WO2009060989A1 - Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material - Google Patents
Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material Download PDFInfo
- Publication number
- WO2009060989A1 WO2009060989A1 PCT/JP2008/070624 JP2008070624W WO2009060989A1 WO 2009060989 A1 WO2009060989 A1 WO 2009060989A1 JP 2008070624 W JP2008070624 W JP 2008070624W WO 2009060989 A1 WO2009060989 A1 WO 2009060989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- leaf material
- meta
- aramid
- thin leaf
- separator
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 229920003235 aromatic polyamide Polymers 0.000 claims abstract description 81
- 239000000835 fiber Substances 0.000 claims abstract description 61
- 239000002245 particle Substances 0.000 claims abstract description 32
- 239000004760 aramid Substances 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 28
- 239000003792 electrolyte Substances 0.000 claims description 19
- 239000007921 spray Substances 0.000 claims description 14
- 239000003990 capacitor Substances 0.000 claims description 12
- 238000007731 hot pressing Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 230000009477 glass transition Effects 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 241000531908 Aramides Species 0.000 description 56
- -1 ammonium ions Chemical class 0.000 description 20
- 238000002156 mixing Methods 0.000 description 9
- 239000000123 paper Substances 0.000 description 9
- 229920006231 aramid fiber Polymers 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000003973 paint Substances 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 238000010009 beating Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 229920000561 Twaron Polymers 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010294 electrolyte impregnation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004762 twaron Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- OOWFYDWAMOKVSF-UHFFFAOYSA-N 3-methoxypropanenitrile Chemical compound COCCC#N OOWFYDWAMOKVSF-UHFFFAOYSA-N 0.000 description 1
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002531 isophthalic acids Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/10—Organic non-cellulose fibres
- D21H13/20—Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H13/26—Polyamides; Polyimides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a thin leaf material useful for isolating conductive members in an electrical 'electronic component and allowing ionic species such as electrolytes and ions to pass through, a manufacturing method thereof, and an electrical' electronic component using the same.
- the present invention relates to a thin-leaf material useful as a separator between electrodes of batteries, capacitors and the like using lithium ions, sodium ions, ammonium ions, hydrogen ions, etc. as a current carrier. Background art
- a porous sheet formed using a polyolefin polymer such as polyethylene or polypropylene (see JP-A-6 3-2 7 3 6 5 1), a polyolefin polymer fiber such as polyethylene or polypropylene
- a non-woven fabric (refer to Japanese Patent Laid-Open No. 2 0 0 1-1 1 76 1), Non-woven fabric made into a sheet using Nai-Kon fiber Etc.)
- Such a separator is used in a battery as a single layer, or a plurality of layers stacked or rolled.
- These porous sheets and non-woven fabrics have good physical properties as separators. However, they are not always sufficient for the high capacity and high output required for batteries and capacitors for electric vehicles in recent years. Not done.
- conductivity and heat resistance are extremely high in terms of efficiently storing regenerative energy of brakes in electric and electronic parts such as batteries and capacitors that use large currents, for example, as driving power for electric vehicles. It is considered important.
- a separator using a heat resistant material comprising an inorganic binder such as silica particles and glass fibers JP-A-2 004-20726 1, JP-A-2004- No. 349586 and Japanese Patent Application Laid-Open No. 20 0 7-8 1 035) have been proposed, but both contain glass fibers that are inherently fragile.
- An object of the present invention is to develop a low-resistance and high-heat-resistant separator material that can withstand a large current due to high capacity and high output.
- the present inventors have found that the above object can be achieved by combining the meta-type aramide short fibers with the inorganic scaly particles, thereby completing the present invention. It came.
- the present invention provides a thin-leaf material comprising at least one selected from a meta-type aramid short fiber, inorganic scaly particles, and optionally aramid fiber and a fibrillated aramid. is there.
- the present invention also includes adding inorganic scaly particles by a fluid spray method while forming a meta-type aramide short fiber into a sheet by a wet papermaking method, and placing the resulting sheet between a pair of metal tools to form a meta-type.
- the present invention provides a method for producing the above-mentioned thin leaf material, characterized by high-temperature hot pressing at a temperature higher than the glass transition temperature of aramid.
- the present invention further includes mixing a meta-type aramid short fiber and at least one selected from aramid fibrids and a fibrillated aramid in water, and forming an inorganic material by a fluid spray method while forming a sheet by a wet papermaking method. After the scaly particles are added, the sheet obtained is subjected to high-temperature hot pressing at a temperature equal to or higher than the glass transition temperature of the meta-type aramid between a pair of metal rolls. Is.
- the present invention further provides an electrical / electronic component, particularly a battery or a capacitor, using the thin leaf material as a separator between conductive members.
- the meta type aramid means a linear polymer compound in which 60% or more of the amide bonds are directly bonded to the meta position of the aromatic ring.
- examples of such a meta-type amide include polymetaphenylene isophthalamide and a copolymer thereof. These meta-type amides are manufactured industrially by polycondensation of, for example, isophthalic acid salt, meta-diphenylamine by interfacial polymerization method, solution polymerization method, etc. The power that can be It is not limited to this.
- polymetaphenylene isophthalamide is particularly suitable in that it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance and the like.
- Meta type aramid short fiber is particularly suitable in that it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance and the like.
- the meta-type aramid short fiber used in the present invention is obtained by cutting a fiber made from a meta-type aramid.
- a fiber for example, Teijin
- Examples include “Tijin Conex (registered trademark)” by Co., Ltd. and “Nomex (registered trademark)” by DuPont, but are not limited to these. is not.
- Meta-type aramide short fibers can generally have a fineness in the range of 0.05 to less than 25 dtex, in particular 0.05 to 5 dtex, more particularly 0.05 to 3 dtex.
- fineness is defined as the fiber weight (g) per 1000 m. Fibers with a fineness of less than 0.05 dtex are prone to agglomeration in the wet process (described later), and fibers with a diameter of 25 dte X or more are too large in diameter. If the density is 1.4 g / cm 3 , the diameter will be 45 microns or more, and inconveniences such as a decrease in aspect ratio, reduction of mechanical reinforcement effect, and poor uniformity of thin leaf material are likely to occur.
- the poor uniformity of the thin leaf material means that the distribution of the void size is widened and the above-mentioned ionic species mobility is uneven.
- Meta-type aramide short fibers can generally have a length in the range from 1 mm to less than 50 mm, in particular from 1 to 20 mm, more particularly from 1 to 10 mm. If the length of the short fiber is smaller than lmm, the mechanical properties of the thin leaf material will deteriorate, while those with a length of 50 mm or more will cause entanglement, binding J, etc. in the production of the thin leaf material by the wet method described later. It tends to occur and cause defects.
- the inorganic scaly particles used in combination with the above-mentioned meta-type aramid short fibers in the present invention include scaly silica and scaly titanate, but are not limited thereto.
- inorganic scaly particles are usually 0.1-2 5 11 111, especially since they do not cause an increase in internal resistance without causing electrolyte impregnation and a decrease in permeation while binding fibers as a binder. It is preferable to have an average particle diameter in the range of 0.1 to 15 / m, and more particularly 0.1 to 10 m, but is not limited thereto. Examples of such inorganic scaly particles can be obtained under trade names such as “Sun Outdoor (registered trademark)” by AGC S-Tech Co., Ltd. and “Terrases” by Otsuka Chemical Co., Ltd. 1S is not limited to these. Aramid Lipid:
- Aramid fibres are film-like aramid particles that have paper-making properties, and are also called aramid pulp (see Japanese Patent Publication No. 35-1818 1).
- aramid fibrids can be used as a papermaking raw material after being subjected to disaggregation and beating, and so-called beating can be performed for the purpose of maintaining quality suitable for papermaking.
- This beating process can be performed by a disc refiner, a bitter, or other papermaking raw material processing equipment that exerts a mechanical cutting action.
- the change in the form of fibrids can be monitored by the freeness test method specified in Japanese Industrial Standard P 8 1 2 1.
- the aramid fibrid after beating is generally 10 to 300 cm 3 , particularly 10 to 200 cm 3 , more particularly 10 to 100 cm. It is preferable to have a freeness within the range of 3 (Canadian Freeness). For fidels with a freeness greater than 300 cm 3 , the strength of the aramid leaf material formed from it may decrease, whereas when trying to obtain a freeness less than 10 cm 3 , The utilization efficiency of the mechanical power to be input is reduced, the amount of processing per unit time is often reduced, and the fineness of the fibres is excessively advanced, so that the so-called binder function is liable to be lowered. Shi Therefore, even if trying to obtain a freeness smaller than 10 cm 3 in this way, no particular advantage is recognized.
- the ramid fibrid has a weight average fiber length of 1 mm or less as measured with an optical fiber length measuring device after beating.
- the optical fiber length measuring device measuring equipment such as Fiber Quality Analyzer (manufactured by Op Test Equipment), canny-type measuring device (manufactured by Kanny) can be used.
- the fiber length and morphology of the aramid fiber passing through a certain optical path are individually observed, and the measured fiber length is statistically processed. If the weight average fiber length exceeds 1 mm, the electrolyte absorbability decreases, partial electrolyte impregnation occurs, and the internal resistance of electrical / electronic components increases.
- Fibrilized aramid Fibrilized aramid:
- Fibrilized aramids are fibrillated by applying shear force to aramid fibers, aramid fibers, etc., and their freeness is generally 10-800 cm 3 , especially 10 It is preferably in the range of ⁇ 500 cm 3 , more particularly 10 to 200 cm 3 (Canadian freeness). Fibrilized aramids with a freeness greater than this range may not ensure adequate shielding between the electrodes, while attempting to obtain a freeness less than 10 cm 3. Since the refinement of the fibrillated aramid proceeds too much, the so-called binder function tends to be lowered. Therefore, even if trying to obtain a freeness smaller than 10 cm 3 in this way, no significant advantage is recognized.
- the fibrillated aramid usually has a specific surface area in the range of usually 5 gZm 2 or more, in particular 7.5 to 1 50, more particularly 10 to 100 gZm 2 . If the specific surface area of the fibrillated aramid is less than 5 gZm 2, it is likely to cause a decrease in the pinder function.
- fibrillated alarms are usually greater than or equal to 0.0 lmm and less than 7 mm, especially 0.1 to 5 mm, more particularly 0. It is preferred to have a weight average fiber length in the range of 5 to 3 mm.
- a fibrillated aramid with a weight-average fiber length greater than this range will have poor dispersibility during papermaking and may cause local defects such as fiber masses. However, if an attempt is made to obtain a small weight average fiber length, the so-called binder function is likely to be lowered because the refinement of the fibrillated fiberamide proceeds excessively.
- fibrillated aramids include those that can be obtained under trade names such as DuPont's “Keplar Pulp” and Teijin Twaron's “Twaron Pulp”, but are not limited thereto. It is not something.
- Thin leaf material Thin leaf material:
- the thin leaf material of the present invention is a sheet-like material mainly composed of at least one selected from the above-mentioned meta-type aramid short fibers and inorganic scaly particles, or these two components, and further aramid fibrids and fibrillated aramids. It can have any meta-type amide short fiber content, inorganic scaly particle content, aramid fiber content, fibrillated aramid content, basis weight and density (basis weight Z thickness).
- the meta type aramid short fibers having high heat resistance are the main components, and the inorganic scaly particles, the aramid fibrids, and the fibrillated aramids are a small component, in particular,
- the inorganic scaly particles, the aramid fibrids, and the fibrillated aramids are a small component, in particular,
- the content of meta-type aramide short fibers is generally 80% (weight ratio) or more, especially 8 3 to 9 7% (weight ratio), more particularly 8 It is within the range of 5 to 9 5% (weight ratio), and the sum of non-scaled particles, aramid fibrids, and filipilized aramid is generally 20% (weight ratio) or less, especially 0 to 15% (Weight ratio) Furthermore it is particularly preferably from 0 in the range of 1 0% (by weight).
- the weight ratio of the former and the latter is generally 1 OZ1 ⁇ : 1/10, especially 7.5Zl ⁇ lZ7. .5, more particularly within the range of 5Z1 to: 1 to 5.
- the thin leaf material generally has a thickness in the range of 5 to: L 000 ⁇ , particularly 7.5 to 600 ⁇ , and more particularly 10 to 200 ⁇ . If the thickness is smaller than 5 ⁇ , the mechanical properties will deteriorate, and it will be easy to cause problems in maintaining the form as a separator and handling in the manufacturing process. On the other hand, if it exceeds ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , It tends to increase, making it difficult to manufacture small, high-performance electric / electronic components.
- the thin leaf material can generally have a basis weight in the range of 5 to 1000 g / m 2 , especially 5 to 100 g / m 2 , and more particularly 5 to 50 g / m 2 . If the basis weight is 5 but less than I m 2 , mechanical strength will be insufficient, causing various handling in the parts manufacturing process such as electrolyte impregnation and winding, and on the other hand, greater than 1 000 g / m 2 Thin-leaf materials with a grammage tend to increase in thickness, impregnate electrolyte, and decrease in penetration.
- the density of the thin leaf material is a value calculated from the basis weight / thickness, and usually takes a value within the range of 0.1 to 1.2 g / m 3 , especially 0.2 to 1.0 g / m 3 . Can do.
- the thin leaf material of the present invention preferably further has a value represented by an internal resistance value ( ⁇ ) ⁇ basis weight (gZm 2 ) of 9 or less, particularly 6 to 7.
- the internal resistance value is a value expressed by the following equation (1).
- (Internal resistance value) (Electric conductivity of electrical angle early solution) Z (Electric conductivity when electrolyte is injected into separator) X (Separator thickness) Formula (1)
- the electrical conductivity when the electrolyte is injected into the separator is the electrical conductivity calculated from the AC impedance measured between the two electrodes with the electrolyte injected into the separator.
- AC impedance measurement The constant frequency is not particularly limited, but generally 1 kHz to 100 kHz is preferred.
- the electrolytic solution means a liquid in which an electrolyte is dissolved in a solvent.
- the solvent include ethylene carbonate, propylene carbonate, dimethinorecarbonate, jetinorecarbonate etinoremethinorecarbonate.
- electrolyte examples include ionic substances, particularly combinations of the following cations and anions.
- the thin leaf material of the present invention having the characteristics as described above generally has the above-mentioned meta-type amide polyamide short fibers and inorganic flaky particles, or meth-type amide amide short fibers, inorganic flaky particles, aramid fiber, and fibrillation. It can be produced by a method of forming a sheet after mixing at least one selected from the prepared aramids. Specifically, for example, at least one selected from the above-mentioned meta-type aramid short fibers and inorganic scaly particles, or the meta-type aramid short fibers, inorganic scaly particles, aramid fibrids and fibrylated aramids.
- a method of forming a sheet using air flow after dry blending meta-type aramide short fibers and inorganic scaly particles, or meta-type aramide short fibers and inorganic scaly particles, aramid fibrids and fibrils. It is possible to apply a method in which at least one selected from aramids is dispersed and mixed in a liquid medium, then discharged onto a liquid-permeable support, for example, a net or a belt to form a sheet, and the liquid is removed and dried. Among these, a so-called wet papermaking method using water as a medium is preferably selected.
- a single or mixed aqueous slurry containing is fed to a paper machine and dispersed, followed by dehydration, squeezing and drying, and then winding the sheet as a sheet.
- the paper machine for example, a long paper machine, a circular paper machine, an inclined paper machine, or a combination paper machine combining these can be used.
- a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different mixing ratios.
- the inorganic scaly particles are preferably added during the formation of a sheet by a wet papermaking method by a fluid spray method in order to fix the thin leaf material.
- Spray nozzles include one-fluid nozzles called airless spray systems and two-fluid nozzles called air sprays.
- paint is pressurized and sprayed at a high speed from an elliptical spray nozzle. Fine paint grains are formed by the shear stress generated when the paint film comes into contact with the atmosphere, and the paint is applied to the substrate. This is a method of generating a coating film.
- the two-fluid spray has nozzles for air and paint at the tip of the nozzle.
- the high-pressure air flow is applied to the paint that has been sprayed at low pressure, and the paint is refined by the impact.
- This is a method of controlling the shape of the coated film with the air flow.
- spray coating methods since there is no nip portion during coating, there is no coating defect caused by contact between the coating surface and the coating device, and inorganic scaly particles are used as a thin leaf material. It is not necessary to add components such as acrylic resin, cationic fixing reinforcing agent, and polymer flocculant for fixing, and electrochemical properties such as reduction in withstand voltage due to these agents remaining in the separator. There is no problem that the stability of the product is lowered.
- fibrous components for example, polyphenylene sulfide fibers, polyether ether ketone fibers, cellulosic fibers, PVA fibers, polyester fibers, arylate fibers, liquid crystal polyester fibers, polyethylene antennas
- Organic fibers such as phthalate fibers; inorganic fibers such as glass fibers, mouth-wool wool, aspest, and boston fibers
- the blending amount is desirably 50% or less, particularly 40% or less, based on the total weight of all the fiber components.
- seat obtained in this way can improve mechanical strength by hot-pressing between high temperature high pressure between a pair of flat plates or metal rolls.
- the conditions of the hot pressure are, for example, when using a metal roll, a temperature of 50 to 4 0 0 3 ⁇ 4, especially 3 00 to 3 70 ° C and a linear pressure of 5 0 to 2 0 00 kg / cm, especially A range of 70 to 500 kg / cm 2 can be exemplified, but it is particularly preferable to perform high-temperature hot pressing at a temperature equal to or higher than the glass transition temperature of the meta-type amide between a pair of metal rolls.
- High-temperature hot pressing above the glass transition temperature of metal aramid improves mechanical strength during hot pressing between metal rolls, and after thinning, the thin leaf is released from between metal rolls. Residual heat existing in the material causes stress to return to the original thickness, and the thickness increases, so that a thin leaf material with a high porosity and a low internal resistance can be produced.
- a plurality of thin leaf materials can be laminated during the hot pressing.
- the above hot pressing can be performed several times in any order.
- it is used in a state of being laminated by another known separate ⁇ (for example, a polyolefin microporous membrane) and a known method (for example, the above-mentioned hot pressing process). You can also.
- the thin leaf material of the present invention includes (1) excellent properties such as heat resistance and flame retardancy, and (2) contains meta-type aramid short fibers that are difficult to heat-melt. Since high porosity is maintained, ionic species mobility between electrodes is not impaired, (3) Excellent retention of electrolyte derived from void structure, (4) Specific gravity of meta-type polyamide is 1 It has characteristics such as being as small as 4 and lightweight, and can be preferably used as a separator between conductive members of electrical and electronic parts.
- Production of electrical / electronic components such as batteries and capacitors using the thin leaf material of the present invention as a separator between conductive members can be performed by a method known per se.
- electrical and electronic parts such as batteries and capacitors manufactured using the aramid thin leaf material of the present invention as a separator between conductive members are excellent in shielding between electrodes and maintain safety, and have a high void structure. And its inherently high heat resistance makes it able to withstand use in high current environments such as electric vehicles.
- a Tensilon tensile tester was carried out at a width of 15 mm, a chuck interval of 20 mm, and a tensile speed of 50 mm / min.
- Meta-type aramid short fiber (polymetaphenylene isophthalamide short fiber) (“Nomettas” (registered trademark)) manufactured by DuPont was cut into a length of 6 mm and used as a raw material for papermaking.
- the glass transition temperature of this meta-type aramid fiber is 275 ° C.
- Polyphenylene phenylene isophthalamide was prepared by a method using a wet precipitator described in Japanese Patent Publication No. 35-1 1 85 1. This was processed with a breaker and a beater.
- Twaron (registered trademark) 1094” of Teijin Twaron Co., Ltd. was processed with a disaggregator and a beater.
- the prepared meta-type aramid short fibers and aramid fibrids or fibrillated aramids were mixed at the blending ratios of each example shown in Table 1, and dispersed in water to prepare a slurry.
- This slurry was applied to a tappy type hand machine (cross-sectional area: 325 cm 2 ) to produce a sheet.
- the diluted spray solution was introduced into a two-fluid sprayer (nozzle diameter: 1 mm) so as to achieve the blending ratio of each example shown in Table 1, and after mixing gas and liquid, the pressure was 0.3 kgf.
- After spraying on the sheet at / cm 2 it was dried for 30 minutes at a temperature of 100 ° C. Next, this was hot-pressed under the conditions shown in Table 1 with a metal-powered lender tool to obtain a thin leaf material.
- Table 1 shows the main characteristic values of the thin leaf material thus obtained.
- Example 1 The thin leaf materials of ⁇ 3 are considered to have low internal resistance and sufficient ionic species permeability, and in particular, the thin leaf material of Example 1 with low internal resistance / basis weight has greatly reduced internal resistance. It is useful as a separator between conductive members in electric and electronic parts such as batteries and capacitors in electric vehicles that require a large current. Comparative Example 1 and 2
- the prepared meta-type aramid short fibers were mixed with aramid fiber in the mixing ratios for each comparative example shown in Table 2, and dispersed in water to prepare a slurry.
- a sheet-like material was produced from this slurry by a wet papermaking method. Next, this was hot-pressed under the conditions shown in Table 2 with a metal-powered render roll to obtain a thin leaf material.
- Table 2 shows the main characteristic values of the thin leaf material thus obtained.
- the thin leaf material of Comparative Example 1 has low internal resistance, but low tensile strength and insufficient mechanical strength, so various handling in the parts manufacturing process such as electrolyte impregnation treatment It tends to cause breakage.
- the thin leaf material of Comparative Example 2 increased the content of the fiber bridge that improves the mechanical strength as a binder, so the tensile strength value was high, but the fibrid hinders the permeability of ionic species. Resistance became high.
- Such a thin-leaf material is considered not useful as a separator between conductive members in electric and electronic parts such as electric vehicle batteries and capacitors, which require a large current. The invention's effect
- the thin leaf material of the present invention is considered to have sufficiently low internal resistance, sufficient ionic species permeability, high shielding between electrodes, and sufficient mechanical strength. It can be used as a separator between conductive members inside. In addition, electric and electronic parts such as batteries and capacitors that use this thin leaf material contain essentially heat-resistant meta-type aramide and inorganic scaly particles. Can be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Paper (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Abstract
Disclosed is a foliate material which comprises a meta-aramide short fiber and an inorganic flaky particle, which is suitable as a separator between electrically conducive members in an electrical/electronic component, which has satisfactory levels of resistance and strength, and which has excellent heat resistance.
Description
明細書 Specification
薄葉材、 その製造方法及ぴそれを用いた電気 ·電子部品 技術分野 Thin leaf material, its manufacturing method and electrical / electronic parts using it
本発明は、 電気'電子部品内において導電部材間を隔離し、 電解質やイオン などのイオン種を通過させるのに有用な薄葉材、 その製造方法ならびにそれを 使用した電気'電子部品に関し、 特に、 リチウムイオン、 ナトリウムイオン、 アンモニゥムイオン、 水素イオンなどを電流のキャリア一として使用する電池、 キャパシタなどの電極間の隔離板として有用な薄葉材に関する。 背景技術 The present invention relates to a thin leaf material useful for isolating conductive members in an electrical 'electronic component and allowing ionic species such as electrolytes and ions to pass through, a manufacturing method thereof, and an electrical' electronic component using the same. The present invention relates to a thin-leaf material useful as a separator between electrodes of batteries, capacitors and the like using lithium ions, sodium ions, ammonium ions, hydrogen ions, etc. as a current carrier. Background art
携帯通信機器や高速情報処理機器などの最近の進歩に象徴されるように、 ェ レクトロニタス機器の小型軽量化、 高性能ィ匕には目覚しいものがある。 なかで も、 小型、 軽量、 高容量で長期保存にも耐える高性能な電池、 キャパシタへの 期待は大きく、 幅広く応用が図られ、 部品開発が急速に進展している。 これに 応えるため、 部材、 例えば、 電極間の隔壁材料であるセパレータに関しても技 術 ·品質開発の必要性が高まっている。 セパレータに要求されるさまざまな特 性の中でも、 次の三つの特性項目が特に重要と認識されている。 As symbolized by recent advances in mobile communication devices and high-speed information processing devices, there are remarkable features in reducing the size and weight of electronic devices and improving their performance. In particular, expectations are high for compact, lightweight, high-capacity, high-performance batteries and capacitors that can withstand long-term storage, and a wide range of applications are being made, and component development is progressing rapidly. To meet this demand, there is an increasing need for technical and quality development of members, such as separators, which are partition materials between electrodes. Among the various characteristics required for separators, the following three characteristic items are recognized as particularly important.
( 1 ) 電解質を保持した状態での導電性が良いこと。 (1) Good conductivity with electrolyte retained.
( 2 ) 高い電極間遮蔽性を有すること。 (2) High interelectrode shielding.
( 3 ) 機械的強度を有すること。 (3) Have mechanical strength.
従来、 ポリエチレンゃポリプロピレンのようなポリオレフイン系ポリマーを 用いて製膜した多孔質シート (特開昭 6 3— 2 7 3 6 5 1号公報参照) 、 ポリ エチレンやポリプロピレンのようなポリオレフイン系ポリマ一繊維を用いてシ 一ト化した不織布 (特開 2 0 0 1— 1 1 7 6 1号公報参照) 、 ナイ口ン繊維を 用いてシート化した不織布 (特開昭 5 8 - 1 4 7 9 5 6号公報参照) などがセ パレータとして広く使用されている。 このようなセパレータは 1層で又は複数 層重ねてあるいはロール状に卷いて電池内に用いられる。
これらの多孔質シート及ぴ不織布はセパレータとして良好な物性を有してい るが、 近年、 電気自動車用の電池、 キャパシタ等に要求されている高容量化や 大出力化には必ずしも十分な対応ができていない。 Conventionally, a porous sheet formed using a polyolefin polymer such as polyethylene or polypropylene (see JP-A-6 3-2 7 3 6 5 1), a polyolefin polymer fiber such as polyethylene or polypropylene Non-woven fabric made into a sheet by using a non-woven fabric (refer to Japanese Patent Laid-Open No. 2 0 0 1-1 1 76 1), Non-woven fabric made into a sheet using Nai-Kon fiber Etc.) are widely used as separators. Such a separator is used in a battery as a single layer, or a plurality of layers stacked or rolled. These porous sheets and non-woven fabrics have good physical properties as separators. However, they are not always sufficient for the high capacity and high output required for batteries and capacitors for electric vehicles in recent years. Not done.
高容量、 大出力が要求される電池、 キャパシタ等の電気 ·電子部品中のセパ レータには、 For separators in electrical and electronic parts such as batteries and capacitors that require high capacity and high output,
(1) 電解質を保持した状態での導電性が良いこと (低抵抗) 。 (1) Good conductivity with electrolyte retained (low resistance).
( 2 ) 高い電極間遮蔽性を有すること。 (2) High interelectrode shielding.
(3) 機械的強度を有すること。 (3) Have mechanical strength.
(4) 化学的 ·電気化学的に安定であること (耐熱性) 。 (4) Chemical and electrochemical stability (heat resistance).
の四つの特性を同時に満たすことが必要とされている。 It is necessary to satisfy these four characteristics simultaneously.
特に、 導電性と耐熱性は、 大電流を使用する、 例えば電気自動車用の駆動電 源としての電池、 キャパシタのような電気.電子部品において、 ブレーキの回 生エネルギーを効率よく蓄えるという意味で極めて重要であると考えられる。 セパレータの耐熱性を向上するための手段として、 シリカ粒子などの無機パ インダ一とガラス繊維を含んでなる耐熱性の素材を用いたセパレータ (特開 2 004-20726 1号公報、 特開 2004— 349586号公報、 特開 20 0 7-8 1 035号公報参照) が提案されているが、 いずれも本質的に脆弱な ガラス繊維を含むため、 熱圧加工による薄葉ィ匕の際にガラス繊維が破壌しやす い、 機械特性が低下しセパレータとしての形態保持や製造工程での搬送等取り 扱いが困難である、 無機バインダーをセパレータに定着させるためにアクリル 系榭脂、 カチオン系定着補強剤、 高分子凝集剤などの成分の添加が必要であり、 これらの剤がセパレータ中に残留することによる耐電圧の低下などの電気化学 的安定性の低下が発生するなどの問題がある。 発明の開示 In particular, conductivity and heat resistance are extremely high in terms of efficiently storing regenerative energy of brakes in electric and electronic parts such as batteries and capacitors that use large currents, for example, as driving power for electric vehicles. It is considered important. As a means for improving the heat resistance of the separator, a separator using a heat resistant material comprising an inorganic binder such as silica particles and glass fibers (JP-A-2 004-20726 1, JP-A-2004- No. 349586 and Japanese Patent Application Laid-Open No. 20 0 7-8 1 035) have been proposed, but both contain glass fibers that are inherently fragile. It is easy to break down, its mechanical properties deteriorate, and it is difficult to maintain its shape as a separator or to handle it in the manufacturing process. In order to fix inorganic binder to the separator, acrylic resin, cationic fixing reinforcing agent, It is necessary to add components such as a polymer flocculant, and there are problems such as a decrease in electrochemical stability such as a decrease in withstand voltage due to these agents remaining in the separator. Disclosure of the invention
本発明の目的は、 高容量ィ匕 ·大出力化による大電流に耐えうる低抵抗かつ高 耐熱性セパレータ用材料を開発することである。
本発明者らは、 鋭意検討を進めた結果、 今回、 メタ型ァラミド短繊維を無機 鱗片状粒子と組み合わせることにより、 上記の目的を達成することができるこ とを見出し、 本発明を完成するに至った。 An object of the present invention is to develop a low-resistance and high-heat-resistant separator material that can withstand a large current due to high capacity and high output. As a result of diligent investigations, the present inventors have found that the above object can be achieved by combining the meta-type aramide short fibers with the inorganic scaly particles, thereby completing the present invention. It came.
力 くして、 本発明は、 メタ型ァラミド短繊維と無機鱗片状粒子とさらに場合 によりァラミドフアイブリッド及びフイブリル化したァラミドから選ばれる少 なくとも 1種を含んでなる薄葉材を提供するものである。 Accordingly, the present invention provides a thin-leaf material comprising at least one selected from a meta-type aramid short fiber, inorganic scaly particles, and optionally aramid fiber and a fibrillated aramid. is there.
本発明は、 また、 メタ型ァラミド短繊維を湿式抄造法でシート化する間に流 体スプレー方式で無機鱗片状粒子を添加し、 得られるシートを一対の金属製口 ール間にてメタ型ァラミドのガラス転移温度以上の温度で高温熱圧加工するこ とを特徴とする上記薄葉材の製造方法を提供するものである。 The present invention also includes adding inorganic scaly particles by a fluid spray method while forming a meta-type aramide short fiber into a sheet by a wet papermaking method, and placing the resulting sheet between a pair of metal tools to form a meta-type. The present invention provides a method for producing the above-mentioned thin leaf material, characterized by high-temperature hot pressing at a temperature higher than the glass transition temperature of aramid.
本発明は、 さらに、 メタ型ァラミド短繊維とァラミドフアイプリツド及びフ イブリル化したァラミドから選ばれる少なくとも 1種とを水中で混合し、 湿式 抄造法でシート化する間に流体スプレー方式で無機鱗片状粒子を添加したのち、 得られるシートを一対の金属製ロール間にてメタ型ァラミドのガラス転移温度 以上の温度で高温熱圧加工することを特徴とする上記薄葉材の製造方法を提供 するものである。 Furthermore, the present invention further includes mixing a meta-type aramid short fiber and at least one selected from aramid fibrids and a fibrillated aramid in water, and forming an inorganic material by a fluid spray method while forming a sheet by a wet papermaking method. After the scaly particles are added, the sheet obtained is subjected to high-temperature hot pressing at a temperature equal to or higher than the glass transition temperature of the meta-type aramid between a pair of metal rolls. Is.
本発明は、 さらにまた、 上記薄葉材を導電部材間の隔離板として使用してな る電気'電子部品、 特に、 電池又はキャパシタを提供するものである。 The present invention further provides an electrical / electronic component, particularly a battery or a capacitor, using the thin leaf material as a separator between conductive members.
以下、 本発明についてさらに詳細に説明する。 発明の実施の形態 Hereinafter, the present invention will be described in more detail. BEST MODE FOR CARRYING OUT THE INVENTION
メタ型ァラミド: Meta-type aramid:
本明細書において、 メタ型ァラミドは、 ァミド結合の 6 0 %以上が芳香環の メタ位に直接結合した線状高分子化合物を意味する。 このようなメタ型ァラミ ドとしては、 例えば、 ポリメタフヱニレンイソフタルアミドおよびその共重合 体などが挙げられる。 これらのメタ型ァラミドは、 例えば、 イソフタル酸塩ィ匕 物おょぴメタフエ-レンジアミンを界面重合法、 溶液重合法等により重縮合す ることにより工業的に製造されており、 市販品として入手することができる力
これに限定されるものではない。 これらのメタ型ァラミドの中で、 ポリメタフ ェニレンイソフタルアミドが、 良好な成型加工性、 熱接着性、 難燃性、 耐熱性 などの特性を備えている点で特に好適である。 メタ型ァラミド短繊維: In the present specification, the meta type aramid means a linear polymer compound in which 60% or more of the amide bonds are directly bonded to the meta position of the aromatic ring. Examples of such a meta-type amide include polymetaphenylene isophthalamide and a copolymer thereof. These meta-type amides are manufactured industrially by polycondensation of, for example, isophthalic acid salt, meta-diphenylamine by interfacial polymerization method, solution polymerization method, etc. The power that can be It is not limited to this. Among these meta-type aramids, polymetaphenylene isophthalamide is particularly suitable in that it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance and the like. Meta type aramid short fiber:
本発明において使用されるメタ型ァラミド短繊維は、 メタ型ァラミドを原料 とする繊維を切断したものであり、 そのような繊維としては、 例えば、 帝人 The meta-type aramid short fiber used in the present invention is obtained by cutting a fiber made from a meta-type aramid. As such a fiber, for example, Teijin
(株) の 「ティジンコーネックス (登録商標) 」 、 デュポン社の 「ノーメック ス (登録商標) 」 等の商品名で入手することができるものが挙げられるが、 こ れらに限定されるものではない。 Examples include “Tijin Conex (registered trademark)” by Co., Ltd. and “Nomex (registered trademark)” by DuPont, but are not limited to these. is not.
メタ型ァラミド短繊維は、 一般に 0. 05 d t e x以上 2 5 d t e x未満、 特に 0. 05〜5 d t e x、 さらに特に 0. 05〜3 d t e xの範囲内の繊度 を有することができる。 ここで、 繊度とは、 1000 mあたりの繊維重量 (g) として定義される。 繊度が 0. 05 d t e x未満の繊維は、 湿式法での 製造 (後述)において凝集を招きやすく、 また、 25 d t e X以上の繊維は、 繊 維直径が大きくなり過ぎるため、 例えば、 真円形状で密度を 1. 4 g/cm3 とすると、 直径が 45ミクロン以上となり、 アスペク ト比の低下、 力学的補強 効果の低減、 薄葉材の均一性不良などの不都合が生じやすい。 ここで、 薄葉材 の均一性不良とは、 空隙サイズの分布が広がり先述したィオン種移動性に不均 一性を生じることを意味する。 Meta-type aramide short fibers can generally have a fineness in the range of 0.05 to less than 25 dtex, in particular 0.05 to 5 dtex, more particularly 0.05 to 3 dtex. Here, fineness is defined as the fiber weight (g) per 1000 m. Fibers with a fineness of less than 0.05 dtex are prone to agglomeration in the wet process (described later), and fibers with a diameter of 25 dte X or more are too large in diameter. If the density is 1.4 g / cm 3 , the diameter will be 45 microns or more, and inconveniences such as a decrease in aspect ratio, reduction of mechanical reinforcement effect, and poor uniformity of thin leaf material are likely to occur. Here, the poor uniformity of the thin leaf material means that the distribution of the void size is widened and the above-mentioned ionic species mobility is uneven.
メタ型ァラミド短繊維は、 一般に 1 mm以上 50 mm未満、 特に 1〜 20 m m、 さらに特に 1〜1 0mmの範囲内の長さを有することができる。 短繊維の 長さが lmmよりも小さいと、 薄葉材の力学特性が低下し、 一方、 50mm以 上のものは、 後述する湿式法での薄葉材の製造に当たり 「からみ」 、 「結束 J などが発生しやすく欠陥の原因となりやすい。 無機鱗片状粒子
本発明において上記メタ型ァラミド短繊維と組み合わせて使用される無機鱗 片状粒子としては、 鱗片状シリカ、 鱗片状チタン酸塩等が挙げられるが、 これ らに限定されるものではない。 これらの無機鱗片状粒子は、 バインダーとして 繊維間を結合しつつ、 電解質の含浸 '浸透の低下が生じることなく、 内部抵抗 の増大を招き難いことから、 通常 0 . 1〜2 5 11 111、 特に0 . 1〜 1 5 / m、 さらに特に 0 . 1〜1 0 mの範囲内の平均粒径を有していることが好ましい 、 これに限定されるものではない。 このような無機鱗片状粒子としては、 例 えば、 A G Cエスアイテック (株) の 「サンラブリー (登録商標) 」 、 大塚化 学 (株) の 「テラセス」 等の商品名で入手することができるものが挙げられる 1S これらに限定されるものではない。 ァラミドフアイプリッド: Meta-type aramide short fibers can generally have a length in the range from 1 mm to less than 50 mm, in particular from 1 to 20 mm, more particularly from 1 to 10 mm. If the length of the short fiber is smaller than lmm, the mechanical properties of the thin leaf material will deteriorate, while those with a length of 50 mm or more will cause entanglement, binding J, etc. in the production of the thin leaf material by the wet method described later. It tends to occur and cause defects. Examples of the inorganic scaly particles used in combination with the above-mentioned meta-type aramid short fibers in the present invention include scaly silica and scaly titanate, but are not limited thereto. These inorganic scaly particles are usually 0.1-2 5 11 111, especially since they do not cause an increase in internal resistance without causing electrolyte impregnation and a decrease in permeation while binding fibers as a binder. It is preferable to have an average particle diameter in the range of 0.1 to 15 / m, and more particularly 0.1 to 10 m, but is not limited thereto. Examples of such inorganic scaly particles can be obtained under trade names such as “Sun Lovely (registered trademark)” by AGC S-Tech Co., Ltd. and “Terrases” by Otsuka Chemical Co., Ltd. 1S is not limited to these. Aramid Lipid:
ァラミドフアイプリツドは、 抄紙性を有するフィルム状のァラミド粒子であ り、 ァラミドパルプとも呼ばれる (特公昭 3 5 - 1 1 8 5 1号公報等参照) 。 ァラミドファイブリツドは、 通常の木材パルプと同様に、 離解、 叩解処理を 施し抄紙原料として用いることができ、 抄紙に適した品質を保つ目的でいわゆ る叩解処理を施すことができる。 この叩解処理は、 ディスクリファイナー、 ビ 一ター、 その他の機械的切断作用を及ぼす抄紙原料処理機器によつて実施する ことができる。 この操作において、 ファイブリツドの形態変化は、 日本工業規 格 P 8 1 2 1に規定の濾水度試験方法 (フリ一ネス) でモニターすることがで きる。 本発明において、 叩解処理を施した後のァラミドファイブリツドは、 一 般に 1 0〜3 0 0 c m 3、 特に 1 0〜2 0 0 c m 3、 さらに特に 1 0〜: 1 0 0 c m 3 (カナディアンフリーネス) の範囲内の濾水度を有することが好ましい。 3 0 0 c m 3より大きな濾水度のフアイプリッドでは、 それから成形されるァ ラミド薄葉材の強度が低下する可能性があり、 一方、 1 0 c m 3よりも小さな 濾水度を得ようとすると、 投入する機械動力の利用効率が小さくなり、 また、 単位時間当たりの処理量が少なくなることが多く、 さらに、 フアイプリツドの 微細化が進行しすぎるため、 いわゆるバインダー機能の低下を招きやすい。 し
たがって、 このように 1 0 cm3よりも小さい濾水度を得ようとしても、 格段 の利点が認められない。 Aramid fibres are film-like aramid particles that have paper-making properties, and are also called aramid pulp (see Japanese Patent Publication No. 35-1818 1). Like normal wood pulp, aramid fibrids can be used as a papermaking raw material after being subjected to disaggregation and beating, and so-called beating can be performed for the purpose of maintaining quality suitable for papermaking. This beating process can be performed by a disc refiner, a bitter, or other papermaking raw material processing equipment that exerts a mechanical cutting action. In this operation, the change in the form of fibrids can be monitored by the freeness test method specified in Japanese Industrial Standard P 8 1 2 1. In the present invention, the aramid fibrid after beating is generally 10 to 300 cm 3 , particularly 10 to 200 cm 3 , more particularly 10 to 100 cm. It is preferable to have a freeness within the range of 3 (Canadian Freeness). For fidels with a freeness greater than 300 cm 3 , the strength of the aramid leaf material formed from it may decrease, whereas when trying to obtain a freeness less than 10 cm 3 , The utilization efficiency of the mechanical power to be input is reduced, the amount of processing per unit time is often reduced, and the fineness of the fibres is excessively advanced, so that the so-called binder function is liable to be lowered. Shi Therefore, even if trying to obtain a freeness smaller than 10 cm 3 in this way, no particular advantage is recognized.
本発明の用途に対しては、 ァラミドファイブリツドは、 叩解処理した後の、 光学的繊維長測定装置で測定したときの重量平均繊維長が 1 mm以下であるこ とが好ましい。 ここで、 光学的繊維長測定装置としては、 Fiber Quality Anal yzer (Op Test Equipment社製)、 カャニー型測定装置 (カャニー社製) など の測定機器を用いることができる。 このような機器においては、 ある光路を通 過するァラミドフアイプリッドの繊維長さと形態が個別に観測され、 測定され た繊維長は統計的に処理されるが、 用いるァラミドフアイプリッドの重量平均 された繊維長が lmmを越えると、 電解液吸液性の低下、 部分的な電解質未含 浸部分の発生、 さらには電気 ·電子部品の内部抵抗上昇などが起こりやすくな る。 フィブリル化されたァラミド: For the use of the present invention, it is preferred that the ramid fibrid has a weight average fiber length of 1 mm or less as measured with an optical fiber length measuring device after beating. Here, as the optical fiber length measuring device, measuring equipment such as Fiber Quality Analyzer (manufactured by Op Test Equipment), canny-type measuring device (manufactured by Kanny) can be used. In such an instrument, the fiber length and morphology of the aramid fiber passing through a certain optical path are individually observed, and the measured fiber length is statistically processed. If the weight average fiber length exceeds 1 mm, the electrolyte absorbability decreases, partial electrolyte impregnation occurs, and the internal resistance of electrical / electronic components increases. Fibrilized aramid:
フィブリル化されたァラミドは、 ァラミド繊維、 ァラミドフアイプリッドな どにせん断力を加えるなどしてフィプリルイ匕したものであり、 その濾水度は一 般に 1 0〜800 cm3、 特に 1 0〜500 cm3、 さらに特に 1 0〜200 c m3 (カナディアンフリーネス) の範囲内にあることが好ましい。 この範囲よ り大きな濾水度のフィプリルイ匕されたァラミドでは電極間の十分な遮蔽性が確 保されない可能性があり、 一方、 1 0 cm3よりも小さな濾水度を得ようとす ると、 フィブリルィ匕されたァラミドの微細化が進行しすぎるため、 いわゆるバ インダー機能の低下を招きやすい。 したがって、 このように 1 0 cm3よりも 小さい濾水度を得ようとしても、 格段の利点が認められない。 Fibrilized aramids are fibrillated by applying shear force to aramid fibers, aramid fibers, etc., and their freeness is generally 10-800 cm 3 , especially 10 It is preferably in the range of ˜500 cm 3 , more particularly 10 to 200 cm 3 (Canadian freeness). Fibrilized aramids with a freeness greater than this range may not ensure adequate shielding between the electrodes, while attempting to obtain a freeness less than 10 cm 3. Since the refinement of the fibrillated aramid proceeds too much, the so-called binder function tends to be lowered. Therefore, even if trying to obtain a freeness smaller than 10 cm 3 in this way, no significant advantage is recognized.
フィブリルィ匕されたァラミドは、 通常 5 gZm2以上、 特に 7. 5〜1 50 さらに特に 1 0〜1 00 gZm2の範囲内の比表面積を有することが 好ましい。 フィブリルィ匕されたァラミドの比表面積が 5 gZm2よりも小さい と、 パインダー機能の低下を招きやすい。 さらに、 フィブリルィ匕されたァラミ ドは、 通常 0. 0 lmm以上 7 mm未満、 特に 0. 1〜 5 mm、 さらに特に 0
5〜 3 mmの範囲内の重量平均繊維長を有することが好ましい。 この範囲より 大きな重量平均繊維長のフィプリル化されたァラミドでは抄造時の分散性が悪 くなり、 繊維塊などの局部的欠点発生の原因となる可能性があり、 一方、 0 . 0 1 mmよりも小さな重量平均繊維長を得ようとすると、 フイブリルイ匕された ァラミドの微細化が進行しすぎるため、 いわゆるバインダー機能の低下を招き やすい。 The fibrillated aramid usually has a specific surface area in the range of usually 5 gZm 2 or more, in particular 7.5 to 1 50, more particularly 10 to 100 gZm 2 . If the specific surface area of the fibrillated aramid is less than 5 gZm 2, it is likely to cause a decrease in the pinder function. In addition, fibrillated alarms are usually greater than or equal to 0.0 lmm and less than 7 mm, especially 0.1 to 5 mm, more particularly 0. It is preferred to have a weight average fiber length in the range of 5 to 3 mm. A fibrillated aramid with a weight-average fiber length greater than this range will have poor dispersibility during papermaking and may cause local defects such as fiber masses. However, if an attempt is made to obtain a small weight average fiber length, the so-called binder function is likely to be lowered because the refinement of the fibrillated fiberamide proceeds excessively.
フィブリル化されたァラミドとしては、 具体的に、 例えば、 デュポン社の 「ケプラーパルプ」 、 帝人トワロン社の 「トワロンパルプ」 等の商品名で入手 することができるものが挙げられるが、 これらに限定されるものではない。 薄葉材: Specific examples of fibrillated aramids include those that can be obtained under trade names such as DuPont's “Keplar Pulp” and Teijin Twaron's “Twaron Pulp”, but are not limited thereto. It is not something. Thin leaf material:
本発明の薄葉材は、 以上に述べたメタ型ァラミド短繊維と無機鱗片状粒子、 あるいはこれら 2成分とさらにァラミドフアイブリッド及びフィプリル化した ァラミドから選ばれる少なくとも 1種から主として構成されるシート状物であ り、 任意のメタ型ァラミ ド短繊維含量、 無機鱗片状粒子含量、 ァラミドフアイ プリッド含量、 フィブリル化したァラミド含量、 坪量及ぴ密度 (坪量 Z厚さ) を有することができる。 しかしながら、 本発明の薄葉材は、 耐熱性の高いメタ 型ァラミド短繊維が主成分をなし、 そして無機鱗片状粒子、 ァラミドファイブ リッド、 フイブリル化したァラミドが少量成分をなすことが好ましく、 特に、 後述する一対の金属製ロール間にてメタ型ァラミドのガラス転移温度以上の温 度で高温熱圧加工する場合においては、 メタ型ァラミド短繊維含量が大きいほ ど、 低密度の薄葉材の作製が可能で、 内部抵抗値も低くなる傾向が見られるこ と力 ら、 メタ型ァラミド短繊維含量は一般に 8 0 % (重量比) 以上、 特に 8 3 〜 9 7 % (重量比) 、 さらに特に 8 5〜 9 5 % (重量比) の範囲内であり、 無 機鱗片状粒子、 ァラミドファイブリツド、 フィプリルイ匕したァラミドは合計で 一般に 2 0 % (重量比) 以下、 特に 0〜 1 5 % (重量比) 、 さらに特に 0〜 1 0 % (重量比) の範囲内であることが好ましい。
無機鱗片状粒子とァラミドフアイプリッド及ひゾ又はフィブリルィ匕したァラ ミドを併用する場合、 前者ノ後者の重量比は、 一般に 1 OZ1〜: 1/1 0、 特 に 7. 5Zl〜lZ7. 5、 さらに特に 5Z1〜: 1ノ5の範囲内であることが 好ましい。 The thin leaf material of the present invention is a sheet-like material mainly composed of at least one selected from the above-mentioned meta-type aramid short fibers and inorganic scaly particles, or these two components, and further aramid fibrids and fibrillated aramids. It can have any meta-type amide short fiber content, inorganic scaly particle content, aramid fiber content, fibrillated aramid content, basis weight and density (basis weight Z thickness). However, in the thin leaf material of the present invention, it is preferable that the meta type aramid short fibers having high heat resistance are the main components, and the inorganic scaly particles, the aramid fibrids, and the fibrillated aramids are a small component, in particular, When high-temperature hot pressing is performed between a pair of metal rolls, which will be described later, at a temperature equal to or higher than the glass transition temperature of the meta-type aramid, the lower the density of the meta-type aramid short fiber, the lower the density of the thin leaf material. It is possible and the tendency to lower the internal resistance value, the content of meta-type aramide short fibers is generally 80% (weight ratio) or more, especially 8 3 to 9 7% (weight ratio), more particularly 8 It is within the range of 5 to 9 5% (weight ratio), and the sum of non-scaled particles, aramid fibrids, and filipilized aramid is generally 20% (weight ratio) or less, especially 0 to 15% (Weight ratio) Furthermore it is particularly preferably from 0 in the range of 1 0% (by weight). When inorganic scale-like particles are used in combination with aramid fibrids and fibrillated aramids, the weight ratio of the former and the latter is generally 1 OZ1 ~: 1/10, especially 7.5Zl ~ lZ7. .5, more particularly within the range of 5Z1 to: 1 to 5.
また、 薄葉材は、 一般に 5〜: L 000 μπι、 特に 7. 5〜600 μηι、 さら に特に 10〜200 μπιの範囲内の厚さを有していることが好ましい。 5 μπι よりも厚みが小さい場合、 機械特性が低下し、 セパレータとしての形態保持や 製造工程での搬送等取り扱いに問題を生じやすく、 一方、 Ι Ο Ο Ο μΐηを上回 る場合、 内部抵抗の増大を招きやすく、 なにより小型高性能の電気 ·電子部品 を製造し難くなる。 Further, the thin leaf material generally has a thickness in the range of 5 to: L 000 μπι, particularly 7.5 to 600 μηι, and more particularly 10 to 200 μπι. If the thickness is smaller than 5 μπι, the mechanical properties will deteriorate, and it will be easy to cause problems in maintaining the form as a separator and handling in the manufacturing process. On the other hand, if it exceeds Ι Ο Ο Ο μΐη, It tends to increase, making it difficult to manufacture small, high-performance electric / electronic components.
さらに、 薄葉材は、 一般に 5〜1 000 g/m2、 特に 5〜1 00 g/m2、 さ らに特に 5〜50 g/m2の範囲内の坪量を有することができる。 坪量が 5 も I m2より小さい場合、 機械強度が不足するため電解質含浸処理や巻き取りなど の部品製造工程での各種取り扱いで破断を引き起こしゃすく、 一方、 1 000 g/m2より大きい坪量の薄葉材では、 厚みの増大や、 電解質の含浸.浸透の低 下が生じる傾向がみられる。 Furthermore, the thin leaf material can generally have a basis weight in the range of 5 to 1000 g / m 2 , especially 5 to 100 g / m 2 , and more particularly 5 to 50 g / m 2 . If the basis weight is 5 but less than I m 2 , mechanical strength will be insufficient, causing various handling in the parts manufacturing process such as electrolyte impregnation and winding, and on the other hand, greater than 1 000 g / m 2 Thin-leaf materials with a grammage tend to increase in thickness, impregnate electrolyte, and decrease in penetration.
薄葉材の密度は坪量/厚さより算出される値であり、 通常 0. 1〜1. 2 g /m3、 特に 0. 2〜1. 0 g/m3の範囲内の値をとることができる。 The density of the thin leaf material is a value calculated from the basis weight / thickness, and usually takes a value within the range of 0.1 to 1.2 g / m 3 , especially 0.2 to 1.0 g / m 3 . Can do.
本発明の薄葉材は、 さらに、 内部抵抗値 (μπι) Ζ坪量 (gZm2) で表さ れる値が 9以下、 特に 6〜7の範囲内にあること好ましい。 ここで、 内部抵抗 値とは下式 (1) で表される値である。 The thin leaf material of the present invention preferably further has a value represented by an internal resistance value (μπι) Ζ basis weight (gZm 2 ) of 9 or less, particularly 6 to 7. Here, the internal resistance value is a value expressed by the following equation (1).
(内部抵抗値) = (電角早液の電気伝導度) Z (セパレーターに電解液を注入し たときの電気伝導度) X (セパレーターの厚み) 式 (1) 上記式 (1) において、 (セパレーターに電解液を注入したときの電気伝導 度) は、 電解液をセパレーターに注入した状態で 2枚の電極に挟み、 測定した 交流ィンピーダンスから算出した電気伝導度である。 交流ィンピーダンスの測
定周波数については、 特に制限はないが、 一般に 1 k H z〜 1 0 0 k H zが好 ましい。 ここで、 電解液とは溶媒中に電解質が溶解した液体を意味する。 (Internal resistance value) = (Electric conductivity of electrical angle early solution) Z (Electric conductivity when electrolyte is injected into separator) X (Separator thickness) Formula (1) In the above formula (1), ( The electrical conductivity when the electrolyte is injected into the separator is the electrical conductivity calculated from the AC impedance measured between the two electrodes with the electrolyte injected into the separator. AC impedance measurement The constant frequency is not particularly limited, but generally 1 kHz to 100 kHz is preferred. Here, the electrolytic solution means a liquid in which an electrolyte is dissolved in a solvent.
上記電解液に使用する溶媒、 電解質、 電解質の濃度等には特に制限はないが、 溶媒としては、 例えば、 エチレンカーポーネート、 プロピレンカーボネート、 ジメチノレカーボネート、 ジェチノレカーボネートェチノレメチノレカーボネート、 ブ チレンカーボネート、 グノレタロニトリル、 アジポニトリル、 ァセトニトニル、 メ トキシァセトニトリル、 3—メ トキシプロピオ二トリル、 γ—ブチロラクト ン、 0—/ レロラタトン、 スノレホラン、 3—メチノレスゾレホラン、 ニトロェタン、 エトロメタン、 リン酸トリメチル、 Ν—メチルォキサゾリジノン、 Ν, Ν—ジ メチルホルムアミ ド、 Ν—メチルピロリ ドン、 ジメチルスルホキシド、 Ν, There are no particular restrictions on the solvent, electrolyte, electrolyte concentration, etc. used in the above electrolyte solution. Examples of the solvent include ethylene carbonate, propylene carbonate, dimethinorecarbonate, jetinorecarbonate etinoremethinorecarbonate. , Butylene carbonate, gnoretaronitrile, adiponitrile, acetonitonyl, methoxyacetonitrile, 3-methoxypropionitrile, γ-butyrolacton, 0— / reloralatone, snorephoran, 3-methinoleszoreforane, nitroethane, Etromethane, trimethyl phosphate, Ν-methyloxazolidinone, Ν, Ν-dimethylformamide, Ν-methylpyrrolidone, dimethyl sulfoxide, Ν,
N ' —シメチルイミダゾリジノン、 アミジン、 水及びその混合物などが挙げら れる。 N′—Cymethylimidazolidinone, amidine, water and mixtures thereof.
また、 電解質としては、 例えば、 イオン性の物質、 特に以下のカチオンとァ 二オンの組み合わせが挙げられる。 Examples of the electrolyte include ionic substances, particularly combinations of the following cations and anions.
(1) カチオン: 第 4級アンモニゥムイオン、 第 4級ホスホニゥムイオン、 リチウムイオン、 ナトリウムイオン、 アンモユウムイオン、 水素イオンとその 混合物など。 (1) Cations: Quaternary ammonium ions, quaternary phosphonium ions, lithium ions, sodium ions, ammonium ions, hydrogen ions and their mixtures.
(2) ァ-オン: 過塩素酸イオン、 ホウフッ化イオン、 六フッ化リン酸ィォ ン、 硫酸イオン、 水酸化物イオンとその混合物など。 (2) A-on: Perchlorate ion, borofluoride ion, hexafluorophosphate ion, sulfate ion, hydroxide ion and their mixtures.
なお、 内部抵抗値 m) /坪量 ( g /m 2) で表される値が 9を超える薄 葉材は、 電気 ·電子部品の高出力化に支障をきたすという問題が生じることが める。 薄葉材の製造法: It should be noted that a thin leaf material having an internal resistance value m) / basis weight (g / m 2 ) exceeding 9 may cause a problem in that the output of electric / electronic parts is hindered. . Thin leaf material manufacturing method:
以上に述べた如き特性を有する本発明の薄葉材は、 一般に、 前述したメタ型 ァラミド短繊維と無機鱗片状粒子、 あるいはメタ型ァラミド短繊維と無機鱗片 状粒子とァラミドフアイブリッド及ぴフィプリル化したァラミドから選ばれる 少なくとも 1種を混合した後シート化する方法により製造することができる。
具体的には、 例えば、 上記メタ型ァラミド短繊維と無機鱗片状粒子、 あるいは メタ型ァラミド短繊維と無機鱗片状粒子とァラミドフアイプリツド及ぴフィブ リル化したァラミドから選ばれる少なくとも 1種を乾式ブレンドした後に、 気 流を利用してシートを形成する方法;メタ型ァラミド短繊維と無機鱗片状粒子、 あるいはメタ型ァラミド短繊維と無機鱗片状粒子とァラミドフアイプリッド及 ぴフイブリルィ匕したァラミドから選ばれる少なくとも 1種を液体媒体中で分散 混合した後、 液体透過性の支持体、 例えば網又はベルト上に吐出してシート化 し、 液体を除いて乾燥する方法などを適用することができるが、 これらのなか でも、 水を媒体として使用する、 いわゆる湿式抄造法が好ましく選択される。 湿式抄造法では、 少なくともメタ型ァラミド短繊維と無機鱗片状粒子、 ある いはメタ型ァラミ ド短繊維と無機鱗片状粒子とァラミドフアイプリッド及ぴフ ィプリルイ匕したァラミドから選ばれる少なくとも 1種を含有する単一又は混合 物の水性スラリーを、 抄紙機に送液し分散した後、 脱水、 搾水及び乾燥操作す ることによって、 シートとして巻き取る方法が一般的である。 抄紙機としては、 例えば、 長網抄紙機、 円網抄紙機、 傾斜型抄紙機及ぴこれらを組み合わせたコ ンビネーション抄紙機などが利用することができる。 コンビネーション抄紙機 での製造の場合、 配合比率の異なるスラリ一をシート成形し合一することによ り複数の紙層からなる複合体シートを得ることができる。 The thin leaf material of the present invention having the characteristics as described above generally has the above-mentioned meta-type amide polyamide short fibers and inorganic flaky particles, or meth-type amide amide short fibers, inorganic flaky particles, aramid fiber, and fibrillation. It can be produced by a method of forming a sheet after mixing at least one selected from the prepared aramids. Specifically, for example, at least one selected from the above-mentioned meta-type aramid short fibers and inorganic scaly particles, or the meta-type aramid short fibers, inorganic scaly particles, aramid fibrids and fibrylated aramids. A method of forming a sheet using air flow after dry blending; meta-type aramide short fibers and inorganic scaly particles, or meta-type aramide short fibers and inorganic scaly particles, aramid fibrids and fibrils. It is possible to apply a method in which at least one selected from aramids is dispersed and mixed in a liquid medium, then discharged onto a liquid-permeable support, for example, a net or a belt to form a sheet, and the liquid is removed and dried. Among these, a so-called wet papermaking method using water as a medium is preferably selected. In the wet papermaking method, at least one kind selected from at least meta-type aramide short fibers and inorganic scale-like particles, or meta-type amide short fibers, inorganic scale-like particles, aramid fibrids and filled primamides. In general, a single or mixed aqueous slurry containing is fed to a paper machine and dispersed, followed by dehydration, squeezing and drying, and then winding the sheet as a sheet. As the paper machine, for example, a long paper machine, a circular paper machine, an inclined paper machine, or a combination paper machine combining these can be used. In the case of production with a combination paper machine, a composite sheet composed of a plurality of paper layers can be obtained by forming and combining slurry having different mixing ratios.
無機鱗片状粒子は、 薄葉材に定着させるために、 流体スプレー方式により、 湿式抄造法でシート化する間に添加することが好ましい。 The inorganic scaly particles are preferably added during the formation of a sheet by a wet papermaking method by a fluid spray method in order to fix the thin leaf material.
近年、 紙や板紙用の新たな塗工方式としてスプレー方式が提案されている (米国特許第 6 0 6 3 4 4 9号明細書参照) 。 スプレーノズルには、 エアレス スプレー方式と呼ばれる一流体ノズルや、 エアスプレーと呼ばれる二流体ノズ ルがある。 一流体スプレーは、 塗料を加圧して楕円型のスプレーノズルから高 速噴射し、 塗料膜が大気と接触して発生するせん断応力によって微細な塗粒を 形成させ、 基材に塗粒を被着させて塗膜を生成させる方式である。 二流体スプ レーは、 ノズル先端にエアー用と塗料用のノズルがあり、 低圧で嘖霧された塗 料に高圧空気流をぶつけ、 その衝撃で塗料を微細化し、 さらに、 パターン調整
用空気流で塗粒膜の形状をコントロールする方式である。 これらのスプレー塗 ェ方式では、 塗工中にニップ部がないために、 塗工面と塗工装置の接触によつ て発生する塗工欠陥が全くなく、 また、 無機鱗片状粒子を薄葉材に定着させる ために、 アクリル系榭脂、 カチオン系定着補強剤、 高分子凝集剤などの成分を 添加する必要がなく、 これらの剤がセパレータ中に残留することにより耐電圧 が低下するなどの電気化学的安定性の低下が発生するという問題も生じない。 また、 上記成分以外にその他の繊維状成分 (例えば、 ポリフヱニレンスルフ イド繊維、 ポリエーテルエーテルケトン繊維、 セルロース系繊維、 P VA系繊 維、 ポリエステル繊維、 ァリレート繊維、 液晶ポリエステル繊維、 ポリエチレ ンナフタレート繊維などの有機繊維;ガラス繊維、 口ックウール、 アスペスト、 ボ口ン繊維などの無機繊維) を添加することもできる。 これら他の繊維状成分 を添加する場合、 その配合量は、 全繊維成分の合計重量を基準にして、 5 0 % 以下、 特に 4 0 %以下とすることが望ましい。 In recent years, a spray method has been proposed as a new coating method for paper and paperboard (see US Pat. No. 6,063,434). Spray nozzles include one-fluid nozzles called airless spray systems and two-fluid nozzles called air sprays. In the one-fluid spray, paint is pressurized and sprayed at a high speed from an elliptical spray nozzle. Fine paint grains are formed by the shear stress generated when the paint film comes into contact with the atmosphere, and the paint is applied to the substrate. This is a method of generating a coating film. The two-fluid spray has nozzles for air and paint at the tip of the nozzle. The high-pressure air flow is applied to the paint that has been sprayed at low pressure, and the paint is refined by the impact. This is a method of controlling the shape of the coated film with the air flow. In these spray coating methods, since there is no nip portion during coating, there is no coating defect caused by contact between the coating surface and the coating device, and inorganic scaly particles are used as a thin leaf material. It is not necessary to add components such as acrylic resin, cationic fixing reinforcing agent, and polymer flocculant for fixing, and electrochemical properties such as reduction in withstand voltage due to these agents remaining in the separator. There is no problem that the stability of the product is lowered. In addition to the above components, other fibrous components (for example, polyphenylene sulfide fibers, polyether ether ketone fibers, cellulosic fibers, PVA fibers, polyester fibers, arylate fibers, liquid crystal polyester fibers, polyethylene antennas) Organic fibers such as phthalate fibers; inorganic fibers such as glass fibers, mouth-wool wool, aspest, and boston fibers) can also be added. When these other fibrous components are added, the blending amount is desirably 50% or less, particularly 40% or less, based on the total weight of all the fiber components.
このようにして得られるシートは、 例えば、 一対の平板間又は金属製ロール 間にて高温高圧で熱圧することにより、 機械強度を向上させることができる。 熱圧の条件は、 例えば、 金属製ロール使用の場合、 温度5 0〜4 0 0 ¾、 特に 3 0 0〜 3 7 0 °C及ぴ線圧 5 0〜 2 0 0 0 kg/cm, 特に 7 0〜 5 0 0 kg/cm の範囲内を例示することができるが、 特に、 一対の金属製ロール間にてメタ型 ァラミドのガラス転移温度以上の温度で高温熱圧加工することが好ましい。 メ タ型ァラミドのガラス転移温度以上で高温熱圧加工することにより、 金属ロー ル間での熱圧時に機械強度が向上し、 厚みが減少した後、 金属ロール間から開 放されたときに薄葉材に存在する余熱によりもとの厚みに戻ろうとする応力が 働き、 厚みが増加するため、 空隙率が高く、 内部抵抗値が低い薄葉材を作製す ることができる。 Thus, the sheet | seat obtained in this way can improve mechanical strength by hot-pressing between high temperature high pressure between a pair of flat plates or metal rolls. The conditions of the hot pressure are, for example, when using a metal roll, a temperature of 50 to 4 0 0 ¾, especially 3 00 to 3 70 ° C and a linear pressure of 5 0 to 2 0 00 kg / cm, especially A range of 70 to 500 kg / cm 2 can be exemplified, but it is particularly preferable to perform high-temperature hot pressing at a temperature equal to or higher than the glass transition temperature of the meta-type amide between a pair of metal rolls. High-temperature hot pressing above the glass transition temperature of metal aramid improves mechanical strength during hot pressing between metal rolls, and after thinning, the thin leaf is released from between metal rolls. Residual heat existing in the material causes stress to return to the original thickness, and the thickness increases, so that a thin leaf material with a high porosity and a low internal resistance can be produced.
また、 加熱操作を加えずに常温で単にプレスだけを行うこともできる。 熱圧 の際に複数の薄葉材を積層することもできる。 上記の熱圧加工を任意の順に複 数回行うこともできる。
本発明の薄葉材は、 その強度をさらに増加させるために、 公知の他のセパレ → (例えば、 ポリオレフイン微多孔膜) と公知の方法 (例えば、 上記の熱圧 加工) で積層した状態で使用することもできる。 It is also possible to simply press at room temperature without adding a heating operation. A plurality of thin leaf materials can be laminated during the hot pressing. The above hot pressing can be performed several times in any order. In order to further increase the strength of the thin leaf material of the present invention, it is used in a state of being laminated by another known separate → (for example, a polyolefin microporous membrane) and a known method (for example, the above-mentioned hot pressing process). You can also.
本発明の薄葉材は、 (1 ) 耐熱性, 難燃性などの優れた特性を備えているこ と、 (2 ) 熱溶融し難いメタ型ァラミド短繊維を含み、 高温熱圧では薄葉材の 高い空隙率が維持されるため、 電極間のイオン種移動性が損なわれないこと、 ( 3 ) 空隙構造に由来する電解質の保持機能に優れること、 (4 ) メタ型ァラ ミドの比重が 1 . 4程度と小さく軽量であるなどの特性を有しており、 電気' 電子部品の導電部材間の隔離板として好ましく用いることができる。 The thin leaf material of the present invention includes (1) excellent properties such as heat resistance and flame retardancy, and (2) contains meta-type aramid short fibers that are difficult to heat-melt. Since high porosity is maintained, ionic species mobility between electrodes is not impaired, (3) Excellent retention of electrolyte derived from void structure, (4) Specific gravity of meta-type polyamide is 1 It has characteristics such as being as small as 4 and lightweight, and can be preferably used as a separator between conductive members of electrical and electronic parts.
本発明の薄葉材を導電部材間の隔離板として用いての電池、 キャパシタなど の電気 ·電子部品の作製はそれ自体既知の方法で行うことができる。 Production of electrical / electronic components such as batteries and capacitors using the thin leaf material of the present invention as a separator between conductive members can be performed by a method known per se.
かくして、 本発明のァラミド薄葉材を導電部材間の隔離板として用いて製作 された電池、 キャパシタなどの電気 ·電子部品は、 電極間の遮蔽性に優れ安全 性が維持され、 また、 高い空隙構造とその本質的に高い耐熱性によって、 電気 自動車等の大電流環境下での使用にも耐えうるものとなる。 実施例 Thus, electrical and electronic parts such as batteries and capacitors manufactured using the aramid thin leaf material of the present invention as a separator between conductive members are excellent in shielding between electrodes and maintain safety, and have a high void structure. And its inherently high heat resistance makes it able to withstand use in high current environments such as electric vehicles. Example
以下、 本発明を実施例によりさらに具体的に説明する。 なお、 これらの実施 例は単なる例示であり、 本発明の内容を何ら限定するためのものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. These examples are merely examples, and are not intended to limit the contents of the present invention.
(測定方法) (Measuring method)
( 1 ) シートの坪量、 厚みの測定 (1) Measurement of sheet basis weight and thickness
J I S C 2 1 1 1に準じて実施した。 It carried out according to JISC 2 1 1 1.
( 2 ) 引張強度の測定 (2) Measurement of tensile strength
テンシロン引張試験機を幅 1 5 mm、 チャック間隔 2 0 mm、 引張速度 5 0 mm/m i nで実施した。 A Tensilon tensile tester was carried out at a width of 15 mm, a chuck interval of 20 mm, and a tensile speed of 50 mm / min.
( 3 ) 内部抵抗の測定
測定温度は 25 °Cとし、 測定には、 電解液として 1M ホウフツイ匕リチウ ム、 エチレンカーボネートノプロピレンカーボネート (1/1重量比) を用い た。 参考例 (3) Measurement of internal resistance The measurement temperature was 25 ° C., and 1M borosulfite and ethylene carbonate nopropylene carbonate (1/1 weight ratio) were used as the electrolyte. Reference example
(原料調製) (Raw material preparation)
デュポン社製メタ型ァラミド短繊維 (ポリメタフエ二レンイソフタルアミ ド 短繊維) ( 「ノーメッタス」 (登録商標) ) を長さ 6 mmに切断し抄紙用原料 とした。 このメタ型ァラミド繊維のガラス転移温度は 2 75°Cである。 Meta-type aramid short fiber (polymetaphenylene isophthalamide short fiber) (“Nomettas” (registered trademark)) manufactured by DuPont was cut into a length of 6 mm and used as a raw material for papermaking. The glass transition temperature of this meta-type aramid fiber is 275 ° C.
特公昭 35- 1 1 85 1号公報に記載される湿式沈殿機を用いる方法で、 ポ リメタフェニレンイソフタルアミドのフアイプリツドを製造した。 これを離角 機、 叩解機で処理した。 Polyphenylene phenylene isophthalamide was prepared by a method using a wet precipitator described in Japanese Patent Publication No. 35-1 1 85 1. This was processed with a breaker and a beater.
フィブリル化したァラミドとして、 帝人トワロン (株) の 「トワロン (登録 商標) 1094」 を離解機、 叩解機で処理した。 As a fibrillated aramid, “Twaron (registered trademark) 1094” of Teijin Twaron Co., Ltd. was processed with a disaggregator and a beater.
無機鱗片状粒子として、 AGCエスアイテック (株) の 「サンラブリー (登 録商標) LF SHN—50」 (平均粒径 0. 5 μη をィオン交換水で固形分 濃度が 1 %になるように希釈し、 スプレー用液として使用した。 実施例 1〜 3 As inorganic scale-like particles, “Sun Lovely (registered trademark) LF SHN-50” by AGC S-Tech Co., Ltd. (average particle size 0.5 μη was diluted with ION-exchanged water to a solid content concentration of 1%. Examples 1 to 3 were used as spray solutions.
(薄葉材の製造) (Manufacture of thin leaf materials)
調製したメタ型ァラミド短繊維とァラミドファイブリツド又はフイブリル化 したァラミドを各々表 1に示す各実施例の配合比率で混合し、 水中で分散して スラリーを作製した。 このスラリーをタツピー式手抄き機 (断面積 325 cm 2) にかけシート状物を作製した。 次いで、 表 1に示す各実施例の配合比率に なるようにして、 希釈したスプレー用液を二流体スプレー器 (ノズル径; 1 m m) に投入し、 気体一液体混合後、 圧力 0. 3 k g f / cm2で前記シート状 物に吹きつけた後、 温度 100°Cで 30分間乾燥した。 次いで、 これを金属製 力レンダー口ールにより表 1に示す条件で熱圧加工し、 薄葉材を得た。
このようにして得られた薄葉材の主要特性値を表 1に示す。 表 1The prepared meta-type aramid short fibers and aramid fibrids or fibrillated aramids were mixed at the blending ratios of each example shown in Table 1, and dispersed in water to prepare a slurry. This slurry was applied to a tappy type hand machine (cross-sectional area: 325 cm 2 ) to produce a sheet. Next, the diluted spray solution was introduced into a two-fluid sprayer (nozzle diameter: 1 mm) so as to achieve the blending ratio of each example shown in Table 1, and after mixing gas and liquid, the pressure was 0.3 kgf. After spraying on the sheet at / cm 2 , it was dried for 30 minutes at a temperature of 100 ° C. Next, this was hot-pressed under the conditions shown in Table 1 with a metal-powered lender tool to obtain a thin leaf material. Table 1 shows the main characteristic values of the thin leaf material thus obtained. table 1
伹し、 電解液の電気伝導度は 4 . 6 (m S / c m) であった。 実施例:!〜 3の薄葉材は、 内部抵抗が低く、 イオン種透過性も十分であると 考えられ、 特に、 内部抵抗/坪量の低い実施例 1の薄葉材は、 内部抵抗が大幅 に低減されており、 大電流を要求される、 電気自動車中の電池、 キャパシタ等 の電気 ·電子部品中の導電部材間の隔離板として有用である。 比較例 1及ぴ 2 As a result, the electric conductivity of the electrolyte was 4.6 (m S / cm). Example:! The thin leaf materials of ~ 3 are considered to have low internal resistance and sufficient ionic species permeability, and in particular, the thin leaf material of Example 1 with low internal resistance / basis weight has greatly reduced internal resistance. It is useful as a separator between conductive members in electric and electronic parts such as batteries and capacitors in electric vehicles that require a large current. Comparative Example 1 and 2
(薄葉材の製造)
調製したメタ型ァラミド短繊維をァラミドフアイプリッドと各々表 2に示す 各比較例毎の配合比率で混合し、 水中で分散してスラリーを作製した。 このス ラリーから湿式抄造法によりシート状物を作製した。 次いで、 これを金属製力 レンダーロールにより表 2に示す条件で熱圧加工し、 薄葉材を得た。 (Manufacture of thin leaf material) The prepared meta-type aramid short fibers were mixed with aramid fiber in the mixing ratios for each comparative example shown in Table 2, and dispersed in water to prepare a slurry. A sheet-like material was produced from this slurry by a wet papermaking method. Next, this was hot-pressed under the conditions shown in Table 2 with a metal-powered render roll to obtain a thin leaf material.
このようにして得られた薄葉材の主要特性値を表 2に示す。 表 2 Table 2 shows the main characteristic values of the thin leaf material thus obtained. Table 2
但し、 電解液の電気伝導度は 4 . 6 (m S / c m) であった。 However, the electrical conductivity of the electrolytic solution was 4.6 (m S / cm).
比較例 1の薄葉材は、 表 2に示すように、 内部抵抗は低いが、 引張強度が低 く、 機械強度が不足するため、 電解質含浸処理ゃ卷き取りなどの部品製造工程 での各種取り扱いで破断を引き起こしやすくなる。 As shown in Table 2, the thin leaf material of Comparative Example 1 has low internal resistance, but low tensile strength and insufficient mechanical strength, so various handling in the parts manufacturing process such as electrolyte impregnation treatment It tends to cause breakage.
また、 比較例 2の薄葉材は、 バインダーとして機械強度を向上させるフアイ ブリツドの含量を増加したので、 引張強度の値は高くなつたが、 ファイブリツ ドがイオン種の透過性を妨げるため、 内部抵抗が高くなつた。 このような薄葉 材は、 大電流が要求される、 電気自動車の電池、 キャパシタ等の電気 ·電子部 品中の導電部材間の隔離板としては有用ではないと考えられる。
発明の効果 In addition, the thin leaf material of Comparative Example 2 increased the content of the fiber bridge that improves the mechanical strength as a binder, so the tensile strength value was high, but the fibrid hinders the permeability of ionic species. Resistance became high. Such a thin-leaf material is considered not useful as a separator between conductive members in electric and electronic parts such as electric vehicle batteries and capacitors, which require a large current. The invention's effect
本発明の薄葉材は、 内部抵抗も十分に低く、 イオン種透過性も十分であると考 えられ、 電極間の遮蔽性も高く、 機械的強度も十分であることから、 電気 '電 子部品中の導電部材間の隔離板に利用することができる。 また、 この薄葉材を 使用した電池、 キャパシタ等の電気 ·電子部品は、 本質的に耐熱性の高いメタ 型ァラミド及ぴ無機鱗片状粒子を含んでいるので、 電気自動車等の大電流環境 下で使用することができる。
The thin leaf material of the present invention is considered to have sufficiently low internal resistance, sufficient ionic species permeability, high shielding between electrodes, and sufficient mechanical strength. It can be used as a separator between conductive members inside. In addition, electric and electronic parts such as batteries and capacitors that use this thin leaf material contain essentially heat-resistant meta-type aramide and inorganic scaly particles. Can be used.
Claims
1 . メタ型ァラミド短繊維と無機鱗片状粒子を含んでなる薄葉材。 1. A thin-leaf material comprising meta-type aramid short fibers and inorganic scaly particles.
2 . ァラミドファイブリツド及びフイブリルイ匕したァラミドから選ばれる少 なくとも 1種をさらに含んでなる請求項 1に記載の薄葉材。 2. The thin leaf material according to claim 1, further comprising at least one selected from aramid fibrids and fibrilized aramids.
3 . メタ型ァラミド短繊維の含量が 8 0重量%以上である請求項 1に記載の 薄葉材。 3. The thin leaf material according to claim 1, wherein the content of the meta-type aramid short fibers is 80% by weight or more.
4 . 無機鱗片状粒子対ァラミドファイブリツド及ぴ Z又はフィブリル化した ァラミドの重量比が 1 0ダ1〜1 / 1 0の範囲内である請求項 2に記載の薄葉 材。 4. The thin leaf material according to claim 2, wherein the weight ratio of the inorganic scaly particles to the aramid fibrid and Z or fibrillated aramid is in the range of 10 to 1 to 1/10.
5 . 内部抵抗値 ( μ πι) /坪量 (g /m 2 ) で表される値が 9以下であり、 ここで、 内部抵抗値は下式 5. The value expressed by the internal resistance value (μ πι) / basis weight (g / m 2 ) is 9 or less, where the internal resistance value is
(内部抵抗値) = (電解液の電気伝導度) / (セパレーターに電解液を注入 したときの電気伝導度) X (セパレーターの厚み) 式中、 (セパレーターに電解液を注入したときの電気伝導度) は、 電解液を セパレーターに注入した状態で 2枚の電極に挟み、 測定した交流ィンビーダ ンスから算出した電気導度を示す、 (Internal resistance value) = (Electric conductivity of electrolyte) / (Electric conductivity when electrolyte is injected into separator) X (Separator thickness) In formula, (Electric conductivity when electrolyte is injected into separator) Degree) indicates the electrical conductivity calculated from the measured AC inductance, sandwiched between two electrodes with the electrolyte injected into the separator,
で表される値である請求項 1に記載の薄葉材。 The thin leaf material according to claim 1, which has a value represented by:
6 . メタ型ァラミド短繊維を湿式抄造法でシート化する間に流体スプレー方 式で無機鱗片状粒子を添加したのち、 得られるシートを一対の金属製ロール間 にてメタ型ァラミドのガラス転移温度以上の温度で高温熱圧加工することを特 徴とする請求項 1に記載の薄葉材の製造方法。
6. After adding inorganic scaly particles by the fluid spray method while the meta-type aramid short fibers are made into a sheet by the wet papermaking method, the glass transition temperature of the meta-type aramid is transferred between a pair of metal rolls. 2. The method for producing a thin leaf material according to claim 1, wherein high temperature hot pressing is performed at the above temperature.
7 . メタ型ァラミド短繊維とァラミドファイブリツド及ぴフイブリル化した ァラミドから選ばれる少なくとも 1種とを水中で混合し、 湿式抄造法でシート 化する間に流体スプレー方式で無機鱗片状粒子を添加したのち、 得られるシー トを一対の金属製ロール間にてメタ型ァラミドのガラス転移温度以上の温度で 高温熱圧加工することを特徴とする請求項 2に記載の薄葉材の製造方法。 7. Meta-type aramid short fibers and at least one selected from aramid fibrids and fibrillated aramids are mixed in water, and inorganic scaly particles are formed by a fluid spray method during sheeting by wet papermaking. 3. The method for producing a thin leaf material according to claim 2, wherein after the addition, the obtained sheet is hot-pressed at a temperature not lower than the glass transition temperature of the meta-type aramid between a pair of metal rolls.
8 . 請求項 1〜 5のいずれかに記載の薄葉材を導電部材間の隔離板として使 用してなる電気 ·電子部品。 8. An electrical / electronic component using the thin leaf material according to any one of claims 1 to 5 as a separator between conductive members.
9 . 請求項 1〜 5のいずれかに記載の薄葉材を導電部材間の隔離板として使 用してなる電池。 9. A battery comprising the thin leaf material according to any one of claims 1 to 5 as a separator between conductive members.
1 0 . 請求項 1〜 5のいずれかに記載の薄葉材を導電部材間の隔離板として 使用してなるキャパシタ。
10. A capacitor using the thin leaf material according to claim 1 as a separator between conductive members.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007290783 | 2007-11-08 | ||
JP2007-290783 | 2007-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009060989A1 true WO2009060989A1 (en) | 2009-05-14 |
Family
ID=40625870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/070624 WO2009060989A1 (en) | 2007-11-08 | 2008-11-06 | Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200937467A (en) |
WO (1) | WO2009060989A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101867030A (en) * | 2010-06-21 | 2010-10-20 | 深圳市龙邦新材料有限公司 | Battery diaphragm based on aramid fibre |
WO2011012396A1 (en) * | 2009-07-31 | 2011-02-03 | Evonik Degussa Gmbh | Ceramic membrane having support materials comprising polyaramide fibers and method for producing said membranes |
JP2013054966A (en) * | 2011-09-05 | 2013-03-21 | Nissan Motor Co Ltd | Separator with heat resistant insulation layer |
JP2013125731A (en) * | 2011-12-16 | 2013-06-24 | Nippon Sheet Glass Co Ltd | Separator |
CN103943806A (en) * | 2014-05-06 | 2014-07-23 | 烟台民士达特种纸业股份有限公司 | Battery diaphragm formed by aramid fibers and preparation method thereof |
CN109546057A (en) * | 2018-12-03 | 2019-03-29 | 河北金力新能源科技股份有限公司 | A kind of preparation method of glass fibre non-woven aramid fiber coated separator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3530791B1 (en) * | 2016-10-24 | 2021-06-09 | Oji Holdings Corporation | Inorganic fiber sheet, honeycomb molded body and honeycomb filter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11222798A (en) * | 1998-02-02 | 1999-08-17 | Oji Paper Co Ltd | Substrate for printed circuit board, laminated sheet and their production |
JP2005307360A (en) * | 2004-04-16 | 2005-11-04 | Du Pont Teijin Advanced Paper Kk | Aramid tissue material and electrical and electronic part using the same |
WO2006057240A1 (en) * | 2004-11-24 | 2006-06-01 | Nippon Sheet Glass Company, Limited | Inorganic fiber paper |
-
2008
- 2008-11-06 TW TW097142893A patent/TW200937467A/en unknown
- 2008-11-06 WO PCT/JP2008/070624 patent/WO2009060989A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11222798A (en) * | 1998-02-02 | 1999-08-17 | Oji Paper Co Ltd | Substrate for printed circuit board, laminated sheet and their production |
JP2005307360A (en) * | 2004-04-16 | 2005-11-04 | Du Pont Teijin Advanced Paper Kk | Aramid tissue material and electrical and electronic part using the same |
WO2006057240A1 (en) * | 2004-11-24 | 2006-06-01 | Nippon Sheet Glass Company, Limited | Inorganic fiber paper |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011012396A1 (en) * | 2009-07-31 | 2011-02-03 | Evonik Degussa Gmbh | Ceramic membrane having support materials comprising polyaramide fibers and method for producing said membranes |
JP2013501082A (en) * | 2009-07-31 | 2013-01-10 | エボニック デグサ ゲーエムベーハー | Ceramic membrane comprising polyaramid fiber-containing support material and method for producing said membrane |
US9782728B2 (en) | 2009-07-31 | 2017-10-10 | Evonik Degussa Gmbh | Ceramic membrane having support materials comprising polyaramid fibers and method for producing said membranes |
CN101867030A (en) * | 2010-06-21 | 2010-10-20 | 深圳市龙邦新材料有限公司 | Battery diaphragm based on aramid fibre |
JP2013054966A (en) * | 2011-09-05 | 2013-03-21 | Nissan Motor Co Ltd | Separator with heat resistant insulation layer |
JP2013125731A (en) * | 2011-12-16 | 2013-06-24 | Nippon Sheet Glass Co Ltd | Separator |
CN103943806A (en) * | 2014-05-06 | 2014-07-23 | 烟台民士达特种纸业股份有限公司 | Battery diaphragm formed by aramid fibers and preparation method thereof |
CN109546057A (en) * | 2018-12-03 | 2019-03-29 | 河北金力新能源科技股份有限公司 | A kind of preparation method of glass fibre non-woven aramid fiber coated separator |
Also Published As
Publication number | Publication date |
---|---|
TW200937467A (en) | 2009-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005100688A1 (en) | Aramid tissue material and electric/electronic component employing it | |
KR101331481B1 (en) | Separator for electrochemical device and process for preparing the same | |
KR101446949B1 (en) | Porous membrane and process for preparing the same | |
US11236468B2 (en) | Porous sheet | |
KR101387388B1 (en) | Porous membrane and process for preparing the same | |
WO2009060989A1 (en) | Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material | |
CN109661737B (en) | Base material for lithium ion battery separator and lithium ion battery separator | |
JP6129209B2 (en) | Electric double layer capacitor separator and electric double layer capacitor | |
KR101335380B1 (en) | Porous membrane and process for preparing the same | |
KR101337921B1 (en) | Porous membrane and process for preparing the same | |
JP2023549035A (en) | Separator for electrochemical devices using cellulose fiber | |
JP2011258462A (en) | Thinned material for nonaqueous electric and electronic component | |
JP2009295483A (en) | Thinned material, its manufacturing method, and electric/electronic part using it | |
JP2011210680A (en) | Separator for battery | |
US20200173074A1 (en) | Nonwoven fabric and battery separator | |
JP2011108593A (en) | Composite sheet, method of manufacturing the same, and electrical and electronic component using the same | |
JP3920600B2 (en) | Aramid thin leaf material, method for producing the same, and electric / electronic component using the same | |
WO2009060988A1 (en) | Foliate material, method for production of the foliate material, and electrical/electronic component comprising the foliate material | |
JP2007242584A (en) | Separator for electronic component | |
JP2014036074A (en) | Separator for capacitor and capacitor | |
JP2015061036A (en) | Separator for capacitor | |
JP2004164974A (en) | Separator, its manufacturing method, and electric/electronic parts using the same | |
JP2007109671A (en) | Aramid thin-leaf material and manufacturing method of the same | |
JP2019212492A (en) | Lithium ion battery separator and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08846870 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08846870 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |