WO2009113742A1 - Method of producing genetically engineered antibody - Google Patents
Method of producing genetically engineered antibody Download PDFInfo
- Publication number
- WO2009113742A1 WO2009113742A1 PCT/JP2009/055555 JP2009055555W WO2009113742A1 WO 2009113742 A1 WO2009113742 A1 WO 2009113742A1 JP 2009055555 W JP2009055555 W JP 2009055555W WO 2009113742 A1 WO2009113742 A1 WO 2009113742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- cells
- producing
- gene
- cell
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
Definitions
- the present invention relates to a method for producing a recombinant rabbit monoclonal antibody.
- Monoclonal antibodies are widely used not only as experimental reagents for detecting specific substances, but also as core materials for cancer therapeutics and immunodiagnostics because of their high specificity and affinity.
- mouse-derived monoclonal antibodies are generally recognized.
- the degree of affinity of mouse-derived monoclonal antibodies is often sufficient.
- mouse-derived monoclonal antibodies may have insufficient affinity in areas where measurement sensitivity has become increasingly demanded in recent years, such as immunodiagnostic drugs.
- the competition method it can be theoretically proved that the higher the affinity of the antibody, the higher the detection sensitivity.
- an antibody with high affinity is required. Become.
- even with the sandwich method it becomes possible to detect a small amount of antigen by using an antibody with high affinity, and a highly sensitive measurement system can be constructed.
- estradiol E 2
- E 2 requires a highly sensitive measurement system, and there is a strong demand for antibodies with high affinity.
- Non-patent Document 1 antibodies with high affinity tend to be isolated from antibodies of large animal species .
- the effect of individual differences is great, and the antisera obtained are also different.
- at least several animals must be isolated in order to isolate antibodies with high affinity. It is necessary to immunize an individual with an antigen and isolate a monoclonal antibody from an individual with a high immune response. Therefore, in reality, Usagi is chosen as an immunized animal.
- Rabbits are also considered to be suitable as immunized animal species, because Rabbit's serum is often used as an antiserum for immunodiagnostics.
- a method for producing a mouse monoclonal antibody has been established and is produced by the method shown below.
- spleen cells antibody-producing cells
- mouse myeloma cells myeloma cells
- the antibody produced by culturing the cells is purified to produce a mouse monoclonal antibody.
- Usagi monoclonal antibodies can also be produced theoretically in the same manner as mouse monoclonal antibodies.
- Usagimyeloma cells used for cell fusion with antibody-producing cells Proc. Nat. A cad. Sci. USA, 9 2, 9 3 4 8; 1 9 9 5: Non-patent document 2
- Heron monoclonal antibodies cannot be produced. For this reason, several methods have been investigated for producing rabbit antibody monoclonal antibodies without using rabbit cells. First, there is a method of fusing rabbit antibody-producing cells with mouse myeloma cells. However, this method is fusion between different animals, and the fusion efficiency is low. Therefore, the number of hybridomas obtained is small, and the obtained hybridomas lose their antibody-producing ability within a short period of time (
- a rabbit antibody library was prepared, and the rabbit antibody antibody was obtained by the phage display method.
- J. Biol. Chem., 2 75, 1 3 6 6 8; 2 0 0: Non-patent document 6; Gene, 1 7 2, 2 9 5; 1 996: Non-patent document 7; J. Immunol. Method., 2 13, 20.1; 1 998: Non-patent document 8 an operation called “banning” is essential in the process of selecting antibodies from the library.
- a water-insoluble carrier on which an antigen is immobilized is brought into contact with a library, and an antibody bound to the antigen is recovered. Then, the antibody bound to the antigen is amplified by some method to create a new library, and the reaction of the antigen with the water-insoluble carrier is repeated. By this operation, the antibody that binds to the antigen is concentrated, and the antibody that finally binds to the antigen can be isolated.
- the antigen-antibody reaction is an equilibrium reaction, the binding between the antigen and the antibody is affected by the concentration.
- the library In principle, it is impossible to selectively concentrate high-affinity antibodies that are present in only amounts. In order to obtain antibodies with high affinity in general,
- the antibody needs to be a combination of the H and L chains originally produced by the Usagi.
- the combination of the H and L chains originally produced by the Usagi may be reproduced. Since it is extremely low, it is extremely difficult to recover an antibody with improved affinity by this operation.
- Non-Patent Document 9 may be used as long as a rabbit monoclonal antibody that binds to an antigen is isolated, but thousands of high-performance monoclonal antibodies that can be used in immunodiagnostics are isolated. Even if a recombinant antibody of tens of thousands of clones is prepared, there is no guarantee that the target antibody can be isolated. Furthermore, since the above work requires a large number of experimental man-hours, it is practically difficult to implement. In addition, since the gene is isolated from a single cell, the efficiency of antibody gene amplification is low even if an antibody-expressing cell is found, and the antibody gene amplification probability reported in Non-Patent Document 9 is H chain. 27%, about 55% for L chain.
- the problem to be solved by the present invention is that it is possible to produce a Usagi monoclonal antibody that could only be produced by a specific institution having Usagimie mouth cells with knowledge of normal laboratory facilities and molecular biology. It is to provide technology.
- the present invention made in view of the above problems includes the following inventions.
- the first invention is to isolate antibody-producing cells from rabbits immunized with antigen, to select cells carrying the desired antibody gene, and to isolate and amplify heavy and light chain antibody genes from the selected cells
- a cell having the target antibody gene is selected.
- the second invention is characterized in that the operation of isolating heavy and light chain antibody genes from the selected cells is carried out within a period in which the antibody genes are not dropped from the selected cells. This is a method for producing the genetically engineered antibody described in the invention.
- the third invention is characterized in that the operation of isolating heavy and light chain antibody genes from the selected cells is carried out within 14 days after the start of proliferation of antibody-producing cells. It is a manufacturing method of the gene recombinant antibody of description.
- the fourth invention is characterized in that the antibody-producing cells are any of spleen cells, lymph node cells, and peripheral blood cells of a rabbit immunized with an antigen.
- the method for producing a recombinant antibody according to any one of the first to third inventions is characterized in that the method for growing antibody-producing cells is a method for culturing antibody-producing cells in a medium.
- the sixth invention is characterized in that the method of growing antibody-producing cells is a method of fusing and culturing cells capable of imparting immortalizing ability, as described in the first to fourth inventions This is a method for producing a recombinant antibody.
- a seventh invention is the method for producing a genetically engineered antibody according to the first to sixth inventions, characterized in that the antigen to immunize the rabbit is a hapten or a peptide.
- the eighth invention is the method for producing a recombinant antibody according to any one of the first to seventh inventions, wherein the host cell is an animal cell.
- Fig. 1 shows the results of culturing cells derived from the spleen and evaluating the antigen-binding ability of the culture supernatant of 192 clones.
- Figure 2 shows the results of evaluation of antibodies in the culture supernatant after cell fusion using lymphocytes derived from peripheral blood by ELISA.
- FIG. 3 shows the results of screening the culture supernatant of 3840 clones.
- the vertical axis shows competitive characteristics
- the horizontal axis shows specificity
- the size of each plot shows reactivity.
- the antibody indicated by the black circle plot in the figure is a clone with high competitive performance, high specificity, and high reactivity, and the antibody gene was isolated from the clone.
- FIG. 4 shows the structure of the expression vector p ECE dhfr.
- SV 40 P in the figure is the SV 40 promoter, dhfr is dihydrophore * Reductorase gene, poly A indicates polyadenylate displacement signal, Amp indicates ampicillin resistance gene, and MCS indicates multiple cloning site.
- FIG. 5 shows the results of comparison of competition characteristics using mouse monoclonal antibody, rat monoclonal antibody, and rabbit monoclonal antibody produced in the present invention.
- the vertical axis shows the BZB 0 value when measuring E 2 at the concentration of l O O O p gZmL, and the horizontal axis shows the dissociation constant.
- Figure 6 shows the results of evaluating the performance of each antibody by fluorescence depolarization.
- the vertical axis indicates the degree of polarization, and the horizontal axis indicates the antibody concentration.
- the degree of polarization of the fluorescent substance label E 2 used as the antigen was set to 20.
- the black circles in the figure indicate the results when the mouse monoclonal antibody Ma-1 is used, the white circles indicate the rat monoclonal antibody Ra-1 and the black squares indicate the rabbit monoclonal antibody U-1 prepared according to the present invention. It is.
- FIG. 7 shows the result of preparing a calibration curve by preparing a reagent for a fully automatic immunodiagnostic system manufactured by Tosoh Corporation.
- the white circles in the figure are immune reaction reagents using polyclonal antibodies (E test “TOS OH” IIE 2, manufactured by Tosoh Corp.), and the black circles are immunizations using Usagi monoclonal antibody U-1 produced in the present invention. The results are obtained when each reaction reagent is used.
- Figure 8 shows an immunoreaction reagent using a polyclonal antibody (E-test “TOS OH” IIE 2) and an immunoreaction reagent using Usagi Monoclonal Antibody U-1 produced in the present invention. The result of measuring the sample and correlating it is shown.
- FIG. 9 shows the results of screening the culture supernatant of 3840 clones.
- the vertical axis shows competitive characteristics
- the horizontal axis shows specificity
- the size of each plot shows reactivity.
- Fig. 10 shows the results of preparing a calibration curve by preparing a reagent for a fully automatic immunodiagnostic system manufactured by Tosoh Corporation.
- the black circles in the figure are the results of using the immune reaction reagent using the rabbit monoclonal antibody UT 1 D-5 produced in the present invention, and the white squares are the results of using the immune reaction reagent using the mouse monoclonal antibody. It is.
- Figure 11 shows the results of evaluating cross-reactivity.
- the horizontal axis shows the concentration of T3 or T4, and the vertical axis shows the BZB 0 value.
- Figure 12 shows the results of screening of the culture supernatant of 3840 clones.
- the vertical axis represents fluorescence intensity, and the horizontal axis represents clones.
- Figure 13 shows the results of a sandwich assay of BNP with anti-BNP antibody (C-terminal recognition) obtained by transient expression and an antibody that recognizes the cyclic site of BNP.
- Figure 14 shows the results of ELISA evaluation of the change in the amount of antibody in the culture supernatant after cell fusion.
- the antigen to immunize the rabbit is not particularly limited and can be arbitrarily selected from haptens, peptides, proteins, nucleic acids, cells, lipids, sugar chains, bacteria, fluorescent substances, and biamines.
- the present invention is preferably applied to an antigen that requires high antibody performance in terms of affinity and specificity.
- antigens for competitive methods that require high affinity in order to construct a highly sensitive measurement system based on the measurement principle, such as estrone (E 1), estradiol (E 2), Triol (E 3), steroids such as steroid hormones such as progesterone and cortisol, and thyroid hormones such as thyronine, thyroxine, and lysine thyronine.
- application to peptides that require high sensitivity such as C peptide and brain natriuretic peptide (BNP) is also a preferable example.
- Usagi lines include, but are not limited to, Japanese white varieties that are generally available and New Zealand land moth.
- antibody-producing cells derived from Usagi having a high immune response by immunizing several to about 10 individuals.
- immunization there are no particular restrictions on the method of immunization to the rabbits, and immunization may be carried out by a commonly used method.
- a method of immunizing by making an adjuvant and emulsion and a method of immunizing DNA encoding a protein or peptide can be mentioned.
- the place of immunization is not particularly limited. It is sufficient to immunize the rabbit at the usual place, such as subcutaneous, abdominal cavity, or footpad.
- the antibody titer of the serum is analyzed by measuring by ELISA or BIA core (trade name) (Biacore), and It is preferable to determine by observing the progress. Usually four immunizations are enough, but in some cases, multiple immunizations (from several months to one year) may be required.
- the antibody-producing cell to be isolated is not particularly limited as long as it is an antibody-producing cell, but it is preferable to use any one of spleen-derived cells, lymph node-derived cells, and terminal blood-derived cells. .
- isolation of antibody-producing cells may be performed by a conventional method. Although isolated cells are preferred for immediate use, they can be stored in liquid nitrogen or deep freezer, dispersed in commonly available cell storage solutions, as needed Can be used.
- Non-Patent Document 9 there is a method of selecting one cell from antibody-producing cells and isolating and amplifying an antibody gene from the selected cell. Since only the antigen-binding ability can be evaluated, it is difficult to obtain an antibody having the target ability. Therefore, in the present invention, the antibody-producing cells isolated in (3) are proliferated, and the performance such as competitive characteristics, specificity, and reactivity of the antibody expressed in the culture supernatant is evaluated, and the performance is high. It is characterized by isolating the antibody gene after selecting cells expressing the antibody.
- the following method can be exemplified as a method for growing antibody-producing cells.
- a) A method in which antibody-producing cells are cultured in a growth medium until the antibody performance in the culture supernatant can be evaluated in a culture medium in a microwell plate.
- c) A method of selecting cells for antibody gene isolation by immortalizing and culturing antibody-producing cells with a virus such as Epstein-Barr virus (EBV).
- EBV Epstein-Barr virus
- the method of growing using the method a) or b) is preferred.
- a medium used in the growth method of a a medium for animal cells or a medium supplemented with well-known cytokines such as IL-4 and LPS can be used.
- the cell that provides the immortalizing ability used in the proliferation method of b) is a cell that can obtain an antibody-secreted antibody after fusion, and after the growth, the antibody performance is evaluated in the fused cell.
- the cell is not particularly limited as long as the antibody gene remains in the cell, but a cell from which a fused cell capable of maintaining the antibody-producing ability for a long time can be obtained is particularly preferable.
- Mouse myeloma related such as 0 0 2 9), NSO / (RCB 0 2 1 3), S 1 9 4 X 5 XX ⁇ , BUI (AT CCCRL-8 8 3 7), FO (AT CCCRL-1 6 4 6) , Human myeloma cell lines such as SK 0-0 0 7 and HO — 3 2 3, human B cell lines such as GM 1 5 0 0 6 GT-A 1 2, Y 3 — A gl ⁇ 2 ⁇ Examples include rat myeloma cell lines such as 3, rabbit-transformed cell lines of TP-3, and rabbit cancer cells such as VX-2.
- a cell line starting from the mouse myeloma cell line (for example, 2-3A described in JP-A No. 10 1 2 6 2 6 5 7 (Patent Document 1)) is also preferred immortalizing ability in the present invention. It is an example of the cell which gives.
- the cell fusion method used in the propagation method of b) may be carried out by a commonly used method. Examples thereof include a polyethylene glycol method, an electrofusion method, and a method using Sendai virus.
- Proliferation method is well known to those skilled in the art, infecting a human lymphocyte with a virus such as EBV (C o 1 eeta 1., “T he EBV-Hybridoma T echniqueand I ts A pplicationto Human Lung C ancer "M onoclonal A ntibodiesand C ancer T herapy, Reisfeldeta 1., N ew Y ork: A 1 an R. L iss I nc. It is a method in which a rabbit such as EBV is infected with a virus such as EBV and immortalized temporarily by a technique similar to that of Patent Document 10).
- the virus that infects rabbit B cells is not particularly limited to E B V as long as it can achieve the above-mentioned purpose.
- the antibody performance evaluation method for selecting cells having the antibody gene may be appropriately selected according to the evaluation contents of the target antibody.
- the contents of evaluation include antigen binding ability, competitive characteristics, specificity, and antibody productivity
- examples of evaluation methods include the ELISA method, the RIA method, and the fluorescence polarization method.
- the optimal time for isolating the heavy chain (H chain) and light chain (L chain) antibody genes from the cells selected in (4) above differs depending on the antigen and the rabbit strain. There is no particular limitation as long as a sufficient amount of antibody for evaluation can be secured and the antibody gene is not lost. However, as in Example 1 2 Isolation of antibody genes is not possible because isolation of antibody genes 16 days after the start of production cell growth reduces the efficiency of antibody gene amplification and the availability of expression vectors with antigen-binding activity. It is preferably performed within 14 days after the start of production cell growth.
- RT-PCR As a method for amplifying the antibody gene, a commonly used RT-PCR method can be used.
- commercially available enzymes can be used for reverse transcriptase and DNA polymerase used in RT-PCR reactions.
- DNA polymerase avoids introducing mutations during DNA amplification. Therefore, Phismion High Fidelity DNA ⁇ ⁇ l ym erase (trade name) (Daiichi Chemicals Co., Ltd.) and P rimes TAR HS DNA pol ym erase (trade name) (Yukara Bio Inc.) It is preferable to use the enzyme with the highest fidelity.
- the primer for amplifying the antibody gene is not particularly limited as long as it is designed at a position where the region encoding the variable region of the antibody is amplified.
- Primer combinations used to amplify antibody genes include primer combinations designed in the untranslated region upstream from the start codon and downstream from the codon for the purpose of amplifying the entire length of the antibody gene, antibody Examples include a combination of primers designed inside the antibody gene for the purpose of amplifying the variable region of the gene, or a system in which the above primers are appropriately combined. If the amplification efficiency of the antibody gene is low in a single PCR reaction, the antibody gene can be efficiently amplified by performing the second PCR reaction using the first PCR reaction product as a saddle. In this case, it is often possible to amplify the gene more efficiently by creating a new primer slightly inside the first amplification region. Is not something
- the Hagi chain is 80% or more of VH 1 (J. Immu nol., 1 5 2, 3 9 3 5; 1 9 94: Non-patent document 1 1), and L chain Are reported to be 80% or more of ⁇ chain (J. Mo 1.
- Amplification is preferably carried out using a primer set specific for the gene of interest.
- Non-Patent Document 10; Biotechno, 1 3, 6 1 7 1; 1 995 Non-Patent Document 13
- Nuc 1 Nuc 1.
- a cids R es., 1 5, 6 1 7 1; 1 9 8 7 (Non-Patent Document 1 4); N uc 1.
- a cids R es., 1 0, 1 5 3 5; 1 9 8 2 (Non-patent The primer sequence described in Reference 15) and the primer sequence (SEQ ID NO: 1 to 1 1) designed with reference to Gen Bank are disclosed. You can use.
- the expression vector is not limited as long as it is a generally reported vector, but in particular, p ECE dhfr (J. Bioche m., 1 0 8, 6 7 3; 1 9 90: Non-patent document 1 6, Figure 4) is preferably used as an expression vector.
- the region of the antibody to be expressed may be expressed so as to include the variable region of the antibody, and the expression forms include Ig G, F (ab ') 2, Fab, FV, and sc FV. It can be illustrated.
- Expression vectors can be introduced into appropriate host cells to Recombinant antibodies can be produced.
- SV40 large T antigen protein-expressing cells are preferably used as host cells for transiently high expression of recombinant antibodies, and examples include Examples 7, 1 3, and 14 C o S 1 cells used in Biotechno 1. Lett., 1 7, 1 3 5; 1 9 95: Non-patent literature 1 7; J. Ferm. B ioeng., 7 9, 40 5; 1 9 9 5: Non-patent literature 1 8), 2 9 3 T cells and COS 7 cells can be used.
- animal cells and microorganisms typified by yeast and Escherichia coli are preferably used as phosphine cells, and animal cells, particularly CH 0 cells are preferably used.
- a more preferred stable production strain is a phosphine vector system in which a vector incorporating a dhfr gene augmentation system capable of amplifying an antibody gene is introduced into CH cells.
- the method for producing a rabbit monoclonal antibody according to the present invention allows an antibody-producing cell isolated from a rabbit immunized with an antigen to proliferate without using a generally non-circular rabbit-myeloma cell, and then possesses an antibody gene.
- This method is characterized in that the antibody gene is isolated and amplified from the selected cell, and it is possible to produce a rabbit antibody with the knowledge of normal laboratory facilities and molecular biology. Is.
- a monoclonal antibody having a combination of heavy chain and light chain originally produced by Usagi can be easily produced.
- Usagi Monoclonal Antibodies with high affinity that can only be handled in Japan can be easily handled at the normal laboratory level.
- E 2 —B S A (trade name) (manufactured by Sigma) was used as an immunizing antigen.
- an antigen for screening with ELIISA was prepared by the following method.
- BCP Blue Carrier Protein: manufactured by Pierce
- 10 O mg of PBS was added to 1 O mg ZmL, and the 6th position was activated with N-hydroxysuccinimide.
- Tradiol (E 2) 1. 2 5 mg was mixed with DM F 1 mL.
- the immunized animal As the immunized animal, a 12-week-old female of Usagi (Japanese white species) was used. Immediately after the first immunization, Freund's complete adjuvant is used. After the second immunization, Freund's incomplete adjuvant is used. After mixing the antigen solution (500 gZmL) with the same amount of adjuvant, immunization is performed at intervals of 2 weeks. did. The amount of immunizing anti-antigen is 50 g at the first time and 25 g after the second immunization.
- E 2—B C P (0. b g / m L) was immobilized on an E L I S A plate and blocked with 1% skim milk.
- the spleen of a rabbit with a sufficiently increased antibody titer was removed, and spleen cells were isolated according to a conventional method.
- Spleen cells were suspended in GIT medium (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 10% F C S, and cultured on a microplate.
- GIT medium manufactured by Nissui Pharmaceutical Co., Ltd.
- F C S 10% F C S
- the culture supernatant was evaluated by the method described in Example 2 for the antibody in the culture supernatant of 192 clones. The results are shown in FIG. Thus, the production of antibodies could be confirmed in the supernatant of the microwell plate.
