temperature grown GaAs film on the surface of a flat GaAs substrate and providing an antenna pattern 18 on the surface of the low-temperature grown GaAs film.
  • the antenna pattern 18 includes a pair of antenna electrodes 18A and 18B.
  • the antenna electrode 18A and the antenna electrode 18B are line-symmetric with each other, and center on an electrode gap portion 18C facing each other with a minute interval (generally about 5 ⁇ m). Have in the department. This electrode gap portion 18C is the point light source position described in the claims.
  • the antenna electrodes 18A and 18B can be formed by a lithography method or the like generally used in the manufacture of semiconductors, and the external dimensional accuracy of the photoconductive antenna element 14 is extremely high by using a dicer for processing semiconductor chips. It can be obtained with high accuracy. Therefore, the substrate center of the photoconductive antenna element 14 and the electrode gap portion 18C of the antenna pattern 18 can be matched with an error of 1 ⁇ m or less.
  • the mount element 15 is formed of a substantially annular resin plate, and a circular recess 15A is provided at the center of the surface, a rectangular recess 15B is provided at the center of the bottom of the recess of the circular recess 15A, and an opening 15C is provided at the bottom of the recess of the rectangular recess 15B. Is provided. Further, double screw holes are provided on the surface along the outer periphery of the circular recess 15A. The outer screw holes are used for assembling the mount element 15 to the module housing 16, and the inner screw holes are used for the fixing cover 12. Used for assembling.
  • the circular recess 15A is a lens holding recess described in the claims.
  • the rectangular recess 15B is the element holding recess described in the claims, and is formed with a recess depth of about 0.3 mm.
  • the center of the rectangular recess 15B is arranged so as to be coaxial with the center of the circular recess 15A.
  • the opening 15 ⁇ / b> C has substantially the same shape as the antenna pattern 18 provided on the surface of the photoconductive antenna element 14, and at least the central portion of the antenna pattern 18 is exposed to the back side of the terahertz light receiving / emitting module 11.
  • the photoconductive antenna element 14 is assembled by assembling the photoconductive antenna element 14, the hemispherical lens 13, and the fixed cover 12 on the surface side of the mount element 15 having such a shape and fixing the fixed cover 12 with a fixing screw.
  • the hemispherical lens 13 is held between the fixed cover 12 and the mount element 15. Therefore, the photoconductive antenna element 14 and the hemispherical lens 13 can be fixed only by fixing the mount element 15 and the fixed cover 12, and the number of work steps for assembly can be reduced as compared with the conventional configuration.
  • the center of the circular recess 15A and the center of the rectangular recess 15B are coaxially arranged, the center of the photoconductive antenna element 14 is placed on the optical axis of the hemispherical lens 13 passing through the center of the flat surface of the hemispherical lens 13. That is, the electrode gap portion 18C is located. Then, the concave side surface of the circular concave portion 15A contacts the spherical surface of the hemispherical lens 13 over the entire circumference, and the concave side surface of the rectangular concave portion 15B contacts the side surface of the photoconductive antenna element 14 over the entire circumference.
  • the positional deviation of the photoconductive antenna element 14 in the direction perpendicular to the optical axis with respect to the mount element 15 is restricted, and the hemispherical lens 13 and the photoconductive antenna element according to the shape accuracy of the circular recess 15A and the rectangular recess 15B in the mount element 15
  • the positioning accuracy with respect to 14 is determined.
  • the photoconductive antenna element 14 can be assembled to the rectangular recess 15B even if there is no allowance for the opening size of the rectangular recess 15B. Thus, the position adjustment work of the photoconductive antenna element 14 becomes unnecessary.
  • the back surface of the photoconductive antenna element 14 protrudes from the rectangular recess 15 ⁇ / b> B, and the photoconductive antenna element 14 is completely adhered to the hemispherical lens 13.
  • the thickness of the element holding portion in the rectangular recess 15B is set to such a thickness that can realize a certain mechanical strength. Is possible.
  • FIG. 3A is a schematic cross-sectional view of the terahertz light receiving and emitting module 11 in a state in which the single lens type objective lens 51 is brought close.
  • FIG. 3B is a schematic diagram of the terahertz light receiving and emitting module 11 with the bias power supply 50 connected thereto.
  • the antenna pattern 18 is connected between the bias power supply 50 and the ground via the wiring wires 19A and 19B, and the antenna pattern is connected from the bias power supply 50 to the antenna pattern.
  • a bias voltage (generally about 10 to 100 V) is applied to 18.
  • the single lens type objective lens 51 is brought close to the electrode gap part 18C, and the pulse laser beam L condensed by the single lens type objective lens 51 is irradiated to the electrode gap part 18C.
  • the electrode gap portion 18C is arranged on the optical axis of the hemispherical lens 13, the wavefront of the terahertz light propagating in the hemispherical lens 13 is matched, and the radiation efficiency to free space and the band characteristics are improved. It will be good. The same applies to the case where terahertz light is detected. By arranging the electrode gap portion 18C on the optical axis of the hemispherical lens 13, the condensing efficiency and detection efficiency of the terahertz light are improved.
  • the circular opening of the module housing 16 has a larger opening diameter than the diameter of the single-lens objective lens 51, and the thickness dimension of the opening 15C of the mount element 15 is about 1 mm.
  • the lens-type objective lens 51 can be brought close to the photoconductive antenna element 14 up to a distance (for example, about 1.3 mm) at which sufficient condensing can be performed.
  • FIG. 4 is a schematic assembly diagram of the terahertz light receiving and emitting module 21 according to the present embodiment.
  • FIG. 5 is a cross-sectional view of the terahertz light receiving / emitting module 21.
  • symbol is attached
  • the terahertz light receiving and emitting module 21 has a configuration in which a buffer material 24 is added to the configuration of the first embodiment.
  • the buffer material 24 is an annular elastic member made of a vinyl film or the like, and has a rectangular opening.
  • the buffer material 24 is assembled in the circular recess 15A of the mount element 15, and the photoconductive antenna element 14 is housed in the inner opening.
  • the terahertz light receiving and emitting module of the present invention by configuring the terahertz light receiving and emitting module of the present invention, no special technique is required at the time of assembly with a simple configuration, and the optical axis of the hemispherical lens and the photoconductive antenna The matching accuracy with the point light source of the element can be increased.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

An antenna pattern is formed on the surface an antenna element (14) of a module (11), and the antenna element (14) comes into contact with the flat surface of a hemispherical lens (13) at the bottom surface. A mounting element (15) is provided with an aperture (15C), a rectangular recess (15B), and a circular recess (15A), and the aperture (15C) exposes the antenna pattern. The rectangular recess (15B) is provided with the aperture (15C) at the bottom of the recess, comes into contact with the sides of the antenna element (14) at the sides of the recess, and positions the antenna element (14). The circular recess (15A) is provided with the rectangular recess (15B) at the bottom of the recess, comes into contact with the hemispherical lens (13) at the sides of the recess, and positions the lens (13). A fixing cover (12) comes into contact with the spherical surface of the hemispherical lens (13), thereby holding the antenna element (14) and the lens (13) between the mounting element (15) and the fixing cover (12).

