WO2011067908A1 - Optical fiber and method for working optical fiber - Google Patents
Optical fiber and method for working optical fiber Download PDFInfo
- Publication number
- WO2011067908A1 WO2011067908A1 PCT/JP2010/006918 JP2010006918W WO2011067908A1 WO 2011067908 A1 WO2011067908 A1 WO 2011067908A1 JP 2010006918 W JP2010006918 W JP 2010006918W WO 2011067908 A1 WO2011067908 A1 WO 2011067908A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clad
- optical fiber
- laser
- cladding
- mode removing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4296—Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0823—Devices involving rotation of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
Definitions
- the present invention relates to an optical fiber and an optical fiber processing method.
- optical fibers have been used for various purposes such as welding and cutting metal using high-power laser light such as YAG laser, in addition to being used for communications, measurement, and other applications. It is used as a laser beam transmission medium when performing (see, for example, Patent Document 1).
- this optical fiber includes a glass core that transmits light, a glass cladding that covers the outer peripheral surface of the core, and a resin layer that protects the core and the cladding.
- optical connectors are attached to both ends of the optical fiber so that it can be connected to the laser device and other devices only by hand work or work using simple tools.
- a part of the resin layer is removed in order to prevent the resin layer from being directly irradiated with laser light and carbonizing or generating heat at the irradiation position.
- laser light is normally transmitted only in the core.
- NA numerical aperture
- Light may be reflected at the interface between the clad and the resin layer, and light may be transmitted in the clad mode. Since the laser light leaking out of the clad has enough energy to process the metal, it heats things other than the work piece and damages the device connected to the optical fiber and the optical fiber itself. There is a fear.
- Patent Document 1 the cladding surface of the optical fiber is roughened by diamond powder or chemical etching to form a cladding mode removal portion, and light transmitted in the cladding mode is released and absorbed by the optical connector as heat. Such a technique is disclosed.
- the clad surface becomes rough over a wide range, so that it is difficult to process the clad mode removing portion only at a necessary portion. Moreover, there is a possibility that defects such as fine cracks may occur, and mechanical strength is insufficient and reliability is lowered. Further, in order to remove diamond powder, solvent and the like used for processing, a wiping operation, a cleaning operation, or a post-processing of the terminal portion is separately required, and work efficiency is deteriorated.
- the present invention has been made in view of such a point, and an object of the present invention is to provide an optical fiber processing method in which the cladding mode removing unit is processed with high accuracy and the reliability is improved relatively easily. is there.
- the present invention provides a light for forming a cladding mode removal portion that scatters light transmitted in the cladding mode outside the cladding in a fiber body having a core and a cladding covering the outer peripheral surface of the core.
- the following solutions were taken for the fiber processing method.
- the first invention is characterized by including a forming step of forming the groove-shaped cladding mode removal portion on the outer peripheral surface of the cladding.
- a groove-like cladding mode removing portion is formed on the outer peripheral surface of the cladding.
- the processing accuracy of the cladding mode removal portion can be improved, and defects such as fine cracks are generated. And reliability is improved.
- the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad, so that the clad having a ring groove shape on the outer circumferential surface of the clad
- the mode removing portion is formed.
- the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad while the clad is irradiated with the laser.
- a ring groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
- the clad mode removing portion can be formed by a relatively simple processing method, it is advantageous for cost reduction. Specifically, when the clad mode removal portion is formed by roughening the cladding surface with diamond powder or chemical etching as in the prior art, a wiping operation is performed to remove diamond powder or solvent used for processing. In addition, it is necessary to separately perform the cleaning work or the post-processing of the terminal portion, and the work efficiency is deteriorated.
- the irradiation position of the laser with respect to the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad, so that the outer circumferential surface of the clad has a spiral groove shape.
- the clad mode removing portion is formed.
- the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad is irradiated with the laser.
- a spiral groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
- the 4th invention is 2nd or 3rd invention
- the clad mode removing portion having a plurality of grooves is formed on the outer peripheral surface of the clad by intermittently irradiating the clad with laser. .
- the laser is intermittently applied to the clad.
- a plurality of groove-like cladding mode removal portions are formed on the outer peripheral surface of the cladding. If it does in this way, the shape of a clad mode removal part can be easily processed according to various clad mode transmission.
- the fifth invention is directed to an optical fiber in which a fiber body having a core and a clad covering the outer peripheral surface of the core is provided with a clad mode removing portion that scatters light transmitted in the clad mode to the outside of the clad.
- the fifth invention is characterized in that the clad mode removing portion is formed in a groove shape on the outer peripheral surface of the clad.
- a groove-like cladding mode removal portion is formed on the outer peripheral surface of the cladding.
- the clad mode removing unit is configured such that a laser irradiation position on the clad is relatively changed in a circumferential direction of the clad while a laser is irradiated on the clad, so that a ring groove shape is formed on the outer circumferential surface of the clad. It is characterized by being formed.
- the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad while the clad is irradiated with the laser.
- a ring groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
- the clad mode removing unit is configured such that the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad mode removing unit is irradiated with the laser. It is characterized by being formed in a spiral groove shape.
- the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad is irradiated with the laser.
- a spiral groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
- the clad mode removing portion is characterized in that a plurality of grooves are formed on the outer peripheral surface of the clad by intermittently irradiating the clad with laser.
- the clad is intermittently irradiated with the laser.
- a plurality of groove-like cladding mode removal portions are formed on the outer peripheral surface of the cladding.
- the cladding mode removal portion is formed at each end of the optical fiber, Optical connectors are attached to both ends of the optical fiber so as to cover the clad mode removing portion.
- clad mode removal portions are formed at both ends of the optical fiber. And an optical connector is attached so that a clad mode removal part may be covered.
- the laser light leaking out of the clad through the clad mode removing section can be absorbed as heat by the optical connector, and the device connected to the optical fiber and the optical fiber itself are damaged. Can be prevented.
- a tenth aspect of the invention is the fifth aspect of the invention,
- the clad mode removing part is covered with a light absorbing and heat radiating layer that absorbs light scattered outside the clad and has a heat radiating performance.
- the cladding mode removal portion is covered with the light absorption and heat dissipation layer.
- This light absorption and heat dissipation layer absorbs light scattered outside the cladding and has a heat dissipation performance.
- the laser light leaked out of the clad through the clad mode removing portion can be absorbed and dissipated by the light absorption / radiation layer, and the device connected to the optical fiber or the optical fiber itself Etc. can be prevented from being damaged.
- the present invention it is easy to control the shape and dimensions of the cladding mode removing portion by improving the processing accuracy by irradiating the laser while relatively changing the laser irradiation position in the circumferential direction of the cladding. It is possible to improve reliability without causing defects such as fine cracks.
- FIG. 1 It is side surface sectional drawing which shows the structure of the optical fiber as a combiner which synthesize
- FIG. It is a side view which shows the laser irradiation position of the laser irradiation device with respect to an optical fiber. It is side surface sectional drawing which shows another structure of the optical fiber which concerns on this Embodiment 2.
- FIG. 1 is a side sectional view showing a configuration of an optical fiber according to Embodiment 1 of the present invention.
- the optical fiber 10 is used as a laser light transmission waveguide in a laser processing machine in the machining field.
- the optical fiber 10 includes a fiber body 11 having a core 15 that forms the center of the fiber, a clad 20 that covers the outer peripheral surface of the core 15, and a resin layer 25 that covers the outer peripheral surface of the clad 20. ing.
- Each of the core 15 and the clad 20 is made of quartz glass.
- the optical fiber 10 is configured such that incident light is transmitted through the core 15 while being repeatedly reflected at the interface between the core 15 and the clad 20.
- the core 15 is doped with germanium (Ge) and has a higher refractive index than the clad 20.
- the resin layer 25 is removed at both ends of the optical fiber 10.
- Metal optical connectors 35 are attached to both ends of the fiber body 11 to cover the exposed clad 20 by removing the resin layer 25.
- a ring groove-like clad mode removing portion 21 extending in the circumferential direction is formed on the outer peripheral surface of the clad 20 exposed at both ends of the fiber body 11.
- the clad mode removing unit 21 is for escaping light transmitted through the clad 20 to the outside of the fiber main body 11, and a plurality of clad mode removing units 21 are formed at intervals in the longitudinal direction of the fiber main body 11.
- FIG. 2 is a side view showing the laser irradiation position of the laser irradiator for the optical fiber.
- the resin layers 25 at both ends of the fiber main body 11 are removed to expose the clad 20.
- the fiber body 11 is installed on a rotary table (not shown) so that the exposed clad 20 faces upward.
- a laser irradiator 40 that irradiates a processing laser beam toward the outer peripheral surface of the clad 20 is disposed on the right side of the fiber main body 11 in FIG.
- the fiber body 11 is rotated in the circumferential direction around the core 15 by rotating the rotary table. Then, laser light is irradiated from the laser irradiator 40 to the clad 20 of the rotating fiber body 11 for a certain period of time. Thus, a ring groove-like clad mode removing portion 21 extending in the circumferential direction is formed on the outer peripheral surface of the clad 20. In this case, it is assumed that the uppermost clad mode removing portion 21 in FIG. 2 is formed by the laser irradiation.
- the laser irradiation position of the laser irradiator 40 is changed to a position spaced apart by a predetermined interval in the longitudinal direction of the fiber body 11. Then, the laser beam is irradiated from the laser irradiator 40 for a certain time to the clad 20 at the laser irradiation position after the change. Thereby, the next cladding mode removal part 21 is formed at intervals in the longitudinal direction of the fiber body 11.
- a plurality of clad mode removing portions 21 are formed for the clads 20 at both ends of the fiber body 11.
- the optical connectors 35 are attached to both ends of the fiber body 11.
- the optical connector 35 can be easily connected to a laser device and other devices, and can protect the clad mode removing unit 21. Furthermore, the laser light leaked out of the clad 20 through the clad mode removing unit 21 can be absorbed as heat by the optical connector 35, and the device connected to the optical fiber 10 and the optical fiber 10 itself are damaged. Can be prevented.
- the processing method of the optical fiber 10 according to the first embodiment it is easy to control the shape and size of the cladding mode removing unit 21 by irradiating the laser light while rotating the fiber main body 11.
- the processing accuracy can be improved, and the reliability is improved without causing defects such as fine cracks.
- the cladding mode removing portion 21 can be formed by a relatively simple processing method, it is advantageous for cost reduction. Specifically, when the clad mode removing portion 21 is formed by roughening the surface of the clad 20 with diamond powder or chemical etching as in the prior art, in order to remove the diamond powder and solvent used for processing, Wiping work, cleaning work, or post-processing of the terminal part is required separately, and work efficiency is deteriorated.
