WO2010090193A1 - Film capable of oxidizing carbon monoxide and use thereof - Google Patents
Film capable of oxidizing carbon monoxide and use thereof Download PDFInfo
- Publication number
- WO2010090193A1 WO2010090193A1 PCT/JP2010/051452 JP2010051452W WO2010090193A1 WO 2010090193 A1 WO2010090193 A1 WO 2010090193A1 JP 2010051452 W JP2010051452 W JP 2010051452W WO 2010090193 A1 WO2010090193 A1 WO 2010090193A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- film
- carbon dioxide
- carbon monoxide
- component
- Prior art date
Links
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims abstract description 48
- 230000001590 oxidative effect Effects 0.000 title abstract description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 47
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 47
- 239000003054 catalyst Substances 0.000 claims abstract description 34
- 239000002245 particle Substances 0.000 claims abstract description 28
- 229920005989 resin Polymers 0.000 claims abstract description 23
- 239000011347 resin Substances 0.000 claims abstract description 23
- 239000011342 resin composition Substances 0.000 claims abstract description 19
- 238000002844 melting Methods 0.000 claims abstract description 18
- 230000008018 melting Effects 0.000 claims abstract description 18
- 230000003647 oxidation Effects 0.000 claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 18
- 229920000573 polyethylene Polymers 0.000 claims abstract description 18
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 17
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000005977 Ethylene Substances 0.000 claims abstract description 14
- 239000003463 adsorbent Substances 0.000 claims abstract description 13
- 238000002425 crystallisation Methods 0.000 claims abstract description 4
- 230000008025 crystallization Effects 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims description 16
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 15
- 238000003860 storage Methods 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 9
- 230000004927 fusion Effects 0.000 claims description 8
- 229910000510 noble metal Inorganic materials 0.000 claims description 7
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 4
- 239000010457 zeolite Substances 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 abstract description 12
- 239000001301 oxygen Substances 0.000 abstract description 12
- 239000007789 gas Substances 0.000 description 23
- 239000000945 filler Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 239000010410 layer Substances 0.000 description 14
- -1 and in particular Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 11
- 238000004898 kneading Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910044991 metal oxide Inorganic materials 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229920000092 linear low density polyethylene Polymers 0.000 description 5
- 239000004707 linear low-density polyethylene Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000012748 slip agent Substances 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 101000596741 Homo sapiens Testis-specific protein TEX28 Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 102100035104 Testis-specific protein TEX28 Human genes 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- GJCXHYNLSNVSQZ-UHFFFAOYSA-L [Cu](Cl)Cl.Cl Chemical compound [Cu](Cl)Cl.Cl GJCXHYNLSNVSQZ-UHFFFAOYSA-L 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- HPDFFVBPXCTEDN-UHFFFAOYSA-N copper manganese Chemical compound [Mn].[Cu] HPDFFVBPXCTEDN-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920004889 linear high-density polyethylene Polymers 0.000 description 1
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910001463 metal phosphate Inorganic materials 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920005678 polyethylene based resin Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/14—Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
- H01G11/20—Reformation or processes for removal of impurities, e.g. scavenging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/78—Cases; Housings; Encapsulations; Mountings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/122—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/14—Primary casings; Jackets or wrappings for protecting against damage caused by external factors
- H01M50/141—Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/52—Removing gases inside the secondary cell, e.g. by absorption
- H01M10/523—Removing gases inside the secondary cell, e.g. by absorption by recombination on a catalytic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a film excellent in heat resistance having a function of oxidizing carbon monoxide to carbon dioxide and adsorbing it even in the absence of gaseous oxygen, and in particular, non-aqueous electrolyte secondary batteries and electric batteries.
- the present invention relates to a film useful in a multilayer capacitor.
- non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries and electric storage devices such as electric double layer capacitors are used. Since non-aqueous electrolyte secondary batteries and electric double layer capacitors have a significant decrease in performance in the presence of moisture, thus leading to a reduction in life, their power generation elements are enclosed in containers such as metal cans and aluminum laminate films. ing.
- the present applicant relates to a film excellent in water absorption and heat resistance, which can remove moisture that deteriorates these performances by disposing inside a non-aqueous electrolyte secondary battery or electric double layer capacitor.
- This film consists of a composition containing a specific polyethylene-based resin composition and a water-absorbing filler.
- non-aqueous electrolyte secondary batteries and electric double layer capacitors are oxidized in a container in which a storage element is enclosed because a carbonate-based organic solvent is used as an electrolytic solution or carbon is used as an electrode.
- Another major problem is that carbon gas is easily generated, and as a result, the life of the container is shortened due to deformation and rupture of the container.
- the film in the above application is insufficient for suppressing such deformation and destruction.
- a catalyst for removing carbon monoxide in a gas a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and an alkaline porous material as a carbon dioxide removing agent (for example, Patent Document 1).
- a catalyst for example, Patent Document 2 containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and a zeolite as a carbon dioxide and water removing agent is known. These methods oxidize carbon monoxide gas to carbon dioxide gas and remove the resulting carbon dioxide gas with a carbon dioxide adsorbent, which is less expensive than removing carbon monoxide gas directly.
- the oxidation of carbon monoxide gas requires the presence of gaseous oxygen. There is no suggestion that the catalyst be compounded with a resin or formed into a film.
- the nonaqueous electrolyte secondary battery and the electric double layer capacitor do not have a supply source of gaseous oxygen to the inside of the container in which the electricity storage element is enclosed. This is because, for the purpose of enclosing more power storage elements in the container, there is no space in the production stage where gaseous air occupies, and since the container is sealed, it is sealed from the outside. This is because there is virtually no supply of gaseous oxygen.
- the member If there is a member that can oxidize carbon monoxide to carbon dioxide in the absence of such gaseous oxygen and can adsorb carbon dioxide generated by the oxidation, carbon monoxide generated in the container The deformation and destruction of the container due to gas can be prevented, and therefore, it is advantageous for extending the life of the electric storage device. Further, if the member is in the form of a film, it can be disposed in a narrow space in a container in which a power generation element of a nonaqueous electrolyte secondary battery or an electric double layer capacitor is enclosed, and the nonaqueous electrolyte secondary This is advantageous in terms of downsizing and increasing the capacity of batteries and electric double layer capacitors.
- An object of the present invention is to provide a film that can oxidize and adsorb carbon monoxide to carbon dioxide even in the absence of gaseous oxygen and has excellent heat resistance.
- the present inventor has found that a specific ethylene-based resin composition and a resin composition containing a carbon monoxide oxidation catalyst and a carbon dioxide adsorbent having a specific particle size are excellent in film-forming properties and can achieve the above-described object. Reached.
- the present invention (A) 100 parts by mass of an ethylene-based resin composition
- a film comprising a resin composition comprising (B) 1 to 150 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 200 parts by mass of a carbon dioxide adsorbent
- the component (A) comprises (A-1) ) To (iv) 99 to 60% by mass of an ethylene polymer having the characteristics
- Tm peak top melting point
- the heat of fusion ( ⁇ H) in the DSC melting curve is 90 to 180 J / g.
- (Xc110) is 10-60%, and (iv) the MFR (190 ° C., 21.18 N) is 0.1-10 g / 10 min.
- (A-2) acid-modified ethylene resin 1 to 40% by mass Where the total amount of component (A-1) and component (A-2) is 100% by weight, and components (B) and (C) each have a particle size (D99) of 30 ⁇ m or less and Having a particle size (D50) of 20 ⁇ m or less, where D99 and D55 refer to the particle size at the point where the particle size distribution becomes 99% by mass and 50% by mass from the smaller particle size, respectively. It is a film.
- the film of the present invention can oxidize and adsorb carbon monoxide to carbon dioxide in the absence of gaseous oxygen and has excellent heat resistance, and in particular, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. And is advantageous for use in electric double layer capacitors.
- the film of the present invention enables the oxidation of carbon monoxide to carbon dioxide in the absence of gaseous oxygen is not well understood, it is due to the supply of oxygen atoms from component (B).
- the oxygen atoms are supplied during the production of the resin composition or the film comprising them in a normal environment where gaseous oxygen is present.
- the film of the present invention comprises a resin composition containing components (A) to (C) described below.
- Ethylene-based resin composition Component (A) includes an ethylene-based polymer (A-1) and an acid-modified ethylene-based resin (A-2). Since ethylene-based polymers are excellent in filler acceptability, a large amount of carbon monoxide oxidation catalyst (B) and carbon dioxide adsorbent (C) as fillers are filled by using this as the main resin component. However, good film forming properties can be obtained.
- (A-1) Ethylene-based polymer The ethylene-based polymer in the present invention has sufficient heat resistance and sufficient filler acceptability to give good film-forming properties as follows. It is necessary to satisfy (i) to (iv).
- the peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
- the heat of fusion ( ⁇ H) in the DSC melting curve is 90 to 180 J / g.
- the crystallization fraction (Xc110) at 110 ° C. is 10 to 60%, and (iv) MFR (190 ° C., 21.18 N) is 0.1 to 10 g / 10 min.
- the peak top melting point (Tm) is preferably 120 ° C. or higher, more preferably 125 ° C. or higher.
- the upper limit of the peak top melting point (Tm) is not particularly limited, but is actually about 135 ° C. because it is an ethylene polymer.
- the said heat of fusion ((DELTA) H) exceeds 180 J / g, filler acceptability is inadequate and film forming property may be inferior. If it is less than 90 J / g, heat resistance and solvent resistance tend to be insufficient. Lithium secondary batteries and electric double layer capacitors may be exposed to high environmental temperatures, and many organic solvents used as electrolytes in power generation elements have strong permeability and dissolving power. Therefore, it is advantageous that the obtained resin composition has heat resistance and solvent resistance.
- the heat of fusion ( ⁇ H) is preferably 100 to 170 J / g.
- the crystallinity (Xc110) exceeds 60%, the filler acceptability may be insufficient and the film forming property may be inferior. If it is less than 10%, the heat resistance and solvent resistance may be insufficient.
- the crystallinity (Xc110) is preferably 15 to 45%.
- the crystallinity at 110 ° C. means the ratio of the heat of fusion at 110 ° C. or higher to the total heat of fusion ⁇ H in the DSC melting curve.
- the melt-kneading property (filler dispersibility) of the polyethylene resin composition (A) with the carbon monoxide oxidation catalyst (B) and the carbon dioxide adsorbent (C) as fillers. May be insufficient, or the dropability during film formation may be reduced. If it is less than 0.1 g / 10 min, it may be difficult to adjust the thickness of the film.
- the MFR is preferably 0.2 to 7 g / 10 minutes, more preferably 0.5 to 5 g / 10 minutes.
- DSC melting curves are obtained by using a DSC Q1000 model of TA Instruments (TE Instruments Japan Co., Ltd.) and holding the sample at 190 ° C. for 5 minutes. Obtained by performing DSC measurement with a temperature program of cooling to ⁇ 10 ° C. at a temperature decrease rate of 10 ° C./min, holding at ⁇ 10 ° C. for 5 minutes, and then heating to 190 ° C. at a temperature increase rate of 10 ° C./min. It is a curved line.
- the ethylene polymer in the present invention is not particularly limited as long as it satisfies the above requirements (i) to (iv).
- low density polyethylene linear low density polyethylene, ultra low density polyethylene, high density polyethylene, and a copolymer of ethylene and ⁇ -olefin (for example, 1-butene, 1-hexene, 1-octene, etc.) can be mentioned.
- An ethylene copolymer using vinyl acetate, methyl acrylate, ethyl acrylate, or the like as a comonomer has a large decrease in crystallinity due to the comonomer, and thus it is difficult to satisfy the requirements (i) to (iv).
- An ethylene-type polymer can be used individually by 1 type or as a mixture which mix
- ethylene-based polymer (A-1) examples include linear low density polyethylene commercially available from Nippon Polyethylene Co., Ltd. under the trade names KF271 and UF240, and SP2040 and SP2520 from Prime Polymer Co., Ltd. The linear low density polyethylene etc. which are marketed with the brand name of these are mentioned.
- the acid-modified ethylene-based resin includes a hydrophobic ethylene-based polymer (A-1) and a hydrophilic carbon monoxide oxidation catalyst (B ) And carbon dioxide adsorbent (C) to improve the miscibility of the filler to promote the dispersion of the filler so that no defects such as blisters are generated in the film.
- the acid-modified ethylene resin used in the present invention is an ethylene resin obtained by graft polymerization and / or copolymerization of an unsaturated carboxylic acid or a derivative thereof.
- unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid
- derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like.
- ethylene resin examples include linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer. Is mentioned.
- the acid-modified ethylene resin preferably has an MFR (190 ° C., 21.18 N) of 0.1 to 10 g / 10 min. More preferably, it is 0.2 to 7 g / 10 minutes, and most preferably 0.5 to 5 g / 10 minutes. If the MFR is higher than the above upper limit, the drawability during film formation may be reduced. If the MFR is lower than the lower limit, it may be difficult to adjust the thickness of the film.
- MFR 190 ° C., 21.18 N
- acid-modified ethylene resins include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., Polybond (trade name) manufactured by Crompton, and Sumitomo Chemical.
- Admer trade name
- Adtex trade name
- Polybond trade name
- Bond First trade name manufactured by Co., Ltd.
- the acid-modified ethylene resin can be used alone or in combination of two or more.
- the polyethylene resin composition (A) contains 99 to 60% by mass of the ethylene polymer (A-1) and 1 to 40% by mass of the acid-modified ethylene resin (A-2) (where component (A- The total amount of 1) and component (A-2) is 100% by mass). More preferably, they are 97 to 70% by mass of the ethylene polymer (A-1) and 3 to 30% by mass of the acid-modified ethylene resin (A-2), and more preferably, the ethylene polymer (A-1). 95 to 80% by mass and 5 to 20% by mass of the acid-modified ethylene resin (A-2).