Description

テラヘルツ光受発光モジュールTerahertz light receiving and emitting module
 この発明は、テラヘルツ光の発光器あるいは検出器として利用されるテラヘルツ光受発光モジュールに関するものである。 The present invention relates to a terahertz light receiving and emitting module used as a terahertz light emitter or detector.
 テラヘルツ光の発光器あるいは検出器として、テラヘルツ光受発光モジュールが利用される。テラヘルツ光受発光モジュールは、光伝導アンテナ素子、半球状レンズ、およびモジュール筐体を備える(例えば特許文献1~3参照)。 A terahertz light receiving and emitting module is used as a terahertz light emitter or detector. The terahertz light receiving / emitting module includes a photoconductive antenna element, a hemispherical lens, and a module housing (see, for example, Patent Documents 1 to 3).
 光伝導アンテナ素子は、例えば低温成長GaAs膜を設けたGaAs基板にダイポール型アンテナやボウタイ型アンテナなど所定形状のアンテナパターンを形成したものである。光伝導アンテナ素子のアンテナパターンは、一般的には微小間隔を隔てて電極が対向する電極ギャップ部を有し、バイアス電圧が印加された状態で電極ギャップ部にパルスパルスレーザ光が照射されることで、瞬間的に発生する光励起キャリアをバイアス電界によって加速し、テラヘルツ光として放射する。また、テラヘルツ光を検出する場合には、テラヘルツ光が照射された状態で電極ギャップ部に励起用のパルスレーザ光が照射されることで、テラヘルツ光による電場強度に応じた微小電流が電極ギャップ部に流れ、この微少電流に基づいてテラヘルツ光の強度を検出できる。半球状レンズは、平坦面と球状面とを有し、平坦面が光伝導アンテナ素子に密着するように設けられ、光伝導アンテナ素子との界面での反射を抑えて、光伝導アンテナ素子から自由空間にテラヘルツ光を放射、もしくは、自由空間から光伝導アンテナ素子にテラヘルツ光を集光する。 The photoconductive antenna element is obtained by forming an antenna pattern of a predetermined shape such as a dipole antenna or a bow tie antenna on a GaAs substrate provided with a low temperature growth GaAs film. An antenna pattern of a photoconductive antenna element generally has an electrode gap portion where electrodes are opposed to each other with a minute gap, and pulse pulse laser light is irradiated to the electrode gap portion in a state where a bias voltage is applied. Thus, photoexcited carriers generated instantaneously are accelerated by a bias electric field and emitted as terahertz light. In addition, when detecting terahertz light, a pulsed laser beam for excitation is irradiated onto the electrode gap portion in a state where the terahertz light is irradiated, so that a minute current corresponding to the electric field intensity by the terahertz light is generated in the electrode gap portion. The intensity of the terahertz light can be detected based on this minute current. The hemispherical lens has a flat surface and a spherical surface, and is provided so that the flat surface is in close contact with the photoconductive antenna element, suppressing reflection at the interface with the photoconductive antenna element and free from the photoconductive antenna element. Terahertz light is radiated into space, or terahertz light is collected from free space onto a photoconductive antenna element.
 光伝導アンテナ素子は、テラヘルツ光を放射する場合、電極ギャップ部を点光源としてテラヘルツ光を放射する。その点光源が半球状レンズの光軸上からずれている場合、半球状レンズ内を伝播するテラヘルツ光の波面が整合しなくなり、自由空間へのテラヘルツ光の放射効率や帯域特性が低下する。また、テラヘルツ光を検出する場合も同様であり、電極ギャップ部が半球状レンズの光軸上からずれている場合、テラヘルツ光の集光効率と検出効率とが低下する。
 このためテラヘルツ光受発光モジュールでは、光伝導アンテナ素子と半球状レンズとの位置決めをマイクロメータ単位で極めて精密に行い、半球状レンズの光軸上に光伝導アンテナ素子の点光源を配置する必要が有る。
When the photoconductive antenna element emits terahertz light, it emits terahertz light using the electrode gap portion as a point light source. When the point light source is deviated from the optical axis of the hemispherical lens, the wavefronts of the terahertz light propagating in the hemispherical lens are not matched, and the radiation efficiency and band characteristics of the terahertz light to free space are deteriorated. The same applies to the case where terahertz light is detected. When the electrode gap is displaced from the optical axis of the hemispherical lens, the condensing efficiency and detection efficiency of the terahertz light are reduced.
For this reason, in the terahertz light receiving and emitting module, it is necessary to position the photoconductive antenna element and the hemispherical lens very precisely in units of micrometers, and to place the point light source of the photoconductive antenna element on the optical axis of the hemispherical lens. Yes.
 そこで従来は、光伝導アンテナ素子と半球状レンズとをそれぞれを独立した保持部材によってモジュール筐体に固定した後、光伝導アンテナ素子と半球状レンズとの位置調整作業を行うことで、位置決め精度を高めていた。
 例えば特許文献1では、半球状レンズと光伝導アンテナ素子とをそれぞれ独立して保持する保持部材を用い、両者を複数の部材によってモジュール筺体に固定する構成が採用されている。
 特許文献2では、光伝導アンテナ素子を配線基板に固定し、緩衝部材が設けられたモジュール筐体に半球状レンズをはめ込み、光伝導アンテナ素子が貼り付けられた配線基板を半球状レンズの平坦面側から押圧して固定する構成が採用されている。モジュール筐体には配線基板を位置決めする凹部が形成されている。
 特許文献3では、半球状レンズをプラスチックまたはゴムなどからなる保持部材によってモジュール筐体に固定し、光伝導アンテナ素子をモジュール筐体に設けられた位置決め構造を有する開孔部にはめ込み、素子保持部材によって固定する構成が採用されている。
Therefore, conventionally, after the photoconductive antenna element and the hemispherical lens are fixed to the module housing by independent holding members, the positioning accuracy of the photoconductive antenna element and the hemispherical lens is adjusted, thereby improving the positioning accuracy. It was higher.
For example, Patent Document 1 employs a configuration in which a holding member that independently holds a hemispherical lens and a photoconductive antenna element is used, and both are fixed to the module housing by a plurality of members.
In Patent Document 2, a photoconductive antenna element is fixed to a wiring board, a hemispherical lens is fitted into a module housing provided with a buffer member, and the wiring board on which the photoconductive antenna element is attached is attached to the flat surface of the hemispherical lens. The structure which is pressed and fixed from the side is adopted. The module housing has a recess for positioning the wiring board.
In Patent Document 3, a hemispherical lens is fixed to a module housing by a holding member made of plastic or rubber, and a photoconductive antenna element is fitted into an aperture having a positioning structure provided in the module housing. The structure fixed by is adopted.
特開2004-207288号公報JP 2004-207288 A 特開2008-244620号公報JP 2008-244620 A 特開2008-283552号公報JP 2008-283552 A
 半球状レンズと光伝導アンテナ素子との位置決めを、それぞれを独立した保持部材でモジュール筐体に固定して行う従来の場合、非常に高い精度で加工された複雑な形状の複数の部材を必要とする上、組み立て後に極めて緻密で高度な位置調整作業を行う必要があり、モジュールの製造コストが高価になってしまう問題がある。 In the conventional case where positioning of the hemispherical lens and the photoconductive antenna element is performed by fixing the hemispherical lens and the photoconductive antenna element to the module housing with independent holding members, a plurality of members having complicated shapes processed with extremely high accuracy are required. In addition, there is a problem that it is necessary to perform extremely precise and advanced position adjustment work after assembly, and the manufacturing cost of the module becomes expensive.
 例えば特許文献1の構成では、半球状レンズと光伝導アンテナ素子の中心位置を一致させるために、複数の部材それぞれを理想的な寸法精度で作製する必要が有るが、実際にそのような理想的な寸法精度で全ての部材を揃えることは困難である。また、同文献中の段落0067には、素子保持部材を位置決めする凹部を、素子保持部材の外形より若干大きい寸法にして余裕を持たせる旨が記載されているが、このような余裕を持たせるならば精密な位置決めが困難になり、結局は極めて熟練した作業者によって位置調整作業を行う必要が生じてしまう。 For example, in the configuration of Patent Document 1, in order to make the center positions of the hemispherical lens and the photoconductive antenna element coincide with each other, it is necessary to manufacture each of the plurality of members with ideal dimensional accuracy. It is difficult to align all members with a high dimensional accuracy. In addition, paragraph 0067 of the same document describes that the recess for positioning the element holding member is slightly larger than the outer shape of the element holding member to allow a margin, but such a margin is given. Then, precise positioning becomes difficult, and eventually it becomes necessary to perform position adjustment work by an extremely skilled worker.
 また、例えば特許文献2の構成では、配線基板に光伝導アンテナ素子を固定する必要があるが、配線基板に対する光伝導アンテナ素子の位置決め方法については何ら言及されていない。 Further, for example, in the configuration of Patent Document 2, it is necessary to fix the photoconductive antenna element to the wiring board, but no mention is made of a method for positioning the photoconductive antenna element with respect to the wiring board.
 また、例えば特許文献3の構成では、モジュール筐体に設けられた開口部にレンズをはめ込み、レンズの反対側に設けられた開口部に光伝導アンテナ素子をはめ込むが、光伝導アンテナ素子をはめ込むための開口部が、モジュール筐体の厚みとほぼ等しい深さを有するため、開口寸法に余裕を持たせてなければ物理的に組み立て不可能である。そのため、同文献中の段落0044で述べられているように、開口部の壁面によって光伝導アンテナ素子の位置をある程度規制できても、その位置決め精度は十分なものにはならず、半球状レンズの光軸と光伝導アンテナ素子の点光源との一致精度を十分に高めることは困難である。 For example, in the configuration of Patent Document 3, a lens is fitted into an opening provided in a module housing, and a photoconductive antenna element is fitted into an opening provided on the opposite side of the lens. Since the opening portion has a depth substantially equal to the thickness of the module housing, it cannot be physically assembled unless the opening size has a margin. Therefore, as described in paragraph 0044 of the same document, even if the position of the photoconductive antenna element can be regulated to some extent by the wall surface of the opening, the positioning accuracy is not sufficient, and the hemispherical lens It is difficult to sufficiently increase the matching accuracy between the optical axis and the point light source of the photoconductive antenna element.
