WO2009130953A1 - Electrodynamic vibration test equipment - Google Patents
Electrodynamic vibration test equipment Download PDFInfo
- Publication number
- WO2009130953A1 WO2009130953A1 PCT/JP2009/054616 JP2009054616W WO2009130953A1 WO 2009130953 A1 WO2009130953 A1 WO 2009130953A1 JP 2009054616 W JP2009054616 W JP 2009054616W WO 2009130953 A1 WO2009130953 A1 WO 2009130953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrodynamic
- rail
- actuator
- intermediate stage
- runner block
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/06—Multidirectional test stands
Definitions
- the present invention relates to an electrodynamic vibration test apparatus that vibrates a subject with a voice coil motor.
- An electrodynamic vibration test apparatus that vibrates a table and a subject fixed thereon by a voice coil motor in a predetermined direction (for example, up and down direction) such as that described in Japanese Patent Application Laid-Open No. 2004-219196 is widely used. ing.
- the electrodynamic vibration testing apparatus arranges a movable coil attached to a movable part to which a table is fixed in a DC magnetic field, and then supplies an AC current to the movable coil, thereby causing the table to be driven at the frequency of the AC current. It is to vibrate.
- the vibration frequency of the table is determined by the frequency of the alternating current supplied to the moving coil. Therefore, the electrodynamic vibration test apparatus is particularly suitable for vibration tests at a high frequency of several hundred to several thousand hertz. Is suitable.
- the electrodynamic vibration test apparatus applies not only the uniaxial direction as described in the above publication but also the orthogonal biaxial or triaxial directions (X, Y, Z axis directions). It is preferable to be able to vibrate.
- X, Y, Z axis directions it is preferable to be able to vibrate.
- crosstalk occurs in a configuration in which three electrodynamic actuators are simply connected to a table, when one electrodynamic actuator is driven, a bending moment is applied to the drive shaft of another electrodynamic actuator, so-called crosstalk occurs. The subject could not be vibrated in the triaxial direction.
- an object of the present invention is to provide an electrodynamic vibration test apparatus that can vibrate a table and a subject on the table in directions of two orthogonal axes or three axes.
- an electrodynamic vibration testing apparatus includes first and second electrodynamic types capable of exciting a table in first and second directions orthogonal to each other.
- An actuator a first connecting means that allows the table to slide in a second direction relative to the first electrodynamic actuator, and a table that can slide in the first direction relative to the second electrodynamic actuator Second connecting means.
- each actuator is slidable in a direction perpendicular to the excitation direction of the actuator with respect to the table. Therefore, even if the table is vibrated by a certain actuator, the table slides with respect to the other actuator, so that the other actuator is not displaced and the vibration direction of the other actuator is not changed. Therefore, according to the embodiment of the present invention, since crosstalk does not occur, an electrodynamic vibration test apparatus that vibrates the table in the orthogonal 2-axis or 3-axis direction is realized.
- each of the first and second connecting means has an intermediate stage disposed between the first and second electrodynamic actuators and the table, and the intermediate stage of the first connecting means is the first stage. Slidable with respect to the table only in one direction perpendicular to the first direction, and slidable relative to the first electrodynamic actuator only in a direction perpendicular to both the one direction and the first direction.
- the intermediate stage of the two connecting means is slidable with respect to the table only in one direction perpendicular to the second direction, and the second electrodynamic movement is performed only in a direction perpendicular to both the one direction and the second direction. It is slidable with respect to the mold actuator.
- one of the two directions in which the intermediate stage of the first connecting means is slidable with respect to the table and the first electrodynamic actuator is the second direction
- the intermediate stage of the second connecting means is the table and
- One of the two directions slidable with respect to the second electrodynamic actuator is the first direction.
- the table and the intermediate stage have a first linear guide mechanism having a rail attached to one of them and a runner block attached to the other side and engaged with the rail.
- the electrodynamic actuator and the intermediate stage are
- the second linear guide mechanism may have a rail attached to one side thereof and a runner block attached to the other side and engaged with the rail.
- the runner block has a groove formed in the concave portion along the movement direction of the runner block, and a retreat path formed inside the runner block and connected to both ends of the groove in the movement direction so as to form a closed circuit. And a plurality of balls adapted to circulate through the closed circuit and to come into contact with the rail when positioned in the groove.
- the balls arranged in the grooves of two of the four closed circuits are approximately ⁇ 45 degrees with respect to the radial direction of the runner block. It is preferable that a ball having a contact angle and disposed in each of the other two closed circuit grooves has a contact angle of approximately ⁇ 45 degrees with respect to the reverse radial direction of the runner block.
- the runner block includes a recess surrounding the rail, a plurality of rollers arranged so that its cylindrical surface is sandwiched between the rail and the recess, and attached to the recess.
- a roller holding member that forms a rolling groove in which the roller rolls in the sliding direction of the runner block; and both ends of the rolling groove in the sliding direction that are formed inside the runner block and form a closed circuit with the rolling groove.
- a plurality of rollers may circulate in a closed circuit.
- four closed circuits are formed in the runner block, and the four rows of rollers arranged in each of the four closed circuits have their axes every 90 ° on a plane perpendicular to the rail axis. It is arranged as follows. More preferably, the diameter of the roller is smaller than the distance between the runner block and the rail in the rolling groove, and the difference is 1 micrometer or less.
- the linear guide mechanism having such a configuration can smoothly move the runner block along the rail even when a heavy load is applied to the runner block. Further, each roller, the rail, and the runner block are in contact with each other with a relatively large contact area, and vibration from the actuator can be transmitted to the table without a response delay. For this reason, the table can be vibrated at a relatively high frequency of several kHz or more.
- a retainer for preventing contact between the two adjacent rollers is provided. More preferably, the retainer has a cylindrical concave surface that comes into contact with the cylindrical surface of the roller.
- the rollers contact each other with a relatively small contact area, so that a large stress is applied to the contact portion.
- the cylindrical surfaces of the roller and the retainer are in contact with each other with a relatively large contact area, and the stress applied to the roller by this contact is kept relatively small. Therefore, the roller can be prevented from being damaged or worn as compared with a linear guide mechanism having no retainer.
- the linear guide mechanism according to the embodiment of the present invention is configured such that the rollers do not directly contact each other. When the rollers are in direct contact with each other, noise is generated. However, in the linear guide mechanism according to the embodiment of the present invention, since the retainer is disposed between the rollers, such noise can be suppressed.
- the rail has a plurality of through holes arranged along the axial direction thereof, the rails are fixed to the table or the intermediate stage through the bolts through the through holes, and the mounting interval of the bolts is 50 of the rail width. ⁇ 80%.
- the bolt mounting interval is 60 to 70% of the rail width.
- the rail is firmly fixed to the table or intermediate stage without bending.
- the electrodynamic vibration testing apparatus includes a third electrodynamic actuator capable of exciting the table in a third direction perpendicular to both the first and second directions, and the table.
- a third connection means slidably connected to the third electrodynamic actuator in the first and second directions, and the first and second connection means respectively include the first table and the third connection means. It is more preferable that the second electrodynamic actuator is connected to be slidable in the third direction.
- the third connecting means has an intermediate stage disposed between the third electrodynamic actuator and the table, and the intermediate stage of the third connecting means is only in one direction perpendicular to the third direction. And can slide relative to the first electrodynamic actuator only in a direction perpendicular to both the one direction and the third direction.
- the two directions in which the intermediate stage of the third connecting means can slide with respect to the table are the first and second directions.
- the third direction is the vertical direction.
- the intermediate stage of the third connecting means and the third electrodynamic actuator are slidable via a plurality of rails arranged in parallel to each other and a plurality of runner blocks engaging with each of the plurality of rails. It is preferable that the structure is connected to the.
- the table and the intermediate stage are preferably slidably connected via a plurality of rails arranged in parallel to each other and a plurality of runner blocks engaging with each of the plurality of rails.
- the third electrodynamic actuator preferably has a plurality of intermediate stages. A large load is applied to the third connection means, such as a table or a test pair. If such a configuration is adopted, the load is distributed to a plurality of runner blocks and intermediate stages. Etc. can be prevented.
- the electrodynamic actuator includes a cylindrical fixed portion made of, for example, a magnetic material, and a movable portion that is inserted into the hollow of the fixed portion so as to be movable in the axial direction of the fixed portion.
- a fixed coil Is provided with a fixed coil
- the movable part is provided with a movable coil.
- a Lorentz force is generated, which is used as a driving force for sliding the table in the first, second or third direction.
- 1 is a top view of an electrodynamic vibration test apparatus according to an embodiment of the present invention.
- 1 is a front view of an electrodynamic vibration testing apparatus according to an embodiment of the present invention. It is sectional drawing of the 1st actuator of the electrodynamic type vibration testing apparatus which concerns on embodiment of this invention. It is a top view of the 1st connection part of the electrodynamic vibration testing apparatus concerning an embodiment of the invention. It is the side view which looked at the 1st connection part of the electrodynamic vibration testing device concerning an embodiment of the invention from the Y-axis direction. It is sectional drawing of the rail and runner block which are used for the 1st connection part of the electrodynamic vibration testing apparatus which concerns on embodiment of this invention. It is II sectional drawing of FIG.
- FIG. 10 is a sectional view taken along line II-II in FIG.
- FIG. 10 is a cross-sectional view taken along the line III-III in FIG. 9. It is a perspective view of the roller provided in the runner block of the linear guide mechanism used in the modification of embodiment of this invention.
- 1 is a block diagram of an electrodynamic vibration testing apparatus according to an embodiment of the present invention.
- FIG. 1 and 2 are a top view and a side view, respectively, of the electrodynamic vibration test apparatus of the present embodiment.
- FIG. 13 is a block diagram of the electrodynamic vibration test apparatus of this embodiment.
- the vibration test apparatus 1 of the present embodiment is configured such that the vibration test apparatus 1 of the present embodiment fixes a subject to be subjected to a vibration test on a table 100, and Using the second and third actuators 200, 300, and 400, the table 100 and the subject on the table 100 are vibrated in three orthogonal directions. As shown in FIG.
- the first, second, and third actuators 200, 300, and 400 are controlled by the control device 10, and the first, second, and third actuators 200, 300, and 400 are controlled.
- the control device 10 controls the magnitude and frequency of an alternating current (described later) input to the movable coil, so that the table 100 can be vibrated with a desired amplitude and frequency.
- the table 100 is provided with a measuring device 20 such as a vibration pickup, and the measuring device 20 can measure the degree of vibration (speed, acceleration, amplitude, etc.) of the table. Further, the control device 10 adjusts the magnitude and frequency of an alternating current (described later) input to the movable coils of the first, second, and third actuators 200, 300, and 400 based on the measurement result of the measuring instrument 20.
- control device 10 can control the actuators 200, 300, and 400 so that a predetermined direction component of the maximum speed of the table 100 has a predetermined magnitude.
- the control device 10, the measuring instrument 20, and the actuators 200, 300, and 400 are configured to be driven by receiving power supplied from the power supply device 30.
- the direction in which the first actuator 200 vibrates the table 100 is the X-axis direction
- the direction in which the second actuator 300 vibrates the table 100 is the horizontal direction in FIG. 1).
- the Y-axis direction, the direction in which the third actuator 400 vibrates the table, that is, the vertical direction (the direction orthogonal to the paper surface in FIG. 1) is defined as the Z-axis direction.
- the first, second, and third actuators 200, 300, and 400 are fixed to the apparatus base 2 via first, second, and third fixing blocks 210, 310, and 410, respectively.
- the first, second, and third fixing blocks 210, 310, and 410 are fixed to the apparatus base 2 by the block fixing bolt B1, and the first and second fixing blocks B2 (FIG. 2) are used.
- the third actuators 200, 300, and 400 are fixed to the first, second, and third fixing blocks 210, 310, and 410, respectively.
- grooves 202 extending in the Z-axis direction are formed at both ends of the first actuator 200 in the Y-axis direction.
- the bottom surface of the groove 202 is formed in a planar shape substantially parallel to the XZ plane.
- the first fixed block 210 is formed with protrusions 212 whose width and height are approximately equal to the width and maximum height of the groove 202, respectively.
- the top surface of the projecting portion 212 (the surface on the tip side of the projecting portion 212 projecting in the Y-axis direction) is also substantially parallel to the XZ plane, and the projecting portion 212 fits in the groove 202 with almost no gap. And the top surface of the protruding portion 212 abut.
- the first actuator 200 When the first actuator 200 is fixed to the first fixing block 210 with the actuator fixing bolt B2 in a state where the protruding portion 212 is fitted in the groove 202, the groove 202 and the protruding portion 212 are engaged. Further, since the top surface of the projecting portion 212 having a large area urges the bottom surface of the groove 202 over almost the whole surface by tightening the bolt B2, the groove 202 and the first fixed block are caused by concentrated load. 210 is not greatly deformed. As a result, the first actuator 200 is firmly fixed.
- the second and third actuators 300 and 400 are also provided with grooves 302 and 402 similar to the groove 202, and the second and third fixing blocks 310 and 410 are provided in the grooves 302 and 402. Corresponding protrusions 312 and 412 are formed, respectively. Accordingly, the second actuators 300 and 400 are also firmly fixed by the engagement between the grooves 302 and 402 and the protruding portions 312 and 412.
- the first, second, and third actuators 200, 300, and 400 are different only in the mounting direction with respect to the table 100, and the configuration for driving the table 100 is the same. Only the explanation is given.
- FIG. 3 is a cross-sectional view of the first actuator 200.
- the first actuator includes a fixed portion 220 having a cylindrical body 222 and a movable portion 230 that is housed in a cylinder of the fixed portion 220 and is slidable in the X axis direction with respect to the fixed portion.
- the movable part 230 includes a movable frame 232 having a tapered cylindrical shape and a top plate 231 fixed to the end of the movable frame 232 on the table 100 side.
- An intermediate table 233 is fixed to the top plate 231 via a plurality of bars 236.
- the movable coil 251 is attached to the end of the movable frame 232 opposite to the top plate 231 via a movable coil holding member 237.
- the movable coil 251 is disposed substantially coaxially with the movable frame 232.
- a cylindrical inner magnetic pole 225 formed coaxially with the cylindrical body 22 is fixed inside the cylindrical body 222 of the fixing portion 220.
- the outer diameter of the inner magnetic pole 225 is smaller than the inner diameter of the movable coil 251, and the movable coil 251 is disposed between the outer peripheral surface of the inner magnetic pole 225 and the inner peripheral surface of the cylindrical body 222.
- a plurality of concave portions 222 a that are concave toward the radially outer side of the cylindrical body 222 are provided on the inner peripheral surface of the cylindrical body 222, and the radius of the cylindrical body 222 is provided inside each of the concave portions 222 a.
- a fixed coil 252 formed by winding a conducting wire around the direction is attached.
- the cylindrical body 222 and the inner magnetic pole 225 are both formed of a ferromagnetic body or a ferrimagnetic body, and when a direct current is passed through the fixed coil 252, the radial direction of the cylindrical body 222, that is, the radius of the movable coil 251. A magnetic field is generated in the direction.
- the intermediate table 233 can be vibrated in the X-axis direction by supplying an alternating current to the movable coil 251 and reciprocating the movable frame 232 in the X-axis direction. it can.
- an air spring 261 is accommodated in the inner magnetic pole 225.
- One end (the upper side in the figure) of the air spring 261 is fixed to the fixing portion 220.
- the air spring 261 and the movable frame 232 are connected via a connecting bar 234 extending vertically upward from the other end (lower side in the figure) of the air spring 261.
- the connecting bar 234 passes through the movable frame 232 and reaches the vicinity of the top plate 231, and the plurality of beams 235 extending in the radial direction of the movable frame 232 are connected to the movable frame 232.
- the inner peripheral surface and the connecting bar 234 are connected.
- a bearing 238 that supports the connecting bar 234 so that the moving direction of the connecting bar 234 is only in the X-axis direction is fixed in the inner space of the inner magnetic pole 225.
- the first, second, and third actuators 200, 300, and 400 and the table 100 include the first, second, and third connecting portions 240, respectively. 340 and 440 are connected. Next, the configuration of the first, second, and third connecting portions 240, 340, and 440 will be described.