- the acid-modified ethylene resin (A-2) is small (that is, the ethylene polymer (A-1) is large), the filler is not sufficiently dispersed, and a lot of grease is generated during film formation. , Defects such as bumps are likely to occur in the obtained film.
- the interaction between the acid-modified ethylene resin and the filler becomes very strong, and a compound is produced. Sometimes the kneading load during extrusion and the extrusion load during film formation may be high. Moreover, the tensile elongation of the film obtained may fall.
- the carbon monoxide oxidation catalyst As the carbon monoxide oxidation catalyst, a composite metal oxide catalyst such as hopcalite (copper-manganese composite oxide) and a supported noble metal catalyst are known. In the present invention, Any of these can be used as component (B) provided it has the specific particle size distribution described below.
- the supported noble metal catalyst includes a metal oxide-supported noble metal catalyst such as palladium on alumina (a catalyst having a noble metal supported on the metal oxide surface), a noble metal-reducible oxide catalyst such as palladium-cerium oxide, platinum supported on titanium oxide, etc.
- a composite metal oxide such as hopcalite and a metal oxide-supported noble metal catalyst such as alumina-supported palladium are preferably used.
- a carbon monoxide oxidation catalyst can be used individually by 1 type or in combination of 2 or more types. Even if the composition is the same as that of hopcalite, it is not in the form of a complex oxide, but in the form of a mixture in which copper (II) oxide and manganese (IV) oxide are simply mixed. Insufficient function.
- the carbon monoxide oxidation catalyst (B) has a specific particle size distribution, that is, a particle size (D99) of 30 ⁇ m or less and a particle size (D50) of 20 ⁇ m or less, The miscibility can be improved, and therefore a film can be formed well.
- D99 and D55 refer to the particle diameter at the point where the particle diameter distribution becomes 99 mass% and 50 mass%, respectively, from the smaller particle diameter.
- D99 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
- D50 is preferably 0.01 to 15 ⁇ m, more preferably 0.1 to 10 ⁇ m. Coarse particles that deviate from the above range may be a film defect or foreign matter.
- the particles may agglomerate to become defects or foreign matter of the film, or if they do not agglomerate, a large amount of air may be included to deteriorate the melt-kneading workability during compound production. .
- Control of the particle size distribution includes a method in which large particles are produced and then pulverized and sized, and a method in which fine particles are produced and sized from the beginning. Either method may be used as long as the particle size distribution can be controlled within the above range, and is not particularly limited. However, from the viewpoint of extrusion load and film forming property, a method of generating fine particles from the beginning is more preferable.
- the amount of component (B) is 1 to 150 parts by weight, preferably 3 to 120 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of component (A). If the amount is less than the above lower limit, the function of oxidizing carbon monoxide becomes unsatisfactory, and if the upper limit is exceeded, melt kneading and film formation at the time of compound production may be difficult.
- Carbon dioxide adsorbent Any carbon dioxide adsorbent (C) in the present invention can be used as long as it has the same particle size distribution as that described for component (B). Examples thereof include zeolites having a pore diameter of 0.4 nm or more (for example, molecular sieve 4A and molecular sieve 5A) and alkaline earth metal oxides such as strontium oxide.
- the component (C) is preferably one that does not substantially require water for carbon dioxide adsorption (does not require more than about 1 mg / L of absolute humidity).
- the component (C) is preferably one that does not substantially require water for carbon dioxide adsorption (does not require more than about 1 mg / L of absolute humidity).
- magnesium oxide requires water in the carbon dioxide adsorption mechanism.
- the compounding amount of the carbon dioxide adsorbent (C) is 1 to 200 parts by mass, preferably 5 to 150 parts by mass, more preferably 10 to 120 parts by mass with respect to 100 parts by mass of the component (A). If it is less than the above lower limit, the function of adsorbing carbon dioxide becomes unsatisfactory, and if it exceeds the above upper limit, melt kneading and film formation at the time of compound production may be difficult.
- the resin composition in the present invention preferably further contains a slip agent.
- a slip agent examples include metal soaps such as calcium stearate, fatty acid amides such as oleic acid amide and erucic acid amide, polyethylene wax, silicone gum, and silicone oil.
- a preferable amount of the slip agent to be added is 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A).
- the resin composition in the present invention is optionally provided with a phosphorus-based, phenol-based or sulfur-based antioxidant, an anti-aging agent, a light stabilizer, a weathering agent such as an ultraviolet absorber, a copper damage inhibitor, an aromatic Group nucleating agents such as metal phosphates and gelols, antistatic agents such as glycerin fatty acid monoesters, coloring agents, fragrances, antibacterial agents, magnesium oxide, zinc oxide, calcium carbonate, talc, metal hydrates, etc. And additives such as plasticizers such as filler, glycerin fatty acid ester, paraffin oil, phthalic acid and ester.
- the resin composition in the present invention can be obtained by melt-kneading the above components (A-1), (A-2), (B) and (C) and optionally an optional additive.
- the melt-kneading can be performed using a conventional apparatus such as a twin screw extruder or a Banbury mixer.
- the kneading temperature is preferably higher than the film-forming temperature in order to avoid moisture-absorbing foaming troubles during film formation.
- the resulting composition can be pelletized by a granulator and then subjected to normal film formation using a T die or the like. In that case, the pelletization is performed using water such as a hot cut method. It is preferable to carry out by a method that does not intervene.
- a vacuum vent may be provided or a gear pump or the like may be used.
- a method in which film formation is directly performed without pelletization for example, a method in which a composition obtained by melt kneading is directly sent to a T die via a gear pump or the like to form a film.
- the film of the present invention preferably has a thickness of 1 to 1000 ⁇ m. More preferably, it is 10 to 500 ⁇ m, and further preferably 20 to 200 ⁇ m. If the film is too thin, the waist / stiffness will be insufficient, and it will take time to assemble the storage element in the non-aqueous electrolyte secondary battery or the electric double layer capacitor in which the storage element is enclosed. If the film is too thick, the film cannot be disposed in a small gap in the container of the nonaqueous electrolyte secondary battery or the electric double layer capacitor.
- the film of the present invention can oxidize and adsorb carbon monoxide to carbon dioxide in the absence of gaseous oxygen, has excellent heat resistance, and encloses storage elements in non-aqueous electrolyte secondary batteries and electric double layer capacitors Particularly useful in a used container.
- Examples 1 to 4 and Comparative Examples 1 to 13 The components (parts by mass) shown in Table 1 were dry blended and melt-kneaded with a twin screw extruder TEX28 of Nippon Steel, Ltd., and then directly through a gear pump, manufactured by Toshiba Machine Co., Ltd. The film was sent to a single layer T die to form a film having a thickness of 50 ⁇ m.
- the resin temperature at the exit of the twin screw extruder was 220 ° C. (using a vacuum vent), and the resin temperature at the exit of the gear pump was 220 ° C.
- Film formation was performed using a vacuum vent under conditions of a T-die outlet resin temperature of 220 ° C., a chill roll temperature of 40 ° C., and a take-off speed of 10 m / min.
- the obtained film was stored in a gas substitution type glove box (SG-1000 manufactured by ASONE Co., Ltd.) having a dew point temperature of ⁇ 50 ° C. or lower.
- the obtained film was subjected to the following evaluation test. The results are shown in Table 1.
- the DSC measurement was held at 230 ° C. for 5 minutes, then cooled to ⁇ 10 ° C. at a rate of temperature decrease of 10 ° C./min, held at ⁇ 10 ° C. for 5 minutes, This was performed using a temperature program of heating to 230 ° C. at a rate of temperature increase of ° C./min.
- the films of Examples 1 to 4 according to the present invention are excellent in appearance, film thickness stability and heat resistance. Further, the carbon monoxide concentration after 24 hours in the N 2 —CO mixed gas and in the N 2 —O 2 —CO mixed gas was 1.1 vol% or less, and carbon dioxide was not detected. This shows that the film of the present invention can oxidize carbon monoxide well to carbon dioxide and adsorb as carbon dioxide even in the absence of oxygen.
- Comparative Examples 1 and 2 not containing the component (B) the carbon monoxide concentration after 24 hours in the N 2 —CO mixed gas and in the N 2 —O 2 —CO mixed gas was almost the same as that of the blank. Yes, indicating that no oxidation of carbon monoxide to carbon dioxide occurred.
- the film of Comparative Example 3 containing no component (C) was able to oxidize carbon monoxide to carbon dioxide, but could not adsorb carbon dioxide.
- Comparative Example 4 containing a large amount of Component (B)
- Comparative Example 5 containing a large amount of Component (C)
- Comparative Example 6 using a component (B) that does not have the particle size distribution of the present invention, Since the film property was poor and a film could not be obtained, other tests were not conducted.
- the film of Comparative Example 12 in which the amount of component (A-2) is too large has a very high extrusion load at the time of film formation, the discharge amount becomes unstable, and the film thickness stability is poor.
- the filler was not sufficiently dispersed, and grease was generated during film formation, and fine irregularities remained on the film.
- the film thickness stability was also insufficient.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Disclosed is a film having excellent heat resistance, which is capable of oxidizing carbon monoxide into carbon dioxide and adsorbing the carbon dioxide in the absence of gaseous oxygen.
Specifically disclosed is a film which is formed from a resin composition that contains: (A) 100 parts by mass of an ethylene resin composition containing (A-1) 99-60% by mass of an ethylene polymer that has (i) a peak top melting point (Tm) on the highest temperature side in the DSC melting curve of not less than 110˚C, (ii) a melting enthalpy (∆H) in the DSC melting curve of 90-180 J/g, (iii) a crystallization fraction at 110˚C (Xc110) of 10-60%, and (iv) a MFR (190˚C, 21.18 N) of 0.1-10 g/10 min, and (A-2) 1-40% by mass of an acid-modified ethylene resin (with the total of (A-1) and (A-2) being 100% by mass); (B) 1-150 parts by mass of carbon monoxide oxidation catalyst particles; and (C) 1-200 parts by mass of carbon dioxide adsorbent particles.
In this connection, the component (B) and the component (C) respectively have a particle diameter (D99) of not more than 30 μm and a particle diameter (D50) of not more than 20 μm.
Description
本出願は、平成21年2月4日に出願された特願2009-23790号の優先権の利益を主張しており、この出願の内容は、引用することにより本明細書に取り込まれる。
本発明は、気体酸素が実質的に存在しなくても一酸化炭素を二酸化炭素に酸化して吸着する機能を有する、耐熱性に優れたフィルムに関し、特に、非水電解質二次電池や電気二重層キャパシタにおいて有用なフィルムに関する。 This application claims the benefit of priority of Japanese Patent Application No. 2009-23790 filed on Feb. 4, 2009, the contents of which are incorporated herein by reference.
The present invention relates to a film excellent in heat resistance having a function of oxidizing carbon monoxide to carbon dioxide and adsorbing it even in the absence of gaseous oxygen, and in particular, non-aqueous electrolyte secondary batteries and electric batteries. The present invention relates to a film useful in a multilayer capacitor.
本発明は、気体酸素が実質的に存在しなくても一酸化炭素を二酸化炭素に酸化して吸着する機能を有する、耐熱性に優れたフィルムに関し、特に、非水電解質二次電池や電気二重層キャパシタにおいて有用なフィルムに関する。 This application claims the benefit of priority of Japanese Patent Application No. 2009-23790 filed on Feb. 4, 2009, the contents of which are incorporated herein by reference.
The present invention relates to a film excellent in heat resistance having a function of oxidizing carbon monoxide to carbon dioxide and adsorbing it even in the absence of gaseous oxygen, and in particular, non-aqueous electrolyte secondary batteries and electric batteries. The present invention relates to a film useful in a multilayer capacitor.
電気自動車やハイブリッド自動車に搭載される電力装置として、リチウムイオン二次電池などの非水電解質二次電池や電気二重層キャパシタ等の蓄電デバイスが使用されている。非水電解質二次電池や電気二重層キャパシタは、水分が存在すると性能が著しく低下し、したがって寿命の低下を招くため、それらの発電要素は、金属缶、アルミラミネートフィルムなどの容器内に封入されている。
As power devices mounted on electric vehicles and hybrid vehicles, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries and electric storage devices such as electric double layer capacitors are used. Since non-aqueous electrolyte secondary batteries and electric double layer capacitors have a significant decrease in performance in the presence of moisture, thus leading to a reduction in life, their power generation elements are enclosed in containers such as metal cans and aluminum laminate films. ing.
また、電気自動車やハイブリッド自動車に搭載される電力装置は、近年、その小型軽量化大容量化が図られている。したがって、非水電解質二次電池や電気二重層キャパシタにおける発電要素を封入する容器として、従来の金属缶に替えてアルミラミネートフィルムにしようとする検討が盛んに行われている。また、体積のより小さい容器内により多くの発電要素を封入することが望まれている。
In recent years, power devices mounted on electric vehicles and hybrid vehicles have been reduced in size, weight, and capacity. Therefore, as a container for enclosing a power generation element in a non-aqueous electrolyte secondary battery or an electric double layer capacitor, studies are being actively conducted to replace the conventional metal can with an aluminum laminate film. It is also desired to enclose more power generating elements in a smaller volume container.
本出願人は、非水電解質二次電池や電気二重層キャパシタの内部に配置することにより、これらの性能を劣化させる水分を除去することの出来る、吸水性に優れかつ耐熱性に優れたフィルムに関する出願を先に行った(特願2007-196438)。このフィルムは、特定のポリエチレン系樹脂組成物および吸水性フィラーを含む組成物から成る。しかし、非水電解質二次電池や電気二重層キャパシタは、電解液としてカーボネート系の有機溶剤が使用される故に、あるいは電極としてカーボンが使用される故に、蓄電要素が封入された容器内で一酸化炭素ガスが発生しやすいという性質を有し、その結果、容器の変形・破裂による寿命の低下を招くという別の大きな問題が存在している。上記出願におけるフィルムは、このような変形・破壊の抑制には不十分である。
The present applicant relates to a film excellent in water absorption and heat resistance, which can remove moisture that deteriorates these performances by disposing inside a non-aqueous electrolyte secondary battery or electric double layer capacitor. The application was filed first (Japanese Patent Application No. 2007-196438). This film consists of a composition containing a specific polyethylene-based resin composition and a water-absorbing filler. However, non-aqueous electrolyte secondary batteries and electric double layer capacitors are oxidized in a container in which a storage element is enclosed because a carbonate-based organic solvent is used as an electrolytic solution or carbon is used as an electrode. Another major problem is that carbon gas is easily generated, and as a result, the life of the container is shortened due to deformation and rupture of the container. The film in the above application is insufficient for suppressing such deformation and destruction.
一酸化炭素ガスの発生による寿命の低下を防ぐために、金属缶にガス放出弁を設けることが広く行われているが、ガスの放出は外気からの水分の浸入を招き、寿命の低下は避けられない。また、ラミネートフィルム外装のタイプでは、ガス放出弁を設けることは困難である。
In order to prevent a decrease in life due to the generation of carbon monoxide gas, it has been widely practiced to provide a gas release valve on the metal can, but the release of gas leads to the ingress of moisture from the outside air, and a decrease in life is avoided. Absent. Moreover, it is difficult to provide a gas release valve in the laminated film exterior type.
一酸化炭素ガスを直接吸収・吸着する物質がいくつか知られているが、それらは、単位量当たり極少量の一酸化炭素しか吸収できなかったりして、一酸化炭素を充分な量で吸収・吸着させるという目的には不向きである。
Several substances that directly absorb and adsorb carbon monoxide gas are known, but they can absorb only a very small amount of carbon monoxide per unit amount, and absorb and absorb a sufficient amount of carbon monoxide. It is not suitable for the purpose of adsorption.
一方、気体中の一酸化炭素を除去するための触媒として、一酸化炭素酸化触媒としての金ナノ粒子触媒と二酸化炭素除去剤としてのアルカリ性多孔質体とを含有する触媒(例えば、特許文献1)および一酸化炭素酸化触媒としての金ナノ粒子触媒と二酸化炭素及び水の除去剤としてのゼオライトとを含有する触媒(例えば、特許文献2)が知られている。これらの方法は、一酸化炭素ガスを二酸化炭素ガスに酸化させ、その結果生じた二酸化炭素ガスを二酸化炭素吸着剤によって除去するものであり、一酸化炭素ガスを直接除去するよりも安価であるが、一酸化炭素ガスの酸化には気体酸素の存在を必要とする。また、上記触媒を樹脂とコンパウンド化することやフィルム状にすることの示唆はない。
On the other hand, as a catalyst for removing carbon monoxide in a gas, a catalyst containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and an alkaline porous material as a carbon dioxide removing agent (for example, Patent Document 1). A catalyst (for example, Patent Document 2) containing a gold nanoparticle catalyst as a carbon monoxide oxidation catalyst and a zeolite as a carbon dioxide and water removing agent is known. These methods oxidize carbon monoxide gas to carbon dioxide gas and remove the resulting carbon dioxide gas with a carbon dioxide adsorbent, which is less expensive than removing carbon monoxide gas directly. The oxidation of carbon monoxide gas requires the presence of gaseous oxygen. There is no suggestion that the catalyst be compounded with a resin or formed into a film.
非水電解質二次電池や電気二重層キャパシタは、その蓄電要素が封入された容器の内部への気体酸素の供給源を有しない。これは、容器内により多くの蓄電要素を封入する目的から、製造された段階ではその内部に気体空気が占めるような空間は存在していないし、また、上記容器は密封されているので外界からの気体酸素供給も実質的に有り得ないからである。
The nonaqueous electrolyte secondary battery and the electric double layer capacitor do not have a supply source of gaseous oxygen to the inside of the container in which the electricity storage element is enclosed. This is because, for the purpose of enclosing more power storage elements in the container, there is no space in the production stage where gaseous air occupies, and since the container is sealed, it is sealed from the outside. This is because there is virtually no supply of gaseous oxygen.
そのような気体酸素の不存在下でも一酸化炭素を二酸化炭素に酸化することができると共に酸化によって生じた二酸化炭素を吸着することができる部材があるならば、上記容器内で発生する一酸化炭素ガスによる容器の変形・破壊を防ぐことができ、したがって蓄電デバイスの寿命の長期化に有利である。また、上記部材がフィルム状であるならば、それを、非水電解質二次電池や電気二重層キャパシタの発電要素が封入された容器内の狭い空隙に配置することができ、非水電解質二次電池や電気二重層キャパシタの小型化大容量化の点で有利である。
If there is a member that can oxidize carbon monoxide to carbon dioxide in the absence of such gaseous oxygen and can adsorb carbon dioxide generated by the oxidation, carbon monoxide generated in the container The deformation and destruction of the container due to gas can be prevented, and therefore, it is advantageous for extending the life of the electric storage device. Further, if the member is in the form of a film, it can be disposed in a narrow space in a container in which a power generation element of a nonaqueous electrolyte secondary battery or an electric double layer capacitor is enclosed, and the nonaqueous electrolyte secondary This is advantageous in terms of downsizing and increasing the capacity of batteries and electric double layer capacitors.
本発明は、気体状酸素の不存在下でも一酸化炭素を二酸化炭素に酸化して吸着することができると共に耐熱性に優れたフィルムを提供することを目的とする。
An object of the present invention is to provide a film that can oxidize and adsorb carbon monoxide to carbon dioxide even in the absence of gaseous oxygen and has excellent heat resistance.
本発明者は、特定のエチレン系樹脂組成物および特定の粒径の一酸化炭素酸化触媒および二酸化炭素吸着剤を含む樹脂組成物は製膜性に優れ、上記目的が達成できることを見出し、本発明に到達した。
The present inventor has found that a specific ethylene-based resin composition and a resin composition containing a carbon monoxide oxidation catalyst and a carbon dioxide adsorbent having a specific particle size are excellent in film-forming properties and can achieve the above-described object. Reached.
すなわち、本発明は、
(A)エチレン系樹脂組成物 100質量部、
(B)一酸化炭素酸化触媒 1~150質量部、および
(C)二酸化炭素吸着剤 1~200質量部
を含む樹脂組成物からなるフィルムにおいて、成分(A)が
(A-1)下記(i)~(iv)の特性を有するエチレン系重合体 99~60質量%、
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化分率(Xc110)が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1~10g/10分である、
および
(A-2)酸変性エチレン系樹脂 1~40質量%
を含み、ここで、成分(A-1)と成分(A-2)の量の合計が100質量%であり、成分(B)および(C)が各々、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する、ここで、D99およびD55はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う、ところのフィルムである。 That is, the present invention
(A) 100 parts by mass of an ethylene-based resin composition,
In a film comprising a resin composition comprising (B) 1 to 150 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 200 parts by mass of a carbon dioxide adsorbent, the component (A) comprises (A-1) ) To (iv) 99 to 60% by mass of an ethylene polymer having the characteristics
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) the crystallization fraction at 110 ° C. (Xc110) is 10-60%, and (iv) the MFR (190 ° C., 21.18 N) is 0.1-10 g / 10 min.
And (A-2) acid-modified ethylene resin 1 to 40% by mass
Where the total amount of component (A-1) and component (A-2) is 100% by weight, and components (B) and (C) each have a particle size (D99) of 30 μm or less and Having a particle size (D50) of 20 μm or less, where D99 and D55 refer to the particle size at the point where the particle size distribution becomes 99% by mass and 50% by mass from the smaller particle size, respectively. It is a film.
(A)エチレン系樹脂組成物 100質量部、
(B)一酸化炭素酸化触媒 1~150質量部、および
(C)二酸化炭素吸着剤 1~200質量部
を含む樹脂組成物からなるフィルムにおいて、成分(A)が
(A-1)下記(i)~(iv)の特性を有するエチレン系重合体 99~60質量%、
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化分率(Xc110)が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1~10g/10分である、
および
(A-2)酸変性エチレン系樹脂 1~40質量%
を含み、ここで、成分(A-1)と成分(A-2)の量の合計が100質量%であり、成分(B)および(C)が各々、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する、ここで、D99およびD55はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う、ところのフィルムである。 That is, the present invention
(A) 100 parts by mass of an ethylene-based resin composition,
In a film comprising a resin composition comprising (B) 1 to 150 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 200 parts by mass of a carbon dioxide adsorbent, the component (A) comprises (A-1) ) To (iv) 99 to 60% by mass of an ethylene polymer having the characteristics
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) the crystallization fraction at 110 ° C. (Xc110) is 10-60%, and (iv) the MFR (190 ° C., 21.18 N) is 0.1-10 g / 10 min.
And (A-2) acid-modified ethylene resin 1 to 40% by mass
Where the total amount of component (A-1) and component (A-2) is 100% by weight, and components (B) and (C) each have a particle size (D99) of 30 μm or less and Having a particle size (D50) of 20 μm or less, where D99 and D55 refer to the particle size at the point where the particle size distribution becomes 99% by mass and 50% by mass from the smaller particle size, respectively. It is a film.
本発明のフィルムは、気体状酸素の不存在下で一酸化炭素を二酸化炭素に酸化して吸着することができると共に耐熱性に優れ、特に、リチウムイオン二次電池などの非水電解質二次電池や電気二重層キャパシタでの使用において有利である。
The film of the present invention can oxidize and adsorb carbon monoxide to carbon dioxide in the absence of gaseous oxygen and has excellent heat resistance, and in particular, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. And is advantageous for use in electric double layer capacitors.
本発明のフィルムが、気体状酸素の不存在下での一酸化炭素の二酸化炭素への酸化を可能にすることの原理は良く分からないが、成分(B)から酸素原子が供給されたことによる、あるいは、樹脂組成物またはそれらから成るフィルムを、気体酸素が存在するところの、通常の環境下で製造する間に酸素原子が供給されたことによる、などが考えられる。
Although the principle that the film of the present invention enables the oxidation of carbon monoxide to carbon dioxide in the absence of gaseous oxygen is not well understood, it is due to the supply of oxygen atoms from component (B). Alternatively, it is conceivable that the oxygen atoms are supplied during the production of the resin composition or the film comprising them in a normal environment where gaseous oxygen is present.
本発明のフィルムは、以下に述べる成分(A)~(C)を含む樹脂組成物からなる。
(A)エチレン系樹脂組成物
成分(A)はエチレン系重合体(A-1)および酸変性エチレン系樹脂(A-2)を含む。エチレン系重合体はフィラー受容性に優れているため、これを主要な樹脂成分とすることにより、フィラーとしての一酸化炭素酸化触媒(B)と二酸化炭素吸着剤(C)とを多量に充填しても、良好な製膜性が得られる。 The film of the present invention comprises a resin composition containing components (A) to (C) described below.
(A) Ethylene-based resin composition Component (A) includes an ethylene-based polymer (A-1) and an acid-modified ethylene-based resin (A-2). Since ethylene-based polymers are excellent in filler acceptability, a large amount of carbon monoxide oxidation catalyst (B) and carbon dioxide adsorbent (C) as fillers are filled by using this as the main resin component. However, good film forming properties can be obtained.
(A)エチレン系樹脂組成物
成分(A)はエチレン系重合体(A-1)および酸変性エチレン系樹脂(A-2)を含む。エチレン系重合体はフィラー受容性に優れているため、これを主要な樹脂成分とすることにより、フィラーとしての一酸化炭素酸化触媒(B)と二酸化炭素吸着剤(C)とを多量に充填しても、良好な製膜性が得られる。 The film of the present invention comprises a resin composition containing components (A) to (C) described below.
(A) Ethylene-based resin composition Component (A) includes an ethylene-based polymer (A-1) and an acid-modified ethylene-based resin (A-2). Since ethylene-based polymers are excellent in filler acceptability, a large amount of carbon monoxide oxidation catalyst (B) and carbon dioxide adsorbent (C) as fillers are filled by using this as the main resin component. However, good film forming properties can be obtained.
(A-1)エチレン系重合体
本発明におけるエチレン系重合体は、十分な耐熱性を有すると共に、十分なフィラー受容性を有して良好な製膜性を付与すべく、下記(i)~(iv)を満たすことが必要である。
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化分率(Xc110)が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1~10g/10分である。 (A-1) Ethylene-based polymer The ethylene-based polymer in the present invention has sufficient heat resistance and sufficient filler acceptability to give good film-forming properties as follows. It is necessary to satisfy (i) to (iv).
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) The crystallization fraction (Xc110) at 110 ° C. is 10 to 60%, and (iv) MFR (190 ° C., 21.18 N) is 0.1 to 10 g / 10 min.
本発明におけるエチレン系重合体は、十分な耐熱性を有すると共に、十分なフィラー受容性を有して良好な製膜性を付与すべく、下記(i)~(iv)を満たすことが必要である。
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化分率(Xc110)が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1~10g/10分である。 (A-1) Ethylene-based polymer The ethylene-based polymer in the present invention has sufficient heat resistance and sufficient filler acceptability to give good film-forming properties as follows. It is necessary to satisfy (i) to (iv).
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) The crystallization fraction (Xc110) at 110 ° C. is 10 to 60%, and (iv) MFR (190 ° C., 21.18 N) is 0.1 to 10 g / 10 min.
上記ピークトップ融点(Tm)が110℃より低いと、耐熱性、耐溶剤性が不充分になり易い。上記ピークトップ融点(Tm)は、好ましくは120℃以上、より好ましくは125℃以上である。上記ピークトップ融点(Tm)の上限は特に制限されないが、エチレン系重合体であることから、実際的に約135℃である。
When the peak top melting point (Tm) is lower than 110 ° C., the heat resistance and solvent resistance tend to be insufficient. The peak top melting point (Tm) is preferably 120 ° C. or higher, more preferably 125 ° C. or higher. The upper limit of the peak top melting point (Tm) is not particularly limited, but is actually about 135 ° C. because it is an ethylene polymer.
また、上記融解熱量(ΔH)が180J/gを超えるとフィラー受容性が不十分であり製膜性に劣ることがある。90J/g未満では、耐熱性および耐溶剤性が不充分になり易い。リチウム二次電池や電気二重層キャパシタは、高い環境温度下に曝される場合があり、また、発電要素において電解質として使用される有機溶剤は強い浸透性や溶解力を有するものが多い。したがって、得られる樹脂組成物は、耐熱性および耐溶剤性を有すると有利である。上記融解熱量(ΔH)は、好ましくは100~170J/gである。
Moreover, when the said heat of fusion ((DELTA) H) exceeds 180 J / g, filler acceptability is inadequate and film forming property may be inferior. If it is less than 90 J / g, heat resistance and solvent resistance tend to be insufficient. Lithium secondary batteries and electric double layer capacitors may be exposed to high environmental temperatures, and many organic solvents used as electrolytes in power generation elements have strong permeability and dissolving power. Therefore, it is advantageous that the obtained resin composition has heat resistance and solvent resistance. The heat of fusion (ΔH) is preferably 100 to 170 J / g.
また、上記結晶化度(Xc110)が60%を超えるとフィラー受容性が不足し、製膜性に劣る場合がある。10%未満では、耐熱性および耐溶剤性が不充分になる場合がある。上記結晶化度(Xc110)は、好ましくは15~45%である。なお、110℃における結晶化度とは、DSC融解曲線における融解熱量ΔH全体に対する110℃以上での融解熱量の割合を意味する。
On the other hand, if the crystallinity (Xc110) exceeds 60%, the filler acceptability may be insufficient and the film forming property may be inferior. If it is less than 10%, the heat resistance and solvent resistance may be insufficient. The crystallinity (Xc110) is preferably 15 to 45%. The crystallinity at 110 ° C. means the ratio of the heat of fusion at 110 ° C. or higher to the total heat of fusion ΔH in the DSC melting curve.
また、上記MFRが10g/10分以上では、ポリエチレン系樹脂組成物(A)とフィラーとしての一酸化炭素酸化触媒(B)および二酸化炭素吸着剤(C)との溶融混練性(フィラー分散性)が不充分になったり、フィルム製膜時の引落性が低下したりする場合がある。0.1g/10分未満では、フィルムの肉厚調整が困難になる場合がある。上記MFRは、好ましくは0.2~7g/10分、より好ましくは0.5~5g/10分である。
When the MFR is 10 g / 10 min or more, the melt-kneading property (filler dispersibility) of the polyethylene resin composition (A) with the carbon monoxide oxidation catalyst (B) and the carbon dioxide adsorbent (C) as fillers. May be insufficient, or the dropability during film formation may be reduced. If it is less than 0.1 g / 10 min, it may be difficult to adjust the thickness of the film. The MFR is preferably 0.2 to 7 g / 10 minutes, more preferably 0.5 to 5 g / 10 minutes.
なお、本明細書において、DSC融解曲線は、特に断らない限り、TA Instruments(ティー・エイ・インスツルメント・ジャパン株式会社)のDSC Q1000型を使用し、試料を190℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で190℃まで加熱するという温度プログラムでDSC測定を行って得られる曲線である。
In the present specification, unless otherwise specified, DSC melting curves are obtained by using a DSC Q1000 model of TA Instruments (TE Instruments Japan Co., Ltd.) and holding the sample at 190 ° C. for 5 minutes. Obtained by performing DSC measurement with a temperature program of cooling to −10 ° C. at a temperature decrease rate of 10 ° C./min, holding at −10 ° C. for 5 minutes, and then heating to 190 ° C. at a temperature increase rate of 10 ° C./min. It is a curved line.
本発明におけるエチレン系重合体は、上記(i)~(iv)の要件を満たすものであれば特に制限されない。例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレンとα-オレフィン(例えば、1-ブテン、1-ヘキセン、1-オクテン等)とのコポリマーが挙げられる。酢酸ビニル、メチルアクリレート、エチルアクリレートなどをコモノマーとするエチレンコポリマーは、コモノマーによる結晶性低下が大きいため、上記(i)~(iv)の要件を満たすことが難しい。
The ethylene polymer in the present invention is not particularly limited as long as it satisfies the above requirements (i) to (iv). For example, low density polyethylene, linear low density polyethylene, ultra low density polyethylene, high density polyethylene, and a copolymer of ethylene and α-olefin (for example, 1-butene, 1-hexene, 1-octene, etc.) can be mentioned. An ethylene copolymer using vinyl acetate, methyl acrylate, ethyl acrylate, or the like as a comonomer has a large decrease in crystallinity due to the comonomer, and thus it is difficult to satisfy the requirements (i) to (iv).
エチレン系重合体は、1種を単独で、または2種以上を任意に配合した混合物として使用することが出来る。混合物として使用する場合には、混合物全体が上記要件(i)~(iv)を満たすようにすればよい。
An ethylene-type polymer can be used individually by 1 type or as a mixture which mix | blended 2 or more types arbitrarily. When used as a mixture, the entire mixture may satisfy the above requirements (i) to (iv).
エチレン系重合体(A-1)として使用され得る具体例として、日本ポリエチレン(株)からKF271およびUF240の商品名で市販されている直鎖状低密度ポリエチレン、プライムポリマー(株)からSP2040およびSP2520の商品名で市販されている直鎖状低密度ポリエチレン等が挙げられる。
Specific examples that can be used as the ethylene-based polymer (A-1) include linear low density polyethylene commercially available from Nippon Polyethylene Co., Ltd. under the trade names KF271 and UF240, and SP2040 and SP2520 from Prime Polymer Co., Ltd. The linear low density polyethylene etc. which are marketed with the brand name of these are mentioned.
(A-2)酸変性エチレン系樹脂
酸変性エチレン系樹脂は、疎水性であるエチレン系重合体(A-1)と親水性である、フィラーとしての一酸化炭素酸化触媒(B)および二酸化炭素吸着剤(C)との混和性を改良して上記フィラーの分散を促進し、製膜したときにフィルムにブツなどの欠点が発生しないようにするための成分である。 (A-2) Acid-modified ethylene-based resin The acid-modified ethylene-based resin includes a hydrophobic ethylene-based polymer (A-1) and a hydrophilic carbon monoxide oxidation catalyst (B ) And carbon dioxide adsorbent (C) to improve the miscibility of the filler to promote the dispersion of the filler so that no defects such as blisters are generated in the film.
酸変性エチレン系樹脂は、疎水性であるエチレン系重合体(A-1)と親水性である、フィラーとしての一酸化炭素酸化触媒(B)および二酸化炭素吸着剤(C)との混和性を改良して上記フィラーの分散を促進し、製膜したときにフィルムにブツなどの欠点が発生しないようにするための成分である。 (A-2) Acid-modified ethylene-based resin The acid-modified ethylene-based resin includes a hydrophobic ethylene-based polymer (A-1) and a hydrophilic carbon monoxide oxidation catalyst (B ) And carbon dioxide adsorbent (C) to improve the miscibility of the filler to promote the dispersion of the filler so that no defects such as blisters are generated in the film.
本発明で使用される酸変性エチレン系樹脂は、不飽和カルボン酸またはその誘導体がグラフト重合および/または共重合したエチレン系樹脂である。不飽和カルボン酸の例としては、例えば、マレイン酸、イタコン酸、フマル酸が挙げられ、その誘導体の例としては、例えば、マレイン酸モノエステル、マレイン酸ジエステル、無水マレイン酸、イタコン酸モノエステル、イタコン酸ジエステル、無水イタコン酸、フマル酸モノエステル、フマル酸ジエステル、無水フマル酸等のエステルおよび無水物が挙げられる。上記エチレン系樹脂としては、直鎖状ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル(VA)共重合体、エチレン-エチルアクリレート(EA)共重合体、エチレン-メタクリレート共重合体などが挙げられる。
The acid-modified ethylene resin used in the present invention is an ethylene resin obtained by graft polymerization and / or copolymerization of an unsaturated carboxylic acid or a derivative thereof. Examples of unsaturated carboxylic acids include, for example, maleic acid, itaconic acid, fumaric acid, and examples of derivatives thereof include, for example, maleic acid monoester, maleic acid diester, maleic anhydride, itaconic acid monoester, Examples include itaconic acid diester, itaconic anhydride, fumaric acid monoester, fumaric acid diester, fumaric anhydride and the like. Examples of the ethylene resin include linear polyethylene, ultra-low density polyethylene, high density polyethylene, ethylene-vinyl acetate (VA) copolymer, ethylene-ethyl acrylate (EA) copolymer, and ethylene-methacrylate copolymer. Is mentioned.
酸変性エチレン系樹脂は、好ましくは0.1~10g/10分のMFR(190℃、21.18N)を有する。さらに好ましくは、0.2~7g/10分、最も好ましくは0.5~5g/10分である。MFRが上記上限より高いと、フィルム製膜時の引落性が低下する場合がある。MFRが上記下限より低いと、フィルムの肉厚調整が困難になる場合がある。
The acid-modified ethylene resin preferably has an MFR (190 ° C., 21.18 N) of 0.1 to 10 g / 10 min. More preferably, it is 0.2 to 7 g / 10 minutes, and most preferably 0.5 to 5 g / 10 minutes. If the MFR is higher than the above upper limit, the drawability during film formation may be reduced. If the MFR is lower than the lower limit, it may be difficult to adjust the thickness of the film.
酸変性エチレン系樹脂の具体例としては、三井化学(株)製のアドマー(商品名)、日本ポリオレフィン(株)製のアドテックス(商品名)、クロンプトン社製のポリボンド(商品名)および住友化学(株)製のボンドファースト(商品名)が挙げられる。
Specific examples of acid-modified ethylene resins include Admer (trade name) manufactured by Mitsui Chemicals, Adtex (trade name) manufactured by Nippon Polyolefin Co., Ltd., Polybond (trade name) manufactured by Crompton, and Sumitomo Chemical. Examples include Bond First (trade name) manufactured by Co., Ltd.
酸変性エチレン系樹脂は、単独でまたは二種以上を組み合わせて使用することができる。
The acid-modified ethylene resin can be used alone or in combination of two or more.
ポリエチレン系樹脂組成物(A)は、エチレン系重合体(A-1)99~60質量%および酸変性エチレン系樹脂(A-2)1~40質量%を含む(ここで、成分(A-1)と成分(A-2)の量の合計は100質量%である)。より好ましくは、エチレン系重合体(A-1)97~70質量%および酸変性エチレン系樹脂(A-2)3~30質量%であり、更に好ましくは、エチレン系重合体(A-1)95~80質量%および酸変性エチレン系樹脂(A-2)5~20質量%である。酸変性エチレン系樹脂(A-2)が少ない(すなわち、エチレン系重合体(A-1)が多い)と、フィラーの分散が不充分になり、製膜の際に目脂が多く発生したり、得られるフィルムにブツなどの欠点が発生し易くなったりする。一方、酸変性エチレン系樹脂(A-2)が多い(すなわち、エチレン系重合体(A-1)が少ない)と、酸変性エチレン系樹脂とフィラーとの相互作用が非常に強くなり、コンパウンド製造時の混練負荷や製膜時の押出負荷が高くなる場合がある。また、得られるフィルムの引張伸びが低下する場合がある。
The polyethylene resin composition (A) contains 99 to 60% by mass of the ethylene polymer (A-1) and 1 to 40% by mass of the acid-modified ethylene resin (A-2) (where component (A- The total amount of 1) and component (A-2) is 100% by mass). More preferably, they are 97 to 70% by mass of the ethylene polymer (A-1) and 3 to 30% by mass of the acid-modified ethylene resin (A-2), and more preferably, the ethylene polymer (A-1). 95 to 80% by mass and 5 to 20% by mass of the acid-modified ethylene resin (A-2). When the acid-modified ethylene resin (A-2) is small (that is, the ethylene polymer (A-1) is large), the filler is not sufficiently dispersed, and a lot of grease is generated during film formation. , Defects such as bumps are likely to occur in the obtained film. On the other hand, if there is a large amount of acid-modified ethylene resin (A-2) (that is, a small amount of ethylene polymer (A-1)), the interaction between the acid-modified ethylene resin and the filler becomes very strong, and a compound is produced. Sometimes the kneading load during extrusion and the extrusion load during film formation may be high. Moreover, the tensile elongation of the film obtained may fall.
(B)一酸化炭素酸化触媒
一酸化炭素酸化触媒として、ホプカライト(銅-マンガン系複合酸化物)などの複合金属酸化物触媒および担持貴金属触媒が知られており、本発明では、下記に述べる特定の粒子径分布を有するならば、これらのいずれも成分(B)として使用できる。上記担持貴金属触媒は、アルミナ担持パラジウムなどの金属酸化物担持貴金属触媒(貴金属を金属酸化物表面に担持した触媒)、パラジウム-酸化セリウムなどの貴金属-易還元性酸化物触媒、酸化チタン担持プラチナなどの貴金属担持光触媒、カーボンブラック担持塩化パラジウム-塩化銅などの担持Wacker型触媒および金ナノ粒子触媒(金ナノ粒子を金属酸化物表面に担持した触媒)を包含する。高濃度の一酸化炭素による被毒/失活の起き難いものであればより好ましい。本発明における樹脂組成物では、ホプカライトなどの複合金属酸化物およびアルミナ担持パラジウムなどの金属酸化物担持貴金属触媒が好ましく使用される。一酸化炭素酸化触媒は、1種を単独で、または2種以上を組み合わせて使用され得る。なお、ホプカライトと同じ組成であっても、複合酸化物の形ではなく、酸化銅(II)と酸化マンガン(IV)とを単に混合した混和物の形のものは、一酸化炭素酸化触媒としての機能が不十分である。 (B) Carbon monoxide oxidation catalyst As the carbon monoxide oxidation catalyst, a composite metal oxide catalyst such as hopcalite (copper-manganese composite oxide) and a supported noble metal catalyst are known. In the present invention, Any of these can be used as component (B) provided it has the specific particle size distribution described below. The supported noble metal catalyst includes a metal oxide-supported noble metal catalyst such as palladium on alumina (a catalyst having a noble metal supported on the metal oxide surface), a noble metal-reducible oxide catalyst such as palladium-cerium oxide, platinum supported on titanium oxide, etc. A noble metal-supported photocatalyst, a supported Wacker type catalyst such as palladium chloride-copper chloride supported on carbon black, and a gold nanoparticle catalyst (a catalyst in which gold nanoparticles are supported on a metal oxide surface). It is more preferable if poisoning / deactivation with high concentration of carbon monoxide is difficult to occur. In the resin composition of the present invention, a composite metal oxide such as hopcalite and a metal oxide-supported noble metal catalyst such as alumina-supported palladium are preferably used. A carbon monoxide oxidation catalyst can be used individually by 1 type or in combination of 2 or more types. Even if the composition is the same as that of hopcalite, it is not in the form of a complex oxide, but in the form of a mixture in which copper (II) oxide and manganese (IV) oxide are simply mixed. Insufficient function.
一酸化炭素酸化触媒として、ホプカライト(銅-マンガン系複合酸化物)などの複合金属酸化物触媒および担持貴金属触媒が知られており、本発明では、下記に述べる特定の粒子径分布を有するならば、これらのいずれも成分(B)として使用できる。上記担持貴金属触媒は、アルミナ担持パラジウムなどの金属酸化物担持貴金属触媒(貴金属を金属酸化物表面に担持した触媒)、パラジウム-酸化セリウムなどの貴金属-易還元性酸化物触媒、酸化チタン担持プラチナなどの貴金属担持光触媒、カーボンブラック担持塩化パラジウム-塩化銅などの担持Wacker型触媒および金ナノ粒子触媒(金ナノ粒子を金属酸化物表面に担持した触媒)を包含する。高濃度の一酸化炭素による被毒/失活の起き難いものであればより好ましい。本発明における樹脂組成物では、ホプカライトなどの複合金属酸化物およびアルミナ担持パラジウムなどの金属酸化物担持貴金属触媒が好ましく使用される。一酸化炭素酸化触媒は、1種を単独で、または2種以上を組み合わせて使用され得る。なお、ホプカライトと同じ組成であっても、複合酸化物の形ではなく、酸化銅(II)と酸化マンガン(IV)とを単に混合した混和物の形のものは、一酸化炭素酸化触媒としての機能が不十分である。 (B) Carbon monoxide oxidation catalyst As the carbon monoxide oxidation catalyst, a composite metal oxide catalyst such as hopcalite (copper-manganese composite oxide) and a supported noble metal catalyst are known. In the present invention, Any of these can be used as component (B) provided it has the specific particle size distribution described below. The supported noble metal catalyst includes a metal oxide-supported noble metal catalyst such as palladium on alumina (a catalyst having a noble metal supported on the metal oxide surface), a noble metal-reducible oxide catalyst such as palladium-cerium oxide, platinum supported on titanium oxide, etc. A noble metal-supported photocatalyst, a supported Wacker type catalyst such as palladium chloride-copper chloride supported on carbon black, and a gold nanoparticle catalyst (a catalyst in which gold nanoparticles are supported on a metal oxide surface). It is more preferable if poisoning / deactivation with high concentration of carbon monoxide is difficult to occur. In the resin composition of the present invention, a composite metal oxide such as hopcalite and a metal oxide-supported noble metal catalyst such as alumina-supported palladium are preferably used. A carbon monoxide oxidation catalyst can be used individually by 1 type or in combination of 2 or more types. Even if the composition is the same as that of hopcalite, it is not in the form of a complex oxide, but in the form of a mixture in which copper (II) oxide and manganese (IV) oxide are simply mixed. Insufficient function.
一酸化炭素酸化触媒(B)は、その粒子径分布が特定のもの、すなわち30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有するものであれば、成分(A)との混和性を良好にすることができ、したがって、良好に製膜することができる。ここで、D99およびD55はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う。D99は、好ましくは20μm以下、より好ましくは15μm以下である。また、D50は、好ましくは0.01~15μm、より好ましくは0.1~10μmである。上記範囲から外れるような粗い粒子は、フィルムの欠点や異物になる場合がある。また、粒子が細かすぎると、凝集してフィルムの欠点や異物になったり、凝集しなかった場合には多量の空気を抱き込んでコンパウンド製造時の溶融混練作業性を悪くしたりする場合がある。
If the carbon monoxide oxidation catalyst (B) has a specific particle size distribution, that is, a particle size (D99) of 30 μm or less and a particle size (D50) of 20 μm or less, The miscibility can be improved, and therefore a film can be formed well. Here, D99 and D55 refer to the particle diameter at the point where the particle diameter distribution becomes 99 mass% and 50 mass%, respectively, from the smaller particle diameter. D99 is preferably 20 μm or less, more preferably 15 μm or less. D50 is preferably 0.01 to 15 μm, more preferably 0.1 to 10 μm. Coarse particles that deviate from the above range may be a film defect or foreign matter. Also, if the particles are too fine, they may agglomerate to become defects or foreign matter of the film, or if they do not agglomerate, a large amount of air may be included to deteriorate the melt-kneading workability during compound production. .
粒子径分布の制御は、大きな粒子を生成した後、それを粉砕、分球する方法、及び最初から細かい粒子を生成しそして分球する方法がある。粒子径分布を上記範囲内に制御できるならばどちらの方法でも良く、特に限定はされないが、押出負荷および製膜性の観点から、細かい粒子を最初から生成する方法がより好ましい。
Control of the particle size distribution includes a method in which large particles are produced and then pulverized and sized, and a method in which fine particles are produced and sized from the beginning. Either method may be used as long as the particle size distribution can be controlled within the above range, and is not particularly limited. However, from the viewpoint of extrusion load and film forming property, a method of generating fine particles from the beginning is more preferable.
成分(B)の配合量は、成分(A)100質量部に対して1~150質量部、好ましくは3~120質量部、より好ましくは5~100質量部である。上記下限よりも少ないと、一酸化炭素を酸化する機能が不満足なものになり、上記上限を超えると、コンパウンド製造時の溶融混練およびフィルム化が困難になる場合がある。
The amount of component (B) is 1 to 150 parts by weight, preferably 3 to 120 parts by weight, more preferably 5 to 100 parts by weight, based on 100 parts by weight of component (A). If the amount is less than the above lower limit, the function of oxidizing carbon monoxide becomes unsatisfactory, and if the upper limit is exceeded, melt kneading and film formation at the time of compound production may be difficult.
(C)二酸化炭素吸着剤
本発明における二酸化炭素吸着剤(C)は、成分(B)に関して述べたものと同じ粒子径分布を有するものであれば、いずれも使用できる。例えば、細孔径が0.4nm以上であるゼオライト(例えば、モレキュラーシーブ4Aおよびモレキュラーシーブ5A)および酸化ストロンチウムなどのアルカリ土類金属酸化物が挙げられる。 (C) Carbon dioxide adsorbent Any carbon dioxide adsorbent (C) in the present invention can be used as long as it has the same particle size distribution as that described for component (B). Examples thereof include zeolites having a pore diameter of 0.4 nm or more (for example, molecular sieve 4A and molecular sieve 5A) and alkaline earth metal oxides such as strontium oxide.
本発明における二酸化炭素吸着剤(C)は、成分(B)に関して述べたものと同じ粒子径分布を有するものであれば、いずれも使用できる。例えば、細孔径が0.4nm以上であるゼオライト(例えば、モレキュラーシーブ4Aおよびモレキュラーシーブ5A)および酸化ストロンチウムなどのアルカリ土類金属酸化物が挙げられる。 (C) Carbon dioxide adsorbent Any carbon dioxide adsorbent (C) in the present invention can be used as long as it has the same particle size distribution as that described for component (B). Examples thereof include zeolites having a pore diameter of 0.4 nm or more (for example, molecular sieve 4A and molecular sieve 5A) and alkaline earth metal oxides such as strontium oxide.
なお、非水電解質二次電池や電気二重層キャパシタなどの蓄電デバイスでは、水の存在により上記蓄電デバイスの性能劣化を生じ、寿命の低下を招く。したがって、成分(C)は、二酸化炭素の吸着に水を実質的に必要としない(絶対湿度約1mg/Lより多くの水を必要としない)ものが好ましい。例えば酸化マグネシウムは、二酸化炭素の吸着機構において水を必要とする。
Note that, in an electricity storage device such as a non-aqueous electrolyte secondary battery or an electric double layer capacitor, performance of the electricity storage device is deteriorated due to the presence of water, leading to a reduction in life. Accordingly, the component (C) is preferably one that does not substantially require water for carbon dioxide adsorption (does not require more than about 1 mg / L of absolute humidity). For example, magnesium oxide requires water in the carbon dioxide adsorption mechanism.
二酸化炭素吸着剤(C)の配合量は、成分(A)100質量部に対して1~200質量部、好ましくは5~150質量部、より好ましくは10~120質量部である。上記下限未満であると、二酸化炭素を吸着する機能が不満足なものになり、上記上限を超えると、コンパウンド製造時の溶融混練およびフィルム化が困難になる場合がある。
The compounding amount of the carbon dioxide adsorbent (C) is 1 to 200 parts by mass, preferably 5 to 150 parts by mass, more preferably 10 to 120 parts by mass with respect to 100 parts by mass of the component (A). If it is less than the above lower limit, the function of adsorbing carbon dioxide becomes unsatisfactory, and if it exceeds the above upper limit, melt kneading and film formation at the time of compound production may be difficult.
本発明における樹脂組成物はさらにスリップ剤を含むことが好ましい。これにより、コンパウンド製造時の溶融混練作業性を向上させ、また、製膜性をより良好にすることができる。スリップ剤としては、ステアリン酸カルシウムなどの金属石鹸、オレイン酸アミド、エルカ酸アミドなどの脂肪酸アミド、ポリエチレンワックス、シリコンガム、シリコンオイルなどが挙げられる。スリップ剤の好ましい添加量は、成分(A)100質量部に対して0.1~20質量部、より好ましくは1~10質量部である。
The resin composition in the present invention preferably further contains a slip agent. Thereby, the melt-kneading workability at the time of manufacturing the compound can be improved, and the film-forming property can be improved. Examples of the slip agent include metal soaps such as calcium stearate, fatty acid amides such as oleic acid amide and erucic acid amide, polyethylene wax, silicone gum, and silicone oil. A preferable amount of the slip agent to be added is 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the component (A).
また、本発明における樹脂組成物は、必要に応じてリン系、フェノール系、硫黄系などの酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤などの耐候剤、銅害防止剤、芳香族リン酸金属塩系、ゲルオール系などの造核剤、グリセリン脂肪酸モノエステルなどの帯電防止剤、着色剤、芳香剤、抗菌剤、酸化マグネシウム、酸化亜鉛、炭酸カルシウム、タルク、金属水和物などのフィラー、グリセリン脂肪酸エステル系、パラフィンオイル、フタル酸系、エステル系などの可塑剤等の添加剤を含んでいてもよい。
In addition, the resin composition in the present invention is optionally provided with a phosphorus-based, phenol-based or sulfur-based antioxidant, an anti-aging agent, a light stabilizer, a weathering agent such as an ultraviolet absorber, a copper damage inhibitor, an aromatic Group nucleating agents such as metal phosphates and gelols, antistatic agents such as glycerin fatty acid monoesters, coloring agents, fragrances, antibacterial agents, magnesium oxide, zinc oxide, calcium carbonate, talc, metal hydrates, etc. And additives such as plasticizers such as filler, glycerin fatty acid ester, paraffin oil, phthalic acid and ester.
本発明における樹脂組成物は、上記成分(A-1)、(A-2)、(B)および(C)ならびに所望により任意の添加剤を溶融混練することにより得ることができる。溶融混練は、二軸押出機、バンバリーミキサーなどの慣用の装置を使用して行うことができる。混練温度は、製膜時の吸湿発泡トラブルを回避するため、フィルム製膜温度よりも高くすることが好ましい。得られた組成物は、造粒機によってペレット化した後、Tダイ等を使用する通常の製膜に付することができるが、その場合には、ペレット化を、ホットカット法などの水を介在させない方法で行うことが好ましい。また真空ベントを設けたり、ギヤポンプ等を介したりしても良い。更に、ペレット化することなく、直接製膜に付する方法、例えば、溶融混練して得られた組成物をそのままギヤポンプ等を介してTダイに送って製膜する方法を使用することもできる。
The resin composition in the present invention can be obtained by melt-kneading the above components (A-1), (A-2), (B) and (C) and optionally an optional additive. The melt-kneading can be performed using a conventional apparatus such as a twin screw extruder or a Banbury mixer. The kneading temperature is preferably higher than the film-forming temperature in order to avoid moisture-absorbing foaming troubles during film formation. The resulting composition can be pelletized by a granulator and then subjected to normal film formation using a T die or the like. In that case, the pelletization is performed using water such as a hot cut method. It is preferable to carry out by a method that does not intervene. Further, a vacuum vent may be provided or a gear pump or the like may be used. Furthermore, it is also possible to use a method in which film formation is directly performed without pelletization, for example, a method in which a composition obtained by melt kneading is directly sent to a T die via a gear pump or the like to form a film.
本発明のフィルムは肉厚が1~1000μmであるのが好ましい。より好ましくは10~500μmであり、さらに好ましくは20~200μmである。薄過ぎるフィルムでは、腰/剛性が不十分となり、非水電解質二次電池や電気二重層キャパシタにおける蓄電要素が封入された容器内への組込み作業に手間がかかる。厚過ぎるフィルムでは、非水電解質二次電池や電気二重層キャパシタにおける上記容器内の僅かな空隙に配置することが出来なくなる。
The film of the present invention preferably has a thickness of 1 to 1000 μm. More preferably, it is 10 to 500 μm, and further preferably 20 to 200 μm. If the film is too thin, the waist / stiffness will be insufficient, and it will take time to assemble the storage element in the non-aqueous electrolyte secondary battery or the electric double layer capacitor in which the storage element is enclosed. If the film is too thick, the film cannot be disposed in a small gap in the container of the nonaqueous electrolyte secondary battery or the electric double layer capacitor.
本発明のフィルムは、気体酸素の不存在下で一酸化炭素を二酸化炭素に酸化して吸着することができるとともに耐熱性に優れ、非水電解質二次電池や電気二重層キャパシタにおける蓄電要素が封入された容器中での使用において特に有用である。
The film of the present invention can oxidize and adsorb carbon monoxide to carbon dioxide in the absence of gaseous oxygen, has excellent heat resistance, and encloses storage elements in non-aqueous electrolyte secondary batteries and electric double layer capacitors Particularly useful in a used container.
以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.
実施例1~4および比較例1~13
表1に示す配合量(質量部)の成分をドライブレンドし、これを、(株)日本製鋼所の二軸押出機TEX28により溶融混練した後、そのままギヤポンプを介して、東芝機械株式会社製の単層Tダイへと送って製膜し、膜厚50μmのフィルムを得た。二軸押出機出口樹脂温度は220℃であり(真空ベント使用)、ギヤポンプ出口樹脂温度は220℃であった。また、製膜は、Tダイ出口樹脂温度220℃、チルロール温度40℃、引取速度10m/分の条件で真空ベントを使用して行った。得られたフィルムは、露点温度-50℃以下にしたガス置換型グローブボックス(アズワン株式会社のSG-1000)の中に保管した。得られたフィルムについて、以下の評価試験を行った。結果を表1に示す。 Examples 1 to 4 and Comparative Examples 1 to 13
The components (parts by mass) shown in Table 1 were dry blended and melt-kneaded with a twin screw extruder TEX28 of Nippon Steel, Ltd., and then directly through a gear pump, manufactured by Toshiba Machine Co., Ltd. The film was sent to a single layer T die to form a film having a thickness of 50 μm. The resin temperature at the exit of the twin screw extruder was 220 ° C. (using a vacuum vent), and the resin temperature at the exit of the gear pump was 220 ° C. Film formation was performed using a vacuum vent under conditions of a T-die outlet resin temperature of 220 ° C., a chill roll temperature of 40 ° C., and a take-off speed of 10 m / min. The obtained film was stored in a gas substitution type glove box (SG-1000 manufactured by ASONE Co., Ltd.) having a dew point temperature of −50 ° C. or lower. The obtained film was subjected to the following evaluation test. The results are shown in Table 1.
表1に示す配合量(質量部)の成分をドライブレンドし、これを、(株)日本製鋼所の二軸押出機TEX28により溶融混練した後、そのままギヤポンプを介して、東芝機械株式会社製の単層Tダイへと送って製膜し、膜厚50μmのフィルムを得た。二軸押出機出口樹脂温度は220℃であり(真空ベント使用)、ギヤポンプ出口樹脂温度は220℃であった。また、製膜は、Tダイ出口樹脂温度220℃、チルロール温度40℃、引取速度10m/分の条件で真空ベントを使用して行った。得られたフィルムは、露点温度-50℃以下にしたガス置換型グローブボックス(アズワン株式会社のSG-1000)の中に保管した。得られたフィルムについて、以下の評価試験を行った。結果を表1に示す。 Examples 1 to 4 and Comparative Examples 1 to 13
The components (parts by mass) shown in Table 1 were dry blended and melt-kneaded with a twin screw extruder TEX28 of Nippon Steel, Ltd., and then directly through a gear pump, manufactured by Toshiba Machine Co., Ltd. The film was sent to a single layer T die to form a film having a thickness of 50 μm. The resin temperature at the exit of the twin screw extruder was 220 ° C. (using a vacuum vent), and the resin temperature at the exit of the gear pump was 220 ° C. Film formation was performed using a vacuum vent under conditions of a T-die outlet resin temperature of 220 ° C., a chill roll temperature of 40 ° C., and a take-off speed of 10 m / min. The obtained film was stored in a gas substitution type glove box (SG-1000 manufactured by ASONE Co., Ltd.) having a dew point temperature of −50 ° C. or lower. The obtained film was subjected to the following evaluation test. The results are shown in Table 1.
(1)フィルム外観
A4サイズに裁断したフィルム5枚を目視で観察し、以下の基準で判定した
○:発泡および穴開きがなく、直径0.1mm以上のブツもない
△:発泡および穴開きがなく、直径0.5mm以上のブツもないが、直径0.1mm~0.5mm未満のブツが1~10個ある
×:発泡または穴開きがあり、直径0.5mm以上のブツもある (1) Film appearance Five films cut to A4 size were visually observed and judged on the basis of the following criteria: ○: no foaming or perforation, no flaws with a diameter of 0.1 mm or more Δ: foaming and perforation There is no part with a diameter of 0.5 mm or more, but there are 1 to 10 parts with a diameter of 0.1 mm to less than 0.5 mm.
A4サイズに裁断したフィルム5枚を目視で観察し、以下の基準で判定した
○:発泡および穴開きがなく、直径0.1mm以上のブツもない
△:発泡および穴開きがなく、直径0.5mm以上のブツもないが、直径0.1mm~0.5mm未満のブツが1~10個ある
×:発泡または穴開きがあり、直径0.5mm以上のブツもある (1) Film appearance Five films cut to A4 size were visually observed and judged on the basis of the following criteria: ○: no foaming or perforation, no flaws with a diameter of 0.1 mm or more Δ: foaming and perforation There is no part with a diameter of 0.5 mm or more, but there are 1 to 10 parts with a diameter of 0.1 mm to less than 0.5 mm.
(2)膜厚安定性
フィルム幅の中心付近についてマシン方向に2cm毎に20個所の膜厚を測定し、その標準偏差が1.5μm以下を「○」、1.5μmを超えて3.0μm以下を「△」、3.0μmを超えるものを「×」とした。 (2) Film thickness stability Measure the film thickness at 20 locations every 2 cm in the machine direction around the center of the film width, and the standard deviation is 1.5 μm or less “◯”, exceeding 1.5 μm to 3.0 μm The following was designated as “Δ” and those exceeding 3.0 μm were designated as “x”.
フィルム幅の中心付近についてマシン方向に2cm毎に20個所の膜厚を測定し、その標準偏差が1.5μm以下を「○」、1.5μmを超えて3.0μm以下を「△」、3.0μmを超えるものを「×」とした。 (2) Film thickness stability Measure the film thickness at 20 locations every 2 cm in the machine direction around the center of the film width, and the standard deviation is 1.5 μm or less “◯”, exceeding 1.5 μm to 3.0 μm The following was designated as “Δ” and those exceeding 3.0 μm were designated as “x”.
(3)窒素/一酸化炭素混合気体中での一酸化炭素および二酸化炭素の濃度変化
テトラバックに1000cm2のフィルムを入れ、255mLの窒素を充填した。ここに45mLの一酸化炭素を注入した(一酸化炭素の計算濃度:15vol%)。これを24時間、常温、常圧で放置した後、一酸化炭素濃度および二酸化炭素濃度をガスクロマトグラフにより測定した。測定値を表1に示す。
なお、テトラバックからはガスが少しずつ透過して抜けるため、同時にブランク(上記フィルムを使用しない場合)の測定も行ったところ、24時間後の一酸化炭素濃度は14.1vol%であり、二酸化炭素は検出されなかった。 (3) Concentration change of carbon monoxide and carbon dioxide in a nitrogen / carbon monoxide mixed gas A 1000 cm 2 film was placed in a tetrabag, and 255 mL of nitrogen was charged. 45 mL of carbon monoxide was injected here (calculated concentration of carbon monoxide: 15 vol%). This was left for 24 hours at room temperature and normal pressure, and then the carbon monoxide concentration and the carbon dioxide concentration were measured by a gas chromatograph. The measured values are shown in Table 1.
In addition, since gas permeate | transmits and escapes little by little from a tetra bag, when the measurement of a blank (when the said film is not used) was also performed simultaneously, the carbon monoxide density | concentration after 24 hours is 14.1 vol%, Carbon was not detected.
テトラバックに1000cm2のフィルムを入れ、255mLの窒素を充填した。ここに45mLの一酸化炭素を注入した(一酸化炭素の計算濃度:15vol%)。これを24時間、常温、常圧で放置した後、一酸化炭素濃度および二酸化炭素濃度をガスクロマトグラフにより測定した。測定値を表1に示す。
なお、テトラバックからはガスが少しずつ透過して抜けるため、同時にブランク(上記フィルムを使用しない場合)の測定も行ったところ、24時間後の一酸化炭素濃度は14.1vol%であり、二酸化炭素は検出されなかった。 (3) Concentration change of carbon monoxide and carbon dioxide in a nitrogen / carbon monoxide mixed gas A 1000 cm 2 film was placed in a tetrabag, and 255 mL of nitrogen was charged. 45 mL of carbon monoxide was injected here (calculated concentration of carbon monoxide: 15 vol%). This was left for 24 hours at room temperature and normal pressure, and then the carbon monoxide concentration and the carbon dioxide concentration were measured by a gas chromatograph. The measured values are shown in Table 1.
In addition, since gas permeate | transmits and escapes little by little from a tetra bag, when the measurement of a blank (when the said film is not used) was also performed simultaneously, the carbon monoxide density | concentration after 24 hours is 14.1 vol%, Carbon was not detected.
(4)空気/一酸化炭素混合気体中での一酸化炭素および二酸化炭素の濃度変化
上記(3)の試験おいて、255mLの窒素の代わりに255mLの空気(窒素/酸素=80/20(体積比))を用いた以外は試験(3)と同様に測定を行った。ブランクでの一酸化炭素濃度は14.2vol%であり、二酸化炭素は検出されなかった。 (4) Concentration change of carbon monoxide and carbon dioxide in air / carbon monoxide mixed gas In the test of (3) above, 255 mL of air (nitrogen / oxygen = 80/20 (volume) instead of 255 mL of nitrogen The measurement was carried out in the same manner as in the test (3) except that the ratio)) was used. The carbon monoxide concentration in the blank was 14.2 vol%, and no carbon dioxide was detected.
上記(3)の試験おいて、255mLの窒素の代わりに255mLの空気(窒素/酸素=80/20(体積比))を用いた以外は試験(3)と同様に測定を行った。ブランクでの一酸化炭素濃度は14.2vol%であり、二酸化炭素は検出されなかった。 (4) Concentration change of carbon monoxide and carbon dioxide in air / carbon monoxide mixed gas In the test of (3) above, 255 mL of air (nitrogen / oxygen = 80/20 (volume) instead of 255 mL of nitrogen The measurement was carried out in the same manner as in the test (3) except that the ratio)) was used. The carbon monoxide concentration in the blank was 14.2 vol%, and no carbon dioxide was detected.
(5)窒素/二酸化炭素混合気体中での二酸化炭素の濃度変化
二酸化炭素は透過性が高いため、フィルムによる二酸化炭素の吸着能の測定を行った。上記(3)の試験おいて、45mLの一酸化炭素を注入する代わりに、45mLの二酸化炭素を注入した以外は試験(3)と同様にして、二酸化炭素濃度の測定を行った。ブランクでの二酸化炭素濃度は12.3vol%であった。 (5) Change in concentration of carbon dioxide in nitrogen / carbon dioxide mixed gas Since carbon dioxide has high permeability, the carbon dioxide adsorption ability by the film was measured. In the above test (3), the carbon dioxide concentration was measured in the same manner as in the test (3) except that 45 mL of carbon dioxide was injected instead of 45 mL of carbon monoxide. The carbon dioxide concentration in the blank was 12.3 vol%.
二酸化炭素は透過性が高いため、フィルムによる二酸化炭素の吸着能の測定を行った。上記(3)の試験おいて、45mLの一酸化炭素を注入する代わりに、45mLの二酸化炭素を注入した以外は試験(3)と同様にして、二酸化炭素濃度の測定を行った。ブランクでの二酸化炭素濃度は12.3vol%であった。 (5) Change in concentration of carbon dioxide in nitrogen / carbon dioxide mixed gas Since carbon dioxide has high permeability, the carbon dioxide adsorption ability by the film was measured. In the above test (3), the carbon dioxide concentration was measured in the same manner as in the test (3) except that 45 mL of carbon dioxide was injected instead of 45 mL of carbon monoxide. The carbon dioxide concentration in the blank was 12.3 vol%.
(6)耐熱性
株式会社東洋精機製作所のHG-100型ヒートシール試験機を用い、80~130℃の所定のシール温度でフィルムをそのマシン方向がT字剥離試験の引張方向になるように融着した(4秒間、圧力0.2MPa)。次いで、T字剥離試験を、株式会社東洋精機製作所のAE-CT型引張試験機を使用し、引剥幅25mm、引剥速度100mm/分、引剥角度180°で行った。より高いシール温度まで○判定になるものが耐熱性の良いフィルムである。
○:全くあるいは殆ど融着していない(引剥強度<0.1N/25mm)
△:僅かに融着している(引剥強度0.1~2.0N/25mm)
×:融着している(引剥強度>2.0N/25mm) (6) Heat resistance Using an HG-100 heat seal tester manufactured by Toyo Seiki Seisakusho Co., Ltd., melt the film so that its machine direction becomes the tensile direction of the T-shaped peel test at a predetermined sealing temperature of 80 to 130 ° C. (4 seconds, pressure 0.2 MPa). Next, a T-peel test was performed using an AE-CT type tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd., with a peeling width of 25 mm, a peeling speed of 100 mm / min, and a peeling angle of 180 °. Films with good heat resistance are those that are judged to have a higher sealing temperature.
○: No or little fusion (peeling strength <0.1 N / 25 mm)
Δ: Slightly fused (peeling strength 0.1 to 2.0 N / 25 mm)
X: Fusing (peeling strength> 2.0 N / 25 mm)
株式会社東洋精機製作所のHG-100型ヒートシール試験機を用い、80~130℃の所定のシール温度でフィルムをそのマシン方向がT字剥離試験の引張方向になるように融着した(4秒間、圧力0.2MPa)。次いで、T字剥離試験を、株式会社東洋精機製作所のAE-CT型引張試験機を使用し、引剥幅25mm、引剥速度100mm/分、引剥角度180°で行った。より高いシール温度まで○判定になるものが耐熱性の良いフィルムである。
○:全くあるいは殆ど融着していない(引剥強度<0.1N/25mm)
△:僅かに融着している(引剥強度0.1~2.0N/25mm)
×:融着している(引剥強度>2.0N/25mm) (6) Heat resistance Using an HG-100 heat seal tester manufactured by Toyo Seiki Seisakusho Co., Ltd., melt the film so that its machine direction becomes the tensile direction of the T-shaped peel test at a predetermined sealing temperature of 80 to 130 ° C. (4 seconds, pressure 0.2 MPa). Next, a T-peel test was performed using an AE-CT type tensile tester manufactured by Toyo Seiki Seisakusho Co., Ltd., with a peeling width of 25 mm, a peeling speed of 100 mm / min, and a peeling angle of 180 °. Films with good heat resistance are those that are judged to have a higher sealing temperature.
○: No or little fusion (peeling strength <0.1 N / 25 mm)
Δ: Slightly fused (peeling strength 0.1 to 2.0 N / 25 mm)
X: Fusing (peeling strength> 2.0 N / 25 mm)
使用した材料は以下の通りである。
成分(A-1)
KF271:日本ポリエチレン(株)製、直鎖状低密度ポリエチレン、Tm=127℃、ΔH=127J/g、Xc110=26%、Xc120=23%、MFR=2.4g/10分、密度913kg/m3 The materials used are as follows.
Ingredient (A-1)
KF271: Nippon Polyethylene Corporation, linear low density polyethylene, Tm = 127 ° C., ΔH = 127 J / g, Xc110 = 26%, Xc120 = 23%, MFR = 2.4 g / 10 min, density 913 kg / m 3
成分(A-1)
KF271:日本ポリエチレン(株)製、直鎖状低密度ポリエチレン、Tm=127℃、ΔH=127J/g、Xc110=26%、Xc120=23%、MFR=2.4g/10分、密度913kg/m3 The materials used are as follows.
Ingredient (A-1)
KF271: Nippon Polyethylene Corporation, linear low density polyethylene, Tm = 127 ° C., ΔH = 127 J / g, Xc110 = 26%, Xc120 = 23%, MFR = 2.4 g / 10 min, density 913 kg / m 3
比較成分(A-1)
F-730NV:プライムポリマー(株)製、プロピレンランダムコポリマー、Tm=139℃、Xc120=66%、MFR=7g/10分
SP4530:プライムポリマー(株)製、高密度ポリエチレン、Tm=132℃、ΔH=185J/g、Xc110=80%、Xc120=72%、MFR=2.8g/10分、密度942kg/m3
KS571:日本ポリエチレン(株)製、超低密度ポリエチレン、Tm=96℃、ΔH=110J/g、Xc110=0%、MFR=12.0g/10分、密度907kg/m3
KF360:日本ポリエチレン(株)製、超低密度ポリエチレン、Tm=111℃、ΔH=92J/g、Xc110=5%、MFR=3.5g/10分、密度898kg/m3
20200J:プライムポリマー(株)製、直鎖状低密度ポリエチレン、Tm=120℃、ΔH=137J/g、Xc110=43%、MFR=18.5g/10分、密度918kg/m3 Comparative component (A-1)
F-730NV: manufactured by Prime Polymer Co., Ltd., propylene random copolymer, Tm = 139 ° C., Xc120 = 66%, MFR = 7 g / 10 minutes SP4530: manufactured by Prime Polymer Co., Ltd., high-density polyethylene, Tm = 132 ° C., ΔH = 185 J / g, Xc110 = 80%, Xc120 = 72%, MFR = 2.8 g / 10 min, density 942 kg / m 3
KS571: manufactured by Nippon Polyethylene Co., Ltd., ultra low density polyethylene, Tm = 96 ° C., ΔH = 110 J / g, Xc110 = 0%, MFR = 12.0 g / 10 min, density 907 kg / m 3
KF360: manufactured by Nippon Polyethylene Co., Ltd., ultra-low density polyethylene, Tm = 111 ° C., ΔH = 92 J / g, Xc110 = 5%, MFR = 3.5 g / 10 min, density 898 kg / m 3
20200J: Prime Polymer Co., Ltd., linear low density polyethylene, Tm = 120 ° C., ΔH = 137 J / g, Xc110 = 43%, MFR = 18.5 g / 10 min, density 918 kg / m 3
F-730NV:プライムポリマー(株)製、プロピレンランダムコポリマー、Tm=139℃、Xc120=66%、MFR=7g/10分
SP4530:プライムポリマー(株)製、高密度ポリエチレン、Tm=132℃、ΔH=185J/g、Xc110=80%、Xc120=72%、MFR=2.8g/10分、密度942kg/m3
KS571:日本ポリエチレン(株)製、超低密度ポリエチレン、Tm=96℃、ΔH=110J/g、Xc110=0%、MFR=12.0g/10分、密度907kg/m3
KF360:日本ポリエチレン(株)製、超低密度ポリエチレン、Tm=111℃、ΔH=92J/g、Xc110=5%、MFR=3.5g/10分、密度898kg/m3
20200J:プライムポリマー(株)製、直鎖状低密度ポリエチレン、Tm=120℃、ΔH=137J/g、Xc110=43%、MFR=18.5g/10分、密度918kg/m3 Comparative component (A-1)
F-730NV: manufactured by Prime Polymer Co., Ltd., propylene random copolymer, Tm = 139 ° C., Xc120 = 66%, MFR = 7 g / 10 minutes SP4530: manufactured by Prime Polymer Co., Ltd., high-density polyethylene, Tm = 132 ° C., ΔH = 185 J / g, Xc110 = 80%, Xc120 = 72%, MFR = 2.8 g / 10 min, density 942 kg / m 3
KS571: manufactured by Nippon Polyethylene Co., Ltd., ultra low density polyethylene, Tm = 96 ° C., ΔH = 110 J / g, Xc110 = 0%, MFR = 12.0 g / 10 min, density 907 kg / m 3
KF360: manufactured by Nippon Polyethylene Co., Ltd., ultra-low density polyethylene, Tm = 111 ° C., ΔH = 92 J / g, Xc110 = 5%, MFR = 3.5 g / 10 min, density 898 kg / m 3
20200J: Prime Polymer Co., Ltd., linear low density polyethylene, Tm = 120 ° C., ΔH = 137 J / g, Xc110 = 43%, MFR = 18.5 g / 10 min, density 918 kg / m 3
成分(A-2)
アドマーXE070:三井化学(株)製、無水マレイン酸変性エチレン系重合体、MFR=3 g/10分 Ingredient (A-2)
Admer XE070: manufactured by Mitsui Chemicals, maleic anhydride-modified ethylene polymer, MFR = 3 g / 10 min
アドマーXE070:三井化学(株)製、無水マレイン酸変性エチレン系重合体、MFR=3 g/10分 Ingredient (A-2)
Admer XE070: manufactured by Mitsui Chemicals, maleic anhydride-modified ethylene polymer, MFR = 3 g / 10 min
成分(B)
ホプカライト:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn2O4)、乳鉢で粉砕・分級したもの、D99=12μm、D50=3μm
5%Pdアルミナ粉末:エヌ・イー・ケムキャット(株)製の金属酸化物担持貴金属触媒、粗粉を分級したもの、D99=28μm、D50=15μm Ingredient (B)
Hopcalite: Composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Sciences, pulverized and classified in a mortar, D99 = 12 μm, D50 = 3 μm
5% Pd alumina powder: metal oxide-supported noble metal catalyst manufactured by N.E. Chemcat Co., Ltd., classified coarse powder, D99 = 28 μm, D50 = 15 μm
ホプカライト:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn2O4)、乳鉢で粉砕・分級したもの、D99=12μm、D50=3μm
5%Pdアルミナ粉末:エヌ・イー・ケムキャット(株)製の金属酸化物担持貴金属触媒、粗粉を分級したもの、D99=28μm、D50=15μm Ingredient (B)
Hopcalite: Composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Sciences, pulverized and classified in a mortar, D99 = 12 μm, D50 = 3 μm
5% Pd alumina powder: metal oxide-supported noble metal catalyst manufactured by N.E. Chemcat Co., Ltd., classified coarse powder, D99 = 28 μm, D50 = 15 μm
比較成分(B)
ホプカライト/粗粉入り:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn2O4)、十分な粉砕を行わず粗粉を含むもの、D99=102μm、D50=56μm Comparative component (B)
Hopcalite / with coarse powder: Composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Science Co., Ltd., containing coarse powder without sufficient grinding, D99 = 102 μm, D50 = 56 μm
ホプカライト/粗粉入り:ジーエルサイエンス(株)製の複合金属酸化物触媒(CuMn2O4)、十分な粉砕を行わず粗粉を含むもの、D99=102μm、D50=56μm Comparative component (B)
Hopcalite / with coarse powder: Composite metal oxide catalyst (CuMn 2 O 4 ) manufactured by GL Science Co., Ltd., containing coarse powder without sufficient grinding, D99 = 102 μm, D50 = 56 μm
成分(C)
ゼオラムA4 LPH:東ソー(株)製、A型ゼオライト(モレキュラーシーブ4A)、D99=20μm、D50=12μm
STO:堺化学工業(株)製、酸化ストロンチウム、粗粉を分級したもの、D99=18μm、D50=5μm Ingredient (C)
Zeolum A4 LPH: manufactured by Tosoh Corporation, A-type zeolite (molecular sieve 4A), D99 = 20 μm, D50 = 12 μm
STO: manufactured by Sakai Chemical Industry Co., Ltd., strontium oxide, coarse powder classified, D99 = 18 μm, D50 = 5 μm
ゼオラムA4 LPH:東ソー(株)製、A型ゼオライト(モレキュラーシーブ4A)、D99=20μm、D50=12μm
STO:堺化学工業(株)製、酸化ストロンチウム、粗粉を分級したもの、D99=18μm、D50=5μm Ingredient (C)
Zeolum A4 LPH: manufactured by Tosoh Corporation, A-type zeolite (molecular sieve 4A), D99 = 20 μm, D50 = 12 μm
STO: manufactured by Sakai Chemical Industry Co., Ltd., strontium oxide, coarse powder classified, D99 = 18 μm, D50 = 5 μm
その他の成分
LBT-77:堺化学工業(株)製、ポリエチレンワックス Other components LBT-77: Sakai Chemical Industry Co., Ltd., polyethylene wax
LBT-77:堺化学工業(株)製、ポリエチレンワックス Other components LBT-77: Sakai Chemical Industry Co., Ltd., polyethylene wax
なお、上記F-730NVおよびSP4530については、DSC測定を、230℃で5分間保持した後、10℃/分の降温速度で-10℃まで冷却し、-10℃で5分間保持した後、10℃/分の昇温速度で230℃まで加熱するという温度プログラムを使用して行った。
For F-730NV and SP4530, the DSC measurement was held at 230 ° C. for 5 minutes, then cooled to −10 ° C. at a rate of temperature decrease of 10 ° C./min, held at −10 ° C. for 5 minutes, This was performed using a temperature program of heating to 230 ° C. at a rate of temperature increase of ° C./min.
表1から明らかなように、本発明に従う実施例1~4のフィルムは、外観、膜厚安定性および耐熱性に優れる。また、N2-CO混合気体中およびN2-O2-CO混合気体中での24時間後の一酸化炭素濃度は1.1vol%以下であり、二酸化炭素は検出されなかった。これは、本発明のフィルムが、酸素の不存在下でも一酸化炭素を二酸化炭素に良好に酸化して二酸化炭素として吸着できることを示す。
As is apparent from Table 1, the films of Examples 1 to 4 according to the present invention are excellent in appearance, film thickness stability and heat resistance. Further, the carbon monoxide concentration after 24 hours in the N 2 —CO mixed gas and in the N 2 —O 2 —CO mixed gas was 1.1 vol% or less, and carbon dioxide was not detected. This shows that the film of the present invention can oxidize carbon monoxide well to carbon dioxide and adsorb as carbon dioxide even in the absence of oxygen.
一方、成分(B)を含まない比較例1および2では、N2-CO混合気体中およびN2-O2-CO混合気体中での24時間後の一酸化炭素濃度がブランクとほぼ同じであり、これは、一酸化炭素の二酸化炭素への酸化が行われなかったことを示す。成分(C)を含まない比較例3のフィルムは、一酸化炭素を二酸化炭素へ酸化することはできたが、二酸化炭素の吸着はできなかった。
On the other hand, in Comparative Examples 1 and 2 not containing the component (B), the carbon monoxide concentration after 24 hours in the N 2 —CO mixed gas and in the N 2 —O 2 —CO mixed gas was almost the same as that of the blank. Yes, indicating that no oxidation of carbon monoxide to carbon dioxide occurred. The film of Comparative Example 3 containing no component (C) was able to oxidize carbon monoxide to carbon dioxide, but could not adsorb carbon dioxide.
成分(B)を多量に配合した比較例4、成分(C)を多量に配合した比較例5および成分(B)として本発明の粒子径分布を有しないものを使用した比較例6では、製膜性が悪く、フィルムを得ることができなかったので、他の試験を行わなかった。
In Comparative Example 4 containing a large amount of Component (B), Comparative Example 5 containing a large amount of Component (C), and Comparative Example 6 using a component (B) that does not have the particle size distribution of the present invention, Since the film property was poor and a film could not be obtained, other tests were not conducted.
成分(A-1)としてプロピレン系重合体を使用した比較例7のフィルムは、フィラーとしての成分(B)および(C)の分散が不充分で細かいブツが残り、膜厚安定性も悪かった。また、成分(A-1)としてΔHおよびXc110が高過ぎるものを使用した比較例8のフィルムも、フィラーの分散が不充分で細かいブツが残り、膜厚安定性も不十分であった。成分(A-1)としてMFRが高すぎるものを使用した比較例9のフィルムは、フィラーの分散が不充分で細かいブツが残り、膜厚安定性も悪かった。成分(A-1)として、Tmおよび/またはXc110が低過ぎるものを使用した比較例10および11のフィルムは、耐熱性に劣った。
In the film of Comparative Example 7 using the propylene polymer as the component (A-1), the components (B) and (C) as the filler were not sufficiently dispersed, and fine spots remained, and the film thickness stability was poor. . Further, the film of Comparative Example 8 in which ΔH and Xc110 were too high as the component (A-1) also had insufficient filler dispersion, fine residue, and insufficient film thickness stability. The film of Comparative Example 9 using a component (A-1) having an MFR that was too high had insufficient filler dispersion, left fine spots, and had poor film thickness stability. The films of Comparative Examples 10 and 11 in which Tm and / or Xc110 was too low as the component (A-1) were inferior in heat resistance.
成分(A-2)の量が多すぎる比較例12のフィルムは、製膜時の押出負荷が非常に高く、吐出量が不安定になり、膜厚安定性に劣る。成分(A-2)を使用しなかった比較例13のフィルムは、フィラーの分散が不充分で製膜時に目脂が発生し、また、フィルムには細かいブツが残った。膜厚安定性も不十分であった。
The film of Comparative Example 12 in which the amount of component (A-2) is too large has a very high extrusion load at the time of film formation, the discharge amount becomes unstable, and the film thickness stability is poor. In the film of Comparative Example 13 in which the component (A-2) was not used, the filler was not sufficiently dispersed, and grease was generated during film formation, and fine irregularities remained on the film. The film thickness stability was also insufficient.
The film of Comparative Example 12 in which the amount of component (A-2) is too large has a very high extrusion load at the time of film formation, the discharge amount becomes unstable, and the film thickness stability is poor. In the film of Comparative Example 13 in which the component (A-2) was not used, the filler was not sufficiently dispersed, and grease was generated during film formation, and fine irregularities remained on the film. The film thickness stability was also insufficient.
Claims (6)
- (A)エチレン系樹脂組成物 100質量部、
(B)一酸化炭素酸化触媒 1~150質量部、および
(C)二酸化炭素吸着剤 1~200質量部
を含む樹脂組成物からなるフィルムにおいて、成分(A)が
(A-1)下記(i)~(iv)の特性を有するエチレン系重合体 99~60質量%、
(i)DSC融解曲線における最も高い温度側のピークトップ融点(Tm)が110℃以上である、
(ii)DSC融解曲線における融解熱量(ΔH)が90~180J/gである、
(iii)110℃における結晶化分率(Xc110)が10~60%である、および
(iv)MFR(190℃、21.18N)が0.1~10g/10分である、
および
(A-2)酸変性エチレン系樹脂 1~40質量%
を含み、ここで、成分(A-1)と成分(A-2)の量の合計が100質量%であり、成分(B)および(C)が各々、30μm以下の粒子径(D99)および20μm以下の粒子径(D50)を有する、ここで、D99およびD55はそれぞれ、粒子径分布において粒子径の小さい方から累積して99質量%および50質量%になる点における粒子径を言う、ところのフィルム。 (A) 100 parts by mass of an ethylene-based resin composition,
In a film comprising a resin composition comprising (B) 1 to 150 parts by mass of a carbon monoxide oxidation catalyst and (C) 1 to 200 parts by mass of a carbon dioxide adsorbent, the component (A) comprises (A-1) ) To (iv) 99 to 60% by mass of an ethylene polymer having the characteristics
(I) The peak top melting point (Tm) on the highest temperature side in the DSC melting curve is 110 ° C. or higher.
(Ii) The heat of fusion (ΔH) in the DSC melting curve is 90 to 180 J / g.
(Iii) the crystallization fraction at 110 ° C. (Xc110) is 10-60%, and (iv) the MFR (190 ° C., 21.18 N) is 0.1-10 g / 10 min.
And (A-2) acid-modified ethylene resin 1 to 40% by mass
Where the total amount of component (A-1) and component (A-2) is 100% by weight, and components (B) and (C) each have a particle size (D99) of 30 μm or less and Having a particle size (D50) of 20 μm or less, where D99 and D55 refer to the particle size at the point where the particle size distribution becomes 99% by mass and 50% by mass from the smaller particle size, respectively. Film. - 一酸化炭素酸化触媒(B)が、ホプカライトおよび担持貴金属触媒から成る群から選択される1以上である、請求項1記載のフィルム。 The film according to claim 1, wherein the carbon monoxide oxidation catalyst (B) is one or more selected from the group consisting of hopcalite and a supported noble metal catalyst.
- 二酸化炭素吸着剤(C)が、二酸化炭素の吸着に水を必要としないものである、請求項1または2記載のフィルム。 The film according to claim 1 or 2, wherein the carbon dioxide adsorbent (C) does not require water for carbon dioxide adsorption.
- 二酸化炭素吸着剤(C)が、0.4nm以上の細孔径を有するゼオライトおよび酸化ストロンチウムから成る群から選択される1以上である、請求項1~3のいずれか1項に記載のフィルム。 The film according to any one of claims 1 to 3, wherein the carbon dioxide adsorbent (C) is one or more selected from the group consisting of zeolite having a pore diameter of 0.4 nm or more and strontium oxide.
- 請求項1~4のいずれか1項に記載のフィルムを蓄電要素が封入された容器の中に含む非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising the film according to any one of claims 1 to 4 in a container in which a power storage element is enclosed.
- 請求項1~4のいずれか1項に記載のフィルムを蓄電要素が封入された容器の中に含む電気二重層キャパシタ。
An electric double layer capacitor comprising the film according to any one of claims 1 to 4 in a container in which a power storage element is enclosed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010549479A JP6042595B2 (en) | 2009-02-04 | 2010-02-02 | Film capable of oxidizing carbon monoxide and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009023790 | 2009-02-04 | ||
JP2009-023790 | 2009-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010090193A1 true WO2010090193A1 (en) | 2010-08-12 |
Family
ID=42542087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051452 WO2010090193A1 (en) | 2009-02-04 | 2010-02-02 | Film capable of oxidizing carbon monoxide and use thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6042595B2 (en) |
WO (1) | WO2010090193A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107681123A (en) * | 2016-08-01 | 2018-02-09 | 宁德新能源科技有限公司 | Positive electrode and preparation method thereof, anode pole piece and lithium ion battery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121160A (en) * | 1984-07-10 | 1986-01-29 | Karupu Kogyo Kk | Production of composite resin composition |
JPH11124446A (en) * | 1997-10-23 | 1999-05-11 | Okura Ind Co Ltd | Thermoshrinkable film |
JP2003197487A (en) * | 2001-12-28 | 2003-07-11 | Nec Tokin Corp | Electric double-layer capacitor |
WO2005120686A1 (en) * | 2004-06-08 | 2005-12-22 | National Institute Of Advanced Industrial Science And Technology | Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst |
JP2006512186A (en) * | 2002-09-05 | 2006-04-13 | ビーエーエスエフ アクチェンゲゼルシャフト | Adsorption composition for removing carbon monoxide from a material stream and method for removing the same |
JP2006216547A (en) * | 2005-02-02 | 2006-08-17 | Samsung Sdi Co Ltd | All-in-one type hybrid fuel cell system |
WO2007066372A2 (en) * | 2005-12-06 | 2007-06-14 | Saes Getters S.P.A. | Electrolytic capacitors comprising means in the form of a multilayer polymeric sheet for the sorption of harmful substances |
WO2007133903A2 (en) * | 2006-05-08 | 2007-11-22 | 3M Innovative Properties Company | Particle-containing fibrous web |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58198534A (en) * | 1982-04-24 | 1983-11-18 | Toppan Printing Co Ltd | Highly concentrated plastic colorant |
JPS6072977A (en) * | 1983-09-30 | 1985-04-25 | Japan Tobacco Inc | Oxidizing agent for carbon monoxide |
JP4001269B2 (en) * | 2002-02-04 | 2007-10-31 | 株式会社ジェイエスピー | Polyolefin resin foamed particles and foamed moldings thereof |
JP4793005B2 (en) * | 2006-02-09 | 2011-10-12 | 三菱電機株式会社 | Recycled polyolefin resin composition |
-
2010
- 2010-02-02 WO PCT/JP2010/051452 patent/WO2010090193A1/en active Application Filing
- 2010-02-02 JP JP2010549479A patent/JP6042595B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121160A (en) * | 1984-07-10 | 1986-01-29 | Karupu Kogyo Kk | Production of composite resin composition |
JPH11124446A (en) * | 1997-10-23 | 1999-05-11 | Okura Ind Co Ltd | Thermoshrinkable film |
JP2003197487A (en) * | 2001-12-28 | 2003-07-11 | Nec Tokin Corp | Electric double-layer capacitor |
JP2006512186A (en) * | 2002-09-05 | 2006-04-13 | ビーエーエスエフ アクチェンゲゼルシャフト | Adsorption composition for removing carbon monoxide from a material stream and method for removing the same |
WO2005120686A1 (en) * | 2004-06-08 | 2005-12-22 | National Institute Of Advanced Industrial Science And Technology | Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst |
JP2006216547A (en) * | 2005-02-02 | 2006-08-17 | Samsung Sdi Co Ltd | All-in-one type hybrid fuel cell system |
WO2007066372A2 (en) * | 2005-12-06 | 2007-06-14 | Saes Getters S.P.A. | Electrolytic capacitors comprising means in the form of a multilayer polymeric sheet for the sorption of harmful substances |
WO2007133903A2 (en) * | 2006-05-08 | 2007-11-22 | 3M Innovative Properties Company | Particle-containing fibrous web |
Non-Patent Citations (2)
Title |
---|
KAZUO MATSUURA ET AL., POLYETHYLENE GIJUTSU DOKUHON, 1 July 2001 (2001-07-01), pages 163 - 168 * |
KAZUO SOGA: "Shin Sedai Polymer no Sosei to Metallocene Shokubai", KABUSHIKI KAISHA CMC, 20 August 1993 (1993-08-20), pages 25 - 28, 33 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107681123A (en) * | 2016-08-01 | 2018-02-09 | 宁德新能源科技有限公司 | Positive electrode and preparation method thereof, anode pole piece and lithium ion battery |
Also Published As
Publication number | Publication date |
---|---|
JP6042595B2 (en) | 2016-12-14 |
JPWO2010090193A1 (en) | 2012-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5349830B2 (en) | Porous film | |
JP5628215B2 (en) | Composite multilayer film | |
JP6233301B2 (en) | Laminated porous film, separator for electricity storage device, and method for producing laminated porous film | |
WO2010026954A1 (en) | Laminated porous film for separator | |
JP5657396B2 (en) | Molded body made of resin composition | |
JP6082699B2 (en) | Porous film, separator for electricity storage device, and electricity storage device | |
WO2007094247A1 (en) | Oxygen-absorbable resin composition, oxygen-absorbable barrier resin composition, oxygen-absorbable molded article, and packaging material or packaging container comprising the molded article | |
EP3053840A1 (en) | Blow molded container, fuel container, blow molded bottle container, and method for producing blow molded container | |
JP2008163066A (en) | Inner bag for bag-in-box | |
JP2009073010A (en) | Composite multilayer film | |
JP4849685B2 (en) | Composite multilayer film | |
JP4248986B2 (en) | Oxygen-absorbing laminate, package using the same, and content filling method using the same | |
JP5754688B2 (en) | Sealant film, laminate using the sealant film, packaging container using the laminate, and method for producing the sealant film | |
JP4795313B2 (en) | Water-absorbing film | |
JP6042595B2 (en) | Film capable of oxidizing carbon monoxide and use thereof | |
JP4658442B2 (en) | Separator and battery using the same | |
JP2010061974A (en) | Laminated porous film for separator and method for manufacturing the same | |
JP5693474B2 (en) | Porous film capable of oxidizing carbon monoxide and use thereof | |
JP5247232B2 (en) | Multilayer film | |
WO2023022167A1 (en) | Adhesive resin composition and film | |
JP4454276B2 (en) | Resin composition having oxygen-absorbing ability, and laminate and package using the same | |
JP2021054951A (en) | Transparent water-absorbing sealant film | |
JP6221447B2 (en) | Porous film and separator for electricity storage device | |
JP2012229406A (en) | Porous film and electricity storage device | |
JP2014065843A (en) | Mixed resin pellet and non-adsorptive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10738525 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010549479 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10738525 Country of ref document: EP Kind code of ref document: A1 |