 またさらに、最も使用される頻度が高いダイポール型のアンテナパターンの場合、パルスレーザ光を10μm以下の微小なスポット径に集光して電極ギャップ部に照射する必要があり、高倍率な対物レンズを使用する必要がある。単レンズ型対物レンズは高倍率であるが、一般に1.3mm程度の作動距離を必要とし、光伝導アンテナ素子に極めて接近させて配置しておく必要がある。しかしながら上記従来構成では、光伝導アンテナ素子を保持するための部材が障害となって対物レンズを光伝導アンテナ素子に近接させておくことが困難であり、単レンズ型対物レンズを使用できない問題がある。なお、複レンズタイプの高倍率対物レンズでは作動距離が長いため、単レンズ型対物レンズよりも光伝導アンテナ素子から離して配置することが可能であるが、多数のレンズによる分散によってパルスレーザ光のパルス幅が広がって発生するテラヘルツ光の帯域が狭くなってしまうので使用を避けるほうが望ましい。 Furthermore, in the case of a dipole type antenna pattern that is used most frequently, it is necessary to focus the pulse laser beam on a small spot diameter of 10 μm or less and irradiate the electrode gap portion. Need to use. The single lens type objective lens has a high magnification, but generally requires a working distance of about 1.3 mm, and needs to be placed very close to the photoconductive antenna element. However, in the above conventional configuration, it is difficult to keep the objective lens close to the photoconductive antenna element because the member for holding the photoconductive antenna element becomes an obstacle, and there is a problem that the single lens type objective lens cannot be used. . A double-lens type high-magnification objective lens has a long working distance, so it can be arranged farther from the photoconductive antenna element than a single-lens objective lens. It is desirable to avoid using the terahertz light that is generated by expanding the pulse width because the band is narrowed.
 本発明は、上記のような事情に鑑みてなされたものであり、構造が単純で、位置調整作業を行わなくても十分な位置決め精度を実現でき、光伝導アンテナ素子に単レンズ型対物レンズを近接させることが可能なテラヘルツ光受発光モジュールを提供することを目的とする。 The present invention has been made in view of the above circumstances, has a simple structure, can achieve sufficient positioning accuracy without performing position adjustment work, and a single-lens objective lens for a photoconductive antenna element. An object of the present invention is to provide a terahertz light receiving and emitting module that can be brought close to each other.
 請求項1に係る発明は、半球状レンズと光伝導アンテナ素子とモジュール筐体とを備えるテラヘルツ光受発光モジュールにおいて、マウント素子と固定カバーとを備える。半球状レンズはテラヘルツ光を透過する材質からなり、光軸に垂直な平坦面と光軸上に中心を持つ球状面とが設けられる。光伝導アンテナ素子は平板状であり、アンテナパターンが表主面に形成され、アンテナパターンの点光源位置が光軸上になるように裏主面で半球状レンズの平坦面に当接する。モジュール筐体は、光伝導アンテナ素子および半球状レンズを装備したマウント素子を保持する。マウント素子は、開口部、素子保持用凹部、およびレンズ保持用凹部が、光軸に沿って設けられている。開口部は、アンテナパターンの点光源位置を露出させる。素子保持用凹部は、凹部底面に開口部が設けられ光伝導アンテナ素子の表主面に当接し、凹部側面で光伝導アンテナ素子の側面に当接して光伝導アンテナ素子が光軸に対して垂直な方向に位置ずれすることを規制する。レンズ保持用凹部は、凹部底面に素子保持用凹部が設けられ、凹部側面で半球状レンズの球状面に当接して半球状レンズが光軸に対して垂直な方向に位置ずれすることを規制する。固定カバーは、半球状レンズの球状面に当接して光伝導アンテナ素子および半球状レンズをマウント素子との間で保持する。 The invention according to claim 1 is a terahertz light receiving and emitting module including a hemispherical lens, a photoconductive antenna element, and a module housing, and includes a mount element and a fixed cover. The hemispherical lens is made of a material that transmits terahertz light, and is provided with a flat surface perpendicular to the optical axis and a spherical surface having a center on the optical axis. The photoconductive antenna element has a flat plate shape, an antenna pattern is formed on the front main surface, and the back main surface contacts the flat surface of the hemispherical lens so that the point light source position of the antenna pattern is on the optical axis. The module housing holds a photoconductive antenna element and a mount element equipped with a hemispherical lens. The mount element has an opening, an element holding recess, and a lens holding recess along the optical axis. The opening exposes the point light source position of the antenna pattern. The element holding recess is provided with an opening at the bottom of the recess and abuts on the front main surface of the photoconductive antenna element, and abuts on the side surface of the photoconductive antenna element on the side surface of the recess and the photoconductive antenna element is perpendicular to the optical axis. Regulating displacement in any direction. The lens holding concave portion is provided with an element holding concave portion on the bottom surface of the concave portion, and abuts against the spherical surface of the hemispherical lens on the side surface of the concave portion to restrict the hemispherical lens from being displaced in a direction perpendicular to the optical axis. . The fixed cover is in contact with the spherical surface of the hemispherical lens and holds the photoconductive antenna element and the hemispherical lens between the mounting element.
 この構成では、半球状レンズの光軸垂直方向の位置決めと光伝導アンテナ素子の光軸垂直方向の位置決めとをマウント素子のみにより行うことができ、マウント素子に設けられる素子保持用凹部およびレンズ保持用凹部の形状精度に応じて両者の位置決め精度が定まる。即ちマウント素子、半球状レンズ、および光伝導アンテナ素子の形状精度のみで半球状レンズの光軸と光伝導アンテナ素子の点光源との一致精度を高められる。
 また、光伝導アンテナ素子と半球状レンズとの光軸に沿った方向の固定を、マウント素子と固定カバーとによる保持によって行うことができ、マウント素子と固定カバーとの固定作業のみで、光伝導アンテナ素子と半球状レンズとの固定を行え、組み立てのための作業工程数を削減できる。その上、素子保持用凹部の凹部深さをたかだか光伝導アンテナ素子の厚み程度に浅くでき、これにより素子保持用凹部の開口サイズに余裕を持たせなくても、素子保持用凹部に光伝導アンテナ素子を組み付けることが可能になる。このため、光伝導アンテナ素子の位置調整作業を不要にでき、組み立てに特別な技術を必要とせずに半球状レンズの光軸と光伝導アンテナ素子の点光源との一致精度を高められ、製造コストを低減できる。
In this configuration, the hemispherical lens can be positioned in the vertical direction of the optical axis and the photoconductive antenna element can be positioned in the vertical direction of the optical axis only by the mount element. The positioning accuracy of both is determined according to the shape accuracy of the recess. That is, the accuracy of matching the optical axis of the hemispherical lens with the point light source of the photoconductive antenna element can be increased only by the shape accuracy of the mount element, hemispherical lens, and photoconductive antenna element.
In addition, the photoconductive antenna element and the hemispherical lens can be fixed in the direction along the optical axis by holding the mount element and the fixed cover. The antenna element and the hemispherical lens can be fixed, and the number of work steps for assembly can be reduced. In addition, the depth of the concave portion for holding the element can be made as shallow as the thickness of the photoconductive antenna element, thereby allowing the photoconductive antenna to be provided in the concave portion for holding the element without giving a margin to the opening size of the concave portion for holding the element. The element can be assembled. This eliminates the need to adjust the position of the photoconductive antenna element, increases the matching accuracy between the optical axis of the hemispherical lens and the point light source of the photoconductive antenna element without requiring special techniques for assembly, and reduces the manufacturing cost. Can be reduced.
 請求項2に係る発明のマウント素子は、前記素子保持用凹部の凹部深さが前記光伝導アンテナ素子の厚みよりも浅いと好適である。
 この構成により、光伝導アンテナ素子と半球状レンズとを確実に密着させることができる。
In the mount element according to the second aspect of the present invention, it is preferable that the recess depth of the element holding recess is shallower than the thickness of the photoconductive antenna element.
With this configuration, the photoconductive antenna element and the hemispherical lens can be securely adhered.
 請求項3に係る発明のマウント素子は、前記開口部の厚み寸法が1mm以下であると好適である。
 この構成では、単レンズ型対物レンズで十分な集光が行える距離(例えば1.3mm)まで、単レンズ型対物レンズを光伝導アンテナ素子に近接させることが容易で、単レンズ型対物レンズを用いてパルスレーザ光を10μm以下の微小なスポット径に集光することが可能になる。
In the mount element according to the third aspect of the present invention, it is preferable that the thickness dimension of the opening is 1 mm or less.
In this configuration, it is easy to bring the single lens objective lens close to the photoconductive antenna element up to a distance (for example, 1.3 mm) at which sufficient focusing can be performed with the single lens objective lens, and the single lens objective lens is used. Thus, it becomes possible to focus the pulse laser beam on a small spot diameter of 10 μm or less.
 請求項4に係る発明のテラヘルツ光受発光モジュールは、前記マウント素子と前記光伝導アンテナ素子と前記半球状レンズとに囲まれる空隙部に緩衝部材を備えると好適である。 Preferably, the terahertz light receiving and emitting module of the invention according to claim 4 includes a buffer member in a gap surrounded by the mount element, the photoconductive antenna element, and the hemispherical lens.
 請求項5に係る発明の緩衝部材は弾性部材であると好適である。
 光伝導アンテナ素子の面積と比較して半球状レンズの平坦面の面積が特に大きい場合には、マウント素子と光伝導アンテナ素子と半球状レンズとに囲まれる空隙部が大きくなり、組み立て時に光伝導アンテナ素子に対する半球状レンズの平行度を保つことが困難になる場合がある。そこで、空隙部に緩衝材を設けることで、組み立て時に光伝導アンテナ素子に対する半球状レンズの平行度を保つことが容易になり、半球状レンズをより安定に保持することができる。
The buffer member of the invention according to claim 5 is preferably an elastic member.
When the area of the flat surface of the hemispherical lens is particularly large compared to the area of the photoconductive antenna element, the gap surrounded by the mount element, photoconductive antenna element, and hemispherical lens becomes large, and photoconductive during assembly. It may be difficult to maintain the parallelism of the hemispherical lens with respect to the antenna element. Therefore, by providing a buffer material in the gap, it becomes easy to maintain the parallelism of the hemispherical lens with respect to the photoconductive antenna element during assembly, and the hemispherical lens can be held more stably.
 請求項6に係る発明の固定カバーは、前記半球状レンズの直径よりも小さい開口径の開口部が形成されていると好適である。
 この構成により、固定カバーを半球状レンズに対して容易に組み付けることができ、かつ光伝導アンテナ素子と半球状レンズを確実に密着させることができる。
It is preferable that the fixed cover of the invention according to claim 6 has an opening having an opening diameter smaller than the diameter of the hemispherical lens.
With this configuration, the fixed cover can be easily assembled to the hemispherical lens, and the photoconductive antenna element and the hemispherical lens can be securely adhered to each other.
 請求項7に係る発明の固定カバーは樹脂製であると好適である。
 この構成では、固定カバーが樹脂製で一定の弾性を有するため、組み立て時に光伝導アンテナ素子に過剰な応力が作用して破損することを防げる。さらに、樹脂製であれば射出成型法などで容易に製造することが可能なため、大量生産による低コスト化が可能になる。
The fixing cover of the invention according to claim 7 is preferably made of resin.
In this configuration, since the fixed cover is made of resin and has a certain elasticity, it is possible to prevent the photoconductive antenna element from being damaged due to excessive stress during assembly. Furthermore, since it can be easily manufactured by an injection molding method or the like if it is made of resin, the cost can be reduced by mass production.
 請求項8に係る発明のモジュール筐体は、前記マウント素子を取り付けるための取り付け部位と、前記アンテナパターンを露出させる開口部と、前記アンテナパターンを外部回路に電気的に接続するためのコネクタ部と、を備え、前記開口部および前記マウント素子の開口部を通る配線ワイヤを介して前記コネクタ部と前記アンテナパターンとを接続すると好適である。
 この構成により、マウント素子に半球状レンズと光伝導アンテナ素子とを取り付けた後で、アンテナパターンへの配線を行うことができる。すると、配線構造の制約によって、組み立て作業や組み付け構造が複雑化することを防げる。
A module housing according to an eighth aspect of the present invention includes an attachment part for attaching the mount element, an opening for exposing the antenna pattern, and a connector part for electrically connecting the antenna pattern to an external circuit. It is preferable that the connector portion and the antenna pattern are connected via a wiring wire passing through the opening and the opening of the mount element.
With this configuration, wiring to the antenna pattern can be performed after the hemispherical lens and the photoconductive antenna element are attached to the mount element. Then, it is possible to prevent the assembling work and the assembling structure from becoming complicated due to restrictions on the wiring structure.
 この発明によれば、半球状レンズの光軸垂直方向の位置決めと光伝導アンテナ素子の光軸垂直方向の位置決めとをマウント素子に同軸上に設けられた素子保持用凹部およびレンズ保持用凹部のみにより行うことで、光軸と点光源との一致精度を高められる。
 また、光伝導アンテナ素子と半球状レンズとの光軸に沿った方向の固定を、マウント素子と固定カバーとによる保持によって行うことで、マウント素子と固定カバーとの固定作業のみで光伝導アンテナ素子と半球状レンズとの固定を行え、組み立てのための作業工程数を削減できる。その上、素子保持用凹部の凹部深さをたかだか光伝導アンテナ素子の厚み程度に浅くでき、これにより素子保持用凹部の開口サイズに余裕を持たせなくても、素子保持用凹部に光伝導アンテナ素子を確実に位置決めして組み付けることが可能になる。このため、光伝導アンテナ素子の位置調整作業を不要にでき、組み立てに特別な技術を必要とせずに半球状レンズの光軸と光伝導アンテナ素子の点光源との一致精度を高められ、製造コストを低減できる。
According to the present invention, the positioning of the hemispherical lens in the vertical direction of the optical axis and the positioning of the photoconductive antenna element in the vertical direction of the optical axis are performed only by the element holding recess and the lens holding recess provided coaxially on the mount element. By doing so, the matching accuracy between the optical axis and the point light source can be increased.
In addition, by fixing the photoconductive antenna element and the hemispherical lens in the direction along the optical axis by holding the mount element and the fixed cover, the photoconductive antenna element can be obtained only by fixing the mount element and the fixed cover. And hemispherical lens can be fixed, and the number of work steps for assembly can be reduced. In addition, the depth of the concave portion for holding the element can be made as shallow as the thickness of the photoconductive antenna element, thereby allowing the photoconductive antenna to be provided in the concave portion for holding the element without giving a margin to the opening size of the concave portion for holding the element. The element can be reliably positioned and assembled. This eliminates the need to adjust the position of the photoconductive antenna element, increases the matching accuracy between the optical axis of the hemispherical lens and the point light source of the photoconductive antenna element without requiring special techniques for assembly, and reduces the manufacturing cost. Can be reduced.
第1の実施形態に係るテラヘルツ光受発光モジュールの組み立て図である。It is an assembly view of the terahertz light receiving and emitting module according to the first embodiment. 図1に示すテラヘルツ光受発光モジュールの構成を説明する図である。It is a figure explaining the structure of the terahertz light receiving / emitting module shown in FIG. 図2に示すテラヘルツ光受発光モジュールの駆動例を説明する図である。It is a figure explaining the example of a drive of the terahertz light receiving / emitting module shown in FIG. 第2の実施形態に係るテラヘルツ光受発光モジュールの組み立て図である。It is an assembly drawing of the terahertz light receiving and emitting module according to the second embodiment. 図4に示すテラヘルツ光受発光モジュールの構成を説明する図である。It is a figure explaining the structure of the terahertz light receiving / emitting module shown in FIG.
《第1の実施形態》
 以下、本発明の第1の実施形態に係るテラヘルツ光受発光モジュールの構成例を説明する。図1は、本実施形態に係るテラヘルツ光受発光モジュール11の概略の組み立て図である。また図2(A)は、テラヘルツ光受発光モジュール11の概略の正面図、図2(B)は、テラヘルツ光受発光モジュール11の概略の背面図、図2(C)は、テラヘルツ光受発光モジュール11の図2(A)のA-A’断面における概略の断面図である。なお説明の都合により、図1と図2とではテラヘルツ光受発光モジュール11の備える光伝導アンテナ素子14およびマウント素子15の向きを90°回転させて表示している。
<< First Embodiment >>
Hereinafter, a configuration example of the terahertz light receiving and emitting module according to the first embodiment of the present invention will be described. FIG. 1 is a schematic assembly diagram of a terahertz light receiving and emitting module 11 according to the present embodiment. 2A is a schematic front view of the terahertz light receiving / emitting module 11, FIG. 2B is a schematic rear view of the terahertz light receiving / emitting module 11, and FIG. 2C is a terahertz light receiving / emitting light. FIG. 3 is a schematic cross-sectional view of the module 11 taken along the line AA ′ in FIG. For convenience of explanation, FIGS. 1 and 2 display the photoconductive antenna element 14 and the mount element 15 of the terahertz light receiving and emitting module 11 rotated by 90 degrees.
 テラヘルツ光受発光モジュール11は、固定カバー12、半球状レンズ13、光伝導アンテナ素子14、マウント素子15、およびモジュール筐体16を備える。 The terahertz light receiving / emitting module 11 includes a fixed cover 12, a hemispherical lens 13, a photoconductive antenna element 14, a mount element 15, and a module housing 16.
 モジュール筐体16は背面側壁面を除いた箱状であり、アルミなどの加工が容易で腐食性の小さい金属で構成する。モジュール筐体16は正面の中央に円形開口を設けるとともに、その円形開口の外周に沿ってマウント素子の取り付け部位となるねじ穴を設ける。また、モジュール筐体16の側壁面にはSMAコネクタ17を設ける。SMAコネクタ17は、図2(B)に示すようにアンテナパターン18の正極(+)に配線ワイヤ19Aで接続する。アンテナパターン18の負極(-)は配線ワイヤ19Bによってモジュール筐体16に接続してアースする。 The module housing 16 has a box shape excluding the rear side wall surface, and is made of a metal that is easy to process such as aluminum and has little corrosiveness. The module housing 16 is provided with a circular opening in the center of the front, and a screw hole serving as a mounting portion for the mount element along the outer periphery of the circular opening. Further, an SMA connector 17 is provided on the side wall surface of the module housing 16. As shown in FIG. 2B, the SMA connector 17 is connected to the positive electrode (+) of the antenna pattern 18 by a wiring wire 19A. The negative electrode (−) of the antenna pattern 18 is connected to the module housing 16 by a wiring wire 19B and grounded.
 固定カバー12は環状の樹脂板で構成し、中央に円形開口を設けるとともに、その円形開口の外周に沿ってねじ穴を設ける。円形開口は開口径を半球状レンズ13の直径よりも小さくしている。この固定カバー12は、固定ネジによりマウント素子15に組み付けられ、マウント素子15への組み付け時に開口側面のエッジが全周にわたり半球状レンズ13の球状面に当接する。このため、固定カバー12の開口中心軸が半球状レンズ13の球状面の中心を通ることになる。 The fixed cover 12 is made of an annular resin plate, and has a circular opening at the center and a screw hole along the outer periphery of the circular opening. The circular opening has an opening diameter smaller than that of the hemispherical lens 13. The fixed cover 12 is assembled to the mount element 15 by a fixing screw, and when assembled to the mount element 15, the edge of the opening side surface contacts the spherical surface of the hemispherical lens 13 over the entire circumference. For this reason, the opening center axis of the fixed cover 12 passes through the center of the spherical surface of the hemispherical lens 13.
 この固定カバー12は樹脂製で弾性を有するため、固定ネジを増し締めする場合などに、半球状レンズ13や光伝導アンテナ素子14に無理な応力がかかって破損することを防ぐことができる。また射出成型法などによる大量生産が可能で低コストに製造できる。 Since the fixed cover 12 is made of resin and has elasticity, it can prevent the hemispherical lens 13 and the photoconductive antenna element 14 from being damaged due to excessive stress when the fixing screw is tightened. In addition, it can be mass-produced by an injection molding method and manufactured at a low cost.
 半球状レンズ13は、光伝導アンテナ素子14の構成材料(ここでは主にGaAs)と屈折率がほぼ等しくテラヘルツ光を透過する材質、例えば高抵抗シリコンなどからなり、平坦面と、平坦面の中心を通る垂線上に中心を持つ球状面とを備えている。平坦面の中心を通る垂線は半球状レンズ13の光軸となる。ここでは半球状レンズ13として球状面の中心が平坦面上に位置するいわゆる半球レンズを用いる。なお半球状レンズ13として球状面の中心が半球状レンズ13の内部に位置するいわゆる超半球レンズを用いてもよい。超半球レンズでは、照射するテラヘルツ光の指向性領域をビーム状に制御することができる。この半球状レンズ13は球状面が正面側に向き、平坦面が背面側に向くようにしてマウント素子15に組み付ける。 The hemispherical lens 13 is made of a material that has substantially the same refractive index as the constituent material of the photoconductive antenna element 14 (here, mainly GaAs) and transmits terahertz light, such as high-resistance silicon, and has a flat surface and a center of the flat surface. And a spherical surface having a center on a perpendicular line passing through. A perpendicular passing through the center of the flat surface becomes the optical axis of the hemispherical lens 13. Here, a so-called hemispherical lens in which the center of the spherical surface is located on a flat surface is used as the hemispherical lens 13. As the hemispherical lens 13, a so-called super hemispherical lens in which the center of the spherical surface is located inside the hemispherical lens 13 may be used. In the super hemisphere lens, the directivity region of the irradiated terahertz light can be controlled in a beam shape. The hemispherical lens 13 is assembled to the mount element 15 so that the spherical surface faces the front side and the flat surface faces the back side.
 光伝導アンテナ素子14は、厚み約0.35mmの矩形平板状であって平板の対角寸法が半球状レンズ13の直径よりも小さく、図2(B)に示すように表面にアンテナパターン18を備える。この光伝導アンテナ素子14は、裏面が半球状レンズ13の平坦面に当接するようにして、マウント素子15に組み付ける。
 図2(B)には、光伝導アンテナ素子14単体の表面図も併せて表示している。光伝導アンテナ素子14は、平板状のGaAs基板の表面に低温成長GaAs膜を成膜し、低温成長GaAs膜の表面にアンテナパターン18を設けて成る。アンテナパターン18は一対のアンテナ電極18A,18Bからなり、アンテナ電極18Aとアンテナ電極18Bとは互いに線対称形で、微小間隔(一般的には5μm程度)を隔てて対向する電極ギャップ部18Cを中心部に有している。この電極ギャップ部18Cが請求項に記載の点光源位置となる。アンテナ電極18A,18Bは、半導体の製造に一般的に用いられるリソグラフィー法などによって形成することができ、光伝導アンテナ素子14の外形寸法精度は、同じく半導体チップ加工用のダイサーを使用することによって極めて高精度に得ることができる。従って、光伝導アンテナ素子14の基板中心とアンテナパターン18の電極ギャップ部18Cは1μm以下の誤差で一致させることができる。
The photoconductive antenna element 14 is a rectangular flat plate having a thickness of about 0.35 mm, the diagonal dimension of the flat plate is smaller than the diameter of the hemispherical lens 13, and the antenna pattern 18 is formed on the surface as shown in FIG. Prepare. The photoconductive antenna element 14 is assembled to the mount element 15 so that the back surface is in contact with the flat surface of the hemispherical lens 13.
FIG. 2B also shows a surface view of the photoconductive antenna element 14 alone. The photoconductive antenna element 14 is formed by forming a low-temperature grown GaAs film on the surface of a flat GaAs substrate and providing an antenna pattern 18 on the surface of the low-temperature grown GaAs film. The antenna pattern 18 includes a pair of antenna electrodes 18A and 18B. The antenna electrode 18A and the antenna electrode 18B are line-symmetric with each other, and center on an electrode gap portion 18C facing each other with a minute interval (generally about 5 μm). Have in the department. This electrode gap portion 18C is the point light source position described in the claims. The antenna electrodes 18A and 18B can be formed by a lithography method or the like generally used in the manufacture of semiconductors, and the external dimensional accuracy of the photoconductive antenna element 14 is extremely high by using a dicer for processing semiconductor chips. It can be obtained with high accuracy. Therefore, the substrate center of the photoconductive antenna element 14 and the electrode gap portion 18C of the antenna pattern 18 can be matched with an error of 1 μm or less.
 マウント素子15は略環状の樹脂板で構成していて、表面の中央に円形凹部15Aを設け、円形凹部15Aの凹部底面の中央に矩形凹部15Bを設け、矩形凹部15Bの凹部底面に開口部15Cを設けている。また表面には、円形凹部15Aの外周に沿って2重にねじ穴を設けていて、外側のねじ穴はマウント素子15をモジュール筐体16に組み付けるために用い、内側のねじ穴は固定カバー12を組み付けるために用いる。 The mount element 15 is formed of a substantially annular resin plate, and a circular recess 15A is provided at the center of the surface, a rectangular recess 15B is provided at the center of the bottom of the recess of the circular recess 15A, and an opening 15C is provided at the bottom of the recess of the rectangular recess 15B. Is provided. Further, double screw holes are provided on the surface along the outer periphery of the circular recess 15A. The outer screw holes are used for assembling the mount element 15 to the module housing 16, and the inner screw holes are used for the fixing cover 12. Used for assembling.
 円形凹部15Aは請求項に記載のレンズ保持用凹部である。この円形凹部15Aに半球状レンズ13を組み付けると、半球状レンズ13の球状面が凹部側面に全周にわたって当接する。矩形凹部15Bは請求項に記載の素子保持用凹部であり、ここでは凹部深さ約0.3mmとして形成している。また、矩形凹部15Bの中心が円形凹部15Aの中心と同軸上になるように配置している。この矩形凹部15Bに光伝導アンテナ素子14を組み付けると、光伝導アンテナ素子14の表面が凹部底面に当接するとともに、光伝導アンテナ素子14の側面が全周にわたって凹部側面に当接する。開口部15Cは、光伝導アンテナ素子14の表面に設けるアンテナパターン18と略同形状であり、少なくともアンテナパターン18の中心部をテラヘルツ光受発光モジュール11の背面側に露出させる。 The circular recess 15A is a lens holding recess described in the claims. When the hemispherical lens 13 is assembled to the circular concave portion 15A, the spherical surface of the hemispherical lens 13 contacts the side surface of the concave portion over the entire circumference. The rectangular recess 15B is the element holding recess described in the claims, and is formed with a recess depth of about 0.3 mm. The center of the rectangular recess 15B is arranged so as to be coaxial with the center of the circular recess 15A. When the photoconductive antenna element 14 is assembled to the rectangular recess 15B, the surface of the photoconductive antenna element 14 contacts the bottom surface of the recess and the side surface of the photoconductive antenna element 14 contacts the side surface of the recess over the entire circumference. The opening 15 </ b> C has substantially the same shape as the antenna pattern 18 provided on the surface of the photoconductive antenna element 14, and at least the central portion of the antenna pattern 18 is exposed to the back side of the terahertz light receiving / emitting module 11.
 このような形状のマウント素子15に対して、表面側に光伝導アンテナ素子14と半球状レンズ13と固定カバー12とを組み付けて固定カバー12を固定ネジによって固定することで、光伝導アンテナ素子14および半球状レンズ13が固定カバー12とマウント素子15とによって狭持される。したがって、マウント素子15と固定カバー12との固定作業のみで、光伝導アンテナ素子14と半球状レンズ13との固定を行え、組み立てのための作業工程数を従来構成よりも削減できる。 The photoconductive antenna element 14 is assembled by assembling the photoconductive antenna element 14, the hemispherical lens 13, and the fixed cover 12 on the surface side of the mount element 15 having such a shape and fixing the fixed cover 12 with a fixing screw. The hemispherical lens 13 is held between the fixed cover 12 and the mount element 15. Therefore, the photoconductive antenna element 14 and the hemispherical lens 13 can be fixed only by fixing the mount element 15 and the fixed cover 12, and the number of work steps for assembly can be reduced as compared with the conventional configuration.
