WO2009154058A1 - Epoxy resin molding material for semiconductor sealing purposes, epoxy resin sheet for semiconductor sealing purposes, and method for the production thereof - Google Patents

Epoxy resin molding material for semiconductor sealing purposes, epoxy resin sheet for semiconductor sealing purposes, and method for the production thereof Download PDF

Info

Publication number
WO2009154058A1
WO2009154058A1 PCT/JP2009/059510 JP2009059510W WO2009154058A1 WO 2009154058 A1 WO2009154058 A1 WO 2009154058A1 JP 2009059510 W JP2009059510 W JP 2009059510W WO 2009154058 A1 WO2009154058 A1 WO 2009154058A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
semiconductor
melting point
molding material
crystalline polyalphaolefin
Prior art date
Application number
PCT/JP2009/059510
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 行政
康浩 尾迫
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008161653A external-priority patent/JP2010001386A/en
Priority claimed from JP2008161657A external-priority patent/JP2010003897A/en
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2009154058A1 publication Critical patent/WO2009154058A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin molding material for semiconductor encapsulation, an epoxy resin sheet member for semiconductor encapsulation, and a method for producing them. More specifically, when a semiconductor device is encapsulated with a resin by a transfer molding method, particularly when the semiconductor device is encapsulated with a resin by a collective encapsulation method, an epoxy resin molding material for encapsulating a semiconductor, a method for manufacturing the same, and a semiconductor
  • the present invention relates to an epoxy resin sheet member for semiconductor sealing suitable for resin sealing an apparatus by a collective sealing method and a method for manufacturing the same.
  • the collective sealing method here is a general term for a method of resin-sealing a child substrate on which semiconductor elements are arranged and mounted, and indicates a resin sealing method of a semiconductor device called MAP (molding array package) in the semiconductor industry.
  • MAP molding array package
  • the batch sealing method is greatly superior in efficiency as compared with the conventional method. For example, there are advantages such that the use amount of the sub-substrate and the molding material can be reduced, the size of the mold can be reduced and the types can be reduced.
  • the batch sealing method has various technical problems and has not been widely used. For example, it is difficult to cut into individual semiconductor devices due to warping at the time of molding, and 3DP (laminated package) in which the gap between the external electrode connecting gold wires is narrow is likely to cause gold wire deformation. In the system in package), there is a problem that it is difficult to fill the molding material with details. That is, practical and industrial technical studies are still insufficient, and the problem has not been solved.
  • the molding material is injected onto the semiconductor mounting substrate at a high temperature of 130 ° C. or higher (for example, 150 ° C. to 180 ° C.) and cured.
  • Warpage is a phenomenon in which when a molded product is cooled to room temperature, it bends to a resin side having a large shrinkage rate.
  • This reduction method generally reduces the coefficient of thermal expansion of the molding material and brings it closer to a semiconductor.
  • a method is employed in which the amount of silica added is increased and the softening point of the resin component (epoxy resin, curing agent) is lowered.
  • Molding material is added with a small amount of release agent to facilitate removal of the molded product from the mold.
  • the mold release agent long chain fatty acid esters, long chain fatty acid metal salts, long chain fatty acids and the like are mainly used.
  • a modified product oxidized polyethylene wax or the like
  • thermoplastic resins are added to relieve stress caused by warpage of a molded product has been reported. In this case, a thermoplastic elastomer that is mainly excellent in flexibility but poor in fluidity is used.
  • Resin sealing by semiconductor transfer molding is the most popular method for sealing semiconductor devices.
  • expectations for a more rational and efficient batch sealing method are extremely high, and there is a strong demand for solving the problems of this method.
  • a molding method for shortening the flow distance of the sealing material has been studied.
  • the sealing material is spread over the entire semiconductor substrate and heated and melted, followed by pressure bonding and further pressure heating to manufacture a semiconductor device (hereinafter referred to as pressure bonding molding).
  • pressure bonding molding a molding method for shortening the flow distance of the sealing material.
  • the molding defect problem is not improved if the existing sealing material is used even if crimping is used. In other words, practical and industrial technical studies are still insufficient and the problem has not been solved.
  • the inventors of the present invention provide a new sealing material suitable for a batch sealing method by pressure molding that enables further reduction in the thickness and cost of a semiconductor device.
  • a peelable film has a peelable layer formed on a thermoplastic resin film.
  • a thermoplastic resin film For example, it is coated with an easily peelable resin (urethane-based, acrylic-based, polyester-based, polyvinyl alcohol-based resins) or a release agent (silicone-based, fluorine-based resins). Film materials that meet the required level of heat resistance and solvent resistance are used.
  • the present invention provides an excellent semiconductor encapsulation in which resin molding by transfer molding of a semiconductor element has very few defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.).
  • Epoxy resin molding material for fastening, in particular, resin sealing by crimping of semiconductor elements with the primary purpose of providing an epoxy resin molding material for semiconductor sealing that is optimal for the transfer molding batch sealing method and its manufacturing method , Excellent epoxy resin sheet material for semiconductor encapsulation, especially the semiconductor sealing that is most suitable for the pressure-bonding batch sealing method, with very few defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.)
  • the inventors of the present invention preferably melt-kneaded a specific amount of crystalline polyalphaolefin having a specific melting point and particle size sprayed in a molten state, an epoxy resin and an inorganic filler.
  • the above-mentioned first object can be achieved by an epoxy resin molding material for semiconductor encapsulation, and preferably a crystalline polyalphaolefin having a specific melting point and particle size sprayed in a molten state, an epoxy resin, and It has been found that the second object can be achieved by an epoxy resin sheet member for semiconductor encapsulation formed by melt-kneading an inorganic filler.
  • the present invention has been completed based on such findings. That is, the present invention 1.
  • An epoxy resin molding material for semiconductor encapsulation which is obtained by melt-kneading, and contains 0.2-5% by mass of the crystalline polyalphaolefin, 2.
  • the epoxy resin sheet member for semiconductor encapsulation as described in 6 above which has a release layer having a thickness of 0.1 to 10 ⁇ m containing crystalline polyalphaolefin having a melting point of 30 to 90 ° C. on the sealing layer side of the protective film.
  • a process for producing a sealing material by spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in a molten state, and applying or spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. to the protective film in a molten state
  • a step of forming a release layer and the method for producing an epoxy resin sheet member for semiconductor encapsulation according to 6 above, Is to provide.
  • the epoxy resin molding material for semiconductor encapsulation of the present invention is excellent in the occurrence of defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.) in resin sealing by transfer molding of semiconductor elements. It is an epoxy resin molding material for semiconductor encapsulation.
  • the epoxy resin sheet member for semiconductor sealing of the present invention has very little occurrence of defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.) in resin sealing by pressure-bonding molding of semiconductor elements. It is an excellent epoxy resin sheet member for semiconductor encapsulation.
  • FIG. 6 is a graph showing melting characteristics of crystalline polyalphaolefin and paraffin wax obtained in Production Example 1-3 and Production Example 2-5.
  • FIG. 6 is a graph showing the melting characteristics of crystalline polyalphaolefins having different melting points obtained in Production Examples 1-2 to 1-4 and Production Examples 2-2, 2-5, and 2-6.
  • Molding material 2 Semiconductor 3: Gold wire 4: Substrate 5: Semiconductor device
  • the epoxy resin molding material for semiconductor encapsulation of the present invention comprises at least (1-A) powder and / or mist of crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and having a particle size of 75 ⁇ m or less, ) An epoxy resin molding material for semiconductor encapsulation obtained by melt-kneading an epoxy resin and (1-C) inorganic filler, containing 0.2 to 5% by mass of the crystalline polyalphaolefin.
  • the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. (hereinafter sometimes abbreviated as crystalline polyalphaolefin) used in the component (1-A) is not particularly limited as long as it satisfies the above requirements. However, it is obtained by polymerizing one or more ⁇ -olefin monomers having 10 or more carbon atoms or polymerizing one or more ⁇ -olefin monomers having 10 or more carbon atoms with other olefins. Are preferred.
  • ⁇ -olefin monomer having 10 or more carbon atoms include 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 1-henecocene, 1-docosene, 1-tricosene, 1-tetracocene, 1-pentacocene, 1-hexacocene, 1-heptacocene, 1-octacocene, 1-nonacocene, 1- Tria content, 1-Hentria content, 1-Dotria content, 1-Tritria content, 1-Tetratria content, 1-Pentatria content, 1-Hexatria content, 1-Tetra content, 1-Penta content, 1 -Hexacon
  • ⁇ -olefin monomers can be used alone, or a mixture of two or more ⁇ -olefin monomers can also be used. Also, as two or more kinds of ⁇ -olefin monomers, it is possible to use commercial products of blended monomers or commercial products of mixtures, such as Linearlen 2024 [manufactured by Idemitsu Kosan Co., Ltd .: Commodity Name] etc. can be used.
  • a metallocene compound or a Ti—Mg compound is preferably used as a catalyst.
  • the metallocene compound include dimethylsilylene bis (2-methyl-4,5-benzoindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4).
  • metallocene compounds may be used in combination of two or more.
  • an organoaluminum compound such as triisobutylaluminum and an organoboron compound such as dimethylanilinium tetrakispentafluorophenylborate are usually used as the catalyst.
  • the epoxy resin molding material for semiconductor encapsulation of the present invention contains 0.2 to 5% by mass, preferably 0.5 to 3% by mass of the crystalline polyalphaolefin, so that it has excellent fluidity. If the content of the crystalline polyalphaolefin is less than 0.2% by mass, the effect of improving the fluidity cannot be obtained, and if it exceeds 5% by mass, problems such as a decrease in strength of the molded product occur.
  • the crystalline polyalphaolefin one having a melting point of 30 to 90 ° C., preferably 40 to 80 ° C. is used.
  • the melting point of the crystalline polyalphaolefin is less than 30 ° C., problems such as fusion during pulverization or tableting occur, so the workability during the production of the epoxy resin molding material for semiconductor encapsulation deteriorates, and the above melting point If the temperature exceeds 90 ° C., the fluidity during molding decreases, and molding defects due to unfilling and voids are likely to occur.
  • the crystalline polyalphaolefin is used as a powder and / or mist having a particle size of 75 ⁇ m or less, preferably 25 ⁇ m or less. If the particle size exceeds 75 ⁇ m, there is a possibility that problems such as elution occur during molding.
  • the raw crystalline polyalphaolefin is finely pulverized using a cutter mill or the like, and a sieve having a predetermined mesh is used. By using, a powder having a desired particle size or less can be obtained.
  • the crystalline polyalphaolefin can be melt sprayed and added to other raw materials.
  • the particle size can be arbitrarily controlled by appropriately adjusting the diameter, spraying pressure, etc.), so the use of a mist is preferred.
  • the particle size of the atomized crystalline polyalphaolefin can be confirmed by spraying the crystalline polyalphaolefin on a transparent film and measuring the particle size of droplets on the film. It is preferable to use a crystalline polyalphaolefin having a narrow melting temperature range, and specifically, one that starts melting within ⁇ 15 ° C. of the melting point and ends melting within + 3 ° C. is preferable.
  • the temperature at which the crystalline polyalphaolefin starts to melt was determined by using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer, Inc., holding the sample at 190 ° C.
  • the temperature is decreased to 5 ° C / min to 5 ° C / min, held at -30 ° C for 5 min, and then the endothermic temperature is started when the temperature is increased to 190 ° C at 10 ° C / min. The temperature at which the temperature disappeared.
  • paraffin wax having a similar melting point is known as a competitor of crystalline polyalphaolefin. Comparing the melting characteristics of the two, the crystalline polyalphaolefin used in the present invention is crystalline, and thus has a characteristic that the melting temperature range is extremely narrow as described above. Comparing both with a melting point of about 40 ° C., paraffin wax begins to melt at room temperature and is therefore not suitable for room temperature processing of the molding material. However, crystalline polyalphaolefin is solid at room temperature, so there is no problem. In addition, the crystalline polyalphaolefin is immediately melted at 40 ° C. and the viscosity is lowered. That is, the crystalline polyalphaolefin used in the present invention has a feature that the melting temperature range is extremely narrow, and thus the workability during the manufacturing process of the molding material and the fluidity during molding are excellent.
  • Crystalline polyalphaolefin is excellent in thermal stability and has less quality change (oxidation, etc.) at high temperature storage than general-purpose polyolefin wax.
  • the polyolefin wax has a high melting point of 100 ° C. or higher, and is used as a release agent for a thermoplastic resin molding material.
  • a thermosetting resin molding material the effect of releasability cannot be expected so much and it is used as an additive for improving adhesion and tackiness.
  • quality stability in the molding material is maintained by using an oxidized product that has been altered in advance. That is, crystalline polyalphaolefin has different characteristics from polyolefin wax used as a conventional release agent.
  • Examples of the (1-B) epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin and the like (bisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, Bisphenol F diglycidyl ether, bisphenol G diglycidyl ether, tetramethylbisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, bisphenol C diglycidyl ether, etc.), novolaks such as phenol novolac type epoxy resin and cresol novolac type epoxy resin Type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate Biphenyl type, which is the mainstream of nitrogen-containing ring epoxy resins such as alicyclic epoxy resins such as triglycidyl isocyanurate, hydantoin epoxy resins, hydrogenated bisphenol A type
  • the (1-B) epoxy resin include various products that are commercially available for semiconductor encapsulating materials. Examples include epoxy resins manufactured by Nippon Kayaku, Dainippon Ink and Chemicals, and JER. be able to. In the encapsulating molding material, polyaromatic low molecular weight products are mainly used as epoxy resins.
  • the (1-B) epoxy resin may be solid or liquid at room temperature, but in general, the (1-B) epoxy resin used preferably has an average epoxy equivalent of 100 to 2000. When the average epoxy equivalent is less than 100, the cured product of the epoxy resin molding material for semiconductor encapsulation may become brittle. Moreover, when an average epoxy equivalent exceeds 2000, the glass transition temperature (Tg) of the hardening body may become low.
  • Examples of the (1-C) inorganic filler include silica, alumina, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, titanium white and other powders, and short fibers such as glass and carbon. Illustrated. Among these, silica, alumina, silicon nitride, and silicon carbide powder are preferable from the viewpoint of thermal expansion coefficient and thermal conductivity, and silica powder is particularly preferable.
  • the epoxy resin molding material for semiconductor encapsulation of the present invention is excellent in fluidity, but if it contains silica powder, the effect of improving fluidity is remarkably obtained.
  • the shape is preferably spherical or a mixture of spherical and irregular shapes.
  • silica powder it can select arbitrarily from the product marketed as an object for semiconductor sealing materials, for example. Specifically, silica powder made by Tatsumori, Denki Kagaku Kogyo, or Micron Corporation can be mentioned, and a sprayed spherical product from which coarse particles are removed is mainly used.
  • the epoxy resin molding material for semiconductor encapsulation of the present invention preferably contains 80 to 98% by mass of (1-C) inorganic filler, more preferably 85 to 95% by mass.
  • the epoxy resin molding material for semiconductor encapsulation of the present invention has an epoxy resin curing agent, an epoxy resin curing accelerator, a modifier, a flame retardant, a pigment, a mold release agent, and the like as long as the effects of the present invention are not adversely affected.
  • these components those having usable characteristics can be used as appropriate, and can be arbitrarily selected from products commercially available for semiconductor sealing materials, etc. . Specific examples of these components include: Dainippon Ink and Chemicals, Gunei Chemical Industry, Meiwa Kasei Co., Ltd., epoxy resin curing agent, Shikoku Chemicals, Hokuko Chemical Industry, San Apro Co., Ltd. epoxy resin curing accelerator. it can.
  • a polyaromatic low molecular weight product is mainly used as an epoxy resin curing agent
  • a phosphorus compound is mainly used as an epoxy resin curing accelerator.
  • the method for producing the epoxy resin molding material for semiconductor encapsulation of the present invention is not particularly limited, but it is preferable to uniformly disperse the component (1-A). Particularly, the epoxy for semiconductor encapsulation of the present invention shown below is particularly preferable. According to the method for producing a resin molding material, the (1-A) component can be uniformly dispersed, which is preferable.
  • the present invention also provides a method for producing an epoxy resin molding material for semiconductor encapsulation, wherein the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. is sprayed and added in a molten state.
  • the spraying conditions such as the melting temperature, the nozzle diameter, and the spraying pressure when adding the crystalline polyalphaolefin in a molten state are particularly limited as long as the atomized crystalline polyalphaolefin has a desired particle size or less.
  • the melting temperature is about 50 to 200 ° C.
  • the nozzle diameter is about 0.001 to 0.1 mm
  • the spraying pressure is about 0.1 to 10 atm, depending on the properties of the crystalline polyalphaolefin used.
  • crystalline polyalphaolefin is added by spraying in a molten state, but at least (1-B) epoxy resin and (1-C) inorganic filling
  • a method of adding the crystalline polyalphaolefin while mixing the raw materials containing the material is preferable, and a method of adding the crystalline polyalphaolefin while mixing all the raw materials other than the crystalline polyalphaolefin is particularly preferable.
  • the epoxy resin sheet member for semiconductor encapsulation of the present invention comprises at least (2-A) powder and / or mist of crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and a particle size of 50 ⁇ m or less, (2-B A semiconductor encapsulant having an encapsulating layer formed by melt-kneading an epoxy resin and (2-C) an inorganic filler and comprising an encapsulating material containing 0.2 to 5% by mass of the crystalline polyalphaolefin An epoxy resin sheet member for stopping, further having a protective film on one or both sides of the sealing layer.
  • the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. (hereinafter sometimes abbreviated as crystalline polyalphaolefin) is not particularly limited as long as it satisfies the above-mentioned regulations.
  • a polymer obtained by polymerizing at least one olefin monomer or polymerizing at least one ⁇ -olefin monomer having 10 or more carbon atoms with another olefin is preferred.
  • ⁇ -olefin monomer having 10 or more carbon atoms include 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 1-henecocene, 1-docosene, 1-tricosene, 1-tetracocene, 1-pentacocene, 1-hexacocene, 1-heptacocene, 1-octacocene, 1-nonacocene, 1- Tria content, 1-Hentria content, 1-Dotria content, 1-Tritria content, 1-Tetratria content, 1-Pentatria content, 1-Hexatria content, 1-Tetra content, 1-Penta content, 1 -Hexacon
  • ⁇ -olefin monomers can be used alone, or a mixture of two or more ⁇ -olefin monomers can also be used. Also, as two or more kinds of ⁇ -olefin monomers, it is possible to use commercial products of blended monomers or commercial products of mixtures, such as Linearlen 2024 [manufactured by Idemitsu Kosan Co., Ltd .: Commodity Name] etc. can be used.
  • a metallocene compound or a Ti—Mg compound is preferably used as a catalyst.
  • the metallocene compound include dimethylsilylene bis (2-methyl-4,5-benzoindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4).
  • metallocene compounds may be used in combination of two or more.
  • an organoaluminum compound such as triisobutylaluminum and an organoboron compound such as dimethylanilinium tetrakispentafluorophenylborate are usually used as the catalyst.
  • the sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention contains 0.2 to 5% by mass, preferably 0.5 to 3% by mass of the crystalline polyalphaolefin, so that the fluidity is obtained. It is excellent. If the content of the crystalline polyalphaolefin is less than 0.2% by mass, the effect of improving the fluidity cannot be obtained, and if it exceeds 5% by mass, problems such as a decrease in strength of the molded product occur.
  • the crystalline polyalphaolefin one having a melting point of 30 to 90 ° C., preferably 40 to 80 ° C. is used.
  • the melting point of the crystalline polyalphaolefin is less than 30 ° C., problems such as fusion during pulverization or tableting occur, so the workability during the production of the epoxy resin sheet member for semiconductor encapsulation deteriorates. Crystalline polyalphaolefin is separated and eluted from the sealing material. When the melting point exceeds 90 ° C., the fluidity during molding is lowered, and thus problems such as variations in the quality of the sealing material may occur.
  • the crystalline polyalphaolefin is used as a powder and / or mist having a particle size of 50 ⁇ m or less, preferably 20 ⁇ m or less.
  • the particle diameter exceeds 50 ⁇ m, there is a possibility that problems such as elution during molding may occur.
  • the crystalline polyalphaolefin powder is used as the component (2-A), for example, the raw material polyalphaolefin is finely pulverized using a cutter mill or the like, and a sieve having a predetermined opening is used. A powder having a desired particle size or less can be obtained.
  • the crystalline polyalphaolefin mist is used, the crystalline polyalphaolefin is melt-sprayed and added, but the spraying conditions (melting temperature, nozzle diameter, spraying pressure, etc.) during melt spraying are appropriately set.
  • the particle size of the atomized (2-A) crystalline polyalphaolefin can be confirmed by spraying the crystalline polyalphaolefin on a transparent film and measuring the particle size of droplets on the film.
  • the (2-A) crystalline polyalphaolefin preferably has a narrow melting temperature range. Specifically, the melting starts within ⁇ 15 ° C. of the melting point and ends within + 3 ° C. Is preferred.
  • the temperature at which the (2-A) crystalline polyalphaolefin starts to melt was determined by using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer and holding the sample at 190 ° C.
  • DSC-7 differential scanning calorimeter
  • the temperature is lowered to ⁇ 30 ° C. at 5 ° C./minute, held at ⁇ 30 ° C. for 5 minutes, and then the endothermic temperature is started when the temperature is raised to 190 ° C. at 10 ° C./minute, and the melting is completed.
  • the temperature was a temperature at which the endotherm was completely eliminated.
  • paraffin wax having a similar melting point is known as a competitor of crystalline polyalphaolefin. Comparing the melting characteristics of the two, the crystalline polyalphaolefin used in the present invention is crystalline, and thus has a characteristic that the melting temperature range is extremely narrow as described above. Comparing both with a melting point of about 40 ° C., paraffin wax begins to melt at room temperature and is therefore not suitable for room temperature processing of the molding material. However, crystalline polyalphaolefin is solid at room temperature, so there is no problem. In addition, the crystalline polyalphaolefin is immediately melted at 40 ° C. and the viscosity is lowered. That is, the crystalline polyalphaolefin used in the present invention has a feature that it has excellent workability at the time of manufacturing processing of the molding material and fluidity at the time of molding because the melting temperature range is extremely narrow.
  • Crystalline polyalphaolefin is excellent in thermal stability and has less quality change (oxidation, etc.) at high temperature storage than general-purpose polyolefin wax.
  • the polyolefin wax has a high melting point of 100 ° C. or higher, and is used as a release agent for a thermoplastic resin molding material.
  • a thermosetting resin molding material the effect of releasability cannot be expected so much and it is used as an additive for improving adhesion and tackiness.
  • quality stability in the molding material is maintained by using an oxidized product that has been altered in advance. That is, crystalline polyalphaolefin has different characteristics from polyolefin wax used as a conventional release agent.
  • Examples of the (2-B) epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin and the like (bisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, Bisphenol F diglycidyl ether, bisphenol G diglycidyl ether, tetramethylbisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, bisphenol C diglycidyl ether, etc.), novolaks such as phenol novolac type epoxy resin and cresol novolac type epoxy resin Type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate Biphenyl type, which is the mainstream of nitrogen-containing ring epoxy resins such as alicyclic epoxy resins such as triglycidyl isocyanurate, hydantoin epoxy resins, hydrogenated bisphenol A type
  • the (2-B) epoxy resin include various products that are commercially available for semiconductor sealing materials. For example, there are epoxy resins manufactured by Nippon Kayaku, Dainippon Ink and Chemicals, and JER. be able to. In the encapsulating molding material, polyaromatic low molecular weight products are mainly used as epoxy resins.
  • the (2-B) epoxy resin may be solid or liquid at room temperature, but in general, the (2-B) epoxy resin used preferably has an average epoxy equivalent of 100 to 2000. When the average epoxy equivalent is less than 100, the cured body of the epoxy resin sheet member for semiconductor encapsulation may become brittle. Moreover, when an average epoxy equivalent exceeds 2000, the glass transition temperature (Tg) of the hardening body may become low.
  • Examples of the (2-C) inorganic filler include silica, alumina, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, titanium white powder and the like, and short fibers such as glass and carbon. Illustrated. Among these, silica, alumina, silicon nitride, and silicon carbide powder are preferable from the viewpoint of thermal expansion coefficient and thermal conductivity, and silica powder is particularly preferable.
  • the sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention is excellent in fluidity, but if it contains silica powder, the effect of improving fluidity is remarkably obtained.
  • the shape is preferably spherical or a mixture of spherical and irregular shapes.
  • silica it can select arbitrarily from the product marketed as an object for semiconductor sealing materials, for example. Specifically, silica powder made by Tatsumori, Denki Kagaku Kogyo, or Micron Corporation can be mentioned, and a sprayed spherical product from which coarse particles are removed is mainly used.
  • the sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention preferably contains 80 to 98% by mass of (2-C) inorganic filler, more preferably 85 to 95% by mass.
  • the encapsulating material contains 85% by mass or more of silica having a particle size of 50 ⁇ m or less, the viscosity of the encapsulating material has been extremely high in the past, making it difficult to encapsulate the semiconductor device. Since the sealing material used in the process contains crystalline polyalphaolefin, a remarkable effect of excellent fluidity is exhibited.
  • the sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention is an epoxy resin curing agent, epoxy resin curing accelerator, modifier, flame retardant, and pigment as long as the effects of the present invention are not adversely affected.
  • the epoxy resin curing agent is mainly a polyaromatic low molecular weight product
  • the epoxy resin curing accelerator is mainly a phosphorus compound.
  • the epoxy resin sheet member for semiconductor encapsulation of the present invention has a protective film on one side or both sides of the sealing layer.
  • the protective film is not particularly limited as long as it is a material having high purity and can withstand pressure forming, and examples thereof include polyethylene terephthalate (PET), liquid crystal polymer, and polyimide (PI). Moreover, since peelability is not particularly required, it can be arbitrarily selected in consideration of quality and cost.
  • the protective film is preferably provided with a release layer containing crystalline polyalphaolefin having a thickness of about 0.1 to 10 ⁇ m on the surface on the sealing layer side, and a release layer made of crystalline polyalphaolefin is provided. More preferably. When the thickness of the release layer is 0.1 ⁇ m or more, the protective film can be easily peeled from the sealing layer, and when it is 10 ⁇ m or less, problems such as poor appearance of the molded product hardly occur.
  • the method for producing the sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention is not particularly limited. However, since it is preferable to uniformly disperse the crystalline polyalphaolefin, the crystalline polyalphaolefin is finely pulverized. And a method of spraying in a molten state, but according to the process for producing a sealing material in the method for producing an epoxy resin sheet member for semiconductor encapsulation of the present invention shown below, crystalline polyalphaolefin Is particularly preferable because it can be uniformly dispersed.
  • the method of forming a release layer using crystalline polyalphaolefin on the protective film is also particularly limited as long as the crystalline polyalphaolefin is uniformly dispersed on the surface of the protective film on the sealing layer side.
  • a method of removing the solvent by drying can be used. According to the process of applying or spraying the crystalline polyalphaolefin in the molten state in the production method of the epoxy resin sheet member, it is possible to uniformly disperse the crystalline polyalphaolefin, it is simple, and there is a problem of contamination with foreign matter. Hard to happen.
  • the present invention also includes a step of producing a sealing material by spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in a molten state, and melting the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in the protective film.
  • the manufacturing method of the said epoxy resin sheet member for semiconductor sealing including the process of apply
  • the spraying conditions such as the melting temperature, the nozzle diameter, and the spraying pressure in the step of spraying the crystalline polyalphaolefin in a molten state are particularly limited as long as the particle size of the crystalline polyalphaolefin mist is 50 ⁇ m or less.
  • the melting temperature is about 50 to 200 ° C.
  • the nozzle diameter is about 0.001 to 0.1 mm
  • the spraying pressure is about 0.1 to 10 atm. .
  • a crystalline polyalphaolefin is sprayed in a molten state to produce a sealing material, while mixing at least a raw material containing (2-B) epoxy resin and (2-C) inorganic filler.
  • the method of spraying and adding the crystalline polyalphaolefin is preferred, and the method of spraying and adding the crystalline polyalphaolefin while mixing all the raw materials other than the crystalline polyalphaolefin is particularly preferred.
  • the crystalline polyalphaolefin in a molten state is applied onto the protective film by a known method such as knife coater, bar coater or roll coating. It can apply
  • FIG. 1 is a schematic view showing an example of a semiconductor device (3DP, SiP) in which semiconductor elements are sealed with a resin by a batch sealing method.
  • 1 is a molding material
  • 2 is a semiconductor element
  • 3 is a gold wire
  • 4 is a child substrate
  • 5 is a semiconductor device.
  • 3DP in this figure has a structure in which three semiconductors are stacked and electrically connected to a daughter board with a gold wire.
  • the SiP is a semiconductor, an inverted semiconductor, and a semiconductor device mounted on a child substrate from the left. Since these 3DP and SiP have a very narrow gap between semiconductor components, when a molding material with high viscosity is injected, there is a high possibility that defects (gold wire deformation, unfilling, semiconductor movement, etc.) will occur during molding.
  • the lithium salt obtained under a nitrogen stream was dissolved in 50 ml of toluene. After cooling to ⁇ 78 ° C., a suspension of 1.2 g (5.1 mmol) of zirconium tetrachloride, which had been cooled to ⁇ 78 ° C. in advance, in toluene (20 ml) was added dropwise. After dropping, the mixture was stirred at room temperature for 6 hours. The solvent of the reaction solution was distilled off.
  • Production Example 1-2 (Production of CPAO-70) To a heat-dried 1 liter autoclave was added 400 ml of a mixture containing an ⁇ -olefin having 26 and 28 carbon atoms (C26: 56.9 wt%, C28: 39.4 wt%) and 0.5 mmol of triisobutylaluminum, The temperature was raised to 110 ° C. Then, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring.
  • Nitroborate was added in an amount of 4.0 ⁇ mol, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, followed by heat drying under reduced pressure to obtain 195.0 g of a higher ⁇ -olefin polymer (CPAO-70).
  • CPAO-70 a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer was used, and the sample was held at 190 ° C. for 5 minutes in a nitrogen atmosphere, and then decreased to ⁇ 30 ° C. at 5 ° C./minute.
  • the peak top observed from the melting endotherm curve obtained by maintaining the temperature at ⁇ 30 ° C. for 5 minutes and then increasing the temperature to 190 ° C. at 10 ° C./min was measured, and the melting point was determined to be 70 ° C. It was. Further, the temperature at which the melting was started was 55 ° C., and the temperature at which the melting was completed was determined to be 71 ° C.
  • Production Example 1-3 (Production of CPAO-40) To a heat-dried 1 liter autoclave, 400 ml of 1-octadecene (C18) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Then, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. 4.0 micromol of nium borate was added, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes.
  • the reaction product was precipitated by repeating the reprecipitation operation with acetone, followed by heat drying under reduced pressure to obtain 211.0 g of a higher ⁇ -olefin polymer (CPAO-40).
  • CPAO-40 the melting point was determined in the same manner as in Production Example 1-2, and it was 42 ° C.
  • the temperature at which melting was started was 30 ° C.
  • the temperature at which melting was completed was determined. As a result, it was 43 ° C.
  • Production Example 1-4 (Production of CPAO-28) To a heat-dried 1 liter autoclave, 400 ml of 1-hexadecene (C16) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1-1 was stirred, 4.0 micromol of dimethylanilinium borate was added, 0.2 MPa of hydrogen was further introduced, and polymerization was performed for 240 minutes.
  • CPAO-28 a higher ⁇ -olefin polymer
  • FIG. 2 shows the melting characteristics of the crystalline polyalphaolefin obtained in Production Example 1-3 and paraffin wax (manufactured by Nippon Seiki Co., Ltd .: Paraffin Wax 115).
  • the melting temperature range of the crystalline polyalphaolefin is narrow. This is obvious.
  • FIG. 3 is a graph showing melting characteristics of crystalline polyalphaolefins (28 ° C., 40 ° C., 70 ° C.) having different melting points. The characteristic that the melting temperature width is narrow is the same even if the melting point changes.
  • Example 1-1 85 mass% spherical silica powder (MSR-8030, manufactured by Tatsumori Co., Ltd., average particle size 12 ⁇ m), epoxy resin (NC-3000, manufactured by Nippon Kayaku Co., Ltd.) 8 based on the epoxy resin molding material for semiconductor encapsulation 4% by mass, epoxy resin curing agent (Kayahard GPH, manufactured by Nippon Kayaku Co., Ltd.), 0.5% by mass of epoxy resin curing accelerator (TPP-K, manufactured by Hokuko Chemical Co., Ltd.), modifier (KBM303) (Manufactured by Shin-Etsu Chemical Co., Ltd.) 0.3 mass% and mold release agent (Hoechst S, manufactured by Hoechst) 0.2 mass% were put into a Henschel type mixer, and CPAO-70 obtained in Production Example 1-2.
  • epoxy resin NC-3000, manufactured by Nippon Kayaku Co., Ltd. 8 based on the epoxy resin molding material for semiconductor encapsulation 4% by mass,
  • Simulated semiconductor parts (chip size 10mm x 10mm, 176pinLQFP, outer dimensions 24mm x 24mm x 1.4mm) are sealed by transfer molding (mold temperature 165 ° C, curing time 3 minutes) with the material obtained, appearance and filling And the gold wire deformation was evaluated by the following method.
  • the simulated semiconductor parts used for the appearance, fillability, and gold wire deformation evaluation were processed with pseudo circuit wiring to arrange the semiconductors on a single-sided copper foil substrate, and the semiconductor equivalent parts and external connection terminals were not mounted. The part is connected with a gold wire.
  • A There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 ⁇ m or more.
  • Appearance abnormality of 10-30 ⁇ m is 2 or less / molded product, and there is no appearance abnormality of 30 ⁇ m or more.
  • Appearance abnormality of 10 to 30 ⁇ m is 5 or less / molded product, and there is no appearance abnormality of 30 ⁇ m or more.
  • Appearance abnormality of 10 to 30 ⁇ m is 6 or more / molded product, or appearance abnormality of 30 ⁇ m or more.
  • Gold wire deformation The simulated semiconductor component sealed by molding was observed with a soft X-ray apparatus and evaluated according to the following criteria. None: Gold wire deformation rate (gold wire flow width / gold wire length, expressed in%) ⁇ 2% Small: Gold wire deformation rate ⁇ 5% Large: Gold wire deformation rate ⁇ 5%
  • Example 1-2 Semiconductor encapsulation in the same manner as in Example 1-1 except that CPAO-40 (melting point: 42 ° C.) obtained in Production Example 1-3 was used instead of CPAO-70 obtained in Production Example 1-2. Epoxy resin molding materials were manufactured and evaluated for appearance, fillability and gold wire deformation.
  • Example 1-3 The epoxy for semiconductor encapsulation was changed in the same manner as in Example 1-1 except that the blending amount in Example 1-1 was changed to 81% by mass of spherical silica powder, 11% by mass of epoxy resin, and 5% by mass of epoxy resin curing agent. Resin molding materials were manufactured and evaluated for appearance, fillability and gold wire deformation.
  • Example 1-4 CPAO-70 was not pulverized with CPAO-70, but CPAO-70 was pulverized with a cutter mill, and passed through a circular sieve (aperture 50 ⁇ m) to obtain a finely pulverized product, which was charged into the mixer simultaneously with other components. Except for the above, an epoxy resin molding material for semiconductor encapsulation was produced in the same manner as in Example 1-1, and the appearance, fillability, and gold wire deformation were evaluated.
  • Comparative Example 1-1 The amount of spherical silica powder was changed to 87% by mass without using crystalline polyalphaolefin, and the others were produced in the same manner as in Example 1-1, and the appearance, fillability, and gold wire deformation were determined. evaluated.
  • the obtained molding material had a high melt viscosity, and the workability during materialization and the fluidity during molding were very poor.
  • Comparative Example 1-2 A molding material is produced in the same manner as in Example 1-1 except that CPAO-28 (melting point: 28 ° C.) obtained in Production Example 1-4 is used instead of CPAO-70 obtained in Production Example 1-2. The appearance, fillability, and gold wire deformation were evaluated.
  • Comparative Example 1-3 A molding material was produced in the same manner as in Example 1-4 except that coarse particles were used in place of the finely pulverized product of CPAO-70, and the appearance, fillability and gold wire deformation were evaluated. As coarse particles, CPAO-70 was pulverized in the same manner as in Example 1-4, and the one remaining on the sieve screen of a circular sieve (aperture 75 ⁇ m) was used.
  • Comparative Example 1-4 A molding material was produced in the same manner as in Example 1-1 except that the amount of CPAO-70 added was increased to 6% by mass. The cured product of the obtained molding material was insufficient in strength locally, and a normal molded product could not be obtained. Therefore, the appearance, fillability and gold wire deformation could not be evaluated.
  • Example 1-1 materialization was performed in the same manner as in Example 1-1 except that paraffin wax (Nippon Seiki Co., Ltd., paraffin wax 115) was used instead of CPAO-70. Since the obtained molding material was extremely sticky and a molded product having a normal shape could not be obtained, the appearance, fillability and gold wire deformation could not be evaluated.
  • paraffin wax Natural Seiki Co., Ltd., paraffin wax 115
  • Table 1 shows the contents and results of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5.
  • the evaluation results of Examples 1-1 to 1-5 It is understood that is excellent.
  • the molding materials of Comparative Examples 1-2 and 1-3 had large variations in appearance, fillability, and gold wire deformation evaluation.
  • the lithium salt obtained under a nitrogen stream was dissolved in 50 ml of toluene. After cooling to ⁇ 78 ° C., a suspension of 1.2 g (5.1 mmol) of zirconium tetrachloride, which had been cooled to ⁇ 78 ° C. in advance, in toluene (20 ml) was added dropwise. After dropping, the mixture was stirred at room temperature for 6 hours. The solvent of the reaction solution was distilled off.
  • Production Example 2-2 (Production of CPAO-70) 400 mL of alpha olefin C26-28 manufactured by Chevron Phillips Chemical Co. and 0.5 mmol of triisobutylaluminum were added to a heat-dried 1 liter autoclave, and the temperature was raised to 110 ° C. Then, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. Nitroborate was added in an amount of 4.0 ⁇ mol, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, followed by heat drying under reduced pressure to obtain 195 g of a higher ⁇ -olefin polymer (CPAO-70).
  • CPAO-70 a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer was used, and the sample was held at 190 ° C. for 5 minutes in a nitrogen atmosphere, and then decreased to ⁇ 30 ° C. at 5 ° C./minute.
  • the peak top observed from the melting endotherm curve obtained by maintaining the temperature at ⁇ 30 ° C. for 5 minutes and then increasing the temperature to 190 ° C. at 10 ° C./min was measured, and the melting point was determined to be 70 ° C. It was.
  • dissolving is 55 degreeC, It was 71 degreeC when the temperature which complete
  • Production Example 2-3 (Production of CPAO-60) 400 mL of alpha olefin C20-24 manufactured by Chevron Phillips Chemical Co., and 0.5 mmol of triisobutylaluminum were added to a 1 liter autoclave that had been dried by heating, and the temperature was raised to 110 ° C. Then, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. Nitroborate was added in an amount of 4.0 ⁇ mol, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes.
  • the reaction product was precipitated by repeating the reprecipitation operation with acetone, and heat dried under reduced pressure to obtain 203 g of a higher ⁇ -olefin polymer (CPAO-60).
  • CPAO-60 the melting point was determined in the same manner as in Production Example 2-2, and it was 60 ° C.
  • the temperature at which melting was started was 45 ° C.
  • the temperature at which melting was completed was determined. As a result, it was 61 ° C.
  • Production Example 2-4 (Production of CPAO-50) Idemitsu Kosan Co., Ltd. “Linearene 2024” 40 0 ml and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 2-1 was stirred, while stirring. 4.0 micromol of dimethylanilinium borate was added, 0.2 MPa of hydrogen was further introduced, and polymerization was performed for 240 minutes.
  • CPAO-50 a higher ⁇ -olefin polymer
  • the melting point was determined in the same manner as in Production Example 2-2, and it was 52 ° C.
  • the temperature at which melting was started was 37 ° C.
  • the temperature at which melting was completed was determined. As a result, it was 53 ° C.
  • Production Example 2-5 (Production of CPAO-40) To a heat-dried 1 liter autoclave, 400 ml of 1-octadecene (C18) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 2-1 was stirred, while stirring. 4.0 micromol of dimethylanilinium borate was added, 0.2 MPa of hydrogen was further introduced, and polymerization was performed for 240 minutes.
  • the reaction product was precipitated by repeating the reprecipitation operation with acetone, and heat dried under reduced pressure to obtain 211 g of a higher ⁇ -olefin polymer (CPAO-40).
  • CPAO-40 the melting point was determined in the same manner as in Production Example 2-2, and it was 42 ° C.
  • the temperature at which melting was started was 30 ° C., and the temperature at which melting was completed was determined. As a result, it was 45 degreeC.
  • Production Example 2-6 (Production of CPAO-28) To a heat-dried 1 liter autoclave, 400 ml of 1-hexadecene (C16) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 ⁇ mol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 2-1 was stirred, while stirring. 4.0 micromol of dimethylanilinium borate was added, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes.
  • the reaction product was precipitated by repeating the reprecipitation operation with acetone, and heat dried under reduced pressure to obtain 205 g of a higher ⁇ -olefin polymer (CPAO-28).
  • CPAO-28 the melting point was determined in the same manner as in Production Example 2-2, and it was 28 ° C.
  • the temperature at which melting was started was 15 ° C.
  • the temperature at which melting was completed was determined. As a result, it was 30 degreeC.
  • FIG. 2 shows the melting characteristics of the crystalline polyalphaolefin obtained in Production Example 2-5 and paraffin wax (manufactured by Nippon Seiki Co., Ltd .: Paraffin Wax 115). Compared with the melting characteristics of crystalline polyalphaolefin (CPAO-40) having a melting point of 42 ° C. obtained in Production Example 2-5 and paraffin wax shown in FIG. It is obvious that is narrow.
  • FIG. 3 is a graph showing melting characteristics of crystalline polyalphaolefins (28 ° C., 40 ° C., 70 ° C.) having different melting points. The characteristic that the melting temperature width is narrow is the same even if the melting point changes.
  • Example 2-1 85.5% by mass of spherical silica powder (FB9454FD, particle size ⁇ 45 ⁇ m, manufactured by Denki Kagaku Kogyo Co., Ltd.), 7% by mass of epoxy resin (YX4000H, manufactured by Japan Epoxy Resin Co., Ltd.), cured epoxy resin 5% by mass of an agent (MEH7800, manufactured by Meiwa Kasei Co., Ltd.), 0.2% by mass of an epoxy resin curing accelerator (TPP, manufactured by KAI Kasei Co., Ltd.) and 0.3% by mass of a modifier (S530, manufactured by Chisso Corporation) was added to a Henschel type mixer, and 2 mass% of CPAO-50 (melting point: 52 ° C.) obtained in Production Example 2-4 was stirred and mixed while melt spraying while adjusting the particle size to 15 ⁇ 5 ⁇ m.
  • a modifier S530, manufactured by Chisso Corporation
  • a sealing material was obtained.
  • the particle diameter of CPAO-50 was 25 ⁇ m or less when CPAO-50 was sprayed on a transparent film and the particle diameter of droplets on the film was measured.
  • the mixture was kneaded with an extruder (SK1, manufactured by Kurimoto Seiko Co., Ltd.), and then a protective film (PET, 75 ⁇ m thickness, Toray Industries, Inc.) melt-coated with CPAO-40 obtained in Production Example 2-5 was used.
  • the epoxy resin sheet member for semiconductor encapsulation was obtained by sandwiching the product into a product made by company.
  • the thickness of CPAO-40 at the time of melt coating was adjusted to 6 ⁇ 3 ⁇ m.
  • a simulated semiconductor substrate (chip size: 10 mm ⁇ 10 mm, 176 pin LQFP, outer dimensions: 24 mm ⁇ 24 mm ⁇ 1.4 mm) is sealed by pressure molding (mold temperature 150 ° C., curing time 3 minutes).
  • the following methods were used for evaluation of stoppage, peelability, fillability, gold wire deformation, and appearance.
  • the simulated semiconductor parts used for peelability, fillability, gold wire deformation, and appearance evaluation were processed with pseudo circuit wiring that aligned semiconductors on a single-sided copper foil substrate.
  • the connection terminal portion is connected with a gold wire.
  • A There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 ⁇ m or more.
  • Appearance abnormality of 10-30 ⁇ m is 2 or less / molded product, and there is no appearance abnormality of 30 ⁇ m or more.
  • Appearance abnormality of 10 to 30 ⁇ m is 5 or less / molded product, and there is no appearance abnormality of 30 ⁇ m or more.
  • Appearance abnormality of 10 to 30 ⁇ m is 6 or more / molded product, or appearance abnormality of 30 ⁇ m or more.
  • A There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 ⁇ m or more.
  • Appearance abnormality of 10-30 ⁇ m is 2 or less / molded product, and there is no appearance abnormality of 30 ⁇ m or more.
  • Appearance abnormality of 10 to 30 ⁇ m is 5 or less / molded product, and there is no appearance abnormality of 30 ⁇ m or more.
  • Appearance abnormality of 10 to 30 ⁇ m is 6 or more / molded product, or appearance abnormality of 30 ⁇ m or more.
  • (Gold wire deformation) The simulated semiconductor component sealed by molding was observed with a soft X-ray apparatus and evaluated according to the following criteria. None: Gold wire deformation rate (gold wire flow width / gold wire length, expressed in%) ⁇ 2% Small: Gold wire deformation rate ⁇ 5% Large: Gold wire deformation rate ⁇ 5%
  • Example 2-2 Instead of CPAO-50 obtained in Production Example 2-4, CPAO-70 obtained in Production Example 2-2 (melting point 70 ° C.) was melted and sprayed in the same manner as in Example 2-1, but the semiconductor encapsulation was performed. A stop epoxy resin sheet member was produced and evaluated for peelability, fillability, gold wire deformation, and appearance.
  • Example 2-3 Instead of CPAO-40 obtained in Production Example 2-5, CPAO-60 (melting point 60 ° C.) obtained in Production Example 2-3 was melt-coated on a protective film in the same manner as in Example 2-1. Then, an epoxy resin sheet member for semiconductor encapsulation was manufactured and evaluated for peelability, fillability, gold wire deformation, and appearance.
  • Example 2-4 Epoxy resin for semiconductor encapsulation in the same manner as in Example 2-1, except that CPAO-40 obtained in Production Example 2-5 was melted and sprayed onto a protective film to form a coating film having a thickness of 12 ⁇ 4 ⁇ m. Sheet members were manufactured and evaluated for peelability, fillability, gold wire deformation, and appearance.
  • Example 2-1 a sheet member was produced without using crystalline polyalphaolefin and the blending amount of the spherical silica powder was 87.5% by mass, and the peelability, fillability, gold wire deformation, and appearance were evaluated. .
  • the peelability of the obtained member was very poor, and a part of the sealing material adhered to the protective film. Further, the melt viscosity of the sealing material was high, the injection property was very poor, and a normal molded product could not be obtained.
  • Comparative Example 2-2 A sheet member was produced in the same manner as in Example 2-1, except that CPAO-28 (melting point 28 ° C.) obtained in Production Example 2-6 was used instead of CPAO-50 obtained in Production Example 2-4. Then, the peelability, fillability, gold wire deformation, and appearance were evaluated.
  • Example 2-2 instead of the method of melt spraying CPAO-70 obtained in Production Example 2-2, coarse particles of CPAO-70 (particle size of 50 ⁇ m or more) were used.
  • Example 2-2 In the same manner as above, sheet members were produced and evaluated for peelability, fillability, gold wire deformation, and appearance.
  • CPAO-70 was finely pulverized and sieved using a sieve mesh having an opening of 50 ⁇ m, and the particles remaining on the sieve mesh were used.
  • Comparative Example 2-4 A sheet member was prepared in the same manner as in Example 2-1, except that the amount of CPAO-50 obtained in Production Example 2-4 was increased to 6% by mass and the amount of spherical silica powder was decreased to 81.5% by mass. Manufactured and evaluated for peelability, fillability, gold wire deformation, and appearance. Although the film peelability of this material was good, variation in the molded product was very large, and a correct evaluation result could not be obtained.
  • Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-4 are shown in Table 2.
  • the peelability, fillability, gold wire deformation, and appearance of the sheet members obtained in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-4 were compared, the semiconductor encapsulation of Examples 1 to 4 was compared. It can be seen that the epoxy resin sheet member for use is excellent. Further, the sealing materials of Comparative Example 2-2 and Comparative Example 2-3 had large variations in peelability, fillability, gold wire deformation, and appearance evaluation.
  • the epoxy resin molding material for semiconductor encapsulation of the present invention is excellent in moldability when used as a transfer molding material for semiconductor encapsulation, and particularly exhibits excellent performance in the collective sealing method. It is a molding material that enables resin sealing of cutting-edge semiconductor devices that were difficult to put into practical use due to various problems during molding. Industrially producing cutting-edge semiconductor devices using existing equipment Enable. Moreover, the epoxy resin sheet member for semiconductor encapsulation of the present invention is excellent in moldability when used as a pressure-molding sheet member for semiconductor encapsulation, and particularly exhibits excellent performance in the collective sealing method. It is a sheet member that enables resin sealing of cutting-edge semiconductor devices that were difficult to put into practical use due to various problems during molding. Industrially producing cutting-edge semiconductor devices using existing equipment Enable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is an epoxy resin molding material for semiconductor sealing purposes, obtained by melt-milling at least (1-A) crystalline poly-a-olefin of melting point 30 to 90°C in a powder and/or spray-like form of particle diameter 75 µm or below, (1-B) epoxy resin and (1-C) inorganic filler, the epoxy resin molding material containing from 0.2 to 5 mass% of said crystalline poly-a-olefin.  Also provided are an excellent epoxy resin molding material for semiconductor sealing purposes having a very low failure rate (due to incomplete filling, wire displacement, void formation, semiconductor movement etc.) on molding the resin seal of a semiconductor element by transfer molding, and a method for producing same, wherein the epoxy resin composition for semiconductor sealing purposes is produced by spraying and adding the crystalline poly-a-olefin of melting point 30 to 90°C in the molten state.  Furthermore, provided is an epoxy resin sheet for semiconductor sealing purposes having a sealing layer comprising sealing material wherein at least (2-A) crystalline poly-a-olefin of melting point 30 to 90°C in a powder and/or spray-like form of particle diameter 50 µm or below, (2-B) epoxy resin and (2-C) inorganic filler have been melt-milled and wherein from 0.2 to 5 mass% of said crystalline poly-a-olefin is included, and a protective film on one side or both sides of said sealing layer.  Also provided are an excellent epoxy resin sheet for semiconductor sealing purposes having a very low failure rate (due to incomplete filling, wire displacement, void formation, semiconductor movement etc.) on molding the resin seal of a semiconductor element by press-bond molding, and a method for producing same, said method including a process wherein crystalline poly-a-olefin of melting point 30 to 90°C is sprayed in the molten state and a sealing material is produced, and a process wherein crystalline poly-a-olefin of melting point from 30 to 90°C is coated or sprayed in the molten state onto a protective film and a peelable layer is formed.