- this optical fiber 10 since the laser beam transmitted in the clad mode can be removed, when this optical fiber 10 is used as, for example, a measurement fiber or a medical fiber, it is advantageous in reducing noise.
- the laser irradiation position of the clad 20 is shifted by changing the laser irradiation position of the laser irradiator 40.
- the relative position between the clad 20 and the laser irradiator 40 may be changed by sequentially moving them at a predetermined pitch. Further, the laser irradiator 40 may be sequentially moved downward at a predetermined pitch.
- the laser irradiation position is changed in the circumferential direction by rotating the fiber main body 11 with the rotary table.
- the fiber main body 11 is fixed and the laser irradiator 40 is connected to the fiber.
- the laser irradiation position may be changed in the circumferential direction by irradiating the laser while revolving around the main body 11.
- the cladding mode removing portions 21 are formed at random intervals in the longitudinal direction of the cladding 20.
- the cladding mode removal portions are equally spaced in the longitudinal direction of the cladding 20.
- the part 21 may be formed.
- the ring groove-like clad mode removing portion 21 continuously extending in the circumferential direction is formed on the outer peripheral surface of the clad 20.
- the clad mode removing portion 21 is formed,
- a plurality of groove-like clad mode removing portions 21 are formed at intervals in the circumferential direction. It may be.
- the cladding mode removing portion 21 is left exposed, but as shown in FIG. 5, the light absorption and heat dissipation layer 38 is formed so as to cover the cladding 20 on which the cladding mode removing portion 21 is formed. You may make it provide.
- the light absorption / radiation layer 38 is made of metal, glass, organic matter, etc., and absorbs laser light leaking out of the fiber body 11 from the cladding mode removing unit 21 and dissipates heat generated by the leaked laser light. To do.
- the laser light leaked out of the clad 20 through the clad mode removing unit 21 can be absorbed and radiated by the light absorption / radiation layer 38 and connected to the optical fiber 10. And the optical fiber 10 itself can be prevented from being damaged.
- the clad mode removing portion 21 is formed only at both ends of the fiber main body 11, but the present invention is not limited to this form. For example, as shown in FIG. You may make it form the clad mode removal part 21 over the full length.
- the optical fiber 10 as a combiner that has two cores 15 on the incident side of the laser light and combines the two cores 15 on the way to the emission side to synthesize the laser light.
- the clad mode removing portion 21 may be formed similarly.
- FIG. 8 is a side sectional view showing the configuration of the optical fiber according to this modification.
- the optical fiber 10 includes a core 15 that forms the center of the fiber, a clad 20 that covers the outer peripheral surface of the core 15, a support layer 30 that covers the outer peripheral surface of the clad 20, and an outer peripheral surface of the support layer 30. And a resin layer 25 covering the fiber body 11.
- the core 15, the clad 20, and the support layer 30 are each made of quartz glass. The resin layer 25 is removed at both ends of the optical fiber 10.
- Ring ring-shaped clad mode removing portions 21 extending in the circumferential direction are formed on the outer peripheral surface of the support layer 30 exposed at both ends of the fiber body 11.
- the clad mode removing unit 21 is for escaping light transmitted through the clad 20 to the outside of the fiber main body 11, and a plurality of clad mode removing units 21 are formed at intervals in the longitudinal direction of the fiber main body 11.
- the processing method for forming the cladding mode removing portion 21 on the fiber main body 11 is the same as that in the first embodiment, and thus the description thereof is omitted.
- the clad mode removing portion 21 is formed only on the support layer 30.
- the laser irradiation time by the laser irradiator 40 is the laser irradiation time by the laser irradiator 40 longer?
- the groove depth of the cladding mode removal portion 21 may be formed deeply from the support layer 30 to the cladding 20.
- FIG. 10 is a side sectional view showing the configuration of the optical fiber according to Embodiment 2 of the present invention. Since the difference from the first embodiment is that the cladding mode removing portion 21 is formed in a spiral groove shape, the same parts as those in the first embodiment are denoted by the same reference numerals, and only the differences will be described below. To do.
- a clad mode removing portion 21 extending in a spiral groove shape on the outer peripheral surface of the clad 20 is formed on the outer peripheral surface of the clad 20 exposed at both ends of the fiber body 11.
- FIG. 11 is a side view showing the laser irradiation position of the laser irradiator for the optical fiber.
- the resin layers 25 at both ends of the fiber main body 11 are removed to expose the clad 20.
- the fiber body 11 is placed on the turntable so that the exposed clad 20 faces upward.
- This rotary table can perform a rotating operation for rotating the installed fiber body 11 in the circumferential direction around the core 15 and a moving operation for moving the fiber body 11 up and down in the longitudinal direction.
- a laser irradiator 40 that irradiates a processing laser beam toward the outer peripheral surface of the clad 20 is disposed on the right side of the fiber main body 11 in FIG.
- the fiber body 11 is rotated in the circumferential direction around the core 15 by rotating the rotary table. Then, laser light is irradiated from the laser irradiator 40 to the vicinity of the upper end portion of the clad 20 of the rotating fiber body 11. Then, the laser irradiation position is changed downward from the upper end of the clad 20 by moving the rotary table upward while irradiating the laser beam with the laser irradiator 40. As a result, a cladding mode removal portion 21 extending in a spiral groove shape is formed on the outer peripheral surface of the cladding 20.
- the spiral groove-like clad mode removing portion 21 is formed on the outer peripheral surface of the clad 20, but for example, as shown in FIG. 12, the mesh-like clad mode removing portion 21 is formed. You may make it do.
- the mesh-like clad mode removing portion 21 can be formed by forming the spiral groove-like clad mode removing portion 21 and then rotating the fiber body 11 in the reverse direction and performing the same laser irradiation.
- the laser irradiation position with respect to the clad 20 is relatively changed by moving the rotary table upward.
- the present invention is not limited to this embodiment, and the laser irradiator 40 is not limited thereto.
- the laser irradiation position with respect to the clad 20 may be relatively changed by moving the.
- an optical sensor that detects laser light leaking from the cladding mode removal unit 21 to the outside is provided in the vicinity of the cladding mode removal unit 21, and the output of the laser light source is controlled based on the detection result of the optical sensor. May be.
- the optical sensor detects that the amount of laser light leaking from the cladding mode removing unit 21 is larger than that during normal operation, the laser light source is immediately controlled to stop the output. Abnormal heat generation by the laser light leaking from the cladding mode removing unit 21 can be suppressed.
- the present invention is extremely useful because it provides a highly practical effect that the cladding mode removing portion can be processed with high accuracy and the reliability can be improved by a relatively simple method. Industrial applicability is high.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
A fiber body (11) is circumferentially rotated about a core (15), and a laser is applied to a clad (20) of the fiber body (11) that is being rotated. A ring groove-shaped clad mode removal portion (21) is thus formed in the outer peripheral surface of the clad (20). By applying the laser while changing the position at which the laser is applied to the fiber body (11) in the longitudinal direction of the fiber body (11), a plurality of clad mode removal portions (21) are formed at intervals in the longitudinal direction of the fiber body (11).
Description
本発明は、光ファイバ及び光ファイバの加工方法に関するものである。
The present invention relates to an optical fiber and an optical fiber processing method.
従来より、光ファイバは、通信、計測等の用途に用いられる他にも、YAGレーザ等の高出力のレーザ光を用いて金属を溶接や切断する等、被加工物に対して各種の加工を行う際のレーザ光の伝送媒体として利用されている(例えば、特許文献1参照)。具体的に、この光ファイバは、光を伝送するガラス製のコアと、コアの外周面を覆うガラス製のクラッドと、コア及びクラッドを保護する樹脂層とを備えている。
Conventionally, optical fibers have been used for various purposes such as welding and cutting metal using high-power laser light such as YAG laser, in addition to being used for communications, measurement, and other applications. It is used as a laser beam transmission medium when performing (see, for example, Patent Document 1). Specifically, this optical fiber includes a glass core that transmits light, a glass cladding that covers the outer peripheral surface of the core, and a resin layer that protects the core and the cladding.
また、光ファイバの両端部には、光コネクタが取り付けられており、手作業又は簡易な工具を用いた作業のみでレーザ装置やその他の機器に対して接続できるようになっている。この光ファイバの両端部では、樹脂層にレーザ光が直接照射されてその照射位置において樹脂層が炭化したり発熱するのを防止するために、樹脂層の一部が除去されている。
In addition, optical connectors are attached to both ends of the optical fiber so that it can be connected to the laser device and other devices only by hand work or work using simple tools. At both ends of the optical fiber, a part of the resin layer is removed in order to prevent the resin layer from being directly irradiated with laser light and carbonizing or generating heat at the irradiation position.
ところで、光ファイバにおいて、通常、コア内のみでレーザ光が伝送されるが、開口数(NA)の高い光を入射する場合や、レーザ光の一部がクラッド内に入射された場合には、クラッドと樹脂層との界面で光の反射が生じ、クラッドモードで光が伝送されてしまうおそれがある。クラッド外に漏出したレーザ光は、金属を加工できる程のエネルギーを有しているため、被加工物以外のものを加熱してしまい、光ファイバに接続している装置や光ファイバ自体が損傷するおそれがある。
By the way, in an optical fiber, laser light is normally transmitted only in the core. However, when light having a high numerical aperture (NA) is incident or when a part of the laser light is incident in the cladding, Light may be reflected at the interface between the clad and the resin layer, and light may be transmitted in the clad mode. Since the laser light leaking out of the clad has enough energy to process the metal, it heats things other than the work piece and damages the device connected to the optical fiber and the optical fiber itself. There is a fear.
そこで、特許文献1には、光ファイバのクラッド表面をダイヤモンドパウダ又は化学エッチングで粗くすることでクラッドモード除去部を形成して、クラッドモードで伝送される光を逃がし、光コネクタに熱として吸収させるようにした技術が開示されている。
Therefore, in Patent Document 1, the cladding surface of the optical fiber is roughened by diamond powder or chemical etching to form a cladding mode removal portion, and light transmitted in the cladding mode is released and absorbed by the optical connector as heat. Such a technique is disclosed.