 円形凹部15Aの中心と矩形凹部15Bの中心とを同軸上に配置しているので、半球状レンズ13の平坦面の中心を通る半球状レンズ13の光軸上に、光伝導アンテナ素子14の中心部、即ち電極ギャップ部18Cが位置することになる。そして、円形凹部15Aの凹部側面が半球状レンズ13の球状面に全周にわたって当接し、矩形凹部15Bの凹部側面が光伝導アンテナ素子14の側面に全周にわたって当接するので、半球状レンズ13と光伝導アンテナ素子14とのマウント素子15に対する光軸垂直方向の位置ずれが規制され、マウント素子15における円形凹部15Aと矩形凹部15Bとの形状精度に応じて、半球状レンズ13と光伝導アンテナ素子14との位置決め精度が定まることになる。 Since the center of the circular recess 15A and the center of the rectangular recess 15B are coaxially arranged, the center of the photoconductive antenna element 14 is placed on the optical axis of the hemispherical lens 13 passing through the center of the flat surface of the hemispherical lens 13. That is, the electrode gap portion 18C is located. Then, the concave side surface of the circular concave portion 15A contacts the spherical surface of the hemispherical lens 13 over the entire circumference, and the concave side surface of the rectangular concave portion 15B contacts the side surface of the photoconductive antenna element 14 over the entire circumference. The positional deviation of the photoconductive antenna element 14 in the direction perpendicular to the optical axis with respect to the mount element 15 is restricted, and the hemispherical lens 13 and the photoconductive antenna element according to the shape accuracy of the circular recess 15A and the rectangular recess 15B in the mount element 15 The positioning accuracy with respect to 14 is determined.
 また、光伝導アンテナ素子14の厚みよりも矩形凹部15Bの凹部深さが浅いので、矩形凹部15Bの開口サイズに余裕を持たせなくても、矩形凹部15Bに光伝導アンテナ素子14を組み付けることが可能になり、光伝導アンテナ素子14の位置調整作業が不要になる。その上、光伝導アンテナ素子14の裏面が矩形凹部15Bから突出し、光伝導アンテナ素子14が半球状レンズ13に完全に密着することになる。なお、矩形凹部15Bにおける素子保持部分の厚みは、一定の機械的強度を実現できる厚みに設定することで、光伝導アンテナ素子14や半球状レンズ13を当接させても、それらを確実に保持することが可能である。 In addition, since the recess depth of the rectangular recess 15B is shallower than the thickness of the photoconductive antenna element 14, the photoconductive antenna element 14 can be assembled to the rectangular recess 15B even if there is no allowance for the opening size of the rectangular recess 15B. Thus, the position adjustment work of the photoconductive antenna element 14 becomes unnecessary. In addition, the back surface of the photoconductive antenna element 14 protrudes from the rectangular recess 15 </ b> B, and the photoconductive antenna element 14 is completely adhered to the hemispherical lens 13. In addition, even if the photoconductive antenna element 14 and the hemispherical lens 13 are brought into contact with each other, the thickness of the element holding portion in the rectangular recess 15B is set to such a thickness that can realize a certain mechanical strength. Is possible.
 以下、このテラヘルツ光受発光モジュール11を、テラヘルツ光の発光器として使用する例を説明する。
 図3(A)は、単レンズ型対物レンズ51を近接させた状態でのテラヘルツ光受発光モジュール11の概略の断面図である。図3(B)は、バイアス電源50を接続した状態でのテラヘルツ光受発光モジュール11の模式図である。
Hereinafter, an example in which the terahertz light receiving and emitting module 11 is used as a terahertz light emitter will be described.
FIG. 3A is a schematic cross-sectional view of the terahertz light receiving and emitting module 11 in a state in which the single lens type objective lens 51 is brought close. FIG. 3B is a schematic diagram of the terahertz light receiving and emitting module 11 with the bias power supply 50 connected thereto.
 テラヘルツ光受発光モジュール11を、テラヘルツ光の発光器として使用する場合、アンテナパターン18は配線ワイヤ19A,19Bを介して、バイアス電源50とアースとの間に接続して、バイアス電源50からアンテナパターン18にバイアス電圧(一般的には10~100V程度)を印加する。また、電極ギャップ部18Cに単レンズ型対物レンズ51を近接させて、単レンズ型対物レンズ51で集光したパルスレーザ光Lを電極ギャップ部18Cに照射する。 When the terahertz light receiving / emitting module 11 is used as a terahertz light emitter, the antenna pattern 18 is connected between the bias power supply 50 and the ground via the wiring wires 19A and 19B, and the antenna pattern is connected from the bias power supply 50 to the antenna pattern. A bias voltage (generally about 10 to 100 V) is applied to 18. Further, the single lens type objective lens 51 is brought close to the electrode gap part 18C, and the pulse laser beam L condensed by the single lens type objective lens 51 is irradiated to the electrode gap part 18C.
 これにより、光伝導アンテナ素子14の低温成長GaAs膜で瞬間的に発生する光励起キャリアがバイアス電界によって加速され、電極ギャップ部18Cに電流が瞬間的に流れる。すると電気双極子放射によって電極ギャップ部18Cを点光源としてテラヘルツ光が発生する。このテラヘルツ光は、光伝導アンテナ素子14の基板内に放射され、半球状レンズ13から自由空間に放射される。 Thereby, photoexcited carriers that are instantaneously generated in the low-temperature grown GaAs film of the photoconductive antenna element 14 are accelerated by the bias electric field, and current flows instantaneously in the electrode gap portion 18C. Then, terahertz light is generated by using the electrode gap portion 18C as a point light source by electric dipole radiation. The terahertz light is radiated into the substrate of the photoconductive antenna element 14 and is radiated from the hemispherical lens 13 to free space.
 この際、電極ギャップ部18Cが半球状レンズ13の光軸上に配置されていることにより、半球状レンズ13内を伝播するテラヘルツ光の波面は整合し、自由空間への放射効率や帯域特性が良好なものになる。このことはテラヘルツ光を検出する場合も同様であり、電極ギャップ部18Cを半球状レンズ13の光軸上に配置することにより、テラヘルツ光の集光効率と検出効率とが良好なものになる。
 また、モジュール筐体16の円形開口を、単レンズ型対物レンズ51の径より開口径が大きなものとし、マウント素子15の開口部15Cの厚み寸法を1mm程度にすることで、作動距離が短い単レンズ型対物レンズ51を、十分な集光が行える距離(例えば1.3mm程度)まで光伝導アンテナ素子14に近接させることができる。
At this time, since the electrode gap portion 18C is arranged on the optical axis of the hemispherical lens 13, the wavefront of the terahertz light propagating in the hemispherical lens 13 is matched, and the radiation efficiency to free space and the band characteristics are improved. It will be good. The same applies to the case where terahertz light is detected. By arranging the electrode gap portion 18C on the optical axis of the hemispherical lens 13, the condensing efficiency and detection efficiency of the terahertz light are improved.
In addition, the circular opening of the module housing 16 has a larger opening diameter than the diameter of the single-lens objective lens 51, and the thickness dimension of the opening 15C of the mount element 15 is about 1 mm. The lens-type objective lens 51 can be brought close to the photoconductive antenna element 14 up to a distance (for example, about 1.3 mm) at which sufficient condensing can be performed.
《第2の実施形態》
 以下、本発明の第2の実施形態に係るテラヘルツ光受発光モジュールの構成例を説明する。図4は、本実施形態に係るテラヘルツ光受発光モジュール21の概略の組み立て図である。また図5は、テラヘルツ光受発光モジュール21の断面図である。なお、図中で、第1の実施形態で示した構成と同様な構成には同じ符号を付している。
<< Second Embodiment >>
Hereinafter, a configuration example of the terahertz light receiving and emitting module according to the second embodiment of the present invention will be described. FIG. 4 is a schematic assembly diagram of the terahertz light receiving and emitting module 21 according to the present embodiment. FIG. 5 is a cross-sectional view of the terahertz light receiving / emitting module 21. In addition, in the figure, the same code | symbol is attached | subjected to the structure similar to the structure shown in 1st Embodiment.
 テラヘルツ光受発光モジュール21は、第1の実施形態の構成に緩衝材24を追加した構成である。緩衝材24はビニールフィルムなどからなる環状の弾性部材であり、矩形開口を有する。この緩衝材24は、マウント素子15の円形凹部15Aに組み付けられ、内側開口に光伝導アンテナ素子14が内装される。緩衝材24を設けることにより、マウント素子15と光伝導アンテナ素子14と半球状レンズ13とに囲まれる空隙部を弾性部材で埋めることができる。すると、組み立て時に光伝導アンテナ素子14に対する半球状レンズ13の平行度を保つことが容易になり、半球状レンズ13をより安定に保持することが可能になる。 The terahertz light receiving and emitting module 21 has a configuration in which a buffer material 24 is added to the configuration of the first embodiment. The buffer material 24 is an annular elastic member made of a vinyl film or the like, and has a rectangular opening. The buffer material 24 is assembled in the circular recess 15A of the mount element 15, and the photoconductive antenna element 14 is housed in the inner opening. By providing the buffer material 24, the space surrounded by the mount element 15, the photoconductive antenna element 14, and the hemispherical lens 13 can be filled with an elastic member. Then, it becomes easy to maintain the parallelism of the hemispherical lens 13 with respect to the photoconductive antenna element 14 during assembly, and the hemispherical lens 13 can be held more stably.
 以上に説明した各実施形態に示すように、本発明のテラヘルツ光受発光モジュールを構成することにより、単純な構成で組み立て時に特別な技術を必要とせず、半球状レンズの光軸と光伝導アンテナ素子の点光源との一致精度を高められる。 As shown in each of the embodiments described above, by configuring the terahertz light receiving and emitting module of the present invention, no special technique is required at the time of assembly with a simple configuration, and the optical axis of the hemispherical lens and the photoconductive antenna The matching accuracy with the point light source of the element can be increased.
 11,21…テラヘルツ光受発光モジュール
 12…固定カバー
 13…半球状レンズ
 14…光伝導アンテナ素子
 15…マウント素子
 15A…円形凹部
 15B…矩形凹部
 15C…開口部
 16…モジュール筐体
 17…SMAコネクタ
 18…アンテナパターン
 18A,18B…アンテナ電極
 18C…電極ギャップ部
 19A,19B…配線ワイヤ
 50…バイアス電源
 51…単レンズ型対物レンズ
DESCRIPTION OF SYMBOLS 11, 21 ... Terahertz light receiving and emitting module 12 ... Fixed cover 13 ... Hemispherical lens 14 ... Photoconductive antenna element 15 ... Mount element 15A ... Circular recessed part 15B ... Rectangular recessed part 15C ... Opening part 16 ... Module housing 17 ... SMA connector 18 ... Antenna pattern 18A, 18B ... Antenna electrode 18C ... Electrode gap 19A, 19B ... Wiring wire 50 ... Bias power supply 51 ... Single lens type objective lens

