WO2011065533A1 - Method for determination of sensitivity to pre-operative chemotherapy for breast cancer - Google Patents
Method for determination of sensitivity to pre-operative chemotherapy for breast cancer Download PDFInfo
- Publication number
- WO2011065533A1 WO2011065533A1 PCT/JP2010/071258 JP2010071258W WO2011065533A1 WO 2011065533 A1 WO2011065533 A1 WO 2011065533A1 JP 2010071258 W JP2010071258 W JP 2010071258W WO 2011065533 A1 WO2011065533 A1 WO 2011065533A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- expression level
- breast cancer
- value
- sample
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention relates to a method for determining sensitivity to breast cancer preoperative chemotherapy.
- breast cancer preoperative chemotherapy with an anticancer agent for the purpose of improving the preservation rate by tumor shrinkage is widely used.
- EBCCTCG Early Breast Cancer Trials' Collaborative Group
- the meta-analysis by EBCCTCG shows that the breast preservation rate is significantly higher in patients who have received preoperative chemotherapy than in patients who have not received preoperative chemotherapy.
- the meta-analysis by EBCCTCG also shows that the prognosis afterwards tends to be good in cases where complete pathological response (pCR) is obtained by preoperative chemotherapy. Therefore, pCR is believed to be useful as a prognostic factor for breast cancer in patients who have received preoperative chemotherapy.
- preoperative chemotherapy for breast cancer is expected to become increasingly popular.
- preoperative chemotherapy may not be effective in all cases of breast cancer, so other cases, including the transition to surgery, are required for cases that do not respond to preoperative chemotherapy. Yes.
- treatment tailoring is required in consideration of the responsiveness of individual tumors to preoperative chemotherapy (sensitivity to preoperative chemotherapy).
- sensitivity to preoperative chemotherapy it is difficult at present because a product that accurately determines sensitivity to preoperative chemotherapy has not been realized.
- a small amount of biological sample containing breast cancer tissue can be obtained by, for example, mammotome biopsy.
- Patent Document 1 multivariate analysis of the expression of a specific gene in a specimen is performed, and the specimen is classified into groups having similar gene expression patterns using the analysis result as an index. The prediction is described.
- the present invention [1] (A) A step of extracting RNA from a sample collected from a subject, (B) a step of preparing a measurement sample using the RNA extracted in the step (A), (C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3, (D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D) The process of A method for determining sensitivity to breast cancer preoperative chemotherapy, [2] The method according to [1], wherein in the step (D), the expression level is analyzed using a classification method, [3] The method according to [2], wherein the classification method is Between-group analysis. [4] In the step (C), the expression level of each gene in the gene group described in Table 1 and
- i represents the gene number assigned to each gene in the gene group described in Table 1 and Table 2
- w i represents the gene number i described in Table 4, Table 5 and Table 6.
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value rounded to the first decimal place
- abs represents an absolute value of the value in parentheses
- y i represents the following formula (3):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i across the specimen
- s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.
- ⁇ i represents the total over each gene.
- i a gene number assigned to each gene of the gene group described in Table 3
- w i a weighting factor corresponding to the gene of gene number i described in Table 7
- X i is the following formula (5):
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis
- abs represents an absolute value of the value in the parenthesis
- y i represents the following formula (6):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i over the specimen
- s i represents the gene of gene number i
- ⁇ i represents the total over each gene.
- the method for determining sensitivity to breast cancer preoperative chemotherapy according to the present invention has an excellent effect that the sensitivity of breast cancer to preoperative chemotherapy can be accurately determined.
- Example 1 it is a figure which shows the result which compared the determination result by a discriminant, and the pathological diagnosis result about the sample of 50 breast cancer patients of a training set.
- Example 2 it is a figure which shows the result which compared the determination result by a discriminant, and the pathological diagnosis result about the sample of 34 breast cancer patients of a validation set.
- Example 3 it is a dendrogram based on the data of the expression level of each sample of a training set.
- Example 3 it is a dendrogram based on the expression level data of each specimen of the validation set.
- Example 4 it is a scatter diagram of the 1st principal component score and the 2nd principal component score based on the data of the expression level of each specimen of a training set.
- Example 4 it is a scatter diagram of the 1st principal component score and the 2nd principal component score based on the data of the expression level of each specimen of a validation set.
- Example 5 it is a graph which shows the relationship between the number of probes, and sensitivity x specificity.
- Example 6 it is a figure which shows the result which compared the determination result by a discriminant, and the pathological diagnosis result about the sample of 50 breast cancer patients of a training set.
- Example 7 it is a figure which shows the result which compared the determination result by a discriminant, and the pathological diagnosis result about the sample of 34 breast cancer patients of a validation set.
- Example 8 it is a figure which shows the result of having compared the determination result by a discriminant, and the pathological diagnosis result about the sample of 50 breast cancer patients of a training set.
- Example 9 it is a figure which shows the result of having compared the determination result by a discriminant, and the pathological diagnosis result about the sample of 34 breast cancer patients of a validation set.
- the method for determining sensitivity to breast cancer preoperative chemotherapy of the present invention comprises (A) a step of extracting RNA from a sample collected from a subject, (B) a step of preparing a measurement sample using the RNA extracted in the step (A), (C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3, (D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D)
- the process of It is a method including.
- “No” indicates a gene number.
- the “probe set.ID” is attached to each probe set in which 11 to 20 probes fixed on the base material are grouped in a microarray [trade name: GeneChip (registered trademark) System] manufactured by Affymetrix. Indicates the ID number.
- “UniGene.ID” indicates the ID number of UniGene, which is a database published by NCBI.
- GenBank accession number is the accession number of the public database GenBank used for designing the sequence of each probe fixed on the substrate in the microarray [trade name: GeneChip (registered trademark) System] manufactured by Affymetrix. Indicates.
- Table 3 shows 13 probe sets included in the probe sets described in Table 1 and Table 2.
- the present inventors measured the expression level of each gene of the gene group described in Table 1 and Table 2, and evaluated sensitivity to breast cancer preoperative chemotherapy based on the result of comprehensive analysis of the expression level. In some cases, it has been found that the sensitivity can be accurately determined. Moreover, the present inventors measured at least the expression level of each gene in the gene group described in Table 3 among the expression levels of the genes selected from the gene group described in Table 1 and Table 2, It has been found that the sensitivity can be determined with high accuracy. Furthermore, in particular, it was found that when the expression level was analyzed by a classification method incorporating multivariate analysis, the sensitivity to breast cancer preoperative chemotherapy can be accurately determined. The present invention has been completed based on such findings.
- the term “expression level of each gene of the gene group described in Table 1 and Table 2” is the probe set described in Table 1 and Table 2. It means the expression level of the gene holding the nucleic acid indicated by the GenBank accession number described in Table 1 and Table 2 corresponding to the ID. Further, in this specification, the term “expression level of a gene selected from the gene group described in Table 1 and Table 2” is the probe set described in Table 1 and Table 2. It means the expression level of a gene holding a nucleic acid selected from among the nucleic acids indicated by the GenBank accession numbers described in Table 1 and Table 2 corresponding to the ID. Furthermore, in this specification, the term “expression level of a gene selected from the gene group described in Table 3” is the probe set described in Table 3.
- GenBank accession number indicates a number in the latest release as of March 11, 2009.
- the “gene” may be a unit of a base sequence from which RNA as a gene transcription product is extracted, and is a concept including an EST (expressed sequence tag).
- RNA is first extracted from a sample collected from a subject [step (A)].
- the sample is preferably a sample collected from a subject by a pretreatment biopsy.
- the specimen include tissues collected from a subject by biopsy before treatment.
- a biopsy for example, a puncture aspiration biopsy, a core needle biopsy, a needle biopsy device with a suction device (for example, product name: Mammotome (registered trademark) manufactured by Johnson & Johnson Co., Ltd.) is used.
- Biopsy referred to as “mammotome biopsy” and the like.
- the mammotome biopsy is preferable.
- RNA from the specimen can be performed by a known method.
- a commercially available kit for extracting RNA can also be used.
- a product name: Trizol (registered trademark) manufactured by Invitrogen Corporation a product name: Qiagen RNeasy kit (registered trademark) manufactured by Qiagen, or the like can be given.
- a measurement sample is prepared using the RNA extracted in the step (A) [step (B)].
- a measurement sample suitable for measuring the expression level of a gene that is, the production level of a transcription product (mRNA, cDNA, etc.) corresponding to the gene is prepared.
- mRNA is purified from the RNA extracted in the step (A)
- the corresponding cDNA is amplified using the RNA extracted in the step (A). It can prepare by.
- the RNA extracted in the step (A) may be used as it is as a measurement sample as long as the expression level of the gene can be measured.
- the purification of the mRNA can be performed using a known purification method.
- a commercially available purification kit may be used.
- Amplification of cDNA can be performed using a known method.
- a commercially available kit for amplifying cDNA can also be used for amplification of cDNA.
- examples of the commercially available kit include a product name: WT-Ovation TM FFPE System V2 manufactured by NuGEN Technologies.
- the expression level of a gene selected from the gene group described in Table 1 and Table 2 is measured using the measurement sample obtained in the step (B).
- the expression level of the gene includes at least the expression level of each gene in the gene group shown in Table 3 [step (C)].
- the gene whose expression level is to be measured only needs to include at least all the genes of the gene group described in Table 3, and the number and types of genes used are particularly limited. is not. That is, you may select all the 70 genes of the gene group of the said Table 1 and Table 2 as a gene used at the said process (C) (1st aspect). Moreover, you may select the gene group of Table 3 as a gene used at the said process (C) (2nd aspect). Furthermore, as a gene used in the step (C), the gene group described in Table 3 and another gene may be selected from the gene groups described in Table 1 and Table 2 (third) Embodiment).
- the gene expression level can be measured by, for example, microarray, quantitative RT-PCR, quantitative PCR, Northern blot analysis, or the like.
- the expression level of each gene in the gene group can be measured quickly and easily, it is preferably measured using a microarray.
- the expression level may be used as it is in the fluorescence intensity in the microarray in the following steps.
- the measurement of gene expression level using a microarray can be performed using a known method. Specifically, for example, a probe set described in Table 1 and Table 2 by using a product name: Human Genome U133 Plus 2.0 Array manufactured by Affymetrix, which is a microarray capable of analyzing human genome expression. .
- the expression level of each gene in the gene group can be measured at one time by 70 probes indicated by ID.
- step (D) the expression level of the gene measured in the step (C) is analyzed [step (D)]. Then, based on the analysis result obtained at the said process (D), the sensitivity with respect to a breast cancer preoperative chemotherapy is determined [process (E)].
- the expression level can be analyzed using, for example, a classification method, hierarchical cluster analysis, and scoring method.
- the expression level raw data of the measured expression level normalized by, for example, the expression level of a housekeeping gene can be used.
- a known method can be used as the classification method.
- classification methods include, for example, Between-group analysis (BGA) [Culhane, AC, et al., Bioinformatics, 2002, Vol. 1600-1608), “see Between-group analysis of microarray data (Between-group analysis of microarray data)”, support vector machine (SVM), diagonal linear discrimination (DLDA) and k nearest neighbor classification (kNN), Examples include decision trees, Random Forest, and neural networks.
- BGA Between-group analysis
- SVM support vector machine
- DLDA diagonal linear discrimination
- kNN k nearest neighbor classification
- BGA is preferable from the viewpoint that it is possible to classify those that are sensitive to breast cancer preoperative chemotherapy and those that are insensitive.
- the sensitivity to breast cancer preoperative chemotherapy can be determined based on the result of such classification.
- a discriminant constructed using BGA is used according to the number and type of genes used in the step (C) (the first to third aspects). it can.
- the expression level of each gene in the gene group described in Table 1 and Table 2 is measured. And it can determine using the measured expression level of each gene, and the discriminant represented by following formula (1).
- i represents the gene number assigned to each gene in the gene group described in Table 1 and Table 2
- w i represents the gene number i described in Table 4, Table 5 and Table 6.
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis
- abs represents an absolute value of the value in the parenthesis
- y i represents the following formula (3):
- X i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i across the sample
- s i represents the expression level of the gene of gene number i.
- a standard deviation is shown.
- a standardized expression level of the gene of gene number i shown in (3) is shown.
- step (C) first, the expression level of each gene in the gene group described in Table 3 is measured. And it can determine using the measured expression level of each gene, and the discriminant represented by following formula (4).
- i a gene number assigned to each gene of the gene group described in Table 3
- w i a weighting factor corresponding to the gene of gene number i described in Table 7
- X i is the following formula (5):
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis
- abs represents an absolute value of the value in the parenthesis
- y i represents the following formula (6):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i over the specimen
- s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.
- ⁇ i represents the total over each gene. ⁇ .
- Table 8 and Table 9 50 genes including the gene group described in Table 3 among the genes of the gene group described in Table 1 and Table 2). Examples include determination using each gene in the gene group. In this case, the expression level of each gene in the gene group described in Table 8 and Table 9 is measured. And it can determine using the measured expression level of each gene, and the discriminant represented by following formula (7).
- i represents the gene number assigned to each gene in the gene group described in Table 8 and Table 9, and w i corresponds to the gene of gene number i described in Table 8 and Table 9.
- X i is the following formula (8):
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis
- abs represents an absolute value of the value in the parenthesis
- y i represents the following formula (9):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i across the specimen
- s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.
- ⁇ i represents the total over each gene. ⁇ .
- the solution D is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, it is sensitive to breast cancer preoperative chemotherapy. Can be determined to be insensitive.
- the expression level data (or fluorescence intensity data relating to the expression level) of the specimen collected from the subject and the pathological complete response (pCR) were obtained by preoperative chemotherapy.
- Data on the expression level of the group of known specimens (or fluorescence intensity data relating to the expression level) and data on the expression level of the group of specimens known to be unsuccessful (or fluorescence intensity data relating to the expression level) Using the expression level (or fluorescence intensity related to the expression level) to calculate distances indicating the similarity between samples, forming various clusters based on this distance, integrating the clusters, and creating a dendrogram This can be done by creating.
- examples of the distance include a Pearson correlation coefficient and a Euclidean distance.
- cluster integration can be performed by, for example, the Ward method, the farthest neighbor method, the center-of-center distance method, or the like.
- the Pearson correlation coefficient and the Ward method by using the Pearson correlation coefficient and the Ward method, those that are sensitive to breast cancer preoperative chemotherapy and those that are insensitive can be well separated.
- the sensitivity to breast cancer preoperative chemotherapy can be determined based on the result of the hierarchical cluster analysis.
- a known method can be used as the scoring method.
- Examples of such a scoring method include principal component analysis, multiple regression analysis, logistic regression analysis, Partial Last Square, and the like.
- principal component analysis is preferable from the viewpoint that it is possible to satisfactorily distinguish between those that are sensitive to breast cancer preoperative chemotherapy and those that are insensitive.
- the score of the specimen sensitive to breast cancer preoperative chemotherapy and the score of the non-sensitive specimen are separated based on the expression level. Is made. Therefore, in this case, in the step (E), the sensitivity to breast cancer preoperative chemotherapy can be determined based on the result of scoring.
- the gene expression levels of the gene groups described in Tables 1 and 2 and at least the gene groups described in Table 3 are used. Therefore, the sensitivity to preoperative chemotherapy for breast cancer can be accurately determined.
- Example 1 Collection of specimens from test subjects Aspiration device with a collection needle (size 11G) from each of 90 breast cancer patients who had undergone preoperative chemotherapy at Osaka University Hospital between 2003 and 2008 A specimen was collected using a needle biopsy device (manufactured by Johnson & Johnson, trade name: Mammotome (registered trademark)). Immediately after collection of the specimen, the specimen was placed in liquid nitrogen and stored at ⁇ 80 ° C. for a long time until use.
- a needle biopsy device manufactured by Johnson & Johnson, trade name: Mammotome (registered trademark)
- pCR group pathological complete response group
- npCR group non-response group
- RNA samples having an RNA amount of 550 ng or more and generally RIN> 6 were used.
- RNA sample corresponding to 50 ng of RNA
- a random primer attached to a transcription product amplification kit manufactured by NuGEN Technologies, trade name: WT-Ovation TM FFPE System V2
- first-strand cDNA and second-strand cDNA were synthesized and amplified by Ribo-SPIA TM amplification technology.
- Ribo-SPIA TM amplification technology In this way, 90 types of cDNA corresponding to 90 samples were obtained.
- the obtained fragmented biotin-labeled cDNA was hybridized overnight with a nucleic acid (probe set) on an array for human genome expression analysis [manufactured by Affymetrix, trade name: Human Genome U133 Plus 2.0 Array].
- the fragmented biotin-labeled cDNA and the nucleic acid (probe set) on the array were hybridized according to the manufacturer's recommended conditions (Affymetrix).
- the array after hybridization is subjected to a microarray washing / staining treatment-dedicated device (manufactured by Affymetrix, trade name: GeneChip (registered trademark) Fluidics Station 450), and nucleic acids (probe set) on the array
- a microarray washing / staining treatment-dedicated device manufactured by Affymetrix, trade name: GeneChip (registered trademark) Fluidics Station 450
- nucleic acids probe set
- the array is subjected to a laser scanner (trade name: GeneChip (registered trademark) Scanner 3000, manufactured by Affymetrix), and based on a fluorescent labeling substance of cDNA hybridized to the nucleic acid (probe set) on the array.
- the signal was read and the fluorescence intensity was quantified.
- the obtained fluorescence intensity data was processed by software [manufactured by Affymetrix, trade name: GeneChip (registered trademark) Operating Software] to obtain a CEL file.
- the CEL file was used for gene expression analysis and data quality check. In this way, CEL files were obtained for fluorescence intensity data based on nucleic acids corresponding to the probes of the probe set in each of 90 samples.
- the fluorescence intensity data of each of the 90 specimens 6 cases of data that are out of the population by the first principal component of PCA are excluded, and the fluorescence intensity data of each of the remaining 84 specimens are as follows. Used for analysis.
