WO2009126013A1 - Use of municipal and industrial effluents in desalination by dialysis - Google Patents

Use of municipal and industrial effluents in desalination by dialysis Download PDF

Info

Publication number
WO2009126013A1
WO2009126013A1 PCT/MA2009/000007 MA2009000007W WO2009126013A1 WO 2009126013 A1 WO2009126013 A1 WO 2009126013A1 MA 2009000007 W MA2009000007 W MA 2009000007W WO 2009126013 A1 WO2009126013 A1 WO 2009126013A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
effluents
desalination
desalinated
dialysis
Prior art date
Application number
PCT/MA2009/000007
Other languages
French (fr)
Other versions
WO2009126013A4 (en
Inventor
Mohamed Draoui
Original Assignee
Mohamed Draoui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mohamed Draoui filed Critical Mohamed Draoui
Publication of WO2009126013A1 publication Critical patent/WO2009126013A1/en
Publication of WO2009126013A4 publication Critical patent/WO2009126013A4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • B01D61/244Dialysis comprising multiple dialysis steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention has for a desalination process of seawater and brackish water, for the production of freshwater for domestic use (drinking water), agricultural or industrial.
  • thermomechanical processes including steam thermo-compression
  • Figure 1 illustrates the principle of the method. It consists of a set of dialysis cells 1, 2, .... n, arranged in series.
  • Pt1 possible pre-treatment of the water to be desalinated, for the elimination of colloidal materials, in particular.
  • Pt2 pretreatment of the effluents to adapt them to the ion exchange through the dialysis membranes, in particular to prevent the clogging of these membranes;
  • TF final treatment of fresh water produced, depending on the intended use.
  • Eo condictivimeter to measure the salinity of the effluents, at the entrance of the system.
  • Ei, E 2 , - In condictivimeters measuring the salinity of the effluents, at the exit of the cells.
  • Vi 1 V 2 , ... V n motorized valves controlling the flow at the entrance of the cells.
  • b fresh water outlet
  • c arrival of effluents
  • d output of effluents loaded with salt.
  • p water supply pump to be desalinated
  • Each cell consists of a dialysis membrane permeable to Na + and Cl- ions and impermeable to water and other ions.
  • the water to be desalinated and the effluents circulate against the current.
  • the contact between the two liquids through the membrane involves a NaCl concentration gradient which causes the diffusion of Na + and cl- ions in the least concentrated solution, the effluents, and thus allows the desalination of the water.
  • the water to be desalinated drops the dissolved salt in successive fractions, until fresh water is obtained at the outlet.
  • the effluents are charged in NaCL, as and when they progress.
  • Figure 1 indicates the principle of one of the possible solutions industrially, namely the control of salinity at the output of the cells, in order to have a stable salt level at each level. cell.
  • the output flow rate of the cell (i-1) is divided into two parts: A fraction is directed on the cell i to continue the exchange with the effluents;
  • the recycled flow rate at the outlet of the cell (M) is such that the salinity of the water at the outlet of the cell i is equal to the set value.
  • the motorized valve Vj at the entrance of the cell i is slaved to the conductivity meter Si which measures the salinity of the water to be desalted at the outlet of this cell.
  • the opening rate of the valve Vj will be adjusted according to the salinity measured to reduce this salinity to the set value.
  • the set values are set at the outlet of the cells, by degressive salinity in the direction of flow of the water to be desalinated.
  • the motorized valves make it possible to regulate the exchange rate in the cells and consequently the recycled flow rate at the level of each cell.
  • the water collected gradually in the recycle collector CR is returned to the inlet of the system to be mixed with the water to be desalinated, upstream of the cell No. 1.
  • S m 2 is the salinity of the water. water at the entrance of the cell 1, after mixing between the water to be desalinated, of salinity So and the recycled water, of salinity Sm1.
  • the fresh water obtained at the end of the process, at the exit of the cell n, is the subject of a final treatment, depending on the intended use.
  • a final treatment depending on the intended use.
  • it may be for example reverse osmosis, remineralization and disinfection.
  • VARIANTS dialysis membranes: they are impermeable to water and permeable to Na + and cl- ions.
  • the membranes can be selected with permeabilities extended to other ions, in addition to Na + and cl-, depending on the nature and composition of the effluents and depending on the quality of fresh water to be obtained, which will depend on the use considered: drinking water, agricultural use, industrial application.
  • Process control The salinity control of the water to be desalinated throughout the process, as shown in Figure 1, is an example of what can be done to control the process. It should be noted that in this In this case, the flow rate of freshwater produced varies during the process, depending on the composition of the effluents at the inlet. Other ways of conducting the process can be envisaged with other on-line control and measurement devices. • Due to the necessary pretreatment of the effluents, the process can be used in urban and industrial effluent treatment processes. It can therefore be fully integrated into the treatment plants.
  • the method, object of the invention involves effluents and does not involve any direct supply of electrical energy. It is a desalination process of sea water and brackish water consisting of dialysis cells arranged in series, using urban and industrial effluents as an outlet.
  • the electrical power consumption is that caused by ancillary equipment, such as the water supply pumps to be desalinated; and these consumption are relatively low.
  • the effluents can be mobilized at a lower cost, the present process makes use of the availability of urban and industrial effluents to carry out desalination of seawater and brackish water by simple dialysis, using the NaCL concentration gradient that exists. between the effluents and the water to be desalted, it therefore appears that the cost of the m3 of desalinated water by means of this process is far lower than the costs known until then, in particular by the reverse osmosis technique .
  • dialysis cell serialization The purpose of dialysis cell serialization is to refine desalination, a module will contain more or less cells in stages, depending on the degree of desalination desired. Moreover, the arrangement of these modules in parallel increases the flow of fresh water output.
  • An industrial installation comprises several modules in parallel, each module containing a number of cells arranged in series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