しかしながら、特許文献1に記載の発明では、クラッド表面が広範囲にわたって粗くなってしまうため、必要な箇所のみにクラッドモード除去部を加工することが困難である。また、微細な亀裂等の欠陥が生じるおそれがあり、機械的な強度が不足して信頼性が低下してしまう。さらに、加工に使用するダイヤモンドパウダや溶剤等を除去するために、拭き取り作業や洗浄作業、あるいは端末部の後加工が別途必要となり、作業効率が悪くなってしまう。
However, in the invention described in Patent Document 1, the clad surface becomes rough over a wide range, so that it is difficult to process the clad mode removing portion only at a necessary portion. Moreover, there is a possibility that defects such as fine cracks may occur, and mechanical strength is insufficient and reliability is lowered. Further, in order to remove diamond powder, solvent and the like used for processing, a wiping operation, a cleaning operation, or a post-processing of the terminal portion is separately required, and work efficiency is deteriorated.
本発明は、かかる点に鑑みてなされたものであり、その目的は、比較的簡単に、クラッドモード除去部を精度良く加工するとともに信頼性を向上させた光ファイバの加工方法を提供することにある。
The present invention has been made in view of such a point, and an object of the present invention is to provide an optical fiber processing method in which the cladding mode removing unit is processed with high accuracy and the reliability is improved relatively easily. is there.
具体的に、本発明は、コアと、該コアの外周面を覆うクラッドとを有するファイバ本体に、クラッドモードで伝送される光を該クラッド外に散乱させるクラッドモード除去部を形成するための光ファイバの加工方法を対象とし、次のような解決手段を講じた。
Specifically, the present invention provides a light for forming a cladding mode removal portion that scatters light transmitted in the cladding mode outside the cladding in a fiber body having a core and a cladding covering the outer peripheral surface of the core. The following solutions were taken for the fiber processing method.
すなわち、第1の発明は、前記クラッドの外周面に溝状の前記クラッドモード除去部を形成する形成工程を備えたことを特徴とするものである。
That is, the first invention is characterized by including a forming step of forming the groove-shaped cladding mode removal portion on the outer peripheral surface of the cladding.
第1の発明では、クラッドの外周面に溝状のクラッドモード除去部が形成される。このようにすれば、レーザや機械加工等の加工方法を用いてクラッドモード除去部を形成することで、クラッドモード除去部の加工精度を向上させることができるとともに、微細な亀裂等の欠陥が生じることがなく信頼性が向上する。
In the first invention, a groove-like cladding mode removing portion is formed on the outer peripheral surface of the cladding. In this way, by forming the cladding mode removal portion using a processing method such as laser or machining, the processing accuracy of the cladding mode removal portion can be improved, and defects such as fine cracks are generated. And reliability is improved.
第2の発明は、第1の発明において、
前記形成工程では、前記クラッドに対してレーザを照射しながら、該クラッドに対するレーザの照射位置を該クラッドの周方向に相対的に変更することで、該クラッドの外周面にリング溝状の前記クラッドモード除去部を形成するようにしたことを特徴とするものである。 According to a second invention, in the first invention,
In the forming step, while irradiating the clad with laser, the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad, so that the clad having a ring groove shape on the outer circumferential surface of the clad The mode removing portion is formed.
前記形成工程では、前記クラッドに対してレーザを照射しながら、該クラッドに対するレーザの照射位置を該クラッドの周方向に相対的に変更することで、該クラッドの外周面にリング溝状の前記クラッドモード除去部を形成するようにしたことを特徴とするものである。 According to a second invention, in the first invention,
In the forming step, while irradiating the clad with laser, the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad, so that the clad having a ring groove shape on the outer circumferential surface of the clad The mode removing portion is formed.
第2の発明では、クラッドに対してレーザが照射されながら、クラッドに対するレーザの照射位置がクラッドの周方向に相対的に変更される。これにより、クラッドの外周面にリング溝状のクラッドモード除去部が形成される。
In the second invention, the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad while the clad is irradiated with the laser. As a result, a ring groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
このように、レーザの照射位置をクラッドの周方向に相対的に変更しながらレーザを照射することで、クラッドモード除去部の形状や寸法を制御することが容易となり、加工精度を向上させることができるとともに、微細な亀裂等の欠陥が生じることがなく信頼性が向上する。
Thus, by irradiating the laser while relatively changing the laser irradiation position in the circumferential direction of the clad, it becomes easy to control the shape and dimensions of the clad mode removing portion, and the processing accuracy can be improved. In addition, defects such as fine cracks do not occur and reliability is improved.
さらに、比較的簡単な加工方法でクラッドモード除去部を形成することができるから、コスト低減に有利となる。具体的に、従来のように、クラッド表面をダイヤモンドパウダ又は化学エッチングで粗くすることでクラッドモード除去部を形成する場合には、加工に使用するダイヤモンドパウダや溶剤等を除去するために、拭き取り作業や洗浄作業、あるいは端末部の後加工が別途必要となり、作業効率が悪くなってしまう。
Furthermore, since the clad mode removing portion can be formed by a relatively simple processing method, it is advantageous for cost reduction. Specifically, when the clad mode removal portion is formed by roughening the cladding surface with diamond powder or chemical etching as in the prior art, a wiping operation is performed to remove diamond powder or solvent used for processing. In addition, it is necessary to separately perform the cleaning work or the post-processing of the terminal portion, and the work efficiency is deteriorated.
これに対し、本発明では、ダイヤモンドパウダ又は化学エッチング等の消耗品を用いる必要がなく、拭き取り作業や洗浄作業、あるいは端末部の後加工も必要ないため、コスト低減に有利となる。
On the other hand, in the present invention, it is not necessary to use consumables such as diamond powder or chemical etching, and wiping work, cleaning work, or post-processing of the terminal part is not necessary, which is advantageous for cost reduction.
第3の発明は、第1の発明において、
前記形成工程では、前記クラッドに対してレーザを照射しながら、該クラッドに対するレーザの照射位置を該クラッドの周方向及び長手方向に相対的に変更することで、該クラッドの外周面に螺旋溝状の前記クラッドモード除去部を形成するようにしたことを特徴とするものである。 According to a third invention, in the first invention,
In the forming step, while irradiating the clad with laser, the irradiation position of the laser with respect to the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad, so that the outer circumferential surface of the clad has a spiral groove shape. The clad mode removing portion is formed.
前記形成工程では、前記クラッドに対してレーザを照射しながら、該クラッドに対するレーザの照射位置を該クラッドの周方向及び長手方向に相対的に変更することで、該クラッドの外周面に螺旋溝状の前記クラッドモード除去部を形成するようにしたことを特徴とするものである。 According to a third invention, in the first invention,
In the forming step, while irradiating the clad with laser, the irradiation position of the laser with respect to the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad, so that the outer circumferential surface of the clad has a spiral groove shape. The clad mode removing portion is formed.
第3の発明では、クラッドに対してレーザが照射されながら、クラッドに対するレーザの照射位置がクラッドの周方向及び長手方向に相対的に変更される。これにより、クラッドの外周面に螺旋溝状のクラッドモード除去部が形成される。
In the third invention, the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad is irradiated with the laser. As a result, a spiral groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
このように、レーザの照射位置をクラッドの周方向及び長手方向に相対的に変更しながらレーザを照射することで、クラッドの外周面に螺旋溝状のクラッドモード除去部を容易に形成することができる。すなわち、クラッドモード除去部の形状を、様々なクラッドモード伝送に合わせて容易に加工することができる。
As described above, by irradiating the laser while relatively changing the laser irradiation position in the circumferential direction and the longitudinal direction of the clad, it is possible to easily form a spiral groove-like clad mode removing portion on the outer circumferential surface of the clad. it can. That is, the shape of the clad mode removing portion can be easily processed according to various clad mode transmissions.
第4の発明は、第2又は第3の発明において、
前記形成工程では、前記クラッドに対してレーザを断続的に照射することで、該クラッドの外周面に複数の溝状の前記クラッドモード除去部を形成するようにしたことを特徴とするものである。 4th invention is 2nd or 3rd invention,
In the forming step, the clad mode removing portion having a plurality of grooves is formed on the outer peripheral surface of the clad by intermittently irradiating the clad with laser. .
前記形成工程では、前記クラッドに対してレーザを断続的に照射することで、該クラッドの外周面に複数の溝状の前記クラッドモード除去部を形成するようにしたことを特徴とするものである。 4th invention is 2nd or 3rd invention,
In the forming step, the clad mode removing portion having a plurality of grooves is formed on the outer peripheral surface of the clad by intermittently irradiating the clad with laser. .
第4の発明では、クラッドに対してレーザが断続的に照射される。これにより、クラッドの外周面に複数の溝状のクラッドモード除去部が形成される。このようにすれば、クラッドモード除去部の形状を、様々なクラッドモード伝送に合わせて容易に加工することができる。
In the fourth invention, the laser is intermittently applied to the clad. As a result, a plurality of groove-like cladding mode removal portions are formed on the outer peripheral surface of the cladding. If it does in this way, the shape of a clad mode removal part can be easily processed according to various clad mode transmission.
第5の発明は、コアと、該コアの外周面を覆うクラッドとを有するファイバ本体に、クラッドモードで伝送される光を該クラッド外に散乱させるクラッドモード除去部が形成された光ファイバを対象とし、次のような解決手段を講じた。
The fifth invention is directed to an optical fiber in which a fiber body having a core and a clad covering the outer peripheral surface of the core is provided with a clad mode removing portion that scatters light transmitted in the clad mode to the outside of the clad. The following solutions were taken.
すなわち、第5の発明は、前記クラッドモード除去部は、前記クラッドの外周面に溝状に形成されていることを特徴とするものである。
That is, the fifth invention is characterized in that the clad mode removing portion is formed in a groove shape on the outer peripheral surface of the clad.
第5の発明では、クラッドの外周面に溝状のクラッドモード除去部が形成される。このようにすれば、レーザや機械加工等の加工方法を用いてクラッドモード除去部を形成することで、クラッドモード除去部の加工精度を向上させることができるとともに、微細な亀裂等の欠陥が生じることがなく信頼性が向上する。
In the fifth invention, a groove-like cladding mode removal portion is formed on the outer peripheral surface of the cladding. In this way, by forming the cladding mode removal portion using a processing method such as laser or machining, the processing accuracy of the cladding mode removal portion can be improved, and defects such as fine cracks are generated. And reliability is improved.
第6の発明は、第5の発明において、
前記クラッドモード除去部は、前記クラッドに対してレーザが照射されながら、該クラッドに対するレーザの照射位置が該クラッドの周方向に相対的に変更されることで、該クラッドの外周面にリング溝状に形成されていることを特徴とするものである。 According to a sixth invention, in the fifth invention,
The clad mode removing unit is configured such that a laser irradiation position on the clad is relatively changed in a circumferential direction of the clad while a laser is irradiated on the clad, so that a ring groove shape is formed on the outer circumferential surface of the clad. It is characterized by being formed.