Description

半導体封止用エポキシ樹脂成形材料、半導体封止用エポキシ樹脂シート部材及びそれらの製造方法Epoxy resin molding material for semiconductor encapsulation, epoxy resin sheet member for semiconductor encapsulation, and manufacturing method thereof
 本発明は、半導体封止用エポキシ樹脂成形材料、半導体封止用エポキシ樹脂シート部材及びそれらの製造方法に関する。さらに詳しくは、半導体装置をトランスファー成形法により樹脂封止する場合、特に、半導体装置を一括封止法により樹脂封止する場合に適した半導体封止用エポキシ樹脂成形材料及びその製造方法、並びに半導体装置を一括封止法により樹脂封止する場合に適した半導体封止用エポキシ樹脂シート部材及びその製造方法に関する。 The present invention relates to an epoxy resin molding material for semiconductor encapsulation, an epoxy resin sheet member for semiconductor encapsulation, and a method for producing them. More specifically, when a semiconductor device is encapsulated with a resin by a transfer molding method, particularly when the semiconductor device is encapsulated with a resin by a collective encapsulation method, an epoxy resin molding material for encapsulating a semiconductor, a method for manufacturing the same, and a semiconductor The present invention relates to an epoxy resin sheet member for semiconductor sealing suitable for resin sealing an apparatus by a collective sealing method and a method for manufacturing the same.
 情報通信分野に於ける急速な技術進歩に呼応して、電子機器の性能向上、軽薄短小化および低コスト化が強く求められている。この要求は、半導体を廉価な成形材料を用いてトランスファー成形により封止する大量生産方法を普及させた。この方法は、成形材料を金型内で溶融流動させ半導体を封止する方法である。現在は、多数の半導体を個別に樹脂封止する方法が主流である。近年、更なる合理化および低コスト化を進めるため、一括封止法が提案され一部で採用される動きとなっている。ここでいう一括封止法とは、半導体素子を整列搭載した子基板を樹脂封止する方法の総称であり、半導体業界ではMAP(モールディングアレイパッケージ)と呼ばれる半導体装置の樹脂封止方法を示す。一括封止法は、従来の方法に比べて効率面で大きく優れる。例えば、子基板や成形材料の使用量を少なくできる、金型の寸法を小さく且つ種類を少なくできる等の利点がある。 In response to rapid technological progress in the information and communication field, there is a strong demand for improved performance, lighter and shorter, and lower cost of electronic equipment. This demand has spread mass production methods in which semiconductors are sealed by transfer molding using inexpensive molding materials. This method is a method of sealing a semiconductor by melting and flowing a molding material in a mold. At present, a method of individually encapsulating a large number of semiconductors with resin is the mainstream. In recent years, in order to promote further rationalization and cost reduction, a batch sealing method has been proposed and has been partly adopted. The collective sealing method here is a general term for a method of resin-sealing a child substrate on which semiconductor elements are arranged and mounted, and indicates a resin sealing method of a semiconductor device called MAP (molding array package) in the semiconductor industry. The batch sealing method is greatly superior in efficiency as compared with the conventional method. For example, there are advantages such that the use amount of the sub-substrate and the molding material can be reduced, the size of the mold can be reduced and the types can be reduced.
 しかしながら、一括封止法は様々な技術課題があり汎用化には至っていない。例えば、成形時に反りを生じ個別の半導体装置に切断することが難しい、外部電極接続用金線の間隙が狭い3DP(積層型パッケージ)では金線変形が発生し易い、異種半導体を搭載するSiP(システムインパッケージ)では成形材料が細部へ充填し難い等の問題がある。すなわち、実用性や工業性の技術検討が未だに不十分で、問題の解決には至っていない。 However, the batch sealing method has various technical problems and has not been widely used. For example, it is difficult to cut into individual semiconductor devices due to warping at the time of molding, and 3DP (laminated package) in which the gap between the external electrode connecting gold wires is narrow is likely to cause gold wire deformation. In the system in package), there is a problem that it is difficult to fill the molding material with details. That is, practical and industrial technical studies are still insufficient, and the problem has not been solved.
 一括封止法においては、130℃以上の高温(例えば、150℃~180℃)で半導体搭載子基板上に成形材料を注入し硬化する。反りは、成形品が室温に冷却される時に収縮率の大きい樹脂側に曲がる現象である。この低減方法は、成形材料の熱膨張率を小さくし半導体に近づけるのが一般的である。具体的には、シリカ配合量を増やし樹脂成分(エポキシ樹脂、硬化剤)の軟化点を下げる手法が採用されている。しかし、成形材料の粘度上昇による成形不良(未充填、ボイドの発生)や樹脂成分の金型面への流出による作業性低下等の問題を抱えている。また、細部充填が重要な3DPやSiPでは、成形材料の固形成分であるシリカを微粒化する必要があり成形材料の粘度上昇を避けることが難しい。この結果、金線変形や半導体移動といった不良が発生する。 In the batch sealing method, the molding material is injected onto the semiconductor mounting substrate at a high temperature of 130 ° C. or higher (for example, 150 ° C. to 180 ° C.) and cured. Warpage is a phenomenon in which when a molded product is cooled to room temperature, it bends to a resin side having a large shrinkage rate. This reduction method generally reduces the coefficient of thermal expansion of the molding material and brings it closer to a semiconductor. Specifically, a method is employed in which the amount of silica added is increased and the softening point of the resin component (epoxy resin, curing agent) is lowered. However, there are problems such as molding defects due to an increase in the viscosity of the molding material (unfilled, generation of voids) and workability deterioration due to outflow of resin components to the mold surface. In addition, in 3DP and SiP in which fine filling is important, it is necessary to atomize silica, which is a solid component of the molding material, and it is difficult to avoid an increase in the viscosity of the molding material. As a result, defects such as gold wire deformation and semiconductor movement occur.
 成形材料には、金型から成形品の取出しを円滑にするため離型剤が微量添加されている。この離型剤としては、主に長鎖脂肪酸エステル、長鎖脂肪酸金属塩および長鎖脂肪酸等が使用される。ポリオレフィン類を微量使用する例もあるが、半導体やリードフレームとの密着性を良くするため変性品(酸化型ポリエチエンワックス等)が用いられる。また、成形品の反りで生じる応力を緩和するため熱可塑性樹脂類を添加する例も報告されている。この場合、主に柔軟性に優れるが流動性で劣る熱可塑性エラストマーが用いられている。 Molding material is added with a small amount of release agent to facilitate removal of the molded product from the mold. As the mold release agent, long chain fatty acid esters, long chain fatty acid metal salts, long chain fatty acids and the like are mainly used. Although there is an example in which a small amount of polyolefin is used, a modified product (oxidized polyethylene wax or the like) is used in order to improve adhesion to a semiconductor or a lead frame. In addition, an example in which thermoplastic resins are added to relieve stress caused by warpage of a molded product has been reported. In this case, a thermoplastic elastomer that is mainly excellent in flexibility but poor in fluidity is used.
 半導体のトランスファー成形による樹脂封止は、半導体装置の封止方法として最も普及している。半導体業界では、より合理的で効率的な一括封止法への期待は極めて高く、この方法が抱える問題の解決が強く要求されている。 Resin sealing by semiconductor transfer molding is the most popular method for sealing semiconductor devices. In the semiconductor industry, expectations for a more rational and efficient batch sealing method are extremely high, and there is a strong demand for solving the problems of this method.
 一方、上記問題を解決すべく、封止材料の流動距離を短くする成形方法が検討されている。封止材料を半導体基板全体に拡げ加熱溶融させた後に圧着し更に加圧加熱し半導体装置を製造する方法(以下、圧着成形と称する)である。しかし、圧着成形を利用しても既存の封止材料を使用すると成形不良問題は改善されない。すなわち、実用性や工業性の技術検討が未だに不十分で問題の解決には至っていない。 On the other hand, in order to solve the above problems, a molding method for shortening the flow distance of the sealing material has been studied. In this method, the sealing material is spread over the entire semiconductor substrate and heated and melted, followed by pressure bonding and further pressure heating to manufacture a semiconductor device (hereinafter referred to as pressure bonding molding). However, the molding defect problem is not improved if the existing sealing material is used even if crimping is used. In other words, practical and industrial technical studies are still insufficient and the problem has not been solved.
 上述のように、半導体業界では、合理的で効率的な一括封止法への期待は極めて高いため、この方法が抱える問題の解決が強く要求されている。本発明者らは、半導体装置の更なる薄短小化および低コスト化を可能とする圧着成形による一括封止法に適した新しい封止材料を提供するものである。 As described above, in the semiconductor industry, the expectation for a rational and efficient batch sealing method is extremely high, so that there is a strong demand for solving the problems of this method. The inventors of the present invention provide a new sealing material suitable for a batch sealing method by pressure molding that enables further reduction in the thickness and cost of a semiconductor device.
 一般的に、剥離性フィルムは熱可塑性樹脂製フィルムの上に剥離層を形成している。例えば、易剥離性樹脂(ウレタン系、アクリル系、ポリエステル系、ポリビニルアルコール系の樹脂類)や離型剤(シリコーン系、フッソ系の樹脂類)で被膜している。フィルム材質は耐熱性や耐溶剤性等の要求水準に合ったものが使用されている。 Generally, a peelable film has a peelable layer formed on a thermoplastic resin film. For example, it is coated with an easily peelable resin (urethane-based, acrylic-based, polyester-based, polyvinyl alcohol-based resins) or a release agent (silicone-based, fluorine-based resins). Film materials that meet the required level of heat resistance and solvent resistance are used.
特開平6-211963号公報Japanese Patent Laid-Open No. 6-211963 特開平8-012850号公報Japanese Patent Laid-Open No. 8-012850 特開平10-204256号公報JP-A-10-204256 特開2000-007885号公報JP 2000-007885 A 特開2000-281750号公報JP 2000-281750 A 特開2004-224849号公報JP 2004-224849 A 特開2004-300239号公報Japanese Patent Application Laid-Open No. 2004-3000239 特開平11-333869号公報Japanese Patent Laid-Open No. 11-333869 特開2002-212529号公報Japanese Patent Laid-Open No. 2002-212529 特開2004-155853号公報Japanese Patent Laid-Open No. 2004-155853 特開2006-117919号公報JP 2006-117919 A 特開2007-031585号公報JP 2007-031585 A
 本発明は、上記のような状況下で、半導体素子のトランスファー成形による樹脂封止において、成形時の不良発生(未充填、金線変形、ボイド発生、半導体移動等)が極めて少ない優れた半導体封止用エポキシ樹脂成形材料、特に、トランスファー成形一括封止法に最適な半導体封止用エポキシ樹脂成形材料及びその製造方法を提供することを第一の目的とし、半導体素子の圧着成形による樹脂封止において、成形時の不良発生(未充填、金線変形、ボイド発生、半導体移動等)が極めて少ない優れた半導体封止用エポキシ樹脂シート部材、特に、圧着成形一括封止法に最適な半導体封止用エポキシ樹脂シート部材及びその製造方法を提供することを第二の目的とするものである。 Under the circumstances as described above, the present invention provides an excellent semiconductor encapsulation in which resin molding by transfer molding of a semiconductor element has very few defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.). Epoxy resin molding material for fastening, in particular, resin sealing by crimping of semiconductor elements, with the primary purpose of providing an epoxy resin molding material for semiconductor sealing that is optimal for the transfer molding batch sealing method and its manufacturing method , Excellent epoxy resin sheet material for semiconductor encapsulation, especially the semiconductor sealing that is most suitable for the pressure-bonding batch sealing method, with very few defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.) It is the second object to provide an epoxy resin sheet member for use in the present invention and a method for producing the same.
 本発明者らは、鋭意研究を重ねた結果、好ましくは溶融状態で噴霧添加された特定の融点と粒径を有する結晶性ポリアルファオレフィン特定量と、エポキシ樹脂及び無機充填材を溶融混練してなる半導体封止用エポキシ樹脂成形材料により、上記第一の目的を達成し得ることと、好ましくは溶融状態で噴霧添加された特定の融点と粒径を有する結晶性ポリアルファオレフィンと、エポキシ樹脂及び無機充填材を溶融混練してなる半導体封止用エポキシ樹脂シート部材により、上記第二の目的を達成し得ることを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち本発明は、
1.少なくとも(1-A)融点が30~90℃の結晶性ポリアルファオレフィンの粒径75μm以下の粉体及び/又は霧状体、(1-B)エポキシ樹脂、並びに(1-C)無機充填材を溶融混練してなる半導体封止用エポキシ樹脂成形材料であって、該結晶性ポリアルファオレフィンを0.2~5質量%含有する半導体封止用エポキシ樹脂成形材料、
2.前記結晶性ポリアルファオレフィンが、融点の-15℃以内で融解を開始し+3℃以内で融解を終了するものである上記1に記載の半導体封止用エポキシ樹脂成形材料、
3.前記(1-C)無機充填材がシリカ粉体である上記1に記載の半導体封止用エポキシ樹脂成形材料、
4.前記(1-C)無機充填材を80質量%以上含有する上記1に記載の半導体封止用エポキシ樹脂成形材料、
5.融点が30~90℃の結晶性ポリアルファオレフィンを、溶融状態で噴霧して添加することを特徴とする上記1に記載の半導体封止用エポキシ樹脂成形材料の製造方法、
6.少なくとも(2-A)融点が30~90℃の結晶性ポリアルファオレフィンの粒径50μm以下の粉体及び/又は霧状体、(2-B)エポキシ樹脂、並びに(2-C)無機充填材を溶融混練してなり、かつ、該結晶性ポリアルファオレフィンを0.2~5質量%含有する封止材料からなる封止層を有する半導体封止用エポキシ樹脂シート部材であって、さらに、該封止層の片面又は両面に保護フィルムを有する半導体封止用エポキシ樹脂シート部材、
7.前記結晶性ポリアルファオレフィンが、融点の-15℃以内で融解を開始し+3℃以内で融解を終了するものである上記6に記載の半導体封止用エポキシ樹脂シート部材、
8.前記保護フィルムの封止層側に、融点が30~90℃の結晶性ポリアルファオレフィンを含む厚さ0.1~10μmの剥離層を有する上記6に記載の半導体封止用エポキシ樹脂シート部材、及び
9.融点が30~90℃の結晶性ポリアルファオレフィンを溶融状態で噴霧して封止材料を製造する工程と、保護フィルムに融点が30~90℃の結晶性ポリアルファオレフィンを溶融状態で塗布又は噴霧して剥離層を形成する工程とを含むことを特徴とする上記6に記載の半導体封止用エポキシ樹脂シート部材の製造方法、
を提供するものである。
As a result of intensive research, the inventors of the present invention preferably melt-kneaded a specific amount of crystalline polyalphaolefin having a specific melting point and particle size sprayed in a molten state, an epoxy resin and an inorganic filler. The above-mentioned first object can be achieved by an epoxy resin molding material for semiconductor encapsulation, and preferably a crystalline polyalphaolefin having a specific melting point and particle size sprayed in a molten state, an epoxy resin, and It has been found that the second object can be achieved by an epoxy resin sheet member for semiconductor encapsulation formed by melt-kneading an inorganic filler. The present invention has been completed based on such findings.
That is, the present invention
1. At least (1-A) crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and / or mist with a particle size of 75 μm or less, (1-B) epoxy resin, and (1-C) inorganic filler An epoxy resin molding material for semiconductor encapsulation, which is obtained by melt-kneading, and contains 0.2-5% by mass of the crystalline polyalphaolefin,
2. 2. The epoxy resin molding material for semiconductor encapsulation according to 1 above, wherein the crystalline polyalphaolefin starts melting within −15 ° C. of the melting point and ends melting within + 3 ° C.,
3. 2. The epoxy resin molding material for semiconductor encapsulation according to 1 above, wherein the (1-C) inorganic filler is silica powder,
4). 2. The epoxy resin molding material for semiconductor encapsulation according to 1 above, which contains 80% by mass or more of the (1-C) inorganic filler,
5). 2. The method for producing an epoxy resin molding material for semiconductor encapsulation according to 1 above, wherein the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. is added by spraying in a molten state,
6). At least (2-A) crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and / or mist with a particle size of 50 μm or less, (2-B) epoxy resin, and (2-C) inorganic filler An epoxy resin sheet member for semiconductor encapsulation having a sealing layer made of a sealing material containing 0.2 to 5% by mass of the crystalline polyalphaolefin, An epoxy resin sheet member for semiconductor encapsulation having a protective film on one or both sides of the sealing layer,
7). 7. The epoxy resin sheet member for semiconductor encapsulation according to 6 above, wherein the crystalline polyalphaolefin starts melting within −15 ° C. of the melting point and ends melting within + 3 ° C.,
8). 7. The epoxy resin sheet member for semiconductor encapsulation as described in 6 above, which has a release layer having a thickness of 0.1 to 10 μm containing crystalline polyalphaolefin having a melting point of 30 to 90 ° C. on the sealing layer side of the protective film. And 9. A process for producing a sealing material by spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in a molten state, and applying or spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. to the protective film in a molten state And a step of forming a release layer, and the method for producing an epoxy resin sheet member for semiconductor encapsulation according to 6 above,
Is to provide.
 本発明の半導体封止用エポキシ樹脂成形材料は、半導体素子のトランスファー成形による樹脂封止において、成形時の不良発生(未充填、金線変形、ボイド発生、半導体移動等)が極めて少ない、優れた半導体封止用エポキシ樹脂成形材料である。また、本発明の半導体封止用エポキシ樹脂シート部材は、半導体素子の圧着成形による樹脂封止において、成形時の不良発生(未充填、金線変形、ボイド発生、半導体移動等)が極めて少ない、優れた半導体封止用エポキシ樹脂シート部材である。 The epoxy resin molding material for semiconductor encapsulation of the present invention is excellent in the occurrence of defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.) in resin sealing by transfer molding of semiconductor elements. It is an epoxy resin molding material for semiconductor encapsulation. In addition, the epoxy resin sheet member for semiconductor sealing of the present invention has very little occurrence of defects during molding (unfilled, gold wire deformation, void generation, semiconductor movement, etc.) in resin sealing by pressure-bonding molding of semiconductor elements. It is an excellent epoxy resin sheet member for semiconductor encapsulation.
一括封止型半導体装置の例を示す図である。It is a figure which shows the example of a packaged semiconductor device. 製造例1-3及び製造例2-5で得られた結晶性ポリアルファオレフィン及びパラフィンワックスの融解特性を示す図である。FIG. 6 is a graph showing melting characteristics of crystalline polyalphaolefin and paraffin wax obtained in Production Example 1-3 and Production Example 2-5. 製造例1-2~1-4並びに製造例2-2、2-5及び2-6で得られた融点の異なる結晶性ポリアルファオレフィンの融解特性を示す図である。FIG. 6 is a graph showing the melting characteristics of crystalline polyalphaolefins having different melting points obtained in Production Examples 1-2 to 1-4 and Production Examples 2-2, 2-5, and 2-6.
1:成形材料
2:半導体
3:金線
4:子基板
5:半導体装置
1: Molding material 2: Semiconductor 3: Gold wire 4: Substrate 5: Semiconductor device
(第一発明)
 本発明の半導体封止用エポキシ樹脂成形材料は、少なくとも(1-A)融点が30~90℃の結晶性ポリアルファオレフィンの粒径75μm以下の粉体及び/又は霧状体、(1-B)エポキシ樹脂、並びに(1-C)無機充填材を溶融混練してなる半導体封止用エポキシ樹脂成形材料であって、該結晶性ポリアルファオレフィンを0.2~5質量%含有する。
(First invention)
The epoxy resin molding material for semiconductor encapsulation of the present invention comprises at least (1-A) powder and / or mist of crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and having a particle size of 75 μm or less, ) An epoxy resin molding material for semiconductor encapsulation obtained by melt-kneading an epoxy resin and (1-C) inorganic filler, containing 0.2 to 5% by mass of the crystalline polyalphaolefin.
 上記(1-A)成分において用いられる融点が30~90℃の結晶性ポリアルファオレフィン(以下、結晶性ポリアルファオレフィンと略すことがある。)としては、上記規定を満たすものであれば特に限定されないが、炭素数10以上のα-オレフィン単量体を1種以上重合して、あるいは、炭素数10以上のα-オレフィン単量体を1種以上と他のオレフィンとを重合して得られたものが好ましい。
 上記炭素数10以上のα-オレフィン単量体の具体例としては、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、1-ヘンエイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン、1-ヘントリアコンテン、1-ドトリアコンテン、1-トリトリアコンテン、1-テトラトリアコンテン、1-ペンタトリアコンテン、1-ヘキサトリアコンテン、1-テトラコンテン、1-ペンタコンテン、1-ヘキサコンテン、1-ヘプタコンテン、1-オクタコンテン、1-ノナコンテン、1-オクタノナコンテン、1-ノナノナコンテン、1-ヘクテン、1-ヘンヘクテン、1-ドヘクテン、1-トリヘクテン等が挙げられ、これらのうち炭素数18~40のものが好ましく用いられる。
 上記のα-オレフィン単量体は、1種を単独で用いることもできるが、2種以上のα-オレフィン単量体の混合物を用いることもできる。
 また、2種以上のα-オレフィン単量体として、単量体の市販品同士のブレンド品や混合体の市販品を用いることが可能であり、例えば、リニアレン2024〔出光興産株式会社製:商品名〕等の市販品を用いることができる。
The crystalline polyalphaolefin having a melting point of 30 to 90 ° C. (hereinafter sometimes abbreviated as crystalline polyalphaolefin) used in the component (1-A) is not particularly limited as long as it satisfies the above requirements. However, it is obtained by polymerizing one or more α-olefin monomers having 10 or more carbon atoms or polymerizing one or more α-olefin monomers having 10 or more carbon atoms with other olefins. Are preferred.
Specific examples of the α-olefin monomer having 10 or more carbon atoms include 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 1-henecocene, 1-docosene, 1-tricosene, 1-tetracocene, 1-pentacocene, 1-hexacocene, 1-heptacocene, 1-octacocene, 1-nonacocene, 1- Tria content, 1-Hentria content, 1-Dotria content, 1-Tritria content, 1-Tetratria content, 1-Pentatria content, 1-Hexatria content, 1-Tetra content, 1-Penta content, 1 -Hexacontene, 1-heptaconten, 1-octaconten, 1- Nakonten, 1-octa nona contency, 1 Nonanonakonten, 1 Hekuten, 1 Henhekuten, 1 Dohekuten, 1 Torihekuten and the like, these things of carbon atoms 18-40 are preferably used.
The above α-olefin monomers can be used alone, or a mixture of two or more α-olefin monomers can also be used.
Also, as two or more kinds of α-olefin monomers, it is possible to use commercial products of blended monomers or commercial products of mixtures, such as Linearlen 2024 [manufactured by Idemitsu Kosan Co., Ltd .: Commodity Name] etc. can be used.
 本発明において、上記α-オレフィン単量体を重合して、結晶性ポリアルファオレフィンを得るに際しては、触媒として、メタロセン化合物やTi-Mg系化合物などが好適に用いられる。
 メタロセン化合物としては、ジメチルシリレンビス(2-メチル-4,5-ベンゾインデニル)ジルコニウムジクロライド、ジメチルシリレンビス(2-メチル-4-フェニルインデニル)ジルコニウムジクロライド、ジメチルシリレンビス(2-メチル-4-ナフチルインデニル)ジルコニウムジクロライド、ジメチルシリレンビス(2-メチルインデニル)ジルコニウムジクロライド、エチレンビス(2-メチルインデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(3-トリメチルシリルメチル-インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)(3-トリメチルシリルメチル-インデニル)(インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(3-n-ブチル-インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)(n-ブチル-インデニル)(インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロライド、1,1'-ジメチルシリレンビス(2-エチル-4-(2-フルオロ-4-ビフェニリル)-4H-アズレニル)ジルコニウムジクロライド、及びジメチルシリレン(シクロペンタジエニル)(2,4-ジメチル-4H-1-アズレニル)ジルコニウムジクロライド等のジルコニウムジクロライド化合物;並びにこれらのジルコニウムジクロライド化合物のジクロライドをジメチル或いはジベンジルに置換した化合物等のジルコニウム化合物;並びにこれらのジルコニウム化合物のジルコニウムをチタニウム又はハフニウムに置換したチタニウム化合物やハフニウム化合物等が挙げられる。これらのメタロセン化合物は、2種以上を併用してもよい。
 また、この触媒として、通常、前記メタロセン化合物に加えて、トリイソブチルアルミニウム等の有機アルミニウム化合物、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート等の有機ホウ素化合物が用いられる。
In the present invention, when polymerizing the α-olefin monomer to obtain a crystalline polyalphaolefin, a metallocene compound or a Ti—Mg compound is preferably used as a catalyst.