Claims (8)

  1.  テラヘルツ光を透過する材質からなり、光軸に垂直な平坦面と前記光軸上に中心を持つ球状面とが設けられた半球状レンズと、
     平板状で、アンテナパターンが表主面に形成され、前記アンテナパターンの点光源位置が前記光軸上になるように裏主面で前記半球状レンズの平坦面に当接する光伝導アンテナ素子と、
     前記光伝導アンテナ素子および前記半球状レンズを装備するモジュール筐体と、を備えるテラヘルツ光受発光モジュールにおいて、
     前記アンテナパターンを露出させる開口部、
    凹部底面に前記開口部が設けられ、凹部側面で前記光伝導アンテナ素子の側面に当接して前記光伝導アンテナ素子が前記光軸に対して垂直な方向に位置ずれすることを規制する素子保持用凹部、および
    凹部底面に前記素子保持用凹部が設けられ、凹部側面で前記半球状レンズの球状面に当接して前記半球状レンズが前記光軸に対して垂直な方向に位置ずれすることを規制するレンズ保持用凹部、
    が前記光軸に沿って設けられたマウント素子と、
     前記半球状レンズの球状面に当接して前記光伝導アンテナ素子および前記半球状レンズを前記マウント素子との間で保持する固定カバーと、
     を備える、テラヘルツ光受発光モジュール。
    A hemispherical lens made of a material that transmits terahertz light, and provided with a flat surface perpendicular to the optical axis and a spherical surface centered on the optical axis;
    A photoconductive antenna element that is flat and has an antenna pattern formed on a front main surface, and a point light source position of the antenna pattern is on the optical axis and abuts the flat surface of the hemispherical lens on the back main surface;
    In a terahertz light receiving and emitting module comprising a module housing equipped with the photoconductive antenna element and the hemispherical lens,
    An opening for exposing the antenna pattern;
    For holding the element, wherein the opening is provided on the bottom surface of the recess, and the side surface of the recess is in contact with the side surface of the photoconductive antenna element to restrict the photoconductive antenna element from being displaced in a direction perpendicular to the optical axis. The concave portion and the concave portion for holding the element are provided on the bottom surface of the concave portion, and the side surface of the concave portion is brought into contact with the spherical surface of the hemispherical lens to restrict the hemispherical lens from being displaced in a direction perpendicular to the optical axis. A lens holding recess,
    A mounting element provided along the optical axis;
    A fixed cover that contacts the spherical surface of the hemispherical lens and holds the photoconductive antenna element and the hemispherical lens with the mount element;
    A terahertz light receiving and emitting module.
  2.  前記マウント素子は、前記素子保持用凹部の凹部深さが前記光伝導アンテナ素子の厚みよりも浅い、請求項1に記載のテラヘルツ光受発光モジュール。 The terahertz light receiving and emitting module according to claim 1, wherein the mount element has a recess depth of the element holding recess that is shallower than a thickness of the photoconductive antenna element.
  3.  前記マウント素子は、前記開口部における厚みが1mm以下である、請求項1または2に記載のテラヘルツ光受発光モジュール。 The terahertz light receiving and emitting module according to claim 1 or 2, wherein the mount element has a thickness of 1 mm or less at the opening.
  4.  前記テラヘルツ光受発光モジュールは、前記マウント素子と前記光伝導アンテナ素子と前記半球状レンズとに囲まれる空隙部に緩衝部材を備える、請求項2または3に記載のテラヘルツ光受発光モジュール。 The terahertz light receiving / emitting module according to claim 2 or 3, wherein the terahertz light receiving / emitting module includes a buffer member in a gap surrounded by the mount element, the photoconductive antenna element, and the hemispherical lens.
  5.  前記緩衝部材は弾性部材である、請求項4に記載のテラヘルツ光受発光モジュール。 The terahertz light receiving and emitting module according to claim 4, wherein the buffer member is an elastic member.
  6.  前記固定カバーは、前記半球状レンズの直径よりも小さい開口径の開口部が形成されている、請求項1~5のいずれかに記載のテラヘルツ光受発光モジュール。 6. The terahertz light receiving and emitting module according to claim 1, wherein the fixed cover has an opening having an opening diameter smaller than the diameter of the hemispherical lens.
  7.  前記固定カバーは樹脂製である、請求項1~6のいずれかに記載のテラヘルツ光受発光モジュール。 The terahertz light receiving and emitting module according to any one of claims 1 to 6, wherein the fixed cover is made of resin.
  8.  前記モジュール筐体は、前記マウント素子を取り付けるための取り付け部位と、前記アンテナパターンを露出させる開口部と、前記アンテナパターンを外部回路に電気的に接続するためのコネクタ部と、を備え、前記開口部を通る配線ワイヤを介して前記コネクタ部と前記アンテナパターンとを接続する、請求項1~7のいずれかに記載のテラヘルツ光受発光モジュール。 The module housing includes an attachment site for attaching the mount element, an opening for exposing the antenna pattern, and a connector for electrically connecting the antenna pattern to an external circuit, and the opening. The terahertz light receiving and emitting module according to any one of claims 1 to 7, wherein the connector portion and the antenna pattern are connected via a wiring wire passing through the portion.
PCT/JP2011/055581 2010-03-26 2011-03-10 Terahertz light-receiving/light-emitting module WO2011118398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012506929A JPWO2011118398A1 (en) 2010-03-26 2011-03-10 Terahertz light receiving and emitting module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010071553 2010-03-26
JP2010-071553 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118398A1 true WO2011118398A1 (en) 2011-09-29