- the 3 ′ / 5 ′ ratio of the ⁇ -actin gene is generally less than 21 and the 3 ′ / 5 ′ ratio of the GAPDH gene is approximately 3 Less than 0.0
- P-call% was in the range of more than 60% and less than 70%
- the scaling factor was generally less than 10%.
- the 3 '/ 5' ratio of the ⁇ -actin gene, the 3 '/ 5' ratio of the GAPDH gene, P-call%, and the scaling factor are one or more items.
- the value was significantly different from that of the quality control parameter.
- the fluorescence intensity data of each of the 84 samples was divided into 50 training sets and 34 validation sets.
- the pCR rate in the training set and the pCR rate in the validation set were randomly allocated from the pCR group and the npCR group, respectively.
- the pCR rate in the training set was 30% (15 cases / 50 cases), and the pCR rate in the validation set was 32.3% (11 cases / 34 cases).
- the following analysis was applied to the training set data except for those described separately.
- the expression level of the gene holding the nucleic acid corresponding to each probe set is expressed by the following formula (10): [Measured value of expression level (fluorescence intensity) (raw data) ⁇ average value of expression level (fluorescence intensity)] / standard deviation (10) Normalized by
- the optimal number of probe sets for determination of sensitivity to breast cancer preoperative chemotherapy was determined by sequential forward filtering. Specifically, from the 500 probe sets, the probe set is selected while increasing the number of probe sets to be selected in increments of 5 until the p value reaches 500, and the discriminant is constructed. Was done. Then, the number of probe sets that maximized the product of sensitivity and specificity was determined.
- the sensitivity was obtained by dividing the number of specimens whose pathological diagnosis result was pCR and predicted to be pCR by the number of specimens whose pathological diagnosis result was pCR.
- the specificity was determined by dividing the number of specimens whose pathological diagnosis result was npCR and predicted to be npCR by the number of specimens whose pathological diagnosis result was npCR.
- the constructed discriminant is a discriminant represented by the following formula (1).
- i represents the gene number assigned to each gene in the gene group described in Table 1 and Table 2
- w i represents the gene number i described in Table 4, Table 5 and Table 6.
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value rounded to the first decimal place
- abs represents an absolute value of the value in parentheses
- y i represents the following formula (3):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i across the specimen
- s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.
- ⁇ i represents the total over each gene. ⁇ .
- the solution D of the discriminant represented by the formula (1) is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, it is preoperative for breast cancer. Determined to be insensitive to chemotherapy.
- FIG. 1 shows the result of examining the relationship between the determination result by the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 1.
- the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
- the sensitivity is 100%
- the specificity is 65.7%
- the negative predictive value (NPV) is 100%
- the positive predictive value (PPV) is 55.6%.
- Example 2 Evaluation of judgment accuracy of discriminant
- expression level data fluorescence intensity data
- the pathological diagnosis result was evaluated as the true value by comparing the pathological diagnosis result with the determination result based on the discriminant represented by the formula (1).
- FIG. 2 shows the result of comparing the determination result based on the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set.
- the 15 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (1). Then, it is determined that 19 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (1) is used, the 15 samples are samples of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
- the sensitivity is 90.9%
- the specificity is 60.9%
- the negative predictive value (NPV) is 93.3%
- the positive predictive value (PPV) 52.6%.
- the discriminant represented by the above formula (1) is applied to breast cancer preoperative chemotherapy as in the case of the specimen assigned to the training set. It can be seen that the sensitivity can be accurately determined. In addition, by using the expression level of each gene in the gene group described in Table 1 and Table 2 and the discriminant represented by the above formula (1), regardless of the specimen used, it can be used for breast cancer preoperative chemotherapy. It is suggested that sensitivity can be determined with high accuracy.
- Example 3 Determination by Hierarchical Cluster Analysis
- the Pearson phase for the fluorescence intensity (expression level) data of each sample distributed to the training set and the fluorescence intensity (expression level) data of each sample allocated to the validation set Hierarchical cluster analysis was performed using the number of relations and the ward method to create a dendrogram.
- a dendrogram based on the expression level data of each sample of the training set is shown in FIG.
- the dendrogram based on the expression level data of each specimen of the validation set is shown in FIG.
- Example 4 Determination by Principal Component Analysis
- the principal component analysis was performed on the fluorescence intensity (expression level) data of each specimen distributed to the training set using the genes shown in Tables 1 and 2, and A conversion coefficient was calculated, and first and second principal component scores were calculated.
- the first principal component score and the second principal component score were calculated according to the conversion coefficient of the gene for the fluorescence intensity (expression level) data of each specimen distributed to the validation set.
- the conversion coefficients calculated in Example 4 are shown in Table 13 and Table 14.
- Example 4 a scatter diagram of the first principal component score and the second principal component score based on the expression level data of each specimen of the training set is shown in FIG.
- Example 4 the scatter diagram of the 1st and 2nd main component score based on the data of the expression level of each specimen of a validation set is shown in FIG.
- PCA1 indicates a first principal component score
- PCA2 indicates a second principal component score.
- white circles represent the pCR group
- crosses represent the npCR group.
- Example 5 Of the 70 genes obtained in Example 1, sufficient gene combinations to determine susceptibility to breast cancer preoperative chemotherapy were examined by the variable reduction (Backward-elimination) method shown below.
- the arbitrary gene A was excluded from the 70 genes obtained in Example 1, and the remaining 69 gene combinations were selected.
- the weighting condition of the pCR group is set to 4, and in the same manner as in Example 1, a discriminant is constructed using BGA, and 3-Fold Cross-Validation is performed. Sensitivity and specificity were evaluated.
- the same training set as in Example 1 was used for evaluation of sensitivity and specificity.
- 3-Fold Cross-Validation the training set cases were divided into three groups. Two of these groups were used for constructing the discriminant, and the remaining one group was used for evaluation of sensitivity and specificity.
- Example 1 instead of the gene A, except that the gene other than the gene A out of the 70 genes obtained in Example 1 was excluded and a combination of 69 genes was selected, the same as described above, Using a combination of 69 genes out of the 70 genes obtained in Example 1, a discriminant was constructed for each of 69 patterns excluding genes other than gene A. For these 69 discriminants, sensitivity and specificity were evaluated in the same manner as described above. Then, among the 70 combinations of 69 genes including the above-mentioned case excluding gene A, the combination having the maximum product of sensitivity and specificity was selected. In this way, genes that cause a decrease in the product of sensitivity and specificity were excluded from the genes constituting the selected combination.
- FIG. 7 shows the results of examining the relationship between the number of probes and sensitivity ⁇ specificity in Example 5.
- FIG. 7 shows that the product of sensitivity and specificity (sensitivity ⁇ specificity) is greatest when the number of genes (the number of probes) is 13 to 24. That is, it can be seen from this result that the minimum number of genes (the number of probes) having the maximum value of the product of sensitivity and specificity (sensitivity ⁇ specificity) is 13. These 13 genes are as shown in Table 3 above.
- the constructed discriminant is a discriminant represented by the following formula (4).
- i a gene number assigned to each gene of the gene group described in Table 3
- w i a weighting factor corresponding to the gene of gene number i described in Table 7
- X i is the following formula (5):
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis
- abs represents an absolute value of the value in the parenthesis
- y i represents the following formula (6):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i over the specimen
- s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.
- ⁇ i represents the total over each gene. ⁇ .
- the solution D of the discriminant represented by the above formula (4) is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, preoperative breast cancer Determined to be insensitive to chemotherapy.
- Example 6 In Example 1, using the expression level data (fluorescence intensity data) measured for all 50 specimens allocated to the training set and the discriminant represented by the above formula (4), a total of 50 samples were used. It was determined whether the sample of the example corresponds to the sample of the breast cancer patient in the pCR group or the npCR group. Then, with the pathological diagnosis result as a true value, the performance of the discriminant expression was evaluated by comparing the pathological diagnosis result with the determination result based on the discriminant expression represented by the formula (4).
- FIG. 8 shows the result of examining the relationship between the determination result based on the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 6.
- the sensitivity is 100%
- the specificity is 65.7%
- the negative predictive value (NPV) is 100%
- the positive predictive value (PPV) is 55.6%.
- Example 7 In Example 1, using the expression level data (fluorescence intensity data) measured for all 34 specimens allocated to the validation set and the discriminant represented by the formula (4), Sensitivity to breast cancer pre-operative chemotherapy was determined by determining whether the sample in the example corresponds to a sample from a breast cancer patient in the pCR group or the npCR group. Further, the pathological diagnosis result was evaluated as a true value, and the performance of the discriminant was evaluated by comparing the pathological diagnosis result with the determination result by the discriminant represented by the formula (4).
- FIG. 9 shows the result of comparison between the determination result by the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set in Example 7.
- 14 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (4). Then, it is determined that 20 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (4) is used, the 14 samples are samples of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
- the sensitivity is 81.8%
- the specificity is 52.2%
- the negative predictive value (NPV) is 85. 7%
- positive predictive value (PPV) 45.0%.
- the discriminant represented by the above equation (4) is used for preoperative chemotherapy for breast cancer as in the case of the specimen assigned to the training set. It can be seen that the sensitivity can be accurately determined. In addition, it is suggested that the sensitivity to preoperative chemotherapy for breast cancer can be determined with sufficient accuracy by using the expression level of each gene in the gene group described in Table 3 and the discriminant represented by Formula (4). Is done.
- Example 8 In Example 5, when the number of genes (the number of probes) is 50, the combination of genes having a maximum product of sensitivity and specificity (sensitivity ⁇ specificity) is the gene group shown in Table 8 and Table 9. It is a combination.
- the constructed discriminant is a discriminant represented by the following formula (7).
- i represents the gene number assigned to each gene in the gene group described in Table 8 and Table 9, and w i corresponds to the gene of gene number i described in Table 8 and Table 9.
- X i is the following formula (8):
- j represents the sample number assigned to each sample
- y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j
- min represents the value in parentheses.
- Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis
- abs represents an absolute value of the value in the parenthesis
- y i represents the following formula (9):
- x i represents the expression level of the gene of gene number i
- u i represents the average value of the expression level of the gene of gene number i across the specimen
- s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.
- ⁇ i represents the total over each gene. ⁇ .
- Example 1 using the expression level data (fluorescence intensity data) measured for all 50 samples distributed to the training set and the discriminant represented by the above formula (7), a total of 50 samples were used. It was determined whether the sample of the example corresponds to the sample of the breast cancer patient in the pCR group or the npCR group. Then, with the pathological diagnosis result as a true value, the performance of the discriminant expression was evaluated by comparing the pathological diagnosis result with the determination result based on the discriminant expression represented by the expression (7).
- FIG. 10 shows the results of examining the relationship between the determination result based on the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 8.
- the sensitivity is 100%
- the specificity is 65.7%
- the negative predictive value (NPV) is 100%
- the positive predictive value (PPV) is 55.6%.
- Example 9 In Example 1, using the expression level data (fluorescence intensity data) measured for all 34 specimens distributed to the validation set and the discriminant represented by the above formula (7), Sensitivity to breast cancer pre-operative chemotherapy was determined by determining whether the sample in the example corresponds to a sample from a breast cancer patient in the pCR group or the npCR group. Further, the pathological diagnosis result was evaluated as the true value by comparing the pathological diagnosis result with the determination result by the discriminant represented by the formula (7). In Example 9, FIG. 11 shows the result of comparing the determination result by the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set.
- 15 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (7). Then, it is determined that 19 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (7) is used, the 15 samples are samples of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
- the sensitivity is 81.8%
- the specificity is 56.5%
- the negative predictive value (NPV) is 86. 7%
- positive predictive value (PPV) 47.4%.
- the discriminant represented by the above equation (7) is used for preoperative chemotherapy for breast cancer, as in the case of the samples distributed to the training set. It can be seen that the sensitivity can be accurately determined. In addition, by using the expression level of each gene of the gene group described in Table 8 and Table 9 and the discriminant represented by the formula (7), the sensitivity to breast cancer preoperative chemotherapy is determined with sufficient accuracy. It is suggested that it can be done.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Hospice & Palliative Care (AREA)
- Biophysics (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
RNA that is extracted from a sample collected from a subject is amplified to prepare a measurement sample, the expression amounts of genes included in a specific gene group are measured using the measurement sample, and the sensitivity to a pre-operative chemotherapy for breast cancer is determined based on the results obtained by analyzing the expression amounts.
Description
本発明は、乳癌術前化学療法に対する感受性の判定方法に関する。
The present invention relates to a method for determining sensitivity to breast cancer preoperative chemotherapy.
乳癌の治療においては、腫瘍縮小による温存率の向上を目的とした抗癌剤による乳癌術前化学療法が広く普及している。Early Breast Cancer Trialists’ Collaborative Group (EBCTCG)によるメタアナリシスにおいては、術前化学療法を受けた患者と術後化学療法を受けた患者との間では、乳癌の再発の抑制および生存率の向上に関して、差が無いことが示されている。
In breast cancer treatment, breast cancer preoperative chemotherapy with an anticancer agent for the purpose of improving the preservation rate by tumor shrinkage is widely used. In a meta-analysis with Early Breast Cancer Trials' Collaborative Group (EBCCTCG), regarding the suppression of breast cancer recurrence and the improvement of survival rate between patients who received preoperative chemotherapy and those who received postoperative chemotherapy, It is shown that there is no difference.
しかも、前記EBCTCGによるメタアナリシスでは、術前化学療法を受けた患者においては、術前化学療法を受けていない患者に比べて、乳房温存率が有意に高くなっていることが示されている。また、前記EBCTCGによるメタアナリシスでは、術前化学療法により病理学的完全奏功(pCR)の得られた症例では、その後の予後が良好である傾向があることも示されている。そのため、pCRは、術前化学療法を受けた患者における乳癌の予後予測因子として有用であると考えられている。また、このような背景から、乳癌における術前化学療法は、今後ますます普及していくものと予想されている。
Moreover, the meta-analysis by EBCCTCG shows that the breast preservation rate is significantly higher in patients who have received preoperative chemotherapy than in patients who have not received preoperative chemotherapy. In addition, the meta-analysis by EBCCTCG also shows that the prognosis afterwards tends to be good in cases where complete pathological response (pCR) is obtained by preoperative chemotherapy. Therefore, pCR is believed to be useful as a prognostic factor for breast cancer in patients who have received preoperative chemotherapy. Against this background, preoperative chemotherapy for breast cancer is expected to become increasingly popular.
しかしながら、術前化学療法は、乳癌の全ての症例に対して有効であるとは限らないため、術前化学療法に反応しない症例では、手術への移行も含めた他の対応が必要となっている。
このように、個々の腫瘍の術前化学療法に対する反応性(術前化学療法に対する感受性)を考慮して、治療の個別化(tailoring)が求められている。しかしながら、術前化学療法に対する感受性を精度良く判定する製品が実現化されていないため、現状では難しい。 However, preoperative chemotherapy may not be effective in all cases of breast cancer, so other cases, including the transition to surgery, are required for cases that do not respond to preoperative chemotherapy. Yes.
In this way, treatment tailoring is required in consideration of the responsiveness of individual tumors to preoperative chemotherapy (sensitivity to preoperative chemotherapy). However, it is difficult at present because a product that accurately determines sensitivity to preoperative chemotherapy has not been realized.
このように、個々の腫瘍の術前化学療法に対する反応性(術前化学療法に対する感受性)を考慮して、治療の個別化(tailoring)が求められている。しかしながら、術前化学療法に対する感受性を精度良く判定する製品が実現化されていないため、現状では難しい。 However, preoperative chemotherapy may not be effective in all cases of breast cancer, so other cases, including the transition to surgery, are required for cases that do not respond to preoperative chemotherapy. Yes.
In this way, treatment tailoring is required in consideration of the responsiveness of individual tumors to preoperative chemotherapy (sensitivity to preoperative chemotherapy). However, it is difficult at present because a product that accurately determines sensitivity to preoperative chemotherapy has not been realized.
ところで、乳癌の治療に際しては、治療開始前に、組織が乳癌組織であるかどうかの診断を行なうために、例えば、穿刺吸引生検、コア針生検、吸引装置付き針生検装置を用いた生検(例えば、マンモトーム生検など)等によって、乳癌組織を含む微量な生物試料を得ることができる。
By the way, in the treatment of breast cancer, in order to diagnose whether the tissue is a breast cancer tissue before the start of treatment, for example, biopsy using a puncture aspiration biopsy, core needle biopsy, needle biopsy device with a suction device A small amount of biological sample containing breast cancer tissue can be obtained by, for example, mammotome biopsy.
近年、このような微量な生物試料から抽出された核酸を用い、マイクロアレイによる網羅的遺伝子発現情報解析を行なうことが可能になっている。前記網羅的遺伝子発現情報解析より、予後などの生物学的特性の違いや治療に対する感受性の違いを癌の個性として遺伝子の発現量で定量化して識別することや、性質が似ている複数の症例で共通の発現パターンを示す遺伝子群を同定すること、類似の発現パターンを示す遺伝子群がある症例を分類することなどが試みられている(例えば、特許文献1参照)。
In recent years, it has become possible to perform comprehensive gene expression information analysis using a microarray using nucleic acids extracted from such a small amount of biological sample. Based on the above comprehensive gene expression information analysis, it is possible to quantify and identify differences in biological characteristics such as prognosis and differences in sensitivity to treatment as individuality of cancer by gene expression level, and multiple cases with similar characteristics Attempts have been made to identify gene groups exhibiting a common expression pattern and to classify cases having gene groups exhibiting similar expression patterns (see, for example, Patent Document 1).
前記特許文献1には、検体における特定の遺伝子の発現を多変量解析して、その解析結果を指標として遺伝子の発現パターンが類似する群ごとに検体を分類し、分類結果から乳癌などの状態を予測することが記載されている。
In Patent Document 1, multivariate analysis of the expression of a specific gene in a specimen is performed, and the specimen is classified into groups having similar gene expression patterns using the analysis result as an index. The prediction is described.
しかしながら、術前化学療法に対する感受性などをより精度良く判定する方法が求められているのが現状である。
However, there is currently a need for a method for more accurately determining sensitivity to preoperative chemotherapy.