前記クラッドモード除去部は、前記クラッドに対してレーザが照射されながら、該クラッドに対するレーザの照射位置が該クラッドの周方向に相対的に変更されることで、該クラッドの外周面にリング溝状に形成されていることを特徴とするものである。 According to a sixth invention, in the fifth invention,
The clad mode removing unit is configured such that a laser irradiation position on the clad is relatively changed in a circumferential direction of the clad while a laser is irradiated on the clad, so that a ring groove shape is formed on the outer circumferential surface of the clad. It is characterized by being formed.
第6の発明では、クラッドに対してレーザが照射されながら、クラッドに対するレーザの照射位置がクラッドの周方向に相対的に変更される。これにより、クラッドの外周面にリング溝状のクラッドモード除去部が形成される。
In the sixth invention, the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad while the clad is irradiated with the laser. As a result, a ring groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding.
このような構成とすれば、クラッドモード除去部の形状や寸法を制御することが容易となり、加工精度を向上させることができるとともに、微細な亀裂等の欠陥が生じることがなく信頼性が向上する。
With such a configuration, it becomes easy to control the shape and dimensions of the cladding mode removal portion, the processing accuracy can be improved, and the reliability is improved without causing defects such as fine cracks. .
第7の発明は、第5の発明において、
前記クラッドモード除去部は、前記クラッドに対してレーザが照射されながら、該クラッドに対するレーザの照射位置が該クラッドの周方向及び長手方向に相対的に変更されることで、該クラッドの外周面に螺旋溝状に形成されていることを特徴とするものである。 According to a seventh invention, in the fifth invention,
The clad mode removing unit is configured such that the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad mode removing unit is irradiated with the laser. It is characterized by being formed in a spiral groove shape.
前記クラッドモード除去部は、前記クラッドに対してレーザが照射されながら、該クラッドに対するレーザの照射位置が該クラッドの周方向及び長手方向に相対的に変更されることで、該クラッドの外周面に螺旋溝状に形成されていることを特徴とするものである。 According to a seventh invention, in the fifth invention,
The clad mode removing unit is configured such that the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad mode removing unit is irradiated with the laser. It is characterized by being formed in a spiral groove shape.
第7の発明では、クラッドに対してレーザが照射されながら、クラッドに対するレーザの照射位置がクラッドの周方向及び長手方向に相対的に変更される。これにより、クラッドの外周面に螺旋溝状のクラッドモード除去部が形成される。このような構成とすれば、クラッドの外周面に螺旋溝状のクラッドモード除去部を容易に形成することができる。
In the seventh invention, the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad is irradiated with the laser. As a result, a spiral groove-shaped cladding mode removal portion is formed on the outer peripheral surface of the cladding. With such a configuration, it is possible to easily form a spiral groove-shaped cladding mode removing portion on the outer peripheral surface of the cladding.
第8の発明は、第6又は第7の発明において、
前記クラッドモード除去部は、前記クラッドに対してレーザが断続的に照射されることで、該クラッドの外周面に溝状に複数形成されていることを特徴とするものである。 In an eighth invention according to the sixth or seventh invention,
The clad mode removing portion is characterized in that a plurality of grooves are formed on the outer peripheral surface of the clad by intermittently irradiating the clad with laser.
前記クラッドモード除去部は、前記クラッドに対してレーザが断続的に照射されることで、該クラッドの外周面に溝状に複数形成されていることを特徴とするものである。 In an eighth invention according to the sixth or seventh invention,
The clad mode removing portion is characterized in that a plurality of grooves are formed on the outer peripheral surface of the clad by intermittently irradiating the clad with laser.
第8の発明では、クラッドに対してレーザが断続的に照射される。これにより、クラッドの外周面に溝状のクラッドモード除去部が複数形成される。このような構成とすれば、クラッドモード除去部の形状を、様々なクラッドモード伝送に合わせて容易に加工することができる。
In the eighth invention, the clad is intermittently irradiated with the laser. As a result, a plurality of groove-like cladding mode removal portions are formed on the outer peripheral surface of the cladding. With such a configuration, the shape of the cladding mode removal portion can be easily processed in accordance with various cladding mode transmissions.
第9の発明は、第5の発明において、
前記クラッドモード除去部は、前記光ファイバの両端部にそれぞれ形成され、
前記光ファイバの両端部には、前記クラッドモード除去部を覆うように光コネクタが取り付けられていることを特徴とするものである。 According to a ninth invention, in the fifth invention,
The cladding mode removal portion is formed at each end of the optical fiber,
Optical connectors are attached to both ends of the optical fiber so as to cover the clad mode removing portion.
前記クラッドモード除去部は、前記光ファイバの両端部にそれぞれ形成され、
前記光ファイバの両端部には、前記クラッドモード除去部を覆うように光コネクタが取り付けられていることを特徴とするものである。 According to a ninth invention, in the fifth invention,
The cladding mode removal portion is formed at each end of the optical fiber,
Optical connectors are attached to both ends of the optical fiber so as to cover the clad mode removing portion.
第9の発明では、光ファイバの両端部には、クラッドモード除去部がそれぞれ形成される。そして、クラッドモード除去部を覆うように光コネクタが取り付けられる。
In the ninth invention, clad mode removal portions are formed at both ends of the optical fiber. And an optical connector is attached so that a clad mode removal part may be covered.
このような構成とすれば、クラッドモード除去部を介してクラッド外に漏出したレーザ光を、光コネクタに熱として吸収することができ、光ファイバに接続している装置や光ファイバ自体等が損傷するのを防止できる。
With such a configuration, the laser light leaking out of the clad through the clad mode removing section can be absorbed as heat by the optical connector, and the device connected to the optical fiber and the optical fiber itself are damaged. Can be prevented.
第10の発明は、第5の発明において、
前記クラッドモード除去部は、前記クラッド外に散乱する光を吸収するとともに放熱性能を有する光吸収放熱層で覆われていることを特徴とするものである。 A tenth aspect of the invention is the fifth aspect of the invention,
The clad mode removing part is covered with a light absorbing and heat radiating layer that absorbs light scattered outside the clad and has a heat radiating performance.
前記クラッドモード除去部は、前記クラッド外に散乱する光を吸収するとともに放熱性能を有する光吸収放熱層で覆われていることを特徴とするものである。 A tenth aspect of the invention is the fifth aspect of the invention,
The clad mode removing part is covered with a light absorbing and heat radiating layer that absorbs light scattered outside the clad and has a heat radiating performance.
第10の発明では、クラッドモード除去部は、光吸収放熱層で覆われている。この光吸収放熱層は、クラッド外に散乱する光を吸収するとともに放熱性能を有している。
In the tenth aspect of the invention, the cladding mode removal portion is covered with the light absorption and heat dissipation layer. This light absorption and heat dissipation layer absorbs light scattered outside the cladding and has a heat dissipation performance.
このような構成とすれば、クラッドモード除去部を介してクラッド外に漏出したレーザ光を、光吸収放熱層で吸収し且つ放熱することができ、光ファイバに接続している装置や光ファイバ自体等が損傷するのを防止できる。
With such a configuration, the laser light leaked out of the clad through the clad mode removing portion can be absorbed and dissipated by the light absorption / radiation layer, and the device connected to the optical fiber or the optical fiber itself Etc. can be prevented from being damaged.
本発明によれば、レーザの照射位置をクラッドの周方向に相対的に変更しながらレーザを照射することで、クラッドモード除去部の形状や寸法を制御することが容易となり、加工精度を向上させることができるとともに、微細な亀裂等の欠陥が生じることがなく信頼性が向上する。
According to the present invention, it is easy to control the shape and dimensions of the cladding mode removing portion by improving the processing accuracy by irradiating the laser while relatively changing the laser irradiation position in the circumferential direction of the cladding. It is possible to improve reliability without causing defects such as fine cracks.
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature and is not intended to limit the present invention, its application, or its use.
《実施形態1》
図1は、本発明の実施形態1に係る光ファイバの構成を示す側面断面図である。この光ファイバ10は、機械加工分野におけるレーザ加工機において、レーザ光の伝送用導波路として用いられるものである。 Embodiment 1
FIG. 1 is a side sectional view showing a configuration of an optical fiber according to Embodiment 1 of the present invention. Theoptical fiber 10 is used as a laser light transmission waveguide in a laser processing machine in the machining field.
図1は、本発明の実施形態1に係る光ファイバの構成を示す側面断面図である。この光ファイバ10は、機械加工分野におけるレーザ加工機において、レーザ光の伝送用導波路として用いられるものである。 Embodiment 1
FIG. 1 is a side sectional view showing a configuration of an optical fiber according to Embodiment 1 of the present invention. The
図1に示すように、光ファイバ10は、ファイバ中心をなすコア15と、コア15の外周面を覆うクラッド20と、クラッド20の外周面を覆う樹脂層25とを有するファイバ本体11で構成されている。コア15及びクラッド20は、それぞれ全体が石英ガラスから構成されている。
As shown in FIG. 1, the optical fiber 10 includes a fiber body 11 having a core 15 that forms the center of the fiber, a clad 20 that covers the outer peripheral surface of the core 15, and a resin layer 25 that covers the outer peripheral surface of the clad 20. ing. Each of the core 15 and the clad 20 is made of quartz glass.
前記光ファイバ10は、入射された光がコア15とクラッド20との界面で反射を繰り返しながらコア15内を伝送するように構成されている。コア15には、ゲルマニウム(Ge)がドープされており、クラッド20より屈折率が高くなっている。樹脂層25は、光ファイバ10の両端部において除去されている。ファイバ本体11の両端部には、金属製の光コネクタ35が取り付けられており、樹脂層25が除去されて露出したクラッド20を覆っている。
The optical fiber 10 is configured such that incident light is transmitted through the core 15 while being repeatedly reflected at the interface between the core 15 and the clad 20. The core 15 is doped with germanium (Ge) and has a higher refractive index than the clad 20. The resin layer 25 is removed at both ends of the optical fiber 10. Metal optical connectors 35 are attached to both ends of the fiber body 11 to cover the exposed clad 20 by removing the resin layer 25.
前記ファイバ本体11の両端部において露出したクラッド20の外周面には、周方向に延びるリング溝状のクラッドモード除去部21が形成されている。このクラッドモード除去部21は、クラッド20内を伝送する光をファイバ本体11外に逃がすためのものであり、ファイバ本体11の長手方向に間隔をあけて複数形成されている。
A ring groove-like clad mode removing portion 21 extending in the circumferential direction is formed on the outer peripheral surface of the clad 20 exposed at both ends of the fiber body 11. The clad mode removing unit 21 is for escaping light transmitted through the clad 20 to the outside of the fiber main body 11, and a plurality of clad mode removing units 21 are formed at intervals in the longitudinal direction of the fiber main body 11.
<光ファイバの加工方法>
次に、光ファイバ10のクラッド20にクラッドモード除去部21を形成するための加工方法について説明する。図2は、光ファイバに対するレーザ照射器のレーザ照射位置を示す側面図である。 <Optical fiber processing method>
Next, a processing method for forming the cladmode removing portion 21 in the clad 20 of the optical fiber 10 will be described. FIG. 2 is a side view showing the laser irradiation position of the laser irradiator for the optical fiber.
次に、光ファイバ10のクラッド20にクラッドモード除去部21を形成するための加工方法について説明する。図2は、光ファイバに対するレーザ照射器のレーザ照射位置を示す側面図である。 <Optical fiber processing method>
Next, a processing method for forming the clad
図2に示すように、まず、ファイバ本体11の両端部の樹脂層25を除去して、クラッド20を露出させる。次に、露出させたクラッド20が上向きとなるように、ファイバ本体11を回転テーブル(図示省略)に設置する。ファイバ本体11よりも図2で右方には、クラッド20の外周面に向かって加工用のレーザ光を照射するレーザ照射器40が配置されている。
As shown in FIG. 2, first, the resin layers 25 at both ends of the fiber main body 11 are removed to expose the clad 20. Next, the fiber body 11 is installed on a rotary table (not shown) so that the exposed clad 20 faces upward. A laser irradiator 40 that irradiates a processing laser beam toward the outer peripheral surface of the clad 20 is disposed on the right side of the fiber main body 11 in FIG.
次に、前記回転テーブルを回転させることで、ファイバ本体11をコア15を中心に周方向に回転させる。そして、回転中のファイバ本体11のクラッド20に対して、レーザ照射器40からレーザ光を一定時間照射する。これにより、クラッド20の外周面には、周方向に延びるリング溝状のクラッドモード除去部21が形成される。なお、このときのレーザ照射では、図2の最上段のクラッドモード除去部21が形成されたものとする。
Next, the fiber body 11 is rotated in the circumferential direction around the core 15 by rotating the rotary table. Then, laser light is irradiated from the laser irradiator 40 to the clad 20 of the rotating fiber body 11 for a certain period of time. Thus, a ring groove-like clad mode removing portion 21 extending in the circumferential direction is formed on the outer peripheral surface of the clad 20. In this case, it is assumed that the uppermost clad mode removing portion 21 in FIG. 2 is formed by the laser irradiation.
そして、最上段のクラッドモード除去部21を形成した後、レーザ照射器40のレーザ照射位置を、ファイバ本体11の長手方向の下方に所定の間隔をあけた位置に変更する。そして、変更後のレーザ照射位置のクラッド20に対して、レーザ照射器40からレーザ光を一定時間照射する。これにより、ファイバ本体11の長手方向に間隔をあけて次のクラッドモード除去部21を形成する。
Then, after forming the uppermost clad mode removing portion 21, the laser irradiation position of the laser irradiator 40 is changed to a position spaced apart by a predetermined interval in the longitudinal direction of the fiber body 11. Then, the laser beam is irradiated from the laser irradiator 40 for a certain time to the clad 20 at the laser irradiation position after the change. Thereby, the next cladding mode removal part 21 is formed at intervals in the longitudinal direction of the fiber body 11.
このような手順を繰り返すことにより、ファイバ本体11の両端部のクラッド20に対して、複数のクラッドモード除去部21を形成する。その後、ファイバ本体11の両端部に光コネクタ35を取り付ける。この光コネクタ35により、レーザ装置やその他の機器に対して容易に接続することができるとともに、クラッドモード除去部21を保護することができる。さらに、クラッドモード除去部21を介してクラッド20外に漏出したレーザ光を、光コネクタ35に熱として吸収することができ、光ファイバ10に接続している装置や光ファイバ10自体等が損傷するのを防止できる。
By repeating such a procedure, a plurality of clad mode removing portions 21 are formed for the clads 20 at both ends of the fiber body 11. Thereafter, the optical connectors 35 are attached to both ends of the fiber body 11. The optical connector 35 can be easily connected to a laser device and other devices, and can protect the clad mode removing unit 21. Furthermore, the laser light leaked out of the clad 20 through the clad mode removing unit 21 can be absorbed as heat by the optical connector 35, and the device connected to the optical fiber 10 and the optical fiber 10 itself are damaged. Can be prevented.
このように、本実施形態1に係る光ファイバ10の加工方法によれば、ファイバ本体11を回転させながらレーザ光を照射することで、クラッドモード除去部21の形状や寸法を制御することが容易となり、加工精度を向上させることができるとともに、微細な亀裂等の欠陥が生じることがなく信頼性が向上する。
As described above, according to the processing method of the optical fiber 10 according to the first embodiment, it is easy to control the shape and size of the cladding mode removing unit 21 by irradiating the laser light while rotating the fiber main body 11. Thus, the processing accuracy can be improved, and the reliability is improved without causing defects such as fine cracks.
さらに、比較的簡単な加工方法でクラッドモード除去部21を形成することができるから、コスト低減に有利となる。具体的に、従来のように、クラッド20表面をダイヤモンドパウダ又は化学エッチングで粗くすることでクラッドモード除去部21を形成する場合には、加工に使用するダイヤモンドパウダや溶剤等を除去するために、拭き取り作業や洗浄作業、あるいは端末部の後加工が別途必要となり、作業効率が悪くなってしまう。
Furthermore, since the cladding mode removing portion 21 can be formed by a relatively simple processing method, it is advantageous for cost reduction. Specifically, when the clad mode removing portion 21 is formed by roughening the surface of the clad 20 with diamond powder or chemical etching as in the prior art, in order to remove the diamond powder and solvent used for processing, Wiping work, cleaning work, or post-processing of the terminal part is required separately, and work efficiency is deteriorated.
これに対し、本発明では、ダイヤモンドパウダ又は化学エッチング等の消耗品を用いる必要がなく、拭き取り作業や洗浄作業、あるいは端末部の後加工も必要ないため、コスト低減に有利となる。
On the other hand, in the present invention, it is not necessary to use consumables such as diamond powder or chemical etching, and wiping work, cleaning work, or post-processing of the terminal part is not necessary, which is advantageous for cost reduction.
また、クラッドモードで伝送されるレーザ光を除去することができるから、この光ファイバ10を、例えば計測用ファイバや医療用ファイバとして用いた場合には、ノイズを低減する上で有利となる。
Further, since the laser beam transmitted in the clad mode can be removed, when this optical fiber 10 is used as, for example, a measurement fiber or a medical fiber, it is advantageous in reducing noise.
なお、本実施形態1では、レーザ照射器40のレーザ照射位置を変更することで、クラッド20に対するレーザ光の照射位置をずらすようにしたが、この形態に限定するものではなく、例えば、回転テーブルを所定のピッチで上方向に順次移動させることで、クラッド20とレーザ照射器40との相対位置を変更するようにしてもよい。また、レーザ照射器40を所定のピッチで下方向に順次移動させるようにしてもよい。
In the first embodiment, the laser irradiation position of the clad 20 is shifted by changing the laser irradiation position of the laser irradiator 40. However, the present invention is not limited to this embodiment. The relative position between the clad 20 and the laser irradiator 40 may be changed by sequentially moving them at a predetermined pitch. Further, the laser irradiator 40 may be sequentially moved downward at a predetermined pitch.
さらに、本実施形態1では、回転テーブルによりファイバ本体11を回転させることで、レーザの照射位置を周方向に変更するようにしたが、ファイバ本体11を固定しておき、レーザ照射器40をファイバ本体11を中心に公転させながらレーザを照射することで、レーザの照射位置を周方向に変更するようにしてもよい。
Further, in the first embodiment, the laser irradiation position is changed in the circumferential direction by rotating the fiber main body 11 with the rotary table. However, the fiber main body 11 is fixed and the laser irradiator 40 is connected to the fiber. The laser irradiation position may be changed in the circumferential direction by irradiating the laser while revolving around the main body 11.
なお、図1では、クラッド20の長手方向にランダムな間隔でクラッドモード除去部21を形成するようにしたが、例えば、図3に示すように、クラッド20の長手方向に等間隔でクラッドモード除去部21を形成するようにしてもよい。
In FIG. 1, the cladding mode removing portions 21 are formed at random intervals in the longitudinal direction of the cladding 20. For example, as shown in FIG. 3, the cladding mode removal portions are equally spaced in the longitudinal direction of the cladding 20. The part 21 may be formed.
また、本実施形態1では、クラッド20の外周面に、周方向に連続的に延びるリング溝状のクラッドモード除去部21を形成するようにしたが、例えば、クラッドモード除去部21を形成する際に、レーザ照射器40からクラッド20に対して断続的にレーザを照射することで、図4に示すように、周方向に間隔をあけて複数の溝状のクラッドモード除去部21を形成するようにしてもよい。
Further, in the first embodiment, the ring groove-like clad mode removing portion 21 continuously extending in the circumferential direction is formed on the outer peripheral surface of the clad 20. For example, when the clad mode removing portion 21 is formed, In addition, by intermittently irradiating the clad 20 with the laser from the laser irradiator 40, as shown in FIG. 4, a plurality of groove-like clad mode removing portions 21 are formed at intervals in the circumferential direction. It may be.
また、本実施形態1では、クラッドモード除去部21を露出させたままであるが、図5に示すように、クラッドモード除去部21が形成されたクラッド20を覆うように、光吸収放熱層38を設けるようにしてもよい。具体的に、光吸収放熱層38は、金属、ガラス、有機物等で構成され、クラッドモード除去部21からファイバ本体11外に漏出するレーザ光を吸収するとともに、漏出したレーザ光により生じる熱を放熱するものである。
Further, in the first embodiment, the cladding mode removing portion 21 is left exposed, but as shown in FIG. 5, the light absorption and heat dissipation layer 38 is formed so as to cover the cladding 20 on which the cladding mode removing portion 21 is formed. You may make it provide. Specifically, the light absorption / radiation layer 38 is made of metal, glass, organic matter, etc., and absorbs laser light leaking out of the fiber body 11 from the cladding mode removing unit 21 and dissipates heat generated by the leaked laser light. To do.
このような構成とすれば、クラッドモード除去部21を介してクラッド20外に漏出したレーザ光を、光吸収放熱層38で吸収し且つ放熱することができ、光ファイバ10に接続している装置や光ファイバ10自体等が損傷するのを防止できる。
With such a configuration, the laser light leaked out of the clad 20 through the clad mode removing unit 21 can be absorbed and radiated by the light absorption / radiation layer 38 and connected to the optical fiber 10. And the optical fiber 10 itself can be prevented from being damaged.
また、本実施形態1では、ファイバ本体11の両端部のみにクラッドモード除去部21を形成するようにしたが、この形態に限定するものではなく、例えば、図6に示すように、ファイバ本体11の全長にわたってクラッドモード除去部21を形成するようにしてもよい。
Further, in the first embodiment, the clad mode removing portion 21 is formed only at both ends of the fiber main body 11, but the present invention is not limited to this form. For example, as shown in FIG. You may make it form the clad mode removal part 21 over the full length.
また、図7に示すように、レーザ光の入射側に2つのコア15を有し、出射側に向かう途中で2つのコア15を合流させてレーザ光の合成を行うコンバイナとしての光ファイバ10に対しても同様にクラッドモード除去部21を形成してもよい。
Further, as shown in FIG. 7, the optical fiber 10 as a combiner that has two cores 15 on the incident side of the laser light and combines the two cores 15 on the way to the emission side to synthesize the laser light. Similarly, the clad mode removing portion 21 may be formed similarly.
《変形例》
図8は、本変形例に係る光ファイバの構成を示す側面断面図である。図8に示すように、この光ファイバ10は、ファイバ中心をなすコア15と、コア15の外周面を覆うクラッド20と、クラッド20の外周面を覆うサポート層30と、サポート層30の外周面を覆う樹脂層25とを有するファイバ本体11で構成されている。コア15、クラッド20、及びサポート層30は、それぞれ全体が石英ガラスから構成されている。樹脂層25は、光ファイバ10の両端部において除去されている。 <Modification>
FIG. 8 is a side sectional view showing the configuration of the optical fiber according to this modification. As shown in FIG. 8, theoptical fiber 10 includes a core 15 that forms the center of the fiber, a clad 20 that covers the outer peripheral surface of the core 15, a support layer 30 that covers the outer peripheral surface of the clad 20, and an outer peripheral surface of the support layer 30. And a resin layer 25 covering the fiber body 11. The core 15, the clad 20, and the support layer 30 are each made of quartz glass. The resin layer 25 is removed at both ends of the optical fiber 10.
図8は、本変形例に係る光ファイバの構成を示す側面断面図である。図8に示すように、この光ファイバ10は、ファイバ中心をなすコア15と、コア15の外周面を覆うクラッド20と、クラッド20の外周面を覆うサポート層30と、サポート層30の外周面を覆う樹脂層25とを有するファイバ本体11で構成されている。コア15、クラッド20、及びサポート層30は、それぞれ全体が石英ガラスから構成されている。樹脂層25は、光ファイバ10の両端部において除去されている。 <Modification>
FIG. 8 is a side sectional view showing the configuration of the optical fiber according to this modification. As shown in FIG. 8, the
前記ファイバ本体11の両端部において露出したサポート層30の外周面には、周方向に延びるリング溝状のクラッドモード除去部21が形成されている。このクラッドモード除去部21は、クラッド20内を伝送する光をファイバ本体11外に逃がすためのものであり、ファイバ本体11の長手方向に間隔をあけて複数形成されている。なお、前記ファイバ本体11に対してクラッドモード除去部21を形成する加工方法は、前記実施形態1と同様であるため、その説明を省略する。
Ring ring-shaped clad mode removing portions 21 extending in the circumferential direction are formed on the outer peripheral surface of the support layer 30 exposed at both ends of the fiber body 11. The clad mode removing unit 21 is for escaping light transmitted through the clad 20 to the outside of the fiber main body 11, and a plurality of clad mode removing units 21 are formed at intervals in the longitudinal direction of the fiber main body 11. The processing method for forming the cladding mode removing portion 21 on the fiber main body 11 is the same as that in the first embodiment, and thus the description thereof is omitted.
なお、本変形例では、サポート層30にのみクラッドモード除去部21を形成するようにしたが、例えば、クラッドモード除去部21を形成する際に、レーザ照射器40によるレーザ照射時間を長くするか、又はレーザ出力を高めることで、図9に示すように、クラッドモード除去部21の溝深さを、サポート層30からクラッド20に至るまで深く形成してもよい。
In this modification, the clad mode removing portion 21 is formed only on the support layer 30. For example, when the clad mode removing portion 21 is formed, is the laser irradiation time by the laser irradiator 40 longer? Alternatively, by increasing the laser output, as shown in FIG. 9, the groove depth of the cladding mode removal portion 21 may be formed deeply from the support layer 30 to the cladding 20.
《実施形態2》
図10は、本発明の実施形態2に係る光ファイバの構成を示す側面断面図である。前記実施形態1との違いは、クラッドモード除去部21を螺旋溝状に形成するようにした点であるため、以下、実施形態1と同じ部分には同じ符号を付し、相違点についてのみ説明する。 << Embodiment 2 >>
FIG. 10 is a side sectional view showing the configuration of the optical fiber according to Embodiment 2 of the present invention. Since the difference from the first embodiment is that the claddingmode removing portion 21 is formed in a spiral groove shape, the same parts as those in the first embodiment are denoted by the same reference numerals, and only the differences will be described below. To do.
図10は、本発明の実施形態2に係る光ファイバの構成を示す側面断面図である。前記実施形態1との違いは、クラッドモード除去部21を螺旋溝状に形成するようにした点であるため、以下、実施形態1と同じ部分には同じ符号を付し、相違点についてのみ説明する。 << Embodiment 2 >>
FIG. 10 is a side sectional view showing the configuration of the optical fiber according to Embodiment 2 of the present invention. Since the difference from the first embodiment is that the cladding
図10に示すように、ファイバ本体11の両端部において露出されたクラッド20の外周面には、クラッド20の外周面を螺旋溝状に延びるクラッドモード除去部21が形成されている。
As shown in FIG. 10, a clad mode removing portion 21 extending in a spiral groove shape on the outer peripheral surface of the clad 20 is formed on the outer peripheral surface of the clad 20 exposed at both ends of the fiber body 11.
<光ファイバの加工方法>
次に、光ファイバ10のクラッド20にクラッドモード除去部21を形成するための加工方法について説明する。図11は、光ファイバに対するレーザ照射器のレーザ照射位置を示す側面図である。 <Optical fiber processing method>
Next, a processing method for forming the cladmode removing portion 21 in the clad 20 of the optical fiber 10 will be described. FIG. 11 is a side view showing the laser irradiation position of the laser irradiator for the optical fiber.
次に、光ファイバ10のクラッド20にクラッドモード除去部21を形成するための加工方法について説明する。図11は、光ファイバに対するレーザ照射器のレーザ照射位置を示す側面図である。 <Optical fiber processing method>
Next, a processing method for forming the clad
図11に示すように、まず、ファイバ本体11の両端部の樹脂層25を除去して、クラッド20を露出させる。次に、露出させたクラッド20が上向きとなるように、ファイバ本体11を回転テーブルに設置する。この回転テーブルは、設置されたファイバ本体11をコア15を中心に周方向に回転させる回転動作と、ファイバ本体11を長手方向に上下動させる移動動作とを行うことができるようになっている。ファイバ本体11よりも図11で右方には、クラッド20の外周面に向かって加工用のレーザ光を照射するレーザ照射器40が配置されている。
As shown in FIG. 11, first, the resin layers 25 at both ends of the fiber main body 11 are removed to expose the clad 20. Next, the fiber body 11 is placed on the turntable so that the exposed clad 20 faces upward. This rotary table can perform a rotating operation for rotating the installed fiber body 11 in the circumferential direction around the core 15 and a moving operation for moving the fiber body 11 up and down in the longitudinal direction. A laser irradiator 40 that irradiates a processing laser beam toward the outer peripheral surface of the clad 20 is disposed on the right side of the fiber main body 11 in FIG.
次に、前記回転テーブルを回転させることで、ファイバ本体11をコア15を中心に周方向に回転させる。そして、回転中のファイバ本体11のクラッド20の上端部近傍に対して、レーザ照射器40からレーザ光を照射する。そして、レーザ照射器40によりレーザ光を照射しながら回転テーブルを上方向に移動させていくことで、レーザの照射位置をクラッド20の上端部から下方に向かって変更させていく。これにより、クラッド20の外周面には、螺旋溝状に延びるクラッドモード除去部21が形成される。
Next, the fiber body 11 is rotated in the circumferential direction around the core 15 by rotating the rotary table. Then, laser light is irradiated from the laser irradiator 40 to the vicinity of the upper end portion of the clad 20 of the rotating fiber body 11. Then, the laser irradiation position is changed downward from the upper end of the clad 20 by moving the rotary table upward while irradiating the laser beam with the laser irradiator 40. As a result, a cladding mode removal portion 21 extending in a spiral groove shape is formed on the outer peripheral surface of the cladding 20.
なお、本実施形態2では、クラッド20の外周面に螺旋溝状のクラッドモード除去部21を形成するようにしたが、例えば、図12に示すように、網目状のクラッドモード除去部21を形成するようにしてもよい。この網目状のクラッドモード除去部21は、螺旋溝状のクラッドモード除去部21を形成した後、ファイバ本体11を逆回転させて同様のレーザ照射を行うことにより形成することができる。
In the second embodiment, the spiral groove-like clad mode removing portion 21 is formed on the outer peripheral surface of the clad 20, but for example, as shown in FIG. 12, the mesh-like clad mode removing portion 21 is formed. You may make it do. The mesh-like clad mode removing portion 21 can be formed by forming the spiral groove-like clad mode removing portion 21 and then rotating the fiber body 11 in the reverse direction and performing the same laser irradiation.
なお、本実施形態2では、回転テーブルを上方向に移動させることで、クラッド20に対するレーザの照射位置を相対的に変更するようにしたが、この形態に限定するものではなく、レーザ照射器40を下方向に移動させることで、クラッド20に対するレーザの照射位置を相対的に変更するようにしてもよい。
In the second embodiment, the laser irradiation position with respect to the clad 20 is relatively changed by moving the rotary table upward. However, the present invention is not limited to this embodiment, and the laser irradiator 40 is not limited thereto. The laser irradiation position with respect to the clad 20 may be relatively changed by moving the.
《その他の実施形態》
前記実施形態については、以下のような構成としてもよい。 << Other Embodiments >>
About the said embodiment, it is good also as following structures.
前記実施形態については、以下のような構成としてもよい。 << Other Embodiments >>
About the said embodiment, it is good also as following structures.
前記光コネクタ35内に外気を取り込んで強制的に又は自然に冷却する空冷機構や、クラッドモード除去部21の周囲に水を流通させて冷却する水冷機構により、クラッドモード除去部21を冷却する冷却手段を設けるようにしてもよい。これにより、クラッドモード除去部21から漏出したレーザ光による発熱を抑えることができる。
Cooling that cools the clad mode removing unit 21 by an air cooling mechanism that takes outside air into the optical connector 35 and forcibly or naturally cools it, or a water cooling mechanism that cools the clad mode removing unit 21 by circulating water around it. Means may be provided. Thereby, the heat generation by the laser light leaking from the cladding mode removing unit 21 can be suppressed.
また、前記クラッドモード除去部21の近傍に、クラッドモード除去部21から外部に漏出するレーザ光を検出する光センサを設け、光センサの検出結果に基づいて、レーザ光源の出力を制御するようにしてもよい。
In addition, an optical sensor that detects laser light leaking from the cladding mode removal unit 21 to the outside is provided in the vicinity of the cladding mode removal unit 21, and the output of the laser light source is controlled based on the detection result of the optical sensor. May be.
すなわち、クラッドモード除去部21から漏出するレーザ光の光量が通常動作時に比べて多くなっていることを光センサで検出した場合には、直ちにレーザ光源の出力を停止するように制御することで、クラッドモード除去部21から漏出するレーザ光によって異常に発熱するのを抑えることができる。
That is, when the optical sensor detects that the amount of laser light leaking from the cladding mode removing unit 21 is larger than that during normal operation, the laser light source is immediately controlled to stop the output. Abnormal heat generation by the laser light leaking from the cladding mode removing unit 21 can be suppressed.
以上説明したように、本発明は、比較的簡単な方法で、クラッドモード除去部を精度良く加工するとともに信頼性を向上させることができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。
As described above, the present invention is extremely useful because it provides a highly practical effect that the cladding mode removing portion can be processed with high accuracy and the reliability can be improved by a relatively simple method. Industrial applicability is high.
10 光ファイバ
11 ファイバ本体
15 コア
20 クラッド
21 クラッドモード除去部
35 光コネクタ
38 光吸収放熱層 DESCRIPTION OFSYMBOLS 10 Optical fiber 11 Fiber main body 15 Core 20 Clad 21 Clad mode removal part 35 Optical connector 38 Light absorption heat dissipation layer
11 ファイバ本体
15 コア
20 クラッド
21 クラッドモード除去部
35 光コネクタ
38 光吸収放熱層 DESCRIPTION OF
Claims (10)
- コアと、該コアの外周面を覆うクラッドとを有するファイバ本体に、クラッドモードで伝送される光を該クラッド外に散乱させるクラッドモード除去部を形成するための光ファイバの加工方法であって、
前記クラッドの外周面に溝状の前記クラッドモード除去部を形成する形成工程を備えたことを特徴とする光ファイバの加工方法。 An optical fiber processing method for forming a cladding mode removing portion that scatters light transmitted in a cladding mode outside the cladding in a fiber body having a core and a cladding covering an outer peripheral surface of the core,
An optical fiber processing method comprising a forming step of forming the groove-shaped cladding mode removing portion on an outer peripheral surface of the cladding. - 請求項1において、
前記形成工程では、前記クラッドに対してレーザを照射しながら、該クラッドに対するレーザの照射位置を該クラッドの周方向に相対的に変更することで、該クラッドの外周面にリング溝状の前記クラッドモード除去部を形成するようにしたことを特徴とする光ファイバの加工方法。 In claim 1,
In the forming step, while irradiating the clad with laser, the laser irradiation position on the clad is relatively changed in the circumferential direction of the clad, so that the clad having a ring groove shape on the outer circumferential surface of the clad A method of processing an optical fiber, wherein a mode removing portion is formed. - 請求項1において、
前記形成工程では、前記クラッドに対してレーザを照射しながら、該クラッドに対するレーザの照射位置を該クラッドの周方向及び長手方向に相対的に変更することで、該クラッドの外周面に螺旋溝状の前記クラッドモード除去部を形成するようにしたことを特徴とする光ファイバの加工方法。 In claim 1,
In the forming step, while irradiating the clad with laser, the irradiation position of the laser with respect to the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad, so that the outer circumferential surface of the clad has a spiral groove shape. A method for processing an optical fiber, wherein the cladding mode removing portion is formed. - 請求項2又は3において、
前記形成工程では、前記クラッドに対してレーザを断続的に照射することで、該クラッドの外周面に複数の溝状の前記クラッドモード除去部を形成するようにしたことを特徴とする光ファイバの加工方法。 In claim 2 or 3,
In the forming step, a laser is intermittently irradiated to the clad to form a plurality of groove-like clad mode removing portions on the outer peripheral surface of the clad. Processing method. - コアと、該コアの外周面を覆うクラッドとを有するファイバ本体に、クラッドモードで伝送される光を該クラッド外に散乱させるクラッドモード除去部が形成された光ファイバであって、
前記クラッドモード除去部は、前記クラッドの外周面に溝状に形成されていることを特徴とする光ファイバ。 A fiber body having a core and a clad covering the outer peripheral surface of the core, and an optical fiber having a clad mode removing unit that scatters light transmitted in the clad mode to the outside of the clad,
The optical fiber, wherein the cladding mode removing portion is formed in a groove shape on the outer peripheral surface of the cladding. - 請求項5において、
前記クラッドモード除去部は、前記クラッドに対してレーザが照射されながら、該クラッドに対するレーザの照射位置が該クラッドの周方向に相対的に変更されることで、該クラッドの外周面にリング溝状に形成されていることを特徴とする光ファイバ。 In claim 5,
The clad mode removing unit is configured such that a laser irradiation position on the clad is relatively changed in a circumferential direction of the clad while a laser is irradiated on the clad, so that a ring groove shape is formed on the outer circumferential surface of the clad. An optical fiber characterized in that it is formed. - 請求項5において、
前記クラッドモード除去部は、前記クラッドに対してレーザが照射されながら、該クラッドに対するレーザの照射位置が該クラッドの周方向及び長手方向に相対的に変更されることで、該クラッドの外周面に螺旋溝状に形成されていることを特徴とする光ファイバ。 In claim 5,
The clad mode removing unit is configured such that the laser irradiation position on the clad is relatively changed in the circumferential direction and the longitudinal direction of the clad while the clad mode removing unit is irradiated with the laser. An optical fiber characterized by being formed in a spiral groove shape. - 請求項6又は7において、
前記クラッドモード除去部は、前記クラッドに対してレーザが断続的に照射されることで、該クラッドの外周面に溝状に複数形成されていることを特徴とする光ファイバ。 In claim 6 or 7,
An optical fiber, wherein a plurality of the clad mode removing portions are formed in a groove shape on the outer peripheral surface of the clad by intermittently irradiating the clad with laser. - 請求項5において、
前記クラッドモード除去部は、前記光ファイバの両端部にそれぞれ形成され、
前記光ファイバの両端部には、前記クラッドモード除去部を覆うように光コネクタが取り付けられていることを特徴とする光ファイバ。 In claim 5,
The cladding mode removal portion is formed at each end of the optical fiber,
An optical fiber, wherein optical connectors are attached to both ends of the optical fiber so as to cover the clad mode removing portion. - 請求項5において、
前記クラッドモード除去部は、前記クラッド外に散乱する光を吸収するとともに放熱性能を有する光吸収放熱層で覆われていることを特徴とする光ファイバ。 In claim 5,
The optical fiber, wherein the clad mode removing portion is covered with a light absorbing and heat radiating layer that absorbs light scattered outside the clad and has a heat radiating performance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009276301A JP2011118208A (en) | 2009-12-04 | 2009-12-04 | Optical fiber and method of processing the same |
JP2009-276301 | 2009-12-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011067908A1 true WO2011067908A1 (en) | 2011-06-09 |
Family
ID=44114771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/006918 WO2011067908A1 (en) | 2009-12-04 | 2010-11-26 | Optical fiber and method for working optical fiber |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011118208A (en) |
WO (1) | WO2011067908A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013001734A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Fiber laser |
WO2013064481A1 (en) * | 2011-11-02 | 2013-05-10 | Trumpf Laser Gmbh + Co. Kg | Optical transport fibre and method for producing same |
WO2013191215A1 (en) * | 2012-06-21 | 2013-12-27 | オリンパス株式会社 | Light guide path sensor, and method for forming light guide path sensor |
WO2014002715A1 (en) * | 2012-06-29 | 2014-01-03 | 住友電気工業株式会社 | Optical fiber and optical cable |
JP2014126687A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Cable Ind Ltd | Optical fiber structure and manufacturing method for the same |
JP2014146800A (en) * | 2013-01-28 | 2014-08-14 | Jds Uniphase Corp | Cladding light stripper and manufacturing method |
US20200099190A1 (en) * | 2018-09-21 | 2020-03-26 | Nlight, Inc. | Optical fiber cladding light stripper |
JP2020514214A (en) * | 2016-12-22 | 2020-05-21 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Method and system for fabrication of shaped fiber elements using laser ablation |
US10802209B2 (en) | 2013-01-28 | 2020-10-13 | Lumentum Operations Llc | Cladding light stripper |
US11009657B2 (en) | 2018-09-10 | 2021-05-18 | Nlight, Inc. | Optical fiber splice encapsulated by a cladding light stripper |
DE102020113731A1 (en) | 2020-05-20 | 2021-11-25 | FiberBridge Photonics GmbH | glass fiber |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157761A1 (en) * | 2012-04-20 | 2013-10-24 | Bae Byoung-Young | Apparatus and method for processing an optical fiber |
JP2015163932A (en) * | 2014-01-30 | 2015-09-10 | 三菱電線工業株式会社 | Optical fiber fixing structure |
JP2016061944A (en) * | 2014-09-18 | 2016-04-25 | 住友電気工業株式会社 | Fan-out component |
US9696493B2 (en) * | 2014-11-13 | 2017-07-04 | Ofs Fitel, Llc | High efficiency pump signal combiner for high power fiber amplifier and laser applications |
JP7361459B2 (en) * | 2017-08-25 | 2023-10-16 | ルーメンタム オペレーションズ エルエルシー | clad light remover |
KR102269317B1 (en) * | 2019-06-14 | 2021-06-28 | 포미주식회사 | Cladding Power Stripper and Apparatus for Manufacturing the Same |
JP7319409B2 (en) * | 2019-10-11 | 2023-08-01 | 三菱電線工業株式会社 | Optical fiber end structure and optical connector structure using the same |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4575181A (en) * | 1983-04-26 | 1986-03-11 | Tokyo Shibaura Denki Kabushiki Kaisha | Optical fiber assembly with cladding light scattering means |
