WO2010066507A1 - Verfahren zur ferndiagnostischen überwachung und unterstützung von patienten sowie einrichtung und telemedizinisches zentrum - Google Patents

Verfahren zur ferndiagnostischen überwachung und unterstützung von patienten sowie einrichtung und telemedizinisches zentrum Download PDF

Info

Publication number
WO2010066507A1
WO2010066507A1 PCT/EP2009/064353 EP2009064353W WO2010066507A1 WO 2010066507 A1 WO2010066507 A1 WO 2010066507A1 EP 2009064353 W EP2009064353 W EP 2009064353W WO 2010066507 A1 WO2010066507 A1 WO 2010066507A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
vital data
data
evaluation
medical
Prior art date
Application number
PCT/EP2009/064353
Other languages
English (en)
French (fr)
Inventor
Sascha Henke
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CA2743658A priority Critical patent/CA2743658A1/en
Priority to EP09748313A priority patent/EP2375964A1/de
Priority to CN2009801494275A priority patent/CN102245084A/zh
Priority to US13/133,632 priority patent/US20110301429A1/en
Publication of WO2010066507A1 publication Critical patent/WO2010066507A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms

Definitions

  • the vital data of the patients eg. As blood pressure, weight, ECG ... and forwarded to a so-called telemedicine center. This data is evaluated manually or automatically. The patients are looked after by the medical staff inside or outside the telemedicine center.
  • a health monitoring system is known in which health-related data of a patient are collected. Based on this collected data, evaluations are made by a health center as to whether there is a need to change a patient therapy program.
  • a patient-side terminal there consists of a handheld microprocessor with alphanumeric input and a display. About a data management unit monitor systems for
  • Blood sugar can be connected.
  • US Pat. No. 6,224,805 B1 discloses a monitoring system for patients which regularly retrieves health data and also interacts with the patient via an interrogation program.
  • contacts to a medical center can be reduced (gain in efficiency) or additional measurements / information queries can be arranged on site for the patient in order to enable a more appropriate treatment.
  • additional measurements / information queries can be arranged on site for the patient in order to enable a more appropriate treatment.
  • Vital data can only be meaningfully interpreted. For vital data, their absolute value is not decisive. The crucial information is derived from the trend and the context. Since a very high number of patients is older or multimoboid, a user-friendly interaction is clearly a surplus value for the acceptance and ultimately a decisive factor for the medical success of a telemedical application.
  • the patient's vital data is linked to a patient profile and compared with thresholds that have been determined by the physician in order to detect deviations of the patient's condition from the desired target status.
  • the patients can z. These can be divided into three levels (needing interaction, requiring interaction, ie interaction in a given timeframe and requiring strict interaction, ie immediate contact). This triage of patients can be done automatically or manually in a medical center.
  • the medical center initiates further (medical) steps to provide the patient with advice, advice or instructions for medical treatment.
  • a feedback is made to the patient from a telemedical center as to whether the vital data has been successfully transmitted and is valid. This gives patients the security of whether their measured values have been transmitted and are within a tolerable range. They may also be told in the feedback that someone will come to them from the medical center to help them with any necessary help.
  • the medical staff within the medical center receives a kind of presorting of the condition of the patients, which goes beyond the simple exceeding of measured values. Emergencies can be filtered out so quickly. Contingencies and mistreatment are eliminated. It can provide system-based diagnostic and therapy guidance for simple treatment situations by non-medical personnel, such as B. use of a nurse instead of a doctor.
  • the medical center is split into two instances in a suitable manner, with a first instance for routine support of the patient and a second instance for further support with additional infrastructure. This also contributes to the increase in efficiency, but also to a higher availability for the patient.
  • the actual medical service providers get the possibility as "second level" technically very simple - ideally a PC
  • the "First Level” covers all medical and / or technical queries of the patients and is the first communication instance for the doctors / nurses who are in private practice. treat it conventionally.
  • the second level is initialized from the first level if medical or specialist advice is needed. This service does not have to be operated in the same place as e.g.
  • the "second level” ideally consists of a combination of telemedicine center and conventional hospital infrastructure (hospital, doctors).
  • a device For remote diagnostic monitoring and support of a patient, a device is provided with sensors and / or measuring devices for continuous
  • a locating unit for the patient It is advantageous to integrate in the device a locating unit for the patient. This allows a patient to be tracked via RFID, GPS, Galileo, GSM or WLAN signals.
  • Acoustic signal recording in the vicinity of the patient allows additional information to be transmitted to rescue personnel.
  • the signal recording is automatic or can be unlocked by the medical center, can be switched in an emergency in the patient's apartment, this should not be able to reach a phone, etc. due to injury or bed rest.
  • Figure 1 shows the structure of a base station and a medical center
  • Figure 2 shows the process architecture in the base station and in the medical center.
  • the remote diagnostic monitoring and support of the patient according to the invention is shown below using the example of heart failure.
  • CHF Chironic Heart Failure
  • sensors / sensor modules are being used in the direction of reducing and improving the wearing comfort with an increase in measuring accuracy / precision, eg in terms of accuracy.
  • B. in scales sensors for recording previously not taken into account parameters, eg. B. activity of the patient, in particular through the use of microsystems technology and communication skills, z. B. via Bluetooth. Thanks to intelligent signal conditioning and processing, simple rules for medical interpretation of the measurement results are used, eg. B. Pattern recognition for automatic diagnostic support.
  • the process efficiency can be increased as follows:
  • the equipment of the patient-side device consists of Figure 1
  • Sensors and / or measuring devices 1 for receiving different vital parameters a base station 2 for controlling the sensors 1, a signal processing of the recorded sensor / measurement signals and communication with a medical center.
  • various sensors 1 are connected to the base station 2, or integrated into it, in order to record a plurality of measurement parameters, for Temperature, movement, pressure, weight, blood pressure, pulse.
  • the devices and sensors must meet the living conditions and the condition of the patient (waterproof, disinfectable, shock-resistant, durable, inconspicuous against incorrect conditions, etc.). In terms of ergonomics, the devices / sensors are designed in such a way that they can be used by lay people, old people, sick people.
  • the devices and sensors must be small, in many cases as directly as possible to be worn on the skin or under clothing.
  • Two basic model variants are to be distinguished
  • Measuring devices that do not require an additional base station ie transmit their signals directly to a telemedicine center; Measuring devices that communicate with a base station. The base station transmits the measured data to the medical center.
  • Base station or in the medical center. There, the function of the patient terminal is controlled.
  • Intelligent terminal Significant signal processing and evaluation is performed on the patient. Possible feedbacks can be carried out immediately. Only processed data will be passed on to the medical center.
  • Figure 1 shows the second variant, d. H. an intelligent terminal / base station 2. There, the continuously recorded / measured vital data of the
  • Sensors / measuring devices 1 are signal-technically interpreted in an evaluation device 3 and evaluated with respect to their course and the context in which they were recorded / measured.
  • the evaluation is based on a stored in a memory 4 therapy plan, z. B. according to the European Society of Cardiology by CHF.
  • the treatment plan is based on the measured values in a gikbaum automatically gone through.
  • the adaptation of the measured values to the therapy plan takes place either sequentially or in parallel.
  • Discrete values (constants, vectors, tensors) from a precise and reproducible signal evaluation with algorithms can be interpreted and compared in order to obtain a statement about the state or progression of the patient 's state of health
  • the necessary signal evaluations may be, for. Example, a filtering of the raw data via a Fourier transform or a kernel (matrix operations) in signal patterns.
  • the first derivative is currently to be formed by a regression function of temporally successive measured values, which can be obtained via iterations of polynomials.