Examples of the metallocene compound include dimethylsilylene bis (2-methyl-4,5-benzoindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4). -Naphthylindenyl) zirconium dichloride, dimethylsilylenebis (2-methylindenyl) zirconium dichloride, ethylenebis (2-methylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) ) Bis (3-trimethylsilylmethyl-indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (3-trimethylsilylmethyl-indenyl) (indenyl) zirconium Dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n -Butyl-indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (n-butyl-indenyl) (indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2 , 1′-dimethylsilylene) bis (indenyl) zirconium dichloride, 1,1′-dimethylsilylenebis (2-ethyl-4- (2-fluoro-4-biphenylyl) -4H-azurenyl) zirconium dichloride, and dimethylsilylene ( Cyclopentadienyl) (2,4-dimethyl-4H-1-azuleni ) Zirconium dichloride compounds such as zirconium dichloride; and zirconium compounds such as compounds obtained by substituting dichloride of these zirconium dichloride compounds with dimethyl or dibenzyl; and titanium compounds or hafnium compounds obtained by substituting zirconium of these zirconium compounds with titanium or hafnium. Is mentioned. These metallocene compounds may be used in combination of two or more.
In addition to the metallocene compound, an organoaluminum compound such as triisobutylaluminum and an organoboron compound such as dimethylanilinium tetrakispentafluorophenylborate are usually used as the catalyst.
 本発明の半導体封止用エポキシ樹脂成形材料は、上記結晶性ポリアルファオレフィンを0.2~5質量%、好ましくは0.5~3質量%含有することで、流動性に優れるものである。結晶性ポリアルファオレフィンの含有量が0.2質量%未満であると、流動性の向上効果が得られず、5質量%を超えると成形品の強度低下等の問題が起こる。
 上記結晶性ポリアルファオレフィンとしては、融点が30~90℃、好ましくは40~80℃のものが用いられる。結晶性ポリアルファオレフィンの融点が30℃未満であると粉砕時や打錠時に融着等の問題が発生するため、半導体封止用エポキシ樹脂成形材料の製造時の作業性が悪化し、上記融点が90℃を超えると成形時の流動性が低下するため、未充填やボイドに起因する成形不良が発生しやすい。
 また、上記結晶性ポリアルファオレフィンは、粒径が75μm以下、好ましくは25μm以下の粉体及び/又は霧状体として用いられる。粒径が75μmを超えると、成形時に溶出する等の問題が発生する可能性がある。
 上記(1-A)成分として、結晶性ポリアルファオレフィンの粉体を用いる場合には、例えば、原料の結晶性ポリアルファオレフィンをカッターミル等を用いて微粉砕し、所定の目開きの篩を用いることで、所望の粒径以下の粉体を得ることができる。また、結晶性ポリアルファオレフィンの霧状体を用いる場合には、結晶性ポリアルファオレフィンを溶融噴霧して、他の原料に添加することができるが、溶融噴霧時の噴霧条件(溶融温度、ノズル径、噴霧圧力等)を適宜調節することで粒径を任意に制御することができるので、霧状体の使用が好ましい。霧状の結晶性ポリアルファオレフィンの粒径は、透明フィルムに結晶性ポリアルファオレフィンを噴霧しフィルム上の液滴の粒径を計測して確認することができる。
 上記結晶性ポリアルファオレフィンは、融解温度幅が狭いものを用いることが好ましく、具体的には、融点の-15℃以内で融解を開始し+3℃以内で融解を終了するものが好ましい。ここで、結晶性ポリアルファオレフィンが融解を開始する温度は、パーキンエルマー社製の示差走査型熱量計(DSC-7)を用い、試料を窒素雰囲気下190℃で5分保持した後、-30℃まで、5℃/分で降温させ、-30℃で5分保持した後、190℃まで10℃/分で昇温させる際の吸熱を開始する温度とし、融解を終了する温度は吸熱が完全に無くなる温度とした。
The epoxy resin molding material for semiconductor encapsulation of the present invention contains 0.2 to 5% by mass, preferably 0.5 to 3% by mass of the crystalline polyalphaolefin, so that it has excellent fluidity. If the content of the crystalline polyalphaolefin is less than 0.2% by mass, the effect of improving the fluidity cannot be obtained, and if it exceeds 5% by mass, problems such as a decrease in strength of the molded product occur.
As the crystalline polyalphaolefin, one having a melting point of 30 to 90 ° C., preferably 40 to 80 ° C. is used. If the melting point of the crystalline polyalphaolefin is less than 30 ° C., problems such as fusion during pulverization or tableting occur, so the workability during the production of the epoxy resin molding material for semiconductor encapsulation deteriorates, and the above melting point If the temperature exceeds 90 ° C., the fluidity during molding decreases, and molding defects due to unfilling and voids are likely to occur.
The crystalline polyalphaolefin is used as a powder and / or mist having a particle size of 75 μm or less, preferably 25 μm or less. If the particle size exceeds 75 μm, there is a possibility that problems such as elution occur during molding.
When a crystalline polyalphaolefin powder is used as the component (1-A), for example, the raw crystalline polyalphaolefin is finely pulverized using a cutter mill or the like, and a sieve having a predetermined mesh is used. By using, a powder having a desired particle size or less can be obtained. In addition, when using a crystalline polyalphaolefin mist, the crystalline polyalphaolefin can be melt sprayed and added to other raw materials. The particle size can be arbitrarily controlled by appropriately adjusting the diameter, spraying pressure, etc.), so the use of a mist is preferred. The particle size of the atomized crystalline polyalphaolefin can be confirmed by spraying the crystalline polyalphaolefin on a transparent film and measuring the particle size of droplets on the film.
It is preferable to use a crystalline polyalphaolefin having a narrow melting temperature range, and specifically, one that starts melting within −15 ° C. of the melting point and ends melting within + 3 ° C. is preferable. Here, the temperature at which the crystalline polyalphaolefin starts to melt was determined by using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer, Inc., holding the sample at 190 ° C. for 5 minutes in a nitrogen atmosphere, and then −30 The temperature is decreased to 5 ° C / min to 5 ° C / min, held at -30 ° C for 5 min, and then the endothermic temperature is started when the temperature is increased to 190 ° C at 10 ° C / min. The temperature at which the temperature disappeared.
 一般に、結晶性ポリアルファオレフィンの競合として、同程度の融点を持つパラフィンワックスが知られている。両者の融解特性を比較すると、本願発明において用いられる結晶性ポリアルファオレフィンは結晶性であるため、上述のように融解温度幅が極めて狭いという特徴を有する。融点40℃程度の両者を比べると、パラフィンワックスは室温で融解を始めるため成形材料の室温加工には不適であるが、結晶性ポリアルファオレフィンは室温で固体のため全く問題がない。また、結晶性ポリアルファオレフィンは40℃になると直ちに融解し粘度が低下する。すなわち、本願発明において用いられる結晶性ポリアルファオレフィンは、融解温度幅が極めて狭いため、成形材料の製造加工時の作業性および成形時の流動性に優れるという特徴を有する。 Generally, paraffin wax having a similar melting point is known as a competitor of crystalline polyalphaolefin. Comparing the melting characteristics of the two, the crystalline polyalphaolefin used in the present invention is crystalline, and thus has a characteristic that the melting temperature range is extremely narrow as described above. Comparing both with a melting point of about 40 ° C., paraffin wax begins to melt at room temperature and is therefore not suitable for room temperature processing of the molding material. However, crystalline polyalphaolefin is solid at room temperature, so there is no problem. In addition, the crystalline polyalphaolefin is immediately melted at 40 ° C. and the viscosity is lowered. That is, the crystalline polyalphaolefin used in the present invention has a feature that the melting temperature range is extremely narrow, and thus the workability during the manufacturing process of the molding material and the fluidity during molding are excellent.
 結晶性ポリアルファオレフィンは熱安定性に優れ、汎用のポリオレフィンワックスに比べて高温保管時の品質変化(酸化等)が少ない。通常、ポリオレフィンワックスは融点が100℃以上と高く、熱可塑性樹脂成形材料の離型剤として使用される。熱硬化性樹脂成形材料の場合には、離型性の効果はあまり期待できず密着性や粘着性を向上させる添加剤として利用される。この場合も予め変質させた酸化型製品を用い成形材料中での品質安定性の保持を図っている。すなわち、結晶性ポリアルファオレフィンは従来の離型剤として使用されるポリオレフィンワックスとは特性が異なる。 Crystalline polyalphaolefin is excellent in thermal stability and has less quality change (oxidation, etc.) at high temperature storage than general-purpose polyolefin wax. Usually, the polyolefin wax has a high melting point of 100 ° C. or higher, and is used as a release agent for a thermoplastic resin molding material. In the case of a thermosetting resin molding material, the effect of releasability cannot be expected so much and it is used as an additive for improving adhesion and tackiness. In this case as well, quality stability in the molding material is maintained by using an oxidized product that has been altered in advance. That is, crystalline polyalphaolefin has different characteristics from polyolefin wax used as a conventional release agent.
 上記(1-B)エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等(ビスフェノールAジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールGジグリシジルエーテル、テトラメチルビスフェノールAジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、ビスフェノールCジグリシジルエーテル等)、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレートなどの脂環式エポキシ樹脂、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、脂肪族系エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等の多官能エポキシ樹脂、ビスフェノールAF型エポキシ樹脂などの含フッ素エポキシ樹脂、(メタ)アクリル酸グリシジルエステル等が挙げられる。これらは単独で使用してもよく、二種以上を併用してもよい。
 (1-B)エポキシ樹脂の具体例としては、半導体封止材料用として市販されている各種製品が挙げられるが、例えば、日本化薬、大日本インキ化学工業、JER社製のエポキシ樹脂を挙げることができる。一括封止用成形材料では、エポキシ樹脂は多芳香環型低分子量品が主に用いられている。
 上記(1-B)エポキシ樹脂は、常温で固形でも液状でもよいが、一般に、使用する(1-B)エポキシ樹脂の平均エポキシ当量は100~2000のものが好ましい。平均エポキシ当量が100より小さい場合には、半導体封止用エポキシ樹脂成形材料の硬化体が脆くなる場合がある。また、平均エポキシ当量が2000を超える場合には、その硬化体のガラス転移温度(Tg)が低くなる場合がある。
Examples of the (1-B) epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin and the like (bisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, Bisphenol F diglycidyl ether, bisphenol G diglycidyl ether, tetramethylbisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, bisphenol C diglycidyl ether, etc.), novolaks such as phenol novolac type epoxy resin and cresol novolac type epoxy resin Type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate Biphenyl type, which is the mainstream of nitrogen-containing ring epoxy resins such as alicyclic epoxy resins such as triglycidyl isocyanurate, hydantoin epoxy resins, hydrogenated bisphenol A type epoxy resins, aliphatic epoxy resins, and low water absorption rate cured type Epoxy resin, dicyclocyclic epoxy resin, naphthalene type epoxy resin, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, polyfunctional epoxy resin such as pentaerythritol polyglycidyl ether, fluorine-containing epoxy resin such as bisphenol AF type epoxy resin, Examples include (meth) acrylic acid glycidyl ester. These may be used alone or in combination of two or more.
Specific examples of the (1-B) epoxy resin include various products that are commercially available for semiconductor encapsulating materials. Examples include epoxy resins manufactured by Nippon Kayaku, Dainippon Ink and Chemicals, and JER. be able to. In the encapsulating molding material, polyaromatic low molecular weight products are mainly used as epoxy resins.
The (1-B) epoxy resin may be solid or liquid at room temperature, but in general, the (1-B) epoxy resin used preferably has an average epoxy equivalent of 100 to 2000. When the average epoxy equivalent is less than 100, the cured product of the epoxy resin molding material for semiconductor encapsulation may become brittle. Moreover, when an average epoxy equivalent exceeds 2000, the glass transition temperature (Tg) of the hardening body may become low.
 上記(1-C)無機充填材としては、シリカ、アルミナ、窒化ケイ素、炭化ケイ素、タルク、ケイ酸カルシウム、炭酸カルシウム、マイカ、クレイ、チタンホワイト等の粉体、ガラス、カーボン等の短繊維が例示される。これらの中で熱膨張率と熱伝導率の点から、シリカ、アルミナ、窒化ケイ素、炭化ケイ素粉体が好ましく、特にシリカ粉体が好ましい。本発明の半導体封止用エポキシ樹脂成形材料は流動性に優れるが、シリカ粉体を含有するものであると、流動性の向上効果が顕著に得られる。さらに、本発明の半導体封止用エポキシ樹脂成形材料の流動性を考えるとその形状は球状、又は球形と不定形の混合物が好ましい。上記シリカ粉体としては、例えば、半導体封止材料用として市販されている製品より任意に選択できる。具体的には、龍森、電気化学工業又はマイクロン社製のシリカ粉体を挙げることができ、粗粒を除去した熔射型球状品が主に用いられている。
 本発明の半導体封止用エポキシ樹脂成形材料は(1-C)無機充填材を80~98質量%含有するものが好ましく、85~95質量%含有するものがより好ましい。
Examples of the (1-C) inorganic filler include silica, alumina, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, titanium white and other powders, and short fibers such as glass and carbon. Illustrated. Among these, silica, alumina, silicon nitride, and silicon carbide powder are preferable from the viewpoint of thermal expansion coefficient and thermal conductivity, and silica powder is particularly preferable. The epoxy resin molding material for semiconductor encapsulation of the present invention is excellent in fluidity, but if it contains silica powder, the effect of improving fluidity is remarkably obtained. Furthermore, considering the fluidity of the epoxy resin molding material for semiconductor encapsulation of the present invention, the shape is preferably spherical or a mixture of spherical and irregular shapes. As said silica powder, it can select arbitrarily from the product marketed as an object for semiconductor sealing materials, for example. Specifically, silica powder made by Tatsumori, Denki Kagaku Kogyo, or Micron Corporation can be mentioned, and a sprayed spherical product from which coarse particles are removed is mainly used.
The epoxy resin molding material for semiconductor encapsulation of the present invention preferably contains 80 to 98% by mass of (1-C) inorganic filler, more preferably 85 to 95% by mass.
 本発明の半導体封止用エポキシ樹脂成形材料は、本発明の効果に悪影響を与えない範囲において、エポキシ樹脂硬化剤、エポキシ樹脂硬化促進剤、改質剤、難燃剤、顔料、離型剤やその他の添加剤を含有してもよく、これらの成分としては、使用可能な特性を有しているものを適宜用いることができ、半導体封止材料用として市販されている製品等より任意に選択できる。これらの成分の具体例としては、大日本インキ化学工業、群栄化学工業、明和化成社製のエポキシ樹脂硬化剤、四国化成・北興化学工業・サンアプロ社製のエポキシ樹脂硬化促進剤を挙げることができる。一括封止用成形材料では、エポキシ樹脂硬化剤は多芳香環型低分子量品、エポキシ樹脂硬化促進剤はリン化合物が主に用いられている。 The epoxy resin molding material for semiconductor encapsulation of the present invention has an epoxy resin curing agent, an epoxy resin curing accelerator, a modifier, a flame retardant, a pigment, a mold release agent, and the like as long as the effects of the present invention are not adversely affected. As these components, those having usable characteristics can be used as appropriate, and can be arbitrarily selected from products commercially available for semiconductor sealing materials, etc. . Specific examples of these components include: Dainippon Ink and Chemicals, Gunei Chemical Industry, Meiwa Kasei Co., Ltd., epoxy resin curing agent, Shikoku Chemicals, Hokuko Chemical Industry, San Apro Co., Ltd. epoxy resin curing accelerator. it can. In the encapsulating molding material, a polyaromatic low molecular weight product is mainly used as an epoxy resin curing agent, and a phosphorus compound is mainly used as an epoxy resin curing accelerator.
 本発明の半導体封止用エポキシ樹脂成形材料を製造する方法は、特に限定されないが、上記(1-A)成分を均一分散することが好ましく、特に、以下に示す本発明の半導体封止用エポキシ樹脂成形材料の製造方法によれば、(1-A)成分を均一分散することができるため好ましい。 The method for producing the epoxy resin molding material for semiconductor encapsulation of the present invention is not particularly limited, but it is preferable to uniformly disperse the component (1-A). Particularly, the epoxy for semiconductor encapsulation of the present invention shown below is particularly preferable. According to the method for producing a resin molding material, the (1-A) component can be uniformly dispersed, which is preferable.
 本発明は、融点が30~90℃の結晶性ポリアルファオレフィンを、溶融状態で噴霧して添加する、上記半導体封止用エポキシ樹脂成形材料の製造方法をも提供する。
 結晶性ポリアルファオレフィンを溶融状態で添加する際の溶融温度、ノズル径、噴霧圧力等の噴霧条件は、霧状の結晶性ポリアルファオレフィンが所望の粒径以下となる条件であれば特に限定されず、また、用いられる結晶性ポリアルファオレフィンの性状によっても異なるが、例えば、溶融温度50~200℃程度、ノズル径0.001~0.1mm程度、噴霧圧力0.1~10atm程度である。
 本発明の半導体封止用エポキシ樹脂成形材料の製造方法においては、結晶性ポリアルファオレフィンを、溶融状態で噴霧して添加するが、少なくとも(1-B)エポキシ樹脂及び(1-C)無機充填材を含む原料を混合しつつ、結晶性ポリアルファオレフィンを添加する方法が好ましく、結晶性ポリアルファオレフィン以外の全ての原料を混合しつつ、結晶性ポリアルファオレフィンを添加する方法が特に好ましい。
The present invention also provides a method for producing an epoxy resin molding material for semiconductor encapsulation, wherein the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. is sprayed and added in a molten state.
The spraying conditions such as the melting temperature, the nozzle diameter, and the spraying pressure when adding the crystalline polyalphaolefin in a molten state are particularly limited as long as the atomized crystalline polyalphaolefin has a desired particle size or less. In addition, for example, the melting temperature is about 50 to 200 ° C., the nozzle diameter is about 0.001 to 0.1 mm, and the spraying pressure is about 0.1 to 10 atm, depending on the properties of the crystalline polyalphaolefin used.
In the method for producing an epoxy resin molding material for semiconductor encapsulation of the present invention, crystalline polyalphaolefin is added by spraying in a molten state, but at least (1-B) epoxy resin and (1-C) inorganic filling A method of adding the crystalline polyalphaolefin while mixing the raw materials containing the material is preferable, and a method of adding the crystalline polyalphaolefin while mixing all the raw materials other than the crystalline polyalphaolefin is particularly preferable.
(第二発明)
 本発明の半導体封止用エポキシ樹脂シート部材は、少なくとも(2-A)融点が30~90℃の結晶性ポリアルファオレフィンの粒径50μm以下の粉体及び/又は霧状体、(2-B)エポキシ樹脂、並びに(2-C)無機充填材を溶融混練してなり、かつ、該結晶性ポリアルファオレフィンを0.2~5質量%含有する封止材料からなる封止層を有する半導体封止用エポキシ樹脂シート部材であって、さらに、該封止層の片面又は両面に保護フィルムを有する。
(Second invention)
The epoxy resin sheet member for semiconductor encapsulation of the present invention comprises at least (2-A) powder and / or mist of crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and a particle size of 50 μm or less, (2-B A semiconductor encapsulant having an encapsulating layer formed by melt-kneading an epoxy resin and (2-C) an inorganic filler and comprising an encapsulating material containing 0.2 to 5% by mass of the crystalline polyalphaolefin An epoxy resin sheet member for stopping, further having a protective film on one or both sides of the sealing layer.
 上記融点が30~90℃の結晶性ポリアルファオレフィン(以下、結晶性ポリアルファオレフィンと略すことがある。)としては、上記規定を満たすものであれば特に限定されないが、炭素数10以上のα-オレフィン単量体を1種以上重合して、あるいは、炭素数10以上のα-オレフィン単量体を1種以上と他のオレフィンとを重合して得られたものが好ましい。
 上記炭素数10以上のα-オレフィン単量体の具体例としては、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、1-ヘンエイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン、1-ヘントリアコンテン、1-ドトリアコンテン、1-トリトリアコンテン、1-テトラトリアコンテン、1-ペンタトリアコンテン、1-ヘキサトリアコンテン、1-テトラコンテン、1-ペンタコンテン、1-ヘキサコンテン、1-ヘプタコンテン、1-オクタコンテン、1-ノナコンテン、1-オクタノナコンテン、1-ノナノナコンテン、1-ヘクテン、1-ヘンヘクテン、1-ドヘクテン、1-トリヘクテン等が挙げられ、これらのうち炭素数18~40のものが好ましく用いられる。
 上記のα-オレフィン単量体は、1種を単独で用いることもできるが、2種以上のα-オレフィン単量体の混合物を用いることもできる。
 また、2種以上のα-オレフィン単量体として、単量体の市販品同士のブレンド品や混合体の市販品を用いることが可能であり、例えば、リニアレン2024〔出光興産株式会社製:商品名〕等の市販品を用いることができる。
The crystalline polyalphaolefin having a melting point of 30 to 90 ° C. (hereinafter sometimes abbreviated as crystalline polyalphaolefin) is not particularly limited as long as it satisfies the above-mentioned regulations. A polymer obtained by polymerizing at least one olefin monomer or polymerizing at least one α-olefin monomer having 10 or more carbon atoms with another olefin is preferred.
Specific examples of the α-olefin monomer having 10 or more carbon atoms include 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 1-henecocene, 1-docosene, 1-tricosene, 1-tetracocene, 1-pentacocene, 1-hexacocene, 1-heptacocene, 1-octacocene, 1-nonacocene, 1- Tria content, 1-Hentria content, 1-Dotria content, 1-Tritria content, 1-Tetratria content, 1-Pentatria content, 1-Hexatria content, 1-Tetra content, 1-Penta content, 1 -Hexacontene, 1-heptaconten, 1-octaconten, 1- Nakonten, 1-octa nona contency, 1 Nonanonakonten, 1 Hekuten, 1 Henhekuten, 1 Dohekuten, 1 Torihekuten and the like, these things of carbon atoms 18-40 are preferably used.
The above α-olefin monomers can be used alone, or a mixture of two or more α-olefin monomers can also be used.
Also, as two or more kinds of α-olefin monomers, it is possible to use commercial products of blended monomers or commercial products of mixtures, such as Linearlen 2024 [manufactured by Idemitsu Kosan Co., Ltd .: Commodity Name] etc. can be used.
 本発明において、上記α-オレフィン単量体を重合して、結晶性ポリアルファオレフィンを得るに際しては、触媒として、メタロセン化合物やTi-Mg系化合物などが好適に用いられる。
 メタロセン化合物としては、ジメチルシリレンビス(2-メチル-4,5-ベンゾインデニル)ジルコニウムジクロライド、ジメチルシリレンビス(2-メチル-4-フェニルインデニル)ジルコニウムジクロライド、ジメチルシリレンビス(2-メチル-4-ナフチルインデニル)ジルコニウムジクロライド、ジメチルシリレンビス(2-メチルインデニル)ジルコニウムジクロライド、エチレンビス(2-メチルインデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(3-トリメチルシリルメチル-インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)(3-トリメチルシリルメチル-インデニル)(インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'- ジメチルシリレン)ビス(インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(3-n-ブチル-インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)(n-ブチル-インデニル)(インデニル)ジルコニウムジクロライド、(1,2'-ジメチルシリレン)(2,1'-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロライド、1,1'-ジメチルシリレンビス(2-エチル-4-(2-フルオロ-4-ビフェニリル)-4H-アズレニル)ジルコニウムジクロライド、及びジメチルシリレン(シクロペンタジエニル)(2,4-ジメチル-4H-1-アズレニル)ジルコニウムジクロライド等のジルコニウムジクロライド化合物;並びにこれらのジルコニウムジクロライド化合物のジクロライドをジメチル或いはジベンジルに置換した化合物等のジルコニウム化合物;並びにこれらのジルコニウム化合物のジルコニウムをチタニウム又はハフニウムに置換したチタニウム化合物やハフニウム化合物等が挙げられる。これらのメタロセン化合物は、2種以上を併用してもよい。
 また、この触媒として、通常、前記メタロセン化合物に加えて、トリイソブチルアルミニウム等の有機アルミニウム化合物、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート等の有機ホウ素化合物が用いられる。
In the present invention, when polymerizing the α-olefin monomer to obtain a crystalline polyalphaolefin, a metallocene compound or a Ti—Mg compound is preferably used as a catalyst.
Examples of the metallocene compound include dimethylsilylene bis (2-methyl-4,5-benzoindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4-phenylindenyl) zirconium dichloride, dimethylsilylene bis (2-methyl-4). -Naphthylindenyl) zirconium dichloride, dimethylsilylenebis (2-methylindenyl) zirconium dichloride, ethylenebis (2-methylindenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) ) Bis (3-trimethylsilylmethyl-indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (3-trimethylsilylmethyl-indenyl) (indenyl) zirconium Dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) bis (3-n -Butyl-indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) (n-butyl-indenyl) (indenyl) zirconium dichloride, (1,2'-dimethylsilylene) (2 , 1′-dimethylsilylene) bis (indenyl) zirconium dichloride, 1,1′-dimethylsilylenebis (2-ethyl-4- (2-fluoro-4-biphenylyl) -4H-azurenyl) zirconium dichloride, and dimethylsilylene ( Cyclopentadienyl) (2,4-dimethyl-4H-1-azuleni Z) Zirconium dichloride compounds such as zirconium dichloride; and zirconium compounds such as compounds obtained by substituting dichloride of these zirconium dichloride compounds with dimethyl or dibenzyl; and titanium compounds or hafnium compounds obtained by substituting zirconium of these zirconium compounds with titanium or hafnium. Etc. These metallocene compounds may be used in combination of two or more.
In addition to the metallocene compound, an organoaluminum compound such as triisobutylaluminum and an organoboron compound such as dimethylanilinium tetrakispentafluorophenylborate are usually used as the catalyst.
 本発明の半導体封止用エポキシ樹脂シート部材に用いられる封止材料は、上記結晶性ポリアルファオレフィンを0.2~5質量%、好ましくは0.5~3質量%含有することで、流動性に優れるものである。結晶性ポリアルファオレフィンの含有量が0.2質量%未満であると、流動性の向上効果が得られず、5質量%を超えると成形品の強度低下等の問題が起こる。
 上記結晶性ポリアルファオレフィンとしては、融点が30~90℃、好ましくは40~80℃のものが用いられる。結晶性ポリアルファオレフィンの融点が30℃未満であると粉砕時や打錠時に融着等の問題が発生するため、半導体封止用エポキシ樹脂シート部材の製造時の作業性が悪化し、また、結晶性ポリアルファオレフィンが封止材料より分離溶出する。上記融点が90℃を超えると成形時の流動性が低下するため、封止材料の品質バラツキ等の問題が起こる可能性がある。
 また、上記結晶性ポリアルファオレフィンは、粒径が50μm以下、好ましくは20μm以下の粉体及び/又は霧状体として用いられる。粒径が50μmを超えると、成形時に溶出する等の問題が発生する可能性がある。
 上記(2-A)成分として結晶性ポリアルファオレフィンの粉体を用いる場合には、例えば、原料のポリアルファオレフィンをカッターミル等を用いて微粉砕し、所定の目開きの篩を用いることで、所望の粒径以下の粉体を得ることができる。また、結晶性ポリアルファオレフィンの霧状体を用いる場合には、結晶性ポリアルファオレフィンを溶融噴霧して添加するが、溶融噴霧時の噴霧条件(溶融温度、ノズル径、噴霧圧力等)を適宜調節することで粒径を任意に制御することができるので霧状体の使用が好ましい。霧状の(2-A)結晶性ポリアルファオレフィンの粒径は透明フィルムに結晶性ポリアルファオレフィンを噴霧しフィルム上の液滴の粒径を計測して確認することができる。
 上記(2-A)結晶性ポリアルファオレフィンは、融解温度幅が狭いものを用いることが好ましく、具体的には、融点の-15℃以内で融解を開始し+3℃以内で融解を終了するものが好ましい。ここで、(2-A)結晶性ポリアルファオレフィンが融解を開始する温度は、パーキンエルマー社製の示差走査型熱量計(DSC-7)を用い、試料を窒素雰囲気下190℃で5分保持した後、-30℃まで、5℃/分で降温させ、-30℃で5分保持した後、190℃まで10℃/分で昇温させる際の吸熱を開始する温度とし、融解を終了する温度は吸熱が完全に無くなる温度とした。
The sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention contains 0.2 to 5% by mass, preferably 0.5 to 3% by mass of the crystalline polyalphaolefin, so that the fluidity is obtained. It is excellent. If the content of the crystalline polyalphaolefin is less than 0.2% by mass, the effect of improving the fluidity cannot be obtained, and if it exceeds 5% by mass, problems such as a decrease in strength of the molded product occur.
As the crystalline polyalphaolefin, one having a melting point of 30 to 90 ° C., preferably 40 to 80 ° C. is used. If the melting point of the crystalline polyalphaolefin is less than 30 ° C., problems such as fusion during pulverization or tableting occur, so the workability during the production of the epoxy resin sheet member for semiconductor encapsulation deteriorates. Crystalline polyalphaolefin is separated and eluted from the sealing material. When the melting point exceeds 90 ° C., the fluidity during molding is lowered, and thus problems such as variations in the quality of the sealing material may occur.
The crystalline polyalphaolefin is used as a powder and / or mist having a particle size of 50 μm or less, preferably 20 μm or less. When the particle diameter exceeds 50 μm, there is a possibility that problems such as elution during molding may occur.
When the crystalline polyalphaolefin powder is used as the component (2-A), for example, the raw material polyalphaolefin is finely pulverized using a cutter mill or the like, and a sieve having a predetermined opening is used. A powder having a desired particle size or less can be obtained. When a crystalline polyalphaolefin mist is used, the crystalline polyalphaolefin is melt-sprayed and added, but the spraying conditions (melting temperature, nozzle diameter, spraying pressure, etc.) during melt spraying are appropriately set. Since the particle size can be arbitrarily controlled by adjusting, the use of a mist is preferred. The particle size of the atomized (2-A) crystalline polyalphaolefin can be confirmed by spraying the crystalline polyalphaolefin on a transparent film and measuring the particle size of droplets on the film.
The (2-A) crystalline polyalphaolefin preferably has a narrow melting temperature range. Specifically, the melting starts within −15 ° C. of the melting point and ends within + 3 ° C. Is preferred. Here, the temperature at which the (2-A) crystalline polyalphaolefin starts to melt was determined by using a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer and holding the sample at 190 ° C. for 5 minutes in a nitrogen atmosphere. After that, the temperature is lowered to −30 ° C. at 5 ° C./minute, held at −30 ° C. for 5 minutes, and then the endothermic temperature is started when the temperature is raised to 190 ° C. at 10 ° C./minute, and the melting is completed. The temperature was a temperature at which the endotherm was completely eliminated.
 一般に、結晶性ポリアルファオレフィンの競合として、同程度の融点を持つパラフィンワックスが知られている。両者の融解特性を比較すると、本願発明において用いられる結晶性ポリアルファオレフィンは結晶性であるため、上述のように融解温度幅が極めて狭いという特徴を有する。融点40℃程度の両者を比べると、パラフィンワックスは室温で融解を始めるため成形材料の室温加工には不適であるが、結晶性ポリアルファオレフィンは室温で固体のため全く問題がない。また、結晶性ポリアルファオレフィンは40℃になると直ちに融解し粘度が低下する。すなわち、本願発明において用いられる結晶性ポリアルファオレフィンは、融解温度幅が極めて狭いため、成形材料の製造加工時の作業性および成形時の流動性に優れるという特徴を有する。 Generally, paraffin wax having a similar melting point is known as a competitor of crystalline polyalphaolefin. Comparing the melting characteristics of the two, the crystalline polyalphaolefin used in the present invention is crystalline, and thus has a characteristic that the melting temperature range is extremely narrow as described above. Comparing both with a melting point of about 40 ° C., paraffin wax begins to melt at room temperature and is therefore not suitable for room temperature processing of the molding material. However, crystalline polyalphaolefin is solid at room temperature, so there is no problem. In addition, the crystalline polyalphaolefin is immediately melted at 40 ° C. and the viscosity is lowered. That is, the crystalline polyalphaolefin used in the present invention has a feature that it has excellent workability at the time of manufacturing processing of the molding material and fluidity at the time of molding because the melting temperature range is extremely narrow.
 結晶性ポリアルファオレフィンは熱安定性に優れ、汎用のポリオレフィンワックスに比べて高温保管時の品質変化(酸化等)が少ない。通常、ポリオレフィンワックスは融点が100℃以上と高く、熱可塑性樹脂成形材料の離型剤として使用される。熱硬化性樹脂成形材料の場合には、離型性の効果はあまり期待できず密着性や粘着性を向上させる添加剤として利用される。この場合も予め変質させた酸化型製品を用い成形材料中での品質安定性の保持を図っている。すなわち、結晶性ポリアルファオレフィンは従来の離型剤として使用されるポリオレフィンワックスとは特性が異なる。 Crystalline polyalphaolefin is excellent in thermal stability and has less quality change (oxidation, etc.) at high temperature storage than general-purpose polyolefin wax. Usually, the polyolefin wax has a high melting point of 100 ° C. or higher, and is used as a release agent for a thermoplastic resin molding material. In the case of a thermosetting resin molding material, the effect of releasability cannot be expected so much and it is used as an additive for improving adhesion and tackiness. In this case as well, quality stability in the molding material is maintained by using an oxidized product that has been altered in advance. That is, crystalline polyalphaolefin has different characteristics from polyolefin wax used as a conventional release agent.
 上記(2-B)エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等(ビスフェノールAジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールGジグリシジルエーテル、テトラメチルビスフェノールAジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、ビスフェノールCジグリシジルエーテル等)、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキシルカルボキシレートなどの脂環式エポキシ樹脂、トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂等の含窒素環エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、脂肪族系エポキシ樹脂、低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂、ジシクロ環型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル等の多官能エポキシ樹脂、ビスフェノールAF型エポキシ樹脂などの含フッ素エポキシ樹脂、(メタ)アクリル酸グリシジルエステル等が挙げられる。これらは単独で使用してもよく、二種以上を併用してもよい。
 (2-B)エポキシ樹脂の具体例としては、半導体封止材料用として市販されている各種製品が挙げられるが、例えば、日本化薬、大日本インキ化学工業、JER社製のエポキシ樹脂を挙げることができる。一括封止用成形材料では、エポキシ樹脂は多芳香環型低分子量品が主に用いられている。
 上記(2-B)エポキシ樹脂は、常温で固形でも液状でもよいが、一般に、使用する(2-B)エポキシ樹脂の平均エポキシ当量は100~2000のものが好ましい。平均エポキシ当量が100より小さい場合には、半導体封止用エポキシ樹脂シート部材の硬化体が脆くなる場合がある。また、平均エポキシ当量が2000を超える場合には、その硬化体のガラス転移温度(Tg)が低くなる場合がある。
Examples of the (2-B) epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin and the like (bisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, Bisphenol F diglycidyl ether, bisphenol G diglycidyl ether, tetramethylbisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, bisphenol C diglycidyl ether, etc.), novolaks such as phenol novolac type epoxy resin and cresol novolac type epoxy resin Type epoxy resin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate Biphenyl type, which is the mainstream of nitrogen-containing ring epoxy resins such as alicyclic epoxy resins such as triglycidyl isocyanurate, hydantoin epoxy resins, hydrogenated bisphenol A type epoxy resins, aliphatic epoxy resins, and low water absorption rate cured type Epoxy resin, dicyclocyclic epoxy resin, naphthalene type epoxy resin, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, polyfunctional epoxy resin such as pentaerythritol polyglycidyl ether, fluorine-containing epoxy resin such as bisphenol AF type epoxy resin, Examples include (meth) acrylic acid glycidyl ester. These may be used alone or in combination of two or more.
Specific examples of the (2-B) epoxy resin include various products that are commercially available for semiconductor sealing materials. For example, there are epoxy resins manufactured by Nippon Kayaku, Dainippon Ink and Chemicals, and JER. be able to. In the encapsulating molding material, polyaromatic low molecular weight products are mainly used as epoxy resins.
The (2-B) epoxy resin may be solid or liquid at room temperature, but in general, the (2-B) epoxy resin used preferably has an average epoxy equivalent of 100 to 2000. When the average epoxy equivalent is less than 100, the cured body of the epoxy resin sheet member for semiconductor encapsulation may become brittle. Moreover, when an average epoxy equivalent exceeds 2000, the glass transition temperature (Tg) of the hardening body may become low.
 上記(2-C)無機充填材としては、シリカ、アルミナ、窒化ケイ素、炭化ケイ素、タルク、ケイ酸カルシウム、炭酸カルシウム、マイカ、クレイ、チタンホワイト等の粉体、ガラス、カーボン等の短繊維が例示される。これらの中で熱膨張率と熱伝導率の点から、シリカ、アルミナ、窒化ケイ素、炭化ケイ素粉体が好ましく、特にシリカ粉体が好ましい。本発明の半導体封止用エポキシ樹脂シート部材に用いられる封止材料は流動性に優れるが、シリカ粉体を含有するものであると、流動性の向上効果が顕著に得られる。さらに、上記封止材料の流動性を考えるとその形状は球状、又は球形と不定形の混合物が好ましい。上記シリカとしては、例えば、半導体封止材料用として市販されている製品より任意に選択できる。具体的には、龍森、電気化学工業又はマイクロン社製のシリカ粉体を挙げることができ、粗粒を除去した熔射型球状品が主に用いられている。
 本発明の半導体封止用エポキシ樹脂シート部材に用いられる封止材料は(2-C)無機充填材を80~98質量%含有するものが好ましく、85~95質量%含有するものがより好ましい。特に、封止材料が、粒径50μm以下のシリカを85質量%以上含有する場合には、従来では封止材料の粘度が極めて高くなり半導体装置の樹脂封止が困難であったところ、本願発明において用いられる封止材料は結晶性ポリアルファオレフィンを含むため、流動性に優れるという顕著な効果が発現する。
Examples of the (2-C) inorganic filler include silica, alumina, silicon nitride, silicon carbide, talc, calcium silicate, calcium carbonate, mica, clay, titanium white powder and the like, and short fibers such as glass and carbon. Illustrated. Among these, silica, alumina, silicon nitride, and silicon carbide powder are preferable from the viewpoint of thermal expansion coefficient and thermal conductivity, and silica powder is particularly preferable. The sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention is excellent in fluidity, but if it contains silica powder, the effect of improving fluidity is remarkably obtained. Furthermore, considering the fluidity of the sealing material, the shape is preferably spherical or a mixture of spherical and irregular shapes. As said silica, it can select arbitrarily from the product marketed as an object for semiconductor sealing materials, for example. Specifically, silica powder made by Tatsumori, Denki Kagaku Kogyo, or Micron Corporation can be mentioned, and a sprayed spherical product from which coarse particles are removed is mainly used.
The sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention preferably contains 80 to 98% by mass of (2-C) inorganic filler, more preferably 85 to 95% by mass. In particular, when the encapsulating material contains 85% by mass or more of silica having a particle size of 50 μm or less, the viscosity of the encapsulating material has been extremely high in the past, making it difficult to encapsulate the semiconductor device. Since the sealing material used in the process contains crystalline polyalphaolefin, a remarkable effect of excellent fluidity is exhibited.
 本発明の半導体封止用エポキシ樹脂シート部材に用いられる封止材料は、本発明の効果に悪影響を与えない範囲において、エポキシ樹脂硬化剤、エポキシ樹脂硬化促進剤、改質剤、難燃剤、顔料、離型剤やその他の添加剤を含有してもよく、これらの成分としては、使用可能な特性を有しているものを適宜用いることができ、半導体封止材料用として市販されている製品等より任意に選択できる。これらの成分の具体例としては、大日本インキ化学工業、群栄化学工業、明和化成社製のエポキシ樹脂硬化剤、四国化成・北興化学工業・サンアプロ社製のエポキシ樹脂硬化促進剤を挙げることができる。一括封止用成形材料では、エポキシ樹脂硬化剤は多芳香環型低分子量品、エポキシ樹脂硬化促進剤はリン化合物が主に用いられている。 The sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention is an epoxy resin curing agent, epoxy resin curing accelerator, modifier, flame retardant, and pigment as long as the effects of the present invention are not adversely affected. , May contain mold release agents and other additives, and as these components, those having usable properties can be used as appropriate, and products that are commercially available for semiconductor sealing materials Etc. can be arbitrarily selected. Specific examples of these components include: Dainippon Ink and Chemicals, Gunei Chemical Industry, Meiwa Kasei Co., Ltd., epoxy resin curing agent, Shikoku Chemicals, Hokuko Chemical Industry, San Apro Co., Ltd. epoxy resin curing accelerator. it can. In the encapsulating molding material, the epoxy resin curing agent is mainly a polyaromatic low molecular weight product, and the epoxy resin curing accelerator is mainly a phosphorus compound.
 本発明の半導体封止用エポキシ樹脂シート部材は、封止層の片面又は両面に保護フィルムを有する。上記保護フィルムとしては、高純度で圧着成形に耐える材質のものならば特に限定されず、例えば、ポリエチレンテレフタラート(PET)、液晶ポリマー、ポリイミド(PI)等を挙げることができる。また、剥離性は特に必要としないので、品質とコストを勘案し任意に選択することができる。
 上記保護フィルムは、封止層側の面に0.1~10μm程度の厚みで結晶性ポリアルファオレフィンを含む剥離層が設けられていることが好ましく、結晶性ポリアルファオレフィンからなる剥離層が設けられていることがより好ましい。剥離層の厚みが0.1μm以上であると、封止層からの保護フィルムの剥離が容易となり、10μm以下であると、成形品の外観不良等の問題が起こりにくい。
The epoxy resin sheet member for semiconductor encapsulation of the present invention has a protective film on one side or both sides of the sealing layer. The protective film is not particularly limited as long as it is a material having high purity and can withstand pressure forming, and examples thereof include polyethylene terephthalate (PET), liquid crystal polymer, and polyimide (PI). Moreover, since peelability is not particularly required, it can be arbitrarily selected in consideration of quality and cost.
The protective film is preferably provided with a release layer containing crystalline polyalphaolefin having a thickness of about 0.1 to 10 μm on the surface on the sealing layer side, and a release layer made of crystalline polyalphaolefin is provided. More preferably. When the thickness of the release layer is 0.1 μm or more, the protective film can be easily peeled from the sealing layer, and when it is 10 μm or less, problems such as poor appearance of the molded product hardly occur.
 本発明の半導体封止用エポキシ樹脂シート部材に用いられる封止材料を製造する方法は特に限定されないが、結晶性ポリアルファオレフィンを均一分散することが好ましいため、結晶性ポリアルファオレフィンを微粉砕して用いる方法や、溶融状態で噴霧する方法が挙げられるが、以下に示す本発明の半導体封止用エポキシ樹脂シート部材の製造方法における封止材料を製造する工程によれば、結晶性ポリアルファオレフィンを均一分散することができるため特に好ましい。
 また、保護フィルム上に、結晶性ポリアルファオレフィンを用いて剥離層を形成する方法も、保護フィルムの封止層側の面に結晶性ポリアルファオレフィンが均一に分散される方法であれば特に限定されず、結晶性ポリアルファオレフィンを溶媒に溶解し、得られた溶液を保護フィルムに塗布した後、溶媒を乾燥除去する方法等を用いることもできるが、以下に示す本発明の半導体封止用エポキシ樹脂シート部材の製造方法における結晶性ポリアルファオレフィンを溶融状態で塗布又は噴霧する工程によれば、結晶性ポリアルファオレフィンを均一に分散可能であり、簡便であり、かつ、異物混入の問題も起こりにくい。
The method for producing the sealing material used for the epoxy resin sheet member for semiconductor encapsulation of the present invention is not particularly limited. However, since it is preferable to uniformly disperse the crystalline polyalphaolefin, the crystalline polyalphaolefin is finely pulverized. And a method of spraying in a molten state, but according to the process for producing a sealing material in the method for producing an epoxy resin sheet member for semiconductor encapsulation of the present invention shown below, crystalline polyalphaolefin Is particularly preferable because it can be uniformly dispersed.
In addition, the method of forming a release layer using crystalline polyalphaolefin on the protective film is also particularly limited as long as the crystalline polyalphaolefin is uniformly dispersed on the surface of the protective film on the sealing layer side. Alternatively, after dissolving crystalline polyalphaolefin in a solvent and applying the obtained solution to a protective film, a method of removing the solvent by drying can be used. According to the process of applying or spraying the crystalline polyalphaolefin in the molten state in the production method of the epoxy resin sheet member, it is possible to uniformly disperse the crystalline polyalphaolefin, it is simple, and there is a problem of contamination with foreign matter. Hard to happen.
 本発明はまた、融点が30~90℃の結晶性ポリアルファオレフィンを溶融状態で噴霧して封止材料を製造する工程と、保護フィルムに融点が30~90℃の結晶性ポリアルファオレフィンを溶融状態で塗布又は噴霧して剥離層を形成する工程とを含む、上記半導体封止用エポキシ樹脂シート部材の製造方法をも提供する。
 結晶性ポリアルファオレフィンを溶融状態で噴霧する工程における溶融温度、ノズル径、噴霧圧力等の噴霧条件は、結晶性ポリアルファオレフィンの霧状体の粒径が50μm以下となる条件であれば特に限定されず、また、用いられる結晶性ポリアルファオレフィンの性状によっても異なるが、例えば、溶融温度50~200℃程度、ノズル径0.001~0.1mm程度、噴霧圧力0.1~10atm程度である。
 上記工程においては、結晶性ポリアルファオレフィンを、溶融状態で噴霧して封止材料を製造するが、少なくとも(2-B)エポキシ樹脂及び(2-C)無機充填材を含む原料を混合しつつ、結晶性ポリアルファオレフィンを噴霧して添加する方法が好ましく、結晶性ポリアルファオレフィン以外の全ての原料を混合しつつ、結晶性ポリアルファオレフィンを噴霧して添加する方法が特に好ましい。
The present invention also includes a step of producing a sealing material by spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in a molten state, and melting the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in the protective film. The manufacturing method of the said epoxy resin sheet member for semiconductor sealing including the process of apply | coating or spraying in a state and forming a peeling layer is also provided.
The spraying conditions such as the melting temperature, the nozzle diameter, and the spraying pressure in the step of spraying the crystalline polyalphaolefin in a molten state are particularly limited as long as the particle size of the crystalline polyalphaolefin mist is 50 μm or less. The melting temperature is about 50 to 200 ° C., the nozzle diameter is about 0.001 to 0.1 mm, and the spraying pressure is about 0.1 to 10 atm. .
In the above process, a crystalline polyalphaolefin is sprayed in a molten state to produce a sealing material, while mixing at least a raw material containing (2-B) epoxy resin and (2-C) inorganic filler. The method of spraying and adding the crystalline polyalphaolefin is preferred, and the method of spraying and adding the crystalline polyalphaolefin while mixing all the raw materials other than the crystalline polyalphaolefin is particularly preferred.
 保護フィルムに結晶性ポリアルファオレフィンを溶融状態で塗布又は噴霧する工程では、例えば、保護フィルム上に、溶融状態の結晶性ポリアルファオレフィンを、ナイフコーター、バーコーター又はロールコーティング等の公知の方法により塗布したり、スプレー等の公知の方法により噴霧したりして、所望の膜厚となるように塗布することができる。 In the step of applying or spraying the crystalline polyalphaolefin in a molten state on the protective film, for example, the crystalline polyalphaolefin in a molten state is applied onto the protective film by a known method such as knife coater, bar coater or roll coating. It can apply | coat so that it may become a desired film thickness by spraying by well-known methods, such as a spray.
 図1は、半導体素子を一括封止法により樹脂封止した半導体装置の例(3DP、SiP)を模式図で示したものである。1は成形材料、2は半導体素子、3は金線、4は子基板、5は半導体装置である。この図の3DPは、半導体を3個積層し金線で子基板と電気接続した構造である。SiPは、左から半導体、反転型半導体、半導体装置を子基板に搭載したものである。これら3DPおよびSiPは、半導体部品間の間隙が非常に狭いので、高粘度の成形材料を注入した場合、成形時に不良(金線変形、未充填、半導体移動等)が発生する可能性が高い。 FIG. 1 is a schematic view showing an example of a semiconductor device (3DP, SiP) in which semiconductor elements are sealed with a resin by a batch sealing method. 1 is a molding material, 2 is a semiconductor element, 3 is a gold wire, 4 is a child substrate, and 5 is a semiconductor device. 3DP in this figure has a structure in which three semiconductors are stacked and electrically connected to a daughter board with a gold wire. The SiP is a semiconductor, an inverted semiconductor, and a semiconductor device mounted on a child substrate from the left. Since these 3DP and SiP have a very narrow gap between semiconductor components, when a molding material with high viscosity is injected, there is a high possibility that defects (gold wire deformation, unfilling, semiconductor movement, etc.) will occur during molding.