Family

ID=44672960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055581 WO2011118398A1 (en) 2010-03-26 2011-03-10 Terahertz light-receiving/light-emitting module

Country Status (2)

Country Link
JP (1) JPWO2011118398A1 (en)
WO (1) WO2011118398A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175609A (en) * 2013-03-04 2013-06-26 南京大学 Device using high-temperature superconducting YBCO (yttrium barium copper oxide) bicrystal junction for detecting terahertz radiation of high-temperature superconducting BSCCO (bismuth strontium calcium copper oxide)
WO2014054765A1 (en) * 2012-10-05 2014-04-10 日立オートモティブシステムズ株式会社 Radar module and speed measuring device using same
EP2807675A4 (en) * 2012-01-23 2015-11-11 Univ Michigan Photoconductive device with plasmonic electrodes
CN111103654A (en) * 2019-12-27 2020-05-05 大恒新纪元科技股份有限公司 Two-dimensional adjustable terahertz photoconductive antenna
US10863895B2 (en) 2015-05-27 2020-12-15 The Regents Of The University Of California Terahertz endoscopy through laser-driven terahertz sources and detectors
US11249017B2 (en) 2017-04-20 2022-02-15 The Regents Of The University Of California Systems and methods for high frequency nanoscopy
US11906424B2 (en) 2019-10-01 2024-02-20 The Regents Of The University Of California Method for identifying chemical and structural variations through terahertz time-domain spectroscopy
US12066380B2 (en) 2019-10-31 2024-08-20 The Regents Of The University Of California Methods and systems for detecting water status in plants using terahertz radiation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267893A (en) * 2001-03-13 2002-09-18 Seiko Epson Corp Optical module, method for manufacturing the same, and optical transmitter
JP2004207288A (en) * 2002-12-24 2004-07-22 Tochigi Nikon Corp Terahertz light generator and terahertz light detector
JP2008244620A (en) * 2007-03-26 2008-10-09 Hamamatsu Photonics Kk Terahertz antenna module
JP2008283552A (en) * 2007-05-11 2008-11-20 Aisin Seiki Co Ltd Terahertz wave generator and terahertz wave detector
US20090152699A1 (en) * 2007-12-12 2009-06-18 Electronics And Telecommunications Research Institute Packaging apparatus of terahertz device
US20090296197A1 (en) * 2008-05-30 2009-12-03 Ronald Holzwarth Device for generating or receiving terahertz radiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267893A (en) * 2001-03-13 2002-09-18 Seiko Epson Corp Optical module, method for manufacturing the same, and optical transmitter
JP2004207288A (en) * 2002-12-24 2004-07-22 Tochigi Nikon Corp Terahertz light generator and terahertz light detector
JP2008244620A (en) * 2007-03-26 2008-10-09 Hamamatsu Photonics Kk Terahertz antenna module
JP2008283552A (en) * 2007-05-11 2008-11-20 Aisin Seiki Co Ltd Terahertz wave generator and terahertz wave detector
US20090152699A1 (en) * 2007-12-12 2009-06-18 Electronics And Telecommunications Research Institute Packaging apparatus of terahertz device
US20090296197A1 (en) * 2008-05-30 2009-12-03 Ronald Holzwarth Device for generating or receiving terahertz radiation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2807675A4 (en) * 2012-01-23 2015-11-11 Univ Michigan Photoconductive device with plasmonic electrodes
US11231318B2 (en) 2012-01-23 2022-01-25 The Regents Of The University Of California Photoconductive detector device with plasmonic electrodes
US11112305B2 (en) 2012-01-23 2021-09-07 The Regents Of The University Of California Photoconductive detector device with plasmonic electrodes
US9804026B2 (en) 2012-01-23 2017-10-31 The Regents Of The University Of Michigan Photoconductive emitter device with plasmonic electrodes
CN104662437A (en) * 2012-10-05 2015-05-27 日立汽车系统株式会社 Radar module and speed measuring device using same
EP2905632A4 (en) * 2012-10-05 2016-06-08 Hitachi Automotive Systems Ltd Radar module and speed measuring device using same
US9810779B2 (en) 2012-10-05 2017-11-07 Hitachi Automotive Systems, Ltd. Radar module and speed measuring device using same
JP2014074669A (en) * 2012-10-05 2014-04-24 Hitachi Automotive Systems Ltd Radar module and speed measurement instrument using the same
WO2014054765A1 (en) * 2012-10-05 2014-04-10 日立オートモティブシステムズ株式会社 Radar module and speed measuring device using same
CN103175609A (en) * 2013-03-04 2013-06-26 南京大学 Device using high-temperature superconducting YBCO (yttrium barium copper oxide) bicrystal junction for detecting terahertz radiation of high-temperature superconducting BSCCO (bismuth strontium calcium copper oxide)
US10863895B2 (en) 2015-05-27 2020-12-15 The Regents Of The University Of California Terahertz endoscopy through laser-driven terahertz sources and detectors
US11249017B2 (en) 2017-04-20 2022-02-15 The Regents Of The University Of California Systems and methods for high frequency nanoscopy
US11906424B2 (en) 2019-10-01 2024-02-20 The Regents Of The University Of California Method for identifying chemical and structural variations through terahertz time-domain spectroscopy
US12066380B2 (en) 2019-10-31 2024-08-20 The Regents Of The University Of California Methods and systems for detecting water status in plants using terahertz radiation
CN111103654A (en) * 2019-12-27 2020-05-05 大恒新纪元科技股份有限公司 Two-dimensional adjustable terahertz photoconductive antenna

Also Published As

Publication number Publication date
JPWO2011118398A1 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
WO2011118398A1 (en) Terahertz light-receiving/light-emitting module
CA2716066C (en) Light source device
JP5107559B2 (en) Photonic device with integrated hybrid microlens array
KR102471307B1 (en) laser projection module
JP4221513B2 (en) Integrated beam shaper and method of use thereof
JP5473534B2 (en) Light source device
US20190036297A1 (en) Optoelectronic modules having features for improved alignment and reduced tilt
US6916105B2 (en) Optical assembly for light emitting diode package
US20180283647A1 (en) Position frame for light source
JP2008283552A (en) Terahertz wave generator and terahertz wave detector
US20190157843A1 (en) Laser light source unit
US9548586B2 (en) Energy integrating device for split semiconductor laser diodes
JP2004207288A (en) Terahertz light generator and terahertz light detector
TWI416275B (en) Exposure system and adjustment method thereof
US10473289B2 (en) Lighting device
WO2011118397A1 (en) Terahertz light-receiving/light-emitting module and terahertz light polarization control method
KR101533690B1 (en) Modular optical apparatus
JP2014137411A (en) Method for manufacturing optical module
US20130287053A1 (en) Method and device for emitting a laser beam in a housing
US20120033976A1 (en) Optical communication module
KR100492846B1 (en) Semiconductor light source of optical transmitter with output control
JP2022187581A (en) Distance measuring device
JP2003344719A (en) Holder for laser light collector, and laser light collector
CN118073957A (en) Packaging structure and preparation method thereof
JP2014225307A (en) Optical pickup device and laser attachment structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759205

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506929

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759205

Country of ref document: EP

Kind code of ref document: A1