WO2011030789A1 - 発光装置 - Google Patents
発光装置 Download PDFInfo
- Publication number
- WO2011030789A1 WO2011030789A1 PCT/JP2010/065410 JP2010065410W WO2011030789A1 WO 2011030789 A1 WO2011030789 A1 WO 2011030789A1 JP 2010065410 W JP2010065410 W JP 2010065410W WO 2011030789 A1 WO2011030789 A1 WO 2011030789A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- led chip
- light emitting
- layer
- emitting device
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 171
- 239000004065 semiconductor Substances 0.000 claims abstract description 83
- 239000012780 transparent material Substances 0.000 claims abstract description 44
- 239000012790 adhesive layer Substances 0.000 claims abstract description 37
- 238000000605 extraction Methods 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims description 70
- 239000000463 material Substances 0.000 claims description 28
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 abstract description 95
- 229920002050 silicone resin Polymers 0.000 abstract description 11
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000000034 method Methods 0.000 description 28
- 239000010408 film Substances 0.000 description 25
- 238000005530 etching Methods 0.000 description 14
- 239000010409 thin film Substances 0.000 description 12
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 11
- 239000002245 particle Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 8
- 238000007789 sealing Methods 0.000 description 8
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 7
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010980 sapphire Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 229910002704 AlGaN Inorganic materials 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000009877 rendering Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/58—Optical field-shaping elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/22—Roughened surfaces, e.g. at the interface between epitaxial layers
Definitions
- the present invention relates to a light emitting device including an LED chip (light emitting diode chip).
- a semiconductor light emitting device composed of an LED chip in which a light emitting layer is formed of a nitride semiconductor material (GaN, InGaN, AlGaInN, etc.) have been performed in various places. Further, the light emission of the semiconductor light emitting element is made by combining this type of semiconductor light emitting element and a phosphor that is a wavelength conversion material that is excited by light emitted from the semiconductor light emitting element and emits light having a longer wavelength than the semiconductor light emitting element. Research and development of light-emitting devices that emit mixed-color light with a color different from the color are being conducted in various places.
- a white light emitting device for example, a white light emitting device (generally white light emitting device) that obtains white light (white light emission spectrum) by combining a semiconductor light emitting element that emits blue light or ultraviolet light and a phosphor. (Referred to as LED) has been commercialized.
- a light-emitting device including a semiconductor light-emitting element in which this kind of fine concavo-convex structure is formed
- an LED chip 10 that is a semiconductor light-emitting element
- a mounting substrate 40 on which the LED chip 10 is mounted A device including a lens-shaped sealing portion 60 formed of a light-transmitting sealing material (for example, a silicone resin) and sealing the LED chip 10 and the mounting substrate 40 has been proposed.
- the mounting substrate 40 is mounted on the wiring substrate 70 as the submount.
- the LED chip 10 includes an n-type nitride semiconductor layer (for example, an n-type GaN layer) 12, a nitride light-emitting layer 13, and a p-type nitride on the first surface 11 a side of the translucent substrate 11 made of a GaN substrate.
- An anode electrode 17 is formed on the opposite side of the p-type nitride semiconductor layer 14 from the nitride light-emitting layer 13 side, and an n-type semiconductor layer (for example, a p-type GaN layer) 14 is formed.
- a cathode electrode 18 is formed on the nitride semiconductor light emitting layer 13 side of the nitride semiconductor layer 12.
- the anode electrode 17 is made of a material having a high reflectance with respect to the light emitted from the nitride light emitting layer 13.
- an LED thin film portion having an n-type GaN layer and a p-type GaN layer and a transparent and conductive n-type ZnO substrate are joined, and then the n-type ZnO substrate is formed.
- an LED chip semiconductor light emitting device processed into a hexagonal pyramid shape by crystal anisotropic etching utilizing the crystal orientation dependence of the etching rate (see, for example, Non-Patent Document 1). As shown in FIG.
- this type of LED chip 110 includes an n-type nitride semiconductor layer (for example, an n-type GaN layer) 112, a nitride light emitting layer 113, and a p-type nitride semiconductor layer (p-type GaN layer) 114. And an hexagonal pyramidal n-type ZnO substrate 119 bonded to the LED thin film portion, and an anode electrode 117 is formed on the bottom surface of the hexagonal pyramidal n-type ZnO substrate 119. In addition, a cathode electrode 118 is formed on the opposite side of the n-type nitride semiconductor layer 112 of the LED thin film portion from the n-type ZnO substrate 119 side.
- the n-type nitride semiconductor layer 112, the nitride light emitting layer 113, and the p-type are formed on the main surface side of the sapphire wafer whose main surface is the (0001) plane.
- a patterning process is performed in which an LED thin film portion having a laminated structure with the nitride semiconductor layer 114 is grown by a MOVPE method or the like, and then the LED thin film portion is patterned into a desired shape using a photolithography technique and an etching technique.
- the LED thin film portion and the sapphire Wafer lift-off process that removes the sapphire wafer from the LED thin film by irradiating the vicinity of the wafer interface with laser light (Laser lift-off process) is performed, and then an electrode forming process for forming the electrodes 117 and 118 is performed. Then, a mask layer patterned in a predetermined shape is formed on the side opposite to the LED thin film portion side in the n-type ZnO wafer.
- the n-type ZnO wafer is formed by performing crystal anisotropic etching using the crystal orientation dependence of the etching rate using a hydrochloric acid-based etching solution (for example, hydrochloric acid aqueous solution).
- a processing step for forming a hexagonal pyramid-shaped n-type ZnO substrate 119 is performed, and then a mask layer removing step for removing the mask layer is performed.
- the light emitting device having the configuration shown in FIG. 7 there is a component in which light emitted from the spindle-shaped projections of the fine concavo-convex structure 15 reenters the adjacent spindle-shaped projections, and light extraction efficiency is caused by this component. The improvement is reduced. Further, in the light emitting device having the configuration shown in FIG. 7, light absorption and nitride at the anode electrode 17 and the cathode electrode 18 due to multiple reflection inside the LED chip 10 regardless of the presence or absence of the fine uneven structure 15. There is a problem that the light emission efficiency is low because light loss due to light absorption in the light emitting layer 13 and light absorption in the translucent substrate 11 increases.
- the refractive index of the n-type ZnO substrate 119 is smaller than the refractive index of the p-type nitride semiconductor layer 114, and the n-type ZnO substrate out of the light generated in the LED thin film portion. Since light having a low incident angle with respect to the bonding surface between 119 and the p-type nitride semiconductor layer 114 is not introduced into the n-type ZnO substrate 119, light loss due to multiple reflection occurs, so that the luminous efficiency is improved. Further improvement was desired. Further, the LED chip 110 having the configuration shown in FIG. 8 requires the above-described wafer bonding process and wafer lift-off process at the time of manufacturing, and the manufacturing yield is low.
- the present invention has been made in view of the above reasons, and an object of the present invention is to provide a light emitting device capable of improving the light emitting efficiency by reducing the optical loss due to the multiple reflection and improving the manufacturing yield. .
- an LED chip having a stacked structure of an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer, and the LED chip is disposed so as to overlap the LED chip so that the light extraction surface side is the bottom surface side.
- a refractive index of the first transparent material comprising: a weight-like transparent member made of a first transparent material; and an adhesive layer made of a second transparent material interposed between the transparent member and the LED chip. Is larger than the refractive index of the second transparent material, and the shortest distance between the light extraction surface of the LED chip and the transparent member is set so that light from the LED chip oozes out to the transparent member as an evanescent wave. It is characterized by that.
- the light-transmitting surface side of the LED chip is the bottom surface side
- the weight-shaped transparent member made of the first transparent material disposed so as to overlap the LED chip is interposed between the transparent member and the LED chip.
- the shortest distance to the member is set so that the light from the LED chip oozes out to the transparent member as an evanescent wave, so that the light from the LED chip bleeds into the weight-like transparent member through the adhesive layer due to the evanescent effect Therefore, the light from the LED chip can be efficiently introduced into the transparent member, the light emission efficiency can be improved by reducing the light loss due to the multiple reflection, and the weight-like transparent member can be connected to the LED chip. Since the adhesive by the adhesive layer with respect to flop, the wafer bonding step and the wafer lift-off process
- the invention of claim 2 is characterized in that, in the invention of claim 1, the LED chip has a fine concavo-convex structure for changing the traveling direction of light on the light extraction surface side.
- the fine concavo-convex structure that changes the light traveling direction is formed on the light extraction surface side of the LED chip, the light generated by the LED chip can be introduced into the transparent member more efficiently.
- the light extraction efficiency is improved, and as a result, the light emission efficiency is improved.
- the adhesive layer is excited by light emitted from the LED chip and emits light having a wavelength longer than the emission peak wavelength of the LED chip. It is characterized by containing a color conversion material.
- the adhesive layer contains a color conversion material that is excited by light emitted from the LED chip and emits light having a wavelength longer than the emission peak wavelength of the LED chip. It is possible to obtain mixed color light of the light emitted from the LED chip and the light emitted from the color conversion material, and the light emitted from the color conversion material can be efficiently introduced into the transparent member.
- the invention of claim 4 is characterized in that, in the invention of claim 3, the adhesive layer contains a light diffusing material.
- the adhesive layer contains a light diffusing material, uneven color can be reduced.
- An anode electrode is formed, and a cathode electrode is formed on the side of the n-type semiconductor layer where the light emitting layer is laminated.
- Each of the anode electrode and the cathode electrode is connected to a bump on the mounting substrate, and the anode electrode of the LED chip on the mounting substrate. And a conductor pattern associated with each of the cathode electrodes.
- each of the anode electrode and the cathode electrode of the LED chip is bonded to the conductor pattern corresponding to each of the anode electrode and the cathode electrode of the LED chip on the mounting substrate.
- the LED chip and the transparent member can be easily bonded, and the controllability of the thickness of the adhesive layer is improved.
- the invention of claim 6 is characterized in that, in the invention of claim 1, the shortest distance is equal to or less than an emission peak wavelength of light emitted from the LED chip.
- the shortest distance between the light extraction surface of the LED chip and the transparent member is equal to or less than the emission peak wavelength of the light emitted from the LED chip, the light from the LED chip is It exudes to the weight-like transparent member through the layer by the evanescent effect. Therefore, the same effect as that of the invention of claim 1 can be obtained.
- the invention of claim 7 is characterized in that, in the invention of claim 2, the fine concavo-convex structure is composed of a large number of conical protrusions (microcones).
- the fine concavo-convex structure is composed of a large number of spindle-shaped protrusions, the fine concavo-convex structure can be easily formed using a method such as anisotropic etching.
- the fine concavo-convex structure allows the light generated by the LED chip to be introduced into the transparent member more efficiently, improving the light extraction efficiency and consequently improving the light emission efficiency.
- the invention of claim 8 is characterized in that, in the invention of claim 2, the fine concavo-convex structure is composed of a number of prismatic protrusions.
- the fine concavo-convex structure is composed of a large number of prismatic protrusions, the fine concavo-convex structure allows light generated in the LED chip to be more efficiently introduced into the transparent member.
- the light extraction efficiency is improved, and as a result, the light emission efficiency is improved.
- the invention of claim 9 is the invention of claim 1, wherein the first transparent material is ZnO.
- the transparent member is made of ZnO, the transparent member can be formed in a weight shape by crystal anisotropic etching or the like. Therefore, the smoothness of the side surface of the transparent member is improved, and light scattering on the side surface of the transparent member can be prevented.
- the invention of claim 1 is effective in improving the light emission efficiency by reducing the light loss caused by the multiple reflection and improving the production yield.
- FIG. 1 is a schematic cross-sectional view of a light emitting device according to Embodiment 1.
- FIG. It is characteristic explanatory drawing of a light-emitting device same as the above. It is characteristic explanatory drawing of a light-emitting device same as the above.
- 6 is a schematic cross-sectional view of a light emitting device according to Embodiment 2.
- FIG. 6 is a schematic cross-sectional view of a light emitting device according to Embodiment 3.
- FIG. 6 is a schematic cross-sectional view of a light emitting device according to Embodiment 4.
- FIG. It is a schematic sectional drawing of the light-emitting device of a prior art example. It is a schematic sectional drawing of the LED chip of another prior art example.
- the light emitting device of this embodiment includes an LED chip 10 having a stacked structure of an n-type nitride semiconductor layer 12, a nitride light emitting layer 13, and a p-type nitride semiconductor layer 14, and the LED chip 10.
- an adhesive layer 20 made of a second transparent material (for example, a silicone resin) that is interposed between the transparent member 30 and the LED chip 10 and adheres both.
- the n-type nitride semiconductor layer constitutes an n-type semiconductor layer
- the nitride light-emitting layer 13 constitutes a light-emitting layer
- the p-type nitride semiconductor layer constitutes a p-type semiconductor layer.
- the light emitting device of this embodiment includes a mounting substrate 40 on which the LED chip 10 is mounted.
- an anode electrode 17 is formed on the side opposite to the nitride light emitting layer 13 side in the p-type nitride semiconductor layer 14, and the nitride light emitting layer 13 in the n-type nitride semiconductor layer 12 is formed.
- a cathode electrode 18 is formed on the laminated side, and the anode electrode 17 and the cathode electrode 18 are associated with the anode electrode 17 and the cathode electrode 18 of the LED chip 10 on the mounting substrate 40 via the bumps 57 and 58, respectively.
- the conductor patterns 47 and 48 are joined separately.
- the mounting substrate 40 has bumps on each of the anode electrode 17 and the cathode electrode 18 of the LED chip 10 on the one surface 41a side of the flat insulating substrate 41 made of an aluminum nitride substrate having electrical insulation and high thermal conductivity.
- the above-described conductor patterns 47 and 48 joined through 57 and 58 are formed.
- the mounting substrate 40 has a rectangular shape (in this embodiment, a square shape) in plan view, but is not limited to a square shape, and may be, for example, a rectangular shape, a circular shape, or a hexagonal shape.
- the insulating substrate 41 of the mounting substrate 40 also serves as a heat transfer plate for transferring heat generated by the LED chip 10 and has a higher thermal conductivity than an organic substrate such as a glass epoxy resin substrate.
- the substrate is not limited to the aluminum nitride substrate, and for example, an alumina substrate, a hollow substrate, a silicon substrate having a silicon oxide film formed on the surface, or the like may be employed.
- the conductor patterns 47 and 48 are composed of a laminated film of a Cu film, a Ni film, and an Au film, and the uppermost layer is an Au film.
- Each of the bumps 57 and 58 described above employs Au as a material, and is formed on the surface of each conductor pattern 47 and 48 of the mounting substrate 40 by a stud bump method (also called a ball bump method). It is composed of bumps.
- the number of bumps 57 bonded to the anode electrode 17 having a larger area than the cathode electrode 18 is not particularly limited. However, the number is larger from the viewpoint of efficiently dissipating the heat generated in the LED chip 10. preferable.
- the bumps 57 and 58 are not limited to stud bumps, and may be bumps formed by plating (so-called plated bumps), for example.
- the LED chip 10 includes an n-type nitride semiconductor layer made of an n-type GaN layer on the first surface 11 a side (the lower surface side in FIG. 1) of a light-transmitting substrate 11 made of a GaN substrate. 12 is formed, a nitride light emitting layer 13 having a quantum well structure is formed on the n-type nitride semiconductor layer 12, and a p-type nitride semiconductor layer 14 made of a p-type GaN layer is formed on the nitride light emitting layer 13.
- a nitride semiconductor layer 13 made of an n-type GaN layer on the first surface 11 a side (the lower surface side in FIG. 1) of a light-transmitting substrate 11 made of a GaN substrate. 12 is formed, a nitride light emitting layer 13 having a quantum well structure is formed on the n-type nitride semiconductor layer 12, and a p-type nitride semiconductor layer 14 made of a
- the LED chip 10 has a laminated structure of the n-type nitride semiconductor layer 12, the nitride light emitting layer 13, and the p-type nitride semiconductor layer 14 on the first surface 11 a side of the translucent substrate 11. .
- the n-type nitride semiconductor layer 12, the nitride light-emitting layer 13, and the p-type nitride semiconductor layer 14 are formed on the first surface 11a side of the translucent substrate 11 using an epitaxial growth technique such as MOVPE. Since the film is formed, a buffer layer may be provided as appropriate between the translucent substrate 11 and the n-type nitride semiconductor layer 12.
- the crystal growth method of the n-type nitride semiconductor layer 12, the nitride light emitting layer 13, and the p-type nitride semiconductor layer 14 is not limited to the MOVPE method, and for example, a hydride vapor phase growth method (HVPE method). Alternatively, a molecular beam epitaxy method (MBE method) or the like may be employed.
- the translucent substrate 11 should just be transparent with respect to the light radiated
- the LED chip 10 has the anode electrode 17 formed on the side opposite to the nitride light emitting layer 13 side in the p-type nitride semiconductor layer 14 and the nitride in the n-type nitride semiconductor layer 12.
- a cathode electrode 18 is formed on the laminated side of the light emitting layer 13.
- the cathode electrode 18 is formed by sequentially growing the n-type nitride semiconductor layer 12, the nitride light-emitting layer 13, and the p-type nitride semiconductor layer 14 on the first surface 11a side of the translucent substrate 11, A predetermined region of the laminated film of the n-type nitride semiconductor layer 12, the nitride light emitting layer 13, and the p-type nitride semiconductor layer 14 extends from the surface side of the p-type nitride semiconductor layer 14 to the middle of the n-type nitride semiconductor layer 12. It is formed on the surface of n-type nitride semiconductor layer 12 exposed by etching.
- the LED chip 10 by applying a forward bias voltage between the anode electrode 17 and the cathode electrode 18, holes are injected from the anode electrode 17 into the p-type nitride semiconductor layer 14, and the cathode electrode Electrons are injected from 18 into the n-type nitride semiconductor layer 12, and the electrons and holes injected into the nitride light-emitting layer 13 recombine to emit light.
- the above-described n-type nitride semiconductor layer 12 is composed of an n-type GaN layer formed on the translucent substrate 11, but is not limited to a single layer structure, and may be a multi-layer structure, for example, a translucent substrate.
- 11 is a sapphire substrate
- an n-type AlGaN layer formed on the first surface 11a side of the translucent substrate 11 via a buffer layer made of an AlN layer, an AlGaN layer, or the like, and the n-type AlGaN layer
- the n-type GaN layer may be used.
- the nitride light emitting layer 13 has a quantum well structure in which a well layer made of an InGaN layer is sandwiched by a barrier layer made of a GaN layer so that the emission peak wavelength of the nitride light emitting layer 13 is 450 nm.
- the emission wavelength is not particularly limited.
- the quantum well structure of the nitride light emitting layer 13 is not limited to a single quantum well structure, and may be a multiple quantum well structure.
- the nitride light emitting layer 13 does not necessarily have a quantum well structure, and may have a single layer structure.
- the material of the nitride light emitting layer 13 may be a nitride semiconductor material, and for example, AlInGaN, AlInN, AlGaN, or the like may be appropriately employed according to a desired light emission wavelength.
- the p-type nitride semiconductor layer 14 is composed of a p-type GaN layer formed on the nitride light-emitting layer 13, but is not limited to a single layer structure, and may have a multilayer structure, for example, a p-type AlGaN layer. You may comprise by the 1st p-type semiconductor layer which consists of, and the 2nd p-type semiconductor layer which consists of a p-type GaN layer formed on the 1st p-type semiconductor layer.
- the anode electrode 17 has a stacked structure of a Pt layer on the p-type nitride semiconductor layer 14 and an Ag layer on the Pt layer, and has a reflectance of light emitted from the nitride light emitting layer 13. Since it is formed of high Ag or the like, the light emitted from the nitride light emitting layer 13 to the p-type nitride semiconductor layer 14 side can be efficiently reflected to the nitride light emitting layer 13 side.
- the anode electrode 17 is not limited to the above-described laminated structure, and has, for example, a laminated structure of an Au layer on the p-type nitride semiconductor layer 14, a Ti layer on the Au layer, and an Au layer on the Ti layer. It may be a single layer structure.
- the cathode electrode 18 has a laminated structure of a Ti layer on the n-type nitride semiconductor layer 12 and an Au layer on the Ti layer.