  • complex signal patterns eg. B. ECG
  • self-learning algorithms can be used, for. B. non-linear mathematical methods.
  • the body weight which was hitherto not very meaningful, is important, since these patients can be determined by certain patterns in the weight change water retention, indicating a worsening of the disease. This requires correspondingly sensitive scales (piezo elements), which should exceed the accuracy of commercially available personal scales by a factor of ten.
  • vitamin data such as blood pressure, pulse activity, weight, ECG, oxygen saturation (SpG ⁇ ) are recorded over the time t, signal interpreted and evaluated, in particular filtered, Fourier transformed, subjected to a trend determination, on the first derivative of the value curve or an analysis of a complex signal pattern is performed and a value assignment of a pattern, e.g. Eg via self-learning iteration steps.
  • the base station 2 contains a unit 6 for preparing a protocol of transmission data on the basis of the weighted vital data for the evaluation in the medical center 11. It also contains a unit 7 for signaling whether further vital data or information inputs are required on the basis of the evaluation and to signal whether the vital signs are valid and successfully transmitted.
  • the signaling unit 6 consists of a display, possibly in conjunction with an acoustic output, possibly vibration alarm. This can also be used for feedback from the medical center 11.
  • an input unit 8 For input of patient-side information, an input unit 8 is provided.
  • the unit 6 for the preparation of transmission data is advantageously also set up to receive information by the medical center 11.
  • the received information is forwarded on the one hand to the memory 4 for the possible updating of the therapy plan and on the other hand to the signaling unit 6 for visual display on a
  • an acoustic recording device 9 is provided, in particular in the event that the patient is not able to actuate the input device 8. Then at least one cry for help and / or breathing sounds can be recorded.
  • the receiving device 9 can also be automatically unlocked from the medical center 11 and also be coupled to a video camera to directly monitor the patient in the absence of inputs or emergencies.
  • the base station 2 advantageously has a locating unit 10, which is also effective within buildings.
  • a locating unit 10 which is also effective within buildings.
  • locating methods eg. GPS, RFID, Galileo, WLAN.
  • the data transmission from a base station 2 to a medical center 11 as well as the feedback from the medical center 11 to the base station 2 can be made via the landline or radio using conventional methods, e.g. B. GSM, GPRS, UMTS, ISDN, DLS, PSDN with the interposition of a telecommunications tion providers 12.
  • Conventional medical service providers such as family doctor 13, emergency services 14, pharmacies 15 can be integrated into the data transfer via the transmission network 16.
  • Such encryption is also suitable for the data transfer between sensors and / or measuring devices 1 to the base station 2.
  • the telemedical center 11 is the central platform for the integration of all technical functions and procedural processes. In detail, this includes:
  • Communication, call and data acceptance, forwarding Control of all communication channels (voice, data, video); Control of automatic data acquisition at the patient; Linking the evaluation of the measured data to a treatment plan;
  • Ensuring the exchange of data with other health care providers eg. As a registered doctor, pharmacist, etc. about an electronic medical record (e-file) or electronic medical records.
  • the process sequence in detail starts according to FIG. 2 with the data acquisition at the patient. Readings communicate the patient's values to the Smart Medical Logic at the medical center, which, if needed, enables the intervention of non-medical medical and medical staff at the medical center. These three Instances communicate with a local technical service or local medical service providers who support / treat the patient.
  • Patients are categorized by the Smart Medical Logic into triage in the "non-interacting", “normal interaction” status within a given timeframe and “immediate interaction necessary” (emergency), which is followed by the operation of an automated control center with telemedicine workstations (PC workstations) possible to optimally utilize the resources of the medical center - extended individualized therapy function:
  • the Smart Medical Logic provides a learning system due to the possibility of directly tracking therapeutic plans in their effect on the patient Adapting therapy measures or developing new forms of therapy in principle (feedback).
  • the base station 2 has a simple structure, the evaluation described above, such as trend analyzes, analysis of complex signal patterns, shifts to the medical center 11.
  • Previous medical centers usually provide only one call center, usually with only general advice Function for the patient. There is no automated integration with current measurement data and analyzes of the health status of the patient.
  • the telemedical center 11 ensures this integration. For this purpose, it integrates the patient via bidirectional contact via status displays, text messages or telephone functions.
  • a telemedical workstation (PC work station) 19 in the medical center 11 uses for patient care the stored data / values in the electronic patient database (electronic patient record 14).
  • the Smart Medical Logic makes a preselection and corresponds to a telemedical workstation 19, e.g. Eg via an https-capable Java frontend.
  • the Smart Medical Logic itself must be written in a non-object-oriented programming language.
  • the data transfer between the PC workstations 19 and the linking device 18 is controlled via an application server 20.
  • the workstation 19 comes into contact with the conventional service providers (hospital, specialist, private practice, emergency medicine and pharmacy) on the medical side.
  • the activities on the patient and current patient data can be viewed by the leading physician (supervising specialist or general practitioner).
  • the insight is active z. For example, e-doctor's letters, e-prescriptions as well as a direct call through the medical center in an emergency. Passively, the doctor can inform himself about secure and authorized access to the electronic patent file (e-file).
  • the transmission protocols with evaluated vital data of the patients received via the telecommunication device 21 are linked in the linking device 18 with the aid of the already stored patient data in the electronic patient database 14 to a patient profile by means of threshold values in order to deviate the patient's condition from a previously determined one based on the stored patient data To recognize the target state and to decide whether the evaluation of an interaction with a patient immediately, in a given time frame or not required.
  • This decision is displayed in the form of a feedback in the base station 2, as well as to the workstations 19 reported to the TM agents and, if necessary, transmitted to the service providers 13, 14 and 15.
  • a translation is also made into a diagnosis and a treatment plan. If necessary, a change in the treatment plan based on the current evaluation in the medical center is made. If the base station is an intelligent terminal, this changed therapy plan is transmitted to the base station 2 and stored in its memory 4 and used for the evaluation by the evaluation device 3.
  • the medical center 11 is divided into different instances.
  • the "first level” service covers all medical and / or technical queries of patients, and is the first point of communication for doctors / nurses, in particular, who treat patients conventionally "initialized if medical or specialist advice is needed, this service does not need to be operated in the same place as the" first level ".
  • the "second level” ideally consists of a combination of a telemedical center and a conventional hospital infrastructure (hospital doctors).
  • FIG. 2 The entire process architecture with data flows is shown in FIG. 2 in an overview.
  • Base station 2 powered by the meters and sensors.
  • the patient provides information about this.
  • the patient file (e-file) is supplied by this data and kept in the medical center 11.
  • This smart medical logic SML is essentially located in the medical center 11, but may also be partially integrated into an intelligent base station 2.
  • Remote medical services and technical support are located at the Medical Center 11. Downstream services such as local technical support, on-site care, medical attention, emergency medical service, are arranged by the medical center according to the decision (medical assistance necessary in the action).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Zur ferndiagnostischen Überwachung und Unterstützung von Patienten werden Vitaldaten kontinuierlich aufgenommen und/oder gemessen. Sie werden signaltechnisch interpretiert und bewertet bezüglich ihres Verlaufs und dem Kontext in dem sie aufgenommen/gemessen wurden. Es wird eine Verknüpfung der Vitaldaten zu einem Patientenprofil vorgenommen und ausgewertet anhand von Schwellwerten, um Abweichungen des Patientenzustandes von einem zuvor festgelegten Zielzustands zu erkennen. Es wird kategorisiert, ob aufgrund der Auswertung eine Interaktion mit dem Patienten sofort, in einem vorgegebenen Zeitrahmen oder nicht erforderlich ist.

Description

Beschreibung
Titel
Verfahren zur ferndiagnostischen Überwachung und Unterstützung von Patienten sowie Einrichtung und telemedizinisches Zentrum
Stand der Technik
Bei herkömmlichen telemedizinischen Systemen werden die Vitaldaten der Patienten, z. B. Blutdruck, Gewicht, EKG... gemessen und an ein sogenanntes tele- medizinisches Zentrum weitergeleitet. Diese Daten werden manuell oder automatisch ausgewertet. Die Patienten werden von dem medizinischen Personal innerhalb oder außerhalb des telemedizinischen Zentrums betreut.
Aus der US 2004/0117207A1 ist ein Gesundheitsmonitoring-System bekannt, bei welchem gesundheitsrelevante Daten eines Patienten gesammelt werden. Aufgrund dieser gesammelten Daten werden von einem Gesundheitszentrum Auswertungen dahingehend vorgenommen, ob die Notwendigkeit zur Änderung eines Patiententherapieprogramms besteht. Ein patientenseitiges Endgerät besteht dort aus einem Handheld-Mikroprozessor mit alphanumerischer Eingabe und ei- nem Display. Über eine Datenmanangement- Einheit sind Monitorsysteme für
Blutzucker anschließbar.
Aus der US 6248065 Bl ist ein Monitoring-System für Patienten bekannt, das Gesundheitsdaten regelmäßig abruft und auch in Interaktion mit dem Patienten- tritt über ein Abfrageprogramm.
Offenbarung der Erfindung
Mit den Maßnahmen des Anspruchs 1, d. h. mit einem kontinuierlichen Aufneh- men und/oder Messen von Vitaldaten eines Patienten, einem signaltechnischen Interpretieren und Bewerten der Vitaldaten bezüglich ihres Verlaufs und dem Kontext, in dem sie aufgenommen/gemessen wurden, einem Verknüpfen der Vitaldaten zu einem Patientenprofil und Auswerten anhand von Schwellwerten, um Abweichungen des Patientenzustandes von einem zuvor festgelegten Zielzu- stand zu erkennen, einem Kategorisieren, ob aufgrund der Auswertung eine Interaktion mit dem Patienten sofort, in einem vorgegebenen Zeitrahmen oder nicht erforderlich ist, können medizinische Entscheidungen automatisiert werden, Therapievorschläge automatisiert und aktuellen Leitlinien entsprechend gestellt werden, aber auch Kreuzreaktionen von Medikationen automatisch abgeprüft wer- den. Dadurch ergibt sich ein Qualitäts- und Effizienzgewinn. Durch ein signaltechnisches Interpretieren und Bewerten der aufgenommenen Vitaldaten, insbesondere anhand eines Therapieplanes, können Kontakte zu einem medizinischen Zentrum reduziert werden (Effizienzgewinn) bzw. beim Patienten vor Ort weitere Messungen/Informationsabfragen veranlasst werden, um eine therapie- plangerechtere Behandlung zu ermöglichen. Über Kontextsensitivität werden die
Vitaldaten erst aussagekräftig interpretierbar. Für Vitaldaten ist nicht deren absoluter Wert entscheidend. Die entscheidenden Informationen werden aus dem Verlauf (Trend) und dem Kontext gewonnen. Da eine sehr hohe Anzahl an Patienten älter oder multimobide ist, ist eine anwendergerechte Interaktion ein deutli- eher Mehrwert für die Akzeptanz und letztlich mitentscheidend für den medizinischen Erfolg einer telemedizinischen Anwendung.
In einem telemedizinischen Zentrum werden die Vitaldaten der Patienten zu einem Patientenprofil verknüpft und anhand von Schwellwerten, welche medizi- nisch festgelegt wurden, gegenübergestellt, um Abweichungen des Patientenzustandes von dem angestrebten Zielzustand zu erkennen. Die Patienten können z. B. in drei Grade eingeteilt werden (interaktionsunbedürftig, interaktionsbedürftig, d. h. Interaktion in einem vorgegebenen Zeitrahmen und streng interaktionsbedürftig, d. h. sofortige Kontaktaufnahme). Diese Triage von Patienten kann au- tomatisch oder manuell in einem medizinischen Zentrum erfolgen. Das medizinische Zentrum veranlasst weitere (medizinische) Schritte, um den Patienten über Hinweise und Ratschläge oder Anweisungen einer medizinischen Behandlung zukommen zu lassen. Gemäß einer Ausgestaltung wird an den Patienten von einem telemedizinischen Zentrum aus eine Rückmeldung vorgenommen, ob die Vitaldaten erfolgreich ü- bermittelt wurden und valide sind. Dadurch erhalten die Patienten die Sicherheit, ob ihre Messwerte übermittelt wurden und sich innerhalb eines tolerierbaren Be- reiches befinden. Außerdem kann ihnen in der Rückmeldung mitgeteilt werden, dass von dem medizinischen Zentrum aus veranlasst jemand auf sie zukommen wird, um ihnen eventuell notwendige Hilfe zu Teil werden zu lassen.
Vorteilhaft ist es, in einem patientenseitigen Endgerät die Vitaldaten entlang ei- nes medizinischen Therapieplanes zu bewerten und aus dieser Bewertung gegebenenfalls weitere Messungen von Vitaldaten oder Informationseingaben seitens des Patienten zu veranlassen oder einzufordern.
Wenn in dem medizinischen Zentrum Entscheidungsprozesse, insbesondere in- dikations- und patientenindividuell automatisiert entlang von Therapieplänen durchgeführt werden, erhält das medizinische Personal innerhalb des medizinischen Zentrums eine Art Vorsortierung des Zustandes der Patienten, welche ü- ber das simple Überschreiten von Messwerten hinausgeht. Notfälle können so schnell ausgefiltert werden. Zufälligkeiten und Fehlbehandlungen werden elimi- niert. Es kann eine System gestützte Diagnose- und Therapieanleitung bei einfachen Behandlungssituationen von nichtärztlichem Personal, z. B. Einsatz von einer Krankenschwester anstelle eines Arztes, veranlasst werden.
Es ist vorteilhaft, wenn das medizinische Zentrum in verschiedene, zweckmäßi- ger Weise zwei Instanzen aufgeteilt wird, wobei eine erste Instanz zur Routineunterstützung des Patienten und eine zweite Instanz für eine weitergehende Unterstützung mit zusätzlicher Infrastruktur vorgesehen ist. Dies trägt ebenfalls zur Effizienzsteigerung bei, aber auch zu einer höheren Verfügbarkeit für den Patienten. Darüber hinaus erhalten die eigentlichen medizinischen Leistungserbringer die Möglichkeit als „Second Level" technisch sehr einfach - idealerweise ein PC-
Arbeitsplatz -, eine telemedizinische Patientendienstleistung zu erbringen.
Der „First Level" bedient alle medizinischen und/oder technischen Anfragen der Patienten. Darüber hinaus ist er die erste Kommunikationsinstanz für die insbe- sondere niedergelassenen Ärzte/Krankenschwestern, welche den Patienten kon- ventionell behandeln. Der „Second Level" ist von dem „First Level" initialisiert, wenn ärztlicher oder fachärztlicher Rat notwendig ist. Dieser Dienst muss nicht am selben Ort betrieben werden, wie z. B. der „First Level". Der „Second Level" besteht idealerweise aus einer Kombination aus telemedizinischem Zentrum und konventioneller Krankenhausinfrastruktur (Krankenhaus, Ärzte).
Zum kontextsensitiven Interpretieren und Bewerten der Vitaldaten werden vorteilhaft gleichzeitige Messungen miteinander korreliert oder aktuelle Messungen mit vorherigen Messungen.
Vorteilhaft ist es, eine adaptive Änderung eines Therapieplanes in Abhängigkeit der durch das telemedizinische Zentrum ausgewerteten Daten vorzunehmen.
Zur ferndiagnostischen Überwachung und Unterstützung eines Patienten ist eine Einrichtung vorgesehen mit Sensoren und/oder Messgeräten zur kontinuierlichen
Aufnahme von Vitaldaten eines Patienten, mit einer Bewertungseinrichtung für die aufgenommenen Vitaldaten bezüglich ihres Verlaufes und dem Kontext, insbesondere entlang eines Therapieplanes, mit einer Einheit zur Aufbereitung eines Protokolls von Übertragungsdaten aufgrund der Vitaldaten für die Auswer- tung in einem medizinischen Zentrum und einer Einheit zur Signalisierung, ob aufgrund der Bewertung weitere Vitaldaten oder Informationseingaben des Patienten erforderlich sind, und zur Signalisierung, ob die Vitaldaten valide sind und erfolgreich übermittelt wurden.
Es ist vorteilhaft, in der Einrichtung eine Ortungseinheit für den Patienten zu integrieren. Damit kann ein Patient über RFID-, GPS-, Galileo-, GSM- oder WLAN- Signale getrackt werden.
Durch eine akustische Signalaufnahme im Umfeld des Patienten können an Ret- tungspersonal zusätzliche Informationen übermittelt werden. Insbesondere wenn die Signalaufnahme automatisch ist oder von der medizinischen Zentrale freigeschaltet werden kann, kann im Notfall in die Wohnung des Patienten hineingeschaltet werden, sollte dieser ein Telefon etc. wegen Verletzungen oder Bettlägerigkeit nicht erreichen können. Zeichnungen
Beschreibung der Zeichnungen
Anhand der Zeichnungen werden Ausführungsformen der Erfindung näher erläutert.
Es zeigen
Figur 1 die Struktur einer Basisstation und eines medizinischen Zentrums, Figur 2 die Prozessarchitektur in der Basisstation und im medizinischen Zentrum.
Ausführungsformen der Erfindung
Die ferndiagnostische Überwachung und Unterstützung des Patienten gemäß der Erfindung wird nachfolgend am Beispiel der Herzinsuffizienz aufgezeigt. Unter
Einsatz von Telemedizin können bei CHF (Chronic Heart Failure) erhebliche Nutzen für die Patienten sowie die behandelnden Leistungserbringer, z. Arzt, Krankenhaus, entstehen. Diese sind beim Patienten:
- zeitliche Unabhängigkeit, z. B. keine Wartezeiten, durch kontinuierliche Überwachung; hoher Mobilitätsgewinn durch Substitution der Kontrollbesuche beim Arzt durch telemedizinische Überwachung des Patienten zu Hause (automatische Aufnahme der Vitalparameter und Übertragung an den Arzt); höhere Versorgungssicherheit durch die kontinuierliche Überwachung der Vitalparameter (bedrohliche Veränderungen des Gesundheitszustands können frühzeitig erkannt und therapiert werden). Der Patient erfährt ein verbessertes Lebensgefühl; - Verlängerung der Lebenszeit, da kritische Gesundheitszustände, die in der Regel unmittelbar zum Tod führen, vor allem Herz- Kreislauf, Lunge und Niere, vermieden werden; optimierte Wirksamkeit der Medikation durch fortwährende Kontrolle und gegebenenfalls sofortige Anpassung; - Reduktion der Wartezeit bis zur Betreuung durch einen Facharzt. Die genannten Effekte entstehen durch Prozessanpassungen und eine veränderte Betreuungsstruktur für den Patienten. Die wesentlichen Neuerungen sind:
