WO2009081571A1 - Polybutylene terephthalate resin composition and thin molded article - Google Patents

Polybutylene terephthalate resin composition and thin molded article Download PDF

Info

Publication number
WO2009081571A1
WO2009081571A1 PCT/JP2008/003906 JP2008003906W WO2009081571A1 WO 2009081571 A1 WO2009081571 A1 WO 2009081571A1 JP 2008003906 W JP2008003906 W JP 2008003906W WO 2009081571 A1 WO2009081571 A1 WO 2009081571A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
terephthalate resin
resin composition
acid
composition according
Prior art date
Application number
PCT/JP2008/003906
Other languages
French (fr)
Japanese (ja)
Inventor
Sei Wakatsuka
Hiroyuki Amano
Original Assignee
Wintech Polymer Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wintech Polymer Ltd. filed Critical Wintech Polymer Ltd.
Priority to KR1020107014022A priority Critical patent/KR101520133B1/en
Priority to CN2008801227918A priority patent/CN101910304B/en
Publication of WO2009081571A1 publication Critical patent/WO2009081571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a polybutylene terephthalate resin composition and a thin-walled molded article that are excellent in mechanical strength, impact strength, and fluidity and have little warping deformation. More specifically, the present invention relates to a polybutylene terephthalate resin composition and a thin-walled molded article that are optimal for molded articles such as switches and capacitors, and electrical and electronic parts. Background art
  • Crystalline thermoplastic polyester resins such as polyalkylene terephthalate resins, are excellent in mechanical properties, electrical properties, other physical and chemical properties, and have good processability. It is used for a wide range of applications such as parts.
  • Such crystalline thermoplastic polyester resins are used alone in various molded products, but depending on the application field, various reinforcing agents and additives may be blended for the purpose of improving their properties, particularly mechanical properties. Has been done. In fields where high mechanical strength and rigidity are required, it is well known to use fibrous reinforcing agents such as glass fibers and carbon fibers.
  • a crystalline thermoplastic polyester resin containing a general fibrous reinforcing agent has improved mechanical strength and impact strength, but has a large shrinkage anisotropy generated during the solidification process during molding such as injection molding. As a result, there is a problem that warpage deformation of the molded product becomes remarkably large. For this reason, polybutylene terephthalate resin containing a general fibrous reinforcing agent has been considered difficult to apply to thin plate-shaped molded products.
  • An object of the present invention is to provide a polybutylene terephthalate resin composition having excellent mechanical strength and impact strength, little warpage deformation and improved fluidity (melt fluidity), and a molded product thereof.
  • the present inventors have achieved the above object by combining a polybutylene terephthalate resin with a glass fiber having a flat cross-sectional shape and a specific glycerin fatty acid ester.
  • the present inventors have found that a resin composition that can be obtained is obtained, and have completed the present invention.
  • the present invention (A) For 100 parts by weight of polybutylene terephthalate resin, (B) 40 to 140 parts by weight of glass fiber having a flat cross-sectional shape, (C) Polybutylene comprising glycerin and / or a dehydrated condensate thereof and a fatty acid having 12 or more carbon atoms, and 0.05 to 5 parts by weight of a glycerin fatty acid ester having a hydroxyl value measured by the method described herein of 200 or more.
  • a terephthalate resin composition and a thin molded article comprising the same.
  • the polybutylene terephthalate resin composition of the present invention is excellent in mechanical strength and impact strength, has little warpage deformation, and is excellent in fluidity (melt fluidity).
  • Polybutylene terephthalate resin is a polymerization component comprising at least terephthalic acid (terephthalic acid or an ester-forming derivative thereof) and alkylene glycol having 4 carbon atoms (1,4-butanediol or an ester-forming derivative thereof). It is a thermoplastic resin.
  • the (A) polybutylene terephthalate resin of the present invention is not limited to polybutylene terephthalate homopolymer, but also includes polybutylene terephthalate containing isophthalic acid-modified polybutylene terephthalate and isophthalic acid-modified polyester.
  • An isophthalic acid-modified polybutylene terephthalate and a polybutylene terephthalate containing an isophthalic acid-modified polyester can be preferably used.
  • Isophthalic acid-modified polybutylene terephthalate is an alkylene glycol component of 1,4-butanediol or an ester-forming derivative thereof, and isophthalic acid or an ester-forming derivative thereof together with terephthalic acid or an ester-forming derivative thereof (lower alcohol ester such as dimethyl ester) Etc.) as a comonomer unit.
  • the isophthalic acid-modified polyester includes terephthalic acid or an ester-forming derivative thereof and alkylene glycol having 2 to 4 carbon atoms, particularly preferably ethylene glycol, trimethylene glycol, 1,4-butanediol or an ester-forming derivative thereof.
  • This is a copolymer comprising, as a main component, a polyester obtained by polycondensation reaction, into which isophthalic acid or an ester-forming derivative thereof (such as a lower alcohol ester such as dimethyl ester) is introduced as a comonomer unit.
  • the amount of isophthalic acid comonomer unit introduced in isophthalic acid-modified polybutylene terephthalate or isophthalic acid-modified polyester is preferably 5 to 30 mol%, more preferably 10 to 30 mol%, and particularly preferably 10 to 20 mol%. If the amount introduced is less than 5 mol%, the crystallinity is high, and the low warpage effect may be low. Further, when the introduction amount exceeds 30 mol%, the strength and thermal stability, which are the advantages of the original polybutylene terephthalate, are greatly reduced, and the crystallization is remarkably reduced and delayed, thereby reducing the molding cycle.
  • the content of isophthalic acid with respect to the total dicarboxylic acid component is preferably 5 to 30 mol%.
  • Polybutylene terephthalate as a base resin can be used as a copolymer copolymerized with a copolymerizable monomer (hereinafter sometimes referred to simply as a copolymerizable monomer) as long as the effects of the present invention are not impaired. it can.
  • a copolymerizable monomer include dicarboxylic acid components excluding terephthalic acid and isophthalic acid, diols other than alkylene glycol having 2 to 4 carbon atoms, oxycarboxylic acid components, and lactone components.
  • a copolymerizable monomer can be used 1 type or in combination of 2 or more types.
  • Dicarboxylic acids include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecandioyl carboxylic acid, C 4 ⁇ 40 dicarboxylic acids such as dimer acid, preferably C 4 ⁇ 14 dicarboxylic acids), alicyclic dicarboxylic acid component (e.g., hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, hymic C 8 ⁇ 12 dicarboxylic acids, such as acid), an aromatic dicarboxylic acid component other than terephthalic acid (e.g., naphthalene dicarboxylic acids such as phthalic
  • aliphatic dicarboxylic acids for example, succ
  • polyvalent carboxylic acid such as trimellitic acid and pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc. as needed.
  • a polyfunctional compound such as trimellitic acid and pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc.
  • a branched polybutylene terephthalate resin can also be obtained.
  • Diols include, for example, aliphatic alkanediols excluding 1,4-butanediol [for example, alkanediols (for example, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol ( 1,6-hexanediol), octanediol (1,3-octanediol, 1,8-octanediol, etc.), lower alkane diols, such as decanediol, preferably a straight chain or branched chain C 2 ⁇ 12 alkane Diols, more preferably linear or branched C 2-10 alkane diols); (poly) oxyalkylene glycols (eg glycols having a plurality of oxy C 2-4 alkylene units, eg diethylene glycol, diprop
  • a polyol such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination.
  • a polyfunctional compound such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination.
  • a branched polybutylene terephthalate resin can also be obtained.
  • the proportion of the copolymerizable monomer can be selected from the range of, for example, about 0.01 to 30 mol%, and is usually 1 to 30 mol%, preferably 3 to 25 mol%, more preferably 5 to 5 mol%. It is about 20 mol% (for example, 5 to 15 mol%).
  • the proportion of the homopolyester and the copolyester is such that the proportion of the copolymerizable monomer is relative to the total monomers.
  • the range is about 0.1 to 30 mol% (preferably 1 to 25 mol%, more preferably 5 to 25 mol%).
  • the former / the latter 99/1 to 1/99 (weight ratio), preferably It can be selected from the range of 95/5 to 5/95 (weight ratio), more preferably about 90/10 to 10/90 (weight ratio).
  • the intrinsic viscosity (IV) of the (A) polybutylene terephthalate resin is preferably 1.0 dL / g or less, and more preferably 0.9 dL / g or less.
  • polybutylene terephthalate resins or modified polyesters with different intrinsic viscosities for example by blending polybutylene terephthalate resins with intrinsic viscosities of 1.2 dL / g and 0.8 dL / g, an intrinsic viscosity of 1.0 dL / g or less is achieved. It may be realized.
  • the intrinsic viscosity (IV) can be measured, for example, in O-chlorophenol at a temperature of 35 ° C.
  • the glass fiber having a flat cross-sectional shape used in the present invention is a long diameter (longest linear distance in the cross section) and a short diameter (longest straight distance in the direction perpendicular to the long diameter).
  • the glass fiber has a ratio of 1.3 to 10, preferably 1.5 to 8, particularly preferably 2 to 5.
  • Specific shapes include a substantially oval shape, a substantially oval shape, a substantially eyebrow shape, and the like.
  • (B) Glass fiber having a flat cross-sectional shape is excellent in mechanical strength and impact strength, suppresses warpage deformation, and is excellent in moldability.
  • the glass fiber having a flat cross-sectional shape preferably has an average cross-sectional area of 100 to 300 micro square meters. If it is smaller than 100 micro square meters, the mechanical strength and impact strength are insufficient, and if it exceeds 300 micro square meters, problems such as gate clogging at the time of injection molding and wear of molds and molding machines occur.
  • the amount of (B) glass fiber having a flat cross-sectional shape used in the present invention is 40 to 140 parts by weight, preferably 50 to 120 parts by weight, per 100 parts by weight of (A) polybutylene terephthalate resin.
  • the blending amount is less than 40 parts by weight, the mechanical strength and impact strength are low, and when it exceeds 140 parts by weight, the fluidity is remarkably deteriorated.
  • Such glass fiber (B) can be used regardless of the glass fiber form at the time of blending A glass, E glass, an alkali-resistant glass composition containing a zirconia component, chopped strands, roving glass, or the like.
  • the glass fiber having a flat cross-sectional shape used in the present invention uses a nozzle having an appropriate hole shape such as an oval, an ellipse, a rectangle, or a slit as a bushing used for discharging molten glass.
  • a nozzle having an appropriate hole shape such as an oval, an ellipse, a rectangle, or a slit as a bushing used for discharging molten glass.
  • Prepared by spinning Also prepared by spinning molten glass from a plurality of adjacent nozzles having various cross-sectional shapes (including circular cross-sections), and joining the spun molten glass into a single filament it can.
  • the (C) glycerin fatty acid ester used in the present invention is a fatty acid ester composed of glycerin and / or a dehydration condensate thereof and a fatty acid having 12 or more carbon atoms and having a hydroxyl value measured by the method described later of 200 or more.
  • a fluidity improver or the like is added to a polybutylene terephthalate resin, even if the fluidity can be improved, a decrease in properties such as mechanical strength and toughness of the polybutylene terephthalate resin itself cannot be avoided.
  • the fluidity of the polybutylene terephthalate resin composition can be efficiently improved while maintaining the above characteristics at a high level.
  • Glycerin fatty acid ester can be produced by a method known per se, and a commercially available product may be used, and the esterification is adjusted so that the hydroxyl value measured by the method described below is 200 or more. Preferably, it has a hydroxyl value of 250 or more. When the hydroxyl value is less than 200, the effect of improving the fluidity is small, which is not preferable.
  • Examples of the fatty acid having 12 or more carbon atoms constituting the ester of glycerin fatty acid ester include lauric acid, oleic acid, palmitic acid, stearic acid, behenic acid, montanic acid and the like, preferably a fatty acid having 12 to 32 carbon atoms, particularly Preferably, fatty acids having 12 to 22 carbon atoms are used, and lauric acid, stearic acid or behenic acid is particularly preferred. Those having less than 12 carbon atoms are not preferable because the heat resistance may be lowered, and those having more than 32 carbon atoms are not preferable because the effect of improving fluidity is small.
  • glycerin fatty acid esters examples include glycerin monostearate, glycerin monobehenate, diglycerin monostearate, triglycerin monostearate, tetraglycerin stearic acid partial ester, decaglycerin lauric acid partial ester, and the like.
  • the blending amount of (C) glycerin fatty acid ester is 0.05 to 5 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of (A) polybutylene terephthalate resin. (C) If the blending amount of glycerin fatty acid ester is less than 0.05 parts by weight, the effect of improving the fluidity may not be sufficiently obtained, and if it exceeds 5 parts by weight, the amount of gas generation increases with molding, There is a risk of damage to the appearance and mold contamination.
  • the resin composition of the present invention may contain other resins as needed within a range not impairing the effects of the present invention.
  • Other resins include polyester resins other than polybutylene terephthalate resins (polyethylene terephthalate, polytrimethylene terephthalate, etc.), polyolefin resins, polystyrene resins, polyamide resins, polyacetals, polyarylene oxides, polyarylene sulfides, fluorine resins, etc. Is exemplified.
  • copolymers such as acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, and ethylene-ethyl acrylate resin are also exemplified. These other resins may be used alone or in combination of two or more.
  • additives may be added to the resin composition of the present invention.
  • additives include various stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), nucleating agents (crystallization nucleating agents), flame retardants, lubricants, mold release agents, antistatic agents, dyes / pigments, etc. Colorants, dispersants, and the like.
  • a phosphorus stabilizer when polybutylene terephthalate and a modified polyester having a different alkylene glycol component are used in combination, it is preferable to add a phosphorus stabilizer to suppress transesterification.
  • the phosphorus stabilizer used include organic phosphite compounds, phosphonite compounds, and metal phosphates.
  • Specific examples include bis (2,4-di-t-4methylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, tetrakis (2,4 Examples of the -di-t-butylphenyl) -4,4'-biphenylene phosphonite and the metal phosphate include monocalcium phosphate and monohydrate of monobasic sodium phosphate.
  • reinforcing fillers can be added to the resin composition of the present invention as needed within a range not impairing the effects of the present invention.
  • Other reinforcing fillers include glass fibers other than those specified in the present invention, milled glass fibers, glass beads, glass flakes, silica, alumina fibers, zirconia fibers, potassium titanate fibers, carbon fibers, graphite, calcium silicate, Silicates such as aluminum silicate, kaolin, talc and clay, metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony oxide and alumina, carbonates and sulfates of metals such as calcium, magnesium and zinc, and carbonization
  • the organic filler include silicon polyester, silicon nitride, boron nitride and the like, and examples of the organic filler include high melting point aromatic polyester fiber, liquid crystalline polyester fiber, aromatic polyamide fiber, fluororesin fiber, and polyimide fiber.
  • the composition of the present invention is easily prepared by equipment and methods generally used as conventional resin composition preparation methods. For example, after mixing each component, kneading and extruding with a single-screw or twin-screw extruder to prepare pellets, then forming the pellets, once preparing pellets with different compositions, mixing the pellets in a predetermined amount Any method can be used, such as a method of obtaining a molded product having a desired composition after molding and a method of directly charging one or more of each component into a molding machine. Further, mixing a part of the resin component as a fine powder with other components and adding it is a preferable method for uniformly blending these components.
  • the fluidity of the resin composition of the present invention can reflect the melt viscosity under a condition under a constant piston flow shear rate as an index.
  • the melt viscosity of the resin composition of the present invention is 200 Pa ⁇ s or less, preferably 170 Pa ⁇ s or less, more preferably 150 Pa ⁇ s or less (for example, at a shear rate of 1000 sec ⁇ 1 at 260 ° C. in accordance with ISO 11443 (for example, 50 to 150 Pa ⁇ s).
  • the measurement results are obtained in units of Pa ⁇ s as described above. The lower the numerical value, the better the fluidity during melting and the better fluidity during molding.
  • melt index measured under conditions of ASTM D-1238 at 235 ° C and a load of 2160g is used as an index of fluidity, but the melt index is measured under a constant load.
  • the shear rate is different.
  • the melt viscosity measurement index under a constant piston flow is considered to be an index closer to the actual flow characteristics considering that actual injection molding is performed with a constant piston flow.
  • the melt viscosity under such a constant shear rate condition is used as an index of fluidity.
  • the resin composition of the present invention is excellent in melt fluidity as described above, it has good moldability and is useful for producing a molded article or molded article having high mechanical strength and heat resistance. .
  • a molded product having a thin portion is suitable for manufacturing a molded product having a thin portion.
  • it can be molded at an injection speed of 67 mm / sec with an injection molding machine having a clamping force of 100 t and a screw diameter of ⁇ 30 mm.
  • the flow length at a thickness of 1 mm may be required to be 120 mm or more, and the flow length of 120 mm or more is possible with the resin composition of the present invention.
  • Thin parts with a thickness of 1 mm or less in a part of the molded product include switches, capacitors, connectors, integrated circuits (ICs), relays, resistors, light emitting diodes (LEDs), coil bobbins, electronic devices, and portable terminals. , ECUs, various sensors, power modules, gear parts and their peripheral devices or their housings or chassis.
  • Injection molding extrusion molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be applied as a molding method for filling the resin into the mold, but injection molding is common. .
  • Example 1 Injection molding, extrusion molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be applied as a molding method for filling the resin into the mold, but injection molding is common. .
  • Example 7 0.15 weight part of monocalcium phosphate is further added to the composition in a table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Disclosed is a polybutylene terephthalate resin composition exhibiting excellent mechanical strength and impact strength, while having improved fluidity (melt fluidity). The polybutylene terephthalate resin composition hardly suffers from warping deformation. Specifically disclosed is a polybutylene terephthalate resin composition which is obtained by blending, per 100 parts by weight of a polybutylene terephthalate resin (A), 40-140 parts by weight of glass fibers (B) having a flat cross section and 0.05-5 parts by weight of a glycerol fatty acid ester (C) which is composed of glycerol and/or a dehydration condensation product thereof and a fatty acid having 12 or more carbon atoms and has a hydroxyl number as measured by the process mentioned in the description of not less than 200.

Description

ポリブチレンテレフタレート樹脂組成物及び薄肉成形品Polybutylene terephthalate resin composition and thin-walled molded article
 本発明は、機械的強度、衝撃強度、流動性に優れ、そり変形の少ないポリブチレンテレフタレート樹脂組成物及び薄肉成形品に関する。更に詳しくは、その優れた特徴を活かし、スイッチ、コンデンサー等の電気・電子部品等の成形品に最適なポリブチレンテレフタレート樹脂組成物及び薄肉成形品に関する。
背景技術
The present invention relates to a polybutylene terephthalate resin composition and a thin-walled molded article that are excellent in mechanical strength, impact strength, and fluidity and have little warping deformation. More specifically, the present invention relates to a polybutylene terephthalate resin composition and a thin-walled molded article that are optimal for molded articles such as switches and capacitors, and electrical and electronic parts.
Background art
 結晶性熱可塑性ポリエステル樹脂、例えばポリアルキレンテレフタレート樹脂等は機械的性質、電気的性質、その他物理的・化学的特性に優れ、かつ、加工性が良好であるがゆえにエンジニアリングプラスチックとして自動車、電気・電子部品等の広汎な用途に使用されている。 Crystalline thermoplastic polyester resins, such as polyalkylene terephthalate resins, are excellent in mechanical properties, electrical properties, other physical and chemical properties, and have good processability. It is used for a wide range of applications such as parts.
 かかる結晶性熱可塑性ポリエステル樹脂は、単独でも種々の成形品に用いられているが、利用分野によってはその性質、特に機械的性質を改善する目的で、様々な強化剤、添加剤を配合することが行われてきた。そして、高い機械的強度、剛性の要求される分野においては、ガラス繊維、カーボン繊維等に代表される繊維状の強化剤を用いることが周知である。 Such crystalline thermoplastic polyester resins are used alone in various molded products, but depending on the application field, various reinforcing agents and additives may be blended for the purpose of improving their properties, particularly mechanical properties. Has been done. In fields where high mechanical strength and rigidity are required, it is well known to use fibrous reinforcing agents such as glass fibers and carbon fibers.
 しかしながら、一般的な繊維状強化剤を含む結晶性熱可塑性ポリエステル樹脂は、機械的強度、衝撃強度は改善されるが、射出成形等の成形加工時の固化過程で発生する収縮異方性が大きくなることにより、成形品のそり変形が著しく大きくなるという問題がある。このため、一般的な繊維状強化剤を含むポリブチレンテレフタレート樹脂は、薄肉の板状成形品への応用は困難とされていた。 However, a crystalline thermoplastic polyester resin containing a general fibrous reinforcing agent has improved mechanical strength and impact strength, but has a large shrinkage anisotropy generated during the solidification process during molding such as injection molding. As a result, there is a problem that warpage deformation of the molded product becomes remarkably large. For this reason, polybutylene terephthalate resin containing a general fibrous reinforcing agent has been considered difficult to apply to thin plate-shaped molded products.
 これらの問題を解決する方法として、変性ポリブチレンテレフタレート樹脂にポリカーボネート(特開平9-291204号公報)等の非晶性異種ポリマーを配合することが提案されている。しかしながら、ポリカーボネートを配合する方法では、著しく流動性が低下するとともに、衝撃強度が低下する問題があり、薄肉成形品への適応は困難であった。 As a method for solving these problems, it has been proposed to blend an amorphous heterogeneous polymer such as polycarbonate (Japanese Patent Laid-Open No. 9-291204) with a modified polybutylene terephthalate resin. However, in the method of blending polycarbonate, there is a problem that the fluidity is remarkably lowered and the impact strength is lowered, and it is difficult to adapt to a thin molded product.
 また、強化ガラス繊維として扁平な断面を持つガラス繊維を使用することが提案されているが(特開平7-309999号公報、特開2004-248487号公報)、高い機械的強度、高い衝撃強度を得るためにガラス繊維の充填量を増量する必要があり、これにより流動性が著しく低下し薄肉成形品を成形できないという問題があった。 Further, although it has been proposed to use glass fibers having a flat cross section as reinforced glass fibers (Japanese Patent Laid-Open Nos. 7-309999 and 2004-248487), they have high mechanical strength and high impact strength. In order to obtain it, it is necessary to increase the filling amount of the glass fiber, which causes a problem that the fluidity is remarkably lowered and a thin molded product cannot be molded.
 流動性を改善するため、ポリブチレンテレフタレート樹脂に流動性改良剤を添加することも知られている。例えば、流動性改良剤として、特定の芳香族多塩基酸エステルを混合した樹脂組成物が開示されている(特開昭61-85467号公報)。しかし、この文献に記載の樹脂組成物では、流動性改良剤を添加しない場合に比べて、機械的強度が低下する傾向がある。 It is also known to add a fluidity improver to polybutylene terephthalate resin in order to improve fluidity. For example, a resin composition in which a specific aromatic polybasic acid ester is mixed as a fluidity improver is disclosed (Japanese Patent Laid-Open No. 61-85467). However, in the resin composition described in this document, the mechanical strength tends to decrease as compared with the case where no fluidity improver is added.
 以上のように、公知のポリブチレンテレフタレート樹脂組成物では、そり変形が少なく、高強度、高衝撃を示す組成物は流動性が乏しく、薄肉の板状成形品への応用は極めて困難な状況にあった。
発明の開示
As described above, in the known polybutylene terephthalate resin composition, the composition showing little warpage deformation, high strength and high impact has poor fluidity, and it is extremely difficult to apply it to a thin plate-shaped molded product. there were.
Disclosure of the invention
 本発明の目的は、機械的強度および衝撃強度に優れ、そり変形も少なく、且つ流動性(溶融流動性)が向上したポリブチレンテレフタレート樹脂組成物及びその成形品を提供することにある。 An object of the present invention is to provide a polybutylene terephthalate resin composition having excellent mechanical strength and impact strength, little warpage deformation and improved fluidity (melt fluidity), and a molded product thereof.
 本発明者等は上記課題を解決するため鋭意検討を行った結果、ポリブチレンテレフタレート樹脂に、扁平な断面形状を有するガラス繊維と特定のグリセリン脂肪酸エステルとを併用配合することにより、上記目的を達成し得る樹脂組成物が得られることを見出し、本発明を完成するに至った。
即ち、本発明は
(A)ポリブチレンテレフタレート樹脂100重量部に対して、
(B)扁平な断面形状を有するガラス繊維40~140重量部、
(C)グリセリン及び/又はその脱水縮合物と炭素数12以上の脂肪酸とからなり、本文記載の方法により測定した水酸基価が200以上のグリセリン脂肪酸エステル0.05~5重量部
を配合してなるポリブチレンテレフタレート樹脂組成物、およびそれからなる薄肉成形品である。
As a result of intensive studies to solve the above problems, the present inventors have achieved the above object by combining a polybutylene terephthalate resin with a glass fiber having a flat cross-sectional shape and a specific glycerin fatty acid ester. The present inventors have found that a resin composition that can be obtained is obtained, and have completed the present invention.
That is, the present invention
(A) For 100 parts by weight of polybutylene terephthalate resin,
(B) 40 to 140 parts by weight of glass fiber having a flat cross-sectional shape,
(C) Polybutylene comprising glycerin and / or a dehydrated condensate thereof and a fatty acid having 12 or more carbon atoms, and 0.05 to 5 parts by weight of a glycerin fatty acid ester having a hydroxyl value measured by the method described herein of 200 or more. A terephthalate resin composition and a thin molded article comprising the same.
 本発明のポリブチレンテレフタレート樹脂組成物は、機械的強度および衝撃強度に優れ、そり変形も少なく、且つ流動性(溶融流動性)に優れる本発明のポリブチレンテレフタレート樹脂組成物は、その特性から薄肉成形品に適用可能であり、各種電子機器の筐体等に適しており、特にスイッチ、コンデンサー、コネクター、集積回路(IC)、リレー、抵抗器、発光ダイオード(LED)、コイルボビン、電子機器、携帯端末、ECU、各種センサー、パワーモジュール、ギア部品及びそれらの周辺機器又はそのハウジング又はシャーシ等の成形品に好適である。
発明の詳細な説明
The polybutylene terephthalate resin composition of the present invention is excellent in mechanical strength and impact strength, has little warpage deformation, and is excellent in fluidity (melt fluidity). Applicable to molded products and suitable for various electronic equipment casings, especially switches, capacitors, connectors, integrated circuits (ICs), relays, resistors, light emitting diodes (LEDs), coil bobbins, electronic equipment, mobile phones It is suitable for molded products such as terminals, ECUs, various sensors, power modules, gear parts and their peripheral devices or their housings or chassis.
Detailed Description of the Invention
 以下、順次本発明の樹脂材料の構成成分について詳しく説明する。
(A)ポリブチレンテレフタレート樹脂
 ポリブチレンテレフタレート樹脂とは、テレフタル酸(テレフタル酸またはそのエステル形成誘導体)と、炭素数4のアルキレングリコール(1,4-ブタンジオールまたはそのエステル形成誘導体)を少なくとも重合成分とする熱可塑性樹脂である。本発明の(A)ポリブチレンテレフタレート樹脂とは、ポリブチレンテレフタレートホモポリマーに限らず、イソフタル酸変性ポリブチレンテレフタレート、イソフタル酸変性ポリエステルを含有するポリブチレンテレフタレートも含まれ、そり変形の面からは、イソフタル酸変性ポリブチレンテレフタレート、イソフタル酸変性ポリエステルを含有するポリブチレンテレフタレートが好ましく使用できる。
Hereinafter, the constituent components of the resin material of the present invention will be described in detail.
(A) Polybutylene terephthalate resin Polybutylene terephthalate resin is a polymerization component comprising at least terephthalic acid (terephthalic acid or an ester-forming derivative thereof) and alkylene glycol having 4 carbon atoms (1,4-butanediol or an ester-forming derivative thereof). It is a thermoplastic resin. The (A) polybutylene terephthalate resin of the present invention is not limited to polybutylene terephthalate homopolymer, but also includes polybutylene terephthalate containing isophthalic acid-modified polybutylene terephthalate and isophthalic acid-modified polyester. An isophthalic acid-modified polybutylene terephthalate and a polybutylene terephthalate containing an isophthalic acid-modified polyester can be preferably used.
 イソフタル酸変性ポリブチレンテレフタレートとは、アルキレングリコール成分が1,4-ブタンジオールまたはそのエステル形成誘導体であり、テレフタル酸またはそのエステル形成誘導体と共にイソフタル酸またはそのエステル形成誘導体(ジメチルエステルの如き低級アルコールエステル等)をコモノマーユニットとして導入した共重合体である。 Isophthalic acid-modified polybutylene terephthalate is an alkylene glycol component of 1,4-butanediol or an ester-forming derivative thereof, and isophthalic acid or an ester-forming derivative thereof together with terephthalic acid or an ester-forming derivative thereof (lower alcohol ester such as dimethyl ester) Etc.) as a comonomer unit.
 また、イソフタル酸変性ポリエステルとは、テレフタル酸またはそのエステル形成誘導体と、炭素数2~4のアルキレングリコール、特に好ましくは、エチレングリコール、トリメチレングリコール、1,4-ブタンジオールまたはそのエステル形成誘導体を重縮合反応させて得られるポリエステルを主成分とし、これにイソフタル酸またはそのエステル形成誘導体(ジメチルエステルの如き低級アルコールエステル等)をコモノマーユニットとして導入した共重合体である。 The isophthalic acid-modified polyester includes terephthalic acid or an ester-forming derivative thereof and alkylene glycol having 2 to 4 carbon atoms, particularly preferably ethylene glycol, trimethylene glycol, 1,4-butanediol or an ester-forming derivative thereof. This is a copolymer comprising, as a main component, a polyester obtained by polycondensation reaction, into which isophthalic acid or an ester-forming derivative thereof (such as a lower alcohol ester such as dimethyl ester) is introduced as a comonomer unit.
 イソフタル酸変性ポリブチレンテレフタレート、イソフタル酸変性ポリエステルのイソフタル酸コモノマーユニットの導入量は5~30モル%が好ましく、より好ましくは10~30モル%、特に好ましくは10~20モル%である。導入量は5モル%未満では、結晶性が高いため、低そり効果が低い可能性がある。また、導入量が30モル%を超えると、本来のポリブチレンテレフタレートの優位点である強度および熱安定性の低下が大きく、且つ結晶化が著しく低下、遅延されることで、成形サイクルの低下、離型性の低下を引き起こし、実用的に用いられない問題を生じるおそれがある。尚、ベース樹脂として、ポリブチレンテレフタレートとイソフタル酸変性ポリエステルの混合物を使用する場合には、全ジカルボン酸成分に対するイソフタル酸の含有率が5~30モル%にあることが好ましい。 The amount of isophthalic acid comonomer unit introduced in isophthalic acid-modified polybutylene terephthalate or isophthalic acid-modified polyester is preferably 5 to 30 mol%, more preferably 10 to 30 mol%, and particularly preferably 10 to 20 mol%. If the amount introduced is less than 5 mol%, the crystallinity is high, and the low warpage effect may be low. Further, when the introduction amount exceeds 30 mol%, the strength and thermal stability, which are the advantages of the original polybutylene terephthalate, are greatly reduced, and the crystallization is remarkably reduced and delayed, thereby reducing the molding cycle. There is a possibility that the mold releasability is lowered and a problem that is not practically used is caused. When a mixture of polybutylene terephthalate and isophthalic acid-modified polyester is used as the base resin, the content of isophthalic acid with respect to the total dicarboxylic acid component is preferably 5 to 30 mol%.
 ベース樹脂としてのポリブチレンテレフタレートは、本発明の効果を阻害しない範囲で、共重合可能なモノマー(以下、単に共重合性モノマーと称する場合がある)と共重合させた共重合体として用いることができる。共重合性モノマーとしては、例えば、テレフタル酸、イソフタル酸を除くジカルボン酸成分、炭素数2~4のアルキレングリコール以外のジオール、オキシカルボン酸成分、ラクトン成分等が挙げられる。共重合性モノマーは、1種又は2種以上組み合わせて使用できる。 Polybutylene terephthalate as a base resin can be used as a copolymer copolymerized with a copolymerizable monomer (hereinafter sometimes referred to simply as a copolymerizable monomer) as long as the effects of the present invention are not impaired. it can. Examples of the copolymerizable monomer include dicarboxylic acid components excluding terephthalic acid and isophthalic acid, diols other than alkylene glycol having 2 to 4 carbon atoms, oxycarboxylic acid components, and lactone components. A copolymerizable monomer can be used 1 type or in combination of 2 or more types.
 ジカルボン酸(又はジカルボン酸成分又はジカルボン酸類)としては、脂肪族ジカルボン酸(例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ヘキサデカンジカルボン酸、ダイマー酸などのC4~40ジカルボン酸、好ましくはC4~14ジカルボン酸)、脂環式ジカルボン酸成分(例えば、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、ハイミック酸などのC8~12ジカルボン酸)、テレフタル酸を除く芳香族ジカルボン酸成分(例えば、フタル酸、2,6-ナフタレンジカルボン酸などのナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェノキシエーテルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルケトンジカルボン酸などのC8~16ジカルボン酸)、またはこれらの反応性誘導体(例えば、低級アルキルエステル(ジメチルフタル酸、などのフタル酸のC1~4アルキルエステルなど)、酸クロライド、酸無水物などのエステル形成可能な誘導体)などが挙げられる。さらに、必要に応じて、トリメリット酸、ピロメリット酸などの多価カルボン酸又はそのエステル形成誘導体(アルコールエステルなど)などを併用してもよい。このような多官能性化合物を併用すると、分岐状のポリブチレンテレフタレート樹脂を得ることもできる。 Dicarboxylic acids (or dicarboxylic acid components or dicarboxylic acids) include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, hexadecandioyl carboxylic acid, C 4 ~ 40 dicarboxylic acids such as dimer acid, preferably C 4 ~ 14 dicarboxylic acids), alicyclic dicarboxylic acid component (e.g., hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, hymic C 8 ~ 12 dicarboxylic acids, such as acid), an aromatic dicarboxylic acid component other than terephthalic acid (e.g., naphthalene dicarboxylic acids such as phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-diphenyl dicarboxylic acid, 4, 4'-diphenoxyether dicarboxylic acid, 4,4'- Phenyl ether dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenyl ketone C 8 ~ 16 dicarboxylic acids such as dicarboxylic acids), or reactive derivatives thereof (e.g., lower alkyl esters (dimethyl phthalate, C 1-4 alkyl esters of phthalic acid, etc.), and ester-forming derivatives such as acid chlorides and acid anhydrides). Furthermore, you may use together polyvalent carboxylic acid, such as trimellitic acid and pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc. as needed. When such a polyfunctional compound is used in combination, a branched polybutylene terephthalate resin can also be obtained.
 ジオール(又はジオール成分又はジオール類)には、例えば1,4-ブタンジオールを除く脂肪族アルカンジオール[例えば、アルカンジオール(例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、ネオペンチルグリコール、ヘキサンジオール(1,6-ヘキサンジオールなど)、オクタンジオール(1,3-オクタンジオール、1,8-オクタンジオールなど)、デカンジオールなどの低級アルカンジオール、好ましくは直鎖状又は分岐鎖状C2~12アルカンジオール、さらに好ましくは直鎖状又は分岐鎖状C2~10アルカンジオールなど);(ポリ)オキシアルキレングリコール(例えば、複数のオキシC2~4アルキレン単位を有するグリコール、例えば、ジエチレングリコール、ジプロピレングリコール、ジテトラメチレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリテトラメチレングリコールなど)など]、脂環族ジオール(例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素化ビスフェノールAなど)、芳香族ジオール[例えば、ハイドロキノン、レゾルシノール、ナフタレンジオールなどのジヒドキシC6~14アレーン;ビフェノール(4,4'-ジヒドキシビフェニルなど);ビスフェノール類;キシリレングリコールなど]、及びこれらの反応性誘導体(例えば、アルキル、アルコキシ又はハロゲン置換体などのエステル形成性誘導体など)などが挙げられる。さらに、必要に応じて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトールなどのポリオール又はそのエステル形成性誘導体を併用してもよい。このような多官能性化合物を併用すると、分岐状のポリブチレンテレフタレート樹脂を得ることもできる。 Diols (or diol components or diols) include, for example, aliphatic alkanediols excluding 1,4-butanediol [for example, alkanediols (for example, ethylene glycol, trimethylene glycol, propylene glycol, neopentyl glycol, hexanediol ( 1,6-hexanediol), octanediol (1,3-octanediol, 1,8-octanediol, etc.), lower alkane diols, such as decanediol, preferably a straight chain or branched chain C 2 ~ 12 alkane Diols, more preferably linear or branched C 2-10 alkane diols); (poly) oxyalkylene glycols (eg glycols having a plurality of oxy C 2-4 alkylene units, eg diethylene glycol, dipropylene glycol) Ditetramethylene glycol , Triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.)], alicyclic diols (eg 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.), aromatic family diol [for example, hydroquinone, resorcinol, Jihidokishi C 6 ~ 14 arenes such as naphthalene diol; (such as 4,4'-hydrin carboxymethyl biphenyl) biphenol; bisphenols; xylylene glycol, etc.], and reactive derivatives thereof ( For example, ester-forming derivatives such as alkyl, alkoxy or halogen-substituted products). Furthermore, if necessary, a polyol such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination. When such a polyfunctional compound is used in combination, a branched polybutylene terephthalate resin can also be obtained.
 なお、共重合体において、共重合性モノマーの割合は、例えば、0.01~30モル%程度の範囲から選択でき、通常、1~30モル%、好ましくは3~25モル%、さらに好ましくは5~20モル%(例えば、5~15モル%)程度である。また、ホモポリエステル(ポリブチレンテレフタレート)と共重合体(コポリエステル)とを組み合わせて使用する場合、ホモポリエステルとコポリエステルとの割合は、共重合性モノマーの割合が、全単量体に対して0.1~30モル%(好ましくは1~25モル%、さらに好ましくは5~25モル%)程度となる範囲であり、通常、前者/後者=99/1~1/99(重量比)、好ましくは95/5~5/95(重量比)、さらに好ましくは90/10~10/90(重量比)程度の範囲から選択できる。 In the copolymer, the proportion of the copolymerizable monomer can be selected from the range of, for example, about 0.01 to 30 mol%, and is usually 1 to 30 mol%, preferably 3 to 25 mol%, more preferably 5 to 5 mol%. It is about 20 mol% (for example, 5 to 15 mol%). In addition, when a homopolyester (polybutylene terephthalate) and a copolymer (copolyester) are used in combination, the proportion of the homopolyester and the copolyester is such that the proportion of the copolymerizable monomer is relative to the total monomers. The range is about 0.1 to 30 mol% (preferably 1 to 25 mol%, more preferably 5 to 25 mol%). Usually, the former / the latter = 99/1 to 1/99 (weight ratio), preferably It can be selected from the range of 95/5 to 5/95 (weight ratio), more preferably about 90/10 to 10/90 (weight ratio).
 なお、(A)ポリブチレンテレフタレート樹脂の固有粘度(IV)は、何れも1.0dL/g以下であることが好ましく、さらに好ましくは0.9dL/g以下である。異なる固有粘度を有するポリブチレンテレフタレート樹脂又は変性ポリエステルをブレンドすることによって、例えば固有粘度1.2dL/gと0.8dL/gのポリブチレンテレフタレート樹脂をブレンドすることによって、1.0dL/g以下の固有粘度を実現してもよい。なお、固有粘度(IV)は、例えば、O-クロロフェノール中、温度35℃の条件で測定できる。このような範囲の固有粘度を有するポリブチレンテレフタレート樹脂を使用すると、十分な靱性の付与と溶融粘度の低減とを効率よく実現しやすい。固有粘度が大きすぎると、成形時の溶融粘度が高くなり、場合により成形金型内で樹脂の流動不良、充填不良を起こす可能性がある。 The intrinsic viscosity (IV) of the (A) polybutylene terephthalate resin is preferably 1.0 dL / g or less, and more preferably 0.9 dL / g or less. By blending polybutylene terephthalate resins or modified polyesters with different intrinsic viscosities, for example by blending polybutylene terephthalate resins with intrinsic viscosities of 1.2 dL / g and 0.8 dL / g, an intrinsic viscosity of 1.0 dL / g or less is achieved. It may be realized. The intrinsic viscosity (IV) can be measured, for example, in O-chlorophenol at a temperature of 35 ° C. When a polybutylene terephthalate resin having an intrinsic viscosity in such a range is used, it is easy to efficiently achieve sufficient toughness and a reduced melt viscosity. If the intrinsic viscosity is too large, the melt viscosity at the time of molding becomes high, and in some cases, there is a possibility of causing poor resin flow and poor filling in the molding die.
 本発明で用いられる(B)扁平な断面形状を有するガラス繊維とは、長さ方向に直角の断面の長径(断面の最長の直線距離)と短径(長径と直角方向の最長の直線距離)の比が1.3~10、好ましくは1.5~8、特に好ましくは2~5の間にあるガラス繊維である。具体的な形状としては、略楕円形、略長円形、略まゆ形等である。 (B) The glass fiber having a flat cross-sectional shape used in the present invention is a long diameter (longest linear distance in the cross section) and a short diameter (longest straight distance in the direction perpendicular to the long diameter). The glass fiber has a ratio of 1.3 to 10, preferably 1.5 to 8, particularly preferably 2 to 5. Specific shapes include a substantially oval shape, a substantially oval shape, a substantially eyebrow shape, and the like.
 (B)扁平な断面形状を有するガラス繊維は、機械的強度、衝撃強度に優れ、そり変形を抑制するとともに成形性にも優れる。 (B) Glass fiber having a flat cross-sectional shape is excellent in mechanical strength and impact strength, suppresses warpage deformation, and is excellent in moldability.
 又、扁平な断面形状を有するガラス繊維は、その平均断面積が100~300マイクロ平方メートルのものが好ましい。100マイクロ平方メートルより小さい場合、機械的強度、衝撃強度が十分でなく、300マイクロ平方メートルを超える場合には、射出成形時のゲート詰まりや、金型や成形機の摩耗の問題を生じる。 Further, the glass fiber having a flat cross-sectional shape preferably has an average cross-sectional area of 100 to 300 micro square meters. If it is smaller than 100 micro square meters, the mechanical strength and impact strength are insufficient, and if it exceeds 300 micro square meters, problems such as gate clogging at the time of injection molding and wear of molds and molding machines occur.
 本発明において用いられる(B)扁平な断面形状を有するガラス繊維の配合量は、(A)ポリブチレンテレフタレート樹脂100重量部に対し、40~140重量部、好ましくは50~120重量部である。配合量が40重量部未満では機械的強度、衝撃強度が低く、また140重量部を超えると流動性が著しく悪化する。 The amount of (B) glass fiber having a flat cross-sectional shape used in the present invention is 40 to 140 parts by weight, preferably 50 to 120 parts by weight, per 100 parts by weight of (A) polybutylene terephthalate resin. When the blending amount is less than 40 parts by weight, the mechanical strength and impact strength are low, and when it exceeds 140 parts by weight, the fluidity is remarkably deteriorated.
 (B)扁平な断面形状を有するガラス繊維の使用にあたっては、必要ならば収束剤又は表面処理剤を使用することが望ましい。この例を示せば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物等の官能性化合物がいずれも好ましく用いられる。これ等の化合物は予め表面処理又は収束処理を施して用いるか、又は材料調製の際同時に添加してもよい。また、併用される官能性表面処理剤の使用量は、充填剤に対し0~10重量%、好ましくは0.01~5重量%である。 (B) When using a glass fiber having a flat cross-sectional shape, it is desirable to use a sizing agent or a surface treatment agent if necessary. If this example is shown, all functional compounds, such as an epoxy-type compound, an acryl-type compound, an isocyanate type compound, a silane type compound, and a titanate type compound, are used preferably. These compounds may be used after surface treatment or convergence treatment in advance, or may be added at the same time as the material preparation. The amount of the functional surface treating agent used in combination is 0 to 10% by weight, preferably 0.01 to 5% by weight, based on the filler.
 かかるガラス繊維(B)としては、Aガラス、Eガラス、ジルコニア成分含有の耐アルカリガラス組成や、チョップドストランド、ロービングガラス等の配合時のガラス繊維の形態を問わず、使用可能である。 Such glass fiber (B) can be used regardless of the glass fiber form at the time of blending A glass, E glass, an alkali-resistant glass composition containing a zirconia component, chopped strands, roving glass, or the like.
 本発明に用いる(B)扁平な断面形状を有するガラス繊維は、溶融ガラスを吐出するために使用するブッシングとして、長円形、楕円形、矩形、スリット状等の適当な孔形状を有するノズルを用いて紡糸することにより調製される。又、各種の断面形状(円形断面を含む)を有する近接して設けられた複数のノズルから溶融ガラスを紡出し、紡出された溶融ガラスを互いに接合して単一のフィラメントとすることにより調製できる。 (B) The glass fiber having a flat cross-sectional shape used in the present invention uses a nozzle having an appropriate hole shape such as an oval, an ellipse, a rectangle, or a slit as a bushing used for discharging molten glass. Prepared by spinning. Also prepared by spinning molten glass from a plurality of adjacent nozzles having various cross-sectional shapes (including circular cross-sections), and joining the spun molten glass into a single filament it can.
 次に本発明で用いる(C)グリセリン脂肪酸エステルは、グリセリン及び/又はその脱水縮合物と炭素数12以上の脂肪酸とからなり、後記の方法により測定した水酸基価が200以上の脂肪酸エステルである。通常、ポリブチレンテレフタレート樹脂に流動性改良剤等を添加すると、流動性を向上できても、ポリブチレンテレフタレート樹脂そのものが有する機械的強度や靱性等の特性の低下を避けることができない。本発明では特定のグリセリン脂肪酸エステル(C)を使用することにより、前記特性を高いレベルで保持しつつポリブチレンテレフタレート樹脂組成物の流動性を効率よく向上できる。 Next, the (C) glycerin fatty acid ester used in the present invention is a fatty acid ester composed of glycerin and / or a dehydration condensate thereof and a fatty acid having 12 or more carbon atoms and having a hydroxyl value measured by the method described later of 200 or more. Usually, when a fluidity improver or the like is added to a polybutylene terephthalate resin, even if the fluidity can be improved, a decrease in properties such as mechanical strength and toughness of the polybutylene terephthalate resin itself cannot be avoided. In the present invention, by using the specific glycerin fatty acid ester (C), the fluidity of the polybutylene terephthalate resin composition can be efficiently improved while maintaining the above characteristics at a high level.
 (C)グリセリン脂肪酸エステルは、それ自体公知の方法で製造することができ、市販品を使用してもよく、後記の方法により測定した水酸基価が200以上になるようにエステル化を調整したものであり、好ましくは250以上の水酸基価を有するものである。水酸基価が200未満では流動性の改良効果が少なく好ましくない。 (C) Glycerin fatty acid ester can be produced by a method known per se, and a commercially available product may be used, and the esterification is adjusted so that the hydroxyl value measured by the method described below is 200 or more. Preferably, it has a hydroxyl value of 250 or more. When the hydroxyl value is less than 200, the effect of improving the fluidity is small, which is not preferable.
 グリセリン脂肪酸エステルのエステルを構成する炭素数12以上の脂肪酸としては、ラウリン酸、オレイン酸、パルミチン酸、ステアリン酸、ベヘニン酸、モンタン酸等が挙げられ、好ましくは炭素数12~32の脂肪酸、特に好ましくは炭素数12~22の脂肪酸が使用され、ラウリン酸、ステアリン酸又はベヘニン酸が特に好ましい。炭素数12未満のものでは耐熱性が低下することがあり好ましくなく、炭素数が32を超えるものは流動性の改良効果が少なく好ましくない。 Examples of the fatty acid having 12 or more carbon atoms constituting the ester of glycerin fatty acid ester include lauric acid, oleic acid, palmitic acid, stearic acid, behenic acid, montanic acid and the like, preferably a fatty acid having 12 to 32 carbon atoms, particularly Preferably, fatty acids having 12 to 22 carbon atoms are used, and lauric acid, stearic acid or behenic acid is particularly preferred. Those having less than 12 carbon atoms are not preferable because the heat resistance may be lowered, and those having more than 32 carbon atoms are not preferable because the effect of improving fluidity is small.
 好ましいグリセリン脂肪酸エステルを例示すると、グリセリンモノステアレート、グリセリンモノベヘネート、ジグリセリンモノステアレート、トリグリセリンモノステアレート、テトラグリセリンステアリン酸部分エステル、デカグリセリンラウリン酸部分エステル等が挙げられる。 Examples of preferable glycerin fatty acid esters include glycerin monostearate, glycerin monobehenate, diglycerin monostearate, triglycerin monostearate, tetraglycerin stearic acid partial ester, decaglycerin lauric acid partial ester, and the like.
 (C)グリセリン脂肪酸エステルの配合量は、(A)ポリブチレンテレフタレート樹脂100重量部に対して0.05~5重量部、好ましくは0.5~3重量部である。(C)グリセリン脂肪酸エステルの配合量が0.05重量部未満では流動性の向上効果が十分に得られない場合があり、5重量部を超えると成形に伴ってガス発生量が多くなり、成形品の外観を損ねたり、金型汚れを生じるおそれがある。 The blending amount of (C) glycerin fatty acid ester is 0.05 to 5 parts by weight, preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of (A) polybutylene terephthalate resin. (C) If the blending amount of glycerin fatty acid ester is less than 0.05 parts by weight, the effect of improving the fluidity may not be sufficiently obtained, and if it exceeds 5 parts by weight, the amount of gas generation increases with molding, There is a risk of damage to the appearance and mold contamination.
 なお、本発明の樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲で他の樹脂を含んでいてもよい。他の樹脂としては、ポリブチレンテレフタレート樹脂以外のポリエステル樹脂(ポリエチレンテレフタレート、ポリトリメチレンテレフタレート等)、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリアセタール、ポリアリーレンオキシド、ポリアリーレンサルファイド、フッ素樹脂等が例示される。また、アクリロニトリル-スチレン樹脂、アクリロニトリル-ブタジエン-スチレン樹脂、エチレン-エチルアクリレート樹脂等の共重合体も例示される。これら他の樹脂は単独で又は2種以上組み合わせてもよい。 It should be noted that the resin composition of the present invention may contain other resins as needed within a range not impairing the effects of the present invention. Other resins include polyester resins other than polybutylene terephthalate resins (polyethylene terephthalate, polytrimethylene terephthalate, etc.), polyolefin resins, polystyrene resins, polyamide resins, polyacetals, polyarylene oxides, polyarylene sulfides, fluorine resins, etc. Is exemplified. Moreover, copolymers such as acrylonitrile-styrene resin, acrylonitrile-butadiene-styrene resin, and ethylene-ethyl acrylate resin are also exemplified. These other resins may be used alone or in combination of two or more.
 また、本発明の樹脂組成物には、種々の添加剤(安定剤、成形性改善剤等)を添加してもよい。添加剤としては、例えば、各種安定剤(酸化防止剤、紫外線吸収剤、熱安定剤等)核剤(結晶化核剤)、難燃剤、滑剤、離型剤、帯電防止剤、染・顔料等の着色剤、分散剤等が挙げられる。 Further, various additives (stabilizer, moldability improving agent, etc.) may be added to the resin composition of the present invention. Examples of additives include various stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), nucleating agents (crystallization nucleating agents), flame retardants, lubricants, mold release agents, antistatic agents, dyes / pigments, etc. Colorants, dispersants, and the like.
 特に、ポリブチレンテレフタレートと、アルキレングリコール成分が異なる変性ポリエステルを併用する場合は、エステル交換抑制のためにリン系安定剤を添加することが好ましい。用いられるリン系安定剤としては、例えば有機ホスファイト系、ホスフォナイト系化合物およびリン酸金属塩等である。具体例を示すと、ビス(2,4-ジ-t-4メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンホスフォナイト、またリン酸金属塩としては、第一リン酸カルシウム、第一リン酸ナトリウムの1水和物等が挙げられる。 In particular, when polybutylene terephthalate and a modified polyester having a different alkylene glycol component are used in combination, it is preferable to add a phosphorus stabilizer to suppress transesterification. Examples of the phosphorus stabilizer used include organic phosphite compounds, phosphonite compounds, and metal phosphates. Specific examples include bis (2,4-di-t-4methylphenyl) pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, tetrakis (2,4 Examples of the -di-t-butylphenyl) -4,4'-biphenylene phosphonite and the metal phosphate include monocalcium phosphate and monohydrate of monobasic sodium phosphate.
 なお、本発明の樹脂組成物には、必要に応じて、本発明の効果を損なわない範囲で他の強化用充填剤を添加することができる。他の強化用充填剤としては、本発明で規定した以外のガラス繊維、ミルドガラスファイバー、ガラスビーズ、ガラスフレーク、シリカ、アルミナ繊維、ジルコニア繊維、チタン酸カリウム繊維、カーボン繊維、黒鉛、珪酸カルシウム、珪酸アルミニウム、カオリン、タルク、クレー等の珪酸塩、酸化鉄、酸化チタン、酸化亜鉛、酸化アンチモン、アルミナ等の金属酸化物、カルシウム、マグネシウム、亜鉛等の金属の炭酸塩や硫酸塩、さらには炭化珪素、窒化珪素、窒化硼素等が例示され、有機充填剤としては、高融点の芳香族ポリエステル繊維、液晶性ポリエステル繊維、芳香族ポリアミド繊維、フッ素樹脂繊維、ポリイミド繊維等が例示される。 It should be noted that other reinforcing fillers can be added to the resin composition of the present invention as needed within a range not impairing the effects of the present invention. Other reinforcing fillers include glass fibers other than those specified in the present invention, milled glass fibers, glass beads, glass flakes, silica, alumina fibers, zirconia fibers, potassium titanate fibers, carbon fibers, graphite, calcium silicate, Silicates such as aluminum silicate, kaolin, talc and clay, metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony oxide and alumina, carbonates and sulfates of metals such as calcium, magnesium and zinc, and carbonization Examples of the organic filler include silicon polyester, silicon nitride, boron nitride and the like, and examples of the organic filler include high melting point aromatic polyester fiber, liquid crystalline polyester fiber, aromatic polyamide fiber, fluororesin fiber, and polyimide fiber.
 本発明の組成物の調製は、従来の樹脂組成物調製法として一般に用いられる設備と方法により容易に調製される。例えば、各成分を混合した後、1軸又は2軸の押出機により練込押出してペレットを調製し、しかる後成形する方法、一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供し成形後に目的組成の成形品を得る方法、成形機に各成分の1又は2以上を直接仕込む方法等、何れも使用できる。また、樹脂成分の一部を細かい粉体としてこれ以外の成分と混合し添加することは、これらの成分の均一配合を行う上で好ましい方法である。 本発明の樹脂組成物の流動性は、一定のピストンフロー剪断速度下の条件のもとでの溶融粘度を指標として反映させることができる。例えば、本発明の樹脂組成物の溶融粘度は、ISO11443に準拠した温度260℃での剪断速度1000sec-1において、200Pa・s以下、好ましくは170Pa・s以下、さらに好ましくは150Pa・s以下(例えば、50~150Pa・s程度)とすることもできる。測定結果は、上記のようにPa・s単位で得られるが、数値の低いほうが溶融時の流動性に優れ、成形時の流動性に優れるとされる。 The composition of the present invention is easily prepared by equipment and methods generally used as conventional resin composition preparation methods. For example, after mixing each component, kneading and extruding with a single-screw or twin-screw extruder to prepare pellets, then forming the pellets, once preparing pellets with different compositions, mixing the pellets in a predetermined amount Any method can be used, such as a method of obtaining a molded product having a desired composition after molding and a method of directly charging one or more of each component into a molding machine. Further, mixing a part of the resin component as a fine powder with other components and adding it is a preferable method for uniformly blending these components. The fluidity of the resin composition of the present invention can reflect the melt viscosity under a condition under a constant piston flow shear rate as an index. For example, the melt viscosity of the resin composition of the present invention is 200 Pa · s or less, preferably 170 Pa · s or less, more preferably 150 Pa · s or less (for example, at a shear rate of 1000 sec −1 at 260 ° C. in accordance with ISO 11443 (for example, 50 to 150 Pa · s). The measurement results are obtained in units of Pa · s as described above. The lower the numerical value, the better the fluidity during melting and the better fluidity during molding.
 なお、一般には、流動性の指標として、ASTM D-1238で235℃、荷重2160gの条件で測定するメルトインデックスが用いられるが、メルトインデックスの測定は一定荷重下での測定となり、樹脂によりピストンの剪断速度は異なってくる。これに対し、一定のピストンフローの下での溶融粘度測定指標のほうが、実際の射出成形が一定のピストンフローで行われることを考慮すると、実際の流動特性により近い指標であると考えられるため、本発明ではこのような一定剪断速度条件における溶融粘度を流動性の指標とする。 In general, a melt index measured under conditions of ASTM D-1238 at 235 ° C and a load of 2160g is used as an index of fluidity, but the melt index is measured under a constant load. The shear rate is different. On the other hand, the melt viscosity measurement index under a constant piston flow is considered to be an index closer to the actual flow characteristics considering that actual injection molding is performed with a constant piston flow. In the present invention, the melt viscosity under such a constant shear rate condition is used as an index of fluidity.
 本発明の樹脂組成物は、前記のように溶融流動性に優れているため、成形加工性が良好であり、機械的強度や耐熱性の高い成形体又は成形品を製造するのに有用である。 Since the resin composition of the present invention is excellent in melt fluidity as described above, it has good moldability and is useful for producing a molded article or molded article having high mechanical strength and heat resistance. .
 特に、厚みの薄い部位が存在する成形品を製造するのに好適である。例えば、通常のポリブチレンテレフタレート樹脂の射出成形時の製造条件であるシリンダー温度260℃、金型温度80℃での射出成形において1mm以下の厚みの部位を有する射出成形品の成形が可能となる。例えば、100tの型締め力を有し、スクリュー径がφ30mmの射出成形機で射出速度67mm/秒での成形が可能である。 Especially, it is suitable for manufacturing a molded product having a thin portion. For example, it is possible to mold an injection molded product having a thickness of 1 mm or less in injection molding at a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., which are manufacturing conditions for injection molding of a normal polybutylene terephthalate resin. For example, it can be molded at an injection speed of 67 mm / sec with an injection molding machine having a clamping force of 100 t and a screw diameter of φ30 mm.
 1mm厚みでの流動長が120mm以上であることが求められる場合があり、本発明の樹脂組成物であれば120mm以上の流動長も可能となる。 The flow length at a thickness of 1 mm may be required to be 120 mm or more, and the flow length of 120 mm or more is possible with the resin composition of the present invention.
 成形品の一部に1mm以下の厚みの部位を有する薄肉成形品としては、スイッチ、コンデンサー、コネクター、集積回路(IC)、リレー、抵抗器、発光ダイオード(LED)、コイルボビン、電子機器、携帯端末、ECU、各種センサー、パワーモジュール、ギア部品及びそれらの周辺機器又はそのハウジング又はシャーシ等が例示される。 Thin parts with a thickness of 1 mm or less in a part of the molded product include switches, capacitors, connectors, integrated circuits (ICs), relays, resistors, light emitting diodes (LEDs), coil bobbins, electronic devices, and portable terminals. , ECUs, various sensors, power modules, gear parts and their peripheral devices or their housings or chassis.
 樹脂を金型に充填するための成形法としては、射出成形、押出成形、圧縮成形、ブロー成形、真空成形、回転成形、ガスインジェクションモールディング等が適用可能であるが、射出成形が一般的である。
実施例
Injection molding, extrusion molding, compression molding, blow molding, vacuum molding, rotational molding, gas injection molding, etc. can be applied as a molding method for filling the resin into the mold, but injection molding is common. .
Example
 以下実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
実施例1~7、比較例1~6
 各樹脂組成物を表1、2に示す混合比率でドライブレンドし、30mmφのスクリューを有する2軸押出機((株)日本製鋼製)を用いて、シリンダー設定温度250℃で溶融混練したのちペレット化し、試験片を作成し、各評価を行った。結果を表1、2に示す。
Examples 1-7, Comparative Examples 1-6
Each resin composition was dry blended at the mixing ratio shown in Tables 1 and 2, and melt-kneaded at a cylinder setting temperature of 250 ° C using a twin screw extruder (manufactured by Nippon Steel Co., Ltd.) having a 30mmφ screw, then pellets Test pieces were prepared and evaluated. The results are shown in Tables 1 and 2.
 また、使用した成分の詳細、物性評価の測定法は以下の通りである。
(A)ポリエステル樹脂
 (A-1)ポリブチレンテレフタレート(固有粘度IV=0.69dL/g、ウィンテックポリマー(株)製)
 (A-2)イソフタル酸変性ポリエチレンテレフタレート(イソフタル酸12.0モル%変性、固有粘度IV=0.80dL/g、(株)ベルポリエステルプロダクツ製)
 (A-3)イソフタル酸変性ポリブチレンテレフタレート(固有粘度IV=0.65dL/g)
 テレフタル酸と1,4-ブタンジオールとの反応において、テレフタル酸の一部(12.5モル%)に代えて、共重合成分としてのジメチルイソフタル酸12.5モル%を用いた変性ポリブチレンテレフタレート
(B)ガラス繊維
 (B-1) ;扁平な断面形状を有するガラス繊維(長径・短径比:4、平均断面積196μm、日東紡(株)製)
 (B '-1) ;一般的な円形断面形状を有するガラス繊維(長径・短径比:1、平均断面積133μm、日本電気ガラス(株)製)
(C)グリセリン脂肪酸エステル
 (C-1)グリセリンモノステアレート(水酸基価330、花王(株)製「エレクトロストリッパーTS-5」)
 (C-2)グリセリンモノベヘネート(水酸基価300、理研ビタミン(株)製「リケマールB-100」)
 (C-3)トリグリセリンステアリン酸部分エステル(水酸基価280、理研ビタミン(株)製「リケマールAF-70」)
 (C-4)デカグリセリンラウリン酸部分エステル(水酸基価600、理研ビタミン(株)製「ポエムL-021」)
 (C'-1)グリセリントリステアレート(水酸基価87、理研ビタミン(株)製「ポエムS-95」)
 尚、(C)グリセリン脂肪酸エステルの水酸基価は、油化学協会法2,4,9,2-71水酸基価(ピリジン・無水酢酸法)により測定した。
Moreover, the detail of the used component and the measuring method of physical property evaluation are as follows.
(A) Polyester resin (A-1) Polybutylene terephthalate (Intrinsic viscosity IV = 0.69 dL / g, manufactured by Wintech Polymer Co., Ltd.)
(A-2) Isophthalic acid-modified polyethylene terephthalate (modified with 12.0 mol% isophthalic acid, intrinsic viscosity IV = 0.80 dL / g, manufactured by Bell Polyester Products)
(A-3) Isophthalic acid-modified polybutylene terephthalate (Intrinsic viscosity IV = 0.65dL / g)
Modified polybutylene terephthalate using 12.5 mol% of dimethylisophthalic acid as a copolymer component instead of a part of terephthalic acid (12.5 mol%) in the reaction of terephthalic acid with 1,4-butanediol
(B) Glass fiber (B-1): Glass fiber having a flat cross section (major axis / minor axis ratio: 4, average cross-sectional area 196 μm 2 , manufactured by Nittobo Co., Ltd.)
(B'-1): Glass fiber having a general circular cross-section (major axis / minor axis ratio: 1, average cross-sectional area of 133 μm 2 , manufactured by NEC Glass, Inc.)
(C) Glycerol fatty acid ester (C-1) Glycerol monostearate (Hydroxyl value 330, “Electro Stripper TS-5” manufactured by Kao Corporation)
(C-2) Glycerol monobehenate (Hydroxyl value 300, “Riquemar B-100” manufactured by Riken Vitamin Co., Ltd.)
(C-3) Triglycerin stearic acid partial ester (hydroxyl value 280, "Rikemar AF-70" manufactured by Riken Vitamin Co., Ltd.)
(C-4) Decaglycerin lauric acid partial ester (hydroxyl value 600, “Poem L-021” manufactured by Riken Vitamin Co., Ltd.)
(C'-1) Glycerol tristearate (hydroxyl value 87, "Poem S-95" manufactured by Riken Vitamin Co., Ltd.)
The hydroxyl value of (C) glycerin fatty acid ester was measured by the Oil Chemistry Association method 2,4,9,2-71 hydroxyl value (pyridine / acetic anhydride method).
 また、実施例7については、表中の組成に更に第一リン酸カルシウムを0.15重量部添加している。 Moreover, about Example 7, 0.15 weight part of monocalcium phosphate is further added to the composition in a table | surface.
<引張強さ>
 得られたペレットを140℃で3時間乾燥後、成形機シリンダー温度260℃、金型温度80℃で、射出成形により引張試験片を作製し、ISO-527(試験片厚み4mm)に準じて測定した。
<シャルピー衝撃強さ>
 得られたペレットを140℃で3時間乾燥後、成形機シリンダー温度260℃、金型温度80℃で、射出成形によりシャルピー衝撃試験片を作製し、ISO-179(試験片厚み4mm)に準じて測定した。
<溶融粘度>
 得られたペレットを140℃で3時間乾燥後、キャピログラフ1B(東洋精機製作所社製)を用いて、ISO11443に準拠して、炉体温度260℃、キャピラリーφ1mm×20mmLにて、剪断速度1000sec-1にて測定した。数値の低いほうが溶融時の流動性に優れ、成形時の流動性に優れる。
<流動性>
 下記基準で厚さ1mmの流動長さを測定した。
評価成形品;厚さ1mm×幅20mmのスパイラルフロー
成形機;FANUC S2000i-100B(スクリュー径φ30mm)
シリンダー温度;260-260-260-230℃
金型温度;80℃
射出圧力;98MPa 
射出速度;67mm /秒
<そり変形>
 下記基準で平板の平面度を測定した。
評価成形品;50mm×50mm×厚さ1mmの平板
成形機;FANUC ROBOSHOTα-100Ia
シリンダー温度;260-260-240-220℃
金型温度;80℃
射出圧力;69MPa
平面度測定機;CNC画像測定機クイックビジョンQVH404(ミツトヨ社製)
 平面度測定法は平板上の9点(縦横3×3点)にて測定した。
<Tensile strength>
The obtained pellets were dried at 140 ° C. for 3 hours, then a tensile test piece was prepared by injection molding at a molding machine cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., and measured according to ISO-527 (test piece thickness 4 mm). did.
<Charpy impact strength>
The obtained pellets were dried at 140 ° C. for 3 hours, then a Charpy impact test piece was prepared by injection molding at a molding machine cylinder temperature of 260 ° C. and a mold temperature of 80 ° C., according to ISO-179 (test piece thickness 4 mm). It was measured.
<Melt viscosity>
The obtained pellets were dried at 140 ° C. for 3 hours, and then, using a Capillograph 1B (manufactured by Toyo Seiki Seisakusho Co., Ltd.), in accordance with ISO 11443, a furnace temperature of 260 ° C., capillary φ1 mm × 20 mmL, shear rate 1000 sec −1 Measured with The lower the value, the better the fluidity during melting and the better fluidity during molding.
<Fluidity>
The flow length of 1 mm thickness was measured according to the following criteria.
Evaluation molded product; Spiral flow molding machine with thickness 1mm x width 20mm; FANUC S2000i-100B (screw diameter φ30mm)
Cylinder temperature: 260-260-260-230 ℃
Mold temperature: 80 ℃
Injection pressure: 98MPa
Injection speed: 67mm / sec <warp deformation>
The flatness of the flat plate was measured according to the following criteria.
Evaluation molded product; 50mm x 50mm x 1mm thickness flat plate molding machine; FANUC ROBOSHOTα-100Ia
Cylinder temperature: 260-260-240-220 ℃
Mold temperature: 80 ℃
Injection pressure: 69MPa
Flatness measuring machine: CNC image measuring machine Quick Vision QVH404 (Mitutoyo)
The flatness measurement method was performed at 9 points (vertical and horizontal 3 × 3 points) on a flat plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1. (A)ポリブチレンテレフタレート樹脂100重量部に対して、
    (B)扁平な断面形状を有するガラス繊維40~140重量部、
    (C)グリセリン及び/又はその脱水縮合物と炭素数12以上の脂肪酸とからなり、本文記載の方法により測定した水酸基価が200以上のグリセリン脂肪酸エステル0.05~5重量部
    を配合してなるポリブチレンテレフタレート樹脂組成物。
    (A) For 100 parts by weight of polybutylene terephthalate resin,
    (B) 40 to 140 parts by weight of glass fiber having a flat cross-sectional shape,
    (C) Polybutylene comprising glycerin and / or a dehydration condensate thereof and a fatty acid having 12 or more carbon atoms, and 0.05 to 5 parts by weight of a glycerin fatty acid ester having a hydroxyl value measured by the method described herein of 200 or more. A terephthalate resin composition.
  2.  (A)ポリブチレンテレフタレート樹脂が、イソフタル酸変性ポリエステルを含有するポリブチレンテレフタレートであり、全ジカルボン酸成分に対するイソフタル酸の含有率が5~30モル%である請求項1記載のポリブチレンテレフタレート樹脂組成物。 2. The polybutylene terephthalate resin composition according to claim 1, wherein the (A) polybutylene terephthalate resin is a polybutylene terephthalate containing an isophthalic acid-modified polyester, and the content of isophthalic acid in the total dicarboxylic acid component is 5 to 30 mol%. object.
  3.  (A)ポリブチレンテレフタレート樹脂が、5~30モル%イソフタル酸変性ポリブチレンテレフタレートである請求項1記載のポリブチレンテレフタレート樹脂組成物。 2. The polybutylene terephthalate resin composition according to claim 1, wherein the (A) polybutylene terephthalate resin is 5-30 mol% isophthalic acid-modified polybutylene terephthalate.
  4.  (B)扁平な断面形状を有するガラス繊維が、長さ方向に直角の断面の長径(断面の最長の直線距離)と短径(長径と直角方向の最長の直線距離)の比が1.3~10の間にあるものである請求項1~3の何れか1項記載のポリブチレンテレフタレート樹脂組成物。 (B) The ratio of the long diameter (longest straight line distance in the cross section) to the short diameter (long straight line and longest straight distance in the right direction) of the glass fiber having a flat cross section is 1.3 to 10 4. The polybutylene terephthalate resin composition according to claim 1, wherein the polybutylene terephthalate resin composition is between the two.
  5.  (B)扁平な断面形状を有するガラス繊維が、平均断面積100~300マイクロ平方メートルのあるものである請求項1~4の何れか1項記載のポリブチレンテレフタレート樹脂組成物。 (B) The polybutylene terephthalate resin composition according to any one of claims 1 to 4, wherein the glass fiber having a flat cross-sectional shape has an average cross-sectional area of 100 to 300 micro square meters.
  6.  (C)グリセリン脂肪酸エステルを構成する脂肪酸が、ラウリン酸、ステアリン酸又はベヘニン酸である請求項1~5の何れか1項記載のポリブチレンテレフタレート樹脂組成物。 6. The polybutylene terephthalate resin composition according to any one of claims 1 to 5, wherein the fatty acid constituting (C) glycerin fatty acid ester is lauric acid, stearic acid or behenic acid.
  7.  ISO11443に準拠した温度260℃での剪断速度1000sec-1における溶融粘度の測定値が200Pa・s以下である請求項1~6の何れか1項記載のポリブチレンテレフタレート樹脂組成物。 The polybutylene terephthalate resin composition according to any one of claims 1 to 6, wherein a measured value of melt viscosity at a shear rate of 1000 sec -1 at a temperature of 260 ° C according to ISO11443 is 200 Pa · s or less.
  8.  シリンダー温度260℃、金型温度80℃における射出成形において1mm厚みでの流動長が120mm以上である請求項1~7の何れか1項記載のポリブチレンテレフタレート樹脂組成物からなる薄肉成形品。 The thin-walled molded article comprising the polybutylene terephthalate resin composition according to any one of claims 1 to 7, wherein a flow length at a thickness of 1 mm is 120 mm or more in injection molding at a cylinder temperature of 260 ° C and a mold temperature of 80 ° C.
  9.  成形品の一部に1mm以下の厚みの部位を有する請求項8記載の薄肉成形品。 The thin molded product according to claim 8, wherein a part of the molded product has a portion having a thickness of 1 mm or less.
  10.  スイッチ、コンデンサー、コネクター、集積回路(IC)、リレー、抵抗器、発光ダイオード(LED)、コイルボビン、電子機器、携帯端末、ECU、各種センサー、パワーモジュール、ギア部品及びそれらの周辺機器又はそのハウジング又はシャーシである請求項8又は9記載の薄肉成形品。 Switches, capacitors, connectors, integrated circuits (ICs), relays, resistors, light emitting diodes (LEDs), coil bobbins, electronic devices, mobile terminals, ECUs, various sensors, power modules, gear components and their peripheral devices or their housings or The thin molded article according to claim 8 or 9, which is a chassis.
PCT/JP2008/003906 2007-12-25 2008-12-24 Polybutylene terephthalate resin composition and thin molded article WO2009081571A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107014022A KR101520133B1 (en) 2007-12-25 2008-12-24 Polybutylene terephthalate resin composition and thin molded article
CN2008801227918A CN101910304B (en) 2007-12-25 2008-12-24 Polybutylene terephthalate resin composition and thin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-331722 2007-12-25
JP2007331722A JP2009155367A (en) 2007-12-25 2007-12-25 Polybutylene terephthalate resin composition and thin molded article

Publications (1)

Publication Number Publication Date
WO2009081571A1 true WO2009081571A1 (en) 2009-07-02

Family

ID=40800888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003906 WO2009081571A1 (en) 2007-12-25 2008-12-24 Polybutylene terephthalate resin composition and thin molded article

Country Status (4)

Country Link
JP (1) JP2009155367A (en)
KR (1) KR101520133B1 (en)
CN (1) CN101910304B (en)
WO (1) WO2009081571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111816A (en) * 2008-11-07 2010-05-20 Mitsubishi Engineering Plastics Corp Molded article of polybutylene terephthalate resin having weld part
US9957375B2 (en) 2012-03-27 2018-05-01 Teijin Limited Resin composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5886519B2 (en) 2010-11-24 2016-03-16 矢崎総業株式会社 Connector housing
JP2012256565A (en) 2011-06-10 2012-12-27 Yazaki Corp Connector housing for automobile
JP5739745B2 (en) 2011-06-22 2015-06-24 矢崎総業株式会社 Molding
US9119307B2 (en) * 2011-09-20 2015-08-25 Ticona Llc Housing for a portable electronic device
TWI612097B (en) * 2013-05-10 2018-01-21 三井化學股份有限公司 Polyester resin composition for reflective material and reflective board including the same
JP6769745B2 (en) * 2016-05-31 2020-10-14 ポリプラスチックス株式会社 Method for manufacturing polybutylene terephthalate resin composition molded product
CN106009542A (en) * 2016-06-28 2016-10-12 长沙争明新材料有限公司 Glass fiber reinforced terephthalic acid butanediol composite material and preparation method thereof
JP7063424B1 (en) * 2020-10-15 2022-05-09 日東紡績株式会社 Glass fiber reinforced resin plate
CN115505245B (en) * 2022-09-29 2023-12-19 江苏金发科技新材料有限公司 PBT composite material and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155657A (en) * 1976-06-22 1977-12-24 Mitsui Petrochem Ind Ltd Fiber glass reinforced polybutylene threphthalate composition
JPS63317548A (en) * 1987-06-19 1988-12-26 Mitsuboshi Belting Ltd Polyester polymer composition
JPH02173047A (en) * 1988-12-26 1990-07-04 Polyplastics Co Fiber-reinforced thermoplastic resin composition
JPH07309999A (en) * 1995-06-07 1995-11-28 Polyplastics Co Fiber-reinforced polybutylene terephthalate resin composition
JPH10237318A (en) * 1997-02-21 1998-09-08 Taiyo Kagaku Co Ltd Thermoplastic resin composition
WO2007037450A1 (en) * 2005-09-28 2007-04-05 Wintech Polymer Ltd. Flame-retardant polybutylene terephthalate resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103903A (en) * 1998-09-30 2000-04-11 Taiyo Kagaku Co Ltd Outer lubricant for molding and processing thermoplastic resin
JP2004240292A (en) * 2003-02-07 2004-08-26 Wintech Polymer Ltd Light reflector made of polybutylene terephthalate resin and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155657A (en) * 1976-06-22 1977-12-24 Mitsui Petrochem Ind Ltd Fiber glass reinforced polybutylene threphthalate composition
JPS63317548A (en) * 1987-06-19 1988-12-26 Mitsuboshi Belting Ltd Polyester polymer composition
JPH02173047A (en) * 1988-12-26 1990-07-04 Polyplastics Co Fiber-reinforced thermoplastic resin composition
JPH07309999A (en) * 1995-06-07 1995-11-28 Polyplastics Co Fiber-reinforced polybutylene terephthalate resin composition
JPH10237318A (en) * 1997-02-21 1998-09-08 Taiyo Kagaku Co Ltd Thermoplastic resin composition
WO2007037450A1 (en) * 2005-09-28 2007-04-05 Wintech Polymer Ltd. Flame-retardant polybutylene terephthalate resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111816A (en) * 2008-11-07 2010-05-20 Mitsubishi Engineering Plastics Corp Molded article of polybutylene terephthalate resin having weld part
US9957375B2 (en) 2012-03-27 2018-05-01 Teijin Limited Resin composition

Also Published As

Publication number Publication date
KR101520133B1 (en) 2015-05-13
JP2009155367A (en) 2009-07-16
KR20100110794A (en) 2010-10-13
CN101910304B (en) 2013-03-13
CN101910304A (en) 2010-12-08

Similar Documents

Publication Publication Date Title
WO2009081571A1 (en) Polybutylene terephthalate resin composition and thin molded article
JP5329804B2 (en) Mobile terminal parts
JP5726971B2 (en) Polybutylene terephthalate resin composition
US20020028859A1 (en) Process for producing thermoplastic resin composition
JP2001172479A (en) Liquid crystal polyester resin composition and its molded product
EP2694586B1 (en) Hollow articles comprising fiber-filled polyester compositions, methods of manufacture, and uses thereof
US20220275199A1 (en) Polyester resin composition and molded product thereof
CA1078988A (en) Glass reinforced pbt resins
WO2014199915A1 (en) Polybutylene terephthalate resin composition and injection-molded article
JP6100983B1 (en) Polybutylene terephthalate resin composition
US10208199B2 (en) Polyester resin composition and molded article produced using the same
JP6325457B2 (en) Polybutylene terephthalate resin composition
JPH0525903B2 (en)
TWI637023B (en) Thermoplastic polyester resin composition and molded article
JP5616536B2 (en) Wind direction control plate and method of manufacturing wind direction control plate
JP6769745B2 (en) Method for manufacturing polybutylene terephthalate resin composition molded product
US10655007B2 (en) Polyalkylene terephthalate resin composition
JP2017172794A (en) Thermoplastic polyester elastomer resin composition for resin belt material and resin belt molded body
KR101786185B1 (en) Polyester resin composition and article comprising the same
WO2019208680A1 (en) Antistatic-component resin composition
KR102393506B1 (en) Thermoplastic resin composition and article produced therefrom
WO2020196512A1 (en) Polybutylene terephthalate resin composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122791.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864415

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107014022

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864415

Country of ref document: EP

Kind code of ref document: A1