- the Ti layer on the n-type nitride semiconductor layer 12 is provided as an ohmic contact layer with respect to the n-type nitride semiconductor layer 12, but the material of the ohmic contact layer is, for example, Ti, V, Al, or these An alloy containing any one kind of metal may be employed.
- the anode electrode 17 In forming the anode electrode 17 described above, for example, after forming a resist layer in which a region where the anode electrode 17 is to be formed is opened by using a photolithography technique, the anode electrode 17 is formed by an electron beam evaporation method or the like. Subsequently, the resist layer and the unnecessary film on the resist layer may be removed using an organic solvent (eg, acetone) (lifted off). Moreover, the formation method of the cathode electrode 18 can employ
- the fine uneven structure 15 that changes the traveling direction of light is formed on the light extraction surface side of the LED chip 10.
- a GaN substrate is used as the translucent substrate 11 as described above, and the fine concavo-convex structure 15 is formed on the second surface 11b side of the translucent substrate 11.
- the translucent substrate 11 has a (0001) plane which is a Ga polar plane of the GaN substrate as a first surface 11a, and a (000-1) plane which is an N polar plane as a second surface 11b.
- the fine concavo-convex structure 15 is formed by chemical etching using an appropriate etching solution.
- a KOH solution is used as an etching solution, and the light-transmitting substrate 11 made of a GaN substrate is crystal-anisotropically etched to form a fine concavo-convex structure 15 having a large number of conical protrusions (microcones).
- the many spindle-shaped projections are arranged in a two-dimensional array.
- the height of the spindle-shaped projections can be appropriately set within a range of 1 ⁇ m or less by appropriately setting the etching time, and the pitch of the spindle-shaped projections when the height of the spindle-shaped projections is 1 ⁇ m is approximately 1 ⁇ m. Become.
- the method for forming the fine concavo-convex structure 15 is not limited to the chemical etching method.
- the fine concavo-convex structure 15 is formed.
- the transfer layer and the translucent substrate 11 are dry-etched by dry etching.
- the fine concavo-convex structure 15 may be formed on the second surface 11 b side of the substrate 11. In this case, the height and pitch of the spindle-shaped protrusions may be appropriately set to 1 ⁇ m or less, for example.
- the hexagonal frustum-shaped transparent member 30 is formed using an n-type ZnO wafer, and the height (thickness) of the hexagonal frustum-shaped transparent member 30 is the thickness of the n-type ZnO wafer.
- the transparent member 30 since the n-type ZnO wafer having a thickness of 500 ⁇ m is used, the transparent member 30 has a height of 500 ⁇ m, but the thickness of the n-type ZnO wafer is The thickness is not particularly limited.
- the inclination angle of each side surface 33 with respect to the bottom surface 31 of the hexagonal frustum-shaped transparent member 30 is defined by the crystal axis direction of the n-type ZnO wafer.
- crystal anisotropic etching is performed on a ZnO wafer having a (0001) plane with a Zn polar plane on the LED thin film portion side and a (000-1) plane with an O polar plane on the opposite side to the LED thin film portion side.
- the transparent member 30 is formed by performing, each side surface 33 of the transparent member 30 is constituted by ⁇ 10-1-1 ⁇ surface, and the side surface 33 having an inclination angle of 60 ° is formed with good reproducibility. be able to.
- the transparent member 30 has a bottom surface 31 of a ZnO (0001) surface and a top surface 32 of a ZnO (000-1) surface.
- each side surface 33 of the transparent member 30 is formed by performing crystal anisotropic etching, so that the smoothness of each side surface 33 is good and the light on each side surface 33 is light. Can be prevented.
- the light emitting device of the present embodiment is made of the first transparent material (for example, ZnO) disposed on the LED chip 10 so that the light extraction surface side of the LED chip 10 becomes the bottom surface 31 side as described above.
- a transparent member 30 having a pyramid shape (here, a hexagonal frustum shape), and an adhesive made of a second transparent material (for example, a silicone resin) that is interposed between the transparent member 30 and the LED chip 10 and adheres to both.
- Layer 20 the refractive index of the first transparent material of the transparent member 30 is larger than the refractive index of the second transparent material of the adhesive layer 20, and the light extraction surface of the LED chip 10 (here, The shortest distance (L in FIG.
- the light emitting device of the present embodiment has a refractive index of the first transparent material of n 1 , a refractive index of the second transparent material of n 2 , and an emission peak wavelength of the LED chip 10 of ⁇ , where n 1 > The above-mentioned conditions regarding the condition of n 2 and the shortest distance L are satisfied.
- the emission peak wavelength ⁇ of the LED chip 10 is 450 nm
- ZnO having a refractive index n 1 of 2.1 is adopted as the first transparent material
- the refractive index n 2 is 1 as the second transparent material.
- the evanescent effect can be obtained by setting the shortest distance L to 0.25 ⁇ m or less.
- the emission peak wavelength ⁇ of the LED chip 10 is 450 nm
- the transparent member 30 is disposed on the light extraction surface side of the LED chip 10 via the adhesive layer 20.
- FIG. 2 shows the result of simulating the relationship between the transmittance and the thickness of the adhesive layer 20, where the transmittance (the ratio of being introduced) is the transmittance.
- FIG. 2 indicates that the fine protrusions 15 are provided, the height of the weight projections is 1 ⁇ m, the pitch of the weight projections is 1 ⁇ m, and the refractive index of the second transparent material of the adhesive layer 20 is 1.
- B in FIG. 6 indicates that the fine projections and depressions 15 are present, the height of the weight-like projections is 1 ⁇ m, the pitch of the weight-like projections is 1 ⁇ m, and the refractive index of the second transparent material of the adhesive layer 20 is In the case of 1.8, “C” in the figure is the case where the refractive index of the second transparent material of the adhesive layer 20 without the fine uneven structure 15 is 1.4.
- FIG. 2 shows a refractive index of the conventional light-emitting device shown in FIG.
- the thickness of the adhesive layer 20 is 0. It can be seen that the light emission rate of “A” is higher than the light emission rate of “D” by setting the thickness to 1 ⁇ m. Further, when “A” and “B” are compared with the fine concavo-convex structure 15, “B” in which the refractive index of the second transparent material of the adhesive layer 20 is larger has higher transmittance and higher light emission rate.
- the thickness of the adhesive layer 20 is 0.2 ⁇ m.
- the light emission rate of “C” is higher than the light emission rate of “E”.
- the emission peak wavelength ⁇ of the LED chip 10 is 450 nm
- the height of the weight-like protrusions of the fine uneven structure 15 is 1 ⁇ m
- the pitch of the weight-like protrusions is 1 ⁇ m
- the refractive index is 1 without being reflected once even in the light emitted from the nitride light emitting layer 13 of the LED chip 10 to the fine relief structure 15 side.
- the result of simulating the ratio of the light emitted from the sealing portion 60 made of .4 silicone resin as the light emission rate is shown in “B” of FIG.
- “B” in FIG. 3 indicates the light emission rate of the light emitting device in which the sealing portion 60 having the same refractive index as the material of the adhesive layer 20 is provided instead of the adhesive layer 20 and the transparent member 30.
- “A” in FIG. 3 is the transmittance
- “B” is the light emission rate.
- “A” if the Fresnel reflection component at the interface between the transparent member 30 and the air is ignored, as described above.
- the transmittance and the light output rate can be regarded as the same.
- the refractive index of the second transparent material of the adhesive layer 20 is 1.4
- the light emission rate of the example 44% and the emission rate of the comparative example is 28%. It can be seen that the light emission rate of the example can be significantly improved compared to the comparative example.
- the light emission rate is higher and the light extraction efficiency is higher than the light emitting device having the configuration shown in FIG.
- the weight-like transparent member 30 made of the first transparent material is disposed so as to overlap the LED chip 10 such that the light extraction surface side of the LED chip 10 is the bottom surface 31 side.
- the shortest distance L between the light extraction surface of the LED chip 10 and the transparent member 30 is set so that light from the LED chip 10 oozes out to the transparent member 30 as an evanescent wave.
- the weight-like transparent member 30 is bonded to the LED chip 10 by the adhesive layer 20, so that the above-described wafer bonding step and wafer lift-off step are not necessary at the time of manufacture. Yield can be improved.
- the shape of the transparent member 30 is not limited to a hexagonal frustum shape, and may be, for example, a hexagonal frustum shape, a square frustum shape, a quadrangular frustum shape, a truncated cone shape, or a conical shape.
- the anode electrode 17 and the cathode electrode 18 of the LED chip 10 are associated with the anode electrode 17 and the cathode electrode 18 of the LED chip 10 on the mounting substrate 40, respectively. Since the conductive patterns 47 and 48 are joined and electrically connected, the LED chip 10 and the transparent member 30 are compared with the case where the anode electrode 17 and the cathode electrode 18 are formed on the light extraction surface side of the LED chip 10. Can be easily adhered, and the controllability of the thickness of the adhesive layer 20 is improved.
- the second transparent material of the adhesive layer 20 is not limited to a silicone resin having a refractive index of 1.4, but may be a silicone resin having a refractive index satisfying the above condition of n 1 > n 2 .
- the silicone resin for example, an epoxy resin, an acrylic resin, or the like, or an inorganic / organic hybrid material in which Si-based material SOG (spin on glass), Ti nanoparticles or the like are mixed may be used.
- the adhesive layer 20 described above contains a color conversion material (for example, phosphor particles) that is excited by light emitted from the LED chip 10 and emits light having a wavelength longer than the emission peak wavelength of the LED chip 10.
- a color conversion material for example, phosphor particles
- mixed light of the light emitted from the LED chip 10 and the light emitted from the color conversion material can be obtained, and the light emitted from the color conversion material is transmitted to the transparent member. 30 can be efficiently introduced.
- the blue LED chip that emits blue light is used as the LED chip 10 and the yellow phosphor particles are used as the phosphor particles, white light can be obtained.
- the phosphor particles the red phosphor particles and the green phosphor are used. If body particles are used, white light with higher color rendering can be obtained.
- an ultraviolet LED chip that emits ultraviolet light as the LED chip 10 and using red phosphor particles, green phosphor particles, and blue phosphor particles as a color conversion material, white light with high color rendering properties can be obtained. Can be obtained. Further, when the adhesive layer 20 contains a color conversion material, color unevenness can be reduced by further containing a light diffusing material (eg, glass particles).