- der Patient wird zu Hause überwacht, die Häufigkeit der Kontrollgänge zum Arzt wird stark reduziert, Zeiträume der manuellen Prozessschritte werden automatisiert; die Diagnose des Arztes beruht nicht mehr ausschließlich auf einer punktuellen Beobachtung (im Augenblick des Arztbesuchs), sondern kann aufgrund der kontinuierlichen Erhebung/Auswertung der Vitaldaten sicherer getroffen werden; die Anwendung und Einhaltung von Therapieplänen nach neustem wissenschaftlichen Stand kann zentral durch Fachspezialisten überwacht und gesteuert werden; - Zufälligkeiten und Fehlbehandlungen durch den Hausarzt werden e- liminiert (heute werden nur ca. 40% der CHF-Patienten leitlinienkonform behandelt); ein Teil der ärztlichen Kompetenz, z. B. Kontrollauswertung eines EKGs, kann durch intelligente Systeme (Mustererkennung individuel- ler Patientendaten, Mustererkennung über alle Patientendaten) substituiert werden. Dies erlaubt den Einsatz von nichtärztlichem Personal in der Patientenbetreuung.
Die Veränderungen der Prozesse und Strukturen sind nur unter Einsatz neuer Technologien, sowohl auf der Patienten- als auch auf der Arztseite (alle Leistungserbringer) zu realisieren.
Patientenseitig ist der Einsatz leistungsfähiger Messgeräte zur Aufnahme von Vitalparametern notwendig. Um die gesteigerte Anforderung an Ergono- mie/Bedienbarkeit zu erfüllen, werden Sensoren/Sensormodule in Richtung Verkleinerung und Verbesserung des Tragekomforts eingesetzt mit Erhöhung der Messgenauigkeh/Präzision, z. B. bei Waagen, Sensoren zur Aufnahme bisher nicht berücksichtigter Parameter, z. B. Aktivität des Patienten, insbesondere durch den Einsatz von Mikrosystemtechnik sowie Kommunikationsfähigkeit, z. B. über Bluetooth. Durch eine intelligente Signalaufbereitung und Verarbeitung kön- nen einfache Regeln zur medizinischen Interpretation der Messergebnisse angewendet werden, z. B. Mustererkennung zur automatischen Diagnoseunterstützung.
In einem medizinischen Zentrum kann die Prozesseffizienz folgendermaßen gesteigert werden:
automatische Aufnahme, Verarbeitung und Weiterleitung der Patientendaten (Fernüberwachung und Datenspeicherung); - systemgestützte Diagnose und Therapieanleitung bei einfachen Behandlungssituationen (Smart Medical Logic) von nichtärztlichem Personal bzw. Einsatz einer Krankenschwester anstelle eines Arztes; Zentralisierung und Bündelung von Aktivitäten/Prozessen in einer Leitstelle und einem medizinischen Callcenter.
Bei einer Gesamtintegration im Sinne einer Plattform wird folgendes erreicht:
die Integration aller Systeme, Prozessschritte und Beteiligten auf ei- nem einheitlichen skallierbaren System; die Smart Medical Logic, die die Verknüpfung der Messwerte mit Behandlungsleitlinien dynamisch (mit Feedback-Schleife) koppelt; die Offenheit und Mobilisierbarkeit auf der Endgeräteseite.
Die Ausstattung der patientenseitigen Einrichtung besteht gemäß Figur 1 aus
Sensoren und/oder Messgeräten 1 zur Aufnahme unterschiedlicher Vitalparameter, einer Basisstation 2 zur Steuerung der Sensoren 1, einer Signalverarbeitung der aufgenommenen Sensor-/Messsignale und Kommunikation mit einem medizinischen Zentrum. Wie Figur 1 zeigt, sind verschiedene Sensoren 1 an die Ba- sisstation 2 angeschlossen, bzw. in diese integriert, um mehrere Messparameter aufzunehmen, z. B. Temperatur, Bewegung, Druck, Gewicht, Blutdruck, Puls. Die Geräte und Sensoren müssen den Lebensbedingungen und dem Zustand des Patienten gerecht werden (wasserfest, desinfizierbar, stosssicher, langlebig, unauffällig gegen Fehlbedingungen etc.). Die Geräte/Sensoren sind von der Ergo- nomie her derart ausgebildet, dass sie durch Laien, alte Menschen, kranke Men- schen (körperlich geschwächt, nicht beweglich, sehbehindert etc.) und insbesondere von Patienten, die eine geringe Compliance (Therapieakzeptanz und Pati- entenmitarbeit) aufweisen, bedieni/benutzt werden können. Die Geräte müssen sich bewusst ausschalten lassen, z. B. beim Baden, eine automati- sehe/halbautomatische Inbetriebnahme aufweisen, um Fehlalarme oder Nicht¬
Überwachung zu vermeiden. Die Geräte und Sensoren müssen klein, in vielen Fällen möglichst direkt auf der Haut bzw. unter der Kleidung tragbar sein. Eine möglich lange Standzeit der Batterie oder der Akkus, eventuell alternative Energieversorgung, z. B. aus Bewegung der Patienten oder seiner Körperwärme, sind vorteilhaft. Zwei grundsätzliche Modellvarianten sind zu unterscheiden,
Messgeräte, die keine zusätzliche Basisstation benötigen, also ihre Signale unmittelbar an ein telemedizinisches Zentrum übertragen; Messgeräte, die mit einer Basisstation kommunizieren. Die Basissta- tion überträgt die Messdaten an das medizinische Zentrum.
Beide Arten lassen sich auch hinsichtlich des Ortes der Signalverarbeitung, der -auswertung und Rückkopplung auf das Messverfahren unterscheiden:
Dummes Endgerät: Die Intelligenz des Mess- und Regelkreises sitzt in einer
Basisstation oder im medizinischen Zentrum. Dort wird die Funktion des Patien- tenendgerätes gesteuert.
Intelligentes Endgerät: Wesentliche Signalverarbeitung und Auswertung wird beim Patienten ausgeführt. Eventuelle Rückkopplungen können unmittelbar ausgeführt werden. Nur verarbeitete Daten werden an das medizinische Zentrum weitergegeben.
Figur 1 zeigt die zweite Variante, d. h. ein intelligentes Endgeräi/Basisstation 2. Dort werden die kontinuierlich aufgenommenen/gemessenen Vitaldaten der
Sensoren/Messgeräte 1 in einer Bewertungseinrichtung 3 signaltechnisch interpretiert und bewertet bezüglich ihres Verlaufs und dem Kontext, in dem sie aufgenommen/gemessen wurden. Die Bewertung erfolgt anhand eines in einem Speicher 4 abgelegten Therapieplanes, z. B. gemäß der European Society of Cardiology by CHF. Der Therapieplan wird anhand der Messwerte in einem Lo- gikbaum automatisch durchgegangen. Die Adaption der Messwerte an den Therapieplan erfolgt entweder sequentiell oder parallel. Es können diskrete Werte (Konstanten, Vektoren, Tensoren) aus einer präzisen und reproduzierbaren Signalauswertung mit Algorithmen interpretiert und verglichen werden, um eine Aussage über den Zustand bzw. Verlauf des Gesundheitszustandes des
Patienten zu erhalten. Die notwendigen Signalauswertungen können sein, z. B. eine Filterung der Rohdaten über eine Fouriertransformation oder einen Kernel (Matrixoperationen) bei Signalmustern. Für Trendanalysen ist von einer Regressionsfunktion von zeitlich aufeinanderfolgenden Messwerten, welche über I- terationen von Polynomen erhalten werden kann, die erste Ableitung zur Zeit zu bilden. Für die Analyse von komplexen Signalmustern, z. B. EKG, können selbstlernende Algorithmen eingesetzt werden, z. B. nichtlineare mathematische Verfahren. Speziell bei Herzinsuffizienz ist das Körpergewicht, welches bislang wenig aussagefähig war, wichtig, da bei diesen Patienten anhand be- stimmter Muster in der Gewichtsveränderung Wassereinlagerungen, welche eine Verschlechterung des Krankheitsbildes anzeigen, festgestellt werden können. Dazu bedarf es entsprechend sensibler Waagen (Piezoelemente), die die Genauigkeit handelsüblicher Personenwaagen um den Faktor 10 überschreiten sollten.
In Tabelle 1 ist die telemedizinische Signalverarbeitung nach der Erfindung im Einzelnen dargestellt. Die medizinischen Parameter (Vitaldaten) wie Blutdruck, Pulsaktivität, Gewicht, EKG, Sauerstoffsättigung (SpG^) werden über der Zeit t erfasst, signaltechnisch interpretiert und bewertet, insbesondere gefiltert, fou- riertransformiert, einer Trendbestimmung unterworfen, über die erste Ableitung des Werteverlaufs oder es wird eine Analyse eines komplexen Signalmusters durchgeführt und eine Wertezuweisung eines Musters, z. B. über selbstlernende Iterationsschritte.
Aus der Bewertung entlang eines Therapieplanes werden gegebenenfalls weitere Messungen von Vitaldaten oder Informationseingaben seitens des Patienten veranlasst oder eingefordert. Die in Tabelle 1 aufgeführte logische Entscheidung wird im medizinischen Zentrum getroffen und im Zusammenhang mit der Beschreibung des medizinischen Zentrums erläutert. Die Basisstation 2 gemäß Figur 1 enthält eine Einheit 6 zur Aufbereitung eines Protokolls von Übertragungsdaten aufgrund der bewerteten Vitaldaten für die Auswertung in dem medizinischen Zentrum 11. Außerdem enthält sie eine Einheit 7 zur Signalisierung, ob aufgrund der Bewertung weitere Vitaldaten oder In- formationseingaben erforderlich sind und zur Signalisierung, ob die Vitaldaten valide sind und erfolgreich übermittelt wurden. Im einfachsten Falle besteht die Signalisierungseinheit 6 aus einem Display, gegebenenfalls in Verbindung mit einer akustischen Ausgabe, eventuell Vibrationsalarm. Diese kann auch für Rückmeldungen von der medizinischen Zentrale 11 genutzt werden. Für die Eingabe von patientenseitigen Informationen ist eine Eingabeeinheit 8 vorgesehen. Die Einheit 6 für die Aufbereitung von Übertragungsdaten ist vorteilhafter Weise auch zum Empfang von Informationen durch die medizinische Zentrale 11 eingerichtet. Die empfangenen Informationen werden einerseits an den Speicher 4 weitergeleitet zur etwaigen Aktualisierung des Therapieplanes und andererseits zur Signalisierungseinheit 6 zur optischen Darstellung auf einem