本発明は、乳癌術前化学療法に対する感受性を精度良く判定することができる乳癌術前化学療法に対する感受性の判定方法を提供することを目的とする。
It is an object of the present invention to provide a method for determining sensitivity to breast cancer preoperative chemotherapy that can accurately determine sensitivity to breast cancer preoperative chemotherapy.
すなわち、本発明は、
〔1〕 (A)被験者から採取された検体からRNAを抽出する工程、
(B)前記工程(A)で抽出されたRNAを用いて測定用試料を調製する工程、
(C)前記工程(B)で得られた測定用試料を用いて、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量を測定する工程であって、前記遺伝子の発現量が、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも含むものである工程、
(D)前記工程(C)で測定された前記遺伝子の発現量を解析する工程、および
(E)前記工程(D)で得られた解析結果に基づいて、乳癌術前化学療法に対する感受性を判定する工程、
を含む、乳癌術前化学療法に対する感受性の判定方法、
〔2〕 前記工程(D)において、前記発現量を、クラス分け手法を用いて解析する、前記〔1〕に記載の方法、
〔3〕 前記クラス分け手法が、Between-group analysisである、前記〔2〕に記載の方法、
〔4〕 前記工程(C)において、表1および表2に記載の遺伝子群の各遺伝子の発現量を測定し、測定された各遺伝子の発現量と、下記式(1): That is, the present invention
[1] (A) A step of extracting RNA from a sample collected from a subject,
(B) a step of preparing a measurement sample using the RNA extracted in the step (A),
(C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3,
(D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D) The process of
A method for determining sensitivity to breast cancer preoperative chemotherapy,
[2] The method according to [1], wherein in the step (D), the expression level is analyzed using a classification method,
[3] The method according to [2], wherein the classification method is Between-group analysis.
[4] In the step (C), the expression level of each gene in the gene group described in Table 1 and Table 2 is measured, and the measured expression level of each gene is expressed by the following formula (1):
〔1〕 (A)被験者から採取された検体からRNAを抽出する工程、
(B)前記工程(A)で抽出されたRNAを用いて測定用試料を調製する工程、
(C)前記工程(B)で得られた測定用試料を用いて、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量を測定する工程であって、前記遺伝子の発現量が、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも含むものである工程、
(D)前記工程(C)で測定された前記遺伝子の発現量を解析する工程、および
(E)前記工程(D)で得られた解析結果に基づいて、乳癌術前化学療法に対する感受性を判定する工程、
を含む、乳癌術前化学療法に対する感受性の判定方法、
〔2〕 前記工程(D)において、前記発現量を、クラス分け手法を用いて解析する、前記〔1〕に記載の方法、
〔3〕 前記クラス分け手法が、Between-group analysisである、前記〔2〕に記載の方法、
〔4〕 前記工程(C)において、表1および表2に記載の遺伝子群の各遺伝子の発現量を測定し、測定された各遺伝子の発現量と、下記式(1): That is, the present invention
[1] (A) A step of extracting RNA from a sample collected from a subject,
(B) a step of preparing a measurement sample using the RNA extracted in the step (A),
(C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3,
(D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D) The process of
A method for determining sensitivity to breast cancer preoperative chemotherapy,
[2] The method according to [1], wherein in the step (D), the expression level is analyzed using a classification method,
[3] The method according to [2], wherein the classification method is Between-group analysis.
[4] In the step (C), the expression level of each gene in the gene group described in Table 1 and Table 2 is measured, and the measured expression level of each gene is expressed by the following formula (1):
{式(1)中、iは表1および表2に記載の遺伝子群の各遺伝子に付与された遺伝子番号を示し、wiは表4、表5および表6に記載された遺伝子番号iの遺伝子に対応する重み係数を示し、Xiは下記式(2):
{In formula (1), i represents the gene number assigned to each gene in the gene group described in Table 1 and Table 2, and w i represents the gene number i described in Table 4, Table 5 and Table 6. Indicates the weighting factor corresponding to the gene, and X i is the following formula (2):
〔式(2)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(3):
[In the formula (2), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value rounded to the first decimal place, abs represents an absolute value of the value in parentheses, and y i represents the following formula (3):
(式(3)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}
で表される判別式とを用い、前記判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する、前記〔3〕に記載の方法、
〔5〕 前記工程(C)において、表3に記載の遺伝子群の各遺伝子の発現量を測定し、測定された各遺伝子の発現量と、下記式(4): (In formula (3), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i across the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }
When the solution D of the discriminant is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, breast cancer preoperative chemistry The method according to [3], wherein the method is determined to be insensitive to therapy,
[5] In the step (C), the expression level of each gene in the gene group described in Table 3 was measured, and the measured expression level of each gene and the following formula (4):
で表される判別式とを用い、前記判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する、前記〔3〕に記載の方法、
〔5〕 前記工程(C)において、表3に記載の遺伝子群の各遺伝子の発現量を測定し、測定された各遺伝子の発現量と、下記式(4): (In formula (3), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i across the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }
When the solution D of the discriminant is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, breast cancer preoperative chemistry The method according to [3], wherein the method is determined to be insensitive to therapy,
[5] In the step (C), the expression level of each gene in the gene group described in Table 3 was measured, and the measured expression level of each gene and the following formula (4):
{式(1)中、iは表3に記載の遺伝子群の各遺伝子に付与された遺伝子番号を示し、wiは表7に記載された遺伝子番号iの遺伝子に対応する重み係数を示し、Xiは下記式(5):
{In formula (1), i represents a gene number assigned to each gene of the gene group described in Table 3, w i represents a weighting factor corresponding to the gene of gene number i described in Table 7, X i is the following formula (5):
〔式(2)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(6):
[In the formula (2), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis, abs represents an absolute value of the value in the parenthesis, and y i represents the following formula (6):
(式(6)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}
で表される判別式とを用い、前記判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する、前記〔3〕に記載の乳癌術前化学療法に対する感受性の判定方法、
〔6〕 前記工程(D)において、前記発現量を、階層的クラスター分析により解析する、前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法、
〔7〕 前記工程(D)において、前記発現量を、スコア化手法により解析する、前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法、
〔8〕 前記各遺伝子の発現量を、前記各遺伝子に対応する核酸を少なくとも有するマイクロアレイを用いて測定する前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法、ならびに
〔9〕 前記検体が、治療前生検により被験者から採取された検体である、前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法
に関する。 (In formula (6), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i over the specimen, and s i represents the gene of gene number i This shows the standardized expression level of the gene with the gene number i shown in (2). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }
When the solution D of the discriminant is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, breast cancer preoperative chemistry A method for determining sensitivity to breast cancer preoperative chemotherapy according to [3], wherein the sensitivity is determined to be insensitive to therapy,
[6] The method for determining sensitivity to breast cancer preoperative chemotherapy according to [1], wherein the expression level is analyzed by hierarchical cluster analysis in the step (D),
[7] In the step (D), the expression level is analyzed by a scoring method, and the method for determining sensitivity to breast cancer preoperative chemotherapy according to [1],
[8] The method for determining sensitivity to breast cancer preoperative chemotherapy according to [1], wherein the expression level of each gene is measured using a microarray having at least a nucleic acid corresponding to each gene, and [9] The specimen relates to a method for determining sensitivity to breast cancer preoperative chemotherapy according to [1] above, wherein the specimen is a specimen collected from a subject by a pretreatment biopsy.
で表される判別式とを用い、前記判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する、前記〔3〕に記載の乳癌術前化学療法に対する感受性の判定方法、
〔6〕 前記工程(D)において、前記発現量を、階層的クラスター分析により解析する、前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法、
〔7〕 前記工程(D)において、前記発現量を、スコア化手法により解析する、前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法、
〔8〕 前記各遺伝子の発現量を、前記各遺伝子に対応する核酸を少なくとも有するマイクロアレイを用いて測定する前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法、ならびに
〔9〕 前記検体が、治療前生検により被験者から採取された検体である、前記〔1〕に記載の乳癌術前化学療法に対する感受性の判定方法
に関する。 (In formula (6), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i over the specimen, and s i represents the gene of gene number i This shows the standardized expression level of the gene with the gene number i shown in (2). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }
When the solution D of the discriminant is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, breast cancer preoperative chemistry A method for determining sensitivity to breast cancer preoperative chemotherapy according to [3], wherein the sensitivity is determined to be insensitive to therapy,
[6] The method for determining sensitivity to breast cancer preoperative chemotherapy according to [1], wherein the expression level is analyzed by hierarchical cluster analysis in the step (D),
[7] In the step (D), the expression level is analyzed by a scoring method, and the method for determining sensitivity to breast cancer preoperative chemotherapy according to [1],
[8] The method for determining sensitivity to breast cancer preoperative chemotherapy according to [1], wherein the expression level of each gene is measured using a microarray having at least a nucleic acid corresponding to each gene, and [9] The specimen relates to a method for determining sensitivity to breast cancer preoperative chemotherapy according to [1] above, wherein the specimen is a specimen collected from a subject by a pretreatment biopsy.
本発明の乳癌術前化学療法に対する感受性の判定方法によれば、乳癌の術前化学療法に対する感受性を精度良く判定することができるという優れた効果を奏する。
The method for determining sensitivity to breast cancer preoperative chemotherapy according to the present invention has an excellent effect that the sensitivity of breast cancer to preoperative chemotherapy can be accurately determined.
本発明の乳癌術前化学療法に対する感受性の判定方法は、(A)被験者から採取された検体からRNAを抽出する工程、
(B)前記工程(A)で抽出されたRNAを用いて測定用試料を調製する工程、
(C)前記工程(B)で得られた測定用試料を用いて、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量を測定する工程であって、前記遺伝子の発現量が、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも含むものである工程、
(D)前記工程(C)で測定された前記遺伝子の発現量を解析する工程、および
(E)前記工程(D)で得られた解析結果に基づいて、乳癌術前化学療法に対する感受性を判定する工程、
を含む方法である。 The method for determining sensitivity to breast cancer preoperative chemotherapy of the present invention comprises (A) a step of extracting RNA from a sample collected from a subject,
(B) a step of preparing a measurement sample using the RNA extracted in the step (A),
(C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3,
(D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D) The process of
It is a method including.
(B)前記工程(A)で抽出されたRNAを用いて測定用試料を調製する工程、
(C)前記工程(B)で得られた測定用試料を用いて、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量を測定する工程であって、前記遺伝子の発現量が、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも含むものである工程、
(D)前記工程(C)で測定された前記遺伝子の発現量を解析する工程、および
(E)前記工程(D)で得られた解析結果に基づいて、乳癌術前化学療法に対する感受性を判定する工程、
を含む方法である。 The method for determining sensitivity to breast cancer preoperative chemotherapy of the present invention comprises (A) a step of extracting RNA from a sample collected from a subject,
(B) a step of preparing a measurement sample using the RNA extracted in the step (A),
(C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3,
(D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D) The process of
It is a method including.
前記表1および表2において、「No」は、遺伝子番号を示す。「プローブセット.ID」は、アフィメトリックス社製のマイクロアレイ〔商品名:GeneChip(登録商標) System〕において、基材上に固定されたプローブの11~20個をまとめたプローブセットそれぞれにつけられているID番号を示す。「UniGene.ID」は、NCBIが公開しているデータベースであるUniGeneのID番号を示す。GenBankアクセッション番号は、前記アフィメトリックス社製のマイクロアレイ〔商品名:GeneChip(登録商標) System〕において、基材上に固定されたプローブそれぞれの配列の設計に用いられた公開データベースGenBankのアクセッション番号を示す。また、表3は、表1および表2に記載のプローブセットに含まれる13個のプローブセットを示している。
In Tables 1 and 2, “No” indicates a gene number. The “probe set.ID” is attached to each probe set in which 11 to 20 probes fixed on the base material are grouped in a microarray [trade name: GeneChip (registered trademark) System] manufactured by Affymetrix. Indicates the ID number. “UniGene.ID” indicates the ID number of UniGene, which is a database published by NCBI. The GenBank accession number is the accession number of the public database GenBank used for designing the sequence of each probe fixed on the substrate in the microarray [trade name: GeneChip (registered trademark) System] manufactured by Affymetrix. Indicates. Table 3 shows 13 probe sets included in the probe sets described in Table 1 and Table 2.
本発明者らは、前記表1および表2に記載の遺伝子群の各遺伝子の発現量を測定し、かかる発現量を網羅的に解析した結果に基づいて乳癌術前化学療法に対する感受性を評価した場合に、前記感受性を精度良く判定できることを見出した。また、本発明者らは、前記表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量のうち、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも測定することにより、前記感受性を精度良く判定できることを見出した。さらに、特に、前記発現量を、多変量解析を取り入れたクラス分け手法によって解析したとき、乳癌術前化学療法に対する感受性を、精度良く判定できることを見出した。本発明は、かかる知見に基づき完成させたものである。なお、本明細書において、「表1および表2に記載の遺伝子群の各遺伝子の発現量」の用語は、表1および表2に記載のプローブセット.IDに対応する表1および表2に記載のGenBankアクセッション番号で示される核酸を保持する遺伝子の発現量を意味する。また、本明細書において、「表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量」の用語は、表1および表2に記載のプローブセット.IDに対応する表1および表2に記載のGenBankアクセッション番号で示される核酸のなかから選ばれた核酸を保持する遺伝子の発現量を意味する。さらに、本明細書において、「表3に記載の遺伝子群から選ばれた遺伝子の発現量」の用語は、表3に記載のプローブセット.IDに対応する表1および表2に記載のGenBankアクセッション番号で示される核酸のなかから選ばれた核酸を保持する遺伝子の発現量を意味する。GenBankは、米国生物工学情報センター(National Center for Biotechnology Information)により提供されているデータベースであり、ウェブページhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=nucleotideなどにより利用可能である。そして、前記表1および表2に記載のGenBankアクセッション番号が付された配列は、上記データベースより入手することができる。また、前記GenBankアクセッション番号は、2009年3月11日時点での最新リリースでの番号を示す。なお、本明細書において、「遺伝子」とは、遺伝子転写産物としてのRNAが抽出される塩基配列の単位であればよく、EST(expressed sequence tag)も含む概念である。
The present inventors measured the expression level of each gene of the gene group described in Table 1 and Table 2, and evaluated sensitivity to breast cancer preoperative chemotherapy based on the result of comprehensive analysis of the expression level. In some cases, it has been found that the sensitivity can be accurately determined. Moreover, the present inventors measured at least the expression level of each gene in the gene group described in Table 3 among the expression levels of the genes selected from the gene group described in Table 1 and Table 2, It has been found that the sensitivity can be determined with high accuracy. Furthermore, in particular, it was found that when the expression level was analyzed by a classification method incorporating multivariate analysis, the sensitivity to breast cancer preoperative chemotherapy can be accurately determined. The present invention has been completed based on such findings. In the present specification, the term “expression level of each gene of the gene group described in Table 1 and Table 2” is the probe set described in Table 1 and Table 2. It means the expression level of the gene holding the nucleic acid indicated by the GenBank accession number described in Table 1 and Table 2 corresponding to the ID. Further, in this specification, the term “expression level of a gene selected from the gene group described in Table 1 and Table 2” is the probe set described in Table 1 and Table 2. It means the expression level of a gene holding a nucleic acid selected from among the nucleic acids indicated by the GenBank accession numbers described in Table 1 and Table 2 corresponding to the ID. Furthermore, in this specification, the term “expression level of a gene selected from the gene group described in Table 3” is the probe set described in Table 3. It means the expression level of a gene holding a nucleic acid selected from among the nucleic acids indicated by the GenBank accession numbers described in Table 1 and Table 2 corresponding to the ID. GenBank is a database provided by the National Center for Biotechnology Information, the web page http: //www.GenBank. ncbi. nlm. nih. gov / sites / entrez? It can be used by db = nucleotide or the like. And the arrangement | sequence which attached | subjected the GenBank accession number of the said Table 1 and Table 2 can be obtained from the said database. The GenBank accession number indicates a number in the latest release as of March 11, 2009. In the present specification, the “gene” may be a unit of a base sequence from which RNA as a gene transcription product is extracted, and is a concept including an EST (expressed sequence tag).
本発明の判定方法では、まず、被験者から採取された検体からRNAを抽出する〔工程(A)〕。
In the determination method of the present invention, RNA is first extracted from a sample collected from a subject [step (A)].
前記検体は、治療前生検により被験者から採取した検体が好ましい。前記検体としては、具体的には、治療前生検により被験者から採取した組織などが挙げられる。ここで、生検としては、例えば、穿刺吸引生検、コア針生検、吸引装置付き針生検装置〔例えば、ジョンソン・エンド・ジョンソン(株)製、商品名:マンモトーム(登録商標)など〕を用いた生検(「マンモトーム生検」という)等が挙げられる。これらの中では、容易にかつ低負荷で検体を得ることができることから、前記マンモトーム生検が好ましい。
The sample is preferably a sample collected from a subject by a pretreatment biopsy. Specific examples of the specimen include tissues collected from a subject by biopsy before treatment. Here, as a biopsy, for example, a puncture aspiration biopsy, a core needle biopsy, a needle biopsy device with a suction device (for example, product name: Mammotome (registered trademark) manufactured by Johnson & Johnson Co., Ltd.) is used. Biopsy (referred to as “mammotome biopsy”) and the like. Among these, since the specimen can be easily obtained with a low load, the mammotome biopsy is preferable.
検体からのRNAの抽出は、公知の方法によって行なうことができる。また、検体からのRNAの抽出は、RNAを抽出するための市販のキットを用いることもできる。ここで、市販のキットとしては、インビトロジェン社製、商品名:Trizol(登録商標)や、キアゲン社製、商品名:Qiagen RNeasy kit(登録商標)などが挙げられる。
Extraction of RNA from the specimen can be performed by a known method. For extraction of RNA from a specimen, a commercially available kit for extracting RNA can also be used. Here, as a commercially available kit, a product name: Trizol (registered trademark) manufactured by Invitrogen Corporation, a product name: Qiagen RNeasy kit (registered trademark) manufactured by Qiagen, or the like can be given.
つぎに、前記工程(A)で抽出されたRNAを用いて測定用試料を調製する〔工程(B)〕。
Next, a measurement sample is prepared using the RNA extracted in the step (A) [step (B)].
本工程(B)では、遺伝子の発現量、すなわち、当該遺伝子に対応する転写産物(mRNA、cDNAなど)の産生量などを測定するのに適した測定用試料を調製する。具体的には、測定用試料は、例えば、前記工程(A)で抽出されたRNAよりmRNAを精製すること、前記工程(A)で抽出されたRNAを用いて、対応するcDNAを増幅することなどによって調製することができる。また、本発明においては、遺伝子の発現量を測定することが可能であるのであれば、前記工程(A)で抽出されたRNAをそのまま測定用試料として用いてもよい。
In this step (B), a measurement sample suitable for measuring the expression level of a gene, that is, the production level of a transcription product (mRNA, cDNA, etc.) corresponding to the gene is prepared. Specifically, for the measurement sample, for example, mRNA is purified from the RNA extracted in the step (A), and the corresponding cDNA is amplified using the RNA extracted in the step (A). It can prepare by. In the present invention, the RNA extracted in the step (A) may be used as it is as a measurement sample as long as the expression level of the gene can be measured.
前記mRNAの精製は、公知の精製方法を用いて行なうことができる。また、mRNAの精製には、市販の精製キットを用いてもよい。
The purification of the mRNA can be performed using a known purification method. For purification of mRNA, a commercially available purification kit may be used.
また、cDNAの増幅は、公知の方法を用いて行なうことができる。cDNAの増幅には、cDNAの増幅するための市販のキットを用いることもできる。ここで、前記市販のキットとしては、例えば、ニューゲン・テクノロジーズ(NuGEN Technologies)社製、商品名:WT-OvationTM FFPE System V2などが挙げられる。
Amplification of cDNA can be performed using a known method. A commercially available kit for amplifying cDNA can also be used for amplification of cDNA. Here, examples of the commercially available kit include a product name: WT-Ovation ™ FFPE System V2 manufactured by NuGEN Technologies.
つぎに、前記工程(B)で得られた測定用試料を用いて、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量を測定する。ここで、前記遺伝子の発現量は、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも含むものである〔工程(C)〕。
Next, the expression level of a gene selected from the gene group described in Table 1 and Table 2 is measured using the measurement sample obtained in the step (B). Here, the expression level of the gene includes at least the expression level of each gene in the gene group shown in Table 3 [step (C)].
前記工程(C)では、発現量を測定する対象となる遺伝子は、表3に記載の遺伝子群の全遺伝子を少なくとも含んでいればよく、用いられる遺伝子の数や種類は、特に限定されるものではない。すなわち、前記工程(C)で用いられる遺伝子として、前記表1および表2に記載の遺伝子群の70個全ての遺伝子を選択してもよい(第1の態様)。また、前記工程(C)で用いられる遺伝子として、表3に記載の遺伝子群を選択してもよい(第2の態様)。さらに、前記工程(C)で用いられる遺伝子として、前記表1および表2に記載の遺伝子群のなかから、表3に記載の遺伝子群と、他の遺伝子とを選択してもよい(第3の態様)。
In the step (C), the gene whose expression level is to be measured only needs to include at least all the genes of the gene group described in Table 3, and the number and types of genes used are particularly limited. is not. That is, you may select all the 70 genes of the gene group of the said Table 1 and Table 2 as a gene used at the said process (C) (1st aspect). Moreover, you may select the gene group of Table 3 as a gene used at the said process (C) (2nd aspect). Furthermore, as a gene used in the step (C), the gene group described in Table 3 and another gene may be selected from the gene groups described in Table 1 and Table 2 (third) Embodiment).
本工程(C)において、遺伝子の発現量は、例えば、マイクロアレイ、定量的RT-PCR、定量的PCR、ノーザンブロット解析などにより測定することができる。これらのなかでは、前記遺伝子群の各遺伝子の発現量を迅速、かつ簡便に測定することができることから、マイクロアレイを用いて測定することが好ましい。この場合、前記発現量は、以下の工程において、マイクロアレイにおける蛍光強度のまま用いてもよい。
In this step (C), the gene expression level can be measured by, for example, microarray, quantitative RT-PCR, quantitative PCR, Northern blot analysis, or the like. Among these, since the expression level of each gene in the gene group can be measured quickly and easily, it is preferably measured using a microarray. In this case, the expression level may be used as it is in the fluorescence intensity in the microarray in the following steps.
マイクロアレイによる遺伝子の発現量の測定は、公知の方法を用いて行なうことができる。具体的には、例えば、ヒトゲノムの発現解析が可能なマイクロアレイであるアフィメトリクス(Affymetrix)社製の商品名:Human Genome U133 Plus 2.0 Arrayを用いることにより、表1および表2に記載のプローブセット.IDで示される70個のプローブによって、前記遺伝子群の各遺伝子の発現量を一度に測定することができる。
The measurement of gene expression level using a microarray can be performed using a known method. Specifically, for example, a probe set described in Table 1 and Table 2 by using a product name: Human Genome U133 Plus 2.0 Array manufactured by Affymetrix, which is a microarray capable of analyzing human genome expression. . The expression level of each gene in the gene group can be measured at one time by 70 probes indicated by ID.
つぎに、前記工程(C)で測定された前記遺伝子の発現量を解析する〔工程(D)〕。その後、前記工程(D)で得られた解析結果に基づいて、乳癌術前化学療法に対する感受性を判定する〔工程(E)〕。
Next, the expression level of the gene measured in the step (C) is analyzed [step (D)]. Then, based on the analysis result obtained at the said process (D), the sensitivity with respect to a breast cancer preoperative chemotherapy is determined [process (E)].
前記工程(D)において、前記発現量は、例えば、クラス分け手法、階層的クラスター分析およびスコア化手法を用いて、解析することができる。ここで、前記発現量は、測定された発現量の生データを、例えば、ハウスキーピング遺伝子の発現量などによって正規化したものを用いることができる。
In the step (D), the expression level can be analyzed using, for example, a classification method, hierarchical cluster analysis, and scoring method. Here, as the expression level, raw data of the measured expression level normalized by, for example, the expression level of a housekeeping gene can be used.
前記クラス分け手法として、公知の方法を用いることができる。かかるクラス分け手法としては、例えば、Between-group analysis(BGA)〔カルヘイン(Culhane,A.C.)ら、バイオインフォマティックス(Bioinformatics)、2002年、第18巻、pp.1600-1608参照),「マイクロアレイデータのBetween-group analysis(Between-group analysis of microarray data)」を参照〕、サポートベクターマシン(SVM)、対角線形判別(DLDA)およびk最近傍分類(kNN)、決定木、Random Forest、ニューラルネットなどが挙げられる。これらのなかでは、乳癌術前化学療法に対して感受性であるものと、非感受性であるものとを良好にクラス分けをすることができる観点から、BGAが好ましい。かかるクラス分け手法を用いて発現量を解析する場合、前記発現量に基づいて、乳癌術前化学療法に対して感受性である検体と、非感受性である検体とにクラス分けがされる。したがって、この場合、前記工程(E)においては、かかるクラス分けの結果によって、乳癌術前化学療法に対する感受性を判定することができる。前記解析には、例えば、前記工程(C)で用いられた遺伝子の数や種類(前記第1の態様~第3の態様)に応じて、BGAを用いて構築された判別式を用いることができる。
A known method can be used as the classification method. Such classification methods include, for example, Between-group analysis (BGA) [Culhane, AC, et al., Bioinformatics, 2002, Vol. 1600-1608), “see Between-group analysis of microarray data (Between-group analysis of microarray data)”, support vector machine (SVM), diagonal linear discrimination (DLDA) and k nearest neighbor classification (kNN), Examples include decision trees, Random Forest, and neural networks. Among these, BGA is preferable from the viewpoint that it is possible to classify those that are sensitive to breast cancer preoperative chemotherapy and those that are insensitive. When analyzing the expression level using such a classification method, classification is made into a specimen that is sensitive to breast cancer preoperative chemotherapy and a specimen that is insensitive based on the expression level. Therefore, in this case, in the step (E), the sensitivity to breast cancer preoperative chemotherapy can be determined based on the result of such classification. For the analysis, for example, a discriminant constructed using BGA is used according to the number and type of genes used in the step (C) (the first to third aspects). it can.
例えば、第1の態様の場合、まず、前記工程(C)において、前記表1および表2に記載の遺伝子群の各遺伝子の発現量を測定する。そして、測定された各遺伝子の発現量と、下記式(1)で表される判別式とを用いて判定を行なうことができる。
For example, in the case of the first aspect, first, in the step (C), the expression level of each gene in the gene group described in Table 1 and Table 2 is measured. And it can determine using the measured expression level of each gene, and the discriminant represented by following formula (1).
{式(1)中、iは表1および表2に記載の遺伝子群の各遺伝子に付与された遺伝子番号を示し、wiは表4、表5および表6に記載された遺伝子番号iの遺伝子に対応する重み係数を示し、Xiは下記式(2):
{In formula (1), i represents the gene number assigned to each gene in the gene group described in Table 1 and Table 2, and w i represents the gene number i described in Table 4, Table 5 and Table 6. Indicates the weighting factor corresponding to the gene, and X i is the following formula (2):
〔式(2)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは、下記式(3):
[In the formula (2), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis, abs represents an absolute value of the value in the parenthesis, and y i represents the following formula (3):
(xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}。
(X i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i across the sample, and s i represents the expression level of the gene of gene number i. A standard deviation is shown.) A standardized expression level of the gene of gene number i shown in (3) is shown. ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }.
また、前記第2の態様の場合、前記工程(C)において、まず、前記表3に記載の遺伝子群の各遺伝子の発現量を測定する。そして、測定された各遺伝子の発現量と、下記式(4)で表される判別式とを用いて判定を行なうことができる。
In the case of the second aspect, in the step (C), first, the expression level of each gene in the gene group described in Table 3 is measured. And it can determine using the measured expression level of each gene, and the discriminant represented by following formula (4).
〔式(5)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(6):
[In the formula (5), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis, abs represents an absolute value of the value in the parenthesis, and y i represents the following formula (6):
(式(6)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}。
(In formula (6), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i over the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }.
さらに、前記第3の態様の例としては、表8および表9(表1および表2に記載の遺伝子群の遺伝子のうち、表3に記載の遺伝子群を含む50個の遺伝子)に記載の遺伝子群の各遺伝子を用いる判定などが挙げられる。この場合、表8および表9に記載の遺伝子群の各遺伝子の発現量を測定する。そして、測定された各遺伝子の発現量と、下記式(7)で表される判別式とを用いて判定を行なうことができる。
Furthermore, as an example of the third aspect, it is described in Table 8 and Table 9 (50 genes including the gene group described in Table 3 among the genes of the gene group described in Table 1 and Table 2). Examples include determination using each gene in the gene group. In this case, the expression level of each gene in the gene group described in Table 8 and Table 9 is measured. And it can determine using the measured expression level of each gene, and the discriminant represented by following formula (7).
〔式(8)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(9):
[In the formula (8), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis, abs represents an absolute value of the value in the parenthesis, and y i represents the following formula (9):
(式(9)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}。
(In formula (9), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i across the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }.
前記判別式を用いて発現量を解析する場合、前記判別式のxi(例えば、i=1,2,・・・,70)に、順に、当該検体の当該遺伝子の発現量の値を代入し、解Dを求める。この場合、前記工程(E)においては、解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定することができる。
When analyzing the expression level using the discriminant, the value of the expression level of the gene in the sample is sequentially substituted into x i (eg, i = 1, 2,..., 70) of the discriminant. Then, a solution D is obtained. In this case, in the step (E), when the solution D is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, it is sensitive to breast cancer preoperative chemotherapy. Can be determined to be insensitive.
前記階層的クラスター分析は、例えば、被験者から採取した検体の発現量のデータ(あるいは発現量に関する蛍光強度のデータ)と、術前化学療法により病理学的完全奏功(pCR)が得られたことが既知の検体の群の発現量のデータ(あるいは発現量に関する蛍光強度のデータ)と、非奏功であることが既知の検体の群の発現量のデータ(あるいは発現量に関する蛍光強度のデータ)とを用い、前記発現量(あるいは発現量に関する蛍光強度)に基づいて検体間の類似度を示す距離を計算し、この距離に基づいて種々のクラスターを形成し、クラスターを統合して、樹形図を作成することにより行なうことができる。ここで、前記距離としては、例えば、Pearson相関係数、ユークリッド距離などが挙げられる。また、クラスターの統合は、例えば、ward法、最遠隣法、重心間距離法などにより行なうことができる。これらのなかでは、Pearson相関係数およびward法を用いることにより、乳癌術前化学療法に対して感受性であるものと、非感受性であるものとを良好に分けることができる。この場合、前記工程(E)においては、かかる階層的クラスター分析の結果によって、乳癌術前化学療法に対する感受性を判定することができる。
In the hierarchical cluster analysis, for example, the expression level data (or fluorescence intensity data relating to the expression level) of the specimen collected from the subject and the pathological complete response (pCR) were obtained by preoperative chemotherapy. Data on the expression level of the group of known specimens (or fluorescence intensity data relating to the expression level) and data on the expression level of the group of specimens known to be unsuccessful (or fluorescence intensity data relating to the expression level) Using the expression level (or fluorescence intensity related to the expression level) to calculate distances indicating the similarity between samples, forming various clusters based on this distance, integrating the clusters, and creating a dendrogram This can be done by creating. Here, examples of the distance include a Pearson correlation coefficient and a Euclidean distance. Further, cluster integration can be performed by, for example, the Ward method, the farthest neighbor method, the center-of-center distance method, or the like. Among these, by using the Pearson correlation coefficient and the Ward method, those that are sensitive to breast cancer preoperative chemotherapy and those that are insensitive can be well separated. In this case, in the step (E), the sensitivity to breast cancer preoperative chemotherapy can be determined based on the result of the hierarchical cluster analysis.
前記スコア化手法として、公知の方法を用いることができる。かかるスコア化手法としては、例えば、主成分分析、重回帰分析、ロジスティック回帰分析、Partial Least Squareなどが挙げられる。これらのなかでは、乳癌術前化学療法に対して感受性であるものと、非感受性であるものとを良好に分けることができる観点から、主成分分析が好ましい。かかるスコア化手法を用いて発現量を解析する場合、前記発現量に基づいて、乳癌術前化学療法に対して感受性である検体のスコアと、非感受性である検体のスコアとが分けられるようスコア化がされる。したがって、この場合、前記工程(E)においては、かかるスコア化の結果によって、乳癌術前化学療法に対する感受性を判定することができる。
A known method can be used as the scoring method. Examples of such a scoring method include principal component analysis, multiple regression analysis, logistic regression analysis, Partial Last Square, and the like. Among these, principal component analysis is preferable from the viewpoint that it is possible to satisfactorily distinguish between those that are sensitive to breast cancer preoperative chemotherapy and those that are insensitive. When analyzing the expression level using this scoring method, the score of the specimen sensitive to breast cancer preoperative chemotherapy and the score of the non-sensitive specimen are separated based on the expression level. Is made. Therefore, in this case, in the step (E), the sensitivity to breast cancer preoperative chemotherapy can be determined based on the result of scoring.
以上のように、本発明の乳癌術前化学療法に対する感受性の判定方法によれば、表1および表2に記載の遺伝子群の遺伝子の発現量であって、かつ少なくとも表3に記載の遺伝子群の各遺伝子の発現量を用いているので、乳癌術前化学療法に対する感受性を精度良く判定することができる。
As described above, according to the method for determining sensitivity to breast cancer preoperative chemotherapy according to the present invention, the gene expression levels of the gene groups described in Tables 1 and 2 and at least the gene groups described in Table 3 are used. Therefore, the sensitivity to preoperative chemotherapy for breast cancer can be accurately determined.
以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[実施例1]
(1)被験者からの検体の採取
2003年から2008年の間に大阪大学医学部附属病院で術前化学療法が施された90人の乳癌患者それぞれから、採取針(サイズ11G)を取り付けた吸引装置付き針生検装置〔ジョンソン・エンド・ジョンソン(株)製、商品名:マンモトーム(登録商標)〕を用いて検体を採取した。検体の採取後すぐに、当該検体を、液体窒素に入れ、使用時まで、-80℃で長期間保存した。 [Example 1]
(1) Collection of specimens from test subjects Aspiration device with a collection needle (size 11G) from each of 90 breast cancer patients who had undergone preoperative chemotherapy at Osaka University Hospital between 2003 and 2008 A specimen was collected using a needle biopsy device (manufactured by Johnson & Johnson, trade name: Mammotome (registered trademark)). Immediately after collection of the specimen, the specimen was placed in liquid nitrogen and stored at −80 ° C. for a long time until use.
(1)被験者からの検体の採取
2003年から2008年の間に大阪大学医学部附属病院で術前化学療法が施された90人の乳癌患者それぞれから、採取針(サイズ11G)を取り付けた吸引装置付き針生検装置〔ジョンソン・エンド・ジョンソン(株)製、商品名:マンモトーム(登録商標)〕を用いて検体を採取した。検体の採取後すぐに、当該検体を、液体窒素に入れ、使用時まで、-80℃で長期間保存した。 [Example 1]
(1) Collection of specimens from test subjects Aspiration device with a collection needle (size 11G) from each of 90 breast cancer patients who had undergone preoperative chemotherapy at Osaka University Hospital between 2003 and 2008 A specimen was collected using a needle biopsy device (manufactured by Johnson & Johnson, trade name: Mammotome (registered trademark)). Immediately after collection of the specimen, the specimen was placed in liquid nitrogen and stored at −80 ° C. for a long time until use.
(2)被験者の分類
前記(1)における検体の採取後、前記90人の患者に、術前化学療法として、12週間にわたる毎週1回のパクリタキセル(paclitaxel)80mg/m2の投与、つづく3週間毎に計4回のエピルビシン(epirubicin)75mg/m2、シクロホスファミド(cyclophosphamide)500mg/m2および5-FU 500mg/m2の投与を行なった。また、前記術前化学療法終了後、当該90人の患者に、乳房温存手術または乳房切除術を施し、さらにセンチネルリンパ節生検術または腋窩リンパ節郭清術を施した。 (2) Subject classification After the collection of the specimen in (1), the 90 patients were givenpaclitaxel 80 mg / m 2 once a week for 12 weeks as preoperative chemotherapy, followed by 3 weeks. A total of 4 doses of epirubicin 75 mg / m 2 , cyclophosphamide 500 mg / m 2 and 5-FU 500 mg / m 2 were administered each time. After the preoperative chemotherapy, the 90 patients were subjected to breast-conserving surgery or mastectomy, and sentinel lymph node biopsy or axillary lymph node dissection.
前記(1)における検体の採取後、前記90人の患者に、術前化学療法として、12週間にわたる毎週1回のパクリタキセル(paclitaxel)80mg/m2の投与、つづく3週間毎に計4回のエピルビシン(epirubicin)75mg/m2、シクロホスファミド(cyclophosphamide)500mg/m2および5-FU 500mg/m2の投与を行なった。また、前記術前化学療法終了後、当該90人の患者に、乳房温存手術または乳房切除術を施し、さらにセンチネルリンパ節生検術または腋窩リンパ節郭清術を施した。 (2) Subject classification After the collection of the specimen in (1), the 90 patients were given
その後、組織病理学的検査によって病理学的診断と抗癌剤の効果の判定とを行ない、前記90人の患者を、病理学的完全奏功群(pCR群)と非奏功群(npCR群)とに分類した。ここで、「pCR」とは、腫瘍が完全消失しているか、または腫瘍が乳管内だけに残存し浸潤部位が無い状態をいう。また、「npCR」とは、前記pCR以外の状態をいう。
Thereafter, histopathological examination is performed to determine the pathological diagnosis and the effect of the anticancer agent, and the 90 patients are classified into a pathological complete response group (pCR group) and a non-response group (npCR group). did. Here, “pCR” refers to a state in which the tumor has completely disappeared, or the tumor remains only in the milk duct and has no infiltration site. “NpCR” refers to a state other than the pCR.
(3)検体からのRNAの抽出およびcDNAの調製
前記(1)で得られた検体(約20mg)より、RNA抽出用試薬〔インビトロジェン(Invitrogen)社製、商品名:TRIzol(登録商標)〕を用いて、RNAを抽出して、RNA試料を得た。得られたRNA試料中のRNAの量を、分光光度計〔(株)バイオメディカルサイエンス製、商品名:Nano-Drop ND-1000〕によって測定した。また、分析装置(アジレント・テクノロジー(株)製、商品名:Agilent バイオアナライザー)を用いて、得られたRNA試料中のRNAのRIN(RNA Integrity Number)を計測し、かかるRINに基づいて当該RNA試料の品質を判定した。以下の実験においては、RNAの量が550ng以上であり、概ねRIN>6のRNA試料を用いた。 (3) Extraction of RNA from specimen and preparation of cDNA From the specimen (about 20 mg) obtained in (1) above, an RNA extraction reagent [manufactured by Invitrogen, trade name: TRIzol (registered trademark)] The RNA was extracted to obtain an RNA sample. The amount of RNA in the obtained RNA sample was measured with a spectrophotometer [trade name: Nano-Drop ND-1000, manufactured by Biomedical Science Co., Ltd.]. In addition, an RIN (RNA Integrity Number) of RNA in the obtained RNA sample is measured using an analyzer (manufactured by Agilent Technologies, Inc., trade name: Agilent Bioanalyzer), and the RNA is measured based on the RIN. Sample quality was determined. In the following experiments, RNA samples having an RNA amount of 550 ng or more and generally RIN> 6 were used.
前記(1)で得られた検体(約20mg)より、RNA抽出用試薬〔インビトロジェン(Invitrogen)社製、商品名:TRIzol(登録商標)〕を用いて、RNAを抽出して、RNA試料を得た。得られたRNA試料中のRNAの量を、分光光度計〔(株)バイオメディカルサイエンス製、商品名:Nano-Drop ND-1000〕によって測定した。また、分析装置(アジレント・テクノロジー(株)製、商品名:Agilent バイオアナライザー)を用いて、得られたRNA試料中のRNAのRIN(RNA Integrity Number)を計測し、かかるRINに基づいて当該RNA試料の品質を判定した。以下の実験においては、RNAの量が550ng以上であり、概ねRIN>6のRNA試料を用いた。 (3) Extraction of RNA from specimen and preparation of cDNA From the specimen (about 20 mg) obtained in (1) above, an RNA extraction reagent [manufactured by Invitrogen, trade name: TRIzol (registered trademark)] The RNA was extracted to obtain an RNA sample. The amount of RNA in the obtained RNA sample was measured with a spectrophotometer [trade name: Nano-Drop ND-1000, manufactured by Biomedical Science Co., Ltd.]. In addition, an RIN (RNA Integrity Number) of RNA in the obtained RNA sample is measured using an analyzer (manufactured by Agilent Technologies, Inc., trade name: Agilent Bioanalyzer), and the RNA is measured based on the RIN. Sample quality was determined. In the following experiments, RNA samples having an RNA amount of 550 ng or more and generally RIN> 6 were used.
前記RNA試料(RNA50ng相当量)と、転写産物増幅用キット〔ニューゲン・テクノロジーズ(NuGEN Technologies)社製、商品名:WT-OvationTM FFPE System V2〕に添付のランダムプライマーとを用いて、first-strand cDNAおよびsecond-strand cDNAを合成し、Ribo-SPIATM増幅技術によって、cDNAを増幅した。このようにして、90例の検体に対応する90種類のcDNAを得た。
Using the RNA sample (corresponding to 50 ng of RNA) and a random primer attached to a transcription product amplification kit (manufactured by NuGEN Technologies, trade name: WT-Ovation ™ FFPE System V2), first-strand cDNA and second-strand cDNA were synthesized and amplified by Ribo-SPIA ™ amplification technology. In this way, 90 types of cDNA corresponding to 90 samples were obtained.
(4)遺伝子発現解析
断片化・標識用試薬〔ニューゲン・テクノロジーズ(NuGEN Technologies)社製、商品名:FL-OvationTM cDNA Biotin Module V2〕を用いて、前記(3)で得られたcDNAを、ビオチンで標識するとともに、断片化した。 (4) Gene expression analysis Using the fragmentation / labeling reagent [manufactured by NuGEN Technologies, trade name: FL-Ovation ™ cDNA Biotin Module V2], the cDNA obtained in (3) above was obtained. It was labeled with biotin and fragmented.
断片化・標識用試薬〔ニューゲン・テクノロジーズ(NuGEN Technologies)社製、商品名:FL-OvationTM cDNA Biotin Module V2〕を用いて、前記(3)で得られたcDNAを、ビオチンで標識するとともに、断片化した。 (4) Gene expression analysis Using the fragmentation / labeling reagent [manufactured by NuGEN Technologies, trade name: FL-Ovation ™ cDNA Biotin Module V2], the cDNA obtained in (3) above was obtained. It was labeled with biotin and fragmented.
得られた断片化ビオチン標識cDNAを、ヒトゲノム発現解析用アレイ〔アフィメトリクス(Affymetrix)社製、商品名:Human Genome U133 Plus 2.0 Array〕上の核酸(プローブセット)と一晩ハイブリダイズさせた。なお、前記断片化ビオチン標識cDNAと前記アレイ上の核酸(プローブセット)とのハイブリダイゼーションは、製造者〔アフィメトリクス(Affymetrix)社〕による推奨条件に従って行なった。
The obtained fragmented biotin-labeled cDNA was hybridized overnight with a nucleic acid (probe set) on an array for human genome expression analysis [manufactured by Affymetrix, trade name: Human Genome U133 Plus 2.0 Array]. The fragmented biotin-labeled cDNA and the nucleic acid (probe set) on the array were hybridized according to the manufacturer's recommended conditions (Affymetrix).
つぎに、ハイブリダイゼーション後のアレイを、マイクロアレイ洗浄・染色処理専用機器〔アフィメトリクス(Affymetrix)社製、商品名:GeneChip(登録商標) Fluidics Station 450〕に供して、前記アレイ上の核酸(プローブセット)にハイブリダイズしたcDNAを蛍光染色し、洗浄した。
Next, the array after hybridization is subjected to a microarray washing / staining treatment-dedicated device (manufactured by Affymetrix, trade name: GeneChip (registered trademark) Fluidics Station 450), and nucleic acids (probe set) on the array The cDNA hybridized with was fluorescently stained and washed.
その後、前記アレイをレーザスキャナー〔アフィメトリクス(Affymetrix)社製、商品名:GeneChip(登録商標) Scanner 3000〕に供して、前記アレイ上の核酸(プローブセット)にハイブリダイズしたcDNAの蛍光標識物質に基づくシグナルを読み取り、蛍光強度を定量化した。得られた蛍光強度のデータをソフトウェア〔アフィメトリクス(Affymetrix)社製、商品名:GeneChip(登録商標) Operating Software〕によって処理して、CELファイルを得た。前記CELファイルを遺伝子発現解析およびデータの品質チェックに用いた。このようにして、90例の検体それぞれにおける前記プローブセットのプローブに対応する核酸に基づく蛍光強度のデータについて、CELファイルを得た。
Thereafter, the array is subjected to a laser scanner (trade name: GeneChip (registered trademark) Scanner 3000, manufactured by Affymetrix), and based on a fluorescent labeling substance of cDNA hybridized to the nucleic acid (probe set) on the array. The signal was read and the fluorescence intensity was quantified. The obtained fluorescence intensity data was processed by software [manufactured by Affymetrix, trade name: GeneChip (registered trademark) Operating Software] to obtain a CEL file. The CEL file was used for gene expression analysis and data quality check. In this way, CEL files were obtained for fluorescence intensity data based on nucleic acids corresponding to the probes of the probe set in each of 90 samples.
(5)遺伝子の選択、および乳癌術前化学療法に対する感受性の判定のための判別式の構築
以下、得られた90例のCELファイルのデータの前処理(正規化)は、解析ソフトウェア〔アフィメトリクス(Affymetrix社)社製、商品名:Affymetrix Expression Consoleソフトウェア〕のMAS5統計アルゴリズム(ターゲット値500)を用いて行なった。また、それ以外の解析は、全て統計解析ソフトウェアR(http://www.r-project.org/)および統計解析ソフトウェアBioconductor(http://www.bioconductor.org/)を用いて実施した。 (5) Construction of discriminant for selection of gene and determination of susceptibility to breast cancer preoperative chemotherapy The following pre-processing (normalization) of the data of 90 CEL files obtained was performed with analysis software [Affymetrix ( Affymetrix (trade name: Affymetrix Expression Console software) manufactured by Affymetrix) was used. All other analyzes were carried out using statistical analysis software R (https://www.r-project.org/) and statistical analysis software Bioconductor (https://www.bioconductor.org/).
以下、得られた90例のCELファイルのデータの前処理(正規化)は、解析ソフトウェア〔アフィメトリクス(Affymetrix社)社製、商品名:Affymetrix Expression Consoleソフトウェア〕のMAS5統計アルゴリズム(ターゲット値500)を用いて行なった。また、それ以外の解析は、全て統計解析ソフトウェアR(http://www.r-project.org/)および統計解析ソフトウェアBioconductor(http://www.bioconductor.org/)を用いて実施した。 (5) Construction of discriminant for selection of gene and determination of susceptibility to breast cancer preoperative chemotherapy The following pre-processing (normalization) of the data of 90 CEL files obtained was performed with analysis software [Affymetrix ( Affymetrix (trade name: Affymetrix Expression Console software) manufactured by Affymetrix) was used. All other analyzes were carried out using statistical analysis software R (https://www.r-project.org/) and statistical analysis software Bioconductor (https://www.bioconductor.org/).
製造者〔アフィメトリクス(Affymetrix)社〕のガイドライン〔(Affymetrix,GeneChip(登録商標) Expression Analysis Data Analysis Fundamentals, 2004.)に基づいて、90例の検体それぞれの蛍光強度のデータにおける品質管理パラメータ〔ノイズ(Raw-Q)、ハウスキーピング遺伝子であるβアクチン遺伝子、グリセルアルデヒド3リン酸脱水素酵素(GAPDH)遺伝子などの3’/5’比、スケーリング・ファクター(Scaling factor)、Present Call%(P-call%)〕を評価した。前記90例の検体それぞれの蛍光強度のデータについて、前記ヒトゲノム発現解析用アレイ上の全54675個のプローブセットを用いた場合のデータに関して、主成分分析(PCA)を行ない、品質を評価した。
Based on the guidelines of the manufacturer [Affymetrix] [(Affymetrix, GeneChip (registered trademark) Expression Analysis Data Analysis Fundamentals, 2004.) Fluorescence intensity data of 90 samples for each sample (intensity parameter quality data) Raw-Q), 3 ′ / 5 ′ ratio such as β-actin gene which is a housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, scaling factor, Present Call% (P- call%)]. With respect to the fluorescence intensity data of each of the 90 specimens, principal component analysis (PCA) was performed on the data in the case where all 54675 probe sets on the human genome expression analysis array were used, and the quality was evaluated.
そして、前記90例の検体それぞれの蛍光強度のデータのうち、PCAの第一主成分によって母集団から外れる6例のデータを除外し、残りの84例の検体それぞれの蛍光強度のデータを、以下の解析に用いた。なお、84例の検体それぞれの蛍光強度のデータにおいては、品質管理パラメータのうち、βアクチン遺伝子の3’/5’比が概ね21未満であり、GAPDH遺伝子の3’/5’比が概ね3.0未満であり、P-call%が60%を超え、かつ70%未満の範囲であり、スケーリング・ファクターが概ね10%未満であった。ところが、前記6例の検体それぞれの蛍光強度のデータにおいては、βアクチン遺伝子の3’/5’比、GAPDH遺伝子の3’/5’比、P-call%およびスケーリング・ファクターの1項目以上で、前記84例の検体それぞれの蛍光強度のデータの場合の品質管理パラメータのものと顕著に異なる値を示していた。
Then, among the fluorescence intensity data of each of the 90 specimens, 6 cases of data that are out of the population by the first principal component of PCA are excluded, and the fluorescence intensity data of each of the remaining 84 specimens are as follows. Used for analysis. In the fluorescence intensity data of each of the 84 specimens, among the quality control parameters, the 3 ′ / 5 ′ ratio of the β-actin gene is generally less than 21 and the 3 ′ / 5 ′ ratio of the GAPDH gene is approximately 3 Less than 0.0, P-call% was in the range of more than 60% and less than 70%, and the scaling factor was generally less than 10%. However, in the fluorescence intensity data of each of the six specimens, the 3 '/ 5' ratio of the β-actin gene, the 3 '/ 5' ratio of the GAPDH gene, P-call%, and the scaling factor are one or more items. In the case of the fluorescence intensity data of each of the 84 samples, the value was significantly different from that of the quality control parameter.
つぎに、前記84例の検体それぞれの蛍光強度のデータを、トレーニングセット50例とバリデーションセット34例とに振り分けた。このとき、トレーニングセットにおけるpCR率とバリデーションセットにおけるpCR率とがほぼ等しくなるように、pCR群およびnpCR群それぞれから、無作為に振り分けを実施した。トレーニングセットにおけるpCR率は、30%(15例/50例)であり、バリデーションセットにおけるpCR率は、32.3%(11例/34例)であった。以降の解析については、別途記載のあるもの以外は全てトレーニングセットのデータに対して適用した。
Next, the fluorescence intensity data of each of the 84 samples was divided into 50 training sets and 34 validation sets. At this time, the pCR rate in the training set and the pCR rate in the validation set were randomly allocated from the pCR group and the npCR group, respectively. The pCR rate in the training set was 30% (15 cases / 50 cases), and the pCR rate in the validation set was 32.3% (11 cases / 34 cases). The following analysis was applied to the training set data except for those described separately.
前記トレーニングセットに振り分けられた50例の検体それぞれの蛍光強度のデータについて、log2変換を行なった。そして、前記プローブセットのうち、ハウスキーピング遺伝子などに対応するプローブセット(コントロールプローブ)を除いて、前記50例の検体の30%以上において、シグナルの信頼度であるAbsolute Callが”present”となっており、かつ変動係数cvが0.15以上となっているプローブセット(7983個のプローブセット/全54675個のプローブセット)を用いた場合のデータについて、遺伝子発現の解析に用いた。
Log 2 conversion was performed on the fluorescence intensity data of each of the 50 samples distributed to the training set. In the probe set, except for a probe set (control probe) corresponding to a housekeeping gene or the like, in 30% or more of the specimens of the 50 cases, the Absolute Call which is the reliability of the signal becomes “present”. And the probe set (7983 probe sets / total 54675 probe sets) having a coefficient of variation cv of 0.15 or more were used for gene expression analysis.