- Example 4 Proliferation of antibody-producing cells using lymphocytes derived from peripheral blood cells (culture using cell fusion)
- Peripheral blood cell-derived lymphocytes were fused with immortalizing cells by the method described below.
- the antibodies in the culture supernatant of 3 8 4 clones were evaluated by the method described in Example 2. The calculated results are shown in FIG. In this way, antibody production could be confirmed in the supernatant of the microwell plate.
- Spleen cells were fused with immortalizing cells by the method described below.
- E 2 — B C P (0.5 g ZmL) was immobilized on an ELIISA plate and then blocked with 1% skim milk. Thereafter, the culture supernatant after cell fusion was reacted.
- Anti-E 2 Usagi monoclonal antibody bound to E 2 binds alkaline phosphatase-labeled anti-rabbit Ig G antibody, B / F separation of unreacted enzyme-labeled antibody, and 4-methylumbelliferous enzyme substrate.
- Ferryl phosphate (41-MU P) was dispensed and detected by measuring fluorescence intensity.
- Example 6 Isolation / Amplification of antibody gene and preparation of expression vector As a result of Example 5, after selecting clones filled with black circles in Fig. 3, antibody genes were isolated from the clones by the following method, amplified and expressed A vector was fabricated.
- the buffer solution supplied with the kit was used with d N T P 0.2 M and the primer 0.5.
- H-chain and L-chain PCR fragments were treated with restriction enzymes BglII and XbaI, and then the animal cell expression vector (pECE dhfr: Fig. 4) BglIiZXbal Introduced into the site, expression vectors for H and L chains were prepared.
- Example 6 Using the expression vector for H chain and L chain obtained in Example 6, recombinant antibodies were produced in COS 1 cells (Non-patent Documents 17 and 18). The antibody gene isolation procedure in Example 6 was performed 8 days after cell fusion.
- the anti-E2 antibody was purified from the culture supernatant using a Protein ⁇ G. column (manufactured by GE HEALTHEARE) according to a conventional method. The performance of the antibody was evaluated, and the antibody with the highest performance in terms of competitive characteristics, specificity, and productivity was selected.
- An antibody expression vector selected in Example 7 was introduced into CHO cells to produce a stable antibody-producing strain.
- C HO cells (DXB 11: dhfr-deficient strain) were transfected with a gene under the same conditions as in Example 7, and alpha 1 ME M (—) was added with 10% dialyzed serum. Cells were cultured. Thereafter, the concentration of MTX (mesotrexate) was gradually increased from 5 nM to 500 nM to obtain rabbit monoclonal antibody U-1-expressing CHO cells.
- MTX mesotrexate
- Dissociation constant (K d) on the horizontal axis and vertical axis on the competitive property value obtained when E 2 of l OOO pg Zm L coexists with the value when E 2 does not exist.
- K d Dissociation constant
- the monoclonal antibody U-1 has an increased degree of polarization at a concentration that is at least 100 times lower than that of the mouse monoclonal antibody Ma-1 and the rat monoclonal antibody Ra-1. This indicates that U-1 has a much higher affinity than M a-1 and R a _ 1.
- Example 1 1 Evaluation of Monoclonal Antibody in AIA Reagent Form
- the immune reaction reagent using the rabbit antibody monoclonal antibody U-1 produced in the present invention was changed to the immunoreaction reagent using the polyclonal antibody (E test “T ⁇ ”).
- S ⁇ H ”IIE 2 manufactured by Tosohichi Co., Ltd.
- Fig. 7 shows the calibration curves for both immune reaction reagents.
- the detection limit for E 2 is 25.2 pg ZmL for immunoreactive reagents using polyclonal antibodies, whereas 2 2.4 pg ZmL for immunoreactive reagents using U-1 is It has been clarified that a measurement system with higher sensitivity than an immunoreaction reagent using a null antibody can be constructed.
- FIG. 8 shows the results of examining the correlation between both measurement systems using 40 actual samples.
- Example 1 2 Gene isolation time and percentage of isolated genes
- the present inventors also used the culture supernatant after cell fusion as EL. After evaluating by ISA and confirming that the antibody was expressed in the culture supernatant, even when attempting to amplify the antibody gene from the cell, the antibody gene could not be amplified. As a result of investigating why the gene cannot be amplified from various viewpoints such as PCR conditions and primer sequences, it is the same as handling normal mouse monoclonal antibodies when subculturing heterohybridomas obtained after cell fusion. When it is handled with a sense, it was found that it is difficult to specify when the antibody is not expressed.
- the cell suspension is transferred to a new medium of about 10 times volume and the culture is continued, so the first culture supernatant is diluted by transferring to a new medium. Go.
- the culture supernatant is diluted, and the signal of the culture supernatant after subculture is drastically reduced.
- this theory did not hold for the rabbit monoclonal antibody.
- Usagi monoclonal antibody has extremely high affinity compared to mouse monoclonal antibody, and sufficient signal can be obtained by ELISA even if the culture supernatant is diluted about 10 times or 100 times by subculture.
- the antibody gene has already dropped from the heterohybridoma, and the ELISA is positive even though the antibody is not expressed.
- the binding properties of the rabbit monoclonal antibody isolated in this patent and the mouse monoclonal antibody were compared.
- the rabbit monoclonal antibody was more than 100 times lower than the mouse monoclonal antibody. This is supported by the fact that antigen-binding ability was observed even at concentrations.
- Example 6 the time for isolating the antibody gene after cell fusion was changed, and the optimum time for isolation was examined. The results are shown in Table 1. table 1
- the H chain gene was amplified with a probability of 86.1% and the L chain gene with a probability of 94.4% on average of three experiments. Then, when an expression vector was prepared from the amplified gene and the antibody expressed in COS cells was evaluated, 75.0% of the antibodies had antigen-binding ability. In addition, a stable amplification rate and antibody acquisition rate were demonstrated through three experiments, indicating that a vector with antibody binding activity can be stably acquired by amplification during this period.
- Example 1 Isolation of Anti-Triyoidothyronine (T 3) Antibody Anti-triyodothyronine (T 3) Usagi monoclonal antibody was isolated by the following method.
- BCP Blue Carrier Protein: manufactured by Pierce
- Boric acid buffer 0.05 M, pH 8.5
- 5 mg of BCP was 1 O mg ZmL.
- N-hydroxysucci A solution obtained by dissolving 7 mg of T 3 activated with medium in DMSOIOOL was mixed. After stirring at room temperature for 30 minutes, dialysis against PBS (50 mL ⁇ 3 times) yielded ELISA screening antigen T 3 —BCP.
- the immunized animal As the immunized animal, a 12-week-old female of Usagi (Japanese white species) was used. Freund's complete adjuvant is used for the first immunization, and Freund's incomplete adjuvant is used for the second and subsequent immunizations. After mixing the antigen solution (500 / g mL) with the same amount of adjuvant, the emulsion is prepared and separated for 2 weeks. Immunized with. The amount of immunizing anti-antigen is 1 mg for the first time and 500 g after the second immunization.
- H chain Sequences 2 and 5 for the first PCR, sequences 1 and 6 for the second PCR
- H-chain and L-chain PCR fragments were treated with restriction enzymes BglII and XbaI, and then the Bgl of the expression vector for animal cells (p ECE dhfr: Fig. 4) was used. Introduced into the II / Xbal site, expression vectors for H chain and L chain were prepared.
- a I A is a fully automated immunodiagnostic system sold by Tosoh Corporation. Using the antibody prepared this time, an immune reaction reagent for A I A was prepared and evaluated.
- Fig. 10 shows the calibration curves of the immune reaction reagent using the isolated rabbit antibody UT 1 D-5 and the immune reaction reagent using the mouse-derived anti-T 3 monoclonal antibody. As shown in Fig. 10, it became clear that the use of the isolated antibody makes it possible to construct a measurement system that is more sensitive than mouse-derived reagents.
- Figure 11 shows the results of cross-reactivity evaluation using an immunoreaction reagent using UT 1 D-5 prepared this time.
- Figure 11 shows that the antibody isolated this time has no cross-reactivity to the thyroxine (T 4), a similar compound of T 3, and has a very high specificity for T 3. Being I understand.
- Example 14 4 Isolation of anti-brain natriuretic peptide (BNP) antibody
- Anti-brain natriuretic peptide (BNP) Usagi monoclonal antibody was isolated by the following method.
- a peptide corresponding to 7 amino acids on the C-terminal side of BNP (C KV L R R H, SEQ ID NO: 12) was synthesized. Using the cysteine at the N-terminus of the synthesized peptide, it was reacted with maleimide K L H (manufactured by PIERC) and used as an immunizing antigen. The reaction method was according to the attached protocol, and 1 mg of peptide was reacted with 1 mg of maleimide K L H.
- a peptide with a linker sequence (GGGSGGGS, SEQ ID NO: 13) added to the N terminus of the peptide corresponding to the C-terminal 7 amino acids of BNP (C KV LRRH, SEQ ID NO: 12), and then the N-terminus is piotinized.
- Bio-BNC Biotin-GGGS GG GSC KV LRRH, SEQ ID NO: 14; hereinafter referred to as Bio-BNC
- the immunized animal As the immunized animal, a 12-week-old female of Usagi (Japanese white species) was used. The first immunization is Freund's complete adjuvant, the second and subsequent immunizations are Freund's incomplete adjuvant, mixed with an antigen solution (500 ⁇ gZmL) and the same amount of adjuvant, and then immunized at intervals of 2 weeks after creating the emulsion. did. The amount of immunizing anti-antigen is 50 g at the first time and 25 z after the second immunization.
- BIO—BNC (0.5 g / ml) was reacted with an ELISA plate. After that, the rabbit serum immunized with the antigen was reacted.
- Bio—Anti-BNP Usagi monoclonal antibody conjugated to BNC binds alkaline phosphatase-labeled anti-rabbit Ig G antibody, and unreacted enzyme-labeled antibody is separated by BZF, followed by the enzyme substrate 4-methylumbelliferyl phosphorus. It was detected by dispensing acid (4-MU P) and measuring fluorescence intensity.
- Anti-BNP Usagi monoclonal antibody bound to Bio_BNC binds alkaline phosphatase-labeled anti-rabbit Ig G antibody, and unreacted enzyme-labeled antibody is separated by B / F, followed by enzyme substrate 4-methylun It was detected by dispensing berylferyl phosphate (4-MU P) and measuring the fluorescence intensity.
- the antibody gene was isolated from the clone selected in (4) by the following method.
- the buffer solution supplied with the kit was used with d N T P 0.2 M and the primer 0.5 L each.
- H chain Sequences 2 and 6 for the first PCR, sequences 8 and 9 for the second PCR
- Usagi-derived anti-BNP mono obtained from the clone obtained in (6) The clonal antibody (27, 45) was evaluated by ELISA according to the following method.
- the experiment shown below was conducted using the frozen spleen cells of rabbits immunized with E 2 — B SA.
- Example 5 cell fusion was performed, and the fused cells were spread on a microtiter plate.
- a rabbit antibody having high affinity characteristics can be produced with knowledge of ordinary laboratory facilities and molecular biology. Furthermore, by using the rabbit monoclonal antibody produced by the method of the present invention as an immunodiagnostic drug, a highly sensitive measurement system that is not affected by foreign substances can be constructed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
A genetically engineered antibody is produced by isolating antibody-producing cells from a rabbit having been immunized with an antigen, proliferating cells carrying a target antibody gene and then screening, isolating heavy chain and light chain antibody genes from the screened cells and amplifying the same, transferring the same into an expression vector and further transferring into host cells to thereby express a genetically engineered rabbit monoclonal antibody.
Description
明 細 書 遺伝子組換え抗体の製造方法 技術分野 Description Method for producing recombinant antibody Technical field
本発明は、 遺伝子組換えゥサギモノクロ一ナル抗体の製造方法に 関するものである。 背景技術 The present invention relates to a method for producing a recombinant rabbit monoclonal antibody. Background art
モノクローナル抗体はその特異性と親和性の高さから、 ある特定 の物質を検出するための実験用試薬としてだけではなく、 がん治療 用医薬品、 免疫診断薬の中核材料として広く利用されている。 Monoclonal antibodies are widely used not only as experimental reagents for detecting specific substances, but also as core materials for cancer therapeutics and immunodiagnostics because of their high specificity and affinity.
モノクローナル抗体といえば、 マウス由来のモノクローナル抗体 が一般には認知されている。 通常の実験で使用する抗体あるいは免 疫測定試薬であればマウス由来のモノクローナル抗体が有する親和 性の程度で十分な場合が多い。 しかし、 免疫診断薬のような、 測定 感度の高感度化が近年ますます要求されている領域では、 マウス由 来モノクローナル抗体では親和性が足りない場合がある。 たとえば 競合法においては、 抗体の親和性が高くなるほど検出感度が高くな ることは、 理論的に証明することができ、 高感度競合法を構築する ためには、 親和性の高い抗体が必要となる。 また、 サンドイッチ法 でも、 親和性の高い抗体により、 微量の抗原を検出できるようにな り、 高感度測定系が構築できる。 Speaking of monoclonal antibodies, mouse-derived monoclonal antibodies are generally recognized. For antibodies or immunoassay reagents used in normal experiments, the degree of affinity of mouse-derived monoclonal antibodies is often sufficient. However, mouse-derived monoclonal antibodies may have insufficient affinity in areas where measurement sensitivity has become increasingly demanded in recent years, such as immunodiagnostic drugs. For example, in the competition method, it can be theoretically proved that the higher the affinity of the antibody, the higher the detection sensitivity. In order to construct a highly sensitive competitive method, an antibody with high affinity is required. Become. In addition, even with the sandwich method, it becomes possible to detect a small amount of antigen by using an antibody with high affinity, and a highly sensitive measurement system can be constructed.
たとえば、 ステロイ ドは低分子であるため、 競合法で測定されて いる。 特にステロイ ド類の中でもエス トラジオール (E 2 ) は、 高 感度測定系が要求されており、 親和性の高い抗体の要求が強い。 For example, steroids are small molecules and are measured by competition methods. In particular, among the steroids, estradiol (E 2) requires a highly sensitive measurement system, and there is a strong demand for antibodies with high affinity.
マウス以外の種々のモノクローナル抗体も報告されており、 H y
b r i d o m a、 1 9、 2 0 1 : 2 0 0 0 (非特許文献 1 ) で紹介 されているように、 体の大きい動物種から抗体をとれば親和性の高 い抗体が単離される傾向にある。 しかしながら、 同じ動物種に同じ 抗原を免疫しても、 個体差の影響が大きく、 得られる抗血清も異な るため、 親和性の高い抗体を単離するためには、 少なく とも数匹以 上の個体に抗原を免疫し、 免疫応答の高い個体からモノクローナル 抗体を単離する必要がある。 そのため、 現実的には免疫動物として ゥサギが選ばれる。 また、 ゥサギは免疫診断薬用の抗血清にゥサギ の血清がよく利用されていることからも、 免疫動物種としては適し ていると考えられる。 Various monoclonal antibodies other than mice have also been reported. As introduced in bridoma, 1 9, 2 0 1: 2 0 0 0 (Non-patent Document 1), antibodies with high affinity tend to be isolated from antibodies of large animal species . However, even if the same animal species is immunized with the same antigen, the effect of individual differences is great, and the antisera obtained are also different.Therefore, at least several animals must be isolated in order to isolate antibodies with high affinity. It is necessary to immunize an individual with an antigen and isolate a monoclonal antibody from an individual with a high immune response. Therefore, in reality, Usagi is chosen as an immunized animal. Rabbits are also considered to be suitable as immunized animal species, because Rabbit's serum is often used as an antiserum for immunodiagnostics.
マウスモノクローナル抗体の製造方法は確立されており、 以下に 示す方法で製造している。 まず、 抗原を免疫したマウスの脾臓細胞 (抗体産生細胞) をマウスミエローマ細胞 (骨髄腫細胞) と細胞融 合させ、 無限増殖能を持ち、 かつ、 目的抗体を産生するハイブリ ド 一マを作製する。 その後、 当該細胞を培養し産生された抗体を精製 して、 マウスモノクローナル抗体を製造する。 A method for producing a mouse monoclonal antibody has been established and is produced by the method shown below. First, spleen cells (antibody-producing cells) from mice immunized with antigen are fused with mouse myeloma cells (myeloma cells) to produce a hybridoma that has infinite proliferative capacity and produces the desired antibody. . Thereafter, the antibody produced by culturing the cells is purified to produce a mouse monoclonal antibody.
ゥサギモノクローナル抗体も理論上はマウスモノクローナル抗体 の製造方法と同様な方法で生産できる。 しかしながら、 抗体産生細 胞と細胞融合させるのに用いるゥサギミエローマ細胞 ( P r o c . N a t 1 . A c a d . S c i . U S A, 9 2 , 9 3 4 8 ; 1 9 9 5 : 非特許文献 2 ) が、 マウスミエ口一マ細胞とは異なり、 一般には 流通していないため、 マウスモノクローナル抗体の製造方法と同様 な方法で生産できる施設は限られており、 通常の実験室レベルでは 当該方法によりゥサギモノクローナル抗体を製造することは出来な い。 このため、 ゥサギミエ口一マ細胞を用いずに、 ゥサギモノクロ —ナル抗体を生産する方法について、 これまでいくつか検討されて いる。
まず、 ゥサギ抗体産生細胞をマウスミエローマ細胞と融合する方 法がある。 しかしながら、 当該方法は異種動物間の融合であり、 融 合効率が低いため、 得られるハイプリ ドーマ数は少なく、 また得ら れたハイブリ ドーマも、 短期間のうちに抗体生産能力が消失する (Usagi monoclonal antibodies can also be produced theoretically in the same manner as mouse monoclonal antibodies. However, Usagimyeloma cells used for cell fusion with antibody-producing cells (Proc. Nat. A cad. Sci. USA, 9 2, 9 3 4 8; 1 9 9 5: Non-patent document 2 However, unlike mouse myeloma cells, they are not generally distributed, so there are only a few facilities that can be produced in the same way as mouse monoclonal antibody production methods. Heron monoclonal antibodies cannot be produced. For this reason, several methods have been investigated for producing rabbit antibody monoclonal antibodies without using rabbit cells. First, there is a method of fusing rabbit antibody-producing cells with mouse myeloma cells. However, this method is fusion between different animals, and the fusion efficiency is low. Therefore, the number of hybridomas obtained is small, and the obtained hybridomas lose their antibody-producing ability within a short period of time (
P r o c . N a t l . A c a d . S c に U S A, 5 8、 1 1 0 4 ; 1 9 6 7 : 非特許文献 3、 G e n e t i c s , 5 4, 1 0 9 5 ; 1 9 6 6 : 非特許文献 4 ) 。 さらに、 ゥサギ血清の存在下で当該融 合細胞を培養することで抗体生産能力を維持可能との報告もあるが 、 生産されたモノクローナル抗体の精製が困難であり、 長期間の抗 体生産性についての報告もない ( S c i e n c e 2 4 0、 1 7 8 8 ; 1 9 8 8 : 非特許文献 5 ) 。 Proc. Natl. A cad. S c in USA, 5 8, 1 1 0 4; 1 9 6 7: Non-patent literature 3, Genetics, 5 4, 1 0 9 5; 1 9 6 6: Non-patent Reference 4). Furthermore, although it has been reported that the ability to produce antibodies can be maintained by culturing the fused cells in the presence of rabbit sera, it is difficult to purify the monoclonal antibodies produced, and long-term antibody productivity has been reported. There is also no report (Science 2 40, 1 7 8 8; 1 9 8 8: Non-patent document 5).