Display und/oder akustischen Ausgabe. Entsprechende Informationen können auch unter Umgehung des Speichers 4 direkt in die Bewertungseinrichtung 3 eingegeben werden. Alternativ oder zusätzlich zur Eingabeeinrichtung 8 ist eine akustische Aufnahmeeinrichtung 9 vorgesehen, insbesondere für den Fall, dass der Patient nicht in der Lage ist, die Eingabeeinrichtung 8 zu betätigen. Dann kann zumindest ein Hilferuf und/oder Atemgeräusche aufgenommen werden. Die Aufnahmeeinrichtung 9 kann auch vom medizinischen Zentrum 11 aus automatisch freigeschaltet werden und auch mit einer Videokamera gekoppelt sein, um den Patienten beim Ausbleiben von Eingaben oder Notfällen direkt zu überwachen.
Die Basisstation 2 verfügt vorteilhaft über eine Ortungseinheit 10, die auch innerhalb von Gebäuden wirksam ist. Dafür bieten sich insbesondere Kombinationen von verschiedenen Ortungsverfahren, z. B. GPS, RFID, Galileo, WLAN an.
Die Datenübertragung von einer Basisstation 2 zu einem medizinischen Zentrum 11 wie auch die Rückmeldung vom medizinischen Zentrum 11 zur Basisstation 2 kann über das Festnetz oder Funk mit üblichen Verfahren, z. B. GSM, GPRS, UMTS, ISDN, DLS, PSDN unter Zwischenschaltung eines Telekommu- nikationsproviders 12 erfolgen. Herkömmliche medizinische Dienstleister wie Hausarzt 13, Notdienste 14, Apotheken 15 können über das Übertragungsnetz 16 in den Datentransfer eingebunden werden.
Da es sich um vertrauliche Daten handelt, ist es vorteilhaft, die Datenübertragung zwischen Basisstation und medizinischer Zentrale 11 zu verschlüsseln. Eine solche Verschlüsselung bietet sich auch für den Datentransfer zwischen Sensoren und/oder Messgeräten 1 zur Basisstation 2 an.
Das telemedizinische Zentrum 11 stellt die zentrale Plattform zur Integration aller technischen Funktionen und prozessualen Abläufen dar. Im Einzelnen gehört dazu:
Infrastruktur zur Datenaufnahme, Datenauswertung, Datenspeiche- rung;
Kommunikation, Gesprächs- und Datenannahme, Weiterleitung; Steuerung aller Kommunikationskanäle (Sprache, Daten, Video); Steuerung der automatischen Messwertaufnahme beim Patienten; Verknüpfung der Auswertung der Messdaten zu einem Behand- lungsplan;
Bereitstellen der medizinischen Anwendungssoftware mit Patientendaten und Therapievorschlägen für einen medizinisch geschulten Patientenbetreuer; dynamische Optimierung der Diagnose- und Therapiepläne mit Hilfe der Verfolgung der Therapieergebnisse;
Sicherstellung des Datentausches mit anderen Leistungserbringern im Gesundheitssystem, z. B. niedergelassener Arzt, Apotheker etc. etwa über eine elektronische Patientenakte (e-Akte) oder elektronische Arztbriefe.
Der Prozessablauf im Einzelnen startet gemäß Figur 2 mit der Datenerfassung am Patienten. Eine Messwerteerfassung kommuniziert die Werte des Patienten an die Smart Medical Logic im medizinischen Zentrum, auf deren Basis bei Bedarf die Einschaltung von technischem nicht ärztlichem medizinischem und ärztlich medizinischem Personal des medizinischen Zentrums erfolgt. Diese drei Instanzen kommunizieren mit einem technischen Service vor Ort bzw. mit lokalen medizinischen Dienstleistern, welche den Patienten unterstützen/behandeln.
Die wesentliche Innovation im medizinischen Therapieprozess bei Unterstüt- zung durch ein medizinisches Zentrum ist die Smart Medical Logic SML. Diese liefert:
neue Diagnoseverfahren auf Basis der kontinuierlichen Messung verschiedener Vitalparameter und deren zeitlicher Korrelationsmus- ter; verbesserte Einhaltung von Therapieplänen. Die intelligente Verknüpfung von Messdaten mit einem Behandlungsplan im Sinne eines Entscheidungsbaum kann automatisiert und bei der medizinischen Betreuung unterstützend eingesetzt werden, d. h. der teleme- dizinischen Pflegekraft wird automatisch eine bestimmte Therapieanweisung vorgeschlagen, die aufgrund der Patientenhistorie und der aktuellen Messdaten im Rahmen definierter Behandlungspläne notwendig ist. Die Patienten werden von der Smart Medical Logic in eine Triage in den Status „nicht interaktionspflichtig", „normalinterak- tionspflichtig" in einem vorgegebenen Zeitrahmen und „sofortige Interaktion notwendig" (Notfall) kategorisiert. Darauf aufbanden ist der Betrieb einer automatisierten Leitstelle mit telemedizinischen Arbeitsplätzen (PC-Arbeitsplätze) möglich, um die Ressourcen des medizinischen Zentrums optimal einzusetzen; - erweiterte individualisierte Therapiefunktion: Aufgrund der Möglichkeit, Therapiepläne unmittelbar in ihrer Wirkung beim Patienten zu verfolgen, stellt die Smart Medical Logic ein lernendes System zur Verfügung. Damit lassen sich individuell Therapiemaßnahmen adaptieren bzw. neue Therapieformen grundsätzlich entwickeln (Rück- kopplung).
Wenn die Basisstation 2 einfach aufgebaut ist, verlagert sich die zuvor beschriebene Auswertung wie Trendanalysen, Analyse von komplexen Signalmustern auf das medizinische Zentrum 11. Bisherige medizinische Zentren stel- len meist nur ein Call-Center zur Verfügung mit meist nur allgemein beratender Funktion für den Patienten. Eine automatisierte Integration mit aktuellen Messdaten und Analysen zum Gesundheitszustand des Patienten findet nicht statt. Das erfindungsgemäße telemedizinische Zentrum 11 stellt diese Integration sicher. Dazu bindet es den Patienten über bidirektionalen Kontakt mittels Status- anzeigen, Textnachrichten oder Telefonfunktionen ein.
Ein telemedizinischer Arbeitsplatz (PC-Arbeitsplatz) 19 im medizinischen Zentrum 11 bedient sich zur Patientenbetreuung der gespeicherten Daten/Werte in der elektronischen Patientendatenbank (elektronische Patientenakte 14). Die Smart Medical Logic trifft mittels der Verknüpfungseinrichtung 18 eine Vorauswahl und korrespondiert mit einem telemedizinischen Arbeitsplatz 19, z. B. über ein https-fähiges Java-Frontend. Die Smart Medical Logic selbst muss aus Performancegründen in einer nicht-objektorientierten Programmiersprache verfasst sein. Gesteuert wird der Datentransfer zwischen den PC-Arbeitsplätzen 19 und der Verknüpfungseinrichtung 18 über einen Applikationsserver 20. Der Arbeitsplatz 19 tritt auf medizinischer Seite mit den konventionellen Leistungserbringern (Krankenhaus, Facharzt, niedergelassener Arzt, Notfallmedizin und Apotheke) in Kontakt. Die Aktivitäten am Patienten und aktuelle Patientendaten können vom führenden Arzt (betreuender Facharzt oder Hausarzt) eingesehen werden. Die Einsicht erfolgt aktiv z. B. über e- Arztbriefe, e- Rezepte sowie auch über einen direkten Anruf durch das medizinische Zentrum etwa im Notfall. Passiv kann sich der Arzt selbst über einen gesicherten und autorisierten Zugriff auf die elektronische Patentenakte (e-Akte) informieren.
Die über die Telekommunikationseinrichtung 21 empfangenen Übertragungsprotokolle mit bewerteten Vitaldaten der Patienten werden in der Verknüpfungseinrichtung 18 unter Zuhilfenahme der bereits gespeicherten Patientendaten in der elektronischen Patientendatenbank 14 zu einem Patientenprofil anhand von Schwellwerten verknüpft, um Abweichungen des Patientenzustandes von einem aufgrund der gespeicherten Patientendaten von einem zuvor festgelegten Zielzustand zu erkennen und zu entscheiden, ob aufgrund der Auswertung eine Interaktion mit einem Patienten sofort, in einem vorgegebenen Zeitrahmen oder nicht erforderlich ist. Diese Entscheidung wird in Form einer Rückmeldung in der Basisstation 2 angezeigt, wie auch an die Arbeitsplätze 19 für die TM-Agents gemeldet sowie gegebenenfalls an die Dienstleiter 13, 14 und 15 übertragen.
Aufgrund der Analyse der Vitaldaten wird auch eine Übersetzung in eine Diag- nose und einen Therapieplan vorgenommen. Falls notwendig wird eine Änderung des Therapieplanes aufgrund der aktuellen Auswertung im medizinischen Zentrum vorgenommen. Falls die Basisstation ein intelligentes Endgerät ist, wird dieser geänderte Therapieplan zur Basisstation 2 übertragen und in deren Speicher 4 abgelegt und für die Bewertung durch die Bewertungseinrichtung 3 herangezogen.
Das medizinische Zentrum 11 wird in verschiedene Instanzen aufgeteilt. Der „first level" bedient alle medizinischen und/oder technischen Anfragen der Patienten. Darüber hinaus ist er die erste Kommunikationsinstanz für die insbeson- dere niedergelassenen Ärzte/Krankenschwestern, welche den Patienten konventionell behandelt. Der „second level" wird von dem „first level" initialisiert, wenn ärztlicher oder fachärztlicher Rat notwendig ist. Dieser Dienst muss nicht am selben Ort betrieben werden, wie der „first level". Der „second level" besteht idealerweise aus einer Kombination aus telemedizinischem Zentrum und kon- ventioneller Krankenhausinfrastruktur (Krankenhausärzte).
Die gesamte Prozessarchitektur mit Datenflüssen zeigt Figur 2 in einer Übersicht.
Die Messwertspeicherung und die Bildung von Messwerttrends erfolgt in der
Basisstation 2 gespeist von den Messgeräten und Sensoren. Der Patient liefert Informationen dazu. Die Patientenakte (e-Akte) wird von diesen Daten versorgt und im medizinischen Zentrum 11 geführt. Dies Smart-Medical-Logic SML ist im Wesentlichen im medizinischen Zentrum 11 angesiedelt, kann aber auch teil- weise in eine intelligente Basisstation 2 integriert sein. Die medizinischen Remote-Dienstleistungen und der technische Support sind im medizinischen Zentrum 11 angesiedelt. Nachgelagerte Dienstleistungen wie technischer Support lokal, Pflege vor Ort, ärztliche Bereitschaft, Notarzt, werden vom medizinischen Zentrum je nach Entscheidung (in der Aktion notwendig, medizinische Hilfe notwendig) veranlasst.
Figure imgf000017_0001

Claims

Ansprüche
1. Verfahren zur ferndiagnostischen Überwachung und Unterstützung von Patienten mit folgenden Schritten:
kontinuierliches Aufnehmen und/oder Messen von Vitaldaten eines Patienten, signaltechnisches Interpretieren und Bewerten den Vitaldaten bezüglich ihres Verlaufs und dem Kontext in dem sie aufgenommen/gemessen wurden, verknüpfen der Vitaldaten zu einem Patientenprofil und Auswerten anhand von Schwellwerten, um Abweichungen des Patientenzu- standes von einem zuvor festgelegten Zielzustand zu erkennen, kategorisieren, ob aufgrund der Auswertung eine Interaktion mit dem Patienten sofort, in einem vorgegebenen Zeitrahmen oder nicht erforderlich ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass an den Patienten von einem medizinischen Zentrum (11) aus eine Rückmeldung vorgenommen wird, ob die Vitaldaten erfolgreich übermittelt wurden und valide sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in einem patientenseitigen Endgerät (2) die Vitaldaten entlang eines medizinischen Therapieplanes bewertet werden und aus dieser Bewertung gegebenenfalls weitere Messungen von Vitaldaten oder Informationseingaben seitens des Patienten veranlasst oder eingefordert werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in einem/dem medizinischen Zentrum (11) Entscheidungsprozess insbesondere indikations- und patientenindividuell automatisiert entlang von Therapieplänen durchgeführt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dass ein/das medizinische Zentrum (11) in verschiedene Instanzen aufgeteilt wird, wobei eine erste Instanz zur Routineunterstützung des Patienten vorgesehen ist und eine zweite Instanz für eine weitergehende Unterstützung mit zusätzlicher Infrastruktur.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zum kontextsensitiven Interpretieren und Bewerten der Vitaldaten gleichzeitige oder sequentielle Messungen im Sinne einer gegenseitigen Korrelation durchgeführt werden.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass eine adaptive Änderung eines Therapieplanes in Abhängigkeit der durch das telemedizinische Zentrum (11) ausgewertete Daten vorgenommen wird.
8. Einrichtung zur ferdiagnostischen Überwachung und Unterstützung eines Patienten mit folgenden Merkmalen:
Sensoren und/oder Messgeräten (1) zur kontinuierlichen Aufnahme von Vitaldaten eines Patienten, einer Bewertungseinrichtung (2) für die aufgenommenen Vitaldaten bezüglich ihres Verlaufes und dem Kontext insbesondere entlang eines Therapieplanes, einer Einheit (6) zur Aufbereitung eines Protokolls von Übertragungsdaten aufgrund der Vitaldaten für die Auswertung in einem medizinischen Zentrum (11), einer Einheit (7) zur Signalisierung, ob aufgrund der Bewertung weitere Vitaldaten oder Informationseingaben des Patienten erforderlich sind, und zur Signalisierung, ob die Vitaldaten valide sind und erfolgreich übermittelt wurden.
9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, dass eine Ortungseinheit (10) in der Einrichtung (2) für den Patienten integriert ist.
10. Einrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Einrichtung (2) ausgebildet ist, akustische Signale aus dem Umfeld des Patienten aufzunehmen (9) und an ein medizinisches Zentrum (11) zu übermitteln.
11. Medizinisches Zentrum zur ferndiagnostischen Überwachung und Unterstützung von Patienten mit folgenden Merkmalen:
einer Telekommunikationseinrichtung (21) zum Empfangen und Auswerten von Übertragungsprotokollen für Vitaldaten von Patienten sowie zur Rückmeldung von Nachrichten an Patienten, einer Verknüpfungseinrichtung (18) zur Verknüpfung der empfangenen Vitaldaten eines Patienten zu einem Patientenprofil und Auswerten anhand von Schwellwerten, um Abweichungen des Patientenzu- standes von einem zuvor festgelegten Zielzustand zu erkennen, und zur Entscheidung, ob aufgrund der Auswertung eine Interaktion mit einem Patienten sofort, in einem vorgegebenen Zeitrahmen oder nicht erforderlich ist.
PCT/EP2009/064353 2008-12-10 2009-10-30 Verfahren zur ferndiagnostischen überwachung und unterstützung von patienten sowie einrichtung und telemedizinisches zentrum WO2010066507A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2743658A CA2743658A1 (en) 2008-12-10 2009-10-30 Method for remote diagnostic monitoring and support of patients and device and telemedical center
EP09748313A EP2375964A1 (de) 2008-12-10 2009-10-30 Verfahren zur ferndiagnostischen überwachung und unterstützung von patienten sowie einrichtung und telemedizinisches zentrum
CN2009801494275A CN102245084A (zh) 2008-12-10 2009-10-30 用于对患者远距诊断的监视和支持的方法以及设备和远程医疗中心
US13/133,632 US20110301429A1 (en) 2008-12-10 2009-10-30 Method for remote diagnostic monitoring and support of patients and device and telemedical center

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054442A DE102008054442A1 (de) 2008-12-10 2008-12-10 Verfahren zur ferndiagnostischen Überwachung und Unterstützung von Patienten sowie Einrichtung und telemedizinisches Zentrum
DE102008054442.6 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010066507A1 true WO2010066507A1 (de) 2010-06-17

Family

ID=41396031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/064353 WO2010066507A1 (de) 2008-12-10 2009-10-30 Verfahren zur ferndiagnostischen überwachung und unterstützung von patienten sowie einrichtung und telemedizinisches zentrum

Country Status (6)

Country Link
US (1) US20110301429A1 (de)
EP (1) EP2375964A1 (de)
CN (1) CN102245084A (de)
CA (1) CA2743658A1 (de)
DE (1) DE102008054442A1 (de)
WO (1) WO2010066507A1 (de)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2438848A3 (de) * 2010-10-08 2012-05-30 Cardiac Science Corporation Computerumgesetztes Verfahren zur Telediagnostik der ambulanten Elektrokardiografie-Überwachung
WO2013029617A1 (en) * 2011-08-26 2013-03-07 Aalborg Universitet Prediction of exacerbations for copd patients
ITTO20111049A1 (it) * 2011-11-14 2013-05-15 Indesit Co Spa Sistema elettrodomestico svolgente funzioni di tele-medicina e/o tele-assistenza, e relativo metodo
ITTO20111052A1 (it) * 2011-11-14 2013-05-15 Elite Societa Di Elettronica Per L Innovazione Dispositivo di monitoraggio di un sistema di tele-medicina e/o tele-assistenza e relativi uso e metodo
US8613708B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor with jumpered sensing electrode
US8613709B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor for providing ease of use in women
US8626277B2 (en) 2010-10-08 2014-01-07 Cardiac Science Corporation Computer-implemented electrocardiographic data processor with time stamp correlation
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
USD831833S1 (en) 2013-11-07 2018-10-23 Bardy Diagnostics, Inc. Extended wear electrode patch
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
USD892340S1 (en) 2013-11-07 2020-08-04 Bardy Diagnostics, Inc. Extended wear electrode patch
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021805A1 (de) 2012-11-08 2014-05-08 Fresenius Medical Care Deutschland Gmbh Vorrichtung und Verfahren zur Überwachung der Behandlung eines Patienten
CN103829932B (zh) * 2012-11-26 2016-03-23 中国计量学院 养老院健康管理平台
CN103473727A (zh) * 2013-07-31 2013-12-25 上海华美络信息技术有限公司 一种健康信息管理装置、系统和健康信息管理方法
EP3084655A1 (de) * 2013-12-20 2016-10-26 Koninklijke Philips N.V. Planungsvorrichtung zur planung der patientenüberwachung mit patientenzugänglichen vorrichtungen
US10779733B2 (en) 2015-10-16 2020-09-22 At&T Intellectual Property I, L.P. Telemedicine application of video analysis and motion augmentation
JP7028787B2 (ja) * 2016-03-22 2022-03-02 コーニンクレッカ フィリップス エヌ ヴェ 視覚的コンテキストを用いる、生理学的パラメータの測定の適時トリガ
US9773501B1 (en) 2017-01-06 2017-09-26 Sorenson Ip Holdings, Llc Transcription of communication sessions
US9787941B1 (en) 2017-01-06 2017-10-10 Sorenson Ip Holdings, Llc Device to device communication
US9787842B1 (en) 2017-01-06 2017-10-10 Sorenson Ip Holdings, Llc Establishment of communication between devices
US9974111B1 (en) 2017-01-06 2018-05-15 Sorenson Ip Holdings, Llc Establishment of communication between devices
RU2683898C1 (ru) * 2018-03-26 2019-04-02 Общество С Ограниченной Ответственностью "Биософт-М" Мобильный комплекс многоканальной диагностики и мониторинга для дистанционных исследований пациентов в режиме реального времени
DE102019006556A1 (de) * 2019-09-18 2021-03-18 Horst Fischer Vorrichtung zum Aufnehmen und/oder Übermitteln, Verwendung und Verfahren

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079466A2 (en) * 1999-06-23 2000-12-28 Visicu, Inc. Telemedical expert service provision for intensive care units
US6248065B1 (en) 1997-04-30 2001-06-19 Health Hero Network, Inc. Monitoring system for remotely querying individuals
EP1260173A2 (de) * 2001-05-23 2002-11-27 Siemens Aktiengesellschaft Medizinisches System zur Überwachung von Parametern eines Patienten in häuslicher Umgebung
US20040117207A1 (en) 1992-11-17 2004-06-17 Health Hero Network, Inc. Report generation in a networked health-monitoring system
US20050148831A1 (en) 2004-01-06 2005-07-07 Mariko Shibata Method of providing healthcare support service, communication unit, and system and apparatus for providing healthcare support
DE102004059713A1 (de) * 2003-12-09 2005-07-14 Ghc Global Health Care Gmbh Anordnung technischer Systeme und Verfahren für die beginnende telemedizinische Betreuung von Verkehrsunfallopfern am Unfallort
US20070137498A1 (en) 2004-11-29 2007-06-21 Sarich Richard T Portable cooking unit assembly
US20070299326A1 (en) * 1996-10-16 2007-12-27 Brown Stephen J Multiple patient monitoring system for proactive health management

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671563B1 (en) * 1995-05-15 2003-12-30 Alaris Medical Systems, Inc. System and method for collecting data and managing patient care
US6606510B2 (en) * 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
US8043213B2 (en) * 2002-12-18 2011-10-25 Cardiac Pacemakers, Inc. Advanced patient management for triaging health-related data using color codes
US7468032B2 (en) * 2002-12-18 2008-12-23 Cardiac Pacemakers, Inc. Advanced patient management for identifying, displaying and assisting with correlating health-related data
GB2393356B (en) * 2002-09-18 2006-02-01 E San Ltd Telemedicine system
US7009511B2 (en) * 2002-12-17 2006-03-07 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
KR20040087870A (ko) * 2003-04-09 2004-10-15 (주)에이치쓰리시스템 가정용 의료기를 이용한 온라인 건강 관리 방법 및 시스템
US7399276B1 (en) * 2003-05-08 2008-07-15 Health Hero Network, Inc. Remote health monitoring system
US20040236188A1 (en) * 2003-05-19 2004-11-25 Ge Medical Systems Information Method and apparatus for monitoring using a mathematical model
US7289761B2 (en) * 2003-06-23 2007-10-30 Cardiac Pacemakers, Inc. Systems, devices, and methods for selectively preventing data transfer from a medical device
US20050200486A1 (en) * 2004-03-11 2005-09-15 Greer Richard S. Patient visual monitoring system
US7813939B2 (en) * 2004-03-23 2010-10-12 Board Of Regents, The University Of Texas System Pharmaceutical inventory and dispensation computer system and methods
US9820658B2 (en) * 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US20060122864A1 (en) * 2004-12-02 2006-06-08 Gottesman Janell M Patient management network
US20090054735A1 (en) * 2005-03-08 2009-02-26 Vanderbilt University Office Of Technology Transfer And Enterprise Development System and method for remote monitoring of multiple healthcare patients
EP1875248A2 (de) * 2005-03-29 2008-01-09 Inverness Medical Switzerland GmbH Vorrichtung und verfahren zur überwachung eines patienten
RU2007142662A (ru) * 2005-04-20 2009-05-27 Конинклейке Филипс Электроникс Н.В. (Nl) Система лечения застойной сердечной недостаточности
US20060287885A1 (en) * 2005-06-21 2006-12-21 Frick W V Treatment management system
US20060293571A1 (en) * 2005-06-23 2006-12-28 Skanda Systems Distributed architecture for remote patient monitoring and caring
US8965509B2 (en) * 2005-08-31 2015-02-24 Michael Sasha John Methods and systems for semi-automatic adjustment of medical monitoring and treatment
US20080058614A1 (en) * 2005-09-20 2008-03-06 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
WO2007065015A2 (en) * 2005-12-03 2007-06-07 Masimo Corporation Physiological alarm notification system
US7786874B2 (en) * 2005-12-09 2010-08-31 Samarion, Inc. Methods for refining patient, staff and visitor profiles used in monitoring quality and performance at a healthcare facility
US8666760B2 (en) * 2005-12-30 2014-03-04 Carefusion 303, Inc. Medication order processing and reconciliation
US8002701B2 (en) * 2006-03-10 2011-08-23 Angel Medical Systems, Inc. Medical alarm and communication system and methods
CN101073494B (zh) * 2006-05-18 2010-09-08 周常安 非侵入式生命迹象监测设备、系统及方法
US20080015894A1 (en) * 2006-07-17 2008-01-17 Walgreen Co. Health Risk Assessment Of A Medication Therapy Regimen
US20080126131A1 (en) * 2006-07-17 2008-05-29 Walgreen Co. Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen
CN101108125B (zh) * 2007-08-02 2010-06-16 无锡微感科技有限公司 一种身体体征动态监测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040117207A1 (en) 1992-11-17 2004-06-17 Health Hero Network, Inc. Report generation in a networked health-monitoring system
US20070299326A1 (en) * 1996-10-16 2007-12-27 Brown Stephen J Multiple patient monitoring system for proactive health management
US6248065B1 (en) 1997-04-30 2001-06-19 Health Hero Network, Inc. Monitoring system for remotely querying individuals
WO2000079466A2 (en) * 1999-06-23 2000-12-28 Visicu, Inc. Telemedical expert service provision for intensive care units
EP1260173A2 (de) * 2001-05-23 2002-11-27 Siemens Aktiengesellschaft Medizinisches System zur Überwachung von Parametern eines Patienten in häuslicher Umgebung
DE102004059713A1 (de) * 2003-12-09 2005-07-14 Ghc Global Health Care Gmbh Anordnung technischer Systeme und Verfahren für die beginnende telemedizinische Betreuung von Verkehrsunfallopfern am Unfallort
US20050148831A1 (en) 2004-01-06 2005-07-07 Mariko Shibata Method of providing healthcare support service, communication unit, and system and apparatus for providing healthcare support
US20070137498A1 (en) 2004-11-29 2007-06-21 Sarich Richard T Portable cooking unit assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2375964A1