- FIG. 4 is a top view of the first connecting portion 240.
- FIG. 5 is a side view of the first connecting portion 240 viewed from the Y-axis direction.
- the first connecting portion includes a Z-axis rail spacer 241, a Z-axis rail 244, an intermediate stage 245, and a Y-axis rail 248.
- the Z-axis rail spacer 241 includes a plate portion 241a welded to the intermediate table 233 so as to be orthogonal to the intermediate table 233, and a rib 241b welded to a corner formed by the plate portion 241a and the intermediate table 233.
- the plate portion 241a is disposed in parallel with the ZX plane, and is an end portion on the X-axis positive direction side (side from the first actuator 200 toward the table 100, the lower side in FIG. 4, the right side in FIG. 5), that is, the middle.
- a Z-axis rail 244 is fixed to the end opposite to the side fixed to the table 233.
- the Z-axis rail 244 is a rail extending in the Z-axis direction.
- the Y-axis rail 248 is a rail that is fixed to the end surface of the table 100 that faces the intermediate table 233 and extends in the Y-axis direction. 4 is fixed to the end of the upper side of FIG.
- the intermediate stage 245 includes a Z-axis runner block 246 that engages with the Z-axis rail 244 on the X-axis negative direction side, and a Y-axis runner block 247 that engages with the Y-axis rail 248 on the X-axis positive direction side. Is a block.
- the intermediate stage 245 can slide in the Z-axis direction with respect to the Z-axis rail 246 and in the Y-axis direction with respect to the Y-axis rail 248, respectively.
- the intermediate stage 245 can slide in the Y-axis direction with respect to the table 100 and can slide in the Z-axis direction with respect to the first actuator 200. Therefore, the first actuator 200 can slide in the Y-axis direction and the Z-axis direction with respect to the table 100.
- the first actuator 200 is thereby moved in the Y-axis direction and the Z-axis direction. No load is applied, and bending stress due to the displacement of the table 100 in the Y-axis direction and / or the Z-axis direction is not applied to the movable portion 230 (FIG. 3) of the first actuator 200 or the like.
- the second connecting portion 340 has the same structure except that the first connecting portion 240 described above is installed in a different direction (X axis and Y axis are interchanged). Therefore, the description of the second connection part 340 is omitted.
- the third connecting portion 440 includes a pair of Y-axis rails 444, a pair of X-axis rails 448, and a plurality of intermediate stages 445.
- the pair of Y-axis rails 444 are both rails extending in the Y-axis direction, and are arranged and fixed on the upper surface of the intermediate table 433 of the third actuator 400 in the X-axis direction.
- the pair of X-axis rails 448 are rails that extend in the X-axis direction, and are fixed to the lower surface of the table 100 side by side in the Y-axis direction.
- the intermediate stage 445 is a block in which an X-axis runner block 447 that engages with the X-axis rail 448 is provided at the upper portion, and a Y-axis runner block 446 that engages with the Y-axis rail 444 is provided at the lower portion.
- the intermediate stage 445 can slide with respect to both the X-axis rail 448 and the Y-axis rail 444.
- One intermediate stage 445 is provided for each position where the X-axis rail 448 and the Y-axis rail 444 cross each other. Since two X-axis rails 448 and two Y-axis rails 444 are provided, the X-axis rail 448 and the Y-axis rail 444 intersect at four points. Therefore, in this embodiment, four intermediate stages 445 are used.
- each of the intermediate stages 445 is slidable in the X-axis direction with respect to the table 100 and slidable in the Y-axis direction with respect to the third actuator 300. That is, the table 100 is slidable in the X axis direction and the Y axis direction with respect to the third actuator 400. Therefore, even if the table 100 is vibrated in the X-axis direction and / or the Y-axis direction by the first actuator 200 and / or the second actuator 300, the third actuator 400 is thereby caused to move in the X-axis direction and the Y-axis direction. No load is applied, and bending stress resulting from displacement of the table 100 in the X-axis direction and / or Y-axis direction is not applied to the movable portion of the third actuator 400 or the like.
- the third actuator 400 is provided with a pair of X-axis rails 448 and Y-axis rails 444 to support the relatively heavy table 100 and the subject, and the X-axis rails 448 and Y-axis are provided.
- An intermediate stage 445 is disposed at each portion where the rail 444 intersects.
- the load of the subject and the heavy table 100 is applied to the third actuator 400.
- the center of gravity of the table 100 is shifted from the central axis of the movable part of the third actuator 400 due to the vibration in the X-axis and Y-axis directions, and a large moment is applied to the movable part.
- a rail 451 extending in the Z-axis direction and a runner block that can be advanced and retracted along the rail 451 by engaging with the rail 451 so that the movable portion does not fall down due to this moment.
- the movable portion of the third actuator 400 is supported by a linear guide mechanism 450 having 452.
- an L-shaped guide frame 453 is fixed to the upper surface 423 of the fixing portion 420 of the third actuator 400, and the rail 451 extending in the Z-axis direction is
- the guide frame 453 is fixed to one surface of the upright portion 453a (a plate standing vertically from the upper surface 423 of the fixing portion 420).
- the runner block 452 that engages with the rail 451 is fixed to the intermediate table 433 of the third actuator 400.
- Four sets of linear guides 450 are provided on the circumference centering on the central axis of the third actuator at about 90 degrees, and the movable parts of the third actuator 400 are guided from four directions by these four sets. It has become so.
- the table 100 can slide in any direction on a plane perpendicular to the driving direction of the actuator. For this reason, even if the table 100 is displaced by a certain actuator, the load or moment resulting from this displacement is not applied to the other actuator, and the other actuator and the table 100 are engaged via the intermediate stage. Is maintained. That is, even if the table is displaced to an arbitrary position, a state in which each actuator can displace the table is maintained. Therefore, in the present embodiment, the three actuators 200, 300, and 400 can be simultaneously driven to vibrate the table 100 and the subject fixed on the table 100 in three axial directions.
- FIG. 6 is a cross-sectional view of the rail 244 and the runner block 246 of the first connecting portion 240 taken along a plane perpendicular to the major axis direction of the rail 244 (that is, the XY plane), and FIG. 7 is a cross-sectional view taken along II of FIG. It is sectional drawing.
- the runner block 246 is formed with a recess so as to surround the rail 244, and in this recess, four grooves 246 a and 246 a ′ extending in the axial direction of the rail 244 are formed.
- Numerous stainless steel balls 246b are accommodated in the grooves 246a and 246a '.
- the rail 244 is provided with grooves 244a and 244a ′ at positions facing the grooves 246a and 246a ′ of the runner block 246, respectively, and the ball 246b is formed with the grooves 246a and 244a or the grooves 246a ′ and 244a ′. It is designed to be sandwiched between.
- the cross-sectional shape of the grooves 246a, 246a ', 244a, 244a' is an arc shape, and the radius of curvature thereof is substantially equal to the radius of the ball 246b. For this reason, the ball 246b is in close contact with the grooves 246a, 246a ', 244a, 244a' with almost no play.
- each ball retraction paths 246c, 246c ' are provided substantially parallel to the grooves 246a, 246a'.
- the groove 246a and the retreat path 246c are connected to each other via U-shaped paths 246d, and the grooves 246a, 244a, retreat paths 246c, and U-shaped paths 46d
- a circulation path for circulating 246b is formed.
- a similar circulation path is also formed by the groove 246a ', the groove 244a', and the retreat path 246c '.
- the two rows of balls 246b sandwiched between the grooves 246a and 244a form a front combination angular contact ball bearing having a contact angle of approximately ⁇ 45 °.
- the contact angle in this case is the radial direction of the rail 244 and the runner block 246 (the direction from the runner block to the rail), where the grooves 246a and 244a contact the balls 246b. It is an angle made with respect to (upward direction).
- the angular ball bearing formed in this way is in the reverse radial direction (the direction from the rail toward the runner block, the downward direction in FIG. 6) and the lateral direction (the direction orthogonal to both the radial direction and the advance / retreat direction of the runner block). Yes, the load in the left-right direction in FIG. 6 can be supported.
- the two rows of balls 246b sandwiched between the grooves 246a ′ and 244a ′ have a contact angle (the line connecting the contact points where the grooves 246a ′ and 244a ′ are in contact with the ball 246b is the reverse of the linear guide).
- a front combination angular contact ball bearing having an angle of about ⁇ 45 ° with respect to the radial direction is formed. This angular ball bearing can support radial and lateral loads.
- Two rows of balls 246b sandwiched between one of the grooves 246a and 244a (right side in the figure) and one of the grooves 246a ′ and 244a ′ (right side in the figure) are also provided with a front combination type angular ball bearing.
- two rows of balls 246b sandwiched between the other of the grooves 246a and 244a (left side in the figure) and the other of the grooves 246a ′ and 244a ′ (left side in the figure) are also provided with a front combination type angular ball bearing.
- the front combination angular contact ball bearing having a large number of balls 246b supports the loads acting in the radial direction, the reverse radial direction, and the lateral direction, and the rail shaft A large load applied in a direction other than the direction can be sufficiently supported.
- FIG. 8 is a perspective view showing the rail 244 attached to the Z-axis rail spacer 241.
- the rail mounting structure is the same for other rails used in the vibration testing apparatus of this embodiment.
- the rail 244 is formed with a plurality of through holes 244b arranged in the axial direction. Although not shown in the drawing, a plurality of bolt holes are formed at positions corresponding to the through holes 244b of the plate portion 241a of the Z-axis rail spacer 241.
- the rail 244 is fixed to the Z-axis rail spacer 241 by screwing the bolt 244c through the through-hole 244b into the bolt hole of the plate portion 241a.
- the interval between the through-holes 244b of the rail 244 (and the interval between the bolt holes of Anzaka) s is relatively short, 50 to 80%, preferably 60 to 70% of the width w of the rail 244. Yes.
- the rail 244 is firmly fixed to the Z-axis rail spacer 241 without bending.
- the runner block 246 is slid with respect to the rail 244 by rolling of the ball 246b.
- the embodiment of the present invention is not limited to the above configuration. Absent.
- a roller 1246b may be used instead of the ball 246b, and a linear guide mechanism that slides the runner block 1246 relative to the rail 1244 by rolling of the roller 1246b may be used.
- FIG. 9 to 12 show a linear guide mechanism used in a modification of the present embodiment. Except for the linear guide mechanism described below, the configuration of this modification is the same as that of the above embodiment.
- FIG. 9 is a cross-sectional view of the runner block 1246 and the rail 1244 cut along a plane perpendicular to the major axis direction of the rail 1244.
- 10 and 11 are a II-II sectional view and a III-III sectional view of FIG. 9, respectively.
- the runner block 1246 is formed with a recess 1246 e so as to surround the rail 1244.
- a roller holding member 1246f is sandwiched between the recess 1246e and the outer peripheral surface of the rail 1244.
- roller holding member 1246f By this roller holding member 1246f, four rolling grooves 1246a and 1246a 'extending in the axial direction are formed in the gap between the recess 1246e and the outer peripheral surface of the rail 1244. A number of stainless steel rollers 1246b are accommodated in the rolling grooves 1246a and 1246a '. Both ends of the roller 1246b in the axial direction are held by a roller holding member 1246f, and the cylindrical surface is in contact with both the recess of the runner block 1246 and the outer peripheral surface of the rail 1244.
- the distance between the recess of the runner block 1246 and the outer peripheral surface of the rail 1244 is substantially equal to the diameter of the roller 1246b, and the roller 1246b is in close contact with the recess 1246e of the runner block 1246 and the outer peripheral surface of the rail 1244 with little play.
- two rail retreat paths 1246c ' are provided that are substantially parallel to the rolling grooves 1246a.
- the rail retracting path 246c ' is formed by bending a tube that accommodates the roller 1246b into a C-shape.
- the rolling groove 1246a and the retreat path 1246c ' are connected at both ends, and form a circulation path for circulating the roller 1246b.
- two rail retractions 1246 c that are substantially parallel to the rolling grooves 1246 a ′ are provided inside the runner block 1246, and the retreating path 1246 c and the rolling grooves 1246 a ′ are also provided.
- a similar circulation path is formed.
- the distance d (FIGS. 10 and 11) between the recess 1246e of the runner block 1246 and the outer peripheral surface of the rail 1244 is a length that is slightly larger (1 micrometer or less) than the diameter of the roller 1246b. ing. In such a state, the preload from the roller 1246b is applied to the runner block 1246 and the rail 1244, and the outer peripheral surface of the roller 1246b is in close contact with the concave portion 1246e of the runner block 1246 and the outer peripheral surface of the rail 1244.
- the four rows of rollers 1246b arranged in the four rolling grooves 1246a and 1246a ′ have their axes every 90 ° on a plane orthogonal to the axis of the rail 1244. It is arranged as follows.
- each roller 1246b is arranged in this way, when a load in a direction from the runner block 1246 toward the upper surface of the rail 1244 (a direction from bottom to top in FIG. 9) is applied, this load mainly includes two rolling elements. Two rows of rollers 1246b disposed in the moving groove 1246a receive the movement. In addition, when a load in a direction away from the upper surface of the rail 1244 is applied to the runner block 1246 (the direction from the top to the bottom in FIG. 9), this load is mainly disposed in the two rolling grooves 1246a ′. Two rows of rollers 1246b receive.
- the load when a load is applied to the runner block 1246 in a direction from one side surface (left side in the figure) to the other side surface (right side in the figure), the load is mainly the runner blocks of the rolling grooves 1246a ′ and 1246a. Two rows of rollers 1246b arranged on one side (left side in the figure) receive.
- the load when a load is applied to the runner block 1246 in the direction from the other side to the one side, the load is mainly disposed on the other side of the runner block (right side in the drawing) of the rolling grooves 1246a ′ and 1246a. The two rows of rollers 1246b are received.
- the linear guide mechanism of this embodiment does not cause damage to the roller 1246b by applying a load only to the roller 1246b in a specific row even if a large load is applied in these directions, and smoothly rolls.
- the runner block 1246 can be smoothly moved along the rail 1244 by the roller 1246b.
- FIG. 12 A perspective view of the roller 1246b of the runner block 1246 is shown in FIG.
- a retainer 1246g is provided between the rollers of the runner block used in the vibration test apparatus 1 of the present embodiment.
- the retainer 1246g has two cylindrical surfaces that are in contact with the outer peripheral surfaces of the two adjacent rollers 1246b, and the retainer 246g contacts the roller 1246b through the cylindrical surfaces.
- the axes of the two cylindrical surfaces of the retainer 1246g are parallel to each other. Since the retainer 1246g is in contact with the roller 1246b before and after the retainer 1246g, the rollers 1246b in the circulation path are aligned so that their axial directions are parallel to each other. For this reason, the roller 1246b circulates smoothly in the circulation path without rattling.
- the rollers 1246b are in contact with each other with a relatively small contact area, so that a large stress is applied to the contact portion.
- the cylindrical surfaces of the roller 1246b and the retainer 1246g are in contact with each other with a relatively wide contact area, and the stress applied to the roller 1246b by this contact is kept relatively small. Therefore, the linear guide mechanism of this embodiment can suppress the damage and wear of the roller 1246b, compared to the linear guide mechanism that does not have a retainer.
- the linear guide mechanism of the present embodiment is configured such that the rollers 1246b do not directly contact each other.
- the rollers 1246b are in direct contact with each other, noise is generated.
- the retainer 1246g is disposed between the rollers 1246b, such noise can be suppressed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Bearings For Parts Moving Linearly (AREA)
Abstract
Provided is an electrodynamic vibration test equipment which comprises: first and second electrodynamic actuators that can vibrate a table in first and second directions orthogonal to each other; a first coupling means for enabling the table to slide in the second direction with respect to the first electrodynamic actuator; and a second coupling means for enabling the table to slide in the first direction with respect to the second electrodynamic actuator. Each actuator can slide with respect to the table in the direction orthogonal to the vibration direction of the actuator, so that even when the table is vibrated by one of the actuators, since the table slides with respect to the other actuator, the other actuator is not displaced and the vibration direction of the other actuator is not changed. Thus, crosstalk does not occur, so that the electrodynamic vibration test equipment vibrates a table in orthogonal two-axis directions or three-axis directions.