その後、各プローブセットに対応する核酸を保持する遺伝子の発現量(前記遺伝子に基づく蛍光強度)を、下記式(10):
〔発現量(蛍光強度)の測定値(生データ)-発現量(蛍光強度)の平均値〕/標準偏差 (10)
によって正規化した。 Thereafter, the expression level of the gene holding the nucleic acid corresponding to each probe set (fluorescence intensity based on the gene) is expressed by the following formula (10):
[Measured value of expression level (fluorescence intensity) (raw data) −average value of expression level (fluorescence intensity)] / standard deviation (10)
Normalized by
〔発現量(蛍光強度)の測定値(生データ)-発現量(蛍光強度)の平均値〕/標準偏差 (10)
によって正規化した。 Thereafter, the expression level of the gene holding the nucleic acid corresponding to each probe set (fluorescence intensity based on the gene) is expressed by the following formula (10):
[Measured value of expression level (fluorescence intensity) (raw data) −average value of expression level (fluorescence intensity)] / standard deviation (10)
Normalized by
また、pCR群とnpCR群との間で有意に蛍光強度、すなわち発現量の差が見られるプローブセットに対応する遺伝子を選択するため、並び替え回数1000の条件下で、SAM(Significance Analysis of Microarrays)によって、各々のp値を計算した〔「SAM」については、トゥシャー(Tusher, V. G.)ら、「電離放射線応答に適用したマイクロアレイの有意性分析(Significance analysis of microarrays applied to the ionizing radiation response)」、プロシーディングス・オブ・ザ・ナショナル・アカデミー・オブ・サイエンシーズ・オブ・ジ・ユナイテッド・ステーツ・オブ・アメリカ(Proceedings of the National Academy of Sciences of the United States of America)、2001年、第98巻、pp.5116-5121参照〕。そして、SAMによって計算したp値の低い順に、500個のプローブセットに対応する核酸を保持する遺伝子の選択を行なった。
In addition, in order to select a gene corresponding to a probe set in which a difference in fluorescence intensity, that is, an expression level is significantly observed between the pCR group and the npCR group, SAM (Significance Analysis of Microarrays) under the condition of the number of rearrangements 1000. ) To calculate each p-value [For “SAM”, Tusher, V. G. et al., “Significance analysis of microarray applied to the ionizing radiation applied to the ionizing radiation response”. response), Proceedings of the National Academy of Sciences of the United States Breakfast America (Proceedings of the National Academy of Sciences of the United States of America), 2001 years, the first 98 vol., Pp. 5116-5121]. Then, genes having nucleic acids corresponding to 500 probe sets were selected in ascending order of the p value calculated by SAM.
つぎに、判別式の構築には、BGAを用いた。最適な判定精度が得られるように、pCR群の重みを1~10まで変化させた。そして、各々の重み付けの下で、Sequential Forward Filteringによって乳癌術前化学療法に対する感受性の判定に最適なプローブセット数を求めた。
具体的には、前記500個のプローブセットから、p値の低い順に、500個に達するまで、5個ずつ選択するプローブセットの個数を増加させながら、当該プローブセットを選択し、判別式の構築を行なった。そして、感度と特異度との積が最大となるプローブセットの個数を決定した。なお、感度は、病理学的診断結果がpCRであり、かつpCRと予測された検体の数を、病理学的診断結果がpCRである検体の数で除算することによって求めた。また、特異度は、病理学的診断結果がnpCRであり、かつnpCRと予測された検体の数を、病理学的診断結果がnpCRである検体の数で除算することによって求めた。 Next, BGA was used to construct the discriminant. The weight of the pCR group was changed from 1 to 10 so as to obtain the optimum determination accuracy. Then, under each weighting, the optimal number of probe sets for determination of sensitivity to breast cancer preoperative chemotherapy was determined by sequential forward filtering.
Specifically, from the 500 probe sets, the probe set is selected while increasing the number of probe sets to be selected in increments of 5 until the p value reaches 500, and the discriminant is constructed. Was done. Then, the number of probe sets that maximized the product of sensitivity and specificity was determined. The sensitivity was obtained by dividing the number of specimens whose pathological diagnosis result was pCR and predicted to be pCR by the number of specimens whose pathological diagnosis result was pCR. The specificity was determined by dividing the number of specimens whose pathological diagnosis result was npCR and predicted to be npCR by the number of specimens whose pathological diagnosis result was npCR.
具体的には、前記500個のプローブセットから、p値の低い順に、500個に達するまで、5個ずつ選択するプローブセットの個数を増加させながら、当該プローブセットを選択し、判別式の構築を行なった。そして、感度と特異度との積が最大となるプローブセットの個数を決定した。なお、感度は、病理学的診断結果がpCRであり、かつpCRと予測された検体の数を、病理学的診断結果がpCRである検体の数で除算することによって求めた。また、特異度は、病理学的診断結果がnpCRであり、かつnpCRと予測された検体の数を、病理学的診断結果がnpCRである検体の数で除算することによって求めた。 Next, BGA was used to construct the discriminant. The weight of the pCR group was changed from 1 to 10 so as to obtain the optimum determination accuracy. Then, under each weighting, the optimal number of probe sets for determination of sensitivity to breast cancer preoperative chemotherapy was determined by sequential forward filtering.
Specifically, from the 500 probe sets, the probe set is selected while increasing the number of probe sets to be selected in increments of 5 until the p value reaches 500, and the discriminant is constructed. Was done. Then, the number of probe sets that maximized the product of sensitivity and specificity was determined. The sensitivity was obtained by dividing the number of specimens whose pathological diagnosis result was pCR and predicted to be pCR by the number of specimens whose pathological diagnosis result was pCR. The specificity was determined by dividing the number of specimens whose pathological diagnosis result was npCR and predicted to be npCR by the number of specimens whose pathological diagnosis result was npCR.
前記遺伝子の選択から判別式の構築までのプロセスを、3-Fold Cross-Validationにて繰り返し、各重み付け条件下での感度および特異度を平均値で推定した。推定の結果、最適な重み付け条件は4であり、その条件下において最適なプローブセットは、表10、表11および表12に示されるように、SAMによって計算したp値の低い順で上位70番目までのプローブセット(表1および表2参照)となった。
The process from the selection of the gene to the construction of the discriminant was repeated with 3-Fold Cross-Validation, and the sensitivity and specificity under each weighting condition were estimated as average values. As a result of the estimation, the optimum weighting condition is 4, and the optimum probe set under that condition is shown in Table 10, Table 11 and Table 12, in the descending order of the p value calculated by the SAM in the top 70th. Probe sets (see Table 1 and Table 2).
上記の条件に基づいて、全トレーニングセットのデータを用いて最終的な判別式を構築した。構築された判別式は、下記式(1)で示される判別式である。
Based on the above conditions, a final discriminant was constructed using data from all training sets. The constructed discriminant is a discriminant represented by the following formula (1).
{式(1)中、iは表1および表2に記載の遺伝子群の各遺伝子に付与された遺伝子番号を示し、wiは表4、表5および表6に記載された遺伝子番号iの遺伝子に対応する重み係数を示し、Xiは下記式(2):
{In formula (1), i represents the gene number assigned to each gene in the gene group described in Table 1 and Table 2, and w i represents the gene number i described in Table 4, Table 5 and Table 6. Indicates the weighting factor corresponding to the gene, and X i is the following formula (2):
〔式(2)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(3):
[In the formula (2), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value rounded to the first decimal place, abs represents an absolute value of the value in parentheses, and y i represents the following formula (3):
(式(3)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}。
(In formula (3), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i across the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }.
ここで、前記式(1)で表される判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する。
Here, when the solution D of the discriminant represented by the formula (1) is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, it is preoperative for breast cancer. Determined to be insensitive to chemotherapy.
(6)判別式による判定結果と、病理学的診断結果との対比
トレーニングセットに振り分けられた全50例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(1)で表される判別式とを用いて、全50例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定した。そして、病理学的診断結果を真値として、当該病理学的診断結果と前記式(1)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例1において、トレーニングセットの50例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果との関係を調べた結果を図1に示す。 (6) Comparison between determination result by discriminant and pathological diagnosis result Expression level data (fluorescence intensity data) measured for all 50 samples distributed to the training set, and the above formula (1) Using the discriminant represented by the formula, it was determined whether all the 50 samples correspond to the samples of breast cancer patients in the pCR group or the npCR group. And the performance of the said discriminant was evaluated by making the pathological diagnosis result into a true value and comparing the said pathological diagnosis result and the determination result by the discriminant represented by said Formula (1). FIG. 1 shows the result of examining the relationship between the determination result by the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 1.
トレーニングセットに振り分けられた全50例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(1)で表される判別式とを用いて、全50例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定した。そして、病理学的診断結果を真値として、当該病理学的診断結果と前記式(1)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例1において、トレーニングセットの50例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果との関係を調べた結果を図1に示す。 (6) Comparison between determination result by discriminant and pathological diagnosis result Expression level data (fluorescence intensity data) measured for all 50 samples distributed to the training set, and the above formula (1) Using the discriminant represented by the formula, it was determined whether all the 50 samples correspond to the samples of breast cancer patients in the pCR group or the npCR group. And the performance of the said discriminant was evaluated by making the pathological diagnosis result into a true value and comparing the said pathological diagnosis result and the determination result by the discriminant represented by said Formula (1). FIG. 1 shows the result of examining the relationship between the determination result by the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 1.
図1に示された結果から、トレーニングセットに振り分けられた全50例の検体のうち、前記式(1)で表される判別式によって、23例の検体がnpCR群の乳癌患者の検体に該当すると判定され、27例の検体がpCR群の乳癌患者の検体に該当すると判定されることがわかる。すなわち、前記式(1)で表される判別式を用いた場合には、前記23例の検体は、乳癌術前化学療法に対して非感受性である乳癌患者の検体であり、一方、前記27例の検体は、乳癌術前化学療法に対して感受性である乳癌患者の検体であると判定されることがわかる。
From the results shown in FIG. 1, among the 50 samples distributed to the training set, 23 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the formula (1). Then, it is determined that 27 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when using the discriminant represented by the formula (1), the 23 samples are those of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, while the 27 It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
また、病理学的診断結果を真値として前記式(1)で表される判別式の性能を評価した場合、感度100%、特異度65.7%、陰性適中率(NPV)100%、および陽性適中率(PPV)55.6%であることがわかる。
Further, when the performance of the discriminant represented by the formula (1) is evaluated with the pathological diagnosis result as a true value, the sensitivity is 100%, the specificity is 65.7%, the negative predictive value (NPV) is 100%, and It can be seen that the positive predictive value (PPV) is 55.6%.
したがって、これらの結果から、前記表1および表2に記載の遺伝子群の各遺伝子の発現量と前記式(1)で表される判別式とを用いることによって、乳癌術前化学療法に対する感受性を精度良く判定できることが示唆される。
Therefore, from these results, by using the expression level of each gene of the gene group described in Table 1 and Table 2 and the discriminant represented by the above formula (1), the sensitivity to breast cancer preoperative chemotherapy is improved. It is suggested that the determination can be made with high accuracy.
[実施例2]
(判別式の判定精度の評価)
バリデーションセットに振り分けられた全34例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(1)で表される判別式とを用いて、全34例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定することによって、乳癌術前化学療法に対する感受性を判定した。また、病理学的診断結果を真値として、当該病理学的診断結果と前記式(1)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例2において、バリデーションセットの34例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果とを比較した結果を図2に示す。 [Example 2]
(Evaluation of judgment accuracy of discriminant)
Using the expression level data (fluorescence intensity data) measured for all 34 specimens allocated to the validation set and the discriminant represented by the above formula (1), all 34 specimens were pCR. Sensitivity to breast cancer preoperative chemotherapy was determined by determining which group of breast cancer patients was in the group and npCR group. Further, the pathological diagnosis result was evaluated as the true value by comparing the pathological diagnosis result with the determination result based on the discriminant represented by the formula (1). In Example 2, FIG. 2 shows the result of comparing the determination result based on the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set.
(判別式の判定精度の評価)
バリデーションセットに振り分けられた全34例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(1)で表される判別式とを用いて、全34例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定することによって、乳癌術前化学療法に対する感受性を判定した。また、病理学的診断結果を真値として、当該病理学的診断結果と前記式(1)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例2において、バリデーションセットの34例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果とを比較した結果を図2に示す。 [Example 2]
(Evaluation of judgment accuracy of discriminant)
Using the expression level data (fluorescence intensity data) measured for all 34 specimens allocated to the validation set and the discriminant represented by the above formula (1), all 34 specimens were pCR. Sensitivity to breast cancer preoperative chemotherapy was determined by determining which group of breast cancer patients was in the group and npCR group. Further, the pathological diagnosis result was evaluated as the true value by comparing the pathological diagnosis result with the determination result based on the discriminant represented by the formula (1). In Example 2, FIG. 2 shows the result of comparing the determination result based on the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set.
図2に示された結果から、バリデーションセットに振り分けられた全34例の検体のうち、前記式(1)で表される判別式によって、15例の検体がnpCR群の乳癌患者の検体に該当すると判定され、19例の検体がpCR群の乳癌患者の検体に該当すると判定されることがわかる。すなわち、前記式(1)で表される判別式を用いた場合には、前記15例の検体は、乳癌術前化学療法に対して非感受性である乳癌患者の検体であり、一方、前記19例の検体は、乳癌術前化学療法に対して感受性である乳癌患者の検体であると判定されることがわかる。
From the results shown in FIG. 2, among the 34 samples distributed to the validation set, 15 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (1). Then, it is determined that 19 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (1) is used, the 15 samples are samples of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
また、病理学的診断結果を真値として判別式の性能を評価した場合、感度90.9%、特異度60.9%、陰性適中率(NPV)93.3%、および陽性適中率(PPV)52.6%であることがわかる。
Further, when the performance of the discriminant is evaluated with the pathological diagnosis result as a true value, the sensitivity is 90.9%, the specificity is 60.9%, the negative predictive value (NPV) is 93.3%, and the positive predictive value (PPV) ) 52.6%.
このように、バリデーションセットに振り分けられた全34例の検体においても、トレーニングセットに振り分けられた検体の場合と同様に、前記式(1)で表される判別式によって、乳癌術前化学療法に対する感受性を精度良く判定できることがわかる。また、前記表1および表2に記載の遺伝子群の各遺伝子の発現量と前記式(1)で表される判別式とを用いることによって、用いた検体に関係なく、乳癌術前化学療法に対する感受性を精度良く判定できることが示唆される。
Thus, in all 34 specimens assigned to the validation set, the discriminant represented by the above formula (1) is applied to breast cancer preoperative chemotherapy as in the case of the specimen assigned to the training set. It can be seen that the sensitivity can be accurately determined. In addition, by using the expression level of each gene in the gene group described in Table 1 and Table 2 and the discriminant represented by the above formula (1), regardless of the specimen used, it can be used for breast cancer preoperative chemotherapy. It is suggested that sensitivity can be determined with high accuracy.
[実施例3]
階層的クラスター分析による判定
実施例1において、トレーニングセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータおよびバリデーションセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータについて、Pearson相関係数およびward法を用いて、階層的クラスター分析を行ない、樹形図を作成した。実施例3において、トレーニングセットの検体それぞれの発現量のデータに基づく樹形図を図3に示す。また、実施例3において、バリデーションセットの検体それぞれの発現量のデータに基づく樹形図を図4に示す。 [Example 3]
Determination by Hierarchical Cluster Analysis In Example 1, the Pearson phase for the fluorescence intensity (expression level) data of each sample distributed to the training set and the fluorescence intensity (expression level) data of each sample allocated to the validation set Hierarchical cluster analysis was performed using the number of relations and the ward method to create a dendrogram. In Example 3, a dendrogram based on the expression level data of each sample of the training set is shown in FIG. Moreover, in Example 3, the dendrogram based on the expression level data of each specimen of the validation set is shown in FIG.
階層的クラスター分析による判定
実施例1において、トレーニングセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータおよびバリデーションセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータについて、Pearson相関係数およびward法を用いて、階層的クラスター分析を行ない、樹形図を作成した。実施例3において、トレーニングセットの検体それぞれの発現量のデータに基づく樹形図を図3に示す。また、実施例3において、バリデーションセットの検体それぞれの発現量のデータに基づく樹形図を図4に示す。 [Example 3]
Determination by Hierarchical Cluster Analysis In Example 1, the Pearson phase for the fluorescence intensity (expression level) data of each sample distributed to the training set and the fluorescence intensity (expression level) data of each sample allocated to the validation set Hierarchical cluster analysis was performed using the number of relations and the ward method to create a dendrogram. In Example 3, a dendrogram based on the expression level data of each sample of the training set is shown in FIG. Moreover, in Example 3, the dendrogram based on the expression level data of each specimen of the validation set is shown in FIG.
図3および図4に示された結果から、樹形図を分割するように付された太線を境界として、乳癌術前化学療法に対して非感受性である乳癌患者の検体と、乳癌術前化学療法に対して感受性である乳癌患者の検体とを分けることができることがわかる。したがって、これらの結果から、前記表1および表2に記載の遺伝子群の各遺伝子の発現量を用いて、階層的クラスター分析を行なうことによって、乳癌術前化学療法に対する感受性を精度良く判定できることがわかる。
From the results shown in FIG. 3 and FIG. 4, a specimen of a breast cancer patient who is insensitive to breast cancer preoperative chemotherapy and a breast cancer preoperative chemistry, with the thick line attached to divide the dendrogram as a boundary. It can be seen that samples from breast cancer patients who are sensitive to therapy can be separated. Therefore, from these results, it is possible to accurately determine the sensitivity to breast cancer preoperative chemotherapy by performing a hierarchical cluster analysis using the expression level of each gene of the gene group described in Table 1 and Table 2. Recognize.
[実施例4]
主成分分析による判定
実施例1において、トレーニングセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータについて、表1および表2に記載の遺伝子を用いて主成分分析を行い、各遺伝子の変換係数を算出し、第一および第二主成分スコアを算出した。また、実施例1において、バリデーションセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータについて、当該遺伝子の変換係数に従い第一主成分スコアおよび第二主成分スコアを算出した。実施例4において算出された変換係数を表13および表14に示す。また、実施例4において、トレーニングセットの検体それぞれの発現量のデータに基づく第一主成分スコアおよび第二主成分スコアの散布図を図5に示す。また、実施例4において、バリデーションセットの検体それぞれの発現量のデータに基づく第一および第二主成分スコアの散布図を図6に示す。なお、図5および図6中、PCA1は、第一主成分スコアを示し、PCA2は、第二主成分スコアを示す。図中、白丸は、pCR群、クロスは、npCR群である。 [Example 4]
Determination by Principal Component Analysis In Example 1, the principal component analysis was performed on the fluorescence intensity (expression level) data of each specimen distributed to the training set using the genes shown in Tables 1 and 2, and A conversion coefficient was calculated, and first and second principal component scores were calculated. In Example 1, the first principal component score and the second principal component score were calculated according to the conversion coefficient of the gene for the fluorescence intensity (expression level) data of each specimen distributed to the validation set. The conversion coefficients calculated in Example 4 are shown in Table 13 and Table 14. Further, in Example 4, a scatter diagram of the first principal component score and the second principal component score based on the expression level data of each specimen of the training set is shown in FIG. Moreover, in Example 4, the scatter diagram of the 1st and 2nd main component score based on the data of the expression level of each specimen of a validation set is shown in FIG. In FIG. 5 and FIG. 6, PCA1 indicates a first principal component score, and PCA2 indicates a second principal component score. In the figure, white circles represent the pCR group, and crosses represent the npCR group.
主成分分析による判定
実施例1において、トレーニングセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータについて、表1および表2に記載の遺伝子を用いて主成分分析を行い、各遺伝子の変換係数を算出し、第一および第二主成分スコアを算出した。また、実施例1において、バリデーションセットに振り分けられた検体それぞれの蛍光強度(発現量)のデータについて、当該遺伝子の変換係数に従い第一主成分スコアおよび第二主成分スコアを算出した。実施例4において算出された変換係数を表13および表14に示す。また、実施例4において、トレーニングセットの検体それぞれの発現量のデータに基づく第一主成分スコアおよび第二主成分スコアの散布図を図5に示す。また、実施例4において、バリデーションセットの検体それぞれの発現量のデータに基づく第一および第二主成分スコアの散布図を図6に示す。なお、図5および図6中、PCA1は、第一主成分スコアを示し、PCA2は、第二主成分スコアを示す。図中、白丸は、pCR群、クロスは、npCR群である。 [Example 4]
Determination by Principal Component Analysis In Example 1, the principal component analysis was performed on the fluorescence intensity (expression level) data of each specimen distributed to the training set using the genes shown in Tables 1 and 2, and A conversion coefficient was calculated, and first and second principal component scores were calculated. In Example 1, the first principal component score and the second principal component score were calculated according to the conversion coefficient of the gene for the fluorescence intensity (expression level) data of each specimen distributed to the validation set. The conversion coefficients calculated in Example 4 are shown in Table 13 and Table 14. Further, in Example 4, a scatter diagram of the first principal component score and the second principal component score based on the expression level data of each specimen of the training set is shown in FIG. Moreover, in Example 4, the scatter diagram of the 1st and 2nd main component score based on the data of the expression level of each specimen of a validation set is shown in FIG. In FIG. 5 and FIG. 6, PCA1 indicates a first principal component score, and PCA2 indicates a second principal component score. In the figure, white circles represent the pCR group, and crosses represent the npCR group.
図5および図6に示された結果から、横軸の第一主成分スコアがゼロとなる所を境界として、乳癌術前化学療法に対して非感受性である乳癌患者の検体と、乳癌術前化学療法に対して感受性である乳癌患者の検体とを分けることができることがわかる。したがって、これらの結果から、前記表1および表2に記載の遺伝子群の各遺伝子の発現量を用いて、主成分分析を行なうことによって、乳癌術前化学療法に対する感受性を精度良く判定できることがわかる。
From the results shown in FIG. 5 and FIG. 6, a sample of a breast cancer patient who is insensitive to breast cancer preoperative chemotherapy and a breast cancer preoperative after the first principal component score on the horizontal axis becomes zero. It can be seen that it can be separated from breast cancer specimens that are sensitive to chemotherapy. Therefore, from these results, it is understood that sensitivity to breast cancer preoperative chemotherapy can be accurately determined by performing principal component analysis using the expression level of each gene of the gene group described in Tables 1 and 2 above. .
[実施例5]
実施例1で得られた70個の遺伝子のなかから、乳癌術前化学療法に対する感受性を判定するのに十分な遺伝子の組み合わせを、以下に示される変数減少(Backward-elimination)法によって調べた。 [Example 5]
Of the 70 genes obtained in Example 1, sufficient gene combinations to determine susceptibility to breast cancer preoperative chemotherapy were examined by the variable reduction (Backward-elimination) method shown below.
実施例1で得られた70個の遺伝子のなかから、乳癌術前化学療法に対する感受性を判定するのに十分な遺伝子の組み合わせを、以下に示される変数減少(Backward-elimination)法によって調べた。 [Example 5]
Of the 70 genes obtained in Example 1, sufficient gene combinations to determine susceptibility to breast cancer preoperative chemotherapy were examined by the variable reduction (Backward-elimination) method shown below.
実施例1で得られた70個の遺伝子のうちの任意の遺伝子Aを除外し、残りの69個の遺伝子の組み合わせを選択した。つぎに、選択された69個の遺伝子の組み合わせを用い、pCR群の重み付け条件を4とし、実施例1と同様にして、BGAを用いて判別式を構築し、3-Fold Cross-Validationを行ない、感度および特異度を評価した。なお、判別式の構築に際して、感度および特異度の評価には、前記実施例1と同様のトレーニングセットを用いた。3-Fold Cross-Validationでは、トレーニングセットの症例を3群に分割した。そして、これらのうちの2群を判別式の構築に用い、残りの1群を感度および特異度の評価に用いた。
The arbitrary gene A was excluded from the 70 genes obtained in Example 1, and the remaining 69 gene combinations were selected. Next, using the selected 69 gene combinations, the weighting condition of the pCR group is set to 4, and in the same manner as in Example 1, a discriminant is constructed using BGA, and 3-Fold Cross-Validation is performed. Sensitivity and specificity were evaluated. In constructing the discriminant, the same training set as in Example 1 was used for evaluation of sensitivity and specificity. In 3-Fold Cross-Validation, the training set cases were divided into three groups. Two of these groups were used for constructing the discriminant, and the remaining one group was used for evaluation of sensitivity and specificity.
また、遺伝子Aの代わりに、実施例1で得られた70個の遺伝子のうちの遺伝子A以外の遺伝子を除外して69個の遺伝子の組み合わせを選択したことを除き、前記と同様にして、実施例1で得られた70個の遺伝子のうちの69個の遺伝子の組み合わせを用い、遺伝子A以外の遺伝子を除外する69通りの各々について、判別式を構築した。これら69通りの判別式について、前記と同様にして、感度および特異度を評価した。そして、69個の遺伝子の組み合わせの、遺伝子Aを除外した前記の場合を含む、全70通りのなかから、感度と特異度との積の値が最大となる組み合わせを選択した。このようにして、選択された組み合わせを構成する遺伝子のなかから、感度と特異度との積の値を小さくする原因となっている遺伝子を除外した。
Further, instead of the gene A, except that the gene other than the gene A out of the 70 genes obtained in Example 1 was excluded and a combination of 69 genes was selected, the same as described above, Using a combination of 69 genes out of the 70 genes obtained in Example 1, a discriminant was constructed for each of 69 patterns excluding genes other than gene A. For these 69 discriminants, sensitivity and specificity were evaluated in the same manner as described above. Then, among the 70 combinations of 69 genes including the above-mentioned case excluding gene A, the combination having the maximum product of sensitivity and specificity was selected. In this way, genes that cause a decrease in the product of sensitivity and specificity were excluded from the genes constituting the selected combination.
以下、前記と同様にして、組み合わせを構成する遺伝子の数が2個となるまで、感度と特異度との積の値を小さくする原因となっている遺伝子の除外を繰り返した。そして、組み合わせを構成する遺伝子数(プローブ数)に対して、感度と特異度との積(感度×特異度)の値をプロットした。実施例5において、プローブ数と、感度×特異度との関係を調べた結果を図7に示す。
Thereafter, in the same manner as described above, until the number of genes constituting the combination is two, the gene that causes the reduction of the product of sensitivity and specificity is repeatedly excluded. Then, the product of sensitivity and specificity (sensitivity × specificity) was plotted against the number of genes (number of probes) constituting the combination. FIG. 7 shows the results of examining the relationship between the number of probes and sensitivity × specificity in Example 5.
図7に示された結果から、遺伝子数(プローブ数)が13~24個のとき、感度と特異度との積(感度×特異度)が最も大きくなることがわかる。すなわち、この結果から、感度と特異度との積(感度×特異度)を最大値とする最少の遺伝子数(プローブ数)は、13個であることがわかる。これら13個の遺伝子は、前記表3に示されるとおりである。また、構築された判別式は、下記式(4)で示される判別式である。
FIG. 7 shows that the product of sensitivity and specificity (sensitivity × specificity) is greatest when the number of genes (the number of probes) is 13 to 24. That is, it can be seen from this result that the minimum number of genes (the number of probes) having the maximum value of the product of sensitivity and specificity (sensitivity × specificity) is 13. These 13 genes are as shown in Table 3 above. The constructed discriminant is a discriminant represented by the following formula (4).
〔式(5)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(6):
[In the formula (5), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis, abs represents an absolute value of the value in the parenthesis, and y i represents the following formula (6):
(式(6)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}。
(In formula (6), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i over the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }.
ここで、前記式(4)で表される判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する。
Here, when the solution D of the discriminant represented by the above formula (4) is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, preoperative breast cancer Determined to be insensitive to chemotherapy.
[実施例6]
実施例1において、トレーニングセットに振り分けられた全50例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(4)で表される判別式とを用いて、全50例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定した。そして、病理学的診断結果を真値として、当該病理学的診断結果と前記式(4)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例6において、トレーニングセットの50例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果との関係を調べた結果を図8に示す。 [Example 6]
In Example 1, using the expression level data (fluorescence intensity data) measured for all 50 specimens allocated to the training set and the discriminant represented by the above formula (4), a total of 50 samples were used. It was determined whether the sample of the example corresponds to the sample of the breast cancer patient in the pCR group or the npCR group. Then, with the pathological diagnosis result as a true value, the performance of the discriminant expression was evaluated by comparing the pathological diagnosis result with the determination result based on the discriminant expression represented by the formula (4). FIG. 8 shows the result of examining the relationship between the determination result based on the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 6.
実施例1において、トレーニングセットに振り分けられた全50例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(4)で表される判別式とを用いて、全50例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定した。そして、病理学的診断結果を真値として、当該病理学的診断結果と前記式(4)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例6において、トレーニングセットの50例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果との関係を調べた結果を図8に示す。 [Example 6]
In Example 1, using the expression level data (fluorescence intensity data) measured for all 50 specimens allocated to the training set and the discriminant represented by the above formula (4), a total of 50 samples were used. It was determined whether the sample of the example corresponds to the sample of the breast cancer patient in the pCR group or the npCR group. Then, with the pathological diagnosis result as a true value, the performance of the discriminant expression was evaluated by comparing the pathological diagnosis result with the determination result based on the discriminant expression represented by the formula (4). FIG. 8 shows the result of examining the relationship between the determination result based on the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 6.
図8に示された結果から、トレーニングセットに振り分けられた全50例の検体のうち、前記式(4)で表される判別式によって、23例の検体がnpCR群の乳癌患者の検体に該当すると判定され、27例の検体がpCR群の乳癌患者の検体に該当すると判定されることがわかる。すなわち、前記式(4)で表される判別式を用いた場合には、前記23例の検体は、乳癌術前化学療法に対して非感受性である乳癌患者の検体であり、一方、前記27例の検体は、乳癌術前化学療法に対して感受性である乳癌患者の検体であると判定されることがわかる。
From the results shown in FIG. 8, out of all 50 samples distributed to the training set, 23 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (4). Then, it is determined that 27 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (4) is used, the 23 samples are those of breast cancer patients that are insensitive to breast cancer preoperative chemotherapy, while the 27 It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
また、病理学的診断結果を真値として前記式(4)で表される判別式の性能を評価した場合、感度100%、特異度65.7%、陰性適中率(NPV)100%、および陽性適中率(PPV)55.6%であることがわかる。
Further, when the performance of the discriminant represented by the formula (4) is evaluated with the pathological diagnosis result as a true value, the sensitivity is 100%, the specificity is 65.7%, the negative predictive value (NPV) is 100%, and It can be seen that the positive predictive value (PPV) is 55.6%.
したがって、これらの結果から、前記表3に記載の遺伝子群の各遺伝子の発現量と前記式(4)で表される判別式とを用いることによって、乳癌術前化学療法に対する感受性を精度良く判定できることが示唆される。
Therefore, from these results, by using the expression level of each gene of the gene group described in Table 3 above and the discriminant represented by the formula (4), the sensitivity to breast cancer preoperative chemotherapy is accurately determined. It is suggested that it can be done.
[実施例7]
実施例1において、バリデーションセットに振り分けられた全34例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(4)で表される判別式とを用いて、全34例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定することによって、乳癌術前化学療法に対する感受性を判定した。また、病理学的診断結果を真値として、当該病理学的診断結果と前記式(4)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例7において、バリデーションセットの34例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果とを比較した結果を図9に示す。 [Example 7]
In Example 1, using the expression level data (fluorescence intensity data) measured for all 34 specimens allocated to the validation set and the discriminant represented by the formula (4), Sensitivity to breast cancer pre-operative chemotherapy was determined by determining whether the sample in the example corresponds to a sample from a breast cancer patient in the pCR group or the npCR group. Further, the pathological diagnosis result was evaluated as a true value, and the performance of the discriminant was evaluated by comparing the pathological diagnosis result with the determination result by the discriminant represented by the formula (4). FIG. 9 shows the result of comparison between the determination result by the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set in Example 7.
実施例1において、バリデーションセットに振り分けられた全34例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(4)で表される判別式とを用いて、全34例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定することによって、乳癌術前化学療法に対する感受性を判定した。また、病理学的診断結果を真値として、当該病理学的診断結果と前記式(4)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例7において、バリデーションセットの34例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果とを比較した結果を図9に示す。 [Example 7]
In Example 1, using the expression level data (fluorescence intensity data) measured for all 34 specimens allocated to the validation set and the discriminant represented by the formula (4), Sensitivity to breast cancer pre-operative chemotherapy was determined by determining whether the sample in the example corresponds to a sample from a breast cancer patient in the pCR group or the npCR group. Further, the pathological diagnosis result was evaluated as a true value, and the performance of the discriminant was evaluated by comparing the pathological diagnosis result with the determination result by the discriminant represented by the formula (4). FIG. 9 shows the result of comparison between the determination result by the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set in Example 7.
図9に示された結果から、バリデーションセットに振り分けられた全34例の検体のうち、前記式(4)で表される判別式によって、14例の検体がnpCR群の乳癌患者の検体に該当すると判定され、20例の検体がpCR群の乳癌患者の検体に該当すると判定されることがわかる。すなわち、前記式(4)で表される判別式を用いた場合には、前記14例の検体は、乳癌術前化学療法に対して非感受性である乳癌患者の検体であり、一方、前記20例の検体は、乳癌術前化学療法に対して感受性である乳癌患者の検体であると判定されることがわかる。
From the results shown in FIG. 9, among the 34 samples distributed to the validation set, 14 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (4). Then, it is determined that 20 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (4) is used, the 14 samples are samples of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
また、病理学的診断結果を真値として前記式(4)で表される判別式の性能を評価した場合、感度81.8%、特異度52.2%、陰性適中率(NPV)85.7%、および陽性適中率(PPV)45.0%であることがわかる。
Further, when the performance of the discriminant represented by the formula (4) is evaluated with the pathological diagnosis result as a true value, the sensitivity is 81.8%, the specificity is 52.2%, and the negative predictive value (NPV) is 85. 7% and positive predictive value (PPV) of 45.0%.
このように、バリデーションセットに振り分けられた全34例の検体においても、トレーニングセットに振り分けられた検体の場合と同様に、前記式(4)で表される判別式によって、乳癌術前化学療法に対する感受性を精度良く判定できることがわかる。また、前記表3に記載の遺伝子群の各遺伝子の発現量と前記式(4)で表される判別式とを用いることによって、乳癌術前化学療法に対する感受性を十分な精度で判定できることが示唆される。
Thus, in all 34 specimens assigned to the validation set, the discriminant represented by the above equation (4) is used for preoperative chemotherapy for breast cancer as in the case of the specimen assigned to the training set. It can be seen that the sensitivity can be accurately determined. In addition, it is suggested that the sensitivity to preoperative chemotherapy for breast cancer can be determined with sufficient accuracy by using the expression level of each gene in the gene group described in Table 3 and the discriminant represented by Formula (4). Is done.
[実施例8]
実施例5において、遺伝子数(プローブ数)が50個のときに感度と特異度との積(感度×特異度)が最大値となる遺伝子の組み合わせは、表8および表9に示される遺伝子群の組み合わせである。また、構築された判別式は、下記式(7)で表される判別式である。 [Example 8]
In Example 5, when the number of genes (the number of probes) is 50, the combination of genes having a maximum product of sensitivity and specificity (sensitivity × specificity) is the gene group shown in Table 8 and Table 9. It is a combination. The constructed discriminant is a discriminant represented by the following formula (7).
実施例5において、遺伝子数(プローブ数)が50個のときに感度と特異度との積(感度×特異度)が最大値となる遺伝子の組み合わせは、表8および表9に示される遺伝子群の組み合わせである。また、構築された判別式は、下記式(7)で表される判別式である。 [Example 8]
In Example 5, when the number of genes (the number of probes) is 50, the combination of genes having a maximum product of sensitivity and specificity (sensitivity × specificity) is the gene group shown in Table 8 and Table 9. It is a combination. The constructed discriminant is a discriminant represented by the following formula (7).
〔式(8)中、jは各検体に付与された検体番号を示し、yijは遺伝子番号iの遺伝子の検体番号jの検体での標準化された発現量を示し、minは括弧内の値の最小値を示し、roundは括弧内の値の小数点以下第一位を四捨五入した値を示し、absは括弧内の値の絶対値を示し、yiは下記式(9):
[In the formula (8), j represents the sample number assigned to each sample, y ij represents the standardized expression level of the gene of gene number i in the sample of sample number j, and min represents the value in parentheses. , Round represents a value obtained by rounding off the first decimal place of the value in the parenthesis, abs represents an absolute value of the value in the parenthesis, and y i represents the following formula (9):
(式(9)中、xiは遺伝子番号iの遺伝子の発現量を示し、uiは遺伝子番号iの遺伝子の発現量の検体に渡る平均値を示し、siは遺伝子番号iの遺伝子の発現量の検体に渡る標準偏差を示す。)に示される遺伝子番号iの遺伝子の標準化された発現量を示す。〕により標準化され正規化された遺伝子の発現量を示し、Σiは各遺伝子に渡る総和を示す。}。
(In formula (9), x i represents the expression level of the gene of gene number i, u i represents the average value of the expression level of the gene of gene number i across the specimen, and s i represents the gene of gene number i It shows the standard deviation of the expression level across the specimen.) Shows the standardized expression level of the gene of gene number i shown in (1). ] Represents the normalized and normalized gene expression level, and Σ i represents the total over each gene. }.
実施例1において、トレーニングセットに振り分けられた全50例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(7)で表される判別式とを用いて、全50例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定した。そして、病理学的診断結果を真値として、当該病理学的診断結果と前記式(7)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例8において、トレーニングセットの50例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果との関係を調べた結果を図10に示す。
In Example 1, using the expression level data (fluorescence intensity data) measured for all 50 samples distributed to the training set and the discriminant represented by the above formula (7), a total of 50 samples were used. It was determined whether the sample of the example corresponds to the sample of the breast cancer patient in the pCR group or the npCR group. Then, with the pathological diagnosis result as a true value, the performance of the discriminant expression was evaluated by comparing the pathological diagnosis result with the determination result based on the discriminant expression represented by the expression (7). FIG. 10 shows the results of examining the relationship between the determination result based on the discriminant and the pathological diagnosis result for the samples of 50 breast cancer patients in the training set in Example 8.
図10に示された結果から、トレーニングセットに振り分けられた全50例の検体のうち、前記式(7)で表される判別式によって、23例の検体がnpCR群の乳癌患者の検体に該当すると判定され、27例の検体がpCR群の乳癌患者の検体に該当すると判定されることがわかる。すなわち、前記式(7)で表される判別式を用いた場合には、前記23例の検体は、乳癌術前化学療法に対して非感受性である乳癌患者の検体であり、一方、前記27例の検体は、乳癌術前化学療法に対して感受性である乳癌患者の検体であると判定されることがわかる。
From the results shown in FIG. 10, among the 50 samples distributed to the training set, 23 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (7). Then, it is determined that 27 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (7) is used, the 23 samples are those of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, while the 27 It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
また、病理学的診断結果を真値として前記式(7)で表される判別式の性能を評価した場合、感度100%、特異度65.7%、陰性適中率(NPV)100%、および陽性適中率(PPV)55.6%であることがわかる。
Further, when the performance of the discriminant represented by the formula (7) is evaluated with the pathological diagnosis result as a true value, the sensitivity is 100%, the specificity is 65.7%, the negative predictive value (NPV) is 100%, and It can be seen that the positive predictive value (PPV) is 55.6%.
したがって、これらの結果から、前記表8および表9に記載の遺伝子群の各遺伝子の発現量と前記式(7)で表される判別式とを用いることによって、乳癌術前化学療法に対する感受性を精度良く判定できることが示唆される。
Therefore, from these results, by using the expression level of each gene in the gene group described in Table 8 and Table 9 and the discriminant represented by the above formula (7), the sensitivity to breast cancer preoperative chemotherapy is improved. It is suggested that the determination can be made with high accuracy.
[実施例9]
実施例1において、バリデーションセットに振り分けられた全34例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(7)で表される判別式とを用いて、全34例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定することによって、乳癌術前化学療法に対する感受性を判定した。また、病理学的診断結果を真値として、当該病理学的診断結果と前記式(7)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例9において、バリデーションセットの34例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果とを比較した結果を図11に示す。 [Example 9]
In Example 1, using the expression level data (fluorescence intensity data) measured for all 34 specimens distributed to the validation set and the discriminant represented by the above formula (7), Sensitivity to breast cancer pre-operative chemotherapy was determined by determining whether the sample in the example corresponds to a sample from a breast cancer patient in the pCR group or the npCR group. Further, the pathological diagnosis result was evaluated as the true value by comparing the pathological diagnosis result with the determination result by the discriminant represented by the formula (7). In Example 9, FIG. 11 shows the result of comparing the determination result by the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set.
実施例1において、バリデーションセットに振り分けられた全34例の検体について測定された発現量のデータ(蛍光強度のデータ)と、前記式(7)で表される判別式とを用いて、全34例の検体がpCR群およびnpCR群のいずれの乳癌患者の検体に該当するかを判定することによって、乳癌術前化学療法に対する感受性を判定した。また、病理学的診断結果を真値として、当該病理学的診断結果と前記式(7)で表される判別式による判定結果とを比較することによって、当該判別式の性能を評価した。実施例9において、バリデーションセットの34例の乳癌患者の検体について、判別式による判定結果と、病理学的診断結果とを比較した結果を図11に示す。 [Example 9]
In Example 1, using the expression level data (fluorescence intensity data) measured for all 34 specimens distributed to the validation set and the discriminant represented by the above formula (7), Sensitivity to breast cancer pre-operative chemotherapy was determined by determining whether the sample in the example corresponds to a sample from a breast cancer patient in the pCR group or the npCR group. Further, the pathological diagnosis result was evaluated as the true value by comparing the pathological diagnosis result with the determination result by the discriminant represented by the formula (7). In Example 9, FIG. 11 shows the result of comparing the determination result by the discriminant and the pathological diagnosis result for the samples of 34 breast cancer patients in the validation set.
図11に示された結果から、バリデーションセットに振り分けられた全34例の検体のうち、前記式(7)で表される判別式によって、15例の検体がnpCR群の乳癌患者の検体に該当すると判定され、19例の検体がpCR群の乳癌患者の検体に該当すると判定されることがわかる。すなわち、前記式(7)で表される判別式を用いた場合には、前記15例の検体は、乳癌術前化学療法に対して非感受性である乳癌患者の検体であり、一方、前記19例の検体は、乳癌術前化学療法に対して感受性である乳癌患者の検体であると判定されることがわかる。
From the results shown in FIG. 11, of the 34 samples allotted to the validation set, 15 samples correspond to the samples of breast cancer patients in the npCR group according to the discriminant represented by the above formula (7). Then, it is determined that 19 samples are determined to correspond to the samples of breast cancer patients in the pCR group. That is, when the discriminant represented by the formula (7) is used, the 15 samples are samples of breast cancer patients who are insensitive to breast cancer preoperative chemotherapy, It can be seen that the example specimen is determined to be a specimen of a breast cancer patient that is sensitive to breast cancer preoperative chemotherapy.
また、病理学的診断結果を真値として前記式(7)で表される判別式の性能を評価した場合、感度81.8%、特異度56.5%、陰性適中率(NPV)86.7%、および陽性適中率(PPV)47.4%であることがわかる。
Further, when the performance of the discriminant represented by the formula (7) is evaluated with the pathological diagnosis result as a true value, the sensitivity is 81.8%, the specificity is 56.5%, and the negative predictive value (NPV) is 86. 7% and positive predictive value (PPV) of 47.4%.
このように、バリデーションセットに振り分けられた全34例の検体においても、トレーニングセットに振り分けられた検体の場合と同様に、前記式(7)で表される判別式によって、乳癌術前化学療法に対する感受性を精度良く判定できることがわかる。また、前記表8および表9に記載の遺伝子群の各遺伝子の発現量と前記式(7)で表される判別式とを用いることによって、乳癌術前化学療法に対する感受性を十分な精度で判定できることが示唆される。
Thus, in all 34 samples distributed to the validation set, the discriminant represented by the above equation (7) is used for preoperative chemotherapy for breast cancer, as in the case of the samples distributed to the training set. It can be seen that the sensitivity can be accurately determined. In addition, by using the expression level of each gene of the gene group described in Table 8 and Table 9 and the discriminant represented by the formula (7), the sensitivity to breast cancer preoperative chemotherapy is determined with sufficient accuracy. It is suggested that it can be done.
以上説明した結果から、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量のうち、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも測定することにより、乳癌術前化学療法に対する感受性を精度良く判定できることが示唆される。
From the results described above, by measuring at least the expression level of each gene in the gene group described in Table 3 among the expression levels of genes selected from the gene group described in Table 1 and Table 2, preoperative breast cancer This suggests that the sensitivity to chemotherapy can be accurately determined.
Claims (9)
- (A)被験者から採取された検体からRNAを抽出する工程、
(B)前記工程(A)で抽出されたRNAを用いて測定用試料を調製する工程、
(C)前記工程(B)で得られた測定用試料を用いて、表1および表2に記載の遺伝子群から選ばれた遺伝子の発現量を測定する工程であって、前記遺伝子の発現量が、表3に記載の遺伝子群の各遺伝子の発現量を少なくとも含むものである工程、
(D)前記工程(C)で測定された前記遺伝子の発現量を解析する工程、および
(E)前記工程(D)で得られた解析結果に基づいて、乳癌術前化学療法に対する感受性を判定する工程、
を含む、乳癌術前化学療法に対する感受性の判定方法。
(B) a step of preparing a measurement sample using the RNA extracted in the step (A),
(C) a step of measuring the expression level of a gene selected from the gene group described in Table 1 and Table 2 using the measurement sample obtained in the step (B), wherein the expression level of the gene A process including at least the expression level of each gene of the gene group described in Table 3,
(D) analyzing the expression level of the gene measured in the step (C), and (E) determining sensitivity to breast cancer preoperative chemotherapy based on the analysis result obtained in the step (D) The process of
A method for determining sensitivity to breast cancer preoperative chemotherapy.
- 前記工程(D)において、前記発現量を、クラス分け手法を用いて解析する、請求項1に記載の方法。 The method according to claim 1, wherein, in the step (D), the expression level is analyzed using a classification method.
- 前記クラス分け手法が、Between-group analysisである、請求項2に記載の方法。 The method according to claim 2, wherein the classification method is Between-group analysis.
- 前記工程(C)において、表1および表2に記載の遺伝子群の各遺伝子の発現量を測定し、測定された各遺伝子の発現量と、下記式(1):
で表される判別式とを用い、前記判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する、請求項3に記載の方法。
When the solution D of the discriminant is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, breast cancer preoperative chemistry 4. The method of claim 3, wherein the method is determined to be insensitive to therapy.
- 前記工程(C)において、表3に記載の遺伝子群の各遺伝子の発現量を測定し、測定された各遺伝子の発現量と、下記式(4):
で表される判別式とを用い、前記判別式の解Dが正の値のとき、乳癌術前化学療法に対して感受性であり、解Dがゼロまたは負の値のとき、乳癌術前化学療法に対して非感受性であると判定する、請求項3に記載の方法。
When the solution D of the discriminant is a positive value, it is sensitive to breast cancer preoperative chemotherapy, and when the solution D is zero or a negative value, breast cancer preoperative chemistry 4. The method of claim 3, wherein the method is determined to be insensitive to therapy.
- 前記工程(D)において、前記発現量を、階層的クラスター分析により解析する、請求項1に記載の方法、 The method according to claim 1, wherein, in the step (D), the expression level is analyzed by hierarchical cluster analysis.
- 前記工程(D)において、前記発現量を、スコア化手法により解析する、請求項1に記載の方法。 The method according to claim 1, wherein in the step (D), the expression level is analyzed by a scoring method.
- 前記各遺伝子の発現量を、前記各遺伝子に対応する核酸を少なくとも有するマイクロアレイを用いて測定する、請求項1に記載の方法。 The method according to claim 1, wherein the expression level of each gene is measured using a microarray having at least a nucleic acid corresponding to each gene.
- 前記検体が、治療前生検により被験者から採取された検体である、請求項1に記載の方法。 The method according to claim 1, wherein the specimen is a specimen collected from a subject by a pretreatment biopsy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011543346A JPWO2011065533A1 (en) | 2009-11-30 | 2010-11-29 | How to determine sensitivity to breast cancer preoperative chemotherapy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009272501 | 2009-11-30 | ||
JP2009-272501 | 2009-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011065533A1 true WO2011065533A1 (en) | 2011-06-03 |
Family
ID=44066637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/071258 WO2011065533A1 (en) | 2009-11-30 | 2010-11-29 | Method for determination of sensitivity to pre-operative chemotherapy for breast cancer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2011065533A1 (en) |
WO (1) | WO2011065533A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014533955A (en) * | 2011-11-28 | 2014-12-18 | ナショナル リサーチ カウンシル オブ カナダ | Paclitaxel-responsive cancer marker |
EP2843060A1 (en) | 2013-08-30 | 2015-03-04 | Sysmex Corporation | Method, apparatus and program for determining sensitivity to breast cancer neoadjuvant chemotherapy |
JP2015519043A (en) * | 2012-04-10 | 2015-07-09 | イムノヴィア・アクチエボラーグ | Method for determining breast cancer-related disease states and arrays for use in this method |
JP2019032334A (en) * | 2018-10-03 | 2019-02-28 | イムノヴィア・アクチエボラーグ | Method for determining breast cancer-related disease state, and array to be used in the method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006505256A (en) * | 2002-05-17 | 2006-02-16 | ベイラー カレッジ オブ メディスン | Different gene expression patterns to predict the chemical sensitivity and chemical resistance of docetaxel |
-
2010
- 2010-11-29 WO PCT/JP2010/071258 patent/WO2011065533A1/en active Application Filing
- 2010-11-29 JP JP2011543346A patent/JPWO2011065533A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006505256A (en) * | 2002-05-17 | 2006-02-16 | ベイラー カレッジ オブ メディスン | Different gene expression patterns to predict the chemical sensitivity and chemical resistance of docetaxel |
Non-Patent Citations (3)
Title |
---|
AYERS M. ET AL.: "Gene Expression Profiles Predict Complete Pathologic Response to Neoadjuvant Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide Chemotherapy in Breast Cancer", J. CLIN. ONCOL., vol. 22, no. 12, 2004, pages 2284 - 2293, XP008043042, DOI: doi:10.1200/JCO.2004.05.166 * |
HESS K. ET AL.: "Pharmacogenomic Predictor of Sensitivity to Preoperative Chemotherapy With Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide in Breast Cancer", J. CLIN. ONCOL., vol. 24, no. 26, 2006, pages 4236 - 4244, XP002485594, DOI: doi:10.1200/JCO.2006.05.6861 * |
KOICHI NAGASAKI ET AL.: "Idenshi Hatsugen Profile ni Motozuita Nyugan ni Okeru Jutsumae Kagaku Ryoho Kanjusei Yosoku System no Kochiku", DAI 64 KAI ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION, vol. 64, - 2005, pages 158 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014533955A (en) * | 2011-11-28 | 2014-12-18 | ナショナル リサーチ カウンシル オブ カナダ | Paclitaxel-responsive cancer marker |
JP2015519043A (en) * | 2012-04-10 | 2015-07-09 | イムノヴィア・アクチエボラーグ | Method for determining breast cancer-related disease states and arrays for use in this method |
EP2843060A1 (en) | 2013-08-30 | 2015-03-04 | Sysmex Corporation | Method, apparatus and program for determining sensitivity to breast cancer neoadjuvant chemotherapy |
JP2015047101A (en) * | 2013-08-30 | 2015-03-16 | 国立大学法人大阪大学 | Diagnostic assisting method and determination device of sensitivity to breast cancer neoadjuvant chemotherapy |
CN104419641A (en) * | 2013-08-30 | 2015-03-18 | 希森美康株式会社 | Method, apparatus and program for determining sensitivity to breast cancer neoadjuvant chemotherapy |
JP2019032334A (en) * | 2018-10-03 | 2019-02-28 | イムノヴィア・アクチエボラーグ | Method for determining breast cancer-related disease state, and array to be used in the method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011065533A1 (en) | 2013-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5725274B2 (en) | Breast cancer prognosis testing method | |
US8202968B2 (en) | Predicting lung cancer survival using gene expression | |
US8183353B2 (en) | Breast cancer prognostics | |
US20060211036A1 (en) | Metastasis-associated gene profiling for identification of tumor tissue, subtyping, and prediction of prognosis of patients | |
EP1526186B1 (en) | Colorectal cancer prognostics | |
MX2013013746A (en) | Biomarkers for lung cancer. | |
KR20080065476A (en) | A method of predicting risk of lung cancer recurrence in a patient after lung cancer treatment or a lung cancer patient, a method of preparing a report on the risk of lung cancer recurrence in a patient after lung cancer treatment or a lung cancer patient and a report prepared by the same, a composition, kit and microarray for diagnosing the risk of lung cancer recurrence in a patient after lung cancer treatment or a lung cancer patient | |
US20160102359A1 (en) | Genetic marker for early breast cancer prognosis prediction and diagnosis, and use thereof | |
WO2017223216A1 (en) | Compositions and methods for diagnosing lung cancers using gene expression profiles | |
US20170130269A1 (en) | Diagnosis of neuromyelitis optica vs. multiple sclerosis using mirna biomarkers | |
WO2016034715A2 (en) | Method for predicting the development of colorectal cancer | |
WO2011065533A1 (en) | Method for determination of sensitivity to pre-operative chemotherapy for breast cancer | |
US9195796B2 (en) | Malignancy-risk signature from histologically normal breast tissue | |
US10161004B2 (en) | Diagnostic miRNA profiles in multiple sclerosis | |
KR20210141949A (en) | Prostate cancer prediction method and use thereof | |
JP2008538284A (en) | Laser microdissection and microarray analysis of breast tumors reveals genes and pathways associated with estrogen receptors | |
WO2011121028A1 (en) | Algorithm for prediction of benefit from addition of taxane to standard chemotherapy in patients with breast cancer | |
US20210079479A1 (en) | Compostions and methods for diagnosing lung cancers using gene expression profiles | |
JP5884219B2 (en) | Method for detecting urothelial cancer based on miRNA expression profiling | |
JP2020167940A (en) | Method and kit for evaluating late-stage recurrence risk of breast cancer | |
EP4437137A1 (en) | Compositions and methods for identifying transplant rejection or the risk thereof | |
CN116936086A (en) | Construction method and risk prediction method of breast cancer distant metastasis risk prediction gene model | |
EP2733634A1 (en) | Method for obtaining gene signature scores | |
Zichner et al. | Temporal Analysis of Oncogenesis Using MicroRNA Expression Data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833377 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011543346 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10833377 Country of ref document: EP Kind code of ref document: A1 |