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037477B2 (en) 2010-10-08 2015-05-19 Cardiac Science Corporation Computer-implemented system and method for evaluating ambulatory electrocardiographic monitoring of cardiac rhythm disorders
US8613708B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor with jumpered sensing electrode
US8613709B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor for providing ease of use in women
US8626277B2 (en) 2010-10-08 2014-01-07 Cardiac Science Corporation Computer-implemented electrocardiographic data processor with time stamp correlation
EP2438848A3 (de) * 2010-10-08 2012-05-30 Cardiac Science Corporation Computerumgesetztes Verfahren zur Telediagnostik der ambulanten Elektrokardiografie-Überwachung
US8938287B2 (en) 2010-10-08 2015-01-20 Cardiac Science Corporation Computer-implemented electrocardiograhic data processor with time stamp correlation
WO2013029617A1 (en) * 2011-08-26 2013-03-07 Aalborg Universitet Prediction of exacerbations for copd patients
ITTO20111049A1 (it) * 2011-11-14 2013-05-15 Indesit Co Spa Sistema elettrodomestico svolgente funzioni di tele-medicina e/o tele-assistenza, e relativo metodo
ITTO20111052A1 (it) * 2011-11-14 2013-05-15 Elite Societa Di Elettronica Per L Innovazione Dispositivo di monitoraggio di un sistema di tele-medicina e/o tele-assistenza e relativi uso e metodo
EP2592508A1 (de) * 2011-11-14 2013-05-15 Indesit Company S.p.A. Elektrisches Haushaltssystem mit Telemedizin- und/oder Telepflegefunktionen sowie zugehöriges Verfahren
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11445907B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory encoding monitor recorder optimized for rescalable encoding and method of use
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US11918364B2 (en) 2013-09-25 2024-03-05 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US11826151B2 (en) 2013-09-25 2023-11-28 Bardy Diagnostics, Inc. System and method for physiological data classification for use in facilitating diagnosis
US11793441B2 (en) 2013-09-25 2023-10-24 Bardy Diagnostics, Inc. Electrocardiography patch
US9545228B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography and respiration-monitoring patch
US9545204B2 (en) 2013-09-25 2017-01-17 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US9554715B2 (en) 2013-09-25 2017-01-31 Bardy Diagnostics, Inc. System and method for electrocardiographic data signal gain determination with the aid of a digital computer
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9642537B2 (en) 2013-09-25 2017-05-09 Bardy Diagnostics, Inc. Ambulatory extended-wear electrocardiography and syncope sensor monitor
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US11786159B2 (en) 2013-09-25 2023-10-17 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US9730641B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography value encoding and compression
US9730593B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9737211B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Ambulatory rescalable encoding monitor recorder
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US11744513B2 (en) 2013-09-25 2023-09-05 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US10561326B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic potential processing
US9820665B2 (en) 2013-09-25 2017-11-21 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US9901274B2 (en) 2013-09-25 2018-02-27 Bardy Diagnostics, Inc. Electrocardiography patch
US10602977B2 (en) 2013-09-25 2020-03-31 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US9955885B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. System and method for physiological data processing and delivery
US9955911B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor recorder
US9955888B2 (en) 2013-09-25 2018-05-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for internal signal processing
US10004415B2 (en) 2013-09-25 2018-06-26 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10045709B2 (en) 2013-09-25 2018-08-14 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10052022B2 (en) 2013-09-25 2018-08-21 Bardy Diagnostics, Inc. System and method for providing dynamic gain over non-noise electrocardiographic data with the aid of a digital computer
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US10111601B2 (en) 2013-09-25 2018-10-30 Bardy Diagnostics, Inc. Extended wear electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US11701045B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography monitor
US10154793B2 (en) 2013-09-25 2018-12-18 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire contact surfaces
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US10172534B2 (en) 2013-09-25 2019-01-08 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US11701044B2 (en) 2013-09-25 2023-07-18 Bardy Diagnostics, Inc. Electrocardiography patch
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US10251575B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10265015B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiography and respiratory data acquisition and processing
US10264992B2 (en) 2013-09-25 2019-04-23 Bardy Diagnostics, Inc. Extended wear sewn electrode electrocardiography monitor
US10271755B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with sewn wire interconnects
US10271756B2 (en) 2013-09-25 2019-04-30 Bardy Diagnostics, Inc. Monitor recorder optimized for electrocardiographic signal processing
US10278606B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US10278603B2 (en) 2013-09-25 2019-05-07 Bardy Diagnostics, Inc. System and method for secure physiological data acquisition and storage
US11678799B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for test-based data compression
US10561328B2 (en) 2013-09-25 2020-02-18 Bardy Diagnostics, Inc. Multipart electrocardiography monitor optimized for capturing low amplitude cardiac action potential propagation
US10413205B2 (en) 2013-09-25 2019-09-17 Bardy Diagnostics, Inc. Electrocardiography and actigraphy monitoring system
US11678832B2 (en) 2013-09-25 2023-06-20 Bardy Diagnostics, Inc. System and method for atrial fibrillation detection in non-noise ECG data with the aid of a digital computer
US10433743B1 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Method for secure physiological data acquisition and storage
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US10478083B2 (en) 2013-09-25 2019-11-19 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10499812B2 (en) 2013-09-25 2019-12-10 Bardy Diagnostics, Inc. System and method for applying a uniform dynamic gain over cardiac data with the aid of a digital computer
US11660037B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. System for electrocardiographic signal acquisition and processing
US10398334B2 (en) 2013-09-25 2019-09-03 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US11660035B2 (en) 2013-09-25 2023-05-30 Bardy Diagnostics, Inc. Insertable cardiac monitor
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US10624552B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Method for constructing physiological electrode assembly with integrated flexile wire components
US10631748B2 (en) 2013-09-25 2020-04-28 Bardy Diagnostics, Inc. Extended wear electrocardiography patch with wire interconnects
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US10716516B2 (en) 2013-09-25 2020-07-21 Bardy Diagnostics, Inc. Monitor recorder-implemented method for electrocardiography data compression
US11653869B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Multicomponent electrocardiography monitor
US10736532B2 (en) 2013-09-25 2020-08-11 Bardy Diagnotics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US10813567B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for composite display of subcutaneous cardiac monitoring data
US10813568B2 (en) 2013-09-25 2020-10-27 Bardy Diagnostics, Inc. System and method for classifier-based atrial fibrillation detection with the aid of a digital computer
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10849523B2 (en) 2013-09-25 2020-12-01 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders
US11653868B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for electrocardiographic (ECG) signal acquisition
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US10939841B2 (en) 2013-09-25 2021-03-09 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US11006883B2 (en) 2013-09-25 2021-05-18 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11013446B2 (en) 2013-09-25 2021-05-25 Bardy Diagnostics, Inc. System for secure physiological data acquisition and delivery
US11051743B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography patch
US11051754B2 (en) 2013-09-25 2021-07-06 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11653870B2 (en) 2013-09-25 2023-05-23 Bardy Diagnostics, Inc. System and method for display of subcutaneous cardiac monitoring data
US11103173B2 (en) 2013-09-25 2021-08-31 Bardy Diagnostics, Inc. Electrocardiography patch
US11647939B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11179087B2 (en) 2013-09-25 2021-11-23 Bardy Diagnostics, Inc. System for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US11272872B2 (en) 2013-09-25 2022-03-15 Bardy Diagnostics, Inc. Expended wear ambulatory electrocardiography and physiological sensor monitor
US11324441B2 (en) 2013-09-25 2022-05-10 Bardy Diagnostics, Inc. Electrocardiography and respiratory monitor
US11647941B2 (en) 2013-09-25 2023-05-16 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US11445966B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US11445965B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long-term electrocardiographic monitoring
US11445969B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for event-centered display of subcutaneous cardiac monitoring data
US11445967B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Electrocardiography patch
US11445961B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Self-authenticating electrocardiography and physiological sensor monitor
US11445908B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Subcutaneous electrocardiography monitor configured for self-optimizing ECG data compression
US11445962B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor
US11445970B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System and method for neural-network-based atrial fibrillation detection with the aid of a digital computer
US11445964B2 (en) 2013-09-25 2022-09-20 Bardy Diagnostics, Inc. System for electrocardiographic potentials processing and acquisition
US11457852B2 (en) 2013-09-25 2022-10-04 Bardy Diagnostics, Inc. Multipart electrocardiography monitor
USD838370S1 (en) 2013-11-07 2019-01-15 Bardy Diagnostics, Inc. Electrocardiography monitor
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
USD892340S1 (en) 2013-11-07 2020-08-04 Bardy Diagnostics, Inc. Extended wear electrode patch
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
USD831833S1 (en) 2013-11-07 2018-10-23 Bardy Diagnostics, Inc. Extended wear electrode patch
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
US9788722B2 (en) 2015-10-05 2017-10-17 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US10123703B2 (en) 2015-10-05 2018-11-13 Bardy Diagnostics, Inc. Health monitoring apparatus with wireless capabilities for initiating a patient treatment with the aid of a digital computer
US9936875B2 (en) 2015-10-05 2018-04-10 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient with the aid of a digital computer
US10869601B2 (en) 2015-10-05 2020-12-22 Bardy Diagnostics, Inc. System and method for patient medical care initiation based on physiological monitoring data with the aid of a digital computer
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US10390700B2 (en) 2015-10-05 2019-08-27 Bardy Diagnostics, Inc. Health monitoring apparatus for initiating a treatment of a patient based on physiological data with the aid of a digital computer
US11678830B2 (en) 2017-12-05 2023-06-20 Bardy Diagnostics, Inc. Noise-separating cardiac monitor
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11653880B2 (en) 2019-07-03 2023-05-23 Bardy Diagnostics, Inc. System for cardiac monitoring with energy-harvesting-enhanced data transfer capabilities
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
US11678798B2 (en) 2019-07-03 2023-06-20 Bardy Diagnostics Inc. System and method for remote ECG data streaming in real-time

Also Published As

Publication number Publication date
DE102008054442A1 (de) 2010-06-17
CN102245084A (zh) 2011-11-16
CA2743658A1 (en) 2011-05-12
EP2375964A1 (de) 2011-10-19
US20110301429A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2010066507A1 (de) Verfahren zur ferndiagnostischen überwachung und unterstützung von patienten sowie einrichtung und telemedizinisches zentrum
DE60030752T2 (de) System zur häuslichen patientenüberwachung
DE60129964T2 (de) System zur gesundheitsüberwachung
DE60119414T2 (de) Tragbare Vorrichtung zur Lebensunterstützung
DE102018202088A1 (de) Fahrzeug-Sitz-System mit Sitz-Nutzer-Vital-Zeichen-Überwachung
CN103605911A (zh) 一种基于物联网的社区智能医护系统控制方法
CN113241196B (zh) 基于云-终端协同的远程医疗与分级监控系统
DE112006003199T5 (de) Nicht behindernde, im Wesentlichen fortlaufende Erfassung der täglichen Aktivitäten eines Patienten zur Anzeige einer Zustandsänderung des Patienten für den Zugriff eines Fernbetreuers
DE102010060751A1 (de) System und Verfahren zur Patientenaufenthaltsorts-Vorhersage
Zulfiqar et al. Focus on the different projects of telemedicine centered on the elderly in France
CN111819585B (zh) 生理数据智能处理方法与系统
DE102007017312A1 (de) Fernanwendung im Gesundheitswesen zur Optimierung der Visitenhäufigkeit an auswärtigen Orten
CN110462745A (zh) 分层医疗数据计算机体系结构
DE112019002919T5 (de) Diagnoseunterstützungsvorrichtung, diagnoseunterstützungsverfahren und diagnoseunterstützungsprogramm
EP1226782A2 (de) Verfahren und Vorrichtung zur poststationären Überwachung eines Patienten
DE112020005133T5 (de) Einrichtung und verfahren zum steuern eines systems von ressourcen
CN107292094A (zh) 一种医疗护理方法
AU2022201373B2 (en) System and method for aiding an operator in an emergency situation involving a patient
CH719154A2 (de) WC-Sitzgarnitur und computerimplementiertes, auf künstlicher Intelligenz basiertes Klassifikationsverfahren.
CN110974216B (zh) 一种无线心电监护传感器的遥控系统
CN116825337A (zh) 患者安全护理预警系统
EP1351181B1 (de) Computersystem und Verfahren zur Datenerfassung für die Ermittlung des Verlaufs einer chronischen Erkrankung
KR20210128576A (ko) 웨어러블 디바이스 기반 건강관리 시스템
DE102015226175B4 (de) Anordnung und Verfahren zur Überwachung von Patienten
WO2003001992A1 (de) Vorrichtung zur überwachung des gesundheitszustandes einer person

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980149427.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748313

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009748313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009748313

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2743658

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13133632

Country of ref document: US