 以下、本発明の成形材料およびその製造方法に関して、実施例及び比較例を示して具体的に説明するが、本発明はこれらに何ら制限されるものではない。 Hereinafter, the molding material of the present invention and the production method thereof will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these.
製造例1-1((1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドの製造)
 シュレンク瓶に(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(インデン)のリチウム塩 3.0g(6.97ミリモル)をTHF(テトラヒドロフラン)50ミリリットルに溶解し-78℃に冷却した。
 ヨードメチルトリメチルシラン2.1ミリリットル(14.2ミリモル)をゆっくりと滴下し室温で12時間撹拌した。
 溶媒を留去しエーテル50ミリリットルを加えて飽和塩化アンモニウム溶液で洗浄した。
 分液後、有機相を乾燥し溶媒を除去して(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデン)を3.04g(5.88ミリモル)を得た(収率84%)。
 次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデン)を3.04g(5.88ミリモル)とエーテル50ミリリットルとを入れた。
 -78℃に冷却しn-BuLiのヘキサン溶液(1.54モル/L、7.6ミリリットル(11.7ミリモル))を滴下した。
 温度を室温とし12時間撹拌後、エーテルを留去した。
 得られた固体をヘキサン40ミリリットルで洗浄することによりリチウム塩をエーテル付加体として3.06g(5.07ミリモル)を得た(収率73%)。
 1H-NMR(90MHz、THF-d8)による測定の結果は、δ:0.04(s、18H、トリメチルシリル);0.48(s、12H、ジメチルシリレン);1.10(t、6H、メチル);2.59(s、4H、メチレン);3.38(q、4H、メチレン)、6.2-7.7(m,8H,Ar-H)であった。
Production Example 1-1 (Production of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride)
In a Schlenk bottle, 3.0 g (6.97 mmol) of a lithium salt of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (indene) was dissolved in 50 ml of THF (tetrahydrofuran). Cooled to ° C.
2.1 ml (14.2 mmol) of iodomethyltrimethylsilane was slowly added dropwise and stirred at room temperature for 12 hours.
The solvent was distilled off, 50 ml of ether was added, and the mixture was washed with a saturated ammonium chloride solution.
After liquid separation, the organic phase was dried to remove the solvent, and 3.04 g (5.88 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindene) was obtained. ) Was obtained (yield 84%).
Next, 3.04 g (5.88) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindene) obtained above in a Schlenk bottle under a nitrogen stream. Millimoles) and 50 milliliters of ether.
After cooling to −78 ° C., a hexane solution of n-BuLi (1.54 mol / L, 7.6 ml (11.7 mmol)) was added dropwise.
After stirring at room temperature for 12 hours, ether was distilled off.
The obtained solid was washed with 40 ml of hexane to obtain 3.06 g (5.07 mmol) of lithium salt as an ether adduct (yield 73%).
The results of measurement by 1 H-NMR (90 MHz, THF-d 8 ) are as follows: δ: 0.04 (s, 18H, trimethylsilyl); 0.48 (s, 12H, dimethylsilylene); 1.10 (t, 6H) , Methyl); 2.59 (s, 4H, methylene); 3.38 (q, 4H, methylene), 6.2-7.7 (m, 8H, Ar-H).
 窒素気流下で得られたリチウム塩をトルエン50ミリリットルに溶解した。
 -78℃に冷却し、ここへ予め-78℃に冷却した四塩化ジルコニウム1.2g(5.1ミリモル)のトルエン(20ミリリットル)懸濁液を滴下した。
 滴下後、室温で6時間撹拌した。その反応溶液の溶媒を留去した。
 得られた残渣をジクロロメタンにより再結晶化することにより、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.9g(1.33ミリモル)を得た(収率26%)。
 1H-NMR(90MHz、CDCl3)による測定の結果は、δ:0.0(s、18H、トリメチルシリル);1.02,1.12(s、12H、ジメチルシリレン);2.51(dd、4H、メチレン);7.1-7.6(m,8H,Ar-H)であった。
The lithium salt obtained under a nitrogen stream was dissolved in 50 ml of toluene.
After cooling to −78 ° C., a suspension of 1.2 g (5.1 mmol) of zirconium tetrachloride, which had been cooled to −78 ° C. in advance, in toluene (20 ml) was added dropwise.
After dropping, the mixture was stirred at room temperature for 6 hours. The solvent of the reaction solution was distilled off.
The obtained residue was recrystallized from dichloromethane to obtain 0.9 g (1 ') of (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride. .33 mmol) was obtained (yield 26%).
The results of measurement by 1 H-NMR (90 MHz, CDCl 3 ) are as follows: δ: 0.0 (s, 18H, trimethylsilyl); 1.02, 1.12 (s, 12H, dimethylsilylene); 2.51 (dd 4H, methylene); 7.1-7.6 (m, 8H, Ar-H).
製造例1-2(CPAO-70の製造)
 加熱乾燥した1リットルオートクレーブに、炭素数26及び28のα-オレフィンを含む混合物(C26:56.9質量%、C28:39.4質量%)400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素を0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-70)を195.0g得た。
Production Example 1-2 (Production of CPAO-70)
To a heat-dried 1 liter autoclave was added 400 ml of a mixture containing an α-olefin having 26 and 28 carbon atoms (C26: 56.9 wt%, C28: 39.4 wt%) and 0.5 mmol of triisobutylaluminum, The temperature was raised to 110 ° C. Then, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. Nitroborate was added in an amount of 4.0 μmol, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, followed by heat drying under reduced pressure to obtain 195.0 g of a higher α-olefin polymer (CPAO-70).
 上記CPAO-70について、パーキンエルマー社製の示差走査型熱量計(DSC-7)を用い、試料を窒素雰囲気下190℃で5分保持した後、-30℃まで、5℃/分で降温させ、-30℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークトップを測定し、融点を求めたところ、70℃であった。また、融解を開始する温度は55℃であり、融解を終了する温度を求めたところ、71℃であった。 For CPAO-70, a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer was used, and the sample was held at 190 ° C. for 5 minutes in a nitrogen atmosphere, and then decreased to −30 ° C. at 5 ° C./minute. The peak top observed from the melting endotherm curve obtained by maintaining the temperature at −30 ° C. for 5 minutes and then increasing the temperature to 190 ° C. at 10 ° C./min was measured, and the melting point was determined to be 70 ° C. It was. Further, the temperature at which the melting was started was 55 ° C., and the temperature at which the melting was completed was determined to be 71 ° C.
製造例1-3(CPAO-40の製造)
 加熱乾燥した1リットルオートクレーブに、1-オクタデセン(C18)400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-40)を211.0g得た。
 また、上記CPAO-40について、製造例1-2と同様にして融点を求めたところ、42℃であり、融解を開始する温度を求めたところ、30℃であり、融解を終了する温度を求めたところ、43℃であった。
Production Example 1-3 (Production of CPAO-40)
To a heat-dried 1 liter autoclave, 400 ml of 1-octadecene (C18) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Then, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. 4.0 micromol of nium borate was added, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After the completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, followed by heat drying under reduced pressure to obtain 211.0 g of a higher α-olefin polymer (CPAO-40).
For CPAO-40, the melting point was determined in the same manner as in Production Example 1-2, and it was 42 ° C. The temperature at which melting was started was 30 ° C., and the temperature at which melting was completed was determined. As a result, it was 43 ° C.
製造例1-4(CPAO-28の製造)
 加熱乾燥した1リットルオートクレーブに、1-ヘキサデセン(C16)400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例1-1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-28)を205.0g得た。
 また、上記CPAO-28について、製造例1-2と同様にして融点を求めたところ、28℃であり、融解を開始する温度を求めたところ、15℃であり、融解を終了する温度を求めたところ、30℃であった。
Production Example 1-4 (Production of CPAO-28)
To a heat-dried 1 liter autoclave, 400 ml of 1-hexadecene (C16) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1-1 was stirred, 4.0 micromol of dimethylanilinium borate was added, 0.2 MPa of hydrogen was further introduced, and polymerization was performed for 240 minutes. After completion of the polymerization reaction, the reprecipitation operation was repeated with acetone to precipitate the reaction product, followed by heating and drying under reduced pressure to obtain 205.0 g of a higher α-olefin polymer (CPAO-28).
Further, the melting point of CPAO-28 was determined in the same manner as in Production Example 1-2, and it was 28 ° C. The temperature at which melting was started was 15 ° C., and the temperature at which melting was finished was determined. As a result, it was 30 degreeC.
 図2に製造例1-3で得られた結晶性ポリアルファオレフィンとパラフィンワックス(日本精鑞株式会社製:パラフィンワックス115)の融解特性を示す。図2に示されている、製造例3で得られた融点42℃の結晶性ポリアルファオレフィン(CPAO-40)とパラフィンワックスの融解特性を比べると、結晶性ポリアルファオレフィンの融解温度幅が狭いことが一目瞭然である。図3は融点の異なる結晶性ポリアルファオレフィン(28℃、40℃、70℃)の融解特性を示す図である。融解温度幅が狭いという特徴は融点が変化しても同じである。 FIG. 2 shows the melting characteristics of the crystalline polyalphaolefin obtained in Production Example 1-3 and paraffin wax (manufactured by Nippon Seiki Co., Ltd .: Paraffin Wax 115). Compared with the melting characteristics of the crystalline polyalphaolefin (CPAO-40) having a melting point of 42 ° C. obtained in Production Example 3 and paraffin wax shown in FIG. 2, the melting temperature range of the crystalline polyalphaolefin is narrow. This is obvious. FIG. 3 is a graph showing melting characteristics of crystalline polyalphaolefins (28 ° C., 40 ° C., 70 ° C.) having different melting points. The characteristic that the melting temperature width is narrow is the same even if the melting point changes.
実施例1-1
 半導体封止用エポキシ樹脂成形材料基準で85質量%の球状シリカ粉体(MSR-8030、株式会社龍森製、平均粒径12μm)、エポキシ樹脂(NC-3000、日本化薬株式会社製)8質量%、エポキシ樹脂硬化剤(カヤハードGPH、日本化薬株式会社製)4質量%、エポキシ樹脂硬化促進剤(TPP-K、北興化学工業株式会社製)0.5質量%、改質剤(KBM303、信越化学工業株式会社製)0.3質量%、離型剤(ヘキストS、ヘキスト社製)0.2質量%をヘンシェル型混合機に入れ、製造例1-2で得られたCPAO-70 2質量%(融点70℃)を、溶融噴霧しながら攪拌混合した。噴霧されたCPAO-70の粒径を、透明フィルムにCPAO-70を噴霧しフィルム上の液滴の粒径を計測したところ、25μm以下であった。次に、混合物を押出機(SK1、株式会社栗本鐵工所製)で混錬した後、冷却・粉砕・打錠の加工を経て半導体封止用エポキシ樹脂成形材料を得た。得られた材料で模擬半導体部品(チップサイズ10mm×10mmの176pinLQFP、外形24mm×24mm×1.4mm)をトランスファー成形(金型温度165℃、硬化時間3分)により封止し、外観、充填性及び金線変形について下記の方法で評価した。なお、外観、充填性、金線変形評価に用いた模擬半導体部品は、片面銅箔基板に半導体を整列配置する擬似回路配線を加工し、半導体は搭載せずに半導体相当部と外部接続用端子部を金線で結線したものである。
Example 1-1
85 mass% spherical silica powder (MSR-8030, manufactured by Tatsumori Co., Ltd., average particle size 12 μm), epoxy resin (NC-3000, manufactured by Nippon Kayaku Co., Ltd.) 8 based on the epoxy resin molding material for semiconductor encapsulation 4% by mass, epoxy resin curing agent (Kayahard GPH, manufactured by Nippon Kayaku Co., Ltd.), 0.5% by mass of epoxy resin curing accelerator (TPP-K, manufactured by Hokuko Chemical Co., Ltd.), modifier (KBM303) (Manufactured by Shin-Etsu Chemical Co., Ltd.) 0.3 mass% and mold release agent (Hoechst S, manufactured by Hoechst) 0.2 mass% were put into a Henschel type mixer, and CPAO-70 obtained in Production Example 1-2. 2% by mass (melting point: 70 ° C.) was stirred and mixed while being melt sprayed. The particle diameter of the sprayed CPAO-70 was 25 μm or less when CPAO-70 was sprayed on the transparent film and the particle diameter of the droplets on the film was measured. Next, the mixture was kneaded with an extruder (SK1, manufactured by Kurimoto Seiko Co., Ltd.), and then subjected to cooling, pulverization, and tableting to obtain an epoxy resin molding material for semiconductor encapsulation. Simulated semiconductor parts (chip size 10mm x 10mm, 176pinLQFP, outer dimensions 24mm x 24mm x 1.4mm) are sealed by transfer molding (mold temperature 165 ° C, curing time 3 minutes) with the material obtained, appearance and filling And the gold wire deformation was evaluated by the following method. The simulated semiconductor parts used for the appearance, fillability, and gold wire deformation evaluation were processed with pseudo circuit wiring to arrange the semiconductors on a single-sided copper foil substrate, and the semiconductor equivalent parts and external connection terminals were not mounted. The part is connected with a gold wire.
(外観)
 成形により封止された模擬半導体部品の外観を顕微鏡で観察し、以下の基準で評価した。
◎: 10μm以上の外観異常(割れ・欠け・へこみ・異物等)が無い。
○: 10~30μmの外観異常は2個以下/成形品であり、かつ、30μm以上の外観異常は無い。
△: 10~30μmの外観異常は5個以下/成形品であり、かつ、30μm以上の外観異常は無い。
×: 10~30μmの外観異常は6個以上/成形品であるか、又は、30μm以上の外観異常が有る。
(充填性)
 成形により封止された模擬半導体部品を0.1mm研磨しその表面を顕微鏡で観察し、外観と同様の基準で評価した。
◎: 10μm以上の外観異常(割れ・欠け・へこみ・異物等)が無い。
○: 10~30μmの外観異常は2個以下/成形品であり、かつ、30μm以上の外観異常は無い。
△: 10~30μmの外観異常は5個以下/成形品であり、かつ、30μm以上の外観異常は無い。
×: 10~30μmの外観異常は6個以上/成形品であるか、又は、30μm以上の外観異常が有る。
(金線変形)
 成形により封止された模擬半導体部品を軟X線装置で観察し、以下の基準で評価した。
無: 金線変形率(金線流れ幅/金線長さ、%表示)<2%
小: 金線変形率 <5%
大: 金線変形率 ≧5%
(appearance)
The appearance of the simulated semiconductor component sealed by molding was observed with a microscope and evaluated according to the following criteria.
A: There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 μm or more.
○: Appearance abnormality of 10-30 μm is 2 or less / molded product, and there is no appearance abnormality of 30 μm or more.
Δ: Appearance abnormality of 10 to 30 μm is 5 or less / molded product, and there is no appearance abnormality of 30 μm or more.
×: Appearance abnormality of 10 to 30 μm is 6 or more / molded product, or appearance abnormality of 30 μm or more.
(Fillability)
The simulated semiconductor component sealed by molding was polished by 0.1 mm, the surface was observed with a microscope, and evaluated according to the same criteria as the appearance.
A: There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 μm or more.
○: Appearance abnormality of 10-30 μm is 2 or less / molded product, and there is no appearance abnormality of 30 μm or more.
Δ: Appearance abnormality of 10 to 30 μm is 5 or less / molded product, and there is no appearance abnormality of 30 μm or more.
×: Appearance abnormality of 10 to 30 μm is 6 or more / molded product, or appearance abnormality of 30 μm or more.
(Gold wire deformation)
The simulated semiconductor component sealed by molding was observed with a soft X-ray apparatus and evaluated according to the following criteria.
None: Gold wire deformation rate (gold wire flow width / gold wire length, expressed in%) <2%
Small: Gold wire deformation rate <5%
Large: Gold wire deformation rate ≧ 5%
実施例1-2
 製造例1-2で得られたCPAO-70に代えて、製造例1-3で得られたCPAO-40(融点42℃)を使用した以外は実施例1-1と同様にして半導体封止用エポキシ樹脂成形材料を製造し、外観、充填性及び金線変形について評価した。
Example 1-2
Semiconductor encapsulation in the same manner as in Example 1-1 except that CPAO-40 (melting point: 42 ° C.) obtained in Production Example 1-3 was used instead of CPAO-70 obtained in Production Example 1-2. Epoxy resin molding materials were manufactured and evaluated for appearance, fillability and gold wire deformation.
実施例1-3
 実施例1-1における配合量を変更し、球状シリカ粉体81質量%、エポキシ樹脂11質量%及びエポキシ樹脂硬化剤5質量%とした以外は実施例1-1同様にして半導体封止用エポキシ樹脂成形材料を製造し、外観、充填性及び金線変形について評価した。
Example 1-3
The epoxy for semiconductor encapsulation was changed in the same manner as in Example 1-1 except that the blending amount in Example 1-1 was changed to 81% by mass of spherical silica powder, 11% by mass of epoxy resin, and 5% by mass of epoxy resin curing agent. Resin molding materials were manufactured and evaluated for appearance, fillability and gold wire deformation.
実施例1-4
 CPAO-70の溶融噴霧を行わず、CPAO-70をカッターミルで粉砕し、円形篩(目開き50μm)を通過させて微粉砕品を得て、これを他の成分と同時に混合機に投入した以外は実施例1-1と同様にして半導体封止用エポキシ樹脂成形材料を製造し、外観、充填性及び金線変形について評価した。
Example 1-4
CPAO-70 was not pulverized with CPAO-70, but CPAO-70 was pulverized with a cutter mill, and passed through a circular sieve (aperture 50 μm) to obtain a finely pulverized product, which was charged into the mixer simultaneously with other components. Except for the above, an epoxy resin molding material for semiconductor encapsulation was produced in the same manner as in Example 1-1, and the appearance, fillability, and gold wire deformation were evaluated.
比較例1-1
 結晶性ポリアルファオレフィンを使用せずに球状シリカ粉体の量を87質量%に変更し、その他は実施例1-1と同様にして成形材料を製造し、外観、充填性及び金線変形について評価した。得られた成形材料は溶融粘度が高く、材料化時の作業性および成形時の流動性も非常に悪かった。
Comparative Example 1-1
The amount of spherical silica powder was changed to 87% by mass without using crystalline polyalphaolefin, and the others were produced in the same manner as in Example 1-1, and the appearance, fillability, and gold wire deformation were determined. evaluated. The obtained molding material had a high melt viscosity, and the workability during materialization and the fluidity during molding were very poor.
比較例1-2
 製造例1-2で得られたCPAO-70に代えて製造例1-4で得られたCPAO-28(融点28℃)を使用した以外は実施例1-1と同様にして成形材料を製造し、外観、充填性及び金線変形について評価した。
Comparative Example 1-2
A molding material is produced in the same manner as in Example 1-1 except that CPAO-28 (melting point: 28 ° C.) obtained in Production Example 1-4 is used instead of CPAO-70 obtained in Production Example 1-2. The appearance, fillability, and gold wire deformation were evaluated.
比較例1-3
 CPAO-70の微粉砕品に代えて、粗粒を使用した以外は実施例1-4と同様にして成形材料を製造し、外観、充填性及び金線変形について評価した。粗粒としては、実施例1-4と同様の方法でCPAO-70を粉砕し、円形篩(目開き75μm)の篩網上に残ったものを使用した。
Comparative Example 1-3
A molding material was produced in the same manner as in Example 1-4 except that coarse particles were used in place of the finely pulverized product of CPAO-70, and the appearance, fillability and gold wire deformation were evaluated. As coarse particles, CPAO-70 was pulverized in the same manner as in Example 1-4, and the one remaining on the sieve screen of a circular sieve (aperture 75 μm) was used.
比較例1-4
 CPAO-70の添加量を6質量%に増加した以外は実施例1-1と同様にして成形材料を製造した。得られた成形材料の硬化物は、強度が局部的に不足し正常な成形品が得られなかった。よって、外観、充填性及び金線変形は評価できなかった。
Comparative Example 1-4
A molding material was produced in the same manner as in Example 1-1 except that the amount of CPAO-70 added was increased to 6% by mass. The cured product of the obtained molding material was insufficient in strength locally, and a normal molded product could not be obtained. Therefore, the appearance, fillability and gold wire deformation could not be evaluated.
比較例1-5
 実施例1-1において、CPAO-70に代えてパラフィンワックス(日本精鑞株式会社製、パラフィンワックス115)を用いた以外は実施例1-1と同様にして材料化を行った。得られた成形材料は、べたつきがひどく正常な形状の成形品が得られなかったため、外観、充填性及び金線変形は評価できなかった。
Comparative Example 1-5
In Example 1-1, materialization was performed in the same manner as in Example 1-1 except that paraffin wax (Nippon Seiki Co., Ltd., paraffin wax 115) was used instead of CPAO-70. Since the obtained molding material was extremely sticky and a molded product having a normal shape could not be obtained, the appearance, fillability and gold wire deformation could not be evaluated.
 実施例1-1~1-4および比較例1-1~1-5の内容と結果を第1表に示す。実施例1-1~1-4および比較例1-1~1-5で得られた成形材料の外観、充填性及び金線変形を比較すると、実施例1-1~1-5の評価結果が抜群に優れることがわかる。また、比較例1-2および1-3の成形材料は、外観、充填性及び金線変形評価時のバラツキが大きかった。 Table 1 shows the contents and results of Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5. When the appearance, filling property and gold wire deformation of the molding materials obtained in Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-5 were compared, the evaluation results of Examples 1-1 to 1-5 It is understood that is excellent. In addition, the molding materials of Comparative Examples 1-2 and 1-3 had large variations in appearance, fillability, and gold wire deformation evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
製造例2-1((1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドの製造)
 シュレンク瓶に(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(インデン)のリチウム塩 3.0g(6.97ミリモル)をTHF(テトラヒドロフラン)50ミリリットルに溶解し-78℃に冷却した。
 ヨードメチルトリメチルシラン2.1ミリリットル(14.2ミリモル)をゆっくりと滴下し室温で12時間撹拌した。
 溶媒を留去しエーテル50ミリリットルを加えて飽和塩化アンモニウム溶液で洗浄した。
 分液後、有機相を乾燥し溶媒を除去して(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデン)を3.04g(5.88ミリモル)を得た(収率84%)。
 次に、窒素気流下においてシュレンク瓶に前記で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデン)を3.04g(5.88ミリモル)とエーテル50ミリリットルとを入れた。
 -78℃に冷却しn-BuLiのヘキサン溶液(1.54モル/L、7.6ミリリットル(11.7ミリモル))を滴下した。
 温度を室温とし12時間撹拌後、エーテルを留去した。
 得られた固体をヘキサン40ミリリットルで洗浄することによりリチウム塩をエーテル付加体として3.06g(5.07ミリモル)を得た(収率73%)。
 1H-NMR(90MHz、THF-d8)による測定の結果は、δ:0.04(s、18H、トリメチルシリル);0.48(s、12H、ジメチルシリレン);1.10(t、6H、メチル);2.59(s、4H、メチレン);3.38(q、4H、メチレン)、6.2-7.7(m,8H,Ar-H)であった。
Production Example 2-1 (Production of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride)
In a Schlenk bottle, 3.0 g (6.97 mmol) of a lithium salt of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (indene) was dissolved in 50 ml of THF (tetrahydrofuran). Cooled to ° C.
2.1 ml (14.2 mmol) of iodomethyltrimethylsilane was slowly added dropwise and stirred at room temperature for 12 hours.
The solvent was distilled off, 50 ml of ether was added, and the mixture was washed with a saturated ammonium chloride solution.
After liquid separation, the organic phase was dried to remove the solvent, and 3.04 g (5.88 mmol) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindene) was obtained. ) Was obtained (yield 84%).
Next, 3.04 g (5.88) of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindene) obtained above in a Schlenk bottle under a nitrogen stream. Millimoles) and 50 milliliters of ether.
After cooling to −78 ° C., a hexane solution of n-BuLi (1.54 mol / L, 7.6 ml (11.7 mmol)) was added dropwise.
After stirring at room temperature for 12 hours, ether was distilled off.
The obtained solid was washed with 40 ml of hexane to obtain 3.06 g (5.07 mmol) of lithium salt as an ether adduct (yield 73%).
The results of measurement by 1 H-NMR (90 MHz, THF-d 8 ) are as follows: δ: 0.04 (s, 18H, trimethylsilyl); 0.48 (s, 12H, dimethylsilylene); 1.10 (t, 6H) , Methyl); 2.59 (s, 4H, methylene); 3.38 (q, 4H, methylene), 6.2-7.7 (m, 8H, Ar-H).
 窒素気流下で得られたリチウム塩をトルエン50ミリリットルに溶解した。
 -78℃に冷却し、ここへ予め-78℃に冷却した四塩化ジルコニウム1.2g(5.1ミリモル)のトルエン(20ミリリットル)懸濁液を滴下した。
 滴下後、室温で6時間撹拌した。その反応溶液の溶媒を留去した。
 得られた残渣をジクロロメタンにより再結晶化することにより、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを0.9g(1.33ミリモル)を得た(収率26%)。
 1H-NMR(90MHz、CDCl3)による測定の結果は、δ:0.0(s、18H、トリメチルシリル);1.02,1.12(s、12H、ジメチルシリレン);2.51(dd、4H、メチレン);7.1-7.6(m,8H,Ar-H)であった。
The lithium salt obtained under a nitrogen stream was dissolved in 50 ml of toluene.
After cooling to −78 ° C., a suspension of 1.2 g (5.1 mmol) of zirconium tetrachloride, which had been cooled to −78 ° C. in advance, in toluene (20 ml) was added dropwise.
After dropping, the mixture was stirred at room temperature for 6 hours. The solvent of the reaction solution was distilled off.
The obtained residue was recrystallized from dichloromethane to obtain 0.9 g (1 ') of (1,2'-dimethylsilylene) (2,1'-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride. .33 mmol) was obtained (yield 26%).
The results of measurement by 1 H-NMR (90 MHz, CDCl 3 ) are as follows: δ: 0.0 (s, 18H, trimethylsilyl); 1.02, 1.12 (s, 12H, dimethylsilylene); 2.51 (dd 4H, methylene); 7.1-7.6 (m, 8H, Ar-H).
製造例2-2(CPAO-70の製造)
 加熱乾燥した1リットルオートクレーブに、Chevron Phillips Chemical社製アルファオレフィンC26-28 400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素を0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-70)を195g得た。
Production Example 2-2 (Production of CPAO-70)
400 mL of alpha olefin C26-28 manufactured by Chevron Phillips Chemical Co. and 0.5 mmol of triisobutylaluminum were added to a heat-dried 1 liter autoclave, and the temperature was raised to 110 ° C. Then, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. Nitroborate was added in an amount of 4.0 μmol, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, followed by heat drying under reduced pressure to obtain 195 g of a higher α-olefin polymer (CPAO-70).
 上記CPAO-70について、パーキンエルマー社製の示差走査型熱量計(DSC-7)を用い、試料を窒素雰囲気下190℃で5分保持した後、-30℃まで、5℃/分で降温させ、-30℃で5分保持した後、190℃まで10℃/分で昇温させることにより得られた融解吸熱カーブから観測されるピークトップを測定し、融点を求めたところ、70℃であった。また、融解を開始する温度は、55℃であり、融解を終了する温度を求めたところ、71℃であった。 For CPAO-70, a differential scanning calorimeter (DSC-7) manufactured by PerkinElmer was used, and the sample was held at 190 ° C. for 5 minutes in a nitrogen atmosphere, and then decreased to −30 ° C. at 5 ° C./minute. The peak top observed from the melting endotherm curve obtained by maintaining the temperature at −30 ° C. for 5 minutes and then increasing the temperature to 190 ° C. at 10 ° C./min was measured, and the melting point was determined to be 70 ° C. It was. Moreover, the temperature which starts melting | dissolving is 55 degreeC, It was 71 degreeC when the temperature which complete | finishes melting | dissolving was calculated | required.
製造例2-3(CPAO-60の製造)
 加熱乾燥した1リットルオートクレーブに、Chevron Phillips Chemical社製アルファオレフィンC20-24 400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素を0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-60)を203g得た。
 また、上記CPAO-60について、製造例2-2と同様にして融点を求めたところ、60℃であり、融解を開始する温度を求めたところ、45℃であり、融解を終了する温度を求めたところ、61℃であった。
Production Example 2-3 (Production of CPAO-60)
400 mL of alpha olefin C20-24 manufactured by Chevron Phillips Chemical Co., and 0.5 mmol of triisobutylaluminum were added to a 1 liter autoclave that had been dried by heating, and the temperature was raised to 110 ° C. Then, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 1 was added to dimethylaniline while stirring. Nitroborate was added in an amount of 4.0 μmol, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After the completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, and heat dried under reduced pressure to obtain 203 g of a higher α-olefin polymer (CPAO-60).
For CPAO-60, the melting point was determined in the same manner as in Production Example 2-2, and it was 60 ° C. The temperature at which melting was started was 45 ° C., and the temperature at which melting was completed was determined. As a result, it was 61 ° C.
製造例2-4(CPAO-50の製造)
加熱乾燥した1リットルオートクレーブに、出光興産(株)製「リニアレン2024」40
0ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例2-1で得られた(1,2‘-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素0.2MPa導入し、240分間重合した。
重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-50)を210g得た。
 また、上記CPAO-50について、製造例2-2と同様にして融点を求めたところ、52℃であり、融解を開始する温度を求めたところ、37℃であり、融解を終了する温度を求めたところ、53℃であった。
Production Example 2-4 (Production of CPAO-50)
Idemitsu Kosan Co., Ltd. “Linearene 2024” 40
0 ml and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 2-1 was stirred, while stirring. 4.0 micromol of dimethylanilinium borate was added, 0.2 MPa of hydrogen was further introduced, and polymerization was performed for 240 minutes.
After completion of the polymerization reaction, the reprecipitation operation was repeated with acetone to precipitate the reaction product, followed by heating and drying under reduced pressure to obtain 210 g of a higher α-olefin polymer (CPAO-50).
For CPAO-50, the melting point was determined in the same manner as in Production Example 2-2, and it was 52 ° C. The temperature at which melting was started was 37 ° C., and the temperature at which melting was completed was determined. As a result, it was 53 ° C.
製造例2-5(CPAO-40の製造)
 加熱乾燥した1リットルオートクレーブに、1-オクタデセン(C18)400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例2-1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-40)を211g得た。
 また、上記CPAO-40について、製造例2-2と同様にして融点を求めたところ、42℃であり、融解を開始する温度を求めたところ、30℃であり、融解を終了する温度を求めたところ、45℃であった。
Production Example 2-5 (Production of CPAO-40)
To a heat-dried 1 liter autoclave, 400 ml of 1-octadecene (C18) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 2-1 was stirred, while stirring. 4.0 micromol of dimethylanilinium borate was added, 0.2 MPa of hydrogen was further introduced, and polymerization was performed for 240 minutes. After completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, and heat dried under reduced pressure to obtain 211 g of a higher α-olefin polymer (CPAO-40).
For CPAO-40, the melting point was determined in the same manner as in Production Example 2-2, and it was 42 ° C. The temperature at which melting was started was 30 ° C., and the temperature at which melting was completed was determined. As a result, it was 45 degreeC.
製造例2-6(CPAO-28の製造)
 加熱乾燥した1リットルオートクレーブに、1-ヘキサデセン(C16)400ミリリットル、トリイソブチルアルミニウム0.5ミリモルを加え、110℃に昇温した。ついで攪拌しながら、製造例2-1で得られた(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロライドを1.0マイクロモル、ジメチルアニリニウムボレートを4.0マイクロモル加え、更に水素を0.2MPa導入し、240分間重合した。重合反応終了後、アセトンで再沈操作を繰り返すことにより、反応物を析出させ、減圧下、加熱乾燥することにより、高級αオレフィン重合体(CPAO-28)を205g得た。
 また、上記CPAO-28について、製造例2-2と同様にして融点を求めたところ、28℃であり、融解を開始する温度を求めたところ、15℃であり、融解を終了する温度を求めたところ、30℃であった。
Production Example 2-6 (Production of CPAO-28)
To a heat-dried 1 liter autoclave, 400 ml of 1-hexadecene (C16) and 0.5 mmol of triisobutylaluminum were added, and the temperature was raised to 110 ° C. Subsequently, 1.0 μmol of (1,2′-dimethylsilylene) (2,1′-dimethylsilylene) bis (3-trimethylsilylmethylindenyl) zirconium dichloride obtained in Production Example 2-1 was stirred, while stirring. 4.0 micromol of dimethylanilinium borate was added, and 0.2 MPa of hydrogen was further introduced, followed by polymerization for 240 minutes. After completion of the polymerization reaction, the reaction product was precipitated by repeating the reprecipitation operation with acetone, and heat dried under reduced pressure to obtain 205 g of a higher α-olefin polymer (CPAO-28).
For CPAO-28, the melting point was determined in the same manner as in Production Example 2-2, and it was 28 ° C. The temperature at which melting was started was 15 ° C., and the temperature at which melting was completed was determined. As a result, it was 30 degreeC.
 図2に製造例2-5で得られた結晶性ポリアルファオレフィンとパラフィンワックス(日本精鑞株式会社製:パラフィンワックス115)の融解特性を示す。図2に示されている、製造例2-5で得られた融点42℃の結晶性ポリアルファオレフィン(CPAO-40)とパラフィンワックスの融解特性を比べると、結晶性ポリアルファオレフィンの融解温度幅が狭いことが一目瞭然である。図3は融点の異なる結晶性ポリアルファオレフィン(28℃、40℃、70℃)の融解特性を示す図である。融解温度幅が狭いという特徴は融点が変化しても同じである。 FIG. 2 shows the melting characteristics of the crystalline polyalphaolefin obtained in Production Example 2-5 and paraffin wax (manufactured by Nippon Seiki Co., Ltd .: Paraffin Wax 115). Compared with the melting characteristics of crystalline polyalphaolefin (CPAO-40) having a melting point of 42 ° C. obtained in Production Example 2-5 and paraffin wax shown in FIG. It is obvious that is narrow. FIG. 3 is a graph showing melting characteristics of crystalline polyalphaolefins (28 ° C., 40 ° C., 70 ° C.) having different melting points. The characteristic that the melting temperature width is narrow is the same even if the melting point changes.
実施例2-1
 封止材料基準で85.5質量%の球状シリカ粉体(FB9454FD、粒径≦45μm、電気化学工業株式会社製)、エポキシ樹脂(YX4000H、ジャパンエポキシレジン株式会社製)7質量%、エポキシ樹脂硬化剤(MEH7800、明和化成株式会社製)5質量%、エポキシ樹脂硬化促進剤(TPP、ケイアイ化成株式会社製)0.2質量%および改質剤(S530、チッソ株式会社製)0.3質量%をヘンシェル型混合機に入れ、製造例2-4で得られたCPAO-50(融点52℃)2質量%を、粒径が15±5μmとなるように調整しつつ、溶融噴霧しながら攪拌混合し、封止材料を得た。CPAO-50の粒径は、透明フィルムにCPAO-50を噴霧しフィルム上の液滴の粒径を計測したところ、25μm以下であった。つぎに、混合物を押出機(SK1、株式会社栗本鐵工所製)で混錬した後、製造例2-5で得られたCPAO-40を溶融塗布した保護フィルム(PET、75μm厚、東レ株式会社製)に挟み込み半導体封止用エポキシ樹脂シート部材を得た。CPAO-40の溶融塗布時の厚みは、6±3μmになるように調整した。この部材の片面の保護フィルムを剥した後、模擬半導体基板(チップサイズ 10mm×10mmの176pinLQFP、外形24mm×24mm×1.4mm)を圧着成形(金型温度150℃、硬化時間3分)により封止し、剥離性、充填性、金線変形、外観について、下記の方法で評価した。なお、剥離性、充填性、金線変形、外観評価に用いた模擬半導体部品は、片面銅箔基板に半導体を整列配置する擬似回路配線を加工し、半導体は搭載せずに半導体相当部と外部接続用端子部を金線で結線したものである。
Example 2-1
85.5% by mass of spherical silica powder (FB9454FD, particle size ≦ 45 μm, manufactured by Denki Kagaku Kogyo Co., Ltd.), 7% by mass of epoxy resin (YX4000H, manufactured by Japan Epoxy Resin Co., Ltd.), cured epoxy resin 5% by mass of an agent (MEH7800, manufactured by Meiwa Kasei Co., Ltd.), 0.2% by mass of an epoxy resin curing accelerator (TPP, manufactured by KAI Kasei Co., Ltd.) and 0.3% by mass of a modifier (S530, manufactured by Chisso Corporation) Was added to a Henschel type mixer, and 2 mass% of CPAO-50 (melting point: 52 ° C.) obtained in Production Example 2-4 was stirred and mixed while melt spraying while adjusting the particle size to 15 ± 5 μm. Thus, a sealing material was obtained. The particle diameter of CPAO-50 was 25 μm or less when CPAO-50 was sprayed on a transparent film and the particle diameter of droplets on the film was measured. Next, the mixture was kneaded with an extruder (SK1, manufactured by Kurimoto Seiko Co., Ltd.), and then a protective film (PET, 75 μm thickness, Toray Industries, Inc.) melt-coated with CPAO-40 obtained in Production Example 2-5 was used. The epoxy resin sheet member for semiconductor encapsulation was obtained by sandwiching the product into a product made by company. The thickness of CPAO-40 at the time of melt coating was adjusted to 6 ± 3 μm. After removing the protective film on one side of this member, a simulated semiconductor substrate (chip size: 10 mm × 10 mm, 176 pin LQFP, outer dimensions: 24 mm × 24 mm × 1.4 mm) is sealed by pressure molding (mold temperature 150 ° C., curing time 3 minutes). The following methods were used for evaluation of stoppage, peelability, fillability, gold wire deformation, and appearance. The simulated semiconductor parts used for peelability, fillability, gold wire deformation, and appearance evaluation were processed with pseudo circuit wiring that aligned semiconductors on a single-sided copper foil substrate. The connection terminal portion is connected with a gold wire.
(剥離性)
 エポキシ樹脂シート部材よりフィルムを剥がし、フィルム上に付着した封止材料を目視で確認し、以下の基準で評価した。
◎: 封止材料の付着は認められない。
○: 封止材料の付着が全体の1%以下(面積)、封止材料はシート原型を保持した。
△: 封止材料の付着が全体の5%未満、封止材料はシート原型を保持した。
×: 封止材料の付着が全体の5%以上、又は、封止材料は原型を保持せず。
(外観)
 成形により封止された模擬半導体部品の外観を顕微鏡で観察し、以下の基準で評価した。
◎: 10μm以上の外観異常(割れ・欠け・へこみ・異物等)が無い。
○: 10~30μmの外観異常は2個以下/成形品であり、かつ、30μm以上の外観異常は無い。
△: 10~30μmの外観異常は5個以下/成形品であり、かつ、30μm以上の外観異常は無い。
×: 10~30μmの外観異常は6個以上/成形品であるか、又は、30μm以上の外観異常が有る。
(充填性)
 成形により封止された模擬半導体部品を0.1mm研磨しその表面を顕微鏡で観察し、外観と同様の基準で評価した。
◎: 10μm以上の外観異常(割れ・欠け・へこみ・異物等)が無い。
○: 10~30μmの外観異常は2個以下/成形品であり、かつ、30μm以上の外観異常は無い。
△: 10~30μmの外観異常は5個以下/成形品であり、かつ、30μm以上の外観異常は無い。
×: 10~30μmの外観異常は6個以上/成形品であるか、又は、30μm以上の外観異常が有る。
(金線変形)
 成形により封止された模擬半導体部品を軟X線装置で観察し、以下の基準で評価した。
無: 金線変形率(金線流れ幅/金線長さ、%表示)<2%
小: 金線変形率 <5%
大: 金線変形率 ≧5%
(Peelability)
The film was peeled off from the epoxy resin sheet member, the sealing material adhering to the film was visually confirmed, and evaluated according to the following criteria.
A: Adhesion of sealing material is not recognized.
○: Adhesion of the sealing material was 1% or less (area) of the whole, and the sealing material retained the original sheet.
Δ: Less than 5% of the sealing material adhered, and the sealing material retained the original sheet.
X: Adhesion of sealing material is 5% or more of the whole, or the sealing material does not hold the original pattern.
(appearance)
The appearance of the simulated semiconductor component sealed by molding was observed with a microscope and evaluated according to the following criteria.
A: There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 μm or more.
○: Appearance abnormality of 10-30 μm is 2 or less / molded product, and there is no appearance abnormality of 30 μm or more.
Δ: Appearance abnormality of 10 to 30 μm is 5 or less / molded product, and there is no appearance abnormality of 30 μm or more.
×: Appearance abnormality of 10 to 30 μm is 6 or more / molded product, or appearance abnormality of 30 μm or more.
(Fillability)
The simulated semiconductor component sealed by molding was polished by 0.1 mm, the surface was observed with a microscope, and evaluated according to the same criteria as the appearance.
A: There is no abnormality in appearance (breaking, chipping, dent, foreign matter, etc.) of 10 μm or more.
○: Appearance abnormality of 10-30 μm is 2 or less / molded product, and there is no appearance abnormality of 30 μm or more.
Δ: Appearance abnormality of 10 to 30 μm is 5 or less / molded product, and there is no appearance abnormality of 30 μm or more.
×: Appearance abnormality of 10 to 30 μm is 6 or more / molded product, or appearance abnormality of 30 μm or more.
(Gold wire deformation)
The simulated semiconductor component sealed by molding was observed with a soft X-ray apparatus and evaluated according to the following criteria.
None: Gold wire deformation rate (gold wire flow width / gold wire length, expressed in%) <2%
Small: Gold wire deformation rate <5%
Large: Gold wire deformation rate ≧ 5%
実施例2-2
 製造例2-4で得られたCPAO-50に代えて、製造例2-2で得られたCPAO-70(融点70℃)を溶融噴霧した以外は実施例2-1と同様にして半導体封止用エポキシ樹脂シート部材を製造し、剥離性、充填性、金線変形、外観について評価した。
Example 2-2
Instead of CPAO-50 obtained in Production Example 2-4, CPAO-70 obtained in Production Example 2-2 (melting point 70 ° C.) was melted and sprayed in the same manner as in Example 2-1, but the semiconductor encapsulation was performed. A stop epoxy resin sheet member was produced and evaluated for peelability, fillability, gold wire deformation, and appearance.
実施例2-3
 製造例2-5で得られたCPAO-40に代えて、製造例2-3で得られたCPAO-60(融点60℃)を保護フィルムに溶融塗布した以外は実施例2-1と同様にして半導体封止用エポキシ樹脂シート部材を製造し、剥離性、充填性、金線変形、外観について評価した。
Example 2-3
Instead of CPAO-40 obtained in Production Example 2-5, CPAO-60 (melting point 60 ° C.) obtained in Production Example 2-3 was melt-coated on a protective film in the same manner as in Example 2-1. Then, an epoxy resin sheet member for semiconductor encapsulation was manufactured and evaluated for peelability, fillability, gold wire deformation, and appearance.
実施例2-4
 製造例2-5で得られたCPAO-40を溶融し、保護フィルムに噴霧して厚さ12±4μmの塗膜を形成した以外は実施例2-1と同様にして半導体封止用エポキシ樹脂シート部材を製造し、剥離性、充填性、金線変形、外観について評価した。
Example 2-4
Epoxy resin for semiconductor encapsulation in the same manner as in Example 2-1, except that CPAO-40 obtained in Production Example 2-5 was melted and sprayed onto a protective film to form a coating film having a thickness of 12 ± 4 μm. Sheet members were manufactured and evaluated for peelability, fillability, gold wire deformation, and appearance.
比較例2-1
 実施例2-1において、結晶性ポリアルファオレフィンを使用せず、球状シリカ粉体の配合量を87.5質量%としてシート部材を製造し剥離性、充填性、金線変形、外観について評価した。得られた部材の剥離性は非常に悪く、封止材料の一部が保護フィルムに付着した。また、封止材料の溶融粘度が高く、注入性が非常に悪く正常な成形品が得られなかった。
Comparative Example 2-1
In Example 2-1, a sheet member was produced without using crystalline polyalphaolefin and the blending amount of the spherical silica powder was 87.5% by mass, and the peelability, fillability, gold wire deformation, and appearance were evaluated. . The peelability of the obtained member was very poor, and a part of the sealing material adhered to the protective film. Further, the melt viscosity of the sealing material was high, the injection property was very poor, and a normal molded product could not be obtained.
比較例2-2
 製造例2-4で得られたCPAO-50の代わりに製造例2-6で得られたCPAO-28(融点28℃)を使用した以外は実施例2-1と同様にしてシート部材を製造し、剥離性、充填性、金線変形、外観について評価した。
Comparative Example 2-2
A sheet member was produced in the same manner as in Example 2-1, except that CPAO-28 (melting point 28 ° C.) obtained in Production Example 2-6 was used instead of CPAO-50 obtained in Production Example 2-4. Then, the peelability, fillability, gold wire deformation, and appearance were evaluated.
比較例2-3
 実施例2-2において、製造例2-2で得られたCPAO-70を溶融噴霧する方法に代えて、CPAO-70の粗粒(粒径50μm以上)を使用した以外は実施例2-2と同様にしてシート部材を製造し、剥離性、充填性、金線変形、外観について評価した。CPAO-70の粗粒は、CPAO-70を微粉砕し、目開き50μmの篩網を用いて篩分した後、篩網上に残ったものを使用した。
Comparative Example 2-3
In Example 2-2, instead of the method of melt spraying CPAO-70 obtained in Production Example 2-2, coarse particles of CPAO-70 (particle size of 50 μm or more) were used. Example 2-2 In the same manner as above, sheet members were produced and evaluated for peelability, fillability, gold wire deformation, and appearance. As the coarse particles of CPAO-70, CPAO-70 was finely pulverized and sieved using a sieve mesh having an opening of 50 μm, and the particles remaining on the sieve mesh were used.
比較例2-4
 製造例2-4で得られたCPAO-50の添加量を6質量%に増加し、球状シリカ粉体を81.5質量%に減少した以外は実施例2-1と同様にしてシート部材を製造し、剥離性、充填性、金線変形、外観について評価した。この材料のフィルム剥離性は良好であったが、成形品のバラツキが非常に大きく正しい評価結果が得られなかった。
Comparative Example 2-4
A sheet member was prepared in the same manner as in Example 2-1, except that the amount of CPAO-50 obtained in Production Example 2-4 was increased to 6% by mass and the amount of spherical silica powder was decreased to 81.5% by mass. Manufactured and evaluated for peelability, fillability, gold wire deformation, and appearance. Although the film peelability of this material was good, variation in the molded product was very large, and a correct evaluation result could not be obtained.
 実施例2-1~2-4及び比較例2-1~2-4の内容と評価結果を第2表に示す。実施例2-1~2-4及び比較例2-1~2-4で得られたシート部材の剥離性、充填性、金線変形、外観を比較すると、実施例1~4の半導体封止用エポキシ樹脂シート部材が抜群に優れることがわかる。また、比較例2-2および比較例2-3の封止材料は、剥離性、充填性、金線変形及び外観評価のバラツキも大きかった。 The contents and evaluation results of Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-4 are shown in Table 2. When the peelability, fillability, gold wire deformation, and appearance of the sheet members obtained in Examples 2-1 to 2-4 and Comparative Examples 2-1 to 2-4 were compared, the semiconductor encapsulation of Examples 1 to 4 was compared. It can be seen that the epoxy resin sheet member for use is excellent. Further, the sealing materials of Comparative Example 2-2 and Comparative Example 2-3 had large variations in peelability, fillability, gold wire deformation, and appearance evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の半導体封止用エポキシ樹脂成形材料は、半導体封止用トランスファー成形材料として用いた場合に成形性に優れており、特に、一括封止法において抜群の性能を発揮する。成形時の諸問題のため実用化が困難であった最先端半導体装置の樹脂封止を可能とする成形材料であり、既存の設備を使用して最先端の半導体装置を工業的に生産することを可能にする。
 また、本発明の半導体封止用エポキシ樹脂シート部材は、半導体封止用圧着成形用シート部材として用いた場合に成形性に優れており、特に、一括封止法において抜群の性能を発揮する。成形時の諸問題のため実用化が困難であった最先端半導体装置の樹脂封止を可能とするシート部材であり、既存の設備を使用して最先端の半導体装置を工業的に生産することを可能にする。
The epoxy resin molding material for semiconductor encapsulation of the present invention is excellent in moldability when used as a transfer molding material for semiconductor encapsulation, and particularly exhibits excellent performance in the collective sealing method. It is a molding material that enables resin sealing of cutting-edge semiconductor devices that were difficult to put into practical use due to various problems during molding. Industrially producing cutting-edge semiconductor devices using existing equipment Enable.
Moreover, the epoxy resin sheet member for semiconductor encapsulation of the present invention is excellent in moldability when used as a pressure-molding sheet member for semiconductor encapsulation, and particularly exhibits excellent performance in the collective sealing method. It is a sheet member that enables resin sealing of cutting-edge semiconductor devices that were difficult to put into practical use due to various problems during molding. Industrially producing cutting-edge semiconductor devices using existing equipment Enable.

Claims (9)

  1.  少なくとも(1-A)融点が30~90℃の結晶性ポリアルファオレフィンの粒径75μm以下の粉体及び/又は霧状体、(1-B)エポキシ樹脂、並びに(1-C)無機充填材を溶融混練してなる半導体封止用エポキシ樹脂成形材料であって、該結晶性ポリアルファオレフィンを0.2~5質量%含有する半導体封止用エポキシ樹脂成形材料。 At least (1-A) crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and / or mist with a particle size of 75 μm or less, (1-B) epoxy resin, and (1-C) inorganic filler An epoxy resin molding material for semiconductor encapsulation, which is obtained by melt-kneading and containing 0.2 to 5% by mass of the crystalline polyalphaolefin.
  2.  前記結晶性ポリアルファオレフィンが、融点の-15℃以内で融解を開始し+3℃以内で融解を終了するものである請求項1に記載の半導体封止用エポキシ樹脂成形材料。 2. The epoxy resin molding material for semiconductor encapsulation according to claim 1, wherein the crystalline polyalphaolefin starts melting within −15 ° C. of the melting point and ends melting within + 3 ° C.
  3.  前記(1-C)無機充填材がシリカ粉体である請求項1に記載の半導体封止用エポキシ樹脂成形材料。 2. The epoxy resin molding material for semiconductor encapsulation according to claim 1, wherein the (1-C) inorganic filler is silica powder.
  4.  前記(1-C)無機充填材を80質量%以上含有する請求項1に記載の半導体封止用エポキシ樹脂成形材料。 2. The epoxy resin molding material for semiconductor encapsulation according to claim 1, comprising 80% by mass or more of the (1-C) inorganic filler.
  5.  融点が30~90℃の結晶性ポリアルファオレフィンを、溶融状態で噴霧して添加することを特徴とする請求項1に記載の半導体封止用エポキシ樹脂成形材料の製造方法。 2. The method for producing an epoxy resin molding material for semiconductor encapsulation according to claim 1, wherein the crystalline polyalphaolefin having a melting point of 30 to 90 ° C. is added by spraying in a molten state.
  6.  少なくとも(2-A)融点が30~90℃の結晶性ポリアルファオレフィンの粒径50μm以下の粉体及び/又は霧状体、(2-B)エポキシ樹脂、並びに(2-C)無機充填材を溶融混練してなり、かつ、該結晶性ポリアルファオレフィンを0.2~5質量%含有する封止材料からなる封止層を有する半導体封止用エポキシ樹脂シート部材であって、さらに、該封止層の片面又は両面に保護フィルムを有する半導体封止用エポキシ樹脂シート部材。 At least (2-A) crystalline polyalphaolefin having a melting point of 30 to 90 ° C. and / or mist with a particle size of 50 μm or less, (2-B) epoxy resin, and (2-C) inorganic filler An epoxy resin sheet member for semiconductor encapsulation having a sealing layer made of a sealing material containing 0.2 to 5% by mass of the crystalline polyalphaolefin, An epoxy resin sheet member for semiconductor encapsulation having a protective film on one or both sides of the sealing layer.
  7.  前記結晶性ポリアルファオレフィンが、融点の-15℃以内で融解を開始し+3℃以内で融解を終了するものである請求項6に記載の半導体封止用エポキシ樹脂シート部材。 7. The epoxy resin sheet member for semiconductor encapsulation according to claim 6, wherein the crystalline polyalphaolefin starts melting within −15 ° C. of the melting point and ends melting within + 3 ° C.
  8.  前記保護フィルムの封止層側に、融点が30~90℃の結晶性ポリアルファオレフィンを含む厚さ0.1~10μmの剥離層を有する請求項6に記載の半導体封止用エポキシ樹脂シート部材。 7. The epoxy resin sheet member for semiconductor encapsulation according to claim 6, further comprising a release layer having a thickness of 0.1 to 10 μm containing crystalline polyalphaolefin having a melting point of 30 to 90 ° C. on the sealing layer side of the protective film. .
  9.  融点が30~90℃の結晶性ポリアルファオレフィンを溶融状態で噴霧して封止材料を製造する工程と、保護フィルムに融点が30~90℃の結晶性ポリアルファオレフィンを溶融状態で塗布又は噴霧して剥離層を形成する工程とを含むことを特徴とする請求項6に記載の半導体封止用エポキシ樹脂シート部材の製造方法。 A process for producing a sealing material by spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. in a molten state, and applying or spraying a crystalline polyalphaolefin having a melting point of 30 to 90 ° C. to the protective film in a molten state And a step of forming a release layer. The method for producing an epoxy resin sheet member for semiconductor encapsulation according to claim 6.
PCT/JP2009/059510 2008-06-20 2009-05-25 Epoxy resin molding material for semiconductor sealing purposes, epoxy resin sheet for semiconductor sealing purposes, and method for the production thereof WO2009154058A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-161657 2008-06-20
JP2008-161653 2008-06-20
JP2008161653A JP2010001386A (en) 2008-06-20 2008-06-20 Epoxy resin molding material for sealing semiconductor and method for manufacturing the same
JP2008161657A JP2010003897A (en) 2008-06-20 2008-06-20 Epoxy resin sheet member for sealing semiconductor, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2009154058A1 true WO2009154058A1 (en) 2009-12-23

Family

ID=41433974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059510 WO2009154058A1 (en) 2008-06-20 2009-05-25 Epoxy resin molding material for semiconductor sealing purposes, epoxy resin sheet for semiconductor sealing purposes, and method for the production thereof

Country Status (1)

Country Link
WO (1) WO2009154058A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500187A (en) * 1996-09-12 2001-01-09 ランデック コーポレイション Polymer composition containing modifier
WO2006080297A1 (en) * 2005-01-28 2006-08-03 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2007046017A (en) * 2005-08-12 2007-02-22 Idemitsu Kosan Co Ltd Wax composition
JP2008214535A (en) * 2007-03-06 2008-09-18 Idemitsu Kosan Co Ltd Endothermic and heat shock-alleviating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001500187A (en) * 1996-09-12 2001-01-09 ランデック コーポレイション Polymer composition containing modifier
WO2006080297A1 (en) * 2005-01-28 2006-08-03 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2007046017A (en) * 2005-08-12 2007-02-22 Idemitsu Kosan Co Ltd Wax composition
JP2008214535A (en) * 2007-03-06 2008-09-18 Idemitsu Kosan Co Ltd Endothermic and heat shock-alleviating material

Similar Documents

Publication Publication Date Title
JP2010003897A (en) Epoxy resin sheet member for sealing semiconductor, and manufacturing method thereof
JP4438973B2 (en) Sheet-shaped resin composition and method for manufacturing semiconductor device using the same
JP4470962B2 (en) Encapsulant tablet
CN105647405A (en) Conductive film-like adhesive, film-like adhesive attached dicing tape and manufacturing method of semiconductor device
TW200849506A (en) Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
CN106575625B (en) Film-like adhesive, semiconductor packages and its manufacturing method using film-like adhesive
JP4994743B2 (en) Film adhesive and method of manufacturing semiconductor package using the same
TW201125946A (en) Thermosetting die bonding film
CN105623533A (en) Adhesive sheet, adhesive sheet with dicing sheet, laminated sheet and method of manufacturing semiconductor device
JP2017095642A (en) Adhesive sheet, dicing tape-integrated adhesive sheet, and method for producing semiconductor device
TW201237107A (en) Resin composition and semiconductor device
CN104212374A (en) Thermosetting chip bonding film, chip bonding film with cutting disc, and manufacturing method of semiconductor device
JP6388202B2 (en) Insulating resin sheet, and circuit board and semiconductor package using the same
KR20220032114A (en) Silver particles, methods for producing silver particles, paste compositions, semiconductor devices, and electrical/electronic components
JP4148434B2 (en) Manufacturing method of semiconductor devices
JP6523042B2 (en) Adhesive sheet, dicing tape integrated adhesive sheet, film, method of manufacturing semiconductor device, and semiconductor device
JP5703489B2 (en) Manufacturing method and adjustment method of liquid resin composition for sealing, and semiconductor device and semiconductor element sealing method using the same
JP6102112B2 (en) Epoxy resin composition and electronic component device
WO2009154058A1 (en) Epoxy resin molding material for semiconductor sealing purposes, epoxy resin sheet for semiconductor sealing purposes, and method for the production thereof
TW201610056A (en) Adhesive agent and connection structure
JP2012046657A (en) Epoxy resin molding material for sealing semiconductor and thermal storage molded article
JP5557158B2 (en) Flip chip connecting underfill agent and method of manufacturing semiconductor device using the same
JP2000332165A (en) Resin composition for sealing semiconductor and semiconductor device employing it
JP2010001386A (en) Epoxy resin molding material for sealing semiconductor and method for manufacturing the same
CN115428126A (en) Die-cut die-bonding film and method for manufacturing the same, and semiconductor package and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09766506

Country of ref document: EP

Kind code of ref document: A1