Description
本発明は、ボイスコイルモータによって被検体を加振する動電型振動試験装置に関する。
The present invention relates to an electrodynamic vibration test apparatus that vibrates a subject with a voice coil motor.
特開2004-219196号公報に記載のもののような、ボイスコイルモータによってテーブル及びその上に固定された被検体を所定方向(例えば上下方向)に加振する動電型振動試験装置が広く利用されている。動電型振動試験装置は、テーブルが固定される可動部に取り付けられた可動コイルを直流磁界中に配置し、次にこの可動コイルに交流電流を供給することによって、テーブルを交流電流の周波数で振動させるものである。動電型振動試験装置は、上記のように、可動コイルに供給する交流電流の周波数によってテーブルの振動周波数が決まるものであるため、特に数百~数千ヘルツ以上の高周波数での振動試験に適している。
An electrodynamic vibration test apparatus that vibrates a table and a subject fixed thereon by a voice coil motor in a predetermined direction (for example, up and down direction) such as that described in Japanese Patent Application Laid-Open No. 2004-219196 is widely used. ing. The electrodynamic vibration testing apparatus arranges a movable coil attached to a movable part to which a table is fixed in a DC magnetic field, and then supplies an AC current to the movable coil, thereby causing the table to be driven at the frequency of the AC current. It is to vibrate. In the electrodynamic vibration test apparatus, as described above, the vibration frequency of the table is determined by the frequency of the alternating current supplied to the moving coil. Therefore, the electrodynamic vibration test apparatus is particularly suitable for vibration tests at a high frequency of several hundred to several thousand hertz. Is suitable.
近年、より複雑な振動波形で被検体を加振したときの被検体の挙動を観察することが望まれている。このような試験を行うためには、動電型振動試験装置が、上記公報のような1軸方向のみならず、直交2軸又は3軸方向(X,Y,Z軸方向)に被検体を加振できるようにすることが好ましい。しかしながら、単にテーブルに3つの動電型アクチュエータを連結した構成では、一つの動電型アクチュエータを駆動させると他の動電型アクチュエータの駆動軸に曲げモーメントが加わる、いわゆるクロストークが発生するため、被検体を3軸方向に振動させることができなかった。
In recent years, it has been desired to observe the behavior of a subject when the subject is vibrated with a more complex vibration waveform. In order to perform such a test, the electrodynamic vibration test apparatus applies not only the uniaxial direction as described in the above publication but also the orthogonal biaxial or triaxial directions (X, Y, Z axis directions). It is preferable to be able to vibrate. However, in a configuration in which three electrodynamic actuators are simply connected to a table, when one electrodynamic actuator is driven, a bending moment is applied to the drive shaft of another electrodynamic actuator, so-called crosstalk occurs. The subject could not be vibrated in the triaxial direction.
本発明は、上記の問題を解決するためになされたものである。すなわち、本発明は、テーブル及びその上の被検体を直交2軸又は3軸方向に加振可能な動電型振動試験装置を提供することを目的とする。
The present invention has been made to solve the above problems. That is, an object of the present invention is to provide an electrodynamic vibration test apparatus that can vibrate a table and a subject on the table in directions of two orthogonal axes or three axes.
上記の目的を達成するため、本発明の実施形態に係る動電型振動試験装置は、テーブルを夫々互いに直交する第1及び第2の方向に加振可能な第1及び第2の動電型アクチュエータと、テーブルを第1の動電型アクチュエータに対して第2の方向にスライド可能とする第1の連結手段と、テーブルを第2の動電型アクチュエータに対して第1の方向にスライド可能とする第2の連結手段とを有する。
In order to achieve the above object, an electrodynamic vibration testing apparatus according to an embodiment of the present invention includes first and second electrodynamic types capable of exciting a table in first and second directions orthogonal to each other. An actuator, a first connecting means that allows the table to slide in a second direction relative to the first electrodynamic actuator, and a table that can slide in the first direction relative to the second electrodynamic actuator Second connecting means.
このように、本発明の実施形態においては、各アクチュエータは、テーブルに対してそのアクチュエータの加振方向に直交する方向にスライド可能となっている。そのため、あるアクチュエータでテーブルを加振しても、テーブルが他のアクチュエータに対してスライドするので、他のアクチュエータが変位することも、他のアクチュエータの加振方向が変化することはない。従って、本発明の実施形態によれば、クロストークが発生しないため、直交2軸又は3軸方向にテーブルを振動させる動電型振動試験装置が実現される。
Thus, in the embodiment of the present invention, each actuator is slidable in a direction perpendicular to the excitation direction of the actuator with respect to the table. Therefore, even if the table is vibrated by a certain actuator, the table slides with respect to the other actuator, so that the other actuator is not displaced and the vibration direction of the other actuator is not changed. Therefore, according to the embodiment of the present invention, since crosstalk does not occur, an electrodynamic vibration test apparatus that vibrates the table in the orthogonal 2-axis or 3-axis direction is realized.
例えば、第1及び第2の連結手段の夫々は、第1及び第2の動電型アクチュエータと前記テーブルの間に配置された中間ステージを有し、第1の連結手段の中間ステージは第1の方向に垂直な一方向のみにテーブルに対してスライド可能であり且つこの一方向と第1の方向の双方に垂直な方向のみに第1の動電型アクチュエータに対してスライド可能であり、第2の連結手段の中間ステージは第2の方向に垂直な一方向のみに前記テーブルに対してスライド可能であり且つこの一方向と第2の方向の双方に垂直な方向のみに第2の動電型アクチュエータに対してスライド可能である。
For example, each of the first and second connecting means has an intermediate stage disposed between the first and second electrodynamic actuators and the table, and the intermediate stage of the first connecting means is the first stage. Slidable with respect to the table only in one direction perpendicular to the first direction, and slidable relative to the first electrodynamic actuator only in a direction perpendicular to both the one direction and the first direction. The intermediate stage of the two connecting means is slidable with respect to the table only in one direction perpendicular to the second direction, and the second electrodynamic movement is performed only in a direction perpendicular to both the one direction and the second direction. It is slidable with respect to the mold actuator.
好ましくは、第1の連結手段の中間ステージがテーブル及び第1の動電型アクチュエータに対してスライド可能な二方向の一方が第2の方向であり、第2の連結手段の中間ステージがテーブル及び第2の動電型アクチュエータに対してスライド可能な二方向の一方が第1の方向である。
Preferably, one of the two directions in which the intermediate stage of the first connecting means is slidable with respect to the table and the first electrodynamic actuator is the second direction, and the intermediate stage of the second connecting means is the table and One of the two directions slidable with respect to the second electrodynamic actuator is the first direction.
また、テーブル及び中間ステージは、その一方に取り付けられたレール及びその他方に取り付けられ且つ該レールに係合するランナーブロックを有する第1のリニアガイド機構を有し、動電型アクチュエータ及び中間ステージは、その一方に取り付けられたレール及びその他方に取り付けられ且つ該レールに係合するランナーブロックを有する第2のリニアガイド機構を有する構成としてもよい。
In addition, the table and the intermediate stage have a first linear guide mechanism having a rail attached to one of them and a runner block attached to the other side and engaged with the rail. The electrodynamic actuator and the intermediate stage are The second linear guide mechanism may have a rail attached to one side thereof and a runner block attached to the other side and engaged with the rail.
また、ランナーブロックが、凹部においてランナーブロックの移動方向に沿って形成された溝と、ランナーブロックの内部に形成され溝と閉回路を形成するように溝の前記移動方向両端と繋がっている退避路と、閉回路を循環するとともに溝に位置するときはレールと当接するようになっている複数のボールと、を有する構成とすることが好ましい。このような構成とすると、ランナーブロックをガタツキ無く且つスムーズにレールに沿って移動させることが可能となる。すなわち、テーブルをスムーズに振動させることができる。
In addition, the runner block has a groove formed in the concave portion along the movement direction of the runner block, and a retreat path formed inside the runner block and connected to both ends of the groove in the movement direction so as to form a closed circuit. And a plurality of balls adapted to circulate through the closed circuit and to come into contact with the rail when positioned in the groove. With such a configuration, the runner block can be moved along the rail smoothly without rattling. That is, the table can be vibrated smoothly.
さらに、ランナーブロックには閉回路が4つ形成されており、4つの閉回路のうち2つの閉回路の溝の夫々に配置されたボールは前記ランナーブロックのラジアル方向に対して略±45度の接触角を有し、他の2つの閉回路の溝の夫々に配置されたボールはランナーブロックの逆ラジアル方向に対して略±45度の接触角を有する構成とすることが好ましい。このような構成とすると、ランナーブロックはラジアル方向、逆ラジアル方向及び横方向の夫々に対して大荷重に耐えることができ、角ねじからローラを介して上記の方向の大荷重がローラブロックに加わったとしても、ランナーブロックが破損に至ることはなく、また、レールに沿ってスムーズに移動可能である。
Furthermore, four closed circuits are formed in the runner block, and the balls arranged in the grooves of two of the four closed circuits are approximately ± 45 degrees with respect to the radial direction of the runner block. It is preferable that a ball having a contact angle and disposed in each of the other two closed circuit grooves has a contact angle of approximately ± 45 degrees with respect to the reverse radial direction of the runner block. With this configuration, the runner block can withstand a large load in each of the radial direction, the reverse radial direction, and the lateral direction, and a large load in the above direction is applied to the roller block from the square screw via the roller. Even so, the runner block does not break, and can move smoothly along the rail.
或いは、ランナーブロックが、レールを囲む凹部と、その円筒面が前記レールと凹部の間に挟み込まれるように配置される複数のローラと、凹部に取り付けられ、ローラの軸方向両端をガイドして該ローラがランナーブロックのスライド方向に転動する転動溝を形成するローラ保持部材と、ランナーブロックの内部に形成され、転動溝と閉回路を形成するように転動溝の前記スライド方向両端と繋がっている退避路とを有し、複数のローラは閉回路を循環するような構成としてもよい。好ましくは、ランナーブロックには閉回路が4つ形成されており、4つの閉回路の夫々に配置された4列のローラは、その軸がレールの軸に直交する面上において90°おきとなるよう配置されている。さらに好ましくは、ローラの径は、転動溝における前記ランナーブロックとレールとの間隔より小さく、その差は1マイクロメートル以下である。
Alternatively, the runner block includes a recess surrounding the rail, a plurality of rollers arranged so that its cylindrical surface is sandwiched between the rail and the recess, and attached to the recess. A roller holding member that forms a rolling groove in which the roller rolls in the sliding direction of the runner block; and both ends of the rolling groove in the sliding direction that are formed inside the runner block and form a closed circuit with the rolling groove. A plurality of rollers may circulate in a closed circuit. Preferably, four closed circuits are formed in the runner block, and the four rows of rollers arranged in each of the four closed circuits have their axes every 90 ° on a plane perpendicular to the rail axis. It is arranged as follows. More preferably, the diameter of the roller is smaller than the distance between the runner block and the rail in the rolling groove, and the difference is 1 micrometer or less.
このような構成のリニアガイド機構は、ランナーブロックに大荷重が加わったとしても、ランナーブロックをレールに沿ってスムーズに移動させることかできる。また、各ローラとレール及びランナーブロックは、比較的大きい接触面積で当接しており、アクチュエータからの振動を応答遅れなくテーブルに伝達させることができる。このため、数kHz以上の比較的高い振動数でテーブルを振動させることができる。
The linear guide mechanism having such a configuration can smoothly move the runner block along the rail even when a heavy load is applied to the runner block. Further, each roller, the rail, and the runner block are in contact with each other with a relatively large contact area, and vibration from the actuator can be transmitted to the table without a response delay. For this reason, the table can be vibrated at a relatively high frequency of several kHz or more.
また、隣接する2つのローラの間には、該ローラ同士の接触を防止するためのリテーナが設けられている構成とすることがより好ましい。さらに好ましくは、リテーナが、ローラの円筒面と当接する円筒凹面を有する。
In addition, it is more preferable that a retainer for preventing contact between the two adjacent rollers is provided. More preferably, the retainer has a cylindrical concave surface that comes into contact with the cylindrical surface of the roller.
リテーナを有さないようなリニアガイド機構においては、ローラ同士が比較的小さい接触面積にて接触するため、接触部には大きな応力が加わる。これに対し、本発明の実施形態に係るリニアガイド機構は、ローラとリテーナの円筒面同士が比較的広い接触面積にて接触し、この接触によってローラに加わる応力は比較的小さく保たれる。そのため、リテーナを有さないリニアガイド機構と比べ、ローラの破損や磨耗を抑えることができる。
In a linear guide mechanism that does not have a retainer, the rollers contact each other with a relatively small contact area, so that a large stress is applied to the contact portion. On the other hand, in the linear guide mechanism according to the embodiment of the present invention, the cylindrical surfaces of the roller and the retainer are in contact with each other with a relatively large contact area, and the stress applied to the roller by this contact is kept relatively small. Therefore, the roller can be prevented from being damaged or worn as compared with a linear guide mechanism having no retainer.
さらに、本発明の実施形態に係るリニアガイド機構は、ローラ同士が直接接触しないようになっている。ローラ同士が直接接触すると騒音が発生するが、本発明の実施形態に係るリニアガイド機構においては、ローラの間にリテーナが配置されているため、このような騒音を抑えることができる。
Furthermore, the linear guide mechanism according to the embodiment of the present invention is configured such that the rollers do not directly contact each other. When the rollers are in direct contact with each other, noise is generated. However, in the linear guide mechanism according to the embodiment of the present invention, since the retainer is disposed between the rollers, such noise can be suppressed.
また、レールがその軸方向に沿って配列される複数の貫通孔を有し、貫通孔の夫々にボルトを通してテーブル又は中間ステージにレールが固定され、ボルトの取り付け間隔は、前記レールの幅の50~80%である。好ましくは、ボルトの取り付け間隔が、レールの幅の60~70%である。
Further, the rail has a plurality of through holes arranged along the axial direction thereof, the rails are fixed to the table or the intermediate stage through the bolts through the through holes, and the mounting interval of the bolts is 50 of the rail width. ~ 80%. Preferably, the bolt mounting interval is 60 to 70% of the rail width.
このように、ボルトの取り付け間隔を比較的短くすることによって、レールは撓むことなくテーブル又は中間ステージに強固に固定される。
Thus, by relatively shortening the bolt mounting interval, the rail is firmly fixed to the table or intermediate stage without bending.
また、本発明の実施形態に係る動電型振動試験装置が、第1及び第2の方向の双方に垂直な第3の方向にテーブルを加振可能な第3の動電型アクチュエータと、テーブルを第3の動電型アクチュエータに対して第1及び第2の方向にスライド可能に連結する第3の連結手段とを更に有し、第1及び第2の連結手段は、夫々テーブルを第1及び第2の動電型アクチュエータに対して第3の方向にスライド可能に連結する構成とすることがより好ましい。
In addition, the electrodynamic vibration testing apparatus according to the embodiment of the present invention includes a third electrodynamic actuator capable of exciting the table in a third direction perpendicular to both the first and second directions, and the table. And a third connection means slidably connected to the third electrodynamic actuator in the first and second directions, and the first and second connection means respectively include the first table and the third connection means. It is more preferable that the second electrodynamic actuator is connected to be slidable in the third direction.
また、例えば、第3の連結手段は第3の動電型アクチュエータとテーブルの間に配置された中間ステージを有し、第3の連結手段の中間ステージは第3の方向に垂直な一方向のみにテーブルに対してスライド可能であり且つこの一方向と第3の方向の双方に垂直な方向のみに第1の動電型アクチュエータに対してスライド可能である。ここで、例えば、第3の連結手段の中間ステージがテーブルに対してスライド可能な二方向は、該第1及び第2の方向である。
Also, for example, the third connecting means has an intermediate stage disposed between the third electrodynamic actuator and the table, and the intermediate stage of the third connecting means is only in one direction perpendicular to the third direction. And can slide relative to the first electrodynamic actuator only in a direction perpendicular to both the one direction and the third direction. Here, for example, the two directions in which the intermediate stage of the third connecting means can slide with respect to the table are the first and second directions.