- a light diffusing material eg, glass particles
- Embodiment 2 The basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment, and only the shape of the fine concavo-convex structure 15 is different as shown in FIG.
- symbol is attached
- the fine concavo-convex structure 15 has a large number of spindle-shaped protrusions, whereas the fine concavo-convex structure 15 in the light-emitting device of the present embodiment has a large number of prismatic protrusions (here, quadrangular columnar protrusions, For example, a square columnar projection having a square bottom surface is arranged in a two-dimensional array.
- prismatic protrusions here, quadrangular columnar protrusions, For example, a square columnar projection having a square bottom surface is arranged in a two-dimensional array.
- the fine concavo-convex structure 15 in the light emitting device of the present embodiment is formed on the second surface 11b side of the translucent substrate 11 made of a GaN substrate using a photolithography technique and a dry etching technique.
- the height of the prismatic protrusions depends on the light emission peak wavelength of the nitride light emitting layer 13 of the LED chip 10, but when the light emission peak wavelength is set to 450 nm, for example, the height is appropriately set to 2 ⁇ m or less, for example. That's fine.
- a dry etching apparatus for forming the fine concavo-convex structure 15 for example, a reactive ion etching apparatus may be used.
- light from the LED chip 10 can be efficiently introduced into the transparent member 30, and light loss due to multiple reflection of light inside the LED chip 10 is achieved. Therefore, the luminous efficiency can be improved.
- the basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment.
- the transparent conductive film 16 is interposed between the anode electrode 17 and the p-type nitride semiconductor layer 14 in the LED chip 10.
- the point which is intervening is different.
- symbol is attached
- GZO Ga-doped ZnO
- the material of the transparent conductive film 16 is, for example, GZO, AZO (Al-doped ZnO), IZO ( Any material selected from the group of InO-doped ZnO) and ITO may be used.
- GZO Ga-doped ZnO
- AZO Al-doped ZnO
- IZO Any material selected from the group of InO-doped ZnO
- ITO may be used.
- the transparent conductive film 16 is composed of a GZO film, an AZO film, an IZO film, an ITO film, etc.
- the film is formed by O 2 gas-assisted electron beam evaporation. Annealing may be performed in a mixed gas of N 2 gas and O 2 gas.
- the extinction coefficient of the transparent conductive film 16 can be set to about 0.001. .
- the planar shape of the anode electrode 17 is circular, and a plurality of anode electrodes 17 are provided on the transparent conductive film 16 in a two-dimensional array.
- a light reflecting film 49 that reflects light emitted to the outside of the LED chip 10 through the transparent conductive film 16 of the LED chip 10 is formed on the one surface 41 a side of 41.
- the planar shape of the anode electrode 17 is not limited to a circular shape, and may be a hexagonal shape or a rectangular shape, for example.
- the transparent conductive film 16 may be interposed between the anode electrode 17 and the p-type nitride semiconductor layer 14 in the LED chip 10 in the light emitting device of another embodiment, as in the present embodiment.
- the basic configuration of the light emitting device of the present embodiment is substantially the same as that of the first embodiment.
- a sapphire substrate is used as the light transmissive substrate 11, and the first surface 11a side of the light transmissive substrate 11 is used.
- a fine relief structure 15 is formed (on the n-type nitride semiconductor layer 12 side), and the second surface 11b side of the translucent substrate 11 is a flat light extraction surface, a translucent sealing material (for example, A difference is that a lens-shaped sealing portion 60 formed of a silicone resin or the like and sealing the transparent member 30, the LED chip 10, and the mounting substrate 40 is provided.
- the mounting substrate 40 is mounted on the wiring substrate 70 with the mounting substrate 40 as a submount.
- symbol is attached
- the sealing portion 60 and the wiring board 70 similar to those of the present embodiment may be provided.
- the blue LED chip or the ultraviolet LED chip is used as the LED chip 10, it is not limited thereto, and for example, a purple LED chip, a green LED chip, a red LED chip, or the like may be used. .
- a nitride LED chip is employed as the LED chip 10.
- the present invention is not limited to this, and an InGaAsP LED chip, a GaP LED chip, or the like may be employed.
- the materials of the layer, the light emitting layer, and the p-type semiconductor layer are not limited to nitride semiconductors.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
多重反射に起因した光損失の低減による発光効率の向上を図れるとともに製造歩留まりの向上を図れる発光装置を提供する。n形窒化物半導体層(n形半導体層)12と窒化物発光層(発光層)13とp形窒化物半導体層(p形半導体層)14との積層構造を有するLEDチップ10と、LEDチップ10の光取り出し面側が底面31側となる形でLEDチップ10に重ねて配置された第1の透明材料(例えば、ZnO)からなる錘状(六角錘台状)の透明部材30と、透明部材30とLEDチップ10との間に介在し両者を接着する第2の透明材料(例えば、シリコーン樹脂)からなる接着層20とを備える。第1の透明材料の屈折率が第2の透明材料の屈折率よりも大きく、且つ、LEDチップ10の光取り出し面と透明部材30との最短距離Lを、LEDチップ10からの光がエバネッセント波として透明部材30へ滲み出すように設定してある。
Description
本発明は、LEDチップ(発光ダイオードチップ)を備えた発光装置に関するものである。
従来から、発光層が窒化物半導体材料(GaN、InGaN、AlGaInNなど)により形成されたLEDチップからなる半導体発光素子の高効率化および高出力化の研究開発が各所で行われている。また、この種の半導体発光素子と、半導体発光素子から放射された光によって励起されて半導体発光素子よりも長波長の光を放射する波長変換材料である蛍光体とを組み合わせて半導体発光素子の発光色とは異なる色合いの混色光を出す発光装置の研究開発が各所で行われている。なお、この種の発光装置としては、例えば、青色光あるいは紫外光を放射する半導体発光素子と蛍光体とを組み合わせて白色の光(白色光の発光スペクトル)を得る白色発光装置(一般的に白色LEDと呼ばれている)の商品化がなされている。
ところで、上述の半導体発光素子の光出力の高出力化を目的として発光層で発光した光を効率良く外部へ取り出すために、半導体発光素子の光取り出し面側に多数の錘状突起を設けることで微細凹凸構造を形成したものが提案されている(例えば、特許文献1,2参照)。
また、この種の微細凹凸構造を形成した半導体発光素子を備えた発光装置として、図7に示すように、半導体発光素子であるLEDチップ10と、LEDチップ10が実装された実装基板40と、透光性封止材料(例えば、シリコーン樹脂など)により形成されLEDチップ10および実装基板40を封止したレンズ状の封止部60とを備えたものが提案されている。なお、図7に示した例では、実装基板40をサブマウントとして当該実装基板40を配線基板70に搭載してある。
ここにおいて、LEDチップ10は、GaN基板からなる透光性基板11の第1の表面11a側にn形窒化物半導体層(例えば、n形GaN層)12と窒化物発光層13とp形窒化物半導体層(例えば、p形GaN層)14との積層構造を有し、p形窒化物半導体層14における窒化物発光層13側とは反対側にアノード電極17が形成されるとともに、n形窒化物半導体層12における窒化物発光層13の積層側にカソード電極18が形成されている。また、LEDチップ10は、透光性基板11の第2の表面11b側に微細凹凸構造15が形成されている。なお、アノード電極17は、窒化物発光層13から放射される光に対する反射率の高い材料により形成されている。
また、近年、光取り出し効率の向上を目的として、n形GaN層およびp形GaN層を有するLED薄膜部と透明で導電性を有するn形ZnO基板とを接合してから、n形ZnO基板をエッチング速度の結晶方位依存性を利用した結晶異方性エッチングにより六角錘状に加工してなるLEDチップ(半導体発光素子)が提案されている(例えば、非特許文献1参照)。図8に示すように、この種のLEDチップ110は、n形窒化物半導体層(例えば、n形GaN層)112と窒化物発光層113とp形窒化物半導体層(p形GaN層)114との積層構造を有するLED薄膜部と、LED薄膜部に接合された六角錘状のn形ZnO基板119とを備え、六角錘状のn形ZnO基板119の底面にアノード電極117が形成されるとともに、LED薄膜部のn形窒化物半導体層112におけるn形ZnO基板119側とは反対側にカソード電極118が形成されている。
ここで、図8に示した構成のLEDチップ110の製造にあたっては、主表面が(0001)面のサファイアウェハの上記主表面側にn形窒化物半導体層112と窒化物発光層113とp形窒化物半導体層114との積層構造を有するLED薄膜部をMOVPE法などにより成長する結晶成長工程を行い、その後、フォトリソグラフィ技術およびエッチング技術を利用してLED薄膜部を所望の形状にパターニングするパターニング工程を行い、次に、サファイアウェハの上記主表面側のLED薄膜部とn形ZnO基板119の基礎となるn形ZnOウェハとを直接接合するウェハ接合工程を行ってから、LED薄膜部とサファイアウェハとの界面付近にレーザ光を照射してLED薄膜部からサファイアウェハを除去するウェハリフトオフ工程(レーザリフトオフ工程)を行い、続いて、各電極117,118を形成する電極形成工程を行ってから、n形ZnOウェハにおけるLED薄膜部側とは反対側に所定形状にパターニングされたマスク層を形成するマスク層形成工程を行い、その後、塩酸系のエッチング液(例えば、塩酸水溶液など)を用いてエッチング速度の結晶方位依存性を利用した結晶異方性エッチングを行うことによりn形ZnOウェハの一部からなる六角錘状のn形ZnO基板119を形成する加工工程を行い、その後、上記マスク層を除去するマスク層除去工程を行うようにしている。
特開2005-150261号公報
特開2005-181740号公報
「松下電工とUCSBの新型LED,外部量子効率80%を目指す」,日経エレクトロニクス,日経BP社,2008年2月11日,p.16-17
しかしながら、図7に示した構成の発光装置では、微細凹凸構造15の錘状突起から出射した光が隣接する錘状突起に再入射してしまう成分があり、この成分に起因して光取り出し効率の向上が低下する。また、図7に示した構成の発光装置では、微細凹凸構造15の有無に関わらず、LEDチップ10内部での多重反射に起因して、アノード電極17およびカソード電極18での光吸収、窒化物発光層13での光吸収、透光性基板11での光吸収などによる光損失が多くなるので、発光効率が低いという問題があった。
また、図8に示した構成のLEDチップ110では、n形ZnO基板119の屈折率がp形窒化物半導体層114の屈折率よりも小さく、LED薄膜部で発生した光のうちn形ZnO基板119とp形窒化物半導体層114との接合面に対して低入射角の光がn形ZnO基板119に導入されず、多重反射に起因した光損失が発生してしまうので、発光効率のより一層の向上が望まれていた。また、図8に示した構成のLEDチップ110は、製造時に上述のウェハ接合工程およびウェハリフトオフ工程が必要であり、製造歩留まりが低かった。
本発明は上記事由に鑑みて為されたものであり、その目的は、多重反射に起因した光損失の低減による発光効率の向上を図れるとともに製造歩留まりの向上を図れる発光装置を提供することにある。
請求項1の発明は、n形半導体層と発光層とp形半導体層との積層構造を有するLEDチップと、LEDチップの光取り出し面側が底面側となる形でLEDチップに重ねて配置された第1の透明材料からなる錘状の透明部材と、透明部材とLEDチップとの間に介在し両者を接着する第2の透明材料からなる接着層とを備え、第1の透明材料の屈折率が第2の透明材料の屈折率よりも大きく、且つ、LEDチップの光取り出し面と透明部材との最短距離を、LEDチップからの光がエバネッセント波として透明部材へ滲み出すように設定してあることを特徴とする。
この発明によれば、LEDチップの光取り出し面側が底面側となる形でLEDチップに重ねて配置された第1の透明材料からなる錘状の透明部材と、透明部材とLEDチップとの間に介在し両者を接着する第2の透明材料からなる接着層とを備え、第1の透明材料の屈折率が第2の透明材料の屈折率よりも大きく、且つ、LEDチップの光取り出し面と透明部材との最短距離を、LEDチップからの光がエバネッセント波として透明部材へ滲み出すように設定してあるので、LEDチップからの光が接着層を介して錘状の透明部材にエバネッセント効果により滲み出すから、LEDチップからの光を効率良く透明部材へ導入することができ、多重反射に起因した光損失の低減による発光効率の向上を図れ、また、錘状の透明部材をLEDチップに対して接着層により接着しているので、製造時にウェハ接合工程およびウェハリフトオフ工程が不要であり、製造歩留まりの向上を図れる。
請求項2の発明は、請求項1の発明において、前記LEDチップの光取り出し面側に光の進行方向を変える微細凹凸構造を有することを特徴とする。
この発明によれば、前記LEDチップの光取り出し面側に光の進行方向を変える微細凹凸構造が形成されているので、前記LEDチップで発生した光をより効率良く前記透明部材に導入できるようになって、光取り出し効率が向上し、結果的に発光効率が向上する。
請求項3の発明は、請求項1または請求項2の発明において、前記接着層に、前記LEDチップから放射される光によって励起されて前記LEDチップの発光ピーク波長よりも長波長の光を放射する色変換材を含有させてなることを特徴とする。
この発明によれば、前記接着層に、前記LEDチップから放射される光によって励起されて前記LEDチップの発光ピーク波長よりも長波長の光を放射する色変換材を含有させてあるので、前記LEDチップから放射される光と色変換材から放射される光との混色光を得ることができ、しかも、色変換材から放射される光を前記透明部材に効率良く導入することができる。
請求項4の発明は、請求項3の発明において、前記接着層に、光拡散材を含有させてなることを特徴とする。
この発明によれば、前記接着層に、光拡散材を含有させてあるので、色むらを低減できる。
請求項5の発明は、請求項1ないし請求項4の発明において、前記LEDチップが実装された実装基板を備え、前記LEDチップは、前記p形半導体層における前記発光層側とは反対側にアノード電極が形成されるとともに、前記n形半導体層における前記発光層の積層側にカソード電極が形成されてなり、アノード電極およびカソード電極それぞれがバンプを介して、実装基板において前記LEDチップのアノード電極およびカソード電極それぞれに対応付けられた導体パターンと接合されてなることを特徴とする。
この発明によれば、前記LEDチップのアノード電極およびカソード電極それぞれが、実装基板において前記LEDチップのアノード電極およびカソード電極それぞれに対応付けられた導体パターンと接合されているので、前記LEDチップの光取り出し面側にアノード電極やカソード電極が形成されている場合に比べて前記LEDチップと前記透明部材との接着が容易になるとともに前記接着層の厚さの制御性が向上する。
請求項6の発明は、請求項1の発明において、前記最短距離は、前記LEDチップから放射される光の発光ピーク波長以下であることを特徴とする。
この発明によれば、前記LEDチップの光取り出し面と前記透明部材との最短距離が、前記LEDチップから放射される光の発光ピーク波長以下であるので、前記LEDチップからの光は、前記接着層を介して、錘状の前記透明部材にエバネッセント効果により滲み出す。従って、請求項1の発明と同様の効果を得ることができる。
請求項7の発明は、請求項2の発明において、前記微細凹凸構造は、多数の錘状突起(マイクロコーン)から構成されることを特徴とする。
この発明によれば、前記微細凹凸構造は多数の錘状突起から構成されるので、例えば異方性エッチングなどの方法を用いて、容易にこの微細凹凸構造を形成することができる。そして、この微細凹凸構造によって、前記LEDチップで発生した光をより効率良く前記透明部材に導入できるようになって、光取り出し効率が向上し、結果的に発光効率が向上する。
請求項8の発明は、請求項2の発明において、前記微細凹凸構造は、多数の角柱状突起から構成されることを特徴とする。
この発明によれば、前記微細凹凸構造は多数の角柱状突起から構成されるので、この微細凹凸構造によって、前記LEDチップで発生した光をより効率良く前記透明部材に導入できるようになって、光取り出し効率が向上し、結果的に発光効率が向上する。
請求項9の発明は、請求項1の発明において、前記第1の透明材料はZnOであることを特徴とする。
この発明によれば、前記透明部材はZnOから形成されるので、結晶異方性エッチングなどによって、前記透明部材を錘状に形成することができる。従って、前記透明部材の側面の平滑性が良くなり、前記透明部材の側面での光の散乱を防止することができる。
請求項1の発明では、多重反射に起因した光損失の低減による発光効率の向上を図れるとともに製造歩留まりの向上を図れるという効果がある。
(実施形態1)
本実施形態の発光装置は、図1に示すように、n形窒化物半導体層12と窒化物発光層13とp形窒化物半導体層14との積層構造を有するLEDチップ10と、LEDチップ10の光取り出し面側が底面31側となる形でLEDチップ10に重ねて配置された第1の透明材料(例えば、ZnOなど)からなる錘状(ここでは、六角錘台状)の透明部材30と、透明部材30とLEDチップ10との間に介在し両者を接着する第2の透明材料(例えば、シリコーン樹脂など)からなる接着層20とを備えている。なお、本実施形態では、n形窒化物半導体層がn形半導体層を構成し、窒化物発光層13が発光層を構成し、p形窒化物半導体層がp形半導体層を構成している。
本実施形態の発光装置は、図1に示すように、n形窒化物半導体層12と窒化物発光層13とp形窒化物半導体層14との積層構造を有するLEDチップ10と、LEDチップ10の光取り出し面側が底面31側となる形でLEDチップ10に重ねて配置された第1の透明材料(例えば、ZnOなど)からなる錘状(ここでは、六角錘台状)の透明部材30と、透明部材30とLEDチップ10との間に介在し両者を接着する第2の透明材料(例えば、シリコーン樹脂など)からなる接着層20とを備えている。なお、本実施形態では、n形窒化物半導体層がn形半導体層を構成し、窒化物発光層13が発光層を構成し、p形窒化物半導体層がp形半導体層を構成している。
また、本実施形態の発光装置は、LEDチップ10が実装された実装基板40を備えている。
ここにおいて、LEDチップ10は、p形窒化物半導体層14における窒化物発光層13側とは反対側にアノード電極17が形成されるとともに、n形窒化物半導体層12における窒化物発光層13の積層側にカソード電極18が形成されており、アノード電極17およびカソード電極18それぞれがバンプ57,58を介して、実装基板40においてLEDチップ10のアノード電極17およびカソード電極18それぞれに対応付けられた導体パターン47,48と各別に接合されている。
実装基板40は、電気絶縁性を有し且つ熱伝導率の高い窒化アルミニウム基板からなる平板状の絶縁性基板41の一表面41a側に、LEDチップ10のアノード電極17およびカソード電極18それぞれとバンプ57,58を介して接合される上述の導体パターン47,48が形成されている。なお、実装基板40の平面視形状は、矩形状(本実施形態では、正方形状)となっているが、正方形状に限らず、例えば、長方形状、円形状、六角形状でもよい。
実装基板40の絶縁性基板41は、LEDチップ10で発生した熱を伝熱させる伝熱板を兼ねたものであり、ガラスエポキシ樹脂基板などの有機系基板に比べて熱伝導率の高いものであればよく、窒化アルミニウム基板に限らず、例えば、アルミナ基板や、ホーロー基板、表面にシリコン酸化膜が形成されたシリコン基板などを採用してもよい。また、導体パターン47,48は、Cu膜とNi膜とAu膜との積層膜により構成され、最上層がAu膜となっている。
上述の各バンプ57,58は、材料としてAuを採用しており、実装基板40の各導体パターン47,48の表面上にスタッドバンプ法(ボールバンプ法とも呼ばれている)により形成されたスタッドバンプにより構成されている。ここにおいて、カソード電極18に比べて大面積のアノード電極17に接合するバンプ57の個数は特に限定するものではないが、LEDチップ10で発生した熱を効率良く放熱させる観点からは数が多いほうが好ましい。なお、バンプ57,58は、スタッドバンプに限らず、例えば、めっき法により形成されたバンプ(所謂めっきバンプ)でもよい。
上述のLEDチップ10は、図1に示すように、GaN基板からなる透光性基板11の第1の表面11a側(図1における下面側)にn形GaN層からなるn形窒化物半導体層12が形成され、n形窒化物半導体層12上に量子井戸構造を有する窒化物発光層13が形成され、窒化物発光層13上にp形GaN層からなるp形窒化物半導体層14が形成されている。要するに、LEDチップ10は、透光性基板11の第1の表面11a側にn形窒化物半導体層12と窒化物発光層13とp形窒化物半導体層14との積層構造を有している。なお、n形窒化物半導体層12、窒化物発光層13、およびp形窒化物半導体層14は、透光性基板11の第1の表面11a側にMOVPE法のようなエピタキシャル成長技術を利用して成膜するので、透光性基板11とn形窒化物半導体層12との間にバッファ層を適宜設けてもよい。また、n形窒化物半導体層12、窒化物発光層13、およびp形窒化物半導体層14の結晶成長方法は、MOVPE法に限定するものではなく、例えば、ハイドライド気相成長法(HVPE法)や、分子線エピタキシー法(MBE法)などを採用してもよい。また、透光性基板11は、窒化物発光層13から放射される光に対して透明であればよく、例えば、サファイア基板、SiC基板、ZnO基板などを採用してもよい。
また、LEDチップ10は、上述のように、p形窒化物半導体層14における窒化物発光層13側とは反対側にアノード電極17が形成されるとともに、n形窒化物半導体層12における窒化物発光層13の積層側にカソード電極18が形成されている。ここで、カソード電極18は、透光性基板11の第1の表面11a側へn形窒化物半導体層12、窒化物発光層13、p形窒化物半導体層14を順次成長させた後で、n形窒化物半導体層12と窒化物発光層13とp形窒化物半導体層14との積層膜の所定領域をp形窒化物半導体層14の表面側からn形窒化物半導体層12の途中までエッチングすることにより露出させたn形窒化物半導体層12の表面に形成されている。
ここにおいて、LEDチップ10では、アノード電極17とカソード電極18との間に順方向バイアス電圧を印加することにより、アノード電極17からp形窒化物半導体層14へホールが注入されるとともに、カソード電極18からn形窒化物半導体層12へ電子が注入され、窒化物発光層13に注入された電子とホールとが再結合することで発光する。
上述のn形窒化物半導体層12は、透光性基板11上に形成されたn形GaN層で構成してあるが、単層構造に限らず、多層構造でもよく、例えば、透光性基板11がサファイア基板の場合には、透光性基板11の第1の表面11a側にAlN層やAlGaN層などからなるバッファ層を介して形成されたn形AlGaN層と、当該n形AlGaN層上のn形GaN層とで構成してもよい。
また、窒化物発光層13は、GaN層からなる障壁層によりInGaN層からなる井戸層が挟まれた量子井戸構造を有しており、当該窒化物発光層13の発光ピーク波長が450nmとなるようにInGaN層の組成を設定してあるが、発光波長(発光ピーク波長)は特に限定するものではない。なお、窒化物発光層13の量子井戸構造は単一量子井戸構造に限らず、多重量子井戸構造でもよい。また、窒化物発光層13は、必ずしも量子井戸構造を有している必要はなく、単層構造でもよい。また、窒化物発光層13の材料も窒化物半導体材料であればよく、所望の発光波長に応じて、例えば、AlInGaN、AlInN、AlGaNなどを適宜採用してもよい。
また、p形窒化物半導体層14は、窒化物発光層13上に形成されたp形GaN層で構成してあるが、単層構造に限らず、多層構造でもよく、例えば、p形AlGaN層からなる第1のp形半導体層と、第1のp形半導体層上に形成されたp形GaN層からなる第2のp形半導体層とで構成してもよい。
また、アノード電極17は、p形窒化物半導体層14上のPt層と当該Pt層上のAg層との積層構造を有しており、窒化物発光層13から放射される光に対する反射率の高いAgなどにより形成されているので、窒化物発光層13からp形窒化物半導体層14側へ放射された光を窒化物発光層13側へ効率良く反射することができる。なお、アノード電極17は、上述の積層構造に限らず、例えば、p形窒化物半導体層14上のAu層と当該Au層上のTi層と当該Ti層上のAu層との積層構造を有するものでもよいし、単層構造でもよい。
また、カソード電極18は、n形窒化物半導体層12上のTi層と当該Ti層上のAu層との積層構造を有している。ここで、n形窒化物半導体層12上のTi層は、n形窒化物半導体層12に対するオーミックコンタクト層として設けてあるが、オーミックコンタクト層の材料は、例えば、Ti、V、Alやこれらのいずれか一種類の金属を含む合金などを採用すればよい。
上述のアノード電極17の形成にあたっては、例えば、アノード電極17の形成予定領域が開口されたレジスト層をフォトリソグラフィ技術を利用して形成してから、電子ビーム蒸着法などによりアノード電極17を形成し、続いて、上記レジスト層および上記レジスト層上の不要膜を、有機溶剤(例えば、アセトンなど)を用いて除去すればよい(リフトオフすればよい)。また、カソード電極18の形成方法は、アノード電極17と同様の形成方法を採用することができる。
また、本実施形態の発光装置は、LEDチップ10の光取り出し面側に光の進行方向を変える微細凹凸構造15を形成してある。本実施形態の発光装置では、上述のように透光性基板11としてGaN基板を用いており、微細凹凸構造15を透光性基板11の第2の表面11b側に形成してある。ここにおいて、透光性基板11は、GaN基板のGa極性面である(0001)面を第1の表面11aとし、N極性面である(000-1)面を第2の表面11bとしてあり、微細凹凸構造15は、適宜のエッチング液を用いたケミカルエッチングにより形成されている。具体的には、エッチング液としてKOH溶液を用いており、GaN基板からなる透光性基板11を結晶異方性エッチングすることにより、多数の錘状突起(マイクロコーン)を有する微細凹凸構造15を形成している。ここでは、この多数の錘状突起は2次元アレイ状に配列されている。ここにおいて、錘状突起の高さはエッチング時間を適宜設定することにより1μm以下の範囲で適宜設定することができ、錘状突起の高さが1μmのときの錘状突起のピッチは略1μmとなる。
なお、上述の微細凹凸構造15の形成方法はケミカルエッチング法に限らず、例えば、GaN基板からなる透光性基板11の第2の表面11b側に転写層を形成してから、微細凹凸構造15に応じてパターン設計した凹凸パターンを形成したモールドを上記転写層に押し付けて上記凹凸パターンを上記転写層に転写した後で、上記転写層および透光性基板11をドライエッチングすることで透光性基板11の第2の表面11b側に微細凹凸構造15を形成するようにしてもよい。なお、この場合の錘状突起の高さおよびピッチは、例えば、それぞれ1μm以下で適宜設定すればよい。
また、上述の六角錘台状の透明部材30は、n形ZnOウェハを用いて形成してあり、当該六角錘台状の透明部材30の高さ(厚さ)は、n形ZnOウェハの厚さで規定することができ、本実施形態では、n形ZnOウェハとして厚さが500μmのものを用いているので、透明部材30の高さは500μmとなっているが、n形ZnOウェハの厚さは特に限定するものではない。また、六角錘台状の透明部材30の底面31に対する各側面33それぞれの傾斜角は、n形ZnOウェハの結晶軸方向で規定される。本実施形態では、LED薄膜部側がZn極性面である(0001)面、LED薄膜部側とは反対側がO極性面である(000-1)面のZnOウェハに対して結晶異方性エッチングを行うことにより透明部材30を形成しているので、透明部材30の各側面33は、{10-1-1}面により構成されており、再現性良く傾斜角が60°の側面33を形成することができる。なお、上述の説明から分かるように、透明部材30は、底面31がZnO(0001)面、上面32がZnO(000-1)面となっている。
したがって、本実施形態の発光装置によれば、結晶異方性エッチングを行うことにより透明部材30の各側面33を形成しているので、各側面33の平滑性が良く、各側面33での光の散乱を防止することができる。
ところで、本実施形態の発光装置は、上述のようにLEDチップ10の光取り出し面側が底面31側となる形でLEDチップ10に重ねて配置された第1の透明材料(例えば、ZnOなど)からなる錘状(ここでは、六角錘台状)の透明部材30と、透明部材30とLEDチップ10との間に介在し両者を接着する第2の透明材料(例えば、シリコーン樹脂など)からなる接着層20とを備えている。ここにおいて、本実施形態では、透明部材30の第1の透明材料の屈折率が接着層20の第2の透明材料の屈折率よりも大きく、且つ、LEDチップ10の光取り出し面(ここでは、微細凹凸構造15の表面)と透明部材30との最短距離(図1中のL)を、LEDチップ10からの光がエバネッセント波として透明部材30へ滲み出すようにLEDチップ10の発光波長程度に設定してある。なお、この最短距離LはLEDチップ10の発光波長程度であって、LEDチップ10から放射される光の発光ピーク波長以下とすることが好ましい。要するに、本実施形態の発光装置は、第1の透明材料の屈折率をn1、第2の透明材料の屈折率をn2、LEDチップ10の発光ピーク波長をλとするとき、n1>n2の条件および最短距離Lに関する上述の条件を満たしている。一例を挙げれば、LEDチップ10の発光ピーク波長λが450nmのときには、第1の透明材料として屈折率n1が2.1のZnOを採用するとともに第2の透明材料として屈折率n2が1.4のシリコーン樹脂を採用し、錘状突起の高さおよびピッチをそれぞれ1μmとした場合、最短距離Lを0.25μm以下に設定することによりエバネッセント効果を得ることができる。
ここで、LEDチップ10の発光ピーク波長λを450nm、LEDチップ10の光取り出し面側に接着層20を介して第1の透明材料(n1=2.1のZnO)からなる透明部材30を配置した構造について、LEDチップ10の窒化物発光層13から透明部材30側へ放射され透明部材30へ入射する光に関して全ての入射角度成分の光が入射したときに1回で透明部材30に光が透過する割合(導入される割合)を透過率として、透過率と接着層20の厚さとの関係をシミュレーションした結果を図2に示す。ここにおいて、図2の「A」は、微細凹凸構造15有りで錘状突起の高さを1μm、錘状突起のピッチを1μmとし、接着層20の第2の透明材料の屈折率を1.4とした場合、同図の「B」は、微細凹凸構造15有りで錘状突起の高さを1μm、錘状突起のピッチを1μmとし、接着層20の第2の透明材料の屈折率を1.8とした場合、同図の「C」は、微細凹凸構造15無しで接着層20の第2の透明材料の屈折率を1.4とした場合である。また、図2には、図7に示した従来の発光装置について、LEDチップ10の窒化物発光層13から微細凹凸構造15側へ放射される光のうち1度も反射されることなく屈折率が1.4のシリコーン樹脂よりなる封止部60から出射される光の割合を光出射率としてシミュレーションした結果を「D」に示し、微細凹凸構造15無しの場合の光出射率のシミュレーション結果を「E」に示してある。図2の「A」,「B」,「C」それぞれについて、LEDチップの発光波長程度の領域で接着層20の厚さが0に近づくにつれて透過率が増加しているが、これはエバネッセント効果によるものである。
ところで、図2の「A」,「B」,「C」は透過率、「D」,「E」は光出射率であるが、「A」,「B」,「C」については透明部材30と空気との界面でのフレネル反射成分を無視すれば、透過率と光出射率とを同じとみなすことができる(実際には、透明部材30と空気との屈折率差に起因したフレネル反射成分があるので、透過率×0.98程度の値が光出射率になると見積もっている)。ここにおいて、微細凹凸構造15有りで接着層20の第2の透明材料の屈折率が1.4の場合について、「A」と「D」とを比較すると、接着層20の厚さを0.1μmとすることにより「A」の光出射率が「D」の光出射率よりも高くなることが分かる。また、微細凹凸構造15有りで「A」と「B」とを比較すると、接着層20の第2の透明材料の屈折率が大きな「B」の方が、透過率が高く光出射率が高くなることが分かる。さらに、微細凹凸構造15無しで接着層20の第2の透明材料の屈折率が1.4の場合について、「C」と「E」とを比較すると、接着層20の厚さを0.2μmとすることにより「C」の光出射率が「E」の光出射率よりも高くなることが分かる。
また、LEDチップ10の発光ピーク波長λを450nm、微細凹凸構造15の錘状突起の高さを1μm、錘状突起のピッチを1μmとして、LEDチップ10の光取り出し面側の微細凹凸構造15の錘状突起間に接着層20の第2の透明材料を充填し、そのLEDチップ10の光取り出し面側に第1の透明材料(n1=2.1のZnO)からなる透明部材30を配置した一例について(この例では、L=0)、第2の透明材料の屈折率n2を1~2.1の範囲で種々変化させた場合について、LEDチップ10の窒化物発光層13から透明部材30側へ放射され透明部材30へ入射する光に関して全ての入射角度成分の光が入射したときに1回で透明部材30に光が透過する割合(導入される割合)を透過率としてシミュレーション結果を図3の「A」に示す。また、比較例として図7に示した従来の発光装置について、LEDチップ10の窒化物発光層13から微細凹凸構造15側へ放射される光のうち1度も反射されることなく屈折率が1.4のシリコーン樹脂よりなる封止部60から出射される光の割合を光出射率としてシミュレーションした結果を図3の「B」に示してある。要するに、図3の「B」は、接着層20および透明部材30の代わりに、接着層20の材料と同じ屈折率の封止部60を設けた発光装置の光出射率を示している。
ところで、図3の「A」は透過率、「B」は光出射率であるが、「A」については透明部材30と空気との界面でのフレネル反射成分を無視すれば、上述のように透過率と光出射率とを同じとみなすことができる。ここにおいて、接着層20の第2の透明材料の屈折率が1.4の場合について、実施例である「A」と、比較例である「B」とを比較すると、実施例の光出射率が44%、比較例の出射率が28%であり、実施例の方が比較例に比べて光出射率を大幅に向上できることが分かる。ここで、LEDチップ10内部での反射回数が増加すると、透光性基板11での吸収損失、アノード電極17およびカソード電極18での損失、窒化物発光層13での吸収損失などが増加するので、窒化物発光層13から放射され1度も反射されることなく外部へ出射される光の割合である光出射率が高いほど、光取り出し効率が高くなる。しかして、本実施形態の発光装置によれば、図7に示した構成の発光装置に比べて光出射率が高く、光取り出し効率が高くなる。
以上説明した本実施形態の発光装置によれば、LEDチップ10の光取り出し面側が底面31側となる形でLEDチップ10に重ねて配置された第1の透明材料からなる錘状の透明部材30と、透明部材30とLEDチップ10との間に介在し両者を接着する第2の透明材料からなる接着層20とを備え、第1の透明材料の屈折率が第2の透明材料の屈折率よりも大きく、且つ、LEDチップ10の光取り出し面と透明部材30との最短距離Lを、LEDチップ10からの光がエバネッセント波として透明部材30へ滲み出すように設定してあるので、LEDチップ10からの光が接着層20を介して錘状の透明部材30にエバネッセント効果により滲み出すから、LEDチップ10からの光を効率良く透明部材30へ導入することができ、LEDチップ10内部での光の多重反射に起因した光損失の低減による発光効率の向上を図れる。また、本実施形態の発光装置では、錘状の透明部材30をLEDチップ10に対して接着層20により接着しているので、製造時に上述のウェハ接合工程およびウェハリフトオフ工程が不要であり、製造歩留まりの向上を図れる。
また、本実施形態の発光装置では、LEDチップ10の光取り出し面側に光の進行方向を変える微細凹凸構造15が形成されているので、LEDチップ10で発生した光をより効率良く透明部材30に導入できるようになって、光取り出し効率が向上し、結果的に発光効率が向上する。なお、透明部材30の形状は錘状であればよく、六角錘台状に限らず、例えば、六角錘状、四角台錘状、四角錘状、円錐台状、円錐状などでもよい。
また、本実施形態の発光装置は、上述のように、LEDチップ10のアノード電極17およびカソード電極18それぞれが、実装基板40においてLEDチップ10のアノード電極17およびカソード電極18それぞれに対応付けられた導体パターン47,48と接合され電気的に接続されているので、LEDチップ10の光取り出し面側にアノード電極17やカソード電極18が形成されている場合に比べてLEDチップ10と透明部材30との接着が容易になるとともに接着層20の厚さの制御性が向上する。なお、接着層20の第2の透明材料は、屈折率が1.4のシリコーン樹脂に限定するものではなく、上述のn1>n2の条件を満たす屈折率のシリコーン樹脂であればよく、また、シリコーン樹脂に限らず、例えば、エポキシ樹脂やアクリル樹脂など、さらには、Si系材料のSOG(spin on glass)、Tiナノ粒子などを混入させた無機・有機ハイブリッド材料などでも
よい。
よい。
ところで、上述の接着層20に、LEDチップ10から放射される光によって励起されてLEDチップ10の発光ピーク波長よりも長波長の光を放射する色変換材(例えば、蛍光体粒子など)を含有させてもよく、この場合には、LEDチップ10から放射される光と色変換材から放射される光との混色光を得ることができ、しかも、色変換材から放射される光を透明部材30に効率良く導入することができる。ここで、LEDチップ10として青色光を放射する青色LEDチップを用い、蛍光体粒子として、黄色蛍光体粒子を用いれば白色光を得ることができ、蛍光体粒子として、赤色蛍光体粒子と緑色蛍光体粒子とを用いれば、より演色性の高い白色光を得ることが可能となる。また、LEDチップ10として紫外光を放射する紫外LEDチップを用い、色変換材として、赤色蛍光体粒子と緑色蛍光体粒子と青色蛍光体粒子とを用いることによっても、演色性の高い白色光を得ることが可能となる。また、接着層20に色変換材を含有させる場合に、更に、光拡散材(例えば、ガラス粒子など)を含有させるようにすれば、色むらを低減できる。
(実施形態2)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図4に示すように、微細凹凸構造15の形状が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図4に示すように、微細凹凸構造15の形状が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
実施形態1では微細凹凸構造15が多数の錘状突起を有していたのに対して、本実施形態の発光装置における微細凹凸構造15は、多数の角柱状突起(ここでは、四角柱状突起、例えば正方形状の底面を持つ四角柱状突起)が2次元アレイ状に配列されている点が相違する。
本実施形態の発光装置における微細凹凸構造15は、GaN基板からなる透光性基板11の第2の表面11b側に、フォトリソグラフィ技術およびドライエッチング技術を利用して形成している。ここで、角柱状突起の高さは、LEDチップ10の窒化物発光層13の発光ピーク波長にもよるが、発光ピーク波長を例えば450nmに設定した場合には、例えば、2μm以下で適宜設定すればよい。なお、微細凹凸構造15を形成する際のドライエッチング装置としては、例えば、反応性イオンエッチング装置などを用いればよい。
以上説明した本実施形態の発光装置においても、実施形態1と同様、LEDチップ10からの光を効率良く透明部材30へ導入することができ、LEDチップ10内部での光の多重反射による光損失を低減できるから、発光効率の向上を図れる。
(実施形態3)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図5に示すように、LEDチップ10においてアノード電極17とp形窒化物半導体層14との間に透明導電膜16を介在させてある点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図5に示すように、LEDチップ10においてアノード電極17とp形窒化物半導体層14との間に透明導電膜16を介在させてある点などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態では、透明導電膜16の材料としてGZO(GaをドープしたZnO)を採用しているが、透明導電膜16の材料は、例えば、GZO、AZO(AlをドーピングしたZnO)、IZO(InをドーピングしたZnO)、ITOの群から選択される材料であればよく、当該群から選択される材料を採用することにより、当該透明導電膜16とp形窒化物半導体層14との接触をオーミック接触とすることができる。ここにおいて、透明導電膜16をGZO膜、AZO膜、IZO膜、ITO膜などにより構成する場合、当該透明導電膜16の形成にあたっては、O2ガスアシストの電子ビーム蒸着法により成膜した後、N2ガスとO2ガスとの混合ガス中でアニールするようにすればよく、このような形成方法を採用することにより、透明導電膜16の消衰係数を0.001程度とすることができる。
また、本実施形態の発光装置では、アノード電極17の平面視形状を円形状として、透明導電膜16上に複数のアノード電極17を2次元アレイ状に設けてあり、実装基板40における絶縁性基板41の上記一表面41a側にLEDチップ10の透明導電膜16を通してLEDチップ10の外部へ放射された光を反射する光反射膜49を形成してある。なお、アノード電極17の平面視形状は円形状に限らず、例えば、六角形状や矩形状などでもよい。
本実施形態の発光装置においても、実施形態1と同様、LEDチップ10からの光を効率良く透明部材30へ導入することができ、LEDチップ10内部での光の多重反射による光損失を低減できるから、発光効率の向上を図れる。なお、他の実施形態の発光装置におけるLEDチップ10に関して、本実施形態と同様、アノード電極17とp形窒化物半導体層14との間に透明導電膜16を介在させてもよい。
(実施形態4)
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図6に示すように、透光性基板11としてサファイア基板を用い、透光性基板11の第1の表面11a側(n形窒化物半導体層12側)に微細凹凸構造15を形成し、透光性基板11の第2の表面11b側を平坦な光取り出し面としてある点、透光性封止材料(例えば、シリコーン樹脂など)により形成され透明部材30、LEDチップ10および実装基板40を封止したレンズ状の封止部60を設けてある点などが相違する。また、本実施形態の発光装置は、実装基板40をサブマウントとして当該実装基板40を配線基板70に搭載してある。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置の基本構成は実施形態1と略同じであって、図6に示すように、透光性基板11としてサファイア基板を用い、透光性基板11の第1の表面11a側(n形窒化物半導体層12側)に微細凹凸構造15を形成し、透光性基板11の第2の表面11b側を平坦な光取り出し面としてある点、透光性封止材料(例えば、シリコーン樹脂など)により形成され透明部材30、LEDチップ10および実装基板40を封止したレンズ状の封止部60を設けてある点などが相違する。また、本実施形態の発光装置は、実装基板40をサブマウントとして当該実装基板40を配線基板70に搭載してある。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態の発光装置においても、実施形態1と同様、LEDチップ10からの光を効率良く透明部材30へ導入することができ、LEDチップ10内部での光の多重反射による光損失を低減できるから、発光効率の向上を図れる。なお、他の実施形態において、本実施形態と同様の封止部60および配線基板70を設けてもよい。
ところで、上述の各実施形態では、LEDチップ10として青色LEDチップもしくは紫外LEDチップを用いているが、これらにかぎらず、例えば、紫色LEDチップ、緑色LEDチップ、赤色LEDチップなどを用いてもよい。ただし、LEDチップ10の発光色を考慮して上述の接着層20の第2の透明材料を決定することが好ましい。また、上述の各実施形態では、LEDチップ10として窒化物系LEDチップを採用しているが、これに限らず、InGaAsP系LEDチップ、GaP系LEDチップなどを採用してもよく、n形半導体層、発光層、p形半導体層それぞれの材料は窒化物半導体に限るものではない。
Claims (9)
- n形半導体層と発光層とp形半導体層との積層構造を有するLEDチップと、LEDチップの光取り出し面側が底面側となる形でLEDチップに重ねて配置された第1の透明材料からなる錘状の透明部材と、透明部材とLEDチップとの間に介在し両者を接着する第2の透明材料からなる接着層とを備え、第1の透明材料の屈折率が第2の透明材料の屈折率よりも大きく、且つ、LEDチップの光取り出し面と透明部材との最短距離を、LEDチップからの光がエバネッセント波として透明部材へ滲み出すように設定してあることを特徴とする発光装置。
- 前記LEDチップの光取り出し面側に光の進行方向を変える微細凹凸構造を有することを特徴とする請求項1記載の発光装置。
- 前記接着層に、前記LEDチップから放射される光によって励起されて前記LEDチップの発光ピーク波長よりも長波長の光を放射する色変換材を含有させてなることを特徴とする請求項1または請求項2記載の発光装置。
- 前記接着層に、光拡散材を含有させてなることを特徴とする請求項3記載の発光装置。
- 前記LEDチップが実装された実装基板を備え、前記LEDチップは、前記p形半導体層における前記発光層側とは反対側にアノード電極が形成されるとともに、前記n形半導体層における前記発光層の積層側にカソード電極が形成されてなり、アノード電極およびカソード電極それぞれがバンプを介して、実装基板において前記LEDチップのアノード電極およびカソード電極それぞれに対応付けられた導体パターンと接合されてなることを特徴とする請求項1ないし請求項4のいずれか1項に記載の発光装置。
- 前記最短距離は、前記LEDチップから放射される光の発光ピーク波長以下であることを特徴とする請求項1記載の発光装置。
- 前記微細凹凸構造は、多数の錘状突起(マイクロコーン)から構成されることを特徴とする請求項2記載の発光装置。
- 前記微細凹凸構造は、多数の角柱状突起から構成されることを特徴とする請求項2記載の発光装置。
- 前記第1の透明材料はZnOであることを特徴とする請求項1記載の発光装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-208430 | 2009-09-09 | ||
JP2009208430A JP2011060966A (ja) | 2009-09-09 | 2009-09-09 | 発光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011030789A1 true WO2011030789A1 (ja) | 2011-03-17 |
Family
ID=43732458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/065410 WO2011030789A1 (ja) | 2009-09-09 | 2010-09-08 | 発光装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011060966A (ja) |
WO (1) | WO2011030789A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199546A1 (ja) * | 2013-06-14 | 2014-12-18 | パナソニックIpマネジメント株式会社 | 発光素子 |
WO2015011586A1 (en) * | 2013-07-26 | 2015-01-29 | Koninklijke Philips N.V. | Led dome with inner high index pillar |
US20160036006A1 (en) * | 2014-07-31 | 2016-02-04 | Industrial Technology Research Institute | Organic light-emitting module |
US10385229B2 (en) | 2015-07-17 | 2019-08-20 | Nissan Chemical Industries, Ltd. | Non-aqueous ink compositions containing metallic nanoparticles suitable for use in organic electronics |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102022659B1 (ko) * | 2012-02-20 | 2019-11-04 | 서울바이오시스 주식회사 | 고효율 발광 다이오드 및 그것을 제조하는 방법 |
EP2997610B1 (en) * | 2013-05-15 | 2019-04-03 | Lumileds Holding B.V. | Light emitting device with an optical element and a reflector |
JP2015002232A (ja) * | 2013-06-14 | 2015-01-05 | 株式会社ディスコ | 発光デバイス |
US10217914B2 (en) | 2015-05-27 | 2019-02-26 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
KR101881066B1 (ko) * | 2015-05-27 | 2018-07-25 | 삼성전자주식회사 | 반도체 발광 소자 |
CN108364971B (zh) * | 2018-03-20 | 2021-03-30 | 厦门市三安光电科技有限公司 | 微发光元件、微发光二极管及其转印方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002176200A (ja) * | 2000-09-12 | 2002-06-21 | Lumileds Lighting Us Llc | 改良された光抽出効率を有する発光ダイオード |
JP2005166733A (ja) * | 2003-11-28 | 2005-06-23 | Matsushita Electric Works Ltd | 発光装置 |
JP2007273975A (ja) * | 2006-03-10 | 2007-10-18 | Matsushita Electric Works Ltd | 発光素子 |
-
2009
- 2009-09-09 JP JP2009208430A patent/JP2011060966A/ja not_active Withdrawn
-
2010
- 2010-09-08 WO PCT/JP2010/065410 patent/WO2011030789A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002176200A (ja) * | 2000-09-12 | 2002-06-21 | Lumileds Lighting Us Llc | 改良された光抽出効率を有する発光ダイオード |
JP2005166733A (ja) * | 2003-11-28 | 2005-06-23 | Matsushita Electric Works Ltd | 発光装置 |
JP2007273975A (ja) * | 2006-03-10 | 2007-10-18 | Matsushita Electric Works Ltd | 発光素子 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199546A1 (ja) * | 2013-06-14 | 2014-12-18 | パナソニックIpマネジメント株式会社 | 発光素子 |
WO2015011586A1 (en) * | 2013-07-26 | 2015-01-29 | Koninklijke Philips N.V. | Led dome with inner high index pillar |
CN105393372A (zh) * | 2013-07-26 | 2016-03-09 | 皇家飞利浦有限公司 | 具有内部高折射率柱的led圆顶 |
US9653665B2 (en) | 2013-07-26 | 2017-05-16 | Koninklijke Philips N.V. | LED dome with inner high index pillar |
US20160036006A1 (en) * | 2014-07-31 | 2016-02-04 | Industrial Technology Research Institute | Organic light-emitting module |
US10385229B2 (en) | 2015-07-17 | 2019-08-20 | Nissan Chemical Industries, Ltd. | Non-aqueous ink compositions containing metallic nanoparticles suitable for use in organic electronics |
Also Published As
Publication number | Publication date |
---|---|
JP2011060966A (ja) | 2011-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011030789A1 (ja) | 発光装置 | |
US9041005B2 (en) | Solid state lighting devices with cellular arrays and associated methods of manufacturing | |
US9159882B2 (en) | Semiconductor light-emitting device | |
US7785910B2 (en) | Light emitting device having protrusion and recess structure and method of manufacturing the same | |
US8753909B2 (en) | Light-emitting device and manufacturing method thereof | |
KR101228130B1 (ko) | 반도체 발광 소자 및 그 제조 방법, 발광장치 | |
KR20080081934A (ko) | 반도체 발광 소자 및 그 제법 | |
WO2010041370A1 (ja) | 窒化物半導体発光ダイオード | |
US20100244053A1 (en) | Light emitting device having pillar structure with hollow structure and the forming method thereof | |
CN105009308A (zh) | 用于创建多孔反射接触件的方法和装置 | |
JP2011176093A (ja) | 発光素子用基板および発光素子 | |
KR20150138977A (ko) | 발광 소자 및 그의 제조방법 | |
TW202029529A (zh) | 發光元件及其製造方法 | |
US20070269913A1 (en) | Method of fabricating light emitting diode | |
KR101317632B1 (ko) | 질화물계 발광 소자 및 그 제조방법 | |
JP2009032958A (ja) | 発光素子及び照明装置 | |
JP2010171341A (ja) | 半導体発光素子 | |
WO2012040978A1 (zh) | 发光装置及其制造方法 | |
WO2012045222A1 (zh) | 发光装置及其制造方法 | |
US20130130417A1 (en) | Manufacturing method of a light-emitting device | |
JP2010251481A (ja) | 発光装置 | |
WO2011058890A1 (ja) | 発光素子 | |
JP5123221B2 (ja) | 発光装置 | |
JP2010147242A (ja) | 半導体発光素子 | |
TWI786276B (zh) | 發光元件之製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10815384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10815384 Country of ref document: EP Kind code of ref document: A1 |