The process uses the NaCl concentration gradient that exists between the municipal and industrial effluents and the water to be desalinated (sea water, brackish water) in order to carry out the desalination by simple dialysis. It is composed of a set of cells 1, 2,..., n, arranged in series. Each cell is composed of a dialysis membrane that is permeable to Na+ and Cl- ions. The water to be desalinated and the effluents flow countercurrent to one another. In each cell, the contact between the two liquids through the membrane involves an NaCl concentration gradient that gives rise to the diffusion of the Na+ and Cl- ions into the less concentrated solution, the effluents, and thus enables the desalination of the water. During the process, the water to be desalinated releases the dissolved salt in successive fractions, until fresh water is obtained at the outlet. The effluents are loaded with NaCl as they advance.

Description

UTILISATION D1EFFLUENTS URBAINS ET INDUSTRIELS EN DESSALEMENT PAR DIALYSEUSE OF WASTE 1 URBAN AND INDUSTRIAL DESALINATION BY DIALYSIS
La présente invention a pour un procédé de dessalement d'eau de mer et d'eau saumâtre, pour la production d'eau douce à usage domestique (eau potable), agricole ou industriel.The present invention has for a desalination process of seawater and brackish water, for the production of freshwater for domestic use (drinking water), agricultural or industrial.
CIRCONSTANCES ET ETAT DE LA TECHNIQUE ACTUELS • Les ressources en eau douce, souterraines et de surface, sont devenues insuffisantes dans bien des régions à travers le monde et font craindre une pénurie dans un proche avenir. De ce point de vue, le dessalement d'eau de mer et d'eau saumâtre constitue une approche stratégique capable de répondre aux besoins sans cesse croissants en eau potable.CURRENT CIRCUMSTANCES AND STATE OF THE ART • Freshwater, groundwater and surface water resources have become inadequate in many parts of the world, raising fears of a shortage in the near future. From this point of view, desalination of seawater and brackish water is a strategic approach to meet the ever-increasing needs for safe drinking water.
Les techniques mises en œuvre aujourd'hui pour le dessalement d'eau saumâtre et d'eau de mer sont multiples et variées. On peut en citer les plus courantes :The techniques implemented today for the desalination of brackish water and seawater are many and varied. We can cite the most common ones:
• les procédés de séparation membranaire, dont l'électrodialyse, l'osmose inverse ;• Membrane separation processes, including electrodialysis, reverse osmosis;
• les procédés thermo-mécaniques, dont la thermo-compression par vapeur ;• thermomechanical processes, including steam thermo-compression;
• les procédés thermiques, dont la distillation, la congélation.• thermal processes, including distillation, freezing.
L'inconvénient majeur de ces techniques est leur caractère énergivore ; elles sont grandes consommatrices d'énergie. Dans le domaine de l'eau de mer, l'osmose inverse qui a tendance aujourd'hui à prendre le pas sur les autres procédés, nécessite malgré tout, la mise en œuvre d'une puissance électrique importante, en dépit des améliorations apportées en termes de récupération d'énergie sur le rétentat. Dans l'état actuel de la technique, il ne faut pas moins de 2 kwh par m3 d'eau douce produite, pour effectuer le dessalement par osmose inverse d'une eau de mer de salinité 35 g/1. ce ration reste encore élevé par rapport au coût énergétique de production d'eau potable, au moyen des procédés conventionnels de traitement d'eau douce. • Par ailleurs, les eaux de rejet que sont les eaux usées, eaux pluviales et eaux industrielles, ont l'avantage d'être disponibles dans les agglomération, à coût presque nul. En l'absence de ressources de meilleure qualité, la réutilisation des eaux de rejet constitue une alternative.The major drawback of these techniques is their energy-consuming nature; they are big consumers of energy. In the field of seawater, reverse osmosis, which today tends to take precedence over other processes, still requires the implementation of significant electrical power, despite the improvements made in seawater. terms of energy recovery on the retentate. In the current state of the art, no less than 2 kwh per cubic meter of fresh water is required for reverse osmosis desalination of 35 g / 1 saline seawater. this ration is still high compared to the energy cost of producing drinking water, using conventional freshwater treatment processes. • On the other hand, the wastewaters of wastewater, rainwater and industrial water have the advantage of being available in built-up areas at almost no cost. In the absence of better quality resources, the reuse of wastewater is an alternative.
- i - • Cette alternative est d'autant plus envisageable que le traitement des effluents avant rejet est devenu indispensable pour la protection de la santé de l'environnement, compte-tenu de l'expansion des agglomérations et du développement industriel. • Cependant, mis à part quelques applications industrielles (eaux de chaudière, circuits de refroidissement , entr'autres), les possibilités de réutilisation des eaux de rejet traitées restent toutefois limitées, en raison des risques d'ingestion par l'homme. Le recyclage en milieu urbain (arrosage des parcs, réutilisation en immeubles), la réalimentation des nappes ou l'irrigation de certaines cultures, comportent des risques réels de contamination par des agents pathogènes.- i - • This alternative is all the more feasible since the treatment of effluents before discharge has become essential for the protection of the health of the environment, given the expansion of agglomerations and industrial development. • However, apart from a few industrial applications (boiler water, cooling circuits, among others), the possibilities of reusing treated wastewater are still limited, because of the risk of ingestion by humans. Recycling in urban areas (watering parks, reuse in buildings), the recharge of aquifers or the irrigation of certain crops, entails real risks of contamination by pathogens.
• En tout état de cause, la réutilisation des eaux de rejet traitées ne répond pas directement aux besoins des populations en eau potable. OBJET DE L'INVENTION - Fig. 1 , planche 1/2• In any case, the reuse of treated wastewater does not directly meet the drinking water needs of the population. OBJECT OF THE INVENTION - FIG. 1, plate 1/2
Le présent procédé de dessalement d'eau de mer et d'eau saumâtre se base sur l'utilisation des eaux de rejet. Par eaux de rejet nous entendons :The present process of desalination of seawater and brackish water is based on the use of waste water. By waters of rejection we mean:
• les effluents urbains que sont les eaux usées et les eaux pluviales ;• urban effluents, which are wastewater and rainwater;
• les effluents industriels. Par la suite, nous désignerons par effluents urbains et industriels, ou simplement "effluents", l'ensemble de ces eaux de rejet.• industrial effluents. Subsequently, we will designate by urban and industrial effluents, or simply "effluents", all of these waste waters.
Le procédé utilise le gradient de concentration en NaCL qui existe entre les effluents urbains et industriels d'une part et l'eau à dessaler d'autre part (eau de mer, eau saumâtre), pour effectuer le dessalement par dialyse simple. La figure 1 illustre le principe du procédé. Il se compose d'un ensemble de cellules de dialyse 1, 2, .... n, disposées en série.The process uses the NaCL concentration gradient that exists between the urban and industrial effluents on the one hand and the water to be desalinated on the other hand (seawater, brackish water), to carry out desalination by simple dialysis. Figure 1 illustrates the principle of the method. It consists of a set of dialysis cells 1, 2, .... n, arranged in series.
En référence à ce dessin, les autres éléments d'installation sont : Pt1 : pré traitement éventuel de l'eau à dessaler, pour l'élimination des matières colloïdales, notamment. Pt2 : prétraitement des effluents pour les adapter à l'échange ionique à travers les membranes de dialyse, afin d'éviter notamment, le colmatage de ces membranes ; TF : traitement final de l'eau douce produite, en fonction de l'usage envisagé.With reference to this drawing, the other elements of installation are: Pt1: possible pre-treatment of the water to be desalinated, for the elimination of colloidal materials, in particular. Pt2: pretreatment of the effluents to adapt them to the ion exchange through the dialysis membranes, in particular to prevent the clogging of these membranes; TF: final treatment of fresh water produced, depending on the intended use.
50, Smi. Sm2 : conductivimètres pour mesure de la salinité à l'entrée du système50, Smi. S m 2: conductivity meters for measuring salinity at the system inlet
51, S2 ...Sn : conductivimètres mesurant la salinité de l'eau à dessaler, en sortie des cellules.5 1 , S 2 ... S n : conductivimeters measuring the salinity of the water to be desalinated at the outlet of the cells.
Eo : condictivimètre pour mesurer la salinité des effluents, à l'entrée du système. Ei, E2, - En : condictivimètres mesurant la salinité des effluents, en sortie des cellules. Vi1V2, ... Vn : vannes motorisées commandant le débit à l'entrée des cellules. a : arrivée d'eu à dessaler (eau de mer, eau saumâtre) b : sortie eau douce c : arrivée des effluents d : sortie des effluents chargés en sel. p : pompe d'alimentation en eau à dessalerEo: condictivimeter to measure the salinity of the effluents, at the entrance of the system. Ei, E 2 , - In: condictivimeters measuring the salinity of the effluents, at the exit of the cells. Vi 1 V 2 , ... V n : motorized valves controlling the flow at the entrance of the cells. a: arrival of desalination (sea water, brackish water) b: fresh water outlet c: arrival of effluents d: output of effluents loaded with salt. p: water supply pump to be desalinated
CR : collecteur de recyclageCR: recycling collector
Chaque cellule est constituée d'une membrane de dialyse perméable aux ions Na+ et Cl- et imperméable à l'eau et aux autres ions. L'eau à dessaler et les effluents circulent à contre-courant. Dans chaque cellule, le contact entre les deux liquides à travers la membrane, met en jeu un gradient de concentration en NaCL qui provoque la diffusion des ions Na+ et cl- dans la solution la moins concentrée, les effluents, et permet ainsi le dessalement de l'eau.Each cell consists of a dialysis membrane permeable to Na + and Cl- ions and impermeable to water and other ions. The water to be desalinated and the effluents circulate against the current. In each cell, the contact between the two liquids through the membrane, involves a NaCl concentration gradient which causes the diffusion of Na + and cl- ions in the least concentrated solution, the effluents, and thus allows the desalination of the water.
Durant le processus, l'eau à dessaler largue le sel dissout par fractions successives, jusqu'à obtention de l'eau douce en sortie. Les effluents se chargent en NaCL, au fur et à mesure de leur progression.During the process, the water to be desalinated drops the dissolved salt in successive fractions, until fresh water is obtained at the outlet. The effluents are charged in NaCL, as and when they progress.
En ce qui concerne la maîtrise du processus de dessalement, la figure 1 indique le principe d'une des solutions possibles industriellement, à savoir le contrôle de salinité en sortie des cellules, en vue d'avoir un taux de sel stable au niveau de chaque cellule.Regarding the control of the desalination process, Figure 1 indicates the principle of one of the possible solutions industrially, namely the control of salinity at the output of the cells, in order to have a stable salt level at each level. cell.
Une manière simple d'y parvenir consiste à procéder comme suit.An easy way to do this is to do the following.
Le débit des effluents reste constant tout au long du procédé. Du côté eau à dessaler, le débit en sortie de la cellule (i-1) se divise en deux parties : • une fraction est dirigée sur la cellule i pour continuer l'échange avec les effluents ;The effluent flow rate remains constant throughout the process. On the water side to be desalinated, the output flow rate of the cell (i-1) is divided into two parts: A fraction is directed on the cell i to continue the exchange with the effluents;
• le reste est renvoyé sur le collecteur de recyclage CR.• the rest is returned to the CR recycling collector.
Le débit recyclé en sortie de la cellule (M) est tel que la salinité de l'eau en sortie de la cellule i soit égale à la valeur de consigne. Pour ce faire, la vanne motorisée Vj à l'entrée de la cellule i est asservie au conductivimètre Si qui mesure la salinité de l'eau à dessaler en sortie de cette cellule. Ainsi, le taux d'ouverture de la vanne Vj sera ajusté en fonction de la salinité mesurée pour ramener cette salinité à la valeur de consigne. Les valeurs de consigne sont fixées en sortie des cellules, par salinité dégressive dans le sens de l'écoulement de l'eau à dessaler.The recycled flow rate at the outlet of the cell (M) is such that the salinity of the water at the outlet of the cell i is equal to the set value. To do this, the motorized valve Vj at the entrance of the cell i is slaved to the conductivity meter Si which measures the salinity of the water to be desalted at the outlet of this cell. Thus, the opening rate of the valve Vj will be adjusted according to the salinity measured to reduce this salinity to the set value. The set values are set at the outlet of the cells, by degressive salinity in the direction of flow of the water to be desalinated.
Les vannes motorisées permettent de régler le débit d'échange dans les cellules et par conséquent, le débit recyclé au niveau de chaque cellule. L'eau recueillie au fur et à mesure dans le collecteur de recyclage CR est renvoyée à l'entrée du système pour être mélangée à l'eau à dessaler, en amont de la cellule n° 1. Sm2 est la salinité de l'eau à l'entrée de la cellule 1, après mélange entre l'eau à dessaler, de salinité So et l'eau recyclée, de salinité Sm1.The motorized valves make it possible to regulate the exchange rate in the cells and consequently the recycled flow rate at the level of each cell. The water collected gradually in the recycle collector CR is returned to the inlet of the system to be mixed with the water to be desalinated, upstream of the cell No. 1. S m 2 is the salinity of the water. water at the entrance of the cell 1, after mixing between the water to be desalinated, of salinity So and the recycled water, of salinity Sm1.
L'eau douce obtenue en fin de procédé, à la sortie de Ia cellule n, fait l'objet d'un traitement final, fonction de l'utilisation envisagée. Pour de l'eau potable, il peut s'agir par exemple d'osmose inverse, reminéralisation et désinfection.The fresh water obtained at the end of the process, at the exit of the cell n, is the subject of a final treatment, depending on the intended use. For drinking water, it may be for example reverse osmosis, remineralization and disinfection.
Concernant les effluents, ceux-ci doivent obligatoirement subir un pré traitement en début de procédé, à l'entrée de la cellule n, afin de prévenir le risque de colmatage des membranes de dialyse.Concerning the effluents, these must obligatorily undergo a pre-treatment at the beginning of the process, at the entrance of the cell n, in order to prevent the risk of clogging of the dialysis membranes.
VARIANTES • membranes de dialyse : elles sont imperméables à l'eau et perméables aux ions Na+ et cl- . Les membranes peuvent être choisies avec des perméabilités étendues à d'autres ions, en plus de Na+ et cl-, suivant la nature et la composition des effluents et en fonction de la qualité d'eau douce à obtenir, laquelle dépendra de l'utilisation envisagée : eau potable, usage agricole, application industrielle.VARIANTS • dialysis membranes: they are impermeable to water and permeable to Na + and cl- ions. The membranes can be selected with permeabilities extended to other ions, in addition to Na + and cl-, depending on the nature and composition of the effluents and depending on the quality of fresh water to be obtained, which will depend on the use considered: drinking water, agricultural use, industrial application.
• conduite du process : Le contrôle de salinité de l'eau à dessaler tout au long du processus, comme illustré par ia figure 1 , constitue un exemple de ce qui peut être fait pour maîtriser le procédé. Il y a lieu de noter que dans ce cas, le débit d'eau douce produite varie en cours de processus, en fonction de la composition des effluents à l'entrée. On peut envisager d'autres manières de conduire le procédé, avec d'autres appareils de commande et de mesure en ligne. • En raison du pré traitement nécessaire des effluents, le procédé peut s'insérer dans les process d'épuration d'effluents urbains et industriels. Il peut donc être entièrement intégré aux stations d'épuration.• Process control: The salinity control of the water to be desalinated throughout the process, as shown in Figure 1, is an example of what can be done to control the process. It should be noted that in this In this case, the flow rate of freshwater produced varies during the process, depending on the composition of the effluents at the inlet. Other ways of conducting the process can be envisaged with other on-line control and measurement devices. • Due to the necessary pretreatment of the effluents, the process can be used in urban and industrial effluent treatment processes. It can therefore be fully integrated into the treatment plants.
AVANTAGE DU PROCEDE Le procédé, objet de l'invention, fait intervenir des effluents et ne fait appel à aucun apport direct d'énergie électrique. Il s'agit d'un procédé de dessalement d'eau de mer et d'eau saumâtre constitué de cellules de dialyse disposées en série, utilisant les effluents urbains et industriels comme exutoire. Les consommations de puissance électrique sont celles occasionnées par les équipements auxiliaires, comme les pompes d'alimentation en eau à dessaler; et ces consommation sont relativement faibles. Les effluents pouvant être mobilisé à moindres coûts, le présent procédé met à profit la disponibilité des effluents urbains et industriels pour effectuer le dessalement d'eau de mer et d'eau saumâtre par dialyse simple, en utilisant le gradient de concentration en NaCL qui existe entre les effluents et l'eau à dessaler, il apparaît dès lors, que le coût du m3 d'eau dessalée au moyen de ce procédé, est de loin inférieur aux coûts connus jusqu'à alors, notamment par la technique d'osmose inverse.ADVANTAGE OF THE PROCESS The method, object of the invention, involves effluents and does not involve any direct supply of electrical energy. It is a desalination process of sea water and brackish water consisting of dialysis cells