また、例えば、第3の方向は鉛直方向である。ここで、第3の連結手段の中間ステージと第3の動電型アクチュエータとは、互いに平行に配置された複数のレールと複数のレールの各々に係合する複数のランナーブロックを介してスライド可能に連結されている構成とすることが好ましい。また、テーブルと中間ステージとは、互いに平行に配置された複数のレールと複数のレールの各々に係合する複数のランナーブロックを介してスライド可能に連結されている構成とすることが好ましい。さらに、第3の動電型アクチュエータは、複数の中間ステージを有することが好ましい。第3の連結手段には、テーブルや被検対等の大荷重が加わるが、このような構成を採用すると、複数のランナーブロックや中間ステージに荷重が分散されるため、大荷重によるランナーブロックの破損等を防止することができる。
Also, for example, the third direction is the vertical direction. Here, the intermediate stage of the third connecting means and the third electrodynamic actuator are slidable via a plurality of rails arranged in parallel to each other and a plurality of runner blocks engaging with each of the plurality of rails. It is preferable that the structure is connected to the. The table and the intermediate stage are preferably slidably connected via a plurality of rails arranged in parallel to each other and a plurality of runner blocks engaging with each of the plurality of rails. Furthermore, the third electrodynamic actuator preferably has a plurality of intermediate stages. A large load is applied to the third connection means, such as a table or a test pair. If such a configuration is adopted, the load is distributed to a plurality of runner blocks and intermediate stages. Etc. can be prevented.
また、動電型アクチュエータは、例えば磁性材料によって形成された筒状の固定部と、固定部の中空内に固定部の軸方向に移動可能に挿入される可動部とから成り、固定部の内部には固定コイルが設けられ、可動部には可動コイルが設けられ、固定コイルに直流電流を流すと可動コイルの半径方向に磁界が発生し、この状態で可動コイルに電流を流すと軸方向にローレンツ力が発生し、これによって、前記テーブルを第1、第2或いは第3の方向にスライドさせる駆動力とする。
The electrodynamic actuator includes a cylindrical fixed portion made of, for example, a magnetic material, and a movable portion that is inserted into the hollow of the fixed portion so as to be movable in the axial direction of the fixed portion. Is provided with a fixed coil, and the movable part is provided with a movable coil. When a direct current is applied to the fixed coil, a magnetic field is generated in the radial direction of the movable coil. A Lorentz force is generated, which is used as a driving force for sliding the table in the first, second or third direction.
以下、本発明の実施の形態につき、図面を用いて詳細に説明する。図1及び図2は、夫々本実施形態の動電型振動試験装置の上面図及び側面図を示したものである。また、図13は、本実施形態の動電型振動試験装置のブロック図である。図1及び2に示されるように、本実施形態の振動試験装置1は、本実施形態の振動試験装置1は、振動試験の対象である被検体をテーブル100の上に固定し、第1、第2、第3アクチュエータ200、300、400を用いてテーブル100及びその上の被検体を直交3軸方向に加振するようになっている。また、図13に示されるように、第1、第2及び第3アクチュエータ200、300、400は、制御装置10によって制御されており、第1、第2及び第3アクチュエータ200、300及び400の可動コイルに入力される交流電流(後述)の大きさ及び周波数を制御装置10が制御することにより、所望の振幅及び周波数でテーブル100を加振できるようになっている。また、テーブル100には振動ピックアップ等の計測器20が設けられており、計測器20によってテーブルの振動の程度(速度、加速度、振幅等)を計測することができるようになっている。また、制御装置10は、計測器20の計測結果に基づいて、第1、第2及び第3アクチュエータ200、300及び400の可動コイルに入力される交流電流(後述)の大きさ及び周波数を調整可能である。例えば、制御装置10は、テーブル100の最大速度の所定方向成分が所定の大きさとなるように各アクチュエータ200、300、400を制御可能である。なお、制御装置10、計測器20、及び各アクチュエータ200、300、400は、電源装置30から電力の供給を受けて駆動するよう構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 and 2 are a top view and a side view, respectively, of the electrodynamic vibration test apparatus of the present embodiment. FIG. 13 is a block diagram of the electrodynamic vibration test apparatus of this embodiment. As shown in FIGS. 1 and 2, the vibration test apparatus 1 of the present embodiment is configured such that the vibration test apparatus 1 of the present embodiment fixes a subject to be subjected to a vibration test on a table 100, and Using the second and third actuators 200, 300, and 400, the table 100 and the subject on the table 100 are vibrated in three orthogonal directions. As shown in FIG. 13, the first, second, and third actuators 200, 300, and 400 are controlled by the control device 10, and the first, second, and third actuators 200, 300, and 400 are controlled. The control device 10 controls the magnitude and frequency of an alternating current (described later) input to the movable coil, so that the table 100 can be vibrated with a desired amplitude and frequency. The table 100 is provided with a measuring device 20 such as a vibration pickup, and the measuring device 20 can measure the degree of vibration (speed, acceleration, amplitude, etc.) of the table. Further, the control device 10 adjusts the magnitude and frequency of an alternating current (described later) input to the movable coils of the first, second, and third actuators 200, 300, and 400 based on the measurement result of the measuring instrument 20. Is possible. For example, the control device 10 can control the actuators 200, 300, and 400 so that a predetermined direction component of the maximum speed of the table 100 has a predetermined magnitude. The control device 10, the measuring instrument 20, and the actuators 200, 300, and 400 are configured to be driven by receiving power supplied from the power supply device 30.
以下の説明においては、第1アクチュエータ200がテーブル100を加振する方向(図1における上下方向)をX軸方向、第2アクチュエータ300がテーブル100を加振する方向(図1における左右方向)をY軸方向、第3アクチュエータ400がテーブルを加振する方向、すなわち鉛直方向(図1において、紙面に直交する方向)をZ軸方向と定義する。
In the following description, the direction in which the first actuator 200 vibrates the table 100 (the vertical direction in FIG. 1) is the X-axis direction, and the direction in which the second actuator 300 vibrates the table 100 (the horizontal direction in FIG. 1). The Y-axis direction, the direction in which the third actuator 400 vibrates the table, that is, the vertical direction (the direction orthogonal to the paper surface in FIG. 1) is defined as the Z-axis direction.
第1、第2、第3アクチュエータ200、300、400は、夫々第1、第2、第3固定ブロック210、310、410を介して、装置ベース2に固定されるようになっている。具体的には、ブロック固定用ボルトB1によって第1、第2、第3固定ブロック210、310、410を装置ベース2に固定し、且つアクチュエータ固定用ボルトB2(図2)によって、第1、第2、第3アクチュエータ200、300、400は、夫々第1、第2、第3固定ブロック210、310、410に夫々固定される。
The first, second, and third actuators 200, 300, and 400 are fixed to the apparatus base 2 via first, second, and third fixing blocks 210, 310, and 410, respectively. Specifically, the first, second, and third fixing blocks 210, 310, and 410 are fixed to the apparatus base 2 by the block fixing bolt B1, and the first and second fixing blocks B2 (FIG. 2) are used. 2. The third actuators 200, 300, and 400 are fixed to the first, second, and third fixing blocks 210, 310, and 410, respectively.
また、図1及び2に示されるように、第1アクチュエータ200のY軸方向両端には、Z軸方向に伸びる溝202が形成されている。この溝202の底面はXZ平面に略平行な平面状に形成されている。第1固定ブロック210には、幅及び高さが溝202の幅及び最大高さに夫々略等しい突出部212が形成されている。突出部212の頂面(Y軸方向に突出する突出部212の先端側の面)もまた、XZ平面に略平行となっており、突出部212は溝202にほとんど隙間無く嵌まり、溝202の底面と突出部212の頂面とが当接する。このように突出部212が溝202にはまり込んだ状態でアクチュエータ固定用ボルトB2にて第1アクチュエータ200を第1固定ブロック210に固定すると、溝202と突出部212とが係合する。さらに、ボルトB2の締めつけによって、広い面積を有する突出部212の頂面が略全面に亙って溝202の底面を付勢するようになっているため、集中荷重によって溝202や第1固定ブロック210が大きく変形することはない。この結果、第1アクチュエータ200は強固に固定される。
1 and 2, grooves 202 extending in the Z-axis direction are formed at both ends of the first actuator 200 in the Y-axis direction. The bottom surface of the groove 202 is formed in a planar shape substantially parallel to the XZ plane. The first fixed block 210 is formed with protrusions 212 whose width and height are approximately equal to the width and maximum height of the groove 202, respectively. The top surface of the projecting portion 212 (the surface on the tip side of the projecting portion 212 projecting in the Y-axis direction) is also substantially parallel to the XZ plane, and the projecting portion 212 fits in the groove 202 with almost no gap. And the top surface of the protruding portion 212 abut. When the first actuator 200 is fixed to the first fixing block 210 with the actuator fixing bolt B2 in a state where the protruding portion 212 is fitted in the groove 202, the groove 202 and the protruding portion 212 are engaged. Further, since the top surface of the projecting portion 212 having a large area urges the bottom surface of the groove 202 over almost the whole surface by tightening the bolt B2, the groove 202 and the first fixed block are caused by concentrated load. 210 is not greatly deformed. As a result, the first actuator 200 is firmly fixed.
なお、第2及び第3アクチュエータ300、400にも溝202と同様の溝302、402が設けられており、且つ第2及び第3固定用ブロック310、410には、これらの溝302、402に夫々対応する突出部312、412が形成されている。従って、第2アクチュエータ300及び400もまた、溝302、402と突出部312、412との係合により強固に固定される。
The second and third actuators 300 and 400 are also provided with grooves 302 and 402 similar to the groove 202, and the second and third fixing blocks 310 and 410 are provided in the grooves 302 and 402. Corresponding protrusions 312 and 412 are formed, respectively. Accordingly, the second actuators 300 and 400 are also firmly fixed by the engagement between the grooves 302 and 402 and the protruding portions 312 and 412.
次いで、第1、第2及び第3アクチュエータ200、300、400の構造につき以下説明する。なお、第1、第2及び第3アクチュエータ200、300、400はテーブル100に対する取り付け方向が異なるのみであり、テーブル100を駆動するための構成は同じであるため、以下の説明では第1アクチュエータについての説明のみを行う。
Next, the structure of the first, second, and third actuators 200, 300, and 400 will be described below. The first, second, and third actuators 200, 300, and 400 are different only in the mounting direction with respect to the table 100, and the configuration for driving the table 100 is the same. Only the explanation is given.
図3は、第1アクチュエータ200の断面図である。図3に示されるように、第1アクチュエータは、筒状体222を有する固定部220と、この固定部220の筒内に収められて固定部に対してX軸方向にスライド可能な可動部230とを有する。可動部230は、テーパ円筒形状の可動フレーム232と可動フレーム232のテーブル100側端部に固定されている天板231とを有する。天板231には、複数のバー236を介して中間テーブル233が固定される。
FIG. 3 is a cross-sectional view of the first actuator 200. As shown in FIG. 3, the first actuator includes a fixed portion 220 having a cylindrical body 222 and a movable portion 230 that is housed in a cylinder of the fixed portion 220 and is slidable in the X axis direction with respect to the fixed portion. And have. The movable part 230 includes a movable frame 232 having a tapered cylindrical shape and a top plate 231 fixed to the end of the movable frame 232 on the table 100 side. An intermediate table 233 is fixed to the top plate 231 via a plurality of bars 236.
可動フレーム232の、天板231とは反対側の端部には、可動コイル保持部材237を介して可動コイル251が取り付けられている。可動コイル251は、可動フレーム232と略同軸に配置されている。
The movable coil 251 is attached to the end of the movable frame 232 opposite to the top plate 231 via a movable coil holding member 237. The movable coil 251 is disposed substantially coaxially with the movable frame 232.
また、固定部220の筒状体222の内部には、筒状体22と同軸に形成された円筒形状の内側磁極225が固定されている。内側磁極225の外径は、可動コイル251の内径よりも小さくなっており、可動コイル251は内側磁極225の外周面と筒状体222の内周面との間に配置される。
Further, a cylindrical inner magnetic pole 225 formed coaxially with the cylindrical body 22 is fixed inside the cylindrical body 222 of the fixing portion 220. The outer diameter of the inner magnetic pole 225 is smaller than the inner diameter of the movable coil 251, and the movable coil 251 is disposed between the outer peripheral surface of the inner magnetic pole 225 and the inner peripheral surface of the cylindrical body 222.
筒状体222の内周面には、筒状体222の半径方向外側に向かって凹となる凹部222aが複数設けられており、この凹部222aの夫々の内部には、筒状体222の半径方向を中心に導線を巻き回して形成した固定コイル252が取り付けられている。ここで、筒状体222及び内側磁極225は共に強磁性体又はフェリ磁性体にて形成されており、固定コイル252に直流電流を流すと、筒状体222の半径方向すなわち可動コイル251の半径方向に磁界が発生するようになっている。
A plurality of concave portions 222 a that are concave toward the radially outer side of the cylindrical body 222 are provided on the inner peripheral surface of the cylindrical body 222, and the radius of the cylindrical body 222 is provided inside each of the concave portions 222 a. A fixed coil 252 formed by winding a conducting wire around the direction is attached. Here, the cylindrical body 222 and the inner magnetic pole 225 are both formed of a ferromagnetic body or a ferrimagnetic body, and when a direct current is passed through the fixed coil 252, the radial direction of the cylindrical body 222, that is, the radius of the movable coil 251. A magnetic field is generated in the direction.
この状態で可動コイル251に電流を流すと、可動コイル251の軸方向、すなわち鉛直方向にローレンツ力が発生し、可動部230をX軸方向に駆動することができる。本実施形態による動電型振動試験装置1においては、可動コイル251に交流電流を供給して可動フレーム232をX軸方向に往復運動させることにより、中間テーブル233をX軸方向に振動させることができる。
When a current is passed through the movable coil 251 in this state, a Lorentz force is generated in the axial direction of the movable coil 251, that is, in the vertical direction, and the movable part 230 can be driven in the X-axis direction. In the electrodynamic vibration testing apparatus 1 according to the present embodiment, the intermediate table 233 can be vibrated in the X-axis direction by supplying an alternating current to the movable coil 251 and reciprocating the movable frame 232 in the X-axis direction. it can.
また、内側磁極225の中には空気ばね261が収納されている。空気ばね261の一端(図中上側)は固定部220に固定されている。また、空気ばね261の他端(図中下側)から鉛直上方に伸びる連結バー234を介して、空気ばね261と可動フレーム232とが連結されている。空気ばね261が可動フレーム232に加えるX軸正又は負の方向の荷重によって、可動コイル251に電流が流れていないときは可動フレーム232が所定の位置で静止するようになっている。また、第3アクチュエータ400に内蔵されている空気ばねは、第3アクチュエータ400の可動フレームやテーブル100などを下から支えている。このため、第3アクチュエータの可動コイルには、その可動フレーム及びテーブル100を変位させるために必要なローレンツ力を生成するための電流のみを供給すればよく、可動フレーム及びテーブル100を浮上させるための大きな直流成分を可動コイルに供給する必要はない。
In addition, an air spring 261 is accommodated in the inner magnetic pole 225. One end (the upper side in the figure) of the air spring 261 is fixed to the fixing portion 220. Further, the air spring 261 and the movable frame 232 are connected via a connecting bar 234 extending vertically upward from the other end (lower side in the figure) of the air spring 261. When a current does not flow through the movable coil 251 due to a load in the X-axis positive or negative direction applied by the air spring 261 to the movable frame 232, the movable frame 232 stops at a predetermined position. The air spring built in the third actuator 400 supports the movable frame of the third actuator 400, the table 100, and the like from below. For this reason, only the current for generating the Lorentz force necessary for displacing the movable frame and the table 100 may be supplied to the movable coil of the third actuator, and the movable frame and the table 100 can be lifted. There is no need to supply a large DC component to the moving coil.
図3に示されるように、連結バー234は可動フレーム232の中を通って天板231付近に達しており、可動フレーム232の半径方向に伸びる複数本のはり235を介して、可動フレーム232の内周面と連結バー234とが連結している。
As shown in FIG. 3, the connecting bar 234 passes through the movable frame 232 and reaches the vicinity of the top plate 231, and the plurality of beams 235 extending in the radial direction of the movable frame 232 are connected to the movable frame 232. The inner peripheral surface and the connecting bar 234 are connected.
また、内側磁極225の内部空間には、連結バー234の移動方向がX軸方向のみとなるように支持する軸受238が固定されている。
Also, a bearing 238 that supports the connecting bar 234 so that the moving direction of the connecting bar 234 is only in the X-axis direction is fixed in the inner space of the inner magnetic pole 225.
図1及び図2に示されるように、本実施形態においては、第1、第2及び第3アクチュエータ200、300、400とテーブル100とは、夫々第1、第2及び第3連結部240、340、440を介して連結されている。この第1、第2及び第3連結部240、340、440の構成について次に説明する。
As shown in FIGS. 1 and 2, in the present embodiment, the first, second, and third actuators 200, 300, and 400 and the table 100 include the first, second, and third connecting portions 240, respectively. 340 and 440 are connected. Next, the configuration of the first, second, and third connecting portions 240, 340, and 440 will be described.
図4は、第1連結部240の上面図である。また、図5は第1連結部240をY軸方向から見た側面図である。第1連結部は、Z軸レール用スペーサ241、Z軸レール244、中間ステージ245、及びY軸レール248を有する。
FIG. 4 is a top view of the first connecting portion 240. FIG. 5 is a side view of the first connecting portion 240 viewed from the Y-axis direction. The first connecting portion includes a Z-axis rail spacer 241, a Z-axis rail 244, an intermediate stage 245, and a Y-axis rail 248.
Z軸レール用スペーサ241は、中間テーブル233と直交するように中間テーブル233に溶接されているプレート部241aと、プレート部241aと中間テーブル233によって形成されるコーナーに溶接されているリブ241bとを有する。プレート部241aはZX平面と平行に配置されており、そのX軸正の方向側(第1アクチュエータ200からテーブル100に向かう側。図4の下側、図5の右側)の端部、すなわち中間テーブル233に固定される側と反対側の端部に、Z軸レール244が固定されている。Z軸レール244は、Z軸方向に伸びるレールである。一方、Y軸レール248はテーブル100において中間テーブル233と対向する端面に固定され且つY軸方向に伸びるレールであり、テーブル100のX軸負の方向側(テーブル100から第1アクチュエータ200に向かう側。図4の上側、図5の左側)の端部に固定されている。中間ステージ245は、Z軸レール244と係合するZ軸ランナーブロック246がX軸負の方向側に、Y軸レール248と係合するY軸ランナーブロック247がX軸正の方向側に設けられているブロックである。このため、中間ステージ245は、Z軸レール246に対してZ軸方向に、Y軸レール248に対してY軸方向に、夫々スライド可能となっている。換言すれば、中間ステージ245はテーブル100に対してはY軸方向にスライド可能であり、且つ、第1アクチュエータ200に対してとZ軸方向にスライド可能であるといえる。従って、テーブル100に対して第1アクチュエータ200はY軸方向及びZ軸方向にスライド可能となっている。
The Z-axis rail spacer 241 includes a plate portion 241a welded to the intermediate table 233 so as to be orthogonal to the intermediate table 233, and a rib 241b welded to a corner formed by the plate portion 241a and the intermediate table 233. Have. The plate portion 241a is disposed in parallel with the ZX plane, and is an end portion on the X-axis positive direction side (side from the first actuator 200 toward the table 100, the lower side in FIG. 4, the right side in FIG. 5), that is, the middle. A Z-axis rail 244 is fixed to the end opposite to the side fixed to the table 233. The Z-axis rail 244 is a rail extending in the Z-axis direction. On the other hand, the Y-axis rail 248 is a rail that is fixed to the end surface of the table 100 that faces the intermediate table 233 and extends in the Y-axis direction. 4 is fixed to the end of the upper side of FIG. The intermediate stage 245 includes a Z-axis runner block 246 that engages with the Z-axis rail 244 on the X-axis negative direction side, and a Y-axis runner block 247 that engages with the Y-axis rail 248 on the X-axis positive direction side. Is a block. Therefore, the intermediate stage 245 can slide in the Z-axis direction with respect to the Z-axis rail 246 and in the Y-axis direction with respect to the Y-axis rail 248, respectively. In other words, it can be said that the intermediate stage 245 can slide in the Y-axis direction with respect to the table 100 and can slide in the Z-axis direction with respect to the first actuator 200. Therefore, the first actuator 200 can slide in the Y-axis direction and the Z-axis direction with respect to the table 100.
このため、第2アクチュエータ300及び/又は第3アクチュエータ400によってテーブル100がY軸方向及び/又はZ軸方向に加振されたとしても、それによって第1アクチュエータ200にY軸方向及びZ軸方向の荷重が加わることは無く、テーブル100のY軸方向及び/またはZ軸方向の変位に起因する曲げ応力が第1アクチュエータ200の可動部230(図3)などに加わることは無い。
For this reason, even if the table 100 is vibrated in the Y-axis direction and / or the Z-axis direction by the second actuator 300 and / or the third actuator 400, the first actuator 200 is thereby moved in the Y-axis direction and the Z-axis direction. No load is applied, and bending stress due to the displacement of the table 100 in the Y-axis direction and / or the Z-axis direction is not applied to the movable portion 230 (FIG. 3) of the first actuator 200 or the like.
第2連結部340は、以上説明した第1連結部240とは設置される方向が異なる(X軸とY軸が入れ代わる)点を除いては同一の構造である。従って、第2連結部340の説明については省略する。
The second connecting portion 340 has the same structure except that the first connecting portion 240 described above is installed in a different direction (X axis and Y axis are interchanged). Therefore, the description of the second connection part 340 is omitted.
次に、第3連結部440の構成について説明する。図1及び図2に示されるように、第3連結部440は、一対のY軸レール444、一対のX軸レール448、及び複数の中間ステージ445を有している。
Next, the configuration of the third connecting portion 440 will be described. As shown in FIGS. 1 and 2, the third connecting portion 440 includes a pair of Y-axis rails 444, a pair of X-axis rails 448, and a plurality of intermediate stages 445.
一対のY軸レール444は、共にY軸方向に伸びるレールであり、第3アクチュエータ400の中間テーブル433の上面に、X軸方向に並べられて固定されている。また、一対のX軸レール448は、共にX軸方向に伸びるレールであり、テーブル100の下面に、Y軸方向に並べて固定されている。中間ステージ445は、X軸レール448と係合するX軸ランナーブロック447が上部に、Y軸レール444と係合するY軸ランナーブロック446が下部に設けられているブロックである。従って中間ステージ445は、X軸レール448及びY軸レール444の双方に対してスライド可能となっている。なお、中間ステージ445は、X軸レール448とY軸レール444とが交差する位置毎に一つずつ設けられている。X軸レール448とY軸レール444は、夫々2つずつ設けられているので、X軸レール448とY軸レール444とは4箇所で交差する。従って、本実施形態においては、4つの中間ステージ445が使用される。
The pair of Y-axis rails 444 are both rails extending in the Y-axis direction, and are arranged and fixed on the upper surface of the intermediate table 433 of the third actuator 400 in the X-axis direction. The pair of X-axis rails 448 are rails that extend in the X-axis direction, and are fixed to the lower surface of the table 100 side by side in the Y-axis direction. The intermediate stage 445 is a block in which an X-axis runner block 447 that engages with the X-axis rail 448 is provided at the upper portion, and a Y-axis runner block 446 that engages with the Y-axis rail 444 is provided at the lower portion. Accordingly, the intermediate stage 445 can slide with respect to both the X-axis rail 448 and the Y-axis rail 444. One intermediate stage 445 is provided for each position where the X-axis rail 448 and the Y-axis rail 444 cross each other. Since two X-axis rails 448 and two Y-axis rails 444 are provided, the X-axis rail 448 and the Y-axis rail 444 intersect at four points. Therefore, in this embodiment, four intermediate stages 445 are used.
このように、中間ステージ445の各々は、テーブル100に対してX軸方向にスライド可能であり、且つ、第3アクチュエータ300に対してY軸方向にスライド可能である。すなわち、テーブル100は第3アクチュエータ400に対してX軸方向及びY軸方向にスライド可能となっている。このため、第1アクチュエータ200及び/または第2アクチュエータ300によってテーブル100がX軸方向及び/またはY軸方向に加振されたとしても、それによって第3アクチュエータ400にX軸方向及びY軸方向の荷重が加わることは無く、テーブル100のX軸方向及び/またはY軸方向の変位に起因する曲げ応力が第3アクチュエータ400の可動部などに加わることは無い。
Thus, each of the intermediate stages 445 is slidable in the X-axis direction with respect to the table 100 and slidable in the Y-axis direction with respect to the third actuator 300. That is, the table 100 is slidable in the X axis direction and the Y axis direction with respect to the third actuator 400. Therefore, even if the table 100 is vibrated in the X-axis direction and / or the Y-axis direction by the first actuator 200 and / or the second actuator 300, the third actuator 400 is thereby caused to move in the X-axis direction and the Y-axis direction. No load is applied, and bending stress resulting from displacement of the table 100 in the X-axis direction and / or Y-axis direction is not applied to the movable portion of the third actuator 400 or the like.
また、本実施形態においては、第3アクチュエータ400は、比較的大重量のテーブル100及び被検体を支えるため、X軸レール448及びY軸レール444を一対ずつ設け、且つX軸レール448とY軸レール444とが交差する部分ごとに中間ステージ445が配置されている。
In the present embodiment, the third actuator 400 is provided with a pair of X-axis rails 448 and Y-axis rails 444 to support the relatively heavy table 100 and the subject, and the X-axis rails 448 and Y-axis are provided. An intermediate stage 445 is disposed at each portion where the rail 444 intersects.
前述のように、第3アクチュエータ400には被検体及び大重量のテーブル100の荷重が加わる。このため、X軸及びY軸方向の加振によって、テーブル100の重心が第3アクチュエータ400の可動部の中心軸からずれ、可動部に大きなモーメントが加わる。本実施形態においては、図1に示されるように、このモーメントによって可動部が倒れないよう、Z軸方向に伸びるレール451とこのレール451に係合してレール451に沿って進退可能なランナーブロック452とを有するリニアガイド機構450によって、第3アクチュエータ400の可動部が支えられている。
As described above, the load of the subject and the heavy table 100 is applied to the third actuator 400. For this reason, the center of gravity of the table 100 is shifted from the central axis of the movable part of the third actuator 400 due to the vibration in the X-axis and Y-axis directions, and a large moment is applied to the movable part. In the present embodiment, as shown in FIG. 1, a rail 451 extending in the Z-axis direction and a runner block that can be advanced and retracted along the rail 451 by engaging with the rail 451 so that the movable portion does not fall down due to this moment. The movable portion of the third actuator 400 is supported by a linear guide mechanism 450 having 452.
具体的には、図1に示されるように、第3アクチュエータ400の固定部420の上面423には、L字状のガイドフレーム453が固定されており、Z軸方向に延びるレール451は、このガイドフレーム453の直立部453a(固定部420の上面423から垂直に立つプレート)の一面に固定されている。また、このレール451と係合するランナーブロック452は、第3アクチュエータ400の中間テーブル433に固定されている。リニアガイド450は、第3アクチュエータの中心軸を中心とする円周上に、約90度毎に計4組設けられており、この4組によって4方から第3アクチュエータ400の可動部がガイドされるようになっている。
Specifically, as shown in FIG. 1, an L-shaped guide frame 453 is fixed to the upper surface 423 of the fixing portion 420 of the third actuator 400, and the rail 451 extending in the Z-axis direction is The guide frame 453 is fixed to one surface of the upright portion 453a (a plate standing vertically from the upper surface 423 of the fixing portion 420). The runner block 452 that engages with the rail 451 is fixed to the intermediate table 433 of the third actuator 400. Four sets of linear guides 450 are provided on the circumference centering on the central axis of the third actuator at about 90 degrees, and the movable parts of the third actuator 400 are guided from four directions by these four sets. It has become so.
以上説明したように、本実施形態においては、各々のアクチュエータとテーブル100との間に、少なくとも一対の直交するレールとこのレールの双方に対してスライド可能に構成された中間ステージが設けられている。これによって、各アクチュエータに対して、テーブル100はそのアクチュエータの駆動方向に垂直な面上の任意の方向にスライド可能となっている。このため、あるアクチュエータによってテーブル100が変位したとしても、この変位に起因する荷重やモーメントが他のアクチュエータに加わることは無く、且つ他のアクチュエータとテーブル100とが中間ステージを介して係合する状態が維持される。すなわち、テーブルが任意の位置に変位したとしても、各アクチュエータがテーブルを変位させることが可能な状態が維持される。このため、本実施形態においては、3つのアクチュエータ200、300、400を同時に駆動させてテーブル100及びその上に固定される被検体を3軸方向に加振可能である。
As described above, in this embodiment, at least a pair of orthogonal rails and an intermediate stage configured to be slidable with respect to both the rails are provided between each actuator and the table 100. . Thus, for each actuator, the table 100 can slide in any direction on a plane perpendicular to the driving direction of the actuator. For this reason, even if the table 100 is displaced by a certain actuator, the load or moment resulting from this displacement is not applied to the other actuator, and the other actuator and the table 100 are engaged via the intermediate stage. Is maintained. That is, even if the table is displaced to an arbitrary position, a state in which each actuator can displace the table is maintained. Therefore, in the present embodiment, the three actuators 200, 300, and 400 can be simultaneously driven to vibrate the table 100 and the subject fixed on the table 100 in three axial directions.
次に、第1、第2及び第3連結部240、340、440のリニアガイド機構やリニアガイド機構450のレール及びランナーブロックの構成について、図面を用いて詳細に説明する。なお、以下は、第1連結部240のレール244及びランナーブロック246を例に挙げて説明したものであるが、他のレール及びランナーブロックもまた同様の構造となっている。
Next, the configuration of the linear guide mechanism of the first, second and third connecting portions 240, 340 and 440, the rail of the linear guide mechanism 450 and the runner block will be described in detail with reference to the drawings. In the following description, the rail 244 and the runner block 246 of the first connecting portion 240 are described as an example, but the other rails and the runner block have the same structure.
図6は、第1連結部240のレール244及びランナーブロック246を、レール244の長軸方向に垂直な一面(すなわちXY平面)で切断した断面図であり、図7は図6のI-I断面図である。図6及び図7に示されるように、ランナーブロック246にはレール244を囲むように凹部が形成されており、この凹部にはレール244の軸方向に延びる4本の溝246a、246a’が形成されている。この溝246a、246a’には、多数のステンレス鋼製のボール246bが収納されている。レール244には、ランナーブロック246の溝246a、246a’と対向する位置にそれぞれ溝244a、244a’が設けられており、ボール246bが、溝246aと溝244a、又は溝246a’と溝244a’との間に挟まれるようになっている。溝246a、246a’、244a、244a’の断面形状は円弧状であり、その曲率半径はボール246bの半径と略等しい。このため、ボール246bは、ほとんどあそびの無い状態で溝246a、246a’、244a、244a’に密着する。
6 is a cross-sectional view of the rail 244 and the runner block 246 of the first connecting portion 240 taken along a plane perpendicular to the major axis direction of the rail 244 (that is, the XY plane), and FIG. 7 is a cross-sectional view taken along II of FIG. It is sectional drawing. As shown in FIGS. 6 and 7, the runner block 246 is formed with a recess so as to surround the rail 244, and in this recess, four grooves 246 a and 246 a ′ extending in the axial direction of the rail 244 are formed. Has been. Numerous stainless steel balls 246b are accommodated in the grooves 246a and 246a '. The rail 244 is provided with grooves 244a and 244a ′ at positions facing the grooves 246a and 246a ′ of the runner block 246, respectively, and the ball 246b is formed with the grooves 246a and 244a or the grooves 246a ′ and 244a ′. It is designed to be sandwiched between. The cross-sectional shape of the grooves 246a, 246a ', 244a, 244a' is an arc shape, and the radius of curvature thereof is substantially equal to the radius of the ball 246b. For this reason, the ball 246b is in close contact with the grooves 246a, 246a ', 244a, 244a' with almost no play.