次に、 抗原を免疫したゥサギ脾臓から重鎖 (H鎖) および軽鎖 ( L鎖) の抗体遺伝子を単離、 増幅後、 ゥサギ抗体ライブラリーを作 製し、 ファージディスプレイ法などにより、 ゥサギ抗体を単離する 方法が報告されている ( J . B i o l . C h e m. 、 2 7 5 , 1 3 6 6 8 ; 2 0 0 0 : 非特許文献 6 ; G e n e、 1 7 2、 2 9 5 ; 1 9 9 6 : 非特許文献 7 ; J . I mm u n o l . M e t h o d . 、 2 1 3、 2 0 1 ; 1 9 9 8 : 非特許文献 8 ) 。 しかし本方法によると 、 ライブラリーから抗体を選別する過程において 「バニング」 とい う操作が必須となる。 当該操作を簡単に述べると、 抗原が固定化さ れた水不溶性担体をライブラリーに镔触させ、 抗原に結合した抗体 を回収する。 その後抗原に結合した抗体を何らかの方法で増幅させ 新たなライブラリーを作製し、 さらに抗原を固定化した水不溶性担 体と反応させる操作を繰り返す。 当該操作により、 抗原と結合する 抗体は濃縮され、 最終的に抗原に結合する抗体を単離することがで きる。 しかしながら、 抗原抗体反応が平衡反応である以上、 抗原と 抗体の結合には濃度の影響をうける。 例えばライブラリ一の中に微
量しか存在しない親和性の高い抗体を選択的に濃縮することは原理 上不可能である。 また、 一般的に親和性の高い抗体を得るためにはNext, after isolating and amplifying the heavy chain (H chain) and light chain (L chain) antibody genes from the rabbit spleen that had been immunized with the antigen, a rabbit antibody library was prepared, and the rabbit antibody antibody was obtained by the phage display method. (J. Biol. Chem., 2 75, 1 3 6 6 8; 2 0 0: Non-patent document 6; Gene, 1 7 2, 2 9 5; 1 996: Non-patent document 7; J. Immunol. Method., 2 13, 20.1; 1 998: Non-patent document 8). However, according to this method, an operation called “banning” is essential in the process of selecting antibodies from the library. Briefly describing the procedure, a water-insoluble carrier on which an antigen is immobilized is brought into contact with a library, and an antibody bound to the antigen is recovered. Then, the antibody bound to the antigen is amplified by some method to create a new library, and the reaction of the antigen with the water-insoluble carrier is repeated. By this operation, the antibody that binds to the antigen is concentrated, and the antibody that finally binds to the antigen can be isolated. However, as long as the antigen-antibody reaction is an equilibrium reaction, the binding between the antigen and the antibody is affected by the concentration. For example, in the library In principle, it is impossible to selectively concentrate high-affinity antibodies that are present in only amounts. In order to obtain antibodies with high affinity in general,
、 抗体が本来ゥサギの作製した H鎖と L鎖の組み合わせである必要 がある力 当該操作によって得られる抗体においては、 本来ゥサギ の作製した H鎖と L鎖の組み合わせが再現されている可能性が極め て低いため、 当該操作で親和性が向上した抗体を回収するのは極め て困難である。 The antibody needs to be a combination of the H and L chains originally produced by the Usagi. In the antibody obtained by this operation, the combination of the H and L chains originally produced by the Usagi may be reproduced. Since it is extremely low, it is extremely difficult to recover an antibody with improved affinity by this operation.
上記方法以外には、 ゥサギ抗体産生細胞を軟寒天培地中で保持し た後、 赤血球溶血法により 目的抗体を発現している抗体産生細胞を 探し、 一個の抗体産生細胞から抗体遺伝子を単離し、 遺伝子組換え 抗体として作製する方法がある (P r o c . a t l . A c a d . S c i . U S A , 9 3、 7 8 4 3 ; 1 9 9 6 : 非特許文献 9 ) 。 当 該方法を用いることで本来ゥサギの作製した H鎖と L鎖の組み合わ せを再現できるが、 極めて高い抗体性能 (親和性、 特異性、 保存安 定性、 生産性など) が要求される免疫診断薬で使用するような抗体 は簡単に得られるものではない。 つまり、 単に抗原に結合するゥサ ギモノクローナル抗体を単離するのであれば非特許文献 9の方法で も良いが、 免疫診断薬で使用可能な性能の高いモノクローナル抗体 を単離しようと、 数千から数万クローンの遺伝子組換え抗体を作製 しても、 目的とする抗体を単離できる保障はない。 さらに、 上記作 業を行なうには、 膨大な実験工数を必要とするため、 現実的に実施 は困難である。 また、 一個の細胞から遺伝子を単離するため、 抗体 を発現している細胞を見つけても抗体遺伝子の増幅効率は低く、 非 特許文献 9で報告されている抗体遺伝子の増幅確率は H鎖で 2 7 % 、 L鎖で 5 5 %程度である。 Other than the above method, after holding the rabbit antibody-producing cells in a soft agar medium, search for antibody-producing cells expressing the target antibody by the erythrocyte hemolysis method, isolate the antibody gene from one antibody-producing cell, There is a method of producing it as a recombinant antibody (Proc. Atl. A cad. Sci. USA, 93, 784 43; 1 996: Non-patent document 9). By using this method, the combination of the H and L chains originally produced by the rabbits can be reproduced, but immunodiagnosis that requires extremely high antibody performance (affinity, specificity, storage stability, productivity, etc.) Antibodies like those used in medicine are not easily obtained. In other words, the method of Non-Patent Document 9 may be used as long as a rabbit monoclonal antibody that binds to an antigen is isolated, but thousands of high-performance monoclonal antibodies that can be used in immunodiagnostics are isolated. Even if a recombinant antibody of tens of thousands of clones is prepared, there is no guarantee that the target antibody can be isolated. Furthermore, since the above work requires a large number of experimental man-hours, it is practically difficult to implement. In addition, since the gene is isolated from a single cell, the efficiency of antibody gene amplification is low even if an antibody-expressing cell is found, and the antibody gene amplification probability reported in Non-Patent Document 9 is H chain. 27%, about 55% for L chain.
以上より、 ゥサギモノクローナル抗体の性能が高いことは報告さ れているものの、 ゥサギモノクローナル抗体自体はゥサギミエ口一
マ細胞を有する一部の施設でしか生産できないため、 当該抗体のェ 業的な利用を困難にしていた。 発明の開示 From the above, although the performance of the Usagi monoclonal antibody has been reported to be high, the Usagi monoclonal antibody itself is Since it can only be produced in some facilities with mammary cells, it has made it difficult to use the antibody in an industrial manner. Disclosure of the invention
本発明が解決しょうとする課題は、 ゥサギミエ口一マ細胞を有す る特定の機関でのみ作製可能であったゥサギモノクローナル抗体を 、 通常の実験施設と分子生物学の知識があれば製造できる技術を提 供することである。 The problem to be solved by the present invention is that it is possible to produce a Usagi monoclonal antibody that could only be produced by a specific institution having Usagimie mouth cells with knowledge of normal laboratory facilities and molecular biology. It is to provide technology.
上記課題を鑑みてなされた本発明は、 以下の発明を包含する。 第一の発明は、 抗原を免疫したゥサギから抗体産生細胞を単離し 、 目的とする抗体遺伝子を保有する細胞を選別し、 選別した細胞か ら重鎖および軽鎖の抗体遺伝子を単離、 増幅し、 発現ベクターに導 入後、 ホス ト細胞に導入することで遺伝子組換えゥサギモノクロ一 ナル抗体を発現させる遺伝子組換え抗体の製造方法において、 目的 とする抗体遺伝子を保有する細胞を選別するにあたり、 抗体産生細 胞を増殖させてから選別することを特徴とする、 遺伝子組換え抗体 の製造方法である。 The present invention made in view of the above problems includes the following inventions. The first invention is to isolate antibody-producing cells from rabbits immunized with antigen, to select cells carrying the desired antibody gene, and to isolate and amplify heavy and light chain antibody genes from the selected cells In the method for producing a recombinant antibody, which is introduced into an expression vector and then introduced into a host cell to express the recombinant rabbit monoclonal antibody, a cell having the target antibody gene is selected. A method for producing a recombinant antibody, wherein antibody-producing cells are grown and then selected.
第二の発明は、 選別した細胞から重鎖および軽鎖の抗体遺伝子を 単離する操作を、 選別した細胞から抗体遺伝子の脱落が起きない期 間内で実施することを特徴とする、 第一の発明に記載の遺伝子組換 え抗体の製造方法である。 The second invention is characterized in that the operation of isolating heavy and light chain antibody genes from the selected cells is carried out within a period in which the antibody genes are not dropped from the selected cells. This is a method for producing the genetically engineered antibody described in the invention.
第三の発明は、 選別した細胞から重鎖および軽鎖の抗体遺伝子を 単離する操作を、 抗体産生細胞増殖開始後 1 4 日以内に実施するこ とを特徴とする、 第一の発明に記載の遺伝子組換え抗体の製造方法 である。 The third invention is characterized in that the operation of isolating heavy and light chain antibody genes from the selected cells is carried out within 14 days after the start of proliferation of antibody-producing cells. It is a manufacturing method of the gene recombinant antibody of description.
第四の発明は、 抗体産生細胞が、 抗原を免疫したゥサギの脾臓細 胞、 リンパ節細胞、 末梢血細胞のいずれかであることを特徴とする
第一から第三の発明に記載の遺伝子組換え抗体の製造方法である 第五の発明は、 抗体産生細胞を増殖させる方法が、 抗体産生細胞 を培地中で培養する方法であることを特徴とする、 第一から第四の 発明に記載の遺伝子組換え抗体の製造方法である。 The fourth invention is characterized in that the antibody-producing cells are any of spleen cells, lymph node cells, and peripheral blood cells of a rabbit immunized with an antigen. The method for producing a recombinant antibody according to any one of the first to third inventions is characterized in that the method for growing antibody-producing cells is a method for culturing antibody-producing cells in a medium. The method for producing a recombinant antibody according to any one of the first to fourth inventions.
第六の発明は、 抗体産生細胞を増殖させる方法が、 不死化能を与 えることのできる細胞を融合させて培養する方法であることを特徴 とする、 第一から第四の発明に記載の遺伝子組換え抗体の製造方法 である。 The sixth invention is characterized in that the method of growing antibody-producing cells is a method of fusing and culturing cells capable of imparting immortalizing ability, as described in the first to fourth inventions This is a method for producing a recombinant antibody.
第七の発明は、 ゥサギに免疫する抗原が、 ハプテンまたはべプチ ドであることを特徴とする、 第一から第六の発明に記載の遺伝子組 換え抗体の製造方法である。 A seventh invention is the method for producing a genetically engineered antibody according to the first to sixth inventions, characterized in that the antigen to immunize the rabbit is a hapten or a peptide.
第八の発明は、 ホス ト細胞が動物細胞であることを特徴とする、 第一から第七の発明に記載の遺伝子組換え抗体の製造方法である。 図面の簡単な説明 The eighth invention is the method for producing a recombinant antibody according to any one of the first to seventh inventions, wherein the host cell is an animal cell. Brief Description of Drawings
図 1 は、 脾臓由来の細胞を培養し、 1 9 2クローンの培養上清の 抗原結合能力を評価した結果を示す。 Fig. 1 shows the results of culturing cells derived from the spleen and evaluating the antigen-binding ability of the culture supernatant of 192 clones.
図 2は、 末梢血由来のリンパ球を使った細胞融合後の培養上清中 の抗体を E L I S Aで評価した結果を示す。 Figure 2 shows the results of evaluation of antibodies in the culture supernatant after cell fusion using lymphocytes derived from peripheral blood by ELISA.
図 3は、 3 8 4 0クローンの培養上清のスクリーニングの結果を 示す。 縦軸は競合特性を、 横軸は特異性を、 各プロッ トの大きさは 反応性を、 それぞれ示す。 また、 図中の黒丸のプロッ トで示す抗体 は、 競合性能が高く、 特異性も高く、 かつ、 反応性も高いクローン であり、 当該クローンから、 抗体遺伝子を単離した。 FIG. 3 shows the results of screening the culture supernatant of 3840 clones. The vertical axis shows competitive characteristics, the horizontal axis shows specificity, and the size of each plot shows reactivity. In addition, the antibody indicated by the black circle plot in the figure is a clone with high competitive performance, high specificity, and high reactivity, and the antibody gene was isolated from the clone.
図 4は、 発現ベクター p E C E d h f rの構造を示す。 図中の S V 4 0 Pは S V 4 0のプロモーターを、 d h f rはジヒ ドロフォレ
一ト * リダクタ一ゼ遺伝子を、 p o l y Aはポリアデニレートァ夕 ツチメントシグナルを、 Ampはアンピシリ ン耐性遺伝子を、 MC Sはマルチクローニングサイ トを、 それぞれ示す。 FIG. 4 shows the structure of the expression vector p ECE dhfr. SV 40 P in the figure is the SV 40 promoter, dhfr is dihydrophore * Reductorase gene, poly A indicates polyadenylate displacement signal, Amp indicates ampicillin resistance gene, and MCS indicates multiple cloning site.
図 5は、 マウスモノクローナル抗体、 ラッ トモノクローナル抗体 、 および本発明で製造したゥサギモノクローナル抗体を用いて、 競 合特性を比較した結果を示す。 縦軸は l O O O p gZmLの濃度の E 2を測定した際の BZB 0値を、 横軸は解離定数を、 それぞれ示 す。 FIG. 5 shows the results of comparison of competition characteristics using mouse monoclonal antibody, rat monoclonal antibody, and rabbit monoclonal antibody produced in the present invention. The vertical axis shows the BZB 0 value when measuring E 2 at the concentration of l O O O p gZmL, and the horizontal axis shows the dissociation constant.
図 6は、 各抗体の性能を蛍光偏光解消法で評価した結果を示す。 縦軸は偏光度を、 横軸は抗体の濃度を、 それぞれ示す。 抗原として 使用した蛍光物質標識 E 2の偏光度は 2 0 とした。 図中の黒丸はマ ウスモノクローナル抗体 M a— 1 を、 白丸はラッ トモノクローナル 抗体 R a— 1 を、 黒四角は本発明で製造したゥサギモノクローナル 抗体 U— 1 を、 それぞれ使用したときの結果である。 Figure 6 shows the results of evaluating the performance of each antibody by fluorescence depolarization. The vertical axis indicates the degree of polarization, and the horizontal axis indicates the antibody concentration. The degree of polarization of the fluorescent substance label E 2 used as the antigen was set to 20. The black circles in the figure indicate the results when the mouse monoclonal antibody Ma-1 is used, the white circles indicate the rat monoclonal antibody Ra-1 and the black squares indicate the rabbit monoclonal antibody U-1 prepared according to the present invention. It is.
図 7は、 東ソ一社製の全自動免疫診断システム用の試薬を作製し 、 検量線を描いた結果を示す。 図中の白丸はポリクローナル抗体を 使用した免疫反応試薬 (Eテス ト 「T O S OH」 I I E 2、 東ソ —社製) を、 黒丸は本発明で製造したゥサギモノクローナル抗体 U — 1 を使用した免疫反応試薬を、 それぞれ使用したときの結果であ る。 FIG. 7 shows the result of preparing a calibration curve by preparing a reagent for a fully automatic immunodiagnostic system manufactured by Tosoh Corporation. The white circles in the figure are immune reaction reagents using polyclonal antibodies (E test “TOS OH” IIE 2, manufactured by Tosoh Corp.), and the black circles are immunizations using Usagi monoclonal antibody U-1 produced in the present invention. The results are obtained when each reaction reagent is used.
図 8は、 ポリクロ一ナル抗体を使用した免疫反応試薬 (Eテス ト 「TO S OH」 I I E 2 ) と、 本発明で製造したゥサギモノクロ —ナル抗体 U— 1 を使用した免疫反応試薬にて、 実検体を測定し相 関をとつた結果を示す。 Figure 8 shows an immunoreaction reagent using a polyclonal antibody (E-test “TOS OH” IIE 2) and an immunoreaction reagent using Usagi Monoclonal Antibody U-1 produced in the present invention. The result of measuring the sample and correlating it is shown.
図 9は、 3 8 4 0クローンの培養上清のスクリーニングの結果を 示す。 縦軸は競合特性を、 横軸は特異性を、 各プロッ トの大きさは 反応性を、 それぞれ示す。 また、 図中の黒丸のプロッ トで示す抗体
は、 競合性能が高く、 特異性も高く、 かつ反応性も高いクローンで あり、 当該クローンから、 抗体遺伝子を単離した。 FIG. 9 shows the results of screening the culture supernatant of 3840 clones. The vertical axis shows competitive characteristics, the horizontal axis shows specificity, and the size of each plot shows reactivity. In addition, antibodies indicated by black circles in the figure Is a clone with high competitive performance, high specificity, and high reactivity, and an antibody gene was isolated from the clone.
図 1 0は、 東ソ一社製の全自動免疫診断システム用の試薬を作製 し、 検量線を描いた結果を示す。 図中の黒丸は本発明で製造したゥ サギモノクローナル抗体 UT 1 D— 5を用いた免疫反応試薬を、 白 四角はマウスモノクロナール抗体を用いた免疫反応試薬を、 それぞ れ使用したときの結果である。 Fig. 10 shows the results of preparing a calibration curve by preparing a reagent for a fully automatic immunodiagnostic system manufactured by Tosoh Corporation. The black circles in the figure are the results of using the immune reaction reagent using the rabbit monoclonal antibody UT 1 D-5 produced in the present invention, and the white squares are the results of using the immune reaction reagent using the mouse monoclonal antibody. It is.
図 1 1は、 交差反応性を評価した結果を示す。 横軸に T 3または T 4の濃度を示し, 縦軸は BZB 0値を示す。 Figure 11 shows the results of evaluating cross-reactivity. The horizontal axis shows the concentration of T3 or T4, and the vertical axis shows the BZB 0 value.
図 1 2は、 3 8 4 0クローンの培養上清のスクリーニングの結果 を示す。 縦軸は蛍光強度を示し横軸はクローンを示す。 Figure 12 shows the results of screening of the culture supernatant of 3840 clones. The vertical axis represents fluorescence intensity, and the horizontal axis represents clones.
図 1 3は、 一過性発現で得られた抗 B N P抗体 (C末端認識) と B N Pの環状部位を認識する抗体による B N Pのサンドイッチアツ セィ結果を示す。 Figure 13 shows the results of a sandwich assay of BNP with anti-BNP antibody (C-terminal recognition) obtained by transient expression and an antibody that recognizes the cyclic site of BNP.
図 1 4は、 細胞融合後の培養上清中の抗体量の推移を E L I S A で評価した結果を示す。 発明を実施するための最良の形態 Figure 14 shows the results of ELISA evaluation of the change in the amount of antibody in the culture supernatant after cell fusion. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.
( 1 ) 抗原の種類 (1) Types of antigen
ゥサギに免疫する抗原は、 特に限定されず、 ハプテン、 ペプチド 、 タンパク質、 核酸、 細胞、 脂質、 糖鎖、 細菌、 蛍光物質、 ビ夕ミ ン類の中から任意に選択することができるが、 特に、 親和性および 特異性などにおいて高い抗体性能が要求される抗原に対して本発明 を適用するのが好ましい。 具体的には、 測定原理上高感度測定系を 構築するために高い親和性が要求される競合法用の抗原、 例えば、 エス トロン (E 1 ) 、 ェス トラジオ一ル (E 2 ) 、 エス トリオール
( E 3 ) 、 プロゲステロン、 コルチゾールなどのステロイ ドホルモ ン類、 サイロニン、 サイロキシン、 卜リ ヨ一ドサイロニンなどの甲 状腺ホルモン類といったハプテンがあげられる。 また、 競合法用の 抗原以外でも、 例えば、 Cペプチド、 および脳性ナトリウム利尿べ プチド (B N P) といった、 高感度が要求されるペプチドへの適用 も好ましい一例である。 The antigen to immunize the rabbit is not particularly limited and can be arbitrarily selected from haptens, peptides, proteins, nucleic acids, cells, lipids, sugar chains, bacteria, fluorescent substances, and biamines. The present invention is preferably applied to an antigen that requires high antibody performance in terms of affinity and specificity. Specifically, antigens for competitive methods that require high affinity in order to construct a highly sensitive measurement system based on the measurement principle, such as estrone (E 1), estradiol (E 2), Triol (E 3), steroids such as steroid hormones such as progesterone and cortisol, and thyroid hormones such as thyronine, thyroxine, and lysine thyronine. In addition to antigens for competitive methods, application to peptides that require high sensitivity, such as C peptide and brain natriuretic peptide (BNP), is also a preferable example.
( 2 ) 抗原免疫方法 (2) Antigen immunization method
抗原を免疫するゥサギは、 抗原の種類によって免疫応答は異なる ため、 できるだけ多くの系統と匹数に免疫するのが好ましい。 ゥサ ギの系統としては、 一般に入手可能な日本白色種、 およびニュージ —ランドホワイ 卜が例示されるが、 当該系統に限定されるものでは ない。 また、 同じ系統のゥサギを用いても個体差があるため数匹か ら 1 0匹程度の個体に免疫することで、 免疫応答の高いゥサギ由来 の抗体産生細胞を入手するのが好ましい。 Rabbits that immunize antigens have different immune responses depending on the type of antigen, so it is preferable to immunize as many strains and as many animals as possible. Usagi lines include, but are not limited to, Japanese white varieties that are generally available and New Zealand land moth. In addition, since there are individual differences even when using the same strain of Usagi, it is preferable to obtain antibody-producing cells derived from Usagi having a high immune response by immunizing several to about 10 individuals.
ゥサギへの免疫方法は特に限定されるものではなく、 通常一般的 に行なわれている方法で免疫すればよい。 例えば、 アジュバントと ェマルジヨンを作製し免疫する方法やタンパク質あるいはペプチド をコードしている D NAを免疫する方法があげられる。 There are no particular restrictions on the method of immunization to the rabbits, and immunization may be carried out by a commonly used method. For example, a method of immunizing by making an adjuvant and emulsion and a method of immunizing DNA encoding a protein or peptide can be mentioned.
免疫場所も特に限定されない。 皮下、 腹腔、 フッ トパッ トといつ た通常行なわれている場所でゥサギに免疫すればよい。 The place of immunization is not particularly limited. It is sufficient to immunize the rabbit at the usual place, such as subcutaneous, abdominal cavity, or footpad.
免疫回数は、 抗原の種類およびゥサギへの応答性によって変動が あるため、 E L I S A法あるいは B I A c o r e (商品名) (ビア コア社製) で測定することで血清の抗体価を解析し、 当該血清の経 過を観察して決定するのが好ましい。 通常は 4回程度の免疫で良い が、 場合によってはさらに複数回 (期間にして数ケ月から 1年間程 度) の免疫が必要な場合もある。 Since the number of immunizations varies depending on the type of antigen and responsiveness to the rabbit, the antibody titer of the serum is analyzed by measuring by ELISA or BIA core (trade name) (Biacore), and It is preferable to determine by observing the progress. Usually four immunizations are enough, but in some cases, multiple immunizations (from several months to one year) may be required.
( 3 ) 抗体産生細胞の単離
単離の対象となる抗体産生細胞は、 抗体を産生する細胞であれば 特に限定はされないが、 脾臓由来の細胞、 リンパ節由来の細胞、 末 梢血由来の細胞のいずれかを使うのが好ましい。 また、 抗体産生細 胞の単離は通常実施されている方法で実施すればよい。 単離した細 胞はすぐに使用するのが好ましいが、 一般的に入手できる細胞保存 溶液中に分散させた状態で、 液体窒素あるいはディープフリーザー 中で保存することが可能であり、 必要に応じて使用することが出来 る。 (3) Isolation of antibody-producing cells The antibody-producing cell to be isolated is not particularly limited as long as it is an antibody-producing cell, but it is preferable to use any one of spleen-derived cells, lymph node-derived cells, and terminal blood-derived cells. . In addition, isolation of antibody-producing cells may be performed by a conventional method. Although isolated cells are preferred for immediate use, they can be stored in liquid nitrogen or deep freezer, dispersed in commonly available cell storage solutions, as needed Can be used.
( 4 ) 抗体産生細胞の選別 (4) Selection of antibody-producing cells
上記 ( 3 ) で単離した抗体産生細胞から目的とする抗体遺伝子を 保有する細胞を選別する必要がある。 選別方法としては、 非特許文 献 9にあるように、 抗体を産生している細胞から一個の細胞を選別 し、 選別した細胞から抗体遺伝子を単離、 増幅させる方法があるが 、 当該選別方法では抗原結合能しか評価ができないため、 目的の性 能を有した抗体を取得するのは困難である。 そのため、 本発明では 、 ( 3 ) .で単離した抗体産生細胞を増殖させ、 培養上清中に発現し た抗体の有する競合特性、 特異性、 反応性といった性能を評価し、 当該性能が高い抗体を発現している細胞を選別後、 抗体遺伝子を単 離することを特徴としている。 It is necessary to select cells carrying the target antibody gene from the antibody-producing cells isolated in (3) above. As a screening method, as described in Non-Patent Document 9, there is a method of selecting one cell from antibody-producing cells and isolating and amplifying an antibody gene from the selected cell. Since only the antigen-binding ability can be evaluated, it is difficult to obtain an antibody having the target ability. Therefore, in the present invention, the antibody-producing cells isolated in (3) are proliferated, and the performance such as competitive characteristics, specificity, and reactivity of the antibody expressed in the culture supernatant is evaluated, and the performance is high. It is characterized by isolating the antibody gene after selecting cells expressing the antibody.
本発明の製造方法における、 抗体産生細胞の増殖方法としては以 下の方法が例示できる。 In the production method of the present invention, the following method can be exemplified as a method for growing antibody-producing cells.
a ) マイクロウェルプレート中にて、 抗体産生細胞を増殖用培 地で培養上清中の抗体性能が評価できるまで培養する方法 b ) 通常のハイプリ ドーマを得る方法のように、 抗体産生細胞 に不死化能を与えるような細胞と融合させることで、 培養 上清中の抗体性能を評価する方法。
c ) ェプス夕イン一バーウィルス (E B V) などのウィルスに より抗体産生細胞を不死化し培養することで、 抗体遺伝子 を単離する細胞を選別する方法。 a) A method in which antibody-producing cells are cultured in a growth medium until the antibody performance in the culture supernatant can be evaluated in a culture medium in a microwell plate. A method for evaluating antibody performance in culture supernatants by fusing with cells that impart oxidative potential. c) A method of selecting cells for antibody gene isolation by immortalizing and culturing antibody-producing cells with a virus such as Epstein-Barr virus (EBV).
このうち、 a ) または b ) の方法を用いて増殖させる方法が好まし い。 Of these, the method of growing using the method a) or b) is preferred.
a ) の増殖方法で用いる培地としては、 通常用いられる動物細胞 用の培地、 あるいは I L— 4や L P Sといった通常よく知られてい るサイ トカイン類を添加した培地が使用できる。 As a medium used in the growth method of a), a medium for animal cells or a medium supplemented with well-known cytokines such as IL-4 and LPS can be used.
b) の増殖方法で用いる不死化能を与える細胞としては、 融合後 に抗体を分泌できる融合細胞が得られ.る細胞であり、 かつ、 増殖後 、 抗体の性能を評価した時点で融合細胞中に抗体遺伝子が残存して いる細胞であれば限定はされないが、 抗体産生能を長期間維持でき る融合細胞が得られる細胞が特に好ましい。 不死化能を与える細胞 としては、 P 3 — X 6 3— A g 8 (AT C C T I B 9 ) 、 P 3 - N S 1 - 1 -A g 4 - 1 ( J C R B 0 0 0 9 ) 、 P 3 - X 6 3 - A g 8 - U 1 ( J C R B 9 0 8 5 ) 、 P 3— X 6 3 — A g 8、 6 5 3 ( J C R B 0 0 2 8 ) 、 S P 2 ZO - A g— 1 4 ( J C R B The cell that provides the immortalizing ability used in the proliferation method of b) is a cell that can obtain an antibody-secreted antibody after fusion, and after the growth, the antibody performance is evaluated in the fused cell. The cell is not particularly limited as long as the antibody gene remains in the cell, but a cell from which a fused cell capable of maintaining the antibody-producing ability for a long time can be obtained is particularly preferable. P 3 — X 6 3— A g 8 (AT CCTIB 9), P 3-NS 1-1 -A g 4-1 (JCRB 0 0 0 9), P 3-X 6 3-A g 8-U 1 (JCRB 9 0 8 5), P 3— X 6 3 — A g 8, 6 5 3 (JCRB 0 0 2 8), SP 2 ZO-A g— 1 4 (JCRB
0 0 2 9 ) 、 N S O/ (R C B 0 2 1 3 ) 、 S 1 9 4 X 5 X X〇、 B U I (AT C C C R L - 8 8 3 7 ) 、 F O (AT C C C R L - 1 6 4 6 ) といったマウスミエローマ関連の細胞や、 S K 0 - 0 0 7、 HO— 3 2 3 といったヒ ト骨髄腫細胞株、 GM 1 5 0 0 6 G T - A 1 2 といったヒ ト B細胞株、 Y 3— A g l · 2 · 3 といったラッ ト骨髄腫細胞株、 T P— 3のゥサギ形質転換細胞株、 VX— 2 といったゥサギがん細胞を例示することができる。 また、 マウスミエローマ細胞株を出発とした細胞株 (たとえば特開平 1 0 一 2 6 2 6 5 7号 (特許文献 1 ) に記載の 2 — 3 A) も、 本発明に おける、 好ましい不死化能を与える細胞の一例である。
b ) の増殖方法で用いる細胞融合方法は、 通常用いられる方法で 実施すればよく、 例えば、 ポリエチレングリコール法、 電気融合法 、 センダイウィルスを用いる方法をあげることができる。 Mouse myeloma related such as 0 0 2 9), NSO / (RCB 0 2 1 3), S 1 9 4 X 5 XX〇, BUI (AT CCCRL-8 8 3 7), FO (AT CCCRL-1 6 4 6) , Human myeloma cell lines such as SK 0-0 0 7 and HO — 3 2 3, human B cell lines such as GM 1 5 0 0 6 GT-A 1 2, Y 3 — A gl · 2 · Examples include rat myeloma cell lines such as 3, rabbit-transformed cell lines of TP-3, and rabbit cancer cells such as VX-2. In addition, a cell line starting from the mouse myeloma cell line (for example, 2-3A described in JP-A No. 10 1 2 6 2 6 5 7 (Patent Document 1)) is also preferred immortalizing ability in the present invention. It is an example of the cell which gives. The cell fusion method used in the propagation method of b) may be carried out by a commonly used method. Examples thereof include a polyethylene glycol method, an electrofusion method, and a method using Sendai virus.
c ) の増殖方法は、 当業者によく知られている、 ヒ トリ ンパ球に E B Vなどのウィルスを感染させて増殖させる (C o 1 e e t a 1 . , " T h e E B V - H y b r i d o m a T e c h n i q u e a n d I t s A p p l i c a t i o n t o H u m a n L u n g C a n c e r " M o n o c l o n a l A n t i b o d i e s a n d C a n c e r T h e r a p y , R e i s f e l d e t a 1 . , N e w Y o r k : A 1 a n R . L i s s I n c . 7 7 - 9 6 ; 1 9 8 5 :非特許文献 1 0 ) のと同 様な手法で、 抗体生産能を有するゥサギ B細胞に E B Vなどのウイ ルスを感染させ、 一時的に不死化させる方法である。 なお、 ゥサギ B細胞に感染させるウィルスとしては前記目的を達成できるもので あれば良く、 特に E B Vに限定されるものではない。 c) Proliferation method is well known to those skilled in the art, infecting a human lymphocyte with a virus such as EBV (C o 1 eeta 1., “T he EBV-Hybridoma T echniqueand I ts A pplicationto Human Lung C ancer "M onoclonal A ntibodiesand C ancer T herapy, Reisfeldeta 1., N ew Y ork: A 1 an R. L iss I nc. It is a method in which a rabbit such as EBV is infected with a virus such as EBV and immortalized temporarily by a technique similar to that of Patent Document 10). The virus that infects rabbit B cells is not particularly limited to E B V as long as it can achieve the above-mentioned purpose.
( 5 ) 抗体性能の評価方法 (5) Evaluation method of antibody performance
抗体遺伝子を保有する細胞を選別するための抗体性能の評価方法 は、 対象抗体の評価内容に応じて適宜選択すればよい。 例えば、 評 価内容としては、 抗原結合能、 競合特性、 特異性、 抗体生産性があ げられ、 評価方法としては E L I S A法、 R I A法、 蛍光偏光法を あげることができる。 The antibody performance evaluation method for selecting cells having the antibody gene may be appropriately selected according to the evaluation contents of the target antibody. For example, the contents of evaluation include antigen binding ability, competitive characteristics, specificity, and antibody productivity, and examples of evaluation methods include the ELISA method, the RIA method, and the fluorescence polarization method.
( 6 ) 抗体遺伝子の単離時期 (6) Isolation period of antibody gene
上記 ( 4 ) で選別した細胞から重鎖 (H鎖) および軽鎖 (L鎖) の抗体遺伝子を単離する時期としては、 抗原およびゥサギの系統に よって最適時期が異なるため、 培養上清中に評価するための十分な 抗体量が確保でき、 かつ、 抗体遺伝子の脱落が起きない期間であれ ば特に限定されない。 しかしながら、 実施例 1 2にあるように抗体
産生細胞増殖開始後 1 6 日後で抗体遺伝子を単離すると、 抗体遺伝 子の増幅効率、 および抗原結合活性を持った発現ベクターの取得率 が低下していることから、 抗体遺伝子の単離は抗体産生細胞増殖開 始後 1 4 日以内に実施するのが好ましい。 The optimal time for isolating the heavy chain (H chain) and light chain (L chain) antibody genes from the cells selected in (4) above differs depending on the antigen and the rabbit strain. There is no particular limitation as long as a sufficient amount of antibody for evaluation can be secured and the antibody gene is not lost. However, as in Example 1 2 Isolation of antibody genes is not possible because isolation of antibody genes 16 days after the start of production cell growth reduces the efficiency of antibody gene amplification and the availability of expression vectors with antigen-binding activity. It is preferably performed within 14 days after the start of production cell growth.
( 7 ) 抗体遺伝子の増幅方法 (7) Antibody gene amplification method
抗体遺伝子の増幅方法としては通常用いられる R T— P C R法が 使用できる。 また、 R T— P C R反応の際に用いる逆転写酵素およ び D N Aポリメラ一ゼは通常市販の酵素が使用できるが、 特に D N Aポリメラ一ゼは D NA増幅の際、 変異が導入されるのを避けるた め、 P h u s i o n H i g h— F i d e l i t y D NA ρ ο l ym e r a s e (商品名) (第一化学薬品社製) や P r i m e s T AR H S DNA p o l ym e r a s e (商品名) (夕カラ バイオ社製) といったフィデリティ一の高い酵素を使用するのが好 ましい。 As a method for amplifying the antibody gene, a commonly used RT-PCR method can be used. In addition, commercially available enzymes can be used for reverse transcriptase and DNA polymerase used in RT-PCR reactions. In particular, DNA polymerase avoids introducing mutations during DNA amplification. Therefore, Phismion High Fidelity DNA ρ ο l ym erase (trade name) (Daiichi Chemicals Co., Ltd.) and P rimes TAR HS DNA pol ym erase (trade name) (Yukara Bio Inc.) It is preferable to use the enzyme with the highest fidelity.
抗体遺伝子を増幅するためのプライマーは、 抗体の可変領域をコ ードする領域が増幅されるような位置に設計してあれば、 特に場所 は限定されない。 抗体遺伝子を増幅するために用いるプライマーの 組み合わせとしては、 抗体遺伝子の全長を増幅することを目的とし た開始コ ドンより上流と終始コ ドンより下流の非翻訳領域に設計し たプライマーの組み合わせ、 抗体遺伝子の可変領域を増幅すること を目的とした抗体遺伝子内部に設計したプライマーの組み合わせ、 あるいは上記プライマ一を適宜組み合わせた系を例示することがで きる。 なお、 一回の P C R反応で抗体遺伝子の増幅効率が低い場合 には、 1回目の P C R反応産物を铸型とし、 2回目の P C R反応を 行うことで効率よく抗体遺伝子を増幅することが出来る。 この際 1 回目の増幅領域の少し内側に新たなプライマ一を作製するほうが効 率よく遺伝子を増幅することが出来る場合が多いが、 それに限定さ
れるものではない。 The primer for amplifying the antibody gene is not particularly limited as long as it is designed at a position where the region encoding the variable region of the antibody is amplified. Primer combinations used to amplify antibody genes include primer combinations designed in the untranslated region upstream from the start codon and downstream from the codon for the purpose of amplifying the entire length of the antibody gene, antibody Examples include a combination of primers designed inside the antibody gene for the purpose of amplifying the variable region of the gene, or a system in which the above primers are appropriately combined. If the amplification efficiency of the antibody gene is low in a single PCR reaction, the antibody gene can be efficiently amplified by performing the second PCR reaction using the first PCR reaction product as a saddle. In this case, it is often possible to amplify the gene more efficiently by creating a new primer slightly inside the first amplification region. Is not something
また、 ゥサギ H鎖は 8割以上で VH 1 を使用していること ( J . I mmu n o l . 、 1 5 2、 3 9 3 5 ; 1 9 9 4 : 非特許文献 1 1 ) 、 および L鎖は 8割以上が κ鎖であることが報告されていること ( J . M o 1 . B i o l . 、 3 2 5、 3 2 5 ; 2 0 0 3 : 非特許文 献 1 2 ) から、 それぞれの遺伝子に特異的なプライマーセッ トを用 いて増幅するのが好ましい。 さらに、 抗体遺伝子を増幅するための プライマーの一態様として、 非特許文献 1 0 ; B i o t e c h n o し 、 1 3、 6 1 7 1 ; 1 9 9 5 (非特許文献 1 3 ) ; N u c 1 . A c i d s R e s . 、 1 5、 6 1 7 1 ; 1 9 8 7 (非特許文献 1 4 ) ; N u c 1 . A c i d s R e s . 、 1 0、 1 5 3 5 ; 1 9 8 2 (非特許文献 1 5 ) に記載のプライマ一配列、 および G e n B a n kを参考に設計したプライマー配列 (配列番号 1から 1 1 ) を開 示するが、 上記目的を達成できるものであれば、 他の配列を用いて もかまわない。 The Hagi chain is 80% or more of VH 1 (J. Immu nol., 1 5 2, 3 9 3 5; 1 9 94: Non-patent document 1 1), and L chain Are reported to be 80% or more of κ chain (J. Mo 1. B iol., 3 2 5, 3 2 5; 2 0 0 3: non-patent document 1 2) Amplification is preferably carried out using a primer set specific for the gene of interest. Furthermore, as an embodiment of a primer for amplifying an antibody gene, Non-Patent Document 10; Biotechno, 1 3, 6 1 7 1; 1 995 (Non-Patent Document 13); Nuc 1. A cids R es., 1 5, 6 1 7 1; 1 9 8 7 (Non-Patent Document 1 4); N uc 1. A cids R es., 1 0, 1 5 3 5; 1 9 8 2 (Non-patent The primer sequence described in Reference 15) and the primer sequence (SEQ ID NO: 1 to 1 1) designed with reference to Gen Bank are disclosed. You can use.
( 8 ) 発現ベクター (8) Expression vector
発現用ベクターについては、 一般的に報告されているベクターで あれば限定されないが、 特に p E C E d h f r ( J . B i o c h e m. 、 1 0 8、 6 7 3 ; 1 9 9 0 : 非特許文献 1 6、 図 4 ) を発現 ベクターとして使用するのが好ましい。 また、 発現させる抗体の領 域も、 抗体の可変領域を含むように発現させればよく、 発現の形と しては I g G、 F ( a b ' ) 2、 F a b、 F V、 s c F Vが例示で きる。 また、 単離した抗体遺伝子を出発材料として、 種々のァミノ 酸変異を加えることで抗体の性能を変化させることは、 当業者であ れば容易に想到可能である。 The expression vector is not limited as long as it is a generally reported vector, but in particular, p ECE dhfr (J. Bioche m., 1 0 8, 6 7 3; 1 9 90: Non-patent document 1 6, Figure 4) is preferably used as an expression vector. In addition, the region of the antibody to be expressed may be expressed so as to include the variable region of the antibody, and the expression forms include Ig G, F (ab ') 2, Fab, FV, and sc FV. It can be illustrated. In addition, it is possible for those skilled in the art to easily change the performance of an antibody by adding various amino acid mutations using the isolated antibody gene as a starting material.
( 9 ) ホス ト細胞 (9) Host cells
発現べクタ一は適切なホス ト細胞に導入することにより、 遺伝子
組換え抗体を産生させることができる。 一過的に遺伝子組換え抗体 を高発現させるためには、 S V 4 0 l a r g e T抗原タンパク 質発現細胞をホス ト細胞として用いるのが好ましく、 その一例とし て、 実施例 7、 1 3、 1 4で使用の C〇 S 1細胞 (B i o t e c h n o 1 . L e t t . 、 1 7、 1 3 5 ; 1 9 9 5 : 非特許文献 1 7 ; J . F e r m. B i o e n g . 、 7 9、 4 0 5 ; 1 9 9 5 : 非特許 文献 1 8 ) や、 2 9 3 T細胞、 C O S 7細胞をあげることができる また、 安定的に遺伝子組換え抗体を発現させるためには、 遺伝子 組み換え動物 昆虫ノ植物を用いて発現させることも可能であるが 、 動物細胞、 および酵母や大腸菌に代表される微生物をホス 卜細胞 として用いるのが好ましく、 特に動物細胞、 その中でも C H〇細胞 を用いるのが好ましい。 さらに好ましい安定生産株は、 抗体遺伝子 を増幅することができる d h f r遺伝子増 系を組み込んだベクタ 一を C H〇細胞に導入したホス 卜ベクター系である。 Expression vectors can be introduced into appropriate host cells to Recombinant antibodies can be produced. SV40 large T antigen protein-expressing cells are preferably used as host cells for transiently high expression of recombinant antibodies, and examples include Examples 7, 1 3, and 14 C o S 1 cells used in Biotechno 1. Lett., 1 7, 1 3 5; 1 9 95: Non-patent literature 1 7; J. Ferm. B ioeng., 7 9, 40 5; 1 9 9 5: Non-patent literature 1 8), 2 9 3 T cells and COS 7 cells can be used. In order to stably express recombinant antibodies, Although expression using plants is possible, animal cells and microorganisms typified by yeast and Escherichia coli are preferably used as phosphine cells, and animal cells, particularly CH 0 cells are preferably used. A more preferred stable production strain is a phosphine vector system in which a vector incorporating a dhfr gene augmentation system capable of amplifying an antibody gene is introduced into CH cells.
本発明のゥサギモノクローナル抗体の製造方法は、 一般に流通し ていないゥサギミエローマ細胞を使用することなく、 抗原を免疫し たゥサギから単離した抗体産生細胞を増殖させてから、 抗体遺伝子 を保有する細胞を選別し、 選別した細胞から抗体遺伝子を単離、 増 幅することを特徴としており、 通常の実験施設と分子生物学の知識 があればゥサギモノク口一ナル抗体の製造を可能にする方法である 。 また、 本発明の製造方法は従来技術では困難であった、 本来ゥサ ギが作製した重鎖と軽鎖の組み合わせを有するモノクローナル抗体 を容易に製造することができるため、 これまで限られた施設でしか 取り扱うことができない、 高い親和性を有したゥサギモノクローナ ル抗体を通常の実験室レベルで容易に取り扱うことが可能となる。
実施例 The method for producing a rabbit monoclonal antibody according to the present invention allows an antibody-producing cell isolated from a rabbit immunized with an antigen to proliferate without using a generally non-circular rabbit-myeloma cell, and then possesses an antibody gene. This method is characterized in that the antibody gene is isolated and amplified from the selected cell, and it is possible to produce a rabbit antibody with the knowledge of normal laboratory facilities and molecular biology. Is. In addition, since the production method of the present invention is difficult in the prior art, a monoclonal antibody having a combination of heavy chain and light chain originally produced by Usagi can be easily produced. Usagi Monoclonal Antibodies with high affinity that can only be handled in Japan can be easily handled at the normal laboratory level. Example
以下、 実施例を用いて本発明をさらに詳細に説明するが、 本発明 はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited to these.
実施例 1 免疫抗原およびスクリーニング抗原の作製 Example 1 Preparation of immune antigen and screening antigen
免疫抗原としては E 2— B S A (商品名) ( S i gm a社製) を 使用した。 また E L I S Aでのスクリーニング用抗原は、 下記の方 法で作製した。 E 2 —B S A (trade name) (manufactured by Sigma) was used as an immunizing antigen. In addition, an antigen for screening with ELIISA was prepared by the following method.
( 1 ) B C P (B l u e C a r r i e r P r o t e i n : P i e r c e社製) 1 0 O mgを 1 O m g ZmLになるように P B Sを 加え、 6位を N—ヒ ドロキシスクシイミ ドで活性化したエス トラジ オール (E 2 ) 1. 2 5 m gを DM F l mLに溶解したものと 混合した。 (1) BCP (Blue Carrier Protein: manufactured by Pierce) 10 O mg of PBS was added to 1 O mg ZmL, and the 6th position was activated with N-hydroxysuccinimide. Tradiol (E 2) 1. 2 5 mg was mixed with DM F 1 mL.
( 2 ) 室温で 2時間撹拌後、 P B Sで透析 ( 1 L X 3回) すること で E 2 — B C Pを得た。 (2) After stirring at room temperature for 2 hours, E 2 — B CP was obtained by dialysis against P B S (1 L X 3 times).
実施例 2 動物と抗原免疫方法 Example 2 Animal and antigen immunization method
免疫動物はゥサギ (日本白色種) の 1 2週齢メスを使用した。 初 回免疫はフロイント完全アジュバント、 2次免疫以降はフロイント の不完全アジュバントを用い、 抗原溶液 ( 5 0 0 gZmL) と等 量のアジュバントを混合後、 ェマルジヨ ンを作製した後に 2週間間 隔で免疫した。 免疫抗抗原量は、 初回 5 0 0 gで 2次免疫以降は 2 5 0 gである。 As the immunized animal, a 12-week-old female of Usagi (Japanese white species) was used. Immediately after the first immunization, Freund's complete adjuvant is used. After the second immunization, Freund's incomplete adjuvant is used. After mixing the antigen solution (500 gZmL) with the same amount of adjuvant, immunization is performed at intervals of 2 weeks. did. The amount of immunizing anti-antigen is 50 g at the first time and 25 g after the second immunization.
次に、 以下に示す E L I S A (E n z ym e L i n k e d I mm u n o s o r b e n t A s s a y) で、 十分な抗体価の上昇 を確認した。 Next, a sufficient increase in the antibody titer was confirmed by the following ELISA (Enzyme lin medI mmunnosor rbentAssay).
( 1 ) E 2— B C P ( 0. b g /m L ) を E L I S Aプレートに 固定化後、 1 %スキムミルクでブロッキングした。 (1) E 2—B C P (0. b g / m L) was immobilized on an E L I S A plate and blocked with 1% skim milk.
( 2 ) ゥサギから採血した血清と反応させた。 E 2 に結合した抗 E
2ゥサギモノクローナル抗体は、 アルカリホスファタ一ゼ標識抗ゥ サギ I g G抗体を結合させ、 未反応の酵素標識抗体を BZF分離後 、 酵素基質である 4ーメチルゥンベリフェリルリン酸 ( 4一 MU P ) を分注し、 蛍光強度を測定することで検出した。 (2) Reacted with blood collected from a rabbit. Anti-E bound to E 2 2 Usagi monoclonal antibody is bound with alkaline phosphatase-labeled anti-usagi IgG antibody, unreacted enzyme-labeled antibody is separated by BZF, and enzyme substrate 4-methylumbelliferyl phosphate (4 One MU P) was dispensed and detected by measuring fluorescence intensity.
実施例 3 脾臓細胞を用いた抗体産生細胞の増殖 (培地での培養 Example 3 Proliferation of antibody-producing cells using spleen cells (culture in medium)
) )
十分に抗体価が上昇したゥサギの脾臓を摘出し、 定法に従い脾臓 細胞を単離した。 脾臓細胞を 1 0 % F C Sを含む G I T培地 (日水 製薬社製) に懸濁し、 マイクロプレートにまいて培養した。 一週間 後に培養上清を実施例 2に記載の方法で、 1 9 2クローンの培養上 清中の抗体を評価した結果を図 1 に示した。 このように、 マイクロ ゥエルプレートの上清中に抗体の産生を確認することができた。 実施例 4 末梢血細胞由来のリンパ球を用いた抗体産生細胞の増 殖 (細胞融合を用いた培養) The spleen of a rabbit with a sufficiently increased antibody titer was removed, and spleen cells were isolated according to a conventional method. Spleen cells were suspended in GIT medium (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 10% F C S, and cultured on a microplate. One week later, the culture supernatant was evaluated by the method described in Example 2 for the antibody in the culture supernatant of 192 clones. The results are shown in FIG. Thus, the production of antibodies could be confirmed in the supernatant of the microwell plate. Example 4 Proliferation of antibody-producing cells using lymphocytes derived from peripheral blood cells (culture using cell fusion)
以下に示す方法で、 末梢血細胞由来のリンパ球と不死化能を与え る細胞とを融合させた。 Peripheral blood cell-derived lymphocytes were fused with immortalizing cells by the method described below.
( 1 ) 十分に抗体価が上昇したゥサギ末梢血から採取したリンパ球 と、 マウスミエローマ細胞の遺伝子にゥサギの染色体が一部組み込 まれている細胞 ( 2 — 3 A、 特許文献 1 ) を融合した。 なお、 本細 胞 ( 2 — 3 A) は、 栄研化学株式会社により樹立されたもので、 栄 研化学株式会社の好意により譲渡して頂いたものである。 (1) Fusion of lymphocytes collected from the peripheral blood of a rabbit with a sufficiently high antibody titer and a cell (2-3A, Patent Document 1) in which the mouse myeloma cell gene is partially integrated did. This cell (2-3A) was established by Eiken Chemical Co., Ltd. and was transferred with the courtesy of Eiken Chemical Co., Ltd.
( 2 ) 定法 ( P E G法) に従い、 2— 3 A細胞と末梢血細胞由来の リンパ球とを融合させた。 (2) According to a standard method (PEG method), 2-3 A cells and lymphocytes derived from peripheral blood cells were fused.
( 3 ) 融合後の細胞浮遊液を 1 0 % F C S、 1 XHATを含むG I T培地 (日水製薬社製) で懸濁し、 マイクロ夕イタ一プレートにま いた。 (3) The cell suspension after the fusion was suspended in GIT medium (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 10% FCS and 1 XHAT and placed on a microtiter plate.
3 8 4クローンの培養上清中の抗体を実施例 2に記載の方法で評
価した結果を図 2に示した。 このように、 マイクロウェルプレー卜 の上清中に抗体の産生を確認することができた。 The antibodies in the culture supernatant of 3 8 4 clones were evaluated by the method described in Example 2. The calculated results are shown in FIG. In this way, antibody production could be confirmed in the supernatant of the microwell plate.
実施例 5 脾臓細胞を用いた抗体産生細胞の増殖 (細胞融合を用 いた培養) Example 5 Proliferation of antibody-producing cells using spleen cells (culture using cell fusion)
以下に示す方法で、 脾臓細胞と不死化能を与える細胞とを融合さ せた。 Spleen cells were fused with immortalizing cells by the method described below.
( 1 ) 十分に抗体価が上昇したゥサギの脾臓を摘出し、 定法に従つ て脾臓細胞を調製した。 なお、 ゥサギ脾臓細胞と細胞融合する細胞 は、 実施例 4で使用した細胞 ( 2 — 3 A、 特許文献 1 ) を使用した (1) The spleen of a rabbit with a sufficiently increased antibody titer was removed, and spleen cells were prepared according to a conventional method. The cells used in Example 4 (2-3A, Patent Document 1) were used as the cells that fused with the rabbit spleen cells.
( 2 ) 定法 (P E G法) に従い、 2— 3 A細胞とゥサギ脾臓細胞を 融合させた。 (2) According to the standard method (PEG method), 2-3 A cells were fused with rabbit spleen cells.
( 3 ) 融合後の細胞浮遊液を 1 0 % F C S、 1 XHATを含む G I T培地 (日水製薬社製) で懸濁し、 マイクロタイ夕一プレートにま いた。 (3) The cell suspension after the fusion was suspended in a GIT medium (manufactured by Nissui Pharmaceutical) containing 10% FCS and 1 XHAT and spread on a microtie plate.
( 4 ) 培養上清中の抗 E 2抗体の性能を下記の 3つの E L I S Aに より評価した。 (4) The performance of the anti-E2 antibody in the culture supernatant was evaluated by the following three ELISA.
( 4— 1 ) 反応性 : E 2 — B C P ( 0. 5 g ZmL) を E L I S Aプレートに固定化した後、 1 %スキムミルクでブロッキングした 。 その後、 細胞融合後の培養上清を反応させた。 E 2に結合した抗 E 2ゥサギモノクローナル抗体は、 アルカリホスファターゼ標識抗 ゥサギ I g G抗体を結合させ、 未反応の酵素標識抗体を B/ F分離 後、 酵素基質である 4—メチルゥンベリフェリルリン酸 ( 4一 MU P) を分注し、 蛍光強度を測定することで検出した。 (4-1) Reactivity: E 2 — B C P (0.5 g ZmL) was immobilized on an ELIISA plate and then blocked with 1% skim milk. Thereafter, the culture supernatant after cell fusion was reacted. Anti-E 2 Usagi monoclonal antibody bound to E 2 binds alkaline phosphatase-labeled anti-rabbit Ig G antibody, B / F separation of unreacted enzyme-labeled antibody, and 4-methylumbelliferous enzyme substrate. Ferryl phosphate (41-MU P) was dispensed and detected by measuring fluorescence intensity.
( 4一 2 ) 競合特性 : 反応性を評価する実験系に、 E 2 ( 5 0 0 p g/mL) を共存させる実験を行なった。 ここで得られた値 (B) を、 反応性で得られた値 (B 0 ) で割ることで、 競合特性 (B ZB
0値) を算出した。 (4 1-2) Competitive characteristics: An experiment was conducted in which E 2 (500 pg / mL) coexists in the experimental system for evaluating reactivity. By dividing the value (B) obtained here by the value (B 0) obtained by reactivity, the competitive property (B ZB (0 value) was calculated.
( 4一 3 ) 特異性 : 反応性を評価する実験系に、 各種ステロイ ド ( エス 卜ロン : E l、 エス ト リオール : E 3、 ェチニルェス トラジオ —ル : E t E 2、 テス トステロン : T S、 各 5 0 0 p g /m L ) を共存させる実験をおこなった。 ここで得られた値 (B) を、 反応 性で得られた値 (B炬0 ) で割ることで、 特異性 (BZB 0値) を算 出した。 (4-3) Specificity: In the experimental system to evaluate the reactivity, various steroids (S 卜 ron: El, Estriol: E3, ethynyl estradiol: E t E2, testosterone: TS, Each experiment was conducted in the presence of 500 pg / m L). The specificity (BZB 0 value) was calculated by dividing the value (B) obtained here by the value obtained by reactivity (B) 0).
以上得られた 3つのデータをグラフ化した (図 3 ) 。 横軸に特異 性 (BZB 0値) を、 縦軸に競合特性 (BZB 0値) を、 反応性は 円の大きさでプロッ トした。 このグラフの中で、 黒丸で塗りつぶし たクローンは、 競合特性が高く、 特異性も高く、 かつ、 反応性も高 いクローンである。 The three data obtained above were graphed (Fig. 3). Specificity (BZB 0 value) is plotted on the horizontal axis, competitive characteristics (BZB 0 value) on the vertical axis, and reactivity is plotted in circle size. In this graph, clones filled with black circles are clones with high competitive characteristics, high specificity, and high reactivity.
実施例 6 抗体遺伝子の単離 · 増幅と発現ベクターの作製 実施例 5の結果、 図 3で黒丸で塗りつぶしたクローンを選別後、 当該クローンから以下の方法で抗体遺伝子を単離、 増幅後、 発現べ クタ一を作製した。 Example 6 Isolation / Amplification of antibody gene and preparation of expression vector As a result of Example 5, after selecting clones filled with black circles in Fig. 3, antibody genes were isolated from the clones by the following method, amplified and expressed A vector was fabricated.
( 1 ) M a g M a x TM- 9 6 T o t a 1 R N A I s o 1 t i o b i o ri社製) を用い、 添付さ れているプロ 卜コルに従って細胞からの R N Aの単離を行なった。 (1) MagNAxTM-96 1 Tota 1 RN A 1 So 1 tiob iori) was used to isolate RNA from cells according to the attached protocol.
( 2 ) 単離した R N Aを踌型とし、 R e a d y - T o - G o Y o u— P r i m e F i r s t — S t r a n d B e a d s (商品名 (2) The isolated R N A is used as a saddle, and R e a d y-T o-Go Y u u-P r i m e F i r s t-S t r a n d B e a d s (trade name
) (G E H e a l t h c a r e社製 ) を用いて、 逆転写反応を行 なレ c D NAを合成した。 ) (Manufactured by GE HEALTH CARE) was used for reverse transcription to synthesize cDNA.
( 3 ) ゥサギ抗体遺伝子に特異的なプライマ一 (重鎖 (H鎖) およ び軽鎖 (L鎖) に特異的なプライマ一 、 配列番号 1から 4、 なお配 列 1 と 2は H鎖、 配列 3 と 4は L鎖にそれぞれ特異的なプライマ一 である) を用レ P h u s i o n H i g h— F i d e l i t y D
N A p o l y m e r a s e (商品名) (第一化学薬品社製) で、 抗体遺伝子を P C R反応で増幅させた。 条件を以下に示す。 (3) Primer specific to the rabbit antibody gene (primer specific to heavy chain (H chain) and light chain (L chain), SEQ ID NOs: 1 to 4, SEQ ID NOs: 1 and 2 are H chains Sequences 3 and 4 are primers specific to the L chain, respectively) P husion H igh— Fidelity D The antibody gene was amplified by PCR reaction using NA polymerase (trade name) (Daiichi Chemical Co., Ltd.). The conditions are shown below.
(試薬組成) (Reagent composition)
キッ トに添付の緩衝液で、 d N T P 0. 2 M、 プライ マーはそれぞれ 0. 5 で行なった。 The buffer solution supplied with the kit was used with d N T P 0.2 M and the primer 0.5.
(反応条件) (Reaction conditions)
9 8でで 3 0秒保持後、 9 8でで 1 0秒、 7 2でで 5 0秒 のサイクルを 3 5サイクル繰り返し、 その後 7 2でで 1 0分 間保持した。 After holding for 30 seconds at 98, the cycle of 10 seconds at 98, 10 seconds at 72, and 50 seconds at 72 was repeated 35 cycles, and then at 72, the cycle was held for 10 minutes.
( 4 ) 電気泳動で遺伝子の増幅を確認した。 (4) Gene amplification was confirmed by electrophoresis.
( 5 ) 得られた H鎖及び L鎖の P C Rフラグメントを、 B g l I I と X b a I で制限酵素処理した後、 動物細胞用発現ベクター ( p E C E d h f r : 図 4 ) の B g l I i ZX b a lサイ トに導入し、 H 鎖、 L鎖用の発現べクタ一を調製した。 (5) The obtained H-chain and L-chain PCR fragments were treated with restriction enzymes BglII and XbaI, and then the animal cell expression vector (pECE dhfr: Fig. 4) BglIiZXbal Introduced into the site, expression vectors for H and L chains were prepared.
実施例 7 遺伝子組換え抗体の発現 (C O S細胞による一過性発 現) と精製 Example 7 Expression of recombinant antibody (transient expression by COS cells) and purification
実施例 6で得られた H鎖、 L鎖用の発現べクタ一を用い、 C O S 1細胞 (非特許文献 1 7、 1 8 ) において遺伝子組換え抗体の生産 を行なった。 なお、 実施例 6における抗体遺伝子の単離操作は細胞 融合後 8 日目に実施した。 Using the expression vector for H chain and L chain obtained in Example 6, recombinant antibodies were produced in COS 1 cells (Non-patent Documents 17 and 18). The antibody gene isolation procedure in Example 6 was performed 8 days after cell fusion.
( 1 ) 9 6ゥエルプレート上で対数増殖期にある C O S細胞に、 H 鎖発現ベクターと L鎖発現べクタ一各 2 0 0 n gを、 リボフェク ト ァミン 2 0 0 0 (商品名) (インビトロジェン社製) で導入した。 遺伝子導入時の培地は、 O p t i — M E M (商品名) (インビトロ ジェン社製) を使用した。 (1) To COS cells in the logarithmic growth phase on 96 well plates, add 20 ng each of the H chain expression vector and L chain expression vector, ribofectamine 2 200 (trade name) (Invitrogen) Introduced). As a medium for gene introduction, Opti-M E M (trade name) (manufactured by Invitrogen) was used.
( 2 ) 遺伝子導入から 3 日後に培養上清を回収し、 E L I S Aで抗 体の存在を確認した。
( 3 ) 抗原結合能が確認された抗体遺伝子ペアを有する C O S細胞 を、 培養スケールを上昇させて培養し、 抗体の一過性発現を行なつ た。 (2) Three days after gene transfer, the culture supernatant was collected and the presence of the antibody was confirmed by ELISA. (3) COS cells having antibody gene pairs with confirmed antigen binding ability were cultured at an increased culture scale, and the antibody was transiently expressed.
( 4 ) 定法に従い培養上清から P r o t e ί η G.カラム (G E H e a l t h e a r e社製) で抗 E 2抗体を精製した。 抗体の性能 を評価し、 競合特性、 特異性、 生産性などの点から性能が高かった 抗体を選定した。 (4) The anti-E2 antibody was purified from the culture supernatant using a Protein η G. column (manufactured by GE HEALTHEARE) according to a conventional method. The performance of the antibody was evaluated, and the antibody with the highest performance in terms of competitive characteristics, specificity, and productivity was selected.
実施例 8 ゥサギモノクローナル抗体安定産生株の作製 Example 8 Production of stable production strain of Usagi monoclonal antibody
実施例 7で選定した抗体の発現ベクターを C HO細胞に導入する ことで、 抗体安定産生株を作製した。 An antibody expression vector selected in Example 7 was introduced into CHO cells to produce a stable antibody-producing strain.
対数増殖期にある、 C HO細胞 (D X B 1 1 : d h f r欠損株) に実施例 7 と同じ条件で遺伝子を導入し、 アルファ一 ME M (—) に 1 0 %透析血清を添加した培地で、 細胞を培養した。 その後、 M T X (メソ ト レキセー ト) の濃度を 5 n Mから 5 0 0 n Mまで段階 的に上昇させ、 ゥサギモノクローナル抗体 U— 1発現 C HO細胞を 得た。 In a logarithmic growth phase, C HO cells (DXB 11: dhfr-deficient strain) were transfected with a gene under the same conditions as in Example 7, and alpha 1 ME M (—) was added with 10% dialyzed serum. Cells were cultured. Thereafter, the concentration of MTX (mesotrexate) was gradually increased from 5 nM to 500 nM to obtain rabbit monoclonal antibody U-1-expressing CHO cells.
実施例 9 発現抗体の親和性測定 Example 9 Affinity measurement of expressed antibody
B I A c o r e T - 1 0 0 (商品名) (ビアコア社製) を用い て、 以下に示す 3種類のモノクローナル抗体の親和性を測定した。 The affinity of the following three types of monoclonal antibodies was measured using BIAcore T-1100 (trade name) (Biacore).
( a ) 東ソー株式会社で単離したマウスモノクローナル抗体 M a一 1 (a) Mouse monoclonal antibody isolated by Tosoh Corporation Ma 1
( b ) 東ソ一株式会社で単離したラッ トモノクローナル抗体 R a— 1 (b) Rat monoclonal antibody Ra-1 isolated by Tosohichi Corporation
( c ) 本発明で製造したゥサギモノクローナル抗体 U— 1 親和性は以下に示す方法で測定した。 (c) The affinity of the rabbit monoclonal antibody U-1 produced in the present invention was measured by the following method.
( 1 ) E 2誘導体 ( 6位にアミ ノ基が導入されたもの) をァミ ン力 ップリ ング法で、 センサ一チップ (C M 5 ) 上に結合させたものを
使用した。 (1) An E2 derivative (in which an amino group is introduced at the 6-position) bonded to the sensor chip (CM5) by the amine force printing method. used.
( 2 ) 緩衝液 : H B S— E P、 温度 : 2 5で、 流速 3 0 L Zm i n、 結合時間 : 1分、 解離時間 : 1 0分、 の条件で解析を行なった (2) Analysis was performed under the following conditions: buffer solution: H B S—EP, temperature: 25, flow rate 30 L Zmin, binding time: 1 minute, dissociation time: 10 minutes
( 3 ) 得られたデ一夕を、 解析ソフ ト (B i a c o r e T 1 0 0 E v a l u a t i o n S o f t w a r e、 v e r s i o n 1 . 1 ) を用い、 b i v a l e n tモデルで解析し、 K d (M) の値 を算出した。 (3) Using the analysis software (Biacore T 100 Evaluation Evaluation software, version 1.1), the obtained data was analyzed with the bivalent model, and the value of K d (M) was calculated. .
解離定数 (K d ) を横軸に、 縦軸に競合特性 ( l O O O p g Zm Lの E 2が共存したときの値を E 2が存在しないときの値で割った 値。 東ソー株式会社製の A I A— 6 0 0 I I を用いて測定した結果 ) を測定すると、 親和性の高い抗体ほど競合特性も高く、 高感度な 測定系を構築できることがわかる (図 5 ) 。 マウスモノクローナル 抗体 M a— 1 ( K d = 8. 1 X 1 0 - 1 0 M) 、 ラッ トモノクロ一 ナル抗体 R a _ l (K d = 5. 2 X 1 0— 1 1 ) はそれぞれ一般 的には親和性の高い抗体に分類されるが、 本発明で製造したゥサギ モノクローナル抗体 U— 1 (K d = 3. 3 X 1 0 - 1 3 M) は M a 一 1よりも約 2 5 0 0倍、 R a— 1よりも約 1 6 0倍、 それぞれ親 和性が向上していた。 Dissociation constant (K d) on the horizontal axis and vertical axis on the competitive property (value obtained when E 2 of l OOO pg Zm L coexists with the value when E 2 does not exist. As a result of measurement using AIA-6200 II, it can be seen that antibodies with higher affinity have higher competitive properties and a highly sensitive measurement system can be constructed (Fig. 5). Mouse monoclonal antibody M a- 1 (K d = 8. 1 X 1 0 - 1 0 M), rat Tomonokuro one monoclonal antibody R a _ l (K d = 5. 2 X 1 0- 1 1) respectively generalization Is classified as a high-affinity antibody, but the rabbit monoclonal antibody U-1 (K d = 3.3 X 1 0-1 3 M) produced in the present invention is approximately 2 5 0 than M a 1 1 The friendliness was improved by 0 times, approximately 160 times that of Ra-1.
実施例 1 0 単離した抗体の蛍光偏光解消法による評価 Example 10 Evaluation of Isolated Antibody by Fluorescence Depolarization Method
単離した抗体を蛍光偏光解消法で結合性を評価した (図 6 ) 。 テ トラメチルローダミンで標識した E 2 を使用し、 横軸に抗体濃度を 、 縦軸に蛍光偏光度 (mP) をプロッ トしたものである。 テトラメ チルローダミン標識 E 2の mP値を 2 0 としたとき、 抗体濃度を増 加させた場合の偏光度の変化を示している。 抗体濃度が高くなるに つれ、 テトラメチルローダミンで標識された E 2が抗体と結合する ため、 大きい偏光度を得るようになる。 本発明で製造したゥサギモ
ノクローナル抗体 U— 1 は、 マウスモノクローナル抗体 M a— 1、 ラッ トモノクローナル抗体 R a— 1 と比較して 1 0 0倍以上低い濃 度で偏光度が増加している。 このことは、 U— 1が、 M a— 1およ び R a _ 1 より親和性が極めて高いことを示している。 The binding of the isolated antibody was evaluated by fluorescence depolarization (Figure 6). Using E 2 labeled with tetramethylrhodamine, the antibody concentration is plotted on the horizontal axis and the degree of fluorescence polarization (mP) is plotted on the vertical axis. When the mP value of tetramethylrhodamine labeled E 2 is 20, the change in the degree of polarization is shown when the antibody concentration is increased. As the antibody concentration increases, E 2 labeled with tetramethylrhodamine binds to the antibody, resulting in a higher degree of polarization. Usagimo made in the present invention The monoclonal antibody U-1 has an increased degree of polarization at a concentration that is at least 100 times lower than that of the mouse monoclonal antibody Ma-1 and the rat monoclonal antibody Ra-1. This indicates that U-1 has a much higher affinity than M a-1 and R a _ 1.
実施例 1 1 A I A試薬形態でのモノクローナル抗体の評価 本発明で製造したゥサギモノクローナル抗体 U— 1 を使用した免 疫反応試薬を、 ポリクローナル抗体を使用した免疫反応試薬 (Eテ ス ト 「T〇 S〇H」 I I E 2、 東ソ一社製) と性能を比較した。 両免疫反応試薬の検量線を図 7 に示す。 E 2の検出限界はポリ クロ —ナル抗体を使用した免疫反応試薬が 2 5. 2 p g ZmLであるの に対し、 U— 1 を使用した免疫反応試薬は 2 2. 4 p g ZmLと、 ポリクロ一ナル抗体を使用した免疫反応試薬より高感度な測定系が 構築できることが明らかとなった。 Example 1 1 Evaluation of Monoclonal Antibody in AIA Reagent Form The immune reaction reagent using the rabbit antibody monoclonal antibody U-1 produced in the present invention was changed to the immunoreaction reagent using the polyclonal antibody (E test “T〇”). S〇H ”IIE 2, manufactured by Tosohichi Co., Ltd.) Fig. 7 shows the calibration curves for both immune reaction reagents. The detection limit for E 2 is 25.2 pg ZmL for immunoreactive reagents using polyclonal antibodies, whereas 2 2.4 pg ZmL for immunoreactive reagents using U-1 is It has been clarified that a measurement system with higher sensitivity than an immunoreaction reagent using a null antibody can be constructed.
また、 エス トロン (E 1 ) およびエス ト リオ一ル (E 3 ) といつ た、 類似ステロイ ドへの交差反応性 ( l O n gZmL ) を測定した ところ、 E 1の場合 (市販の A I A試薬 : 4. 7 7 %、 ゥサギモノ クローナル抗体 U _ 1 を用いた A I A試薬 : 0. 9 2 %) 、 E 3の 場合 (市販の A I A試薬 : 4. 1 9 %、 ゥサギモノクローナル抗体 1;— 1 を用ぃた八 1 八試薬 : 0. 2 8 %) 、 いずれもステロイ ド類 に対する交差反応性が大幅に改善された。 In addition, when cross-reactivity (l O n gZmL) with estrone (E 1) and estriol (E 3) to similar steroids was measured, E 1 (commercially available AIA reagent) : 4.7 7%, AIA Reagent with Usagi Monoclonal Antibody U_1: 0.92%) and E 3 (Commercial AIA Reagent: 4. 19%, Usagi Monoclonal Antibody 1; — 1 8) Reagents: 0.28%), both of which significantly improved the cross-reactivity to sterolides.
次に、 4 0例の実検体を用いて両測定系の相関性を見た結果を図 8に示した。 回帰係数 0. 9 2 4、 y切片— 2. 3 8 7 p g /mL 、 相関係数 r = 0. 9 9 8 というきわめて高い相関性を示した。 実施例 1 2 遺伝子単離時期と単離される遺伝子の割合 Next, FIG. 8 shows the results of examining the correlation between both measurement systems using 40 actual samples. The regression coefficient was 0.92 4, y-intercept—2.3 8 7 pg / mL, and the correlation coefficient r = 0.99 8, indicating a very high correlation. Example 1 2 Gene isolation time and percentage of isolated genes
ヘテロハイプリ ドーマは遺伝子が脱落しやすいとの情報はあるが 、 それがどの程度の時間で消失してしまうかなどの詳細な解析は報 告されていなかった。 本発明者らも、 細胞融合後の培養上清を E L
I S Aで評価し、 抗体が培養上清に発現していることを確認した後 、 その細胞から抗体遺伝子の増幅を試みても、 抗体遺伝子が増幅で きないという問題に直面した。 P C Rの条件、 プライマーの配列な どの種々の観点から遺伝子が増幅できない理由を検討した結果、 細 胞融合後に得られたヘテロハイプリ ドーマを経代培養する際、 通常 のマウスモノクローナル抗体を取り扱うのと同じ感覚で取り扱うと 、 抗体を発現しなくなる時期の特定が難しいことを見出した。 通常 、 細胞を継代培養する際は、 細胞懸濁液を約 1 0倍量程度の新しい 培地に移して培養を継続するため、 はじめの培養上清中は、 新しい 培地に移すことで希釈されてゆく。 つまり、 細胞が安定に抗体を発 現していない場合は、 培養上清が希釈されるため、 継代培養後の培 養上清のシグナルは激減する。 しかし、 ゥサギモノクローナル抗体 の場合はこの理論は当てはまらなかった。 ゥサギモノクローナル抗 体はマウスモノクローナル抗体と比較して、 極端に親和性が高く、 継代培養により培養上清が 1 0倍あるいは 1 0 0倍程度希釈されて も E L I S Aでは十分なシグナルが得られるため、 すでにへテロハ イブリ ドーマから抗体遺伝子は脱落し、 抗体は発現していないにも かかわらず、 E L I S Aでは陽性判定となってしまう。 このことは 、 実施例 1 0において、 本特許で単離したゥサギモノクローナル抗 体とマウスモノクローナル抗体の結合性の比較を行なった結果、 ゥ サギモノクローナル抗体はマウスモノクローナル抗体より 1 0 0倍 以上低い濃度でも抗原結合能が観察されていることからも裏づけで さる。 Although there is information that the heterohyperidoma is likely to lose the gene, detailed analysis such as how long it disappears has not been reported. The present inventors also used the culture supernatant after cell fusion as EL. After evaluating by ISA and confirming that the antibody was expressed in the culture supernatant, even when attempting to amplify the antibody gene from the cell, the antibody gene could not be amplified. As a result of investigating why the gene cannot be amplified from various viewpoints such as PCR conditions and primer sequences, it is the same as handling normal mouse monoclonal antibodies when subculturing heterohybridomas obtained after cell fusion. When it is handled with a sense, it was found that it is difficult to specify when the antibody is not expressed. Normally, when cells are subcultured, the cell suspension is transferred to a new medium of about 10 times volume and the culture is continued, so the first culture supernatant is diluted by transferring to a new medium. Go. In other words, when cells do not stably express antibodies, the culture supernatant is diluted, and the signal of the culture supernatant after subculture is drastically reduced. However, this theory did not hold for the rabbit monoclonal antibody. Usagi monoclonal antibody has extremely high affinity compared to mouse monoclonal antibody, and sufficient signal can be obtained by ELISA even if the culture supernatant is diluted about 10 times or 100 times by subculture. Therefore, the antibody gene has already dropped from the heterohybridoma, and the ELISA is positive even though the antibody is not expressed. This is because, in Example 10, the binding properties of the rabbit monoclonal antibody isolated in this patent and the mouse monoclonal antibody were compared. As a result, the rabbit monoclonal antibody was more than 100 times lower than the mouse monoclonal antibody. This is supported by the fact that antigen-binding ability was observed even at concentrations.
そこで、 実施例 6において、 細胞融合後に抗体遺伝子を単離する 時期を変更し、 最適な単離時期について検討した。 結果を表 1 に示 す。
表 1 Therefore, in Example 6, the time for isolating the antibody gene after cell fusion was changed, and the optimum time for isolation was examined. The results are shown in Table 1. table 1
細胞融合後 8 日目で遺伝子を増幅すると、 3回の実験の平均で、 H鎖遺伝子は 8 6. 1 %、 L鎖遺伝子は 9 4. 4 %の確率で増幅で きた。 そして、 増幅した遺伝子から発現ベクターを作製し C〇 S細 胞で発現させた抗体を評価したところ、 7 5. 0 %の抗体は抗原結 合能を有していた。 また、 3回の実験を通じ、 安定した増幅率およ び抗体取得率を示したことから、 当該期間で増幅すると抗体結合活 性を持ったベクタ一を安定的に取得できることがわかる。 When the gene was amplified on the 8th day after cell fusion, the H chain gene was amplified with a probability of 86.1% and the L chain gene with a probability of 94.4% on average of three experiments. Then, when an expression vector was prepared from the amplified gene and the antibody expressed in COS cells was evaluated, 75.0% of the antibodies had antigen-binding ability. In addition, a stable amplification rate and antibody acquisition rate were demonstrated through three experiments, indicating that a vector with antibody binding activity can be stably acquired by amplification during this period.
一方、 細胞融合後 1 6 日目で遺伝子を単離すると、 それぞれの数 値は、 2 5. 0 %、 8 8. 9 %、 9. 5 2 %と低下した。 このこと から、 単離する時期が遅いと特に H鎖遺伝子で急速な抗体遺伝子の 脱落が起きていることがわかる。 On the other hand, when the genes were isolated on the 16th day after cell fusion, the respective values decreased to 25.0%, 88.9%, and 9.52%. From this, it can be seen that when the isolation period is late, rapid loss of the antibody gene occurs particularly in the H chain gene.
実施例 1 3 抗トリヨ一ドサイロニン (T 3 ) 抗体の単離 抗トリヨ一ドサイロニン (T 3 ) ゥサギモノクローナル抗体を以 下の方法で単離した。 Example 1 3 Isolation of Anti-Triyoidothyronine (T 3) Antibody Anti-triyodothyronine (T 3) Usagi monoclonal antibody was isolated by the following method.
( 1 ) 免疫抗原の作製 (1) Preparation of immune antigen
B S A ( S i g m a社製) 2 5 m gを 1 O m g /mLになるよう に、 ホウ酸バッファー ( 0. 0 5 M、 p H 8. 5 ) を加え、 カルボ ン酸をメチルエステルとして保護した後、 ァミノ基からリ ンカ一を 伸ばした。 次に、 前記溶液と、 N—ヒ ドロキシスクシイミ ドで活性 化した T 3 7 m gを DM S O 1 0 0 / Lに溶解した液とを混合 した。 室温で 3 0分撹拌後、 P B Sで透析 ( 5 0 0 mL X 3回) す ることで、 免疫抗原である T 3— B S Aを得た。 After adding boric acid buffer (0.05 M, pH 8.5) so that 5 mg of BSA (manufactured by Sigma) is 1 O mg / mL, and protecting the carboxylic acid as a methyl ester The linker was extended from the amino group. Next, the solution was mixed with a solution obtained by dissolving T 37 mg activated with N-hydroxysuccinimid in DMSO 100 / L. After stirring at room temperature for 30 minutes, dialysis against PBS (50 mL x 3 times) gave T3-BSA as an immunizing antigen.
( 2 ) スクリーニング抗原の作製 (2) Preparation of screening antigen
B C P (B l u e C a r r i e r P r o t e i n : P i e r c e社製) を用いて ( 1 ) と同様の方法で作製した。 B C P 2 5 mgを l O m g ZmLになるように、 ホウ酸バッファー ( 0. 0 5 M、 p H 8. 5 ) を加えた。 前記溶液に、 N—ヒ ドロキシスクシィ
ミ ドで活性化した T 3 7 m gを D M S O I O O Lに溶解した 液とを混合した。 室温で 3 0分撹拌後、 P B Sで透析 ( 5 0 0 mL X 3回) することで、 E L I S Aでのスクリーニング抗原である T 3 — B C Pを得た。 BCP (Blue Carrier Protein: manufactured by Pierce) was used in the same manner as (1). Boric acid buffer (0.05 M, pH 8.5) was added so that 5 mg of BCP was 1 O mg ZmL. In the solution, N-hydroxysucci A solution obtained by dissolving 7 mg of T 3 activated with medium in DMSOIOOL was mixed. After stirring at room temperature for 30 minutes, dialysis against PBS (50 mL × 3 times) yielded ELISA screening antigen T 3 —BCP.
( 3 ) 動物と抗原免疫方法 (3) Animals and antigen immunization methods
免疫動物はゥサギ (日本白色種) の 1 2週齢メスを使用した。 初 回免疫はフロイント完全アジュバント、 2次免疫以降はフロイント の不完全アジュバントを用い、 抗原溶液 ( 5 0 0 / g mL ) と等 量のアジュバントを混合後、 ェマルジヨ ンを作製した後に 2週間間 隔で免疫した。 免疫抗抗原量は、 初回 1 m gで 2次免疫以降は 5 0 0 gである。 As the immunized animal, a 12-week-old female of Usagi (Japanese white species) was used. Freund's complete adjuvant is used for the first immunization, and Freund's incomplete adjuvant is used for the second and subsequent immunizations. After mixing the antigen solution (500 / g mL) with the same amount of adjuvant, the emulsion is prepared and separated for 2 weeks. Immunized with. The amount of immunizing anti-antigen is 1 mg for the first time and 500 g after the second immunization.
次に、 以下に示す E L I S Aで十分な抗体価の上昇を確認した。 Next, a sufficient increase in antibody titer was confirmed with the following ELISA.
( 3 — 1 ) T 3 — B C P ( 0. 5 /I g /mh ) を E L I S Aプレー 卜に固定化後、 1 %スキムミルクでブロッキングした。 (3-1) T 3 — B C P (0.5 / I g / mh) was immobilized on E L I S A plate and then blocked with 1% skim milk.
( 3 — 2 ) ゥサギから採血した血清と反応させた。 T 3に結合した 抗 T 3ゥサギモノクローナル抗体は、 アルカリホスファ夕ーゼ標識 抗ゥサギ I g G抗体を結合させ、 未反応の酵素標識抗体を B Z F分 離後、 酵素基質である 4ーメチルゥンベリフェリルリン酸 ( 4 — M U P ) を分注し、 蛍光強度を測定することで検出した。 (3-2) Reacted with sera collected from rabbits. Anti-T3 Usagi monoclonal antibody bound to T3 binds alkaline phosphatase-labeled anti-rabbit IgG antibody, unreacted enzyme-labeled antibody is separated by BZF, and then enzyme substrate 4-methyl It was detected by dispensing umbelliferyl phosphate (4 — MUP) and measuring the fluorescence intensity.
( 4 ) 抗体産生細胞の増殖 (培地での培養) (4) Growth of antibody-producing cells (culture in medium)
十分に抗体価が上昇したゥサギの脾臓を摘出し、 細胞凍結保存液 The spleen of a rabbit with a sufficiently high antibody titer is removed, and the cell cryopreservation solution
(セルバンカー 1 (商品名) 、 日本全薬工業社製) 中に分散させた 状態で、 ディープフリーザ一中 (一 8 0 ) で保存した。 保存細胞 は定法に従って解凍し、 G I T培地 (日水製薬社製) で懸濁し、 マ イク口タイ夕一プレートにまいた。 5 日間培養後の培養上清中にあ る抗 T 3抗体の性能は下記の 3つの E L I S Aにより評価した。(Cell banker 1 (trade name), manufactured by Nippon Zenyaku Kogyo Co., Ltd.) In a state of being dispersed in, it was stored in the deep freezer (180). The preserved cells were thawed according to a standard method, suspended in GIT medium (manufactured by Nissui Pharmaceutical Co., Ltd.), and spread on a micromouth plate. The performance of anti-T3 antibody in the culture supernatant after 5 days of culture was evaluated by the following three ELISA.
( 4— 1 ) 反応性 : A n t i — R a b b i t I g G ( 0. 5 ^ g
ZmL) を E L I S Aプレートに固定化した後、 1 %スキムミルク でブロッキングした。 その後、 培養上清とアルカリホスファターゼ 標識 T 3を同時に反応させた。 ゥサギモノクローナル抗体に未反応 の酵素標識 T 3を BZF分離後、 酵素基質である 4一メチルゥンべ リフエリルリ ン酸 ( 4一 MU P ) を分注し、 蛍光強度を測定するこ とで検出した。 (4-1) Reactivity: A nti — R abbit I g G (0.5 ^ g ZmL) was immobilized on an ELISA plate and blocked with 1% skim milk. Thereafter, the culture supernatant and alkaline phosphatase-labeled T3 were reacted at the same time. Unreacted enzyme labeled T3 was isolated from the Usagi monoclonal antibody by BZF separation, and the enzyme substrate 41-methylmethylphosphorylphosphate (41-MUP) was dispensed and detected by measuring the fluorescence intensity.
( 4一 2 ) 競合特性 : 反応性を評価する実験系に、 T 3 ( 2 n M) を共存させる実験を行なった。 ここで得られた値 (B) を、 反応性 で得られた値 (B 0 ) で割ることで、 競合特性 (B/B 0値) を算 出した。 (4 1-2) Competitive characteristics: An experiment was conducted in which T 3 (2 n M) coexists in the experimental system for evaluating reactivity. The competitive property (B / B 0 value) was calculated by dividing the value (B) obtained here by the value (B 0) obtained from the reactivity.
( 4一 3 ) 競合特性 : 反応性を評価する実験系に、 T 4 ( 2 0 n M ) を共存させる実験を行なった。 ここで得られた値 (B) を、 反応 性で得られた値 (B 0 ) で割ることで、 特異性 (BZB 0値) を算 出した。 (4-3) Competitive characteristics: An experiment was conducted in which T 4 (20 nM) coexists in the experimental system for evaluating reactivity. The specificity (BZB 0 value) was calculated by dividing the value (B) obtained here by the value (B 0) obtained from the reactivity.
以上得られた 3つのデータをグラフ化した (図 9 ) 。 横軸に特異 性 (BZB 0値) を、 縦軸に競合特性 (BZB 0値) を、 反応性は 円の大きさでプロッ トした。 このグラフの中で、 黒丸で塗りつぶし たクローンは、 競合性能が高く、 特異性も高く、 かつ反応性も高い クローンである。 The three data obtained above were graphed (Fig. 9). Specificity (BZB 0 value) is plotted on the horizontal axis, competitive characteristics (BZB 0 value) on the vertical axis, and reactivity is plotted in circle size. In this graph, clones filled with black circles are clones with high competitive performance, high specificity, and high reactivity.
( 5 ) 抗体遺伝子の単離 · 増幅と発現ベクターの作製 (5) Isolation of antibody genesAmplification and production of expression vectors
( 4 ) の結果、 図 9で黒丸で塗りつぶしたクローンを選別後、 選 別した次の日に以下の方法で抗体遺伝子の単離を行なった。 As a result of (4), the clones filled with black circles in FIG. 9 were selected, and the antibody gene was isolated by the following method on the next day after selection.
( 5 - 1 ) R N e a s y P l u s M i c r o k i t (商品名 ) (Q I A G E N社 ) を用い、 添付されているプロ トコルに従つ て、 細胞からの R NAの抽出を行なった。 (5-1) RNA was extracted from cells according to the attached protocol using RNeasy Plu s Microkit (trade name) (QIAGEN).
( 5— 2 ) ( 5— 1 ) で得られた R NAを铸型とし、 S e n s i s c r i p t R T K i t (商品名) (Q I A G E N社製) を用い
て逆転写反応を行ない、 c D NAを合成した。 (5-2) Using the RNA obtained in (5-1) as a saddle and using Sensiscript RTK it (trade name) (QIAGEN) The reverse transcription reaction was performed to synthesize cDNA.
( 5— 3 ) ゥサギ '抗体遺伝子に特異的なプライマー (H鎖および L 鎖に特異的なプライマー。 配列番号 1から 3、 5から 7 ) を用い P h u s i o n H i g h— F i d e l i t y D N A p o l ym e r a s e (商品名) (第一化学薬品社製) で、 抗体遺伝子を増幅 させた。 条件は以下に示す。 なお、 H鎖を増幅させる際の二回目の P C Rは、 一回目の P C R産物 ( 2 L) を铸型とした他は、 一回 目の P C Rと同じ試薬組成 反応条件で行なっている。 (5-3) Usagi 'Phsion High— Fidelity DNA pol ym erase (Primers specific to antibody genes (primers specific to H and L chains; SEQ ID NOs: 1 to 3, 5 to 7)) (Product name) (Daiichi Chemical Co., Ltd.) and the antibody gene was amplified. The conditions are shown below. The second P C R when amplifying the H chain is carried out under the same reagent composition and reaction conditions as the first P C R except that the first P C R product (2 L) is a saddle type.
(試薬組成) . (Reagent composition)
キッ トに添付の緩衝液で、 d NT P 0. 2 M> プライ マ一はそれぞれ 0. 5 Mで行なった。 The buffer supplied with the kit, d NT P 0.2 M> Primer at 0.5 M each.
(反応条件) (Reaction conditions)
9 8でで 3 0秒保持後、 9 8でで 1 0秒、 7 2でで 5 0秒 のサイクルを 3 5サイクル繰り返し、 その後 7 2でで 1 0分 間保持した。 After holding for 30 seconds at 98, the cycle of 10 seconds at 98, 10 seconds at 72, and 50 seconds at 72 was repeated 35 cycles, and then at 72, the cycle was held for 10 minutes.
(プライマー) (Primer)
H鎖 : 一回目の P C Rでは配列 2及び 5、 二回目の P C R では配列 1及び 6 H chain: Sequences 2 and 5 for the first PCR, sequences 1 and 6 for the second PCR
L鎖 : 配列番号 3及び 7 L chain: SEQ ID NOs: 3 and 7
( 5 — 4 ) 電気泳動で遺伝子の増幅を確認した。 (5-4) Amplification of the gene was confirmed by electrophoresis.
( 5 — 5 ) 得られた H鎖及び L鎖の P C Rフラグメントを、 B g l I I と X b a I で制限酵素処理した後、 動物細胞用発現べクタ一 ( p E C E d h f r : 図 4 ) の B g l I I /X b a l サイ トに導入し 、 H鎖、 L鎖用の発現ベクターを調製した。 (5-5) The obtained H-chain and L-chain PCR fragments were treated with restriction enzymes BglII and XbaI, and then the Bgl of the expression vector for animal cells (p ECE dhfr: Fig. 4) was used. Introduced into the II / Xbal site, expression vectors for H chain and L chain were prepared.
( 6 ) 遺伝子組み換え抗体の発現 (C O S細胞による一過性発現 (6) Expression of recombinant antibodies (transient expression by COS cells
) )
( 5 ) で得られた H鎖、 L鎖用発現ベクターから C O S 1細胞 (
非特許文献 1 7、 1 8 ) での遺伝子組み換え抗体の生産を行なった (5) From the H chain and L chain expression vectors obtained in (5), COS 1 cells ( Non-patent literature 1 7, 1 8)
( 6— 1 ) 9 6ゥエルプレート上で対数増殖期にある C O S細胞に 、 H鎖発現べクタ一を 1 6. 6 n g、 及び L鎖発現ベクターを 8. 3 n gを、 リポフエク トァミン 2 0 0 0 (商品名) (インビトロジ ェン社) で導入した。 遺伝子導入時の培地は、 O p t i -M E M ( 商品名) (インビトロジェン社) を使用した。 (6-1) 96 COS cells in logarithmic growth on a well plate, 16.6 ng of the H chain expression vector, 8.3 ng of the L chain expression vector, and lipofuctamine 20 0 0 (trade name) (Invitrogen). As a medium at the time of gene introduction, Opti-M E M (trade name) (Invitrogen) was used.
( 6 - 2 ) 遺伝子導入から 3 日後に培養上清を回収し、 E L I S A で抗体の存在を確認した。 (6-2) Three days after gene transfer, the culture supernatant was collected and the presence of the antibody was confirmed by ELISA.
( 6 — 3 ) 抗原結合能が確認された抗体遺伝子ペアを有する C O S 細胞を、 培養スケールを上昇させて培養し、 抗体の一過性発現を行 なった。 (6-3) COS cells having antibody gene pairs with confirmed antigen-binding ability were cultured at an increased culture scale, and the antibody was transiently expressed.
( 7 ) A I A試薬形態でのモノクローナル抗体の評価 (7) Evaluation of monoclonal antibodies in AIA reagent form
( 6 ) で作製した、 ゥサギ由来抗 T 3モノクローナル抗体 (UT 1 D - 5 ) を用いて、 A I A用テス トカップを作製した。 A I Aは 東ソー株式会社で販売している全自動免疫診断システムであり、 今 回作製した抗体を使用して A I A用の免疫反応試薬を作製し評価を 行なった。 Using the rabbit-derived anti-T3 monoclonal antibody (UT 1 D-5) prepared in (6), a test cup for AI was prepared. A I A is a fully automated immunodiagnostic system sold by Tosoh Corporation. Using the antibody prepared this time, an immune reaction reagent for A I A was prepared and evaluated.
今回単離したゥサギモノクローナル抗体 UT 1 D— 5を用いた免 疫反応試薬、 及びマウス由来抗 T 3モノクローナル抗体を用いた免 疫反応試薬の検量線を図 1 0に示した。 図 1 0に示すように、 今回 単離した抗体を用いることで、 マウス由来の試薬より高感度な測定 系を構築できることが明らかとなった。 Fig. 10 shows the calibration curves of the immune reaction reagent using the isolated rabbit antibody UT 1 D-5 and the immune reaction reagent using the mouse-derived anti-T 3 monoclonal antibody. As shown in Fig. 10, it became clear that the use of the isolated antibody makes it possible to construct a measurement system that is more sensitive than mouse-derived reagents.
今回作製した UT 1 D— 5を用いた免疫反応試薬を用いて交差反 応性を評価した結果を図 1 1 に示す。 図 1 1より、 今回単離した抗 体は T 3の類似化合物のサイロキシン (T 4 ) には全く交差反応性 を有しておらず、 T 3に対して非常に高い特異性を有していること
がわかる。 Figure 11 shows the results of cross-reactivity evaluation using an immunoreaction reagent using UT 1 D-5 prepared this time. Figure 11 shows that the antibody isolated this time has no cross-reactivity to the thyroxine (T 4), a similar compound of T 3, and has a very high specificity for T 3. Being I understand.
実施例 1 4 抗脳性ナトリウム利尿ペプチド (B N P) 抗体の単 離 · 抗脳性ナトリウム利尿ペプチド (B N P) ゥサギモノクローナル 抗体を以下の方法で単離した。 Example 14 4 Isolation of anti-brain natriuretic peptide (BNP) antibody Anti-brain natriuretic peptide (BNP) Usagi monoclonal antibody was isolated by the following method.
( 1 ) 免疫抗原の作製 (1) Preparation of immune antigen
B N Pの C末端側 7アミノ酸に相当するペプチド (C KV L R R H、 配列番号 1 2 ) を合成した。 合成したペプチドの N末端にある システィンを利用して、 マレイミ ドー K L H (P I E R C E社製) と反応させ、 これを免疫抗原として使用した。 反応方法は添付され たプロ トコルに従い、 ペプチド 1 m gに対して、 マレイミ ドー K L Hを l m g反応させた。 A peptide corresponding to 7 amino acids on the C-terminal side of BNP (C KV L R R H, SEQ ID NO: 12) was synthesized. Using the cysteine at the N-terminus of the synthesized peptide, it was reacted with maleimide K L H (manufactured by PIERC) and used as an immunizing antigen. The reaction method was according to the attached protocol, and 1 mg of peptide was reacted with 1 mg of maleimide K L H.
( 2 ) スクリ一ニング抗原の作製 (2) Preparation of screening antigen
B N Pの C末端の 7アミノ酸に相当するペプチド (C KV L R R H、 配列番号 1 2 ) の N末端に、 リンカ一配列 ( G G G S G G G S 、 配列番号 1 3 ) を付加し、 さらに N末端をピオチン化したぺプチ ド ( b i o t i n - G G G S GG G S C KV L R R H, 配列番号 1 4、 以降 B i o— B N Cと表記) を作成し、 これを E L I S Aでの スクリーニング抗原として使用した。 A peptide with a linker sequence (GGGSGGGS, SEQ ID NO: 13) added to the N terminus of the peptide corresponding to the C-terminal 7 amino acids of BNP (C KV LRRH, SEQ ID NO: 12), and then the N-terminus is piotinized. (Biotin-GGGS GG GSC KV LRRH, SEQ ID NO: 14; hereinafter referred to as Bio-BNC) was prepared and used as a screening antigen in ELISA.
( 3 ) 動物と抗原免疫方法 (3) Animals and antigen immunization methods
免疫動物はゥサギ (日本白色種) の 1 2週齢メスを使用した。 初 回免疫はフロイント完全アジュバント、 2次免疫以降はフロイント の不完全アジュバントを用い、 抗原溶液 ( 5 0 0 ^ gZmL) と等 量のアジュバントを混合後、 ェマルジヨンを作製した後に 2週間間 隔で免疫した。 免疫抗抗原量は、 初回 5 0 0 gで 2次免疫以降は 2 5 0 z gである。 As the immunized animal, a 12-week-old female of Usagi (Japanese white species) was used. The first immunization is Freund's complete adjuvant, the second and subsequent immunizations are Freund's incomplete adjuvant, mixed with an antigen solution (500 ^ gZmL) and the same amount of adjuvant, and then immunized at intervals of 2 weeks after creating the emulsion. did. The amount of immunizing anti-antigen is 50 g at the first time and 25 z after the second immunization.
次に、 以下に示す E L I S Aで、 十分な抗体価の上昇を確認した
( 3 — 1 ) ス トレプトアビジン ( 0. S z g ZmL) を E L I S A プレートに固定化後、 1 %スキムミルクでブロッキングした。 Next, the increase in antibody titer was confirmed by ELISA shown below. (3-1) Streptavidin (0. S zg ZmL) was immobilized on an ELISA plate and blocked with 1% skim milk.
( 3 — 2 ) B i o— B N C ( 0. 5 g /m L ) を反応させた E L I S Aプレートを作製した。 その後、 抗原を免疫したゥサギの血清 を反応させた。 B i o— B N Cに結合した抗 B N Pゥサギモノクロ ーナル抗体は、 アルカリホスファターゼ標識抗ゥサギ I g G抗体を 結合させ、 未反応の酵素標識抗体を BZF分離後、 酵素基質である 4ーメチルゥンベリフェリルリン酸 ( 4— MU P ) を分注し、 蛍光 強度を測定することで検出した。 (3-2) BIO—BNC (0.5 g / ml) was reacted with an ELISA plate. After that, the rabbit serum immunized with the antigen was reacted. Bio—Anti-BNP Usagi monoclonal antibody conjugated to BNC binds alkaline phosphatase-labeled anti-rabbit Ig G antibody, and unreacted enzyme-labeled antibody is separated by BZF, followed by the enzyme substrate 4-methylumbelliferyl phosphorus. It was detected by dispensing acid (4-MU P) and measuring fluorescence intensity.
( 4 ) 抗体産生細胞の増殖 (培地での培養) (4) Growth of antibody-producing cells (culture in medium)
十分に抗体価が上昇したゥサギの脾臓を摘出し、 細胞凍結保存液 The spleen of a rabbit with a sufficiently high antibody titer is removed, and the cell cryopreservation solution
(セルバンカー 1 (商品名) 、 日本全薬工業社製) 中に分散させた 状態で、 ディープフリーザ一中 (一 8 0 ) で保存した。 保存細胞 は定法に従って解凍し、 G I T培地 (日水製薬社製) で懸濁し、 マ イク口タイタープレートにまいた。 5 日間培養後の培養上清中にあ る抗 B N P抗体の性能は下記の E L I S Aにより評価した。 (Cell banker 1 (trade name), manufactured by Nippon Zenyaku Kogyo Co., Ltd.) In a state of being dispersed in, it was stored in the deep freezer (180). The preserved cells were thawed according to a standard method, suspended in GIT medium (manufactured by Nissui Pharmaceutical), and spread on a microtiter plate. The performance of anti-BNP antibody in the culture supernatant after 5 days of culture was evaluated by the following ELISA.
( 4— 1 ) ス トレプトアビジン ( 0. S g ZmL) を E L I S A プレートに固定化後、 1 %スキムミルクでブロッキングし、 その後 、 B i o— B N C ( 0. b g /mL ) を反応させた E L I S Aプ レートを作製した。 (4-1) Streptavidin (0. S g ZmL) was immobilized on an ELISA plate, blocked with 1% skim milk, and then reacted with Bio- BNC (0. bg / mL). A rate was made.
( 4— 2 ) 培養上清と反応させた。 B i o _ B N Cに結合した抗 B N Pゥサギモノクローナル抗体は、 アルカリホスファターゼ標識抗 ゥサギ I g G抗体を結合させ、 未反応の酵素標識抗体を B/F分離 後、 酵素基質である 4ーメチルゥンベリフェリルリン酸 ( 4— MU P) を分注し、 蛍光強度を測定することで検出した。 (4-2) Reacted with the culture supernatant. Anti-BNP Usagi monoclonal antibody bound to Bio_BNC binds alkaline phosphatase-labeled anti-rabbit Ig G antibody, and unreacted enzyme-labeled antibody is separated by B / F, followed by enzyme substrate 4-methylun It was detected by dispensing berylferyl phosphate (4-MU P) and measuring the fluorescence intensity.
得られた結果を図 1 2に示す。 図 1 2の結果よりシグナルが強い
クローンを選別し、 抗体遺伝子を単離した。 The obtained results are shown in Fig. 12. The signal is stronger than the result of Fig. 1 2. Clones were selected and antibody genes were isolated.
( 5 ) 抗体遺伝子の単離と発現べクタ一の作製 (5) Isolation of antibody gene and production of expression vector
( 4 ) で選別したクローンから以下の方法で抗体遺伝子の単離を 行なった。 The antibody gene was isolated from the clone selected in (4) by the following method.
( 5 — 1 ) R N e a s y P l u s M i c r o k i t (商品名 ) (Q I A G E N社製) を用い、 添付されているプロ トコルに従い 、 細胞からの R NAの抽出を行なった。 (5-1) RNA was extracted from cells according to the attached protocol using RNeasyPlu sMiccrokit (trade name) (manufactured by QIAGEN).
( 5 — 2 ) 得られた R NAを铸型とし、 S e n s i s c r i p t R T K i t (商品名) (Q I A G E N社製) を用い、 逆転写反応 を行ない c D N Aを合成した。 (5-2) Using the obtained RNA as a saddle type, reverse transcription reaction was carried out using Sensiscript RTKit (trade name) (manufactured by QIAG EN) to synthesize cDNA.
( 5 — 3 ) ゥサギ抗体遺伝子に特異的なプライマー (H鎖および L 鎖に特異的なプライマ一。 配列番号 2、 3、 6から 1 1参照) を用 い P h u s i o n H i g h— F i d e l i t y D NA p o 1 y m e r a s e (第一化学薬品社製) で、 抗体遺伝子を増幅させた 。 条件は以下に示す。 なお、 二回目の P C R (反応液量 5 0 L) を行なう際、 H鎖を増幅させる場合は、 一回目の P C R産物 ( 2 L) を铸型とした他は、 一回目の P C Rと同じ試薬組成 反応条件 で行なっており、 L鎖を増幅させる場合は、 一回目の P C R産物を T Eで 1 0 0 0倍希釈した液 ( 2 L ) を铸型とした他は、 一回目 の P C Rと同じ試薬組成 Z反応条件で行なっている。 (5 — 3) Use primers specific to the rabbit antibody gene (primers specific to the H and L chains; see SEQ ID NOs: 2, 3, 6 to 1 1). Ph sion High— Fidelity DNA The antibody gene was amplified with po 1 ymerase (Daiichi Chemical Co., Ltd.). The conditions are shown below. When performing the second PCR (50 L reaction volume), if the H chain is amplified, the reagents are the same as for the first PCR except that the first PCR product (2 L) is in a saddle shape. When the L chain is amplified under the composition reaction conditions, the same as the first PCR, except that the first PCR product is diluted 100-fold with TE (2 L) in a bowl shape. Reagent composition Performed under Z reaction conditions.
(試薬組成) (Reagent composition)
キッ トに添付の緩衝液で、 d N T P 0. 2 M、 プライ マーはそれぞれ 0. 5 Lで行なった。 The buffer solution supplied with the kit was used with d N T P 0.2 M and the primer 0.5 L each.
(反応条件) (Reaction conditions)
9 8でで 3 0秒保持後、 9 8でで 1 0秒、 7 2 :で 5 0秒 のサイクルを 3 5サイクル繰り返し、 その後 7 2でで 1 0分 間保持した。
(プライマー) After holding for 30 seconds at 98, the cycle of 10 seconds at 98 and 10 seconds at 7 8 and 35 seconds at 7 2: was repeated 35 cycles, and then at 72, the cycle was held for 10 minutes. (Primer)
H鎖 : 一回目の P C Rでは配列 2及び 6、 二回目の P C R では配列 8及び 9 H chain: Sequences 2 and 6 for the first PCR, sequences 8 and 9 for the second PCR
L鎖 : 一回目の P C Rでは配列 3及び 7、 二回目の P C R では配列 1 0及び 1 1 L chain: Sequences 3 and 7 for the first P C R, sequences 10 and 1 1 for the second P C R
( 5— 4 ) 電気泳動で遺伝子の増幅を確認した。 (5-4) Gene amplification was confirmed by electrophoresis.
( 5— 5 ) 得られた H鎖及び L鎖の P C Rフラグメントは、 B g 1 I i ZX b a l で制限酵素処理した後、 動物細胞用発現ベクター ( p E C E d h f r : 図 4 ) の B g l I I ZX b a lサイ トに I n f u s i o n C 1 o n i n g k i t (商品名) ^ C 1 o n t e c h社製) を用いて導入し、 H鎖、 L鎖用の発現ベクターを調製した (5-5) The obtained H and L chain PCR fragments were digested with B g 1 I i ZX bal and treated with B gl II ZX of the animal cell expression vector (p ECE dhfr: Fig. 4). Infection C 1 oningkit (trade name) ^ C 1 ontech) was introduced into the bal site to prepare expression vectors for H and L chains.
( 6 ) 遺伝子組み換え抗体の発現 ( C〇 S細胞による一過性発現(6) Expression of recombinant antibodies (transient expression by Cº S cells
) )
( 5 ) で得られた H鎖、 L鎖用発現ベクターから C O S 1細胞 ( 非特許文献 1 7、 1 8 ) での遺伝子組み換え抗体の生産を行なった Recombinant antibodies were produced in C O S 1 cells (Non-patent Documents 17 and 18) from the expression vectors for H and L chains obtained in (5)
( 6— 1 ) 9 6ゥエルプレート上で対数増殖期にある C O S細胞に 、 H鎖発現ベクターを 2.0 n g、 及び L鎖発現べクタ一を 2 0 n g を、 リポフエク トァミン 2 0 0 0 (商品名) (インビトロジェン社 製) で導入した。 遺伝子導入時の培地は、 O p t i -ME M (商品 名) (インビトロジェン社製) を使用した。 (6-1) 9 6 COS cells in logarithmic growth on a well plate, 2.0 ng of H chain expression vector, 20 ng of L chain expression vector, and lipofuctamine 200 Name) (manufactured by Invitrogen). As a medium for gene introduction, Opti-MEM (trade name) (manufactured by Invitrogen) was used.
( 6— 2 ) 遺伝子導入から 3 日後に培養上清を回収し、 E L I S A で抗体の存在を確認した。 抗原結合能が確認された 2つのクローン (6-2) Three days after gene transfer, the culture supernatant was collected and the presence of the antibody was confirmed by ELISA. Two clones with confirmed antigen-binding ability
( 2 7、 4 5 ) を取得した。 (2 7, 4 5).
( 7 ) サンドイッチアツセィ系でのモノクローナル抗体の評価 (7) Evaluation of monoclonal antibodies in the sandwich assembly system
( 6 ) で取得したクローンより得られたゥサギ由来抗 B N Pモノ
クローナル抗体 ( 2 7、 4 5 ) を、 以下の方法で E L I S Aにより 評価した。 Usagi-derived anti-BNP mono obtained from the clone obtained in (6) The clonal antibody (27, 45) was evaluated by ELISA according to the following method.
( 7 — 1 ) 抗ゥサギ抗体 ( l O /z gZmL) を固定化した E L I S Aプレートに、 ( 6 ) で取得したクローンから抗体を一過性発現さ せた後の培養上清を反応させ、 その後 B N P ( 0. 1 g /mL ) を反応させた。 (7-1) The culture supernatant after the antibody was transiently expressed from the clone obtained in (6) was reacted with an ELISA plate immobilized with anti-rabbit antibody (lO / z gZmL). BNP (0.1 g / mL) was reacted.
( 7 — 2 ) さらに、 アルカリフォスファタ一ゼで標識された B N P の環状部位を認識する抗体 (タンパク質濃度として、 A2 8 Q n m = 0. 0 0 3 ) を反応させた。 (7-2) Furthermore, an antibody (A 28 Qnm = 0.003) as a protein concentration that recognizes the cyclic part of BNP labeled with alkaline phosphatase was reacted.
( 7 — 3 ) 未反応の酵素標識抗体を BZF分離後、 酵素基質である 4ーメチルゥンベリフェリルリ ン酸 ( 4— MU P ) を分注し、 蛍光 強度を測定することで検出した。 (7-3) After unreacted enzyme-labeled antibody was separated by BZF, the enzyme substrate 4-methylumbelliferyl phosphate (4-MUP) was dispensed and detected by measuring the fluorescence intensity. .
得られた結果を図 1 3に示した。 図 1 3の結果より、 B N Pの有 無で、 反応性に明確な差が見られたことから、 B N Pの C末端を認 識するゥサギモノクローナル抗体が単離されたことが確認できた。 実施例 1 5 細胞融合後の E L I S Aのシグナル値の変化 The obtained results are shown in FIG. From the results in Fig. 13, there was a clear difference in reactivity in the presence or absence of BNP, confirming the isolation of a rabbit monoclonal antibody that recognizes the C-terminus of BNP. Example 1 5 Change in signal value of ELISA after cell fusion
E 2— B S Aを免疫したゥサギ凍結脾臓細胞を使用して以下に示 す実験を行なった。 The experiment shown below was conducted using the frozen spleen cells of rabbits immunized with E 2 — B SA.
( 1 ) 実施例 5に示す方法に従い、 細胞融合を行ない、 マイクロ夕 イタ一プレートに融合細胞をまいた。 (1) According to the method shown in Example 5, cell fusion was performed, and the fused cells were spread on a microtiter plate.
( 2 ) 培養 1、 2、 3、 4、 7、 1 1 日目に培養上清を同量とつた 。 なお、 培養上清をとる際に、 同量の同じ組成の培地を加えること で培地の量を維持している。 (2) On the first day of culture 1, 2, 3, 4, 7, and 11, the same amount of culture supernatant was added. When taking the culture supernatant, the same amount of medium with the same composition is added to maintain the amount of medium.
( 3 ) 得られた培養上清を、 実施例 2に示す E L I S Aで評価した 結果を図 1 4に示す。 細胞融合後 1 日目から 7 日目まではシグナ ル強度が上昇していたが、 7 日目以降はシグナルの強度にほとんど
変化がなかった。 以上の結果より、 抗体遺伝子を単離する際、 細胞 融合した後、 7 日前後培養した培養上清から単離するのが好ましい ことがわかる。 産業上の利用の可能性 (3) The results of evaluation of the obtained culture supernatant by ELISA shown in Example 2 are shown in FIG. The signal intensity increased from day 1 to day 7 after cell fusion, but almost no signal intensity was observed after day 7. There was no change. From the above results, it can be seen that it is preferable to isolate the antibody gene from the culture supernatant cultured 7 days after cell fusion. Industrial applicability
本発明の製造方法により、 親和性が高い特徴を有するゥサギモノ クローナル抗体を、 通常の実験施設と分子生物学の知識があれば製 造することができる。 また、 本発明の方法で製造したゥサギモノク ローナル抗体を免疫診断薬に用いることで、 高感度で夾雑物の影響 を受けない測定系を構築できる。
According to the production method of the present invention, a rabbit antibody having high affinity characteristics can be produced with knowledge of ordinary laboratory facilities and molecular biology. Furthermore, by using the rabbit monoclonal antibody produced by the method of the present invention as an immunodiagnostic drug, a highly sensitive measurement system that is not affected by foreign substances can be constructed.
Claims
1 . 抗原を免疫したゥサギから抗体産生細胞を単離し、 目的とす る抗体遺伝子を保有する細胞を選別し、 選別した細胞から重鎖およ び軽鎖の抗体遺伝子を単離、 増幅し、 発現ベクターに導入後、 ホス 卜細胞に導入することで遺伝子組換えゥサギモノクロ一ナル抗体を 発現させる遺伝子組換え抗体の製造方法において、 目的とする抗体 遺伝子を保有する細胞を選別するにあたり、 抗体産生細胞を増殖さ せてから選別することを特徴とする、 遺伝子組換え抗体の製造方法 1. Isolate antibody-producing cells from rabbits immunized with antigen, select cells carrying the target antibody gene, isolate and amplify heavy and light chain antibody genes from the selected cells, In a method for producing a recombinant antibody that expresses a recombinant rabbit monoclonal antibody by introducing it into a phosphine cell after introduction into an expression vector, an antibody-producing cell is selected in selecting a cell carrying the target antibody gene. A method for producing a genetically engineered antibody, comprising:
2 . 選別した細胞から重鎖および軽鎖の抗体遺伝子を単離する操 作を、 選別した細胞から抗体遺伝子の脱落が起きない期間内で実施 することを特徴とする、 請求項 1 に記載の遺伝子組換え抗体の製造 方法。 2. The operation of isolating heavy and light chain antibody genes from the sorted cells is performed within a period in which the antibody genes do not fall out of the sorted cells. A method for producing a recombinant antibody.
3 . 選別した細胞から重鎖および軽鎖の抗体遺伝子を単離する操 作を、 抗体産生細胞増殖開始後 1 4 日以内に実施することを特徴と する、 請求項 1 に記載の遺伝子組換え抗体の製造方法。 3. The genetic recombination according to claim 1, wherein the operation of isolating heavy and light chain antibody genes from the selected cells is carried out within 14 days after the start of antibody-producing cell growth. Antibody production method.
4 . 抗体産生細胞が、 抗原を免疫したゥサギの脾臓細胞、 リンパ 節細胞、 末梢血細胞のいずれかであることを特徴とする、 請求項 1 から 3に記載の遺伝子組換え抗体の製造方法。 4. The method for producing a recombinant antibody according to any one of claims 1 to 3, wherein the antibody-producing cells are any of spleen cells, lymph node cells, and peripheral blood cells of a rabbit immunized with an antigen.
5 . 抗体産生細胞を増殖させる方法が、 抗体産生細胞を培地中で 培養する方法であることを特徴とする、 請求項 1から 4に記載の遺 伝子組換え抗体の製造方法。 5. The method for producing a gene recombinant antibody according to any one of claims 1 to 4, wherein the method for growing antibody-producing cells is a method for culturing antibody-producing cells in a medium.
6 . 抗体産生細胞を増殖させる方法が、 不死化能を与えることの できる細胞を融合させて培養する方法であることを特徴とする、 請 求項 1から 4に記載の遺伝子組換え抗体の製造方法。 6. Production of a recombinant antibody according to claims 1 to 4, characterized in that the method of growing antibody-producing cells is a method of fusing and culturing cells capable of immortalizing. Method.
7 . ゥサギに免疫する抗原が、 ハプテンまたはペプチドであるこ
とを特徴とする、 請求項 1から 6に記載の遺伝子組換え抗体の製造 方法。 7. The antigen that immunizes the rabbit is a hapten or peptide. The method for producing a recombinant antibody according to claim 1, wherein:
8 . ホス ト細胞が動物細胞であることを特徴とする、 請求項 1か ら 7に記載の遺伝子組換え抗体の製造方法。
8. The method for producing a recombinant antibody according to any one of claims 1 to 7, wherein the host cell is an animal cell.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-065941 | 2008-03-14 | ||
JP2008065941 | 2008-03-14 | ||
JP2008-306713 | 2008-12-01 | ||
JP2008306713A JP5663834B2 (en) | 2008-03-14 | 2008-12-01 | Method for producing recombinant antibody |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009113742A1 true WO2009113742A1 (en) | 2009-09-17 |
Family
ID=41065384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/055555 WO2009113742A1 (en) | 2008-03-14 | 2009-03-13 | Method of producing genetically engineered antibody |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5663834B2 (en) |
WO (1) | WO2009113742A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122011A2 (en) | 2010-03-30 | 2011-10-06 | Chugai Seiyaku Kabushiki Kaisha | Antibodies with modified affinity to fcrn that promote antigen clearance |
WO2015020212A1 (en) * | 2013-08-09 | 2015-02-12 | 東レ株式会社 | Pharmaceutical composition for treatment and/or prevention of cancer |
US9115200B2 (en) | 2010-02-04 | 2015-08-25 | Toray Industries, Inc. | Pharmaceutical composition for treating cancer using a monoclonal antibody having immunological reactivity with CAPRIN-1 |
US9175074B2 (en) | 2011-08-04 | 2015-11-03 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9180187B2 (en) | 2010-02-04 | 2015-11-10 | Toray Industries, Inc. | Medicament for treating and/or preventing cancer |
US9180188B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9181348B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9181334B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9260513B2 (en) | 2012-02-21 | 2016-02-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9266958B2 (en) | 2012-02-21 | 2016-02-23 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9273130B2 (en) | 2012-02-21 | 2016-03-01 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9273128B2 (en) | 2011-08-04 | 2016-03-01 | Toray Industries, Inc | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
GB2533552A (en) * | 2014-12-11 | 2016-06-29 | Abcam Plc | A method for producing a recombinant allotype-specific rabbit monoclonal antibody |
US9409993B2 (en) | 2011-08-04 | 2016-08-09 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of pancreatic cancer |
US9416193B2 (en) | 2012-03-30 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of liver cancer |
US9416191B2 (en) | 2010-02-04 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9416192B2 (en) | 2008-08-05 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and prevention of cancers |
US9428581B2 (en) | 2012-03-30 | 2016-08-30 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of gallbladder cancer |
US9573993B2 (en) | 2012-02-21 | 2017-02-21 | Toray Industries, Inc. | Pharmaceutical composition for treatment of cancer comprising an anti-CAPRIN-1 peptide antibody |
US9753038B2 (en) | 2012-07-19 | 2017-09-05 | Toray Industries, Inc. | Method for detecting cancer via measurement of caprin-1 expression level |
US9772332B2 (en) | 2012-07-19 | 2017-09-26 | Toray Industries, Inc. | Method for detecting CAPRIN-1 in a biological sample |
US9796775B2 (en) | 2011-08-04 | 2017-10-24 | Toray Industries, Inc. | Method for detecting pancreatic cancer |
US11137401B2 (en) | 2008-08-05 | 2021-10-05 | Toray Industries, Inc. | Method for detecting cancer using CAPRIN-1 as a marker |
WO2021210667A1 (en) | 2020-04-17 | 2021-10-21 | 中外製薬株式会社 | Bispecific antigen-binding molecule, composition associated therewith, and use, kit, and method for producing composition |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5810514B2 (en) * | 2009-12-07 | 2015-11-11 | 東ソー株式会社 | Tag peptide |
JP6221466B2 (en) * | 2013-07-29 | 2017-11-01 | 東ソー株式会社 | Hapten measurement method |
JP6693134B2 (en) * | 2015-02-02 | 2020-05-13 | 東ソー株式会社 | Antibody having linker sequence and assay method using the same |
US11604194B2 (en) | 2016-02-29 | 2023-03-14 | Public University Corporation Yokohama City University | Method for detecting castration-resistant prostate cancer and detection reagent |
JP7127422B2 (en) | 2017-08-30 | 2022-08-30 | 東ソー株式会社 | Method and detection reagent for detecting cancer |
US20220178932A1 (en) | 2019-04-24 | 2022-06-09 | Japanese Foundation For Cancer Research | Cancer detection method and detection reagent |
US20220349879A1 (en) | 2019-11-20 | 2022-11-03 | Tosoh Corporation | Measurement method using anti-immunocomplex antibody |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10262657A (en) * | 1997-03-21 | 1998-10-06 | Eiken Chem Co Ltd | Fused partner for obtaining heterohybridoma |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028A (en) * | 1847-03-20 | monohot | ||
EP0290014A3 (en) * | 1987-05-04 | 1989-01-25 | Allelix Inc. | Stable rabbit-mouse hybridomas and secretion products thereof |
-
2008
- 2008-12-01 JP JP2008306713A patent/JP5663834B2/en active Active
-
2009
- 2009-03-13 WO PCT/JP2009/055555 patent/WO2009113742A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10262657A (en) * | 1997-03-21 | 1998-10-06 | Eiken Chem Co Ltd | Fused partner for obtaining heterohybridoma |
Non-Patent Citations (2)
Title |
---|
BABCOOK, J. S. ET AL.: "A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities", PROC. NATL. ACAD. SCI. USA, vol. 93, 27 March 1996 (1996-03-27), pages 7843 - 7848, XP000608647 * |
MATSUBA T. ET AL.: "Ko Shinwasei Rabbit Monoclonal Kotai no Sosei (Ko Kando Estradiol Sokuteikei eno Oyo)", TOSOH RESEARCH & TECHNOLOGY REVIEW, 31 December 2008 (2008-12-31), pages 3 - 9 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11137401B2 (en) | 2008-08-05 | 2021-10-05 | Toray Industries, Inc. | Method for detecting cancer using CAPRIN-1 as a marker |
US9982059B2 (en) | 2008-08-05 | 2018-05-29 | Toray Industries, Inc. | Pharmaceutical composition for treatment and prevention of cancers |
US9416192B2 (en) | 2008-08-05 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and prevention of cancers |
US9115200B2 (en) | 2010-02-04 | 2015-08-25 | Toray Industries, Inc. | Pharmaceutical composition for treating cancer using a monoclonal antibody having immunological reactivity with CAPRIN-1 |
US9180187B2 (en) | 2010-02-04 | 2015-11-10 | Toray Industries, Inc. | Medicament for treating and/or preventing cancer |
US9416191B2 (en) | 2010-02-04 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
EP3702368A1 (en) | 2010-03-30 | 2020-09-02 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecules that promote antigen clearance |
EP3181581A1 (en) | 2010-03-30 | 2017-06-21 | Chugai Seiyaku Kabushiki Kaisha | Antibodies with modified affinity to fcrn that promote antigen clearance |
WO2011122011A2 (en) | 2010-03-30 | 2011-10-06 | Chugai Seiyaku Kabushiki Kaisha | Antibodies with modified affinity to fcrn that promote antigen clearance |
US9180188B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9273128B2 (en) | 2011-08-04 | 2016-03-01 | Toray Industries, Inc | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9409993B2 (en) | 2011-08-04 | 2016-08-09 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of pancreatic cancer |
US9181334B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9181348B2 (en) | 2011-08-04 | 2015-11-10 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9175074B2 (en) | 2011-08-04 | 2015-11-03 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prophylaxis of cancer |
US9796775B2 (en) | 2011-08-04 | 2017-10-24 | Toray Industries, Inc. | Method for detecting pancreatic cancer |
US9273130B2 (en) | 2012-02-21 | 2016-03-01 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9266958B2 (en) | 2012-02-21 | 2016-02-23 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9260513B2 (en) | 2012-02-21 | 2016-02-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
US9573993B2 (en) | 2012-02-21 | 2017-02-21 | Toray Industries, Inc. | Pharmaceutical composition for treatment of cancer comprising an anti-CAPRIN-1 peptide antibody |
US9416193B2 (en) | 2012-03-30 | 2016-08-16 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of liver cancer |
US9428581B2 (en) | 2012-03-30 | 2016-08-30 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of gallbladder cancer |
US9753038B2 (en) | 2012-07-19 | 2017-09-05 | Toray Industries, Inc. | Method for detecting cancer via measurement of caprin-1 expression level |
US9772332B2 (en) | 2012-07-19 | 2017-09-26 | Toray Industries, Inc. | Method for detecting CAPRIN-1 in a biological sample |
JPWO2015020212A1 (en) * | 2013-08-09 | 2017-03-02 | 東レ株式会社 | Pharmaceutical composition for treatment and / or prevention of cancer |
US9862774B2 (en) | 2013-08-09 | 2018-01-09 | Toray Industries, Inc. | Pharmaceutical composition for treatment and/or prevention of cancer |
WO2015020212A1 (en) * | 2013-08-09 | 2015-02-12 | 東レ株式会社 | Pharmaceutical composition for treatment and/or prevention of cancer |
GB2533552B (en) * | 2014-12-11 | 2019-09-04 | Abcam Plc | A method for producing a recombinant allotype-specific rabbit monoclonal antibody |
GB2533552A (en) * | 2014-12-11 | 2016-06-29 | Abcam Plc | A method for producing a recombinant allotype-specific rabbit monoclonal antibody |
WO2021210667A1 (en) | 2020-04-17 | 2021-10-21 | 中外製薬株式会社 | Bispecific antigen-binding molecule, composition associated therewith, and use, kit, and method for producing composition |
Also Published As
Publication number | Publication date |
---|---|
JP2009240300A (en) | 2009-10-22 |
JP5663834B2 (en) | 2015-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009113742A1 (en) | Method of producing genetically engineered antibody | |
US12129291B2 (en) | Anti-GPC3 antibody | |
US7435553B2 (en) | Isolating cells expressing secreted proteins | |
CN108341870B (en) | anti-BSA nano antibody, production method and application thereof | |
KR102499955B1 (en) | Antibody Selection Method | |
CN112094346A (en) | Monoclonal antibody of mouse anti-cell single-chain transmembrane glycoprotein CD142 capable of being applied to tumor cell capture | |
JP2013535692A (en) | In vitro dual function target binding assay for detection of neutralizing antibodies against target antibodies | |
WO2014100419A1 (en) | Compositions and methods for the identification and isolation of cell-membrane protein specific binding moieties | |
CN116355094B (en) | Monoclonal antibody against interleukin 12 of mouse and preparation method | |
US20210380719A1 (en) | Rabbit antibodies to human immunoglobulins g | |
CN113544509A (en) | Method for selecting antibodies | |
CN116675771B (en) | Anti-human TSLP monoclonal antibody, kit containing same and inspection method | |
CN116003606B (en) | TIGIT nano antibody and preparation method and application thereof | |
Ayyar et al. | Production and Use of Antibodies | |
Marano | Optimization of a pipeline for the development of recombinant monoclonal antibodies for diagnostics | |
US11566074B2 (en) | Antibody for immunoassay and method for preparing same | |
CN115947857A (en) | Antibody or antigen binding fragment thereof bound with IMP enzyme and application thereof | |
CN112094345A (en) | Monoclonal antibody of mouse anti-immunoglobulin associated beta CD79b capable of being applied to tumor cell capture | |
CN115772220A (en) | Rabbit monoclonal antibody aiming at human interleukin-1 beta, and preparation method and application thereof | |
CN117836308A (en) | Means and methods for selecting specific binding agents | |
CN116284418A (en) | Monoclonal antibody against matrix metalloproteinase 3, preparation and application thereof | |
CN118373913A (en) | Anti-human Tim-3 monoclonal antibody and preparation method thereof | |
CN116041527A (en) | Antibody specifically binding E2-E2 antibody complex and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09720640 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09720640 Country of ref document: EP Kind code of ref document: A1 |