arranged in series, using urban and industrial effluents as an outlet. The electrical power consumption is that caused by ancillary equipment, such as the water supply pumps to be desalinated; and these consumption are relatively low. Since the effluents can be mobilized at a lower cost, the present process makes use of the availability of urban and industrial effluents to carry out desalination of seawater and brackish water by simple dialysis, using the NaCL concentration gradient that exists. between the effluents and the water to be desalted, it therefore appears that the cost of the m3 of desalinated water by means of this process is far lower than the costs known until then, in particular by the reverse osmosis technique .
MISE EN ŒUVRE PARTICULIERE DU PROCEDE - Fig.2, planche 2/2. Une mise en œuvre particulière du procédé fait l'objet de la figure 2. En référence à ce dessin, nous avons :1 ,2,3,4 : les cellules de dialyse a : arrivée d'eau de mer b : sortie eau adoucie c : arrivée d'effluents urbains (eaux usées + eaux pluviales) d : sortie des effluents chargés en sel p : pompe d'alimentation en eau de mer CR : collecteur de recyclagePARTICULAR IMPLEMENTATION OF THE PROCESS - Fig.2, plate 2/2. A particular implementation of the process is the subject of FIG. 2. With reference to this drawing, we have: 1, 2,3,4: the dialysis cells a: arrival of sea water b: softened water outlet c: arrival of urban effluents (wastewater + rainwater) d: discharge of effluents loaded with salt p: seawater supply pump CR: recycling collector
Pt : pré traitement des effluents, avec élimination des matières colloïdales notamment. ® Conductivimètres sur l'eau de mer :Pt: pre-treatment of effluents, with elimination of colloidal materials in particular. ® Conductivity meters on seawater:
•» SO = 35,2 g/t : salinité eau de mer• »NA = 35.2 g / t: seawater salinity
•^ Sm 1 = 10,4 QlI : salinité globale des eaux recyclées (mélange)• Sm 1 = 10.4 QlI: overall salinity of recycled water (mixture)
-» Sm2 = 19,7 Q/1 : salinité de l'eau à l'entrée de la cellulei Salinité en sortie cellules, côté eau de mer = valeurs de consigne- »Sm2 = 19.7 Q / 1: salinity of the water at the cell inlet Salinity at the cell outlet, seawater side = setpoints
•» S1 ≈ 13,3 gll ; S2 = 8 QlI ; S3 = 3 QlI• »S1 ≈ 13.3 gll; S2 = 8 QI1; S3 = 3 QI
-» S4 = 1 ,3 QH @ Conductivimètres sur effluents- »S4 = 1, 3 QH @ Conductivity meters on effluents
-» EO = 0,5 QlI : salinité des effluents à l'entrée Salinité en sortie cellules, côté effluents :- »EO = 0.5 QlI: effluent salinity at the inlet Salinity at the cell outlet, effluent side:
-» E4 = 1 gfl ; E3 = 2,5 Qtt ; E2 = 5,5 QlI ; E1 = 10,6 glt ® V2, V3 : vanne motorisées asservies aux conductivimètres S2 et S3 respectivement- »E4 = 1 gfl; E3 = 2.5 Qtt; E2 = 5.5 IQI; E1 = 10.6 glt ® V2, V3: Motorized valves controlled by the S2 and S3 conductivimeters respectively
• Débit effluents Q ≈ 10 m3/h • Débit eau de mer :• Effluent flow rate Q ≈ 10 m 3 / h • Seawater flow:
-^ arrivée eau de mer : qo = 3 m3/h •* total recyclé : qoi ≈ 5 m3/h «^ fraction recyclée par branche : qo2 = 2,3 m3/h qO3 = 2,7 m3/h -^ entrée cellules :- ^ seawater inlet: qo = 3 m 3 / h • * total recycled: qoi ≈ 5 m 3 / h "^ recycled fraction per branch: qo2 = 2.3 m 3 / h O 3 = 2.7 m 3 / h - ^ input cells:
• q-i = 8 m3/h ; • q2 ≈ 5,7 m3/h ; • q3 = 3 m3/h = débit d'eau adoucie .Qi = 8 m 3 / h; • q 2 ≈ 5.7 m 3 / h; • q 3 = 3 m 3 / h = flow of softened water.
APPLICATION DU PROCEDE A L'ECHELLE INDUSTRIELLE Le procédé se prête à l'application industrielle de par son fonctionnement en cycle continu, la maîtrise du processus de dessalement qu'il met en œuvre, ainsi que sa conception modulaire.APPLICATION OF THE PROCESS AT THE INDUSTRIAL SCALE The process lends itself to the industrial application of its continuous cycle operation, the control of the desalination process that it implements, as well as its modular design.
La disposition en série des cellules de dialyse a pour objet d'affiner le dessalement, un module contiendra plus ou moins de cellules en étages, selon le degré de dessalement désiré. Par ailleurs, la disposition de ces modules en parallèle permet d'augmenter le débit d'eau douce en sortie. Une installation industrielle comprend plusieurs modules en parallèle, chaque module contenant un certain nombre de cellules disposées en série. The purpose of dialysis cell serialization is to refine desalination, a module will contain more or less cells in stages, depending on the degree of desalination desired. Moreover, the arrangement of these modules in parallel increases the flow of fresh water output. An industrial installation comprises several modules in parallel, each module containing a number of cells arranged in series.

Claims

REVENDICATIONS
Vl Procédé de dessalement d'eau de mer et d'eau saumâtre constitué de cellules de dialyse disposées en série, caractérisé en ce qu'il utilise les effluents urbains et industriels comme exutoire, pour effectuer le dessalement; 2°/ Procédé de dessalement selon la revendication 1 , caractérisé en ce qu'il utilise le gradient de concentration en NaCL qui existe entre les effluents urbains et l'eau à dessaler, pour effectuer le dessalement par dialyse simple ; 37 Procédé selon les revendications 1 et 2, caractérisé en ce qu'il peut s'insérer dans les process d'épuration d'effluents urbains et industriels. VI Process for desalination of seawater and brackish water consisting of dialysis cells arranged in series, characterized in that it uses the urban and industrial effluents as an outlet for carrying out the desalination; 2 ° / desalination process according to claim 1, characterized in that it uses the NaCl concentration gradient that exists between the urban effluents and the water to be desalinated, to perform desalination by simple dialysis; 37 Process according to claims 1 and 2, characterized in that it can be inserted into urban and industrial effluent purification processes.
PCT/MA2009/000007 2008-04-11 2009-03-17 Use of municipal and industrial effluents in desalination by dialysis WO2009126013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA30829 2008-04-11
MA30829A MA30835B1 (en) 2008-04-11 2008-04-11 USE OF URBAN AND INDUSTRIAL EFFLUENTS IN DESSALMENT

Publications (2)

Publication Number Publication Date
WO2009126013A1 true WO2009126013A1 (en) 2009-10-15
WO2009126013A4 WO2009126013A4 (en) 2009-12-03

Family

ID=40937359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2009/000007 WO2009126013A1 (en) 2008-04-11 2009-03-17 Use of municipal and industrial effluents in desalination by dialysis

Country Status (2)

Country Link
MA (1) MA30835B1 (en)
WO (1) WO2009126013A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171799A (en) * 1962-08-28 1965-03-02 George W Batchelder Process for the demineralization of water
US20050242032A1 (en) * 2003-02-14 2005-11-03 Dainichiseika Color & Chem. Mfg. Co. Ltd. Method of desalting
JP2006007084A (en) * 2004-06-25 2006-01-12 Dainichiseika Color & Chem Mfg Co Ltd Mineral composition, manufacturing method therefor and usage thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171799A (en) * 1962-08-28 1965-03-02 George W Batchelder Process for the demineralization of water
US20050242032A1 (en) * 2003-02-14 2005-11-03 Dainichiseika Color & Chem. Mfg. Co. Ltd. Method of desalting
JP2006007084A (en) * 2004-06-25 2006-01-12 Dainichiseika Color & Chem Mfg Co Ltd Mineral composition, manufacturing method therefor and usage thereof

Also Published As

Publication number Publication date
MA30835B1 (en) 2009-11-02
WO2009126013A4 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
Xue et al. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry
Islam et al. Desalination technologies for developing countries: a review
Khanzada et al. Performance evaluation of reverse osmosis (RO) pre-treatment technologies for in-land brackish water treatment
Cheng et al. The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: A new process to mitigate membrane fouling for sustainable osmotic power generation
Cath et al. A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water
KR101394237B1 (en) System for controlling membrane process for desalination using multi-water source as feed water and sea water as draw solution, and method for the same
Morrow et al. Integrating an aerobic/anoxic osmotic membrane bioreactor with membrane distillation for potable reuse
Zhang et al. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system
Richards et al. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system
WO2013003607A2 (en) Apparatus, system, and method for forward osmosis in water reuse
CN102596822B (en) Water production system and operation method therefor
Yuan et al. Mathematical modeling assisted investigation of forward osmosis as pretreatment for microbial desalination cells to achieve continuous water desalination and wastewater treatment
US20100212319A1 (en) Method and apparatus for generating power utilizing forward osmosis
TW201121901A (en) Method and apparatus for generating fresh water, and method and apparatus for desalinating sea water
Li et al. Osmotically driven membrane process for the management of urban runoff in coastal regions
Pramanik et al. Mining phosphorus from anaerobically treated dairy manure by forward osmosis membrane
CN102659272A (en) Novel membrane-process sea water desalination and fresh water and salt preparation system and technique
KR20140073312A (en) Apparatus for producing fresh water and electric power through forward osmosis, reverse osmosis and pressure retarded osmosis using treated sewage and seawater, and method for the same
Kazner et al. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control
Elmakki et al. Potential application of hybrid reverse electrodialysis (RED)-forward osmosis (FO) system to fertilizer-producing industrial plant for efficient water reuse
CN103787462A (en) Low-energy consumption seawater desalinating technology and low-energy consumption seawater desalinating device
Patel et al. Water desalination and wastewater reuse using integrated reverse osmosis and forward osmosis system
Zhang et al. Wastewater treatment by renewable energy driven membrane processes
Zoungrana et al. Energy coverage of ataköy-ambarlı municipal wastewater treatment plants by salinity gradient power
Lai et al. Analysis of typical chloride solution treatment by osmotically assisted reverse osmosis for evaluating application potential in geothermal reinjection well protection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09731208

Country of ref document: EP

Kind code of ref document: A1