ランナーブロック246の内部には、溝246a、246a’の夫々と略平行に4本のボール退避路246c、246c’が設けられている。図7に示されるように、溝246aと退避路246cとは、夫々の両端でU字路246dを介して接続されており、溝246a、溝244a、退避路246c及びU字路46dによって、ボール246bを循環させるための循環路が形成される。溝246a’、溝244a’及び退避路246c’によっても、同様の循環路が形成されている。
Inside the runner block 246, four ball retraction paths 246c, 246c 'are provided substantially parallel to the grooves 246a, 246a'. As shown in FIG. 7, the groove 246a and the retreat path 246c are connected to each other via U-shaped paths 246d, and the grooves 246a, 244a, retreat paths 246c, and U-shaped paths 46d A circulation path for circulating 246b is formed. A similar circulation path is also formed by the groove 246a ', the groove 244a', and the retreat path 246c '.
このため、ランナーブロック246がレール244に対して移動すると、多数のボール246bが溝246a、246a’、244a、244a’を転がりながら循環路を循環する。このため、レール軸方向以外の方向に大荷重が加わっていたとしても、多数のボールでランナーブロックを支持可能であると共にボール246bが転がることによりレール軸方向の抵抗が小さく保たれるので、ランナーブロック246をレール244に対してスムーズに移動させることができる。なお、退避路246c及びU字路246dの内径は、ボール246bの径よりやや大きくなっている。このため、退避路246c及びU字路246dとボール246bとの間に発生する摩擦力はごくわずかであり、それによってボール246bの循環が妨げられることはない。
For this reason, when the runner block 246 moves relative to the rail 244, a large number of balls 246b circulate in the circulation path while rolling in the grooves 246a, 246a ', 244a, 244a'. For this reason, even if a heavy load is applied in a direction other than the rail axial direction, the runner block can be supported by a large number of balls, and the resistance in the rail axial direction is kept small by rolling the balls 246b. The block 246 can be smoothly moved with respect to the rail 244. Note that the inner diameters of the retreat path 246c and the U-shaped path 246d are slightly larger than the diameter of the ball 246b. For this reason, the frictional force generated between the retreat path 246c and the U-shaped path 246d and the ball 246b is negligible, thereby preventing the circulation of the ball 246b.
図示されているように、溝246aと244aに挟まれた二列のボール246bの列は、接触角が略±45°となる正面組合せ型のアンギュラ玉軸受を形成する。この場合の接触角とは、溝246a及び244aがボール246bと接触する接触点同士を結んだ線が、レール244、ランナーブロック246のラジアル方向(ランナーブロックからレールに向かう方向であり、図6における上方向)に対してなす角度である。このように形成されたアンギュラ玉軸受は、逆ラジアル方向(レールからランナーブロックに向かう方向であり、図6における下方向)及び横方向(ラジアル方向及びランナーブロックの進退方向の双方に直交する方向であり、図6における左右方向)の荷重を支持することができる。
As shown in the drawing, the two rows of balls 246b sandwiched between the grooves 246a and 244a form a front combination angular contact ball bearing having a contact angle of approximately ± 45 °. The contact angle in this case is the radial direction of the rail 244 and the runner block 246 (the direction from the runner block to the rail), where the grooves 246a and 244a contact the balls 246b. It is an angle made with respect to (upward direction). The angular ball bearing formed in this way is in the reverse radial direction (the direction from the rail toward the runner block, the downward direction in FIG. 6) and the lateral direction (the direction orthogonal to both the radial direction and the advance / retreat direction of the runner block). Yes, the load in the left-right direction in FIG. 6 can be supported.
同様に、溝246a’と244a’に挟まれた二列のボール246bの列は、接触角(溝246a’及び244a’がボール246bと接触する接触点同士を結んだ線が、リニアガイドの逆ラジアル方向に対してなす角度)が略±45°となる正面組合せ型のアンギュラ玉軸受を形成する。このアンギュラ玉軸受は、ラジアル方向及び横方向の荷重を支持することができる。
Similarly, the two rows of balls 246b sandwiched between the grooves 246a ′ and 244a ′ have a contact angle (the line connecting the contact points where the grooves 246a ′ and 244a ′ are in contact with the ball 246b is the reverse of the linear guide). A front combination angular contact ball bearing having an angle of about ± 45 ° with respect to the radial direction is formed. This angular ball bearing can support radial and lateral loads.
また、溝246aと244aの一方(図中右側)と、溝246a’と244a’の一方(図中右側)にそれぞれ挟まれたボール246bの2つの列もまた、正面組み合わせ型のアンギュラ玉軸受を形成する。同様に溝246aと244aの他方(図中左側)と、溝246a’と244a’の他方(図中左側)にそれぞれ挟まれたボール246bの2つの列もまた、正面組合せ型のアンギュラ玉軸受を形成する。
Two rows of balls 246b sandwiched between one of the grooves 246a and 244a (right side in the figure) and one of the grooves 246a ′ and 244a ′ (right side in the figure) are also provided with a front combination type angular ball bearing. Form. Similarly, two rows of balls 246b sandwiched between the other of the grooves 246a and 244a (left side in the figure) and the other of the grooves 246a ′ and 244a ′ (left side in the figure) are also provided with a front combination type angular ball bearing. Form.
このように、本実施形態においては、ラジアル方向、逆ラジアル方向、横方向のそれぞれに働く荷重に対して、多数のボール246bを有する正面組合せ型のアンギュラ玉軸受が支持することになり、レール軸方向以外の方向に加わる大荷重を十分支持できるようになっている。
As described above, in this embodiment, the front combination angular contact ball bearing having a large number of balls 246b supports the loads acting in the radial direction, the reverse radial direction, and the lateral direction, and the rail shaft A large load applied in a direction other than the direction can be sufficiently supported.
次いで、本実施形態のリニアガイド機構のレールの取り付け構造について説明する。図8は、Z軸レール用スペーサ241に取り付けられたレール244を示す斜視図である。なお、このレールの取り付け構造は、本実施形態の振動試験装置で使用されている他のレールについても同様である。
Next, the rail mounting structure of the linear guide mechanism of this embodiment will be described. FIG. 8 is a perspective view showing the rail 244 attached to the Z-axis rail spacer 241. The rail mounting structure is the same for other rails used in the vibration testing apparatus of this embodiment.
図8に示されるように、レール244には、その軸方向に並んで配置された複数の貫通孔244bが形成されている。また、図中には示されていないが、Z軸レール用スペーサ241のプレート部241aの貫通孔244bに対応する位置には、複数のボルト穴が形成されている。レール244は、貫通孔244bにボルト244cを通して、プレート部241aのボルト穴にねじ込むことによって、Z軸レール用スペーサ241に固定される。
As shown in FIG. 8, the rail 244 is formed with a plurality of through holes 244b arranged in the axial direction. Although not shown in the drawing, a plurality of bolt holes are formed at positions corresponding to the through holes 244b of the plate portion 241a of the Z-axis rail spacer 241. The rail 244 is fixed to the Z-axis rail spacer 241 by screwing the bolt 244c through the through-hole 244b into the bolt hole of the plate portion 241a.
本実施形態においては、レール244の貫通孔244bの間隔(及び天坂のボルト穴の間隔)sは、レール244の幅wの50~80%、好ましくは60~70%と比較的短くなっている。このように、ボルト244cの取り付け間隔を比較的短くすることによって、レール244は撓むことなくZ軸レール用スペーサ241に強固に固定される。
In this embodiment, the interval between the through-holes 244b of the rail 244 (and the interval between the bolt holes of Anzaka) s is relatively short, 50 to 80%, preferably 60 to 70% of the width w of the rail 244. Yes. Thus, by relatively shortening the mounting interval of the bolts 244c, the rail 244 is firmly fixed to the Z-axis rail spacer 241 without bending.
以上説明した本実施形態のリニアガイド機構においては、ボール246bの転動によってランナーブロック246をレール244に対してスライドさせるものであるが、本発明の実施形態は上記の構成に限定されるものではない。以下に説明する変形例のように、ボール246bの代わりにローラ1246bを使用し、このローラ1246bの転動によってランナーブロック1246をレール1244に対してスライドさせるリニアガイド機構を使用してもよい。
In the linear guide mechanism of the present embodiment described above, the runner block 246 is slid with respect to the rail 244 by rolling of the ball 246b. However, the embodiment of the present invention is not limited to the above configuration. Absent. As in a modification described below, a roller 1246b may be used instead of the ball 246b, and a linear guide mechanism that slides the runner block 1246 relative to the rail 1244 by rolling of the roller 1246b may be used.
本実施形態の変形例に使用されるリニアガイド機構を図9から図12に示す。以下に説明するリニアガイド機構を除いては、本変形例の構成は上記実施形態のものと変わらない。図9は、ランナーブロック1246及びレール1244を、レール1244の長軸方向に垂直な一面で切断した断面図である。図10及び11は、夫々図9のII-II断面図及びIII-III断面図である。図9に示されるように、ランナーブロック1246にはレール1244を囲むように凹部1246eが形成されている。この凹部1246eとレール1244の外周面との間には、ローラ保持部材1246fが挟み込まれている。このローラ保持部材1246fによって、凹部1246eとレール1244の外周面との隙間に、軸方向に延びる4本の転動溝1246a、1246a’が形成される。この転動溝1246a、1246a’には、多数のステンレス鋼製のローラ1246bが収納されている。ローラ1246bは、その軸方向両端がローラ保持部材1246fによって保持され、円筒面がランナーブロック1246の凹部とレール1244の外周面の双方に当接するようになっている。ランナーブロック1246の凹部とレール1244の外周面との間隔は、ローラ1246bの径に略等しく、ローラ1246bは、あそびのほとんど無い状態でランナーブロック1246の凹部1246e及びレール1244の外周面に密着する。
9 to 12 show a linear guide mechanism used in a modification of the present embodiment. Except for the linear guide mechanism described below, the configuration of this modification is the same as that of the above embodiment. FIG. 9 is a cross-sectional view of the runner block 1246 and the rail 1244 cut along a plane perpendicular to the major axis direction of the rail 1244. 10 and 11 are a II-II sectional view and a III-III sectional view of FIG. 9, respectively. As shown in FIG. 9, the runner block 1246 is formed with a recess 1246 e so as to surround the rail 1244. A roller holding member 1246f is sandwiched between the recess 1246e and the outer peripheral surface of the rail 1244. By this roller holding member 1246f, four rolling grooves 1246a and 1246a 'extending in the axial direction are formed in the gap between the recess 1246e and the outer peripheral surface of the rail 1244. A number of stainless steel rollers 1246b are accommodated in the rolling grooves 1246a and 1246a '. Both ends of the roller 1246b in the axial direction are held by a roller holding member 1246f, and the cylindrical surface is in contact with both the recess of the runner block 1246 and the outer peripheral surface of the rail 1244. The distance between the recess of the runner block 1246 and the outer peripheral surface of the rail 1244 is substantially equal to the diameter of the roller 1246b, and the roller 1246b is in close contact with the recess 1246e of the runner block 1246 and the outer peripheral surface of the rail 1244 with little play.
ランナーブロック1246の内部には、転動溝1246aの夫々と略平行なレール退避路1246c’が2本設けられている。図10に示されるように、レール退避路246c’は、ローラ1246bを収容するチューブをC字形状に屈曲して形成したものである。転動溝1246aと退避路1246c’とは、夫々の両端で接続されており、ローラ1246bを循環させるための循環路を形成する。また、図11に示されるように、ランナーブロック1246の内部には、転動溝1246a’の夫々と略平行なレール退避1246cが2本設けられており、退避路1246c及び転動溝1246a’もまた、同様の循環路を形成する。
Inside the runner block 1246, two rail retreat paths 1246c 'are provided that are substantially parallel to the rolling grooves 1246a. As shown in FIG. 10, the rail retracting path 246c 'is formed by bending a tube that accommodates the roller 1246b into a C-shape. The rolling groove 1246a and the retreat path 1246c 'are connected at both ends, and form a circulation path for circulating the roller 1246b. Further, as shown in FIG. 11, two rail retractions 1246 c that are substantially parallel to the rolling grooves 1246 a ′ are provided inside the runner block 1246, and the retreating path 1246 c and the rolling grooves 1246 a ′ are also provided. A similar circulation path is formed.
このため、ランナーブロック1246がレール1244に対して移動すると、多数のローラ1246bが転動溝1246a、1246a’を転がりながら循環路を循環する。このため、レール軸方向以外の方向に大荷重が加わっていたとしても、多数のローラ1246bでランナーブロック246を支持可能であると共にローラ1246bが転がることによりレール軸方向の抵抗が小さく保たれるので、ランナーブロック1246をレール1244に対してスムーズに移動させることができる。
Therefore, when the runner block 1246 moves with respect to the rail 1244, a large number of rollers 1246b circulate in the circulation path while rolling on the rolling grooves 1246a and 1246a '. For this reason, even if a heavy load is applied in directions other than the rail axial direction, the runner block 246 can be supported by a large number of rollers 1246b, and the resistance in the rail axial direction is kept small by rolling the rollers 1246b. The runner block 1246 can be smoothly moved with respect to the rail 1244.
本実施形態においては、ランナーブロック1246の凹部1246eとレール1244の外周面との間隔d(図10、図11)は、ローラ1246bの径よりわずかに(1マイクロメートル以下)大きい程度の長さとなっている。このような状態においては、ランナーブロック1246及びレール1244にローラ1246bからのプリロードが加わって、ローラ1246bの外周面がランナーブロック1246の凹部1246e及びレール1244の外周面に密着した状態となる。そして、レール1244の軸方向以外の方向の荷重がランナーブロック1246及びレール1244の一方に加わった場合、その荷重はローラ1246bを介して、応答遅れを殆ど起こすことなく他方に伝達される。このため、アクチュエータ200~400を数kHz程度の高い周波数で往復駆動させたとしても、その振動は中間ステージを介して確実にテーブル100に伝達される。すなわち、本実施形態の振動試験装置1によれば、高周波でテーブル100を振動させることができる。
In the present embodiment, the distance d (FIGS. 10 and 11) between the recess 1246e of the runner block 1246 and the outer peripheral surface of the rail 1244 is a length that is slightly larger (1 micrometer or less) than the diameter of the roller 1246b. ing. In such a state, the preload from the roller 1246b is applied to the runner block 1246 and the rail 1244, and the outer peripheral surface of the roller 1246b is in close contact with the concave portion 1246e of the runner block 1246 and the outer peripheral surface of the rail 1244. When a load in a direction other than the axial direction of the rail 1244 is applied to one of the runner block 1246 and the rail 1244, the load is transmitted to the other via the roller 1246b with almost no response delay. Therefore, even if the actuators 200 to 400 are driven to reciprocate at a high frequency of about several kHz, the vibrations are reliably transmitted to the table 100 via the intermediate stage. That is, according to the vibration test apparatus 1 of the present embodiment, the table 100 can be vibrated at a high frequency.
図9に示されているように、4本の転動溝1246a、1246a’に配置された4列のローラ1246bは、その軸が、レール1244の軸に直交する面上において90°おきとなるよう配置されている。
As shown in FIG. 9, the four rows of rollers 1246b arranged in the four rolling grooves 1246a and 1246a ′ have their axes every 90 ° on a plane orthogonal to the axis of the rail 1244. It is arranged as follows.
各ローラ1246bがこのように配置されているため、ランナーブロック1246からレール1244の上面に向かう方向(図9において下から上に向かう方向)の荷重が加わる場合、この荷重は、主として2本の転動溝1246aに配置された2列のローラ1246bが受ける。また、ランナーブロック1246に、レール1244の上面から離れるような方向(図9において上から下に向かう方向)の荷重が加わる場合は、この荷重は、主として2本の転動溝1246a’に配置された2列のローラ1246bが受ける。
Since each roller 1246b is arranged in this way, when a load in a direction from the runner block 1246 toward the upper surface of the rail 1244 (a direction from bottom to top in FIG. 9) is applied, this load mainly includes two rolling elements. Two rows of rollers 1246b disposed in the moving groove 1246a receive the movement. In addition, when a load in a direction away from the upper surface of the rail 1244 is applied to the runner block 1246 (the direction from the top to the bottom in FIG. 9), this load is mainly disposed in the two rolling grooves 1246a ′. Two rows of rollers 1246b receive.
また、ランナーブロック1246に、その一方の側面(図中左側)から他方の側面(図中右側)に向かう方向の荷重が加わる場合は、その荷重は、主として転動溝1246a’及び1246aのランナーブロック一方側(図中左側)に配置されている2列のローラ1246bが受ける。一方、ランナーブロック1246に、その他方の側面から一方の側面に向かう方向の荷重が加わる場合は、その荷重は、主として転動溝1246a’及び1246aのランナーブロック他方側(図中右側)に配置されている2列のローラ1246bが受ける。
In addition, when a load is applied to the runner block 1246 in a direction from one side surface (left side in the figure) to the other side surface (right side in the figure), the load is mainly the runner blocks of the rolling grooves 1246a ′ and 1246a. Two rows of rollers 1246b arranged on one side (left side in the figure) receive. On the other hand, when a load is applied to the runner block 1246 in the direction from the other side to the one side, the load is mainly disposed on the other side of the runner block (right side in the drawing) of the rolling grooves 1246a ′ and 1246a. The two rows of rollers 1246b are received.
さらに、ランナーブロック1246に、レール1244の軸方向周りのねじり荷重が加わる場合、そのねじり荷重の方向が図9中時計回りであれば、その荷重は、主として転動溝1246aの一方(図中左側)に配置されるローラ1246bと、転動溝1246a’の他方(図中右側)に配置されるローラ1246bが受ける。ねじり荷重の方向が図9中反時計回りであれば、その荷重は、主として転動溝1246aの他方に配置されるローラ1246bと、転動溝1246a’の一方に配置されるローラ1246bが受ける。
Further, when a torsional load around the axial direction of the rail 1244 is applied to the runner block 1246, if the direction of the torsional load is clockwise in FIG. 9, the load is mainly applied to one of the rolling grooves 1246a (left side in the figure). ) And a roller 1246b disposed on the other (right side in the drawing) of the rolling groove 1246a ′. If the direction of the torsional load is counterclockwise in FIG. 9, the load is received mainly by the roller 1246b disposed on the other side of the rolling groove 1246a and the roller 1246b disposed on one side of the rolling groove 1246a '.
このように、本実施形態においては、ランナーブロック1246に図9中上下方向、左右方向、ねじり方向の荷重の何れが加わった場合であっても、それらの荷重は常に2列のローラ1246bが受けるようになっている。このため、本実施形態のリニアガイド機構は、これらの方向に大荷重が加わったとしても、特定の列のローラ1246bのみに荷重が加わってローラ1246bが破損に至ることはなく且つスムーズに転動可能であり、ローラ1246bによってランナーブロック1246はレール1244に沿ってスムーズに移動可能である。
As described above, in this embodiment, even when any load in the vertical direction, the horizontal direction, or the torsional direction in FIG. 9 is applied to the runner block 1246, these loads are always received by the two rows of rollers 1246b. It is like that. For this reason, the linear guide mechanism of this embodiment does not cause damage to the roller 1246b by applying a load only to the roller 1246b in a specific row even if a large load is applied in these directions, and smoothly rolls. The runner block 1246 can be smoothly moved along the rail 1244 by the roller 1246b.
ランナーブロック1246のローラ1246bの斜視図を図12に示す。図12に示されるように、本実施形態の振動試験装置1に使用されるランナーブロックのローラ同士の間には、リテーナ1246gが設けられている。リテーナ1246gは、隣接する二本のローラ1246bの外周面と当接する二つの円筒面を有し、この円筒面を介してリテーナ246gはローラ1246bに接触する。リテーナ1246gの2円筒面の軸は、互いに平行となっている。そして、リテーナ1246gがその前後でローラ1246bに接触しているため、循環路中のローラ1246bはその軸方向が平行となるように整列される。このため、ローラ1246bは循環路内をガタつくことなくスムーズに循環する。
A perspective view of the roller 1246b of the runner block 1246 is shown in FIG. As shown in FIG. 12, a retainer 1246g is provided between the rollers of the runner block used in the vibration test apparatus 1 of the present embodiment. The retainer 1246g has two cylindrical surfaces that are in contact with the outer peripheral surfaces of the two adjacent rollers 1246b, and the retainer 246g contacts the roller 1246b through the cylindrical surfaces. The axes of the two cylindrical surfaces of the retainer 1246g are parallel to each other. Since the retainer 1246g is in contact with the roller 1246b before and after the retainer 1246g, the rollers 1246b in the circulation path are aligned so that their axial directions are parallel to each other. For this reason, the roller 1246b circulates smoothly in the circulation path without rattling.
また、リテーナ1246gを有さないようなリニアガイド機構においては、ローラ1246b同士が比較的小さい接触面積にて接触するため、接触部には大きな応力が加わる。これに対し、本実施形態のリニアガイド機構は、ローラ1246bとリテーナ1246gの円筒面同士が比較的広い接触面積にて接触し、この接触によってローラ1246bに加わる応力は比較的小さく保たれる。そのため、本実施形態のリニアガイド機構は、リテーナを有さないものと比べ、ローラ1246bの破損や磨耗を抑えることができる。
Further, in the linear guide mechanism that does not have the retainer 1246g, the rollers 1246b are in contact with each other with a relatively small contact area, so that a large stress is applied to the contact portion. On the other hand, in the linear guide mechanism of this embodiment, the cylindrical surfaces of the roller 1246b and the retainer 1246g are in contact with each other with a relatively wide contact area, and the stress applied to the roller 1246b by this contact is kept relatively small. Therefore, the linear guide mechanism of this embodiment can suppress the damage and wear of the roller 1246b, compared to the linear guide mechanism that does not have a retainer.
さらに、本実施形態のリニアガイド機構は、ローラ1246b同士が直接接触しないようになっている。ローラ1246b同士が直接接触すると騒音が発生するが、本実施形態においては、ローラ1246bの間にリテーナ1246gが配置されているため、このような騒音を抑えることができる。
Furthermore, the linear guide mechanism of the present embodiment is configured such that the rollers 1246b do not directly contact each other. When the rollers 1246b are in direct contact with each other, noise is generated. In this embodiment, since the retainer 1246g is disposed between the rollers 1246b, such noise can be suppressed.
Claims (21)
- 被検体が取り付けられるテーブルをボイスコイルモータによって加振する動電型振動試験装置であって、
前記テーブルを、ボイスコイルモータによって互いに直交する第1及び第2の方向に夫々加振可能な第1及び第2の動電型アクチュエータと、
前記テーブルを前記第1の動電型アクチュエータに対して第2の方向にスライド可能に連結する第1の連結手段と、
前記テーブルを前記第2の動電型アクチュエータに対して第1の方向にスライド可能に連結する第2の連結手段と、
を有する、動電型振動試験装置。 An electrodynamic vibration test apparatus that vibrates a table to which a subject is attached by a voice coil motor,
First and second electrodynamic actuators capable of vibrating the table in first and second directions orthogonal to each other by a voice coil motor;
First connection means for slidably connecting the table to the first electrodynamic actuator in a second direction;
Second connection means for slidably connecting the table to the second electrodynamic actuator in a first direction;
An electrodynamic vibration test apparatus. - 前記第1及び第2の連結手段の夫々は、前記第1及び第2の動電型アクチュエータと前記テーブルの間に配置された中間ステージを有し、
前記第1の連結手段の中間ステージは、該第1の方向に垂直な一方向のみに前記テーブルに対してスライド可能であり、且つ、該一方向と該第1の方向の双方に垂直な方向のみに前記第1の動電型アクチュエータに対してスライド可能であり、
前記第2の連結手段の中間ステージは、該第2の方向に垂直な一方向のみに前記テーブルに対してスライド可能であり、且つ、該一方向と該第2の方向の双方に垂直な方向のみに前記第2の動電型アクチュエータに対してスライド可能である、
ことを特徴とする請求項1に記載の動電型振動試験装置。 Each of the first and second connecting means has an intermediate stage disposed between the first and second electrodynamic actuators and the table,
The intermediate stage of the first connecting means is slidable with respect to the table in only one direction perpendicular to the first direction, and a direction perpendicular to both the one direction and the first direction. Only slidable relative to the first electrodynamic actuator;
The intermediate stage of the second connecting means is slidable with respect to the table only in one direction perpendicular to the second direction, and a direction perpendicular to both the one direction and the second direction. Only slidable relative to the second electrodynamic actuator,
The electrodynamic vibration testing apparatus according to claim 1. - 前記第1の連結手段の中間ステージが前記テーブル及び前記第1の動電型アクチュエータに対してスライド可能な二方向の一方は、該第2の方向であり、
前記第2の連結手段の中間ステージが前記テーブル及び前記第2の動電型アクチュエータに対してスライド可能な二方向の一方は、該第1の方向である、
ことを特徴とする請求項2に記載の動電型振動試験装置。 One of the two directions in which the intermediate stage of the first connecting means can slide with respect to the table and the first electrodynamic actuator is the second direction,
One of the two directions in which the intermediate stage of the second connecting means can slide with respect to the table and the second electrodynamic actuator is the first direction.
The electrodynamic vibration testing apparatus according to claim 2. - 前記テーブル及び中間ステージは、その一方に取り付けられたレール及びその他方に取り付けられ且つ該レールに係合するランナーブロックを有する第1のリニアガイド機構を有し、
前記動電型アクチュエータ及び中間ステージは、その一方に取り付けられたレール及びその他方に取り付けられ且つ該レールに係合するランナーブロックを有する第2のリニアガイド機構を有する
ことを特徴とする請求項2に記載の動電型振動試験装置。 The table and the intermediate stage have a first linear guide mechanism having a rail attached to one of them and a runner block attached to the other and engaging the rail;
3. The electrodynamic actuator and the intermediate stage have a second linear guide mechanism having a rail attached to one of them and a runner block attached to the other and engaged with the rail. The electrodynamic vibration test apparatus described in 1. - 前記第1及び第2のリニアガイド機構のランナーブロックが、
前記凹部において、前記ランナーブロックの移動方向に沿って形成された溝と、
前記ランナーブロックの内部に形成され、前記溝と閉回路を形成するように前記溝の前記移動方向両端と繋がっている退避路と、
前記閉回路を循環するとともに、前記溝に位置するときは前記レールと当接するようになっている複数のボールと、
を有することを特徴とする請求項4に記載の動電型振動試験装置。 Runner blocks of the first and second linear guide mechanisms are
In the recess, a groove formed along the direction of movement of the runner block;
A retreat path formed inside the runner block and connected to both ends of the groove in the moving direction so as to form a closed circuit with the groove;
A plurality of balls that circulate through the closed circuit and are adapted to contact the rail when positioned in the groove;
The electrodynamic vibration testing apparatus according to claim 4, wherein - 前記第1及び第2のリニアガイド機構のランナーブロックには前記閉回路が4つ形成されており、
前記4つの閉回路のうち2つの閉回路の溝の夫々に配置されたボールは前記ランナーブロックのラジアル方向に対して略±45度の接触角を有し、他の2つの閉回路の溝の夫々に配置されたボールは前記ランナーブロックの逆ラジアル方向に対して略±45度の接触角を有する
ことを特徴とする請求項5に記載の動電型振動試験装置。 Four closed circuits are formed in the runner blocks of the first and second linear guide mechanisms,
The balls arranged in each of the two closed circuit grooves of the four closed circuits have a contact angle of approximately ± 45 degrees with respect to the radial direction of the runner block, and the other two closed circuit grooves 6. The electrodynamic vibration testing apparatus according to claim 5, wherein each of the balls arranged has a contact angle of approximately ± 45 degrees with respect to the reverse radial direction of the runner block. - 前記第1及び第2のリニアガイド機構のランナーブロックは、
前記レールを囲む凹部と、
その円筒面が前記レールと前記凹部の間に挟み込まれるように配置される複数のローラと、
前記凹部に取り付けられ、前記ローラの軸方向両端をガイドして該ローラが前記ランナーブロックのスライド方向に転動する転動溝を形成するローラ保持部材と、
前記ランナーブロックの内部に形成され、前記転動溝と閉回路を形成するように前記転動溝の前記スライド方向両端と繋がっている退避路と、
を有し、
前記複数のローラは前記閉回路を循環するよう構成されている
ことを特徴とする請求項4に記載の動電型振動試験装置。 The runner blocks of the first and second linear guide mechanisms are:
A recess surrounding the rail;
A plurality of rollers arranged such that the cylindrical surface is sandwiched between the rail and the recess;
A roller holding member that is attached to the recess and guides both axial ends of the roller to form a rolling groove in which the roller rolls in the sliding direction of the runner block;
A retreat path formed inside the runner block and connected to both ends of the rolling groove in the sliding direction so as to form a closed circuit with the rolling groove;
Have
The electrodynamic vibration testing apparatus according to claim 4, wherein the plurality of rollers are configured to circulate through the closed circuit. - 前記ランナーブロックには前記閉回路が4つ形成されており、
前記4つの閉回路の夫々に配置された4列のローラは、その軸が、前記レールの軸に直交する面上において90°おきとなるよう配置されている
ことを特徴とする請求項7に記載の動電型振動試験装置。 The runner block has four closed circuits,
8. The four rows of rollers arranged in each of the four closed circuits are arranged so that their axes are every 90 ° on a plane orthogonal to the axis of the rail. The electrodynamic vibration test apparatus described. - 前記ローラの径は、前記転動溝における前記ランナーブロックと前記レールとの間隔より小さく、その差は1マイクロメートル以下であることを特徴とする請求項8に記載の振動試験装置。 The vibration test apparatus according to claim 8, wherein the diameter of the roller is smaller than a distance between the runner block and the rail in the rolling groove, and a difference thereof is 1 micrometer or less.
- 隣接する2つのローラの間には、該ローラ同士の接触を防止するためのリテーナが設けられていることを特徴とする請求項7に記載の動電型振動試験装置。 The electrodynamic vibration testing apparatus according to claim 7, wherein a retainer is provided between two adjacent rollers to prevent contact between the rollers.
- 前記リテーナが、前記ローラの円筒面と当接する円筒凹面を有することを特徴とする請求項10に記載の動電型振動試験装置。 The electrodynamic vibration testing apparatus according to claim 10, wherein the retainer has a cylindrical concave surface that comes into contact with the cylindrical surface of the roller.
- 前記レールは、その軸方向に沿って配列される複数の貫通孔を有し、
前記貫通孔の夫々にボルトを通して前記テーブル又は前記中間ステージに固定され、
前記ボルトの取り付け間隔は、前記レールの幅の50~80%である
ことを特徴とする請求項4に記載の動電型振動試験装置。 The rail has a plurality of through holes arranged along the axial direction thereof,
It is fixed to the table or the intermediate stage through a bolt in each of the through holes,
The electrodynamic vibration testing apparatus according to claim 4, wherein the bolt mounting interval is 50 to 80% of the width of the rail. - 前記ボルトの取り付け間隔は、前記レールの幅の60~70%であることを特徴とする請求項12に記載の動電型振動試験装置。 13. The electrodynamic vibration testing apparatus according to claim 12, wherein the mounting interval of the bolts is 60 to 70% of the width of the rail.