JPH01316705A (en) * | 1988-06-17 | 1989-12-21 | Fuji Photo Optical Co Ltd | Transmitter for high energy laser beam |
JPH04167906A (en) * | 1989-04-24 | 1992-06-16 | Aluminum Co Of America <Alcoa> | Method for rolling and forming anisotropic structure on rolling surface, rolled product, roller and reflecting plate product |
JPH11207477A (en) * | 1998-01-26 | 1999-08-03 | Mitsubishi Electric Corp | Scraping device and scraping method |
US5995686A (en) * | 1997-12-16 | 1999-11-30 | Hamburger; Robert N. | Fiber-optic sensor device and method |
JP2001066483A (en) * | 1999-08-25 | 2001-03-16 | Amada Eng Center Co Ltd | Optical fiber terminal device |
JP2003139996A (en) * | 2001-10-31 | 2003-05-14 | Mitsubishi Cable Ind Ltd | Optical connector for laser, laser guide, and optical fiber for laser |
JP2004191431A (en) * | 2002-12-06 | 2004-07-08 | Ccs Inc | Display device |
JP2006301178A (en) * | 2005-04-19 | 2006-11-02 | Fujikura Ltd | Bend sensor and its manufacturing method |
JP2006351436A (en) * | 2005-06-17 | 2006-12-28 | Sooramu Kk | Optical fiber illuminating device and its manufacturing method |
JP2007086779A (en) * | 2005-09-16 | 2007-04-05 | Matsushita Electric Ind Co Ltd | Fiber coating processing and slitting for non-confined light leakage |
JP2007188000A (en) * | 2006-01-16 | 2007-07-26 | Hamamatsu Photonics Kk | Optical fiber |
JP2007209992A (en) * | 2006-02-07 | 2007-08-23 | Toyo Univ | Laser beam machining method, deburring method, and article |
JP2007227713A (en) * | 2006-02-24 | 2007-09-06 | Fujikura Ltd | Interfiber fusion splicing structure, optical amplifier, and optical fiber laser |
WO2008123609A1 (en) * | 2007-04-04 | 2008-10-16 | Mitsubishi Electric Corporation | Laser processing apparatus and laser processing method |
JP2009149470A (en) * | 2007-12-20 | 2009-07-09 | Nippon Telegr & Teleph Corp <Ntt> | Preform for optical fiber and its manufacturing method |
-
2009
- 2009-12-04 JP JP2009276301A patent/JP2011118208A/en active Pending
-
2010
- 2010-11-26 WO PCT/JP2010/006918 patent/WO2011067908A1/en active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4575181A (en) * | 1983-04-26 | 1986-03-11 | Tokyo Shibaura Denki Kabushiki Kaisha | Optical fiber assembly with cladding light scattering means |
JPH01316705A (en) * | 1988-06-17 | 1989-12-21 | Fuji Photo Optical Co Ltd | Transmitter for high energy laser beam |
JPH04167906A (en) * | 1989-04-24 | 1992-06-16 | Aluminum Co Of America <Alcoa> | Method for rolling and forming anisotropic structure on rolling surface, rolled product, roller and reflecting plate product |
US5995686A (en) * | 1997-12-16 | 1999-11-30 | Hamburger; Robert N. | Fiber-optic sensor device and method |
JPH11207477A (en) * | 1998-01-26 | 1999-08-03 | Mitsubishi Electric Corp | Scraping device and scraping method |
JP2001066483A (en) * | 1999-08-25 | 2001-03-16 | Amada Eng Center Co Ltd | Optical fiber terminal device |
JP2003139996A (en) * | 2001-10-31 | 2003-05-14 | Mitsubishi Cable Ind Ltd | Optical connector for laser, laser guide, and optical fiber for laser |
JP2004191431A (en) * | 2002-12-06 | 2004-07-08 | Ccs Inc | Display device |
JP2006301178A (en) * | 2005-04-19 | 2006-11-02 | Fujikura Ltd | Bend sensor and its manufacturing method |
JP2006351436A (en) * | 2005-06-17 | 2006-12-28 | Sooramu Kk | Optical fiber illuminating device and its manufacturing method |
JP2007086779A (en) * | 2005-09-16 | 2007-04-05 | Matsushita Electric Ind Co Ltd | Fiber coating processing and slitting for non-confined light leakage |
JP2007188000A (en) * | 2006-01-16 | 2007-07-26 | Hamamatsu Photonics Kk | Optical fiber |
JP2007209992A (en) * | 2006-02-07 | 2007-08-23 | Toyo Univ | Laser beam machining method, deburring method, and article |
JP2007227713A (en) * | 2006-02-24 | 2007-09-06 | Fujikura Ltd | Interfiber fusion splicing structure, optical amplifier, and optical fiber laser |
WO2008123609A1 (en) * | 2007-04-04 | 2008-10-16 | Mitsubishi Electric Corporation | Laser processing apparatus and laser processing method |
JP2009149470A (en) * | 2007-12-20 | 2009-07-09 | Nippon Telegr & Teleph Corp <Ntt> | Preform for optical fiber and its manufacturing method |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8665916B2 (en) | 2011-06-29 | 2014-03-04 | Panasonic Corporation | Fiber laser |
WO2013001734A1 (en) * | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | Fiber laser |
US9223085B2 (en) | 2011-11-02 | 2015-12-29 | Trumpf Laser Gmbh | Optical transport fibre and method for producing same |
WO2013064481A1 (en) * | 2011-11-02 | 2013-05-10 | Trumpf Laser Gmbh + Co. Kg | Optical transport fibre and method for producing same |
WO2013191215A1 (en) * | 2012-06-21 | 2013-12-27 | オリンパス株式会社 | Light guide path sensor, and method for forming light guide path sensor |
JP2014006062A (en) * | 2012-06-21 | 2014-01-16 | Olympus Corp | Light guide sensor and method for forming the same |
CN104395691B (en) * | 2012-06-21 | 2017-08-22 | 奥林巴斯株式会社 | Light guide sensor, the method for forming light guide sensor |
US9518847B2 (en) | 2012-06-21 | 2016-12-13 | Olympus Corporation | Light guide sensor, and method of forming light guide sensor |
WO2014002715A1 (en) * | 2012-06-29 | 2014-01-03 | 住友電気工業株式会社 | Optical fiber and optical cable |
JP2014126687A (en) * | 2012-12-26 | 2014-07-07 | Mitsubishi Cable Ind Ltd | Optical fiber structure and manufacturing method for the same |
US9547121B2 (en) | 2013-01-28 | 2017-01-17 | Lumentum Operations Llc | Cladding light stripper and method of manufacturing |
JP2014146800A (en) * | 2013-01-28 | 2014-08-14 | Jds Uniphase Corp | Cladding light stripper and manufacturing method |
US10090631B2 (en) | 2013-01-28 | 2018-10-02 | Lumentum Operations Llc | Cladding light stripper and method of manufacturing |
GB2511923B (en) * | 2013-01-28 | 2018-10-03 | Lumentum Operations Llc | A cladding light stripper and method of manufacturing |
US10802209B2 (en) | 2013-01-28 | 2020-10-13 | Lumentum Operations Llc | Cladding light stripper |
GB2511923A (en) * | 2013-01-28 | 2014-09-17 | Jds Uniphase Corp | A cladding light stripper and method of manufacturing |
JP7008710B2 (en) | 2016-12-22 | 2022-01-25 | マジック リープ, インコーポレイテッド | Methods and systems for the fabrication of molded fiber elements using laser ablation |
US11332407B2 (en) | 2016-12-22 | 2022-05-17 | Magic Leap, Inc. | Methods and systems for fabrication of shaped fiber elements using laser ablation |
JP2020514214A (en) * | 2016-12-22 | 2020-05-21 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | Method and system for fabrication of shaped fiber elements using laser ablation |
US11009657B2 (en) | 2018-09-10 | 2021-05-18 | Nlight, Inc. | Optical fiber splice encapsulated by a cladding light stripper |
US11808973B2 (en) | 2018-09-10 | 2023-11-07 | Nlight, Inc. | Optical fiber splice encapsulated by a cladding light stripper |
US20200099190A1 (en) * | 2018-09-21 | 2020-03-26 | Nlight, Inc. | Optical fiber cladding light stripper |
US11575239B2 (en) | 2018-09-21 | 2023-02-07 | Nlight, Inc. | Optical fiber cladding light stripper |
DE102020113731A1 (en) | 2020-05-20 | 2021-11-25 | FiberBridge Photonics GmbH | glass fiber |
US11525954B2 (en) | 2020-05-20 | 2022-12-13 | FiberBridge Photonics GmbH | Glass fiber |
DE102020113731B4 (en) | 2020-05-20 | 2024-02-08 | FiberBridge Photonics GmbH | Fiberglass and fiberglass product |
Also Published As
Publication number | Publication date |
---|---|
JP2011118208A (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011067908A1 (en) | Optical fiber and method for working optical fiber | |
JP6275379B2 (en) | Optical fiber structure and manufacturing method thereof | |
US20100163537A1 (en) | Apparatus and method for laser machining | |
JP6189223B2 (en) | Clad light remover and manufacturing method | |
JP6329995B2 (en) | Optical device and laser apparatus | |
JP7361459B2 (en) | clad light remover | |
JP5786143B2 (en) | Fiber parts and laser equipment | |
EP3104201B1 (en) | Structure for eliminating excess light, and fiber laser | |
US10431951B2 (en) | Leakage light removal structure and fiber laser | |
JP6069350B2 (en) | High power fiber laser system with distributed mode absorber | |
JP2009169110A (en) | Optical fiber | |
US20170371097A1 (en) | Cladding light stripper | |
US11531163B2 (en) | High-numerical aperture light stripper | |
JP2007086779A (en) | Fiber coating processing and slitting for non-confined light leakage | |
JP2008201143A (en) | Cutting process of work | |
WO2014002715A1 (en) | Optical fiber and optical cable | |
WO2012050098A1 (en) | Laser processing device and laser processing method | |
JP5351824B2 (en) | Connector mounting structure to the optical fiber end | |
JP6661446B2 (en) | Mode stripper structure and laser light transmission method using the same | |
CN107508123A (en) | A kind of optical fiber laser fibre cladding residual pump photospallation method | |
CN107425404B (en) | Processing method of cladding light stripper | |
JP6903696B2 (en) | Clad mode stripper structure | |
JP2017223780A (en) | Optical device and laser apparatus | |
KR102269317B1 (en) | Cladding Power Stripper and Apparatus for Manufacturing the Same | |
JP2008188661A (en) | Laser beam machining method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10834364 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10834364 Country of ref document: EP Kind code of ref document: A1 |