- 該第1及び第2の方向の双方に垂直な第3の方向に前記テーブルを加振可能な第3の動電型アクチュエータと、
前記テーブルを前記第3の動電型アクチュエータに対して第1及び第2の方向にスライド可能に連結する第3の連結手段と、
を有し、
前記第1及び第2の連結手段は、それぞれ前記テーブルを第1及び第2の動電型アクチュエータに対して第3の方向にスライド可能に連結する
ことを特徴とする請求項1に記載の動電型振動試験装置。 A third electrodynamic actuator capable of exciting the table in a third direction perpendicular to both the first and second directions;
Third connection means for slidably connecting the table to the third electrodynamic actuator in first and second directions;
Have
2. The motion according to claim 1, wherein the first and second connecting means connect the table slidably in a third direction with respect to the first and second electrodynamic actuators, respectively. Electric vibration test equipment. - 前記第3の連結手段は、前記第3の動電型アクチュエータと前記テーブルの間に配置された中間ステージを有し、
前記第3の連結手段の中間ステージは、該第3の方向に垂直な一方向のみに前記テーブルに対してスライド可能であり、且つ、該一方向と該第3の方向の双方に垂直な方向のみに前記第1の動電型アクチュエータに対してスライド可能である
ことを特徴とする請求項14に記載の動電型振動試験装置。 The third connecting means has an intermediate stage disposed between the third electrodynamic actuator and the table,
The intermediate stage of the third connecting means is slidable with respect to the table only in one direction perpendicular to the third direction, and a direction perpendicular to both the one direction and the third direction. The electrodynamic vibration test apparatus according to claim 14, wherein the electrodynamic vibration test apparatus is slidable with respect to the first electrodynamic actuator. - 前記第3の連結手段の中間ステージが前記テーブルに対してスライド可能な二方向は、該第1及び第2の方向であることを特徴とする請求項15に記載の動電型振動試験装置。 16. The electrodynamic vibration testing apparatus according to claim 15, wherein the two directions in which the intermediate stage of the third connecting means is slidable with respect to the table are the first and second directions.
- 前記第3の方向が上下方向であることを特徴とする請求項13に記載の動電型振動試験装置。 14. The electrodynamic vibration testing apparatus according to claim 13, wherein the third direction is a vertical direction.
- 前記第3の連結手段の中間ステージと前記第3の動電型アクチュエータとは、互いに平行に配置された複数のレールと、前記複数のレールの各々に係合する複数のランナーブロックを介して、スライド可能に連結されていることを特徴とする請求項17に記載の動電型振動試験装置。 The intermediate stage of the third connecting means and the third electrodynamic actuator include a plurality of rails arranged in parallel to each other, and a plurality of runner blocks that engage with each of the plurality of rails. The electrodynamic vibration test apparatus according to claim 17, wherein the electrodynamic vibration test apparatus is slidably connected.
- 前記テーブルと前記中間ステージとは、互いに平行に配置された複数のレールと、前記複数のレールの各々に係合する複数のランナーブロックを介して、スライド可能に連結されていることを特徴とする請求項17に記載に記載の動電型振動試験装置。 The table and the intermediate stage are slidably connected to each other via a plurality of rails arranged in parallel to each other and a plurality of runner blocks engaged with each of the plurality of rails. The electrodynamic vibration test apparatus according to claim 17.
- 前記第3の動電型アクチュエータは、複数の中間ステージを有することを特徴とする請求項17に記載の動電型振動試験装置。 The electrodynamic vibration testing apparatus according to claim 17, wherein the third electrodynamic actuator includes a plurality of intermediate stages.
- 前記動電型アクチュエータは、磁性材料によって形成された筒状の固定部と、該固定部の中空内に固定部の軸方向に移動可能に挿入される可動部とから成り、
該固定部の内部には固定コイルが設けられ、
前記可動部には可動コイルが設けられ、
前記固定コイルに直流電流を流すと、可動コイルの半径方向に磁界が発生し、この状態で可動コイルに電流を流すと、前記軸方向にローレンツ力が発生し、これによって前記テーブルを第1、第2或いは第3の方向にスライドさせる駆動力とする
ことを特徴とする請求項1に記載の動電型振動試験装置。 The electrodynamic actuator includes a cylindrical fixed portion formed of a magnetic material, and a movable portion that is inserted into the hollow of the fixed portion so as to be movable in the axial direction of the fixed portion.
A fixed coil is provided inside the fixed part,
The movable part is provided with a movable coil,
When a direct current is passed through the fixed coil, a magnetic field is generated in the radial direction of the movable coil. When a current is passed through the movable coil in this state, a Lorentz force is generated in the axial direction, thereby causing the table to be first, The electrodynamic vibration testing apparatus according to claim 1, wherein the driving force is a sliding force in a second or third direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098113448A TW200944774A (en) | 2008-04-25 | 2009-04-23 | Electrodynamic vibration test equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-116436 | 2008-04-25 | ||
JP2008116436 | 2008-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009130953A1 true WO2009130953A1 (en) | 2009-10-29 |
Family
ID=41216694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/054616 WO2009130953A1 (en) | 2008-04-25 | 2009-03-11 | Electrodynamic vibration test equipment |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200944774A (en) |
WO (1) | WO2009130953A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0487386A (en) * | 1990-07-31 | 1992-03-19 | Toshiba Corp | Pulse dye laser system |
WO2012147607A1 (en) | 2011-04-26 | 2012-11-01 | 国際計測器株式会社 | Electrodynamic actuator and electrodynamic excitation device |
CN104406608A (en) * | 2014-11-28 | 2015-03-11 | 陕西宝成航空仪表有限责任公司 | Vibration table for static balance of gyroscope |
CN105115521A (en) * | 2015-08-31 | 2015-12-02 | 芜湖宏景电子股份有限公司 | Automobile navigation module vibration testing device |
WO2016017744A1 (en) * | 2014-07-30 | 2016-02-04 | 国際計測器株式会社 | Vibration-applying device, electrodynamic actuator, crossed guideway, linear guideway, and vibrating table |
JP2016035471A (en) * | 2011-04-26 | 2016-03-17 | 国際計測器株式会社 | Electrodynamic actuator and electrodynamic excitation device |
CN106289696A (en) * | 2016-10-10 | 2017-01-04 | 镇江高等职业技术学校 | Three translational vibration platforms based on parallel institution |
JP2018009982A (en) * | 2016-06-30 | 2018-01-18 | 国際計測器株式会社 | Vibration device |
US11898944B2 (en) | 2016-01-15 | 2024-02-13 | Kokusai Keisokuki Kabushiki Kaisha | Oscillation device with a vibrating table that houses an oscillated object |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI480122B (en) * | 2012-07-13 | 2015-04-11 | Univ Nat Kaohsiung Applied Sci | A machine tool's vibrating deck |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03277810A (en) * | 1990-03-23 | 1991-12-09 | Nippon Seiko Kk | Impact resistant linear guide device |
JP2001108570A (en) * | 1999-10-07 | 2001-04-20 | Sanesu:Kk | Triaxial vibration testing apparatus |
JP2006234032A (en) * | 2005-02-23 | 2006-09-07 | Nsk Ltd | Linear guide bearing device |
-
2009
- 2009-03-11 WO PCT/JP2009/054616 patent/WO2009130953A1/en active Application Filing
- 2009-04-23 TW TW098113448A patent/TW200944774A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03277810A (en) * | 1990-03-23 | 1991-12-09 | Nippon Seiko Kk | Impact resistant linear guide device |
JP2001108570A (en) * | 1999-10-07 | 2001-04-20 | Sanesu:Kk | Triaxial vibration testing apparatus |
JP2006234032A (en) * | 2005-02-23 | 2006-09-07 | Nsk Ltd | Linear guide bearing device |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0487386A (en) * | 1990-07-31 | 1992-03-19 | Toshiba Corp | Pulse dye laser system |
US11824416B2 (en) | 2011-04-26 | 2023-11-21 | Kokusai Keisokuki Kabushiki Kaisha | Electrodynamic actuator and electrodynamic excitation device |
EP2713487A4 (en) * | 2011-04-26 | 2016-03-16 | Kokusai Keisokuki Kk | Electrodynamic actuator and electrodynamic excitation device |
US20140049122A1 (en) * | 2011-04-26 | 2014-02-20 | Kokusai Keisokuki Kabushiki Kaisha | Electrodynamic actuator and electrodynamic excitation device |
KR20140028024A (en) | 2011-04-26 | 2014-03-07 | 고쿠사이 게이소쿠키 가부시키가이샤 | Electrodynamic actuator and electrodynamic excitation device |
US20240055968A1 (en) * | 2011-04-26 | 2024-02-15 | Kokusai Keisokuki Kabushiki Kaisha | Electrodynamic Actuator and Electrodynamic Excitation Device |
EP3624316A1 (en) | 2011-04-26 | 2020-03-18 | Kokusai Keisokuki Kabushiki Kaisha | Electrodynamic actuator and electrodynamic excitation device |
EP4191846A1 (en) | 2011-04-26 | 2023-06-07 | Kokusai Keisokuki Kabushiki Kaisha | Electrodynamic actuator and electrodynamic excitation device |
JP2012237736A (en) * | 2011-04-26 | 2012-12-06 | Kokusai Keisokki Kk | Electrodynamic actuator and electrodynamic exciter |
JP2016035471A (en) * | 2011-04-26 | 2016-03-17 | 国際計測器株式会社 | Electrodynamic actuator and electrodynamic excitation device |
US11289991B2 (en) | 2011-04-26 | 2022-03-29 | Kokusai Keisokuki Kabushiki Kaisha | Electrodynamic actuator and electrodynamic excitation device with movable part support mechanism and fixed part support mechanism |
WO2012147607A1 (en) | 2011-04-26 | 2012-11-01 | 国際計測器株式会社 | Electrodynamic actuator and electrodynamic excitation device |
KR102266234B1 (en) | 2011-04-26 | 2021-06-17 | 고쿠사이 게이소쿠키 가부시키가이샤 | Electrodynamic actuator and excitation device |
KR20200135546A (en) | 2011-04-26 | 2020-12-02 | 고쿠사이 게이소쿠키 가부시키가이샤 | Electrodynamic actuator and excitation device |
KR102181674B1 (en) * | 2011-04-26 | 2020-11-23 | 고쿠사이 게이소쿠키 가부시키가이샤 | Electrodynamic actuator and electrodynamic excitation device |
KR20170036050A (en) * | 2014-07-30 | 2017-03-31 | 고쿠사이 게이소쿠키 가부시키가이샤 | Vibration-applying device, electrodynamic actuator, crossed guideway, linear guideway, and vibrating table |
KR20220011778A (en) * | 2014-07-30 | 2022-01-28 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
JP2018185340A (en) * | 2014-07-30 | 2018-11-22 | 国際計測器株式会社 | Vibration device and electrodynamic actuator |
JP2018205322A (en) * | 2014-07-30 | 2018-12-27 | 国際計測器株式会社 | Vibration device |
US10281356B2 (en) | 2014-07-30 | 2019-05-07 | Kokusai Keisokuki Kabushiki Kaisha | Oscillating device, electrodynamic actuator, cross guideway, linear guideway and vibrating table |
US10436670B2 (en) | 2014-07-30 | 2019-10-08 | Kokusai Keisokuki Kabushiki Kaisha | Oscillating device, electrodynamic actuator, cross guideway, linear guideway and vibrating table |
CN110530591A (en) * | 2014-07-30 | 2019-12-03 | 国际计测器株式会社 | Power type actuator, exciting device, actuator and its fixed part supporting device |
EP3176562A4 (en) * | 2014-07-30 | 2018-05-23 | Kokusai Keisokuki Kabushiki Kaisha | Vibration-applying device, electrodynamic actuator, crossed guideway, linear guideway, and vibrating table |
KR20200071779A (en) * | 2014-07-30 | 2020-06-19 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
KR102595796B1 (en) * | 2014-07-30 | 2023-10-30 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
WO2016017744A1 (en) * | 2014-07-30 | 2016-02-04 | 国際計測器株式会社 | Vibration-applying device, electrodynamic actuator, crossed guideway, linear guideway, and vibrating table |
EP3760998A1 (en) * | 2014-07-30 | 2021-01-06 | Kokusai Keisokuki Kabushiki Kaisha | Oscillating device to couple a vibrating table with a z-axis oscillating unit |
JPWO2016017744A1 (en) * | 2014-07-30 | 2017-06-22 | 国際計測器株式会社 | Vibrating device, electrodynamic actuator, cross guide way, linear guide way and vibration table |
CN110530591B (en) * | 2014-07-30 | 2021-12-10 | 国际计测器株式会社 | Electric actuator, vibration exciting device, actuator and fixing part supporting mechanism thereof |
KR102350411B1 (en) * | 2014-07-30 | 2022-01-14 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
JP2018185341A (en) * | 2014-07-30 | 2018-11-22 | 国際計測器株式会社 | Vibration device, actuator, and fixing part supporting mechanism of actuator |
KR102357171B1 (en) | 2014-07-30 | 2022-02-08 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
KR20230022306A (en) * | 2014-07-30 | 2023-02-14 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
EP4036548A1 (en) * | 2014-07-30 | 2022-08-03 | Kokusai Keisokuki Kabushiki Kaisha | Oscillating device to couple a vibrating table with a z-axis oscillating unit |
KR102498200B1 (en) * | 2014-07-30 | 2023-02-09 | 고쿠사이 게이소쿠키 가부시키가이샤 | Oscillating device |
CN104406608B (en) * | 2014-11-28 | 2017-10-20 | 陕西宝成航空仪表有限责任公司 | Gyro static balance shake table |
CN104406608A (en) * | 2014-11-28 | 2015-03-11 | 陕西宝成航空仪表有限责任公司 | Vibration table for static balance of gyroscope |
CN105115521A (en) * | 2015-08-31 | 2015-12-02 | 芜湖宏景电子股份有限公司 | Automobile navigation module vibration testing device |
US11898944B2 (en) | 2016-01-15 | 2024-02-13 | Kokusai Keisokuki Kabushiki Kaisha | Oscillation device with a vibrating table that houses an oscillated object |
JP2022163199A (en) * | 2016-06-30 | 2022-10-25 | 国際計測器株式会社 | Vibration device |
JP7130221B2 (en) | 2016-06-30 | 2022-09-05 | 国際計測器株式会社 | Vibrator |
JP7333981B2 (en) | 2016-06-30 | 2023-08-28 | 国際計測器株式会社 | Vibrator |
JP2018009982A (en) * | 2016-06-30 | 2018-01-18 | 国際計測器株式会社 | Vibration device |
CN106289696A (en) * | 2016-10-10 | 2017-01-04 | 镇江高等职业技术学校 | Three translational vibration platforms based on parallel institution |
Also Published As
Publication number | Publication date |
---|---|
TW200944774A (en) | 2009-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009130953A1 (en) | Electrodynamic vibration test equipment | |
JP5913910B2 (en) | Linear motion actuator and vibration device | |
JP4818436B2 (en) | Excitation test equipment | |
JP6329362B2 (en) | Electrodynamic mode test impactor system and method | |
WO2009130818A1 (en) | Electrodynamic vibration testing system | |
JP6971831B2 (en) | Vibration tester | |
KR20100133955A (en) | Vibration testing device | |
JP2019035705A (en) | Impact-testing apparatus | |
JP2007295702A (en) | Linear motor, and stage drive device | |
JP2008311313A (en) | Semiconductor testing device | |
JP2020020817A (en) | Impact testing device | |
US10753438B2 (en) | Lifting drive device and measuring machine using the same | |
JP2006269509A (en) | Positioning device | |
JP4717466B2 (en) | Transfer device {TRANSFERAPPARATUS} | |
KR102009333B1 (en) | A Stage Device | |
JP7382065B2 (en) | Vibration test equipment | |
US11846609B2 (en) | Electric actuator | |
JP6416971B2 (en) | Electrodynamic actuator and electrodynamic excitation device | |
JPH1010025A (en) | Two-shaft type material testing machine | |
JP7277868B2 (en) | Linear actuator and XY table | |
JP2006283892A (en) | Table device | |
JP2011258805A (en) | Head positioning device and component mounting device | |
JPH11281554A (en) | Material testing machine | |
JP2023158705A (en) | Suspension element component evaluation apparatus | |
KR100708254B1 (en) | Bobbin support structure of actuator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09735358 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09735358 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |