WO2008018308A1 - Method for quenching of steel member, quenched steel member, and agent for protecting quenched surface - Google Patents

Method for quenching of steel member, quenched steel member, and agent for protecting quenched surface Download PDF

Info

Publication number
WO2008018308A1
WO2008018308A1 PCT/JP2007/064847 JP2007064847W WO2008018308A1 WO 2008018308 A1 WO2008018308 A1 WO 2008018308A1 JP 2007064847 W JP2007064847 W JP 2007064847W WO 2008018308 A1 WO2008018308 A1 WO 2008018308A1
Authority
WO
WIPO (PCT)
Prior art keywords
quenching
steel member
nitride layer
steel
quenched
Prior art date
Application number
PCT/JP2007/064847
Other languages
English (en)
French (fr)
Inventor
Masaaki Beppu
Hidehisa Sakuta
Kazuhiko Mori
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Priority to EP20070791541 priority Critical patent/EP2053144B1/en
Priority to KR1020097004702A priority patent/KR101140464B1/ko
Priority to US12/376,861 priority patent/US20100163138A1/en
Priority to CN2007800292953A priority patent/CN101501247B/zh
Publication of WO2008018308A1 publication Critical patent/WO2008018308A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a surface hardening treatment technique for mechanical structure parts having excellent mechanical strength such as surface pressure strength, wear resistance, and bending fatigue strength.
  • nitriding treatment In order to improve the mechanical strength, surface hardening treatments such as nitriding treatment, soft nitriding treatment, carburizing and quenching, and induction hardening are performed on machined structural parts of pig iron steel.
  • a nitride layer formed on the outermost surface by nitriding is known to have excellent sliding resistance, resistance to wear, and high seizure resistance.
  • conventional nitriding or soft nitriding has room for improvement in surface pressure strength, fatigue strength, etc., where the hardened layer depth is shallower than carburizing and induction hardening.
  • the composite treatment uses the characteristics of the quenched structure in the nitrogen diffusion layer obtained by the nitriding treatment, that is, the temper softening resistance and the crack initiation resistance. Utilization is expected to improve surface pressure strength and fatigue strength, and use of a nitride layer (compound layer) formed by nitriding is not found. Rather, in the above publication, high-frequency treatment conditions for actively decomposing and eliminating the nitride layer are studied.
  • the quenching temperature needs to be at least the temperature at which the austenite structure is reached or higher than the Acl transformation point, and is usually selected in the temperature range of 750 to 1050 ° C.
  • the nitride layer formed at a nitriding temperature of 570 ° C is a bond of iron and nitrogen, and when reheated to 650 ° C or higher, it undergoes oxidation and decomposes, and nitrogen in the nitride layer is nitrogen on the outermost surface. As a result of being released as a gas and diffusing inside, the nitride layer disappears. This has been reported for a long time!
  • a technique for solving such a problem of damage or disappearance of a nitride layer by high-temperature heating by directly quenching the nitride layer formed on the surface by nitriding as it is.
  • the surface after nitriding treatment is coated with a gas nitriding ion nitriding inhibitor, carburizing inhibitor, and antioxidant containing CaO as a component;! ⁇ 3mm thick and quenching is performed. It is disclosed in Patent Document 5.
  • Patent Document 1 Patent No. 3193320
  • Patent Document 2 Japanese Patent No. 3327386
  • Patent Document 3 Patent No. 3145517
  • Patent Document 4 JP-A-7-90364
  • Patent Document 5 Japanese Patent Laid-Open No. 58-96815
  • Non-patent document 1 Heat treatment No.16 No.4 P206 1977
  • the present invention solves these problems of the prior art and prevents the nitride layer from being hardened during quenching without reducing the cooling rate during quenching by merely preventing damage and decomposition of the hard nitride layer.
  • a ceramic with a specific composition is combined and strengthened to further increase its hardness and mechanical strength to obtain surface pressure strength and fatigue strength, and good sliding performance can be obtained without removing the protective layer. With the goal.
  • the present inventors in a method of impregnating or coating a hardened surface protective agent on the surface of a steel member having a hard nitride layer formed on the surface, quenching or coating the surface, several thousand mg / m 2 or less) even allows nitride layer protection during quenching at a coverage, Do and slidability even decrease without removing the protective layer after and quenching Nag problems on the cooling rate during quenching
  • Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo and A are selected from the group consisting of
  • the hardened surface protection agent containing a ceramic precursor containing at least one kind of metal exhibits a good nitride protection effect even when coating a thin film of several meters or less, which has not been known so far, and removes the protective film after heat treatment. It has been found that it exhibits good sliding performance even without it, and the surface protection agent further improves the nitride protection effect by including one of Ca, Mg, Y, Sc and Ba selected from the medium. I found out.
  • the “quenched steel member” of the present invention is the first invention in which a hard nitride layer is formed on the surface of the steel material, and further, Ti, Zr, Hf, V, Nb, An inorganic compound layer containing at least one metal oxide selected from the group consisting of Ta, Cr, W, Mo and Al is formed.
  • the second invention is the first invention, wherein the inorganic compound layer containing the metal oxide further contains at least one selected from Ca, Mg, Y, Sc and Ba.
  • the third invention is the first invention described above, wherein the hard nitride layer is at least one nitride selected from Fe, Ti, Zr, Mo, W, Cr, B, and Si. It is the second invention.
  • the inorganic compound layer comprises at least one metal selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo and A. It is any one of the first invention to the third invention, which is contained in the range of 1 to 2000 mg / m 2 in total in terms of conversion.
  • the fifth invention is any one of the first invention to the fourth invention, wherein the steel member is a mechanical structural component used in a high surface pressure region.
  • the "hardening method for steel members” and the “method for manufacturing quenched steel members” according to the present invention include a steel material having a hard nitride layer on its surface, Ti, Zr, Hf, V, Nb.
  • a solution containing a ceramic precursor containing the element as at least one state selected from ions) is performed, and the quenching treatment is induction quenching.
  • the liquid containing the ceramic precursor (for example, the solution) further includes Ca, Contains at least one element selected from Mg, Y, Sc, and Ba (for example, the element as at least one state selected from an oxide, a hydrated oxide, an ion, and a complex ion) S) preferred power, containing).
  • the “quenched surface protective agent” of the present invention is at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo and Al.
  • a liquid containing a ceramic precursor containing the element for example, a solution containing a ceramic precursor containing the element in at least one state selected from oxides, hydrated oxides, ions, and complex ions.
  • the liquid containing the ceramic precursor eg, the solution
  • the element further contains at least one element selected from Ca, Mg, Y, Sc, and Ba (eg, oxide, hydrated oxide). It is more preferable that the element is contained as at least one state selected from among ions, complex ions).
  • the concentrated type that is diluted with a solvent at the time of use and the dry type that is added with a solvent are also included in the concept of “quenched surface protective agent” (however, they can be used as they are below) For example).
  • the hardened steel member According to the hardened steel member, the method of quenching a steel member, the method of manufacturing a hardened steel member, and the hardened surface protecting agent of the present invention, the hard nitride layer is prevented from being damaged or decomposed during quenching with an unprecedented thin film. Therefore, quenching is possible without reducing the cooling rate during quenching, and high hardness and mechanical strength can be obtained. In addition, since good slidability can be obtained without removing the protective layer, the mass productivity and practicality can be improved as compared with the prior art, and the best mode for carrying out the invention
  • the steel material to which the present invention is applied is not particularly limited.
  • carbon steel, low alloy steel, high alloy steel, pig iron can be cited.
  • Particularly preferred materials are high carbon carbon steel, low alloy steel and the like.
  • the hard nitride layer on the steel material surface in the present invention is not particularly limited as long as it is a nitride layer formed by surface treatment of steel (nitrogen diffusion treatment, CVD, PVD, etc.), Fe, Ti And at least one nitride layer selected from Zr, Mo, W, Cr, B and Si. Of these, Fe is most preferable from the viewpoint of mass production.
  • any nitriding method such as salt bath nitriding treatment such as tuftride treatment or pulsonite treatment, gas soft nitriding treatment, ion nitriding treatment, plasma nitriding treatment or the like is preferable.
  • it is preferable to form hard nitride layers other than Fe by PVD methods such as plasma CVD, sputtering, and ion plating! /.
  • the inorganic compound layer in the present invention is present on the hard nitride layer on the surface of the steel material, and is composed of Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo, and A. It is preferable that at least one metal oxide selected from the group consisting of at least one selected from Ca, Mg, Ba, Y and Sc as an optional component is contained. .
  • the former main component is excellent in oxidation resistance and nitride forming ability, and preferable optional components can be expected to improve crystal properties and stability.
  • the inorganic compound layer containing at least one metal oxide selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo, and Al is the metal It is preferable to further contain the nitride.
  • the inorganic compound layer contains these metal nitrides, improvement in hardenability and slidability can be expected.
  • the nitride is stable with respect to the metal, so that part of the metal is hard nitrided during the quenching. Reacts with nitrogen from the layer to form nitrides. Therefore, in this case, the inorganic compound layer containing the metal oxide essentially contains nitride.
  • the inorganic compound layer preferably contains at least one essential metal selected from the metal group in a total amount of 1 to 2000 mg / m 2 in terms of the metal.
  • the protective effect of the nitride layer is the sum of the metal conversion is less than lmg / m 2 is insufficient, sliding resistance exceeds 2000 mg / m 2, is not preferable because the adhesiveness is lowered.
  • the said numerical value in this specification is the said metal amount in the said layer after the said inorganic compound layer was formed, this numerical value is in the ceramic precursor liquid made to adhere to the steel surface before quenching. It is the same as the amount of metal.
  • the amount of the optional metal is preferably about 20% or less of the essential metal.
  • the hardened steel member according to the present invention preferably has a surface pressure that is preferably used in a high pressure region.
  • the range is about 0.5 Mpa to 3.5 Mpa.
  • the shape and part type of the steel member are not particularly limited. For example, a force such as a shaft, a gear, a piston, a shaft, and a cam can be cited.
  • the present method includes an application step of applying a ceramic precursor-containing liquid to a steel material having a hard nitride layer on the surface, and a quenching step of quenching the steel material to which the liquid is applied.
  • this method may include, for example, a drying step for removing the solvent of the ceramic precursor liquid applied to the surface of the steel member.
  • the drying step may be any method such as natural drying or heat drying which is preferably performed before quenching.
  • a steel material having a hard nitride layer (for example, a layer containing iron nitride) on its surface is made of Ti, Zr, Hf, V, Nb, Ta, Ceramic precursor containing at least one element selected from the group consisting of Cr, W, Mo and A as at least one state selected from oxide, hydrated oxide, ion and complex ion It is preferable to contact the solution containing the body.
  • the solution more preferably contains an element selected from the medium strengths of Ca, Mg, Y, Sc and Ba.
  • the contact method is not particularly limited, and for example, spraying, dipping, brush coating, flow coating, roll coating, electrolytic deposition and the like are possible.
  • the quenching process is not particularly limited, and examples thereof include salt bath quenching, flame quenching, and induction quenching, and induction quenching is most preferable.
  • the quenching condition for example, in the case of a low alloy steel material, the quenching is generally set to 900 to 930 ° C, which is 50 to 60 ° C higher than the austenitizing temperature of the material. Since nitriding is performed in advance, in the case of induction hardening capable of rapid heating, it is more preferable to set the temperature to 800 to 850 ° C.
  • the metal in the ceramic precursor applied to the surface of the steel member is tempered through an oxide formation process in the quenching step and, if the metal is not in the form of an oxide, Turn into.
  • the metal since the metal is more stable in nitride form than oxide, the metal reacts with nitrogen from the nitride layer during the quenching process, and the metal Nitrides are also formed.
  • the “quenched surface protective agent” according to the present invention which is used in the above method, is a medium force such as Ti, Zr, Hf, V, Nb, Ta, Cr, W, Mo and A.
  • a solution containing a ceramic precursor containing at least one selected element in at least one state selected from oxides, hydrated oxides, ions and complex ions is preferable.
  • the main components are Ti, Zr, Hf, V, Nb, Ta, W, Mo and Al oxides, hydrated oxides, ions or complex ions. It is more preferable to add Ca, Mg, Ba, Y and Sc oxides, hydrated oxides, ions or complex ions.
  • a solvent for a liquid (for example, a solution) containing a ceramic precursor it is neutral to alkaline in order to prevent corrosion of a steel member in which it is preferable to use water as a main solvent from the viewpoint of safety. It is more preferable.
  • the solid content concentration of the solution is not particularly limited, but is preferably 0.;! To 10 wt%.
  • a method for producing a “quenched surface protective agent” according to the present invention a method for preparing a ceramic precursor solution
  • the metal such as nitrate, acetate, or oxalate is used.
  • a salt metal alkoxide or the like can be preferably used.
  • These metal compound raw materials may be used after diluted in a solvent, but may be used as a dispersion sol of oxides or hydrated oxides by hydrolysis, heat crystallization or the like. Also, these commercially available metal oxide sols can be used.
  • the quenching surface protective agent of the present invention preferably contains supplementary other organic / inorganic additive components such as a sol dispersant, a stabilizer, a wettability improver, and a thickener. .
  • SCM440 tempered material with a diameter of 8mm and a length of 12mm was used as the base material, and after degreasing and cleaning this surface, salt bath soft nitriding treatment in a molten salt bath at 570 ° C for 2 hours (Tufftride treatment: Nihon Parkerizing ( And a compound layer made of iron nitride having a thickness of 12 111 was formed on the steel surface.
  • a tempered material (SCM440) with a diameter of 20 mm and a length of 40 mm was used as the base material, and after degreasing and cleaning this surface, soft nitriding treatment was performed in a molten salt bath at 570 ° C for 2 hours (Tufftride treatment: Nihon Parkerizing ( And a compound layer made of iron nitride having a thickness of ⁇ was formed on the surface of the steel material.
  • the steel material having the iron nitride layer formed on the surface was brush-coated with a coating agent solution containing 8% concentration of zirconium carbonate ammonium (Daiichi Rare Element Chemical Co., Ltd.) and yttrium oxide. Then, it was dried at 150 ° C.
  • SCM440 tempered material with a diameter of 8mm and a length of 12mm was used as the base material. After degreasing and cleaning this surface, soft nitriding treatment in a molten salt bath at 570 ° C for 2 hours (tuftride treatment: Nippon Parriki Rising ( Produced an iron nitride layer with a thickness of 12, im on the steel surface.
  • the steel material with the iron nitride layer formed on the surface was further brush-coated with alumina sol (alumina sol 200 manufactured by Nissan Chemical Industries, Ltd.) having a concentration of 10%, and then dried.
  • alumina sol alumina sol 200 manufactured by Nissan Chemical Industries, Ltd.
  • the amount of A1 adhered was measured with a fluorescent X-ray analyzer and found to be 1300 mg / m 2 .
  • SCM440 tempered material with a diameter of 8mm and a length of 12mm was used as the base material. After degreasing and cleaning this surface, soft nitriding treatment in a molten salt bath at 570 ° C for 2 hours (tuftride treatment: Nippon Parriki Rising ( Produced an iron nitride layer with a thickness of 12, im on the steel surface.
  • the steel material having the iron nitride layer formed on the surface in this manner was further dip-coated with a coating solution containing 3% ammonium molybdate and 2% ammonium tungstate, and then dried.
  • a coating solution containing 3% ammonium molybdate and 2% ammonium tungstate containing 3% ammonium molybdate and 2% ammonium tungstate, and then dried.
  • the adhesion amounts of Mo and W were measured with a fluorescent X-ray analyzer, the Mo force was 150 mg / m 2 and W was 100 mg / m 2 .
  • a tempered material (SCM440) with a diameter of 20 mm and a length of 40 mm was used as the base material, and after degreasing and cleaning this surface, soft nitriding treatment was performed in a molten salt bath at 570 ° C for 2 hours (Tufftride treatment: Nihon Parkerizing ( And an iron nitride layer having a thickness of ⁇ was formed on the surface of the steel material.
  • the steel material having the iron nitride layer formed on the surface in this manner was further dip-coated with a hydrated chromium oxide (III) sol (prepared by reducing chromic acid) at a concentration of 0.8% and then dried.
  • the amount of Cr deposited was measured with a fluorescent X-ray analyzer and found to be 25 mg / m 2 .
  • SCM440 tempered material with a diameter of 8mm and a length of 12mm was used as the base material. After degreasing and cleaning this surface, soft nitriding treatment in a molten salt bath at 570 ° C for 2 hours (tuftride treatment: Nippon Parriki Rising ( Produced an iron nitride layer with a thickness of 12, im on the steel surface.
  • the steel material having the iron nitride layer formed on the surface in this manner was further dip-coated with a coating solution containing 3% peroxotitanate sol and 0.2% calcium oxalate, and then 250 ° C. And dried.
  • Ti force S310mg / m 2 was Ca force 0 mg / m 2.
  • a tempered material (SCM440) with a diameter of 20 mm and a length of 40 mm was used as the base material. After this surface was degreased and cleaned, it was treated with an ion plating device for 1 hour, and the steel surface was made of titanium nitride with a thickness of 3 m. A hard nitride layer was formed.
  • a coating agent solution containing 8% concentration of zirconium carbonate ammonium (manufactured by Daiichi Rare Element Chemical Co., Ltd.) and yttrium oxide was further applied to the steel material having the titanium nitride layer formed on the surface in this manner. After brushing, it was dried at 150 ° C. When the amount of Zr and Y deposited was measured with a fluorescent X-ray analyzer, Zr was 600 mg / m 2 and Y was 35 mg / m 2 .
  • SCM440 tempered material with a diameter of 8 mm and a length of 12 mm is used as the base material. After this surface is degreased and cleaned, it is treated with an ion plating device for 2 hours, and the steel surface is made of chromium nitride with a thickness of 5 m. A hard nitride layer was formed.
  • the steel material on which the chromium nitride layer on which the inorganic compound layer containing titanium oxide is formed in this way is further heated at a rate of about 150 ° C / sec using an induction hardening device to be 850 ° CX 3 A high frequency for 2 seconds was applied and immediately quenched with water.
  • Example 9 Using a SCM440 tempered material with a diameter of 8 mm and a length of 12 mm as the base material, this surface was degreased and washed, then treated with a plasma CVD device for 3 hours, and the surface of the steel material was hard nitrided with 3 m thick boron nitride. A physical layer was formed.
  • the steel material on which the boron nitride layer on which the inorganic compound layer containing titanium oxide has been formed in this way is further heated at a rate of about 150 ° C / sec using an induction hardening device to be 850 ° CX 3 A high frequency for 2 seconds was applied and immediately quenched with water.
  • a tempered material (SCM440) with a diameter of 20 mm and a length of 40 mm was used as the base material. After degreasing and cleaning this surface, it was treated with an ion plating device for 2 hours and a zirconium nitride layer with a thickness of 3 am on the steel surface. Formed.
  • the steel material having the hard nitride layer formed on the surface was further dip-coated with a sol solution of 2% tantalum hydroxide and 0.3% niobium hydroxide, and then dried.
  • the amount of tantalum deposited was measured with a fluorescent X-ray analyzer and found to be 70 mg / m 2 .
  • SCM440 tempered material with a diameter of 8 mm and a length of 12 mm was used as the base material. After degreasing and cleaning this surface, softening treatment was performed in a molten salt bath at 570 ° C for 2 hours (tuftride treatment: Nippon Parriki Rising) And an iron nitride layer having a thickness of 12, im was formed on the surface of the steel material.
  • the steel material having the iron nitride layer formed on the surface in this manner was further dip-coated with a coating agent solution containing 2% of oxalic acid and nitric acid, and then dried at 250 ° C.
  • a coating agent solution containing 2% of oxalic acid and nitric acid was further dip-coated with a coating agent solution containing 2% of oxalic acid and nitric acid, and then dried at 250 ° C.
  • Hf was 120 mg / m 2 .
  • Example 2 The same carbon steel material as in Example 1 was used as the base material, and this surface was degreased and cleaned, and then soft-nitrided in a molten salt bath at 570 ° C for 1 hour (Tufftride treatment: Nippon Parkerizing Co., Ltd.) After forming a 12-inch-thick iron nitride layer on the surface, the same high-frequency quenching apparatus as in Example 1 was used to apply a high-frequency wave of 850 ° CX for 3 seconds, followed by immediate water-cooling and quenching. .
  • Example 2 The same carbon steel material as in Example 1 was used as the base material, and this surface was degreased and cleaned, and then soft-nitrided in a molten salt bath at 570 ° C for 1 hour (Tufftride treatment: Nippon Parkerizing Co., Ltd.) An iron nitride layer having a thickness of about 5 11 m was formed on the surface.
  • the steel material having the iron nitride layer formed on the surface in this manner was further dip-coated with a carburizing inhibitor solution containing silicon oxide as a component, and the excess liquid was removed, followed by drying.
  • the amount of Si deposited was measured with a fluorescent X-ray analyzer and found to be 350 mg / m 2 .
  • Example 2 Using the same carbon steel material as in Example 1 as the base material, this surface was degreased and cleaned, and then treated with an ion plating apparatus for 1 hour to form a hard nitride layer made of titanium nitride with a thickness of 3 m on the steel surface. did. Furthermore, using the same induction hardening apparatus as in Example 1, a high frequency of 850 ° C. ⁇ 3 seconds was applied, and immediately quenched with water.
  • Example 5 The same carbon steel material as in Example 1 was used as the base material, this surface was degreased and cleaned, and then treated with an ion plating apparatus for 1 hour, and the steel surface was hard nitrided consisting of a 5 m thick chromium nitride on the steel surface. A physical layer was formed. Furthermore, using the same induction hardening apparatus as in Example 1, a high frequency of 850 ° CX for 3 seconds was applied, and quenching was performed immediately by water cooling. ⁇ Comparative Example 5>
  • Example 2 Using the same carbon steel material as in Example 1 as the base material, this surface was degreased and cleaned, and then treated with a plasma CVD device for 3 hours to form a hard nitride layer made of boron nitride with a thickness of 3 m on the steel surface. did. Further, using the same induction hardening apparatus as in Example 1, a high frequency of 850 ° C. ⁇ 3 seconds was applied, and immediately quenched with water.
  • Example 1 shows a list of evaluation test results.
  • 1 to 3 show metal micrographs of cross sections in Example 1, Comparative Example 1 and Comparative Example 2.
  • the white part of the center of FIGS. 1 to 3 is an inorganic compound layer containing iron nitride, and the lower part is a steel substrate part.
  • a method for quenching steel members, a method for producing quenched steel members, a method for producing quenched steel members, and a quenching surface protective agent according to the present invention include parts such as gears, shafts, cams, etc., tools for machines, automobiles, industrial machines, machine tools, etc. It can be applied to all steel members that require hardness, wear resistance and fatigue strength, such as molds and bearings.
  • the composition of the inorganic compound layer corrosion resistance, adhesion, adhesion and antistatic properties can be simultaneously imparted, and therefore it can be suitably used for other applications. Wide range of industrial use. Brief Description of Drawings
  • FIG. 1 is a cross-sectional photograph of a compound layer after quenching of the steel material of Example 1.
  • FIG. 2 is a cross-sectional photograph of a compound layer after quenching of the steel material of Comparative Example 1.
  • FIG. 3 is a cross-sectional photograph of a compound layer after quenching of the steel material of Comparative Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

明 細 書
鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤 技術分野
[0001] 本発明は、面圧強度、耐摩耗性、曲げ疲労強度等の機械的強度に優れた機械構 造用部品の表面硬化処理技術に関するものである。
背景技術
[0002] 機械的強度向上のために、铸鉄ゃ鋼の機械構造部品に窒化処理、軟窒化処理、 浸炭焼入れ、高周波焼入れ等の表面硬化処理が施されている。これらの中で、窒化 処理により最表面に形成される窒化物層は、耐摺動性に優れ、磨耗に強ぐ更に焼 き付き抵抗性が高いことが知られている。し力もながら、従来の窒化処理或いは軟窒 化処理は、浸炭焼入れ、高周波焼入れに比し硬化層深さが浅ぐ面圧強度、疲労強 度等に改善の余地が有った。そのため近年、窒素の特性を生かし、窒化処理或いは 軟窒化処理後に、高周波焼入れを施し硬化深度を深くし、面圧強度を高めより疲労 強度を高くする、複合硬化処理が開発されている。
[0003] しかしながら、当該複合処理は、例えば、特許文献;!〜 4では、窒化処理で得られ た窒素拡散層における焼入れ組織の特性の利用、即ち、焼き戻し軟化抵抗性、亀裂 発生抵抗性の利用で面圧強度、疲労強度の向上を期待するものであって、窒化処 理で形成される窒化物層(化合物層)の利用は見当たらない。むしろ、上記公報では 積極的に窒化物層の分解、消失させる高周波処理条件について検討がなされてい る。即ち、窒化処理後高周波焼入れでは、焼入れ温度は少なくともオーステナイト組 織になる温度 Acl変態点以上の温度が必要であり、通常 750〜; 1050°Cの温度範囲 力 選択される。窒化温度 570°Cで形成される窒化物層は、鉄と窒素の結合であり、 650°C以上に再加熱されると酸化を受け分解し、窒化物層の窒素は、最表面では窒 素ガスとして放出され内部では拡散する結果、窒化物層が消失してしまう。このことは 古くから報告されて!/、る(非特許文献 1)。
[0004] このような、窒化処理により表面に形成された窒化物層をそのまま高周波焼入れす ることによる、高温加熱での窒化物層の損傷や消失という問題を解決しょうとした技 術として、窒化処理後の表面上に、酸化ケィ素を成分とするガス窒化 'イオン窒化防 止剤、浸炭防止剤、酸化防止剤を;!〜 3mmの厚みで被覆し、焼入れを行う方法が、 特許文献 5に開示されている。
[0005] し力、し、この方法では、加熱時での酸化現象は防止できても、 1mm以上の厚膜が 必要で熱伝導性も低いことから、焼入れ時の冷却速度が不十分となり、 目的とする微 細マルテンサイトの硬さを得る事は困難であった。また、このような表面皮膜は摩擦抵 抗が大きいため、焼入れ処理後に除去しなければならず、生産効率も十分なもので はなかった。
特許文献 1 :特許第 3193320号
特許文献 2:特許第 3327386号
特許文献 3:特許第 3145517号
特許文献 4 :特開平 7— 90364号
特許文献 5:特開昭 58— 96815号
非特許文献 1 :熱処理 16巻 4号 P206 昭和 51年
発明の開示
発明が解決しょうとする課題
[0006] そこで、本発明は、これら従来技術の問題点を解決し、焼入れの際の硬質窒化物 層の損傷、分解を防止するだけでなぐ焼入れ時の冷却速度を低下させることなく窒 化物層に特定の組成からなるセラミックを複合化して強化し、その硬度や機械的強度 を更に高めて面圧強度、疲労強度を得るとともに保護層を除去しなくても良好な摺動 性が得られることを目的とする。
課題を解決するための手段
[0007] 本発明者らは、表面に硬質窒化物層が形成された鉄鋼部材を焼入れ処理する前 に、表面に焼入れ表面保護剤を含浸又は塗着させる方法において、数 m以下の 膜厚 (付着量で数千 mg/m2以下)でも焼入れ時の窒化物層保護が可能で、焼入れ時 の冷却速度に問題がなぐかつ焼入れ後に保護層を除去しなくても摺動性が低下し なレ、焼入れ表面保護剤の組成につ!、て鋭意実験検討を行った。
[0008] その結果、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び A 、らなる群の中から選択さ れる少なくとも 1種の金属を含むセラミック前駆体を含む焼入れ表面保護剤が、従来 知られていない数 m以下の薄膜の被覆でも良好な窒化物保護効果を示し、熱処 理後に保護膜を除去しなくても良好な摺動性能を示すことを見出し、さらに表面保護 剤には Ca、 Mg、 Y、 Sc及び Baの中力、ら選ばれる 1種を含むことによりさらに窒化物 保護効果が改善されることを見出した。
[0009] また、焼入れ後の皮膜を EPMA等により断面組成分析した結果、これらの皮膜は 窒化物皮膜の上層として存在し、一部は窒化物と複合又は反応して強固に結合して 保護効果、摺動効果を高めていると推定して本発明を完成した。
[0010] 即ち、本発明の「焼入れ鉄鋼部材」は、その第 1の発明が、鉄鋼材料の表面に硬質 窒化物層が形成され、さらにその上層として、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo 及び Alからなる群の中から選択される少なくとも 1種の金属酸化物を含む無機化合 物層が形成されたことを特徴とするものである。第 2の発明は、前記金属酸化物を含 む無機化合物層が、さらに Ca、 Mg、 Y、 Sc及び Baの中から選ばれる少なくとも 1種 を含む、前記第 1の発明である。また、第 3の発明は、硬質窒化物層が、 Fe、 Ti、 Zr、 Mo、 W、 Cr、 B及び Siの中から選ばれる少なくとも 1種の窒化物である、前記第 1の 発明又は前記第 2の発明である。第 4の発明は、前記無機化合物層が、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び A 、らなる群の中から選択される少なくとも 1種の金属 を、該金属換算の合計で l〜2000mg/m2の範囲で含有する、前記第 1の発明〜 前記第 3の発明のいずれか一つである。そして、第 5の発明が、前記鉄鋼部材が高 面圧領域で使用される機械構造部品である、前記第 1の発明〜前記第 4の発明のい ずれか一つである。
[0011] また、本発明の「鉄鋼部材の焼入れ方法」及び本発明の「焼入れ鉄鋼部材の製造 方法」は、表面に硬質窒化物層を有する鉄鋼材料を、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び A 、らなる群の中から選択される少なくとも 1種の元素を含有するセラミ ック前駆体を含む液 (例えば、酸化物、水和酸化物、イオン、錯イオンの中から選ば れる少なくとも 1種の状態として当該元素を含有するセラミック前駆体を含む溶液)に 接触させたのち、焼入れ処理を行うものであり、前記焼入れ処理は高周波焼入れで あること力 S好ましく、前記セラミック前駆体を含む液 (例えば前記溶液)は、さらに Ca、 Mg、 Y、 Sc、及び Baの中から選ばれる少なくとも 1種の元素を含有する(例えば、酸 化物、水和酸化物、イオン、錯イオンの中から選ばれる少なくとも 1種の状態として当 該元素を含有する)こと力 S好ましレ、。
[0012] また、本発明の「焼入れ表面保護剤」は、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及 び Alからなる群の中から選択される少なくとも 1種の元素を含有するセラミック前駆体 を含む液 (例えば、酸化物、水和酸化物、イオン、錯イオンの中から選ばれる少なくと も 1種の状態で当該元素を含有するセラミック前駆体を含む溶液)からなり、当該セラ ミック前駆体を含む液(例えば前記溶液)は、さらに Ca、 Mg、 Y、 Sc及び Baの中から 選ばれる少なくとも 1種の元素を含有する(例えば、酸化物、水和酸化物、イオン、錯 イオンの中から選ばれる少なくとも 1種の状態として当該元素を含有する)ことがより好 ましい。ここで、そのままで使用可能なタイプに加え、使用時に溶媒で希釈する濃縮 タイプや溶媒を添加する乾燥タイプも「焼入れ表面保護剤」の概念に包含される(但 し、以下ではそのままで使用可能なタイプを例示)。
発明の効果
[0013] 本発明の焼入れ鉄鋼部材、鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材の製造方法 及び焼入れ表面保護剤によれば、従来にない薄膜で焼入れの際の硬質窒化物層の 損傷、分解を防止できるため、焼入れ時の冷却速度を低下させることなく焼入れが可 能となって高い硬度 ·機械的強度を得ることができる。また、保護層を除去しなくても 良好な摺動性が得られるため、従来の技術よりも量産性、実用性を高めることができ 発明を実施するための最良の形態
[0014] はじめに、本発明に係る「焼入れ鉄鋼部材」の各要素について詳述する。まず、本 発明の適用対象となる鉄鋼材料は、特に限定されず、例えば、炭素鋼、低合金鋼、 高合金鋼、鍀鉄を挙げること力 Sできる。特に好ましい材料は、高炭素炭素鋼、低合金 鋼等である。
[0015] 本発明における鉄鋼材料表面の硬質窒化物層は、鉄鋼を表面処理 (窒素拡散処 理、 CVD、 PVD等)して形成される窒化物層である限り特に限定されず、 Fe、 Ti、 Zr 、 Mo、 W、 Cr、 B及び Siの中から選ばれる少なくとも 1種の窒化物層であることが好ま しぐ量産性の面からは、これらのうち Feが最も好ましい。 Feの硬質窒化物層の形成 方法としては、タフトライド処理、パルソナイト処理等の塩浴窒化処理、ガス軟窒化処 理、イオン窒化処理、プラズマ窒化処理等、何れかの窒化方法が好ましい。また、 Fe 以外の硬質窒化物層の形成は、プラズマ CVD、スパッタリング、イオンプレーティン グ等の PVD等の方法によることが好まし!/、。
[0016] 本発明における無機化合物層は、鉄鋼材料表面の硬質窒化物層の上に存在して おり、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び A 、らなる群の中から選択される少 なくとも 1種の金属酸化物を主成分として含み、さらに任意成分として Ca、 Mg、 Ba、 Y及び Scから選ばれる少なくとも 1種を含有していることが好適である。前者の主成 分は、耐酸化性、窒化物形成能に優れ、好ましい任意成分は、結晶の物性、安定性 向上効果が期待できる。
[0017] ここで、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び Alからなる群の中から選択され る少なくとも 1種の金属酸化物を含む無機化合物層は、前記金属の窒化物をさらに 含むことが好ましい。無機化合物層がこれらの金属窒化物を含むことにより焼入れ性 、摺動性の向上が期待できる。尚、当該金属を含有するセラミック前駆体を硬質窒化 物層上に適用して焼入れした場合、当該金属に関しては窒化物が安定であるので、 当該金属の一部は、焼入れの際に硬質窒化物層から来た窒素と反応し、窒化物を 形成する。したがって、この場合には、当該金属酸化物を含む無機化合物層は、窒 化物を必須的に含むことになる。
[0018] 前記無機化合物層は、前記金属群の中から選択される少なくとも 1種の必須金属を 該金属換算の合計で l〜2000mg/m2含有していることが好ましい。該金属換算の合 計が lmg/m2未満では窒化物層の保護効果が不十分となり、 2000mg/m2を超えると 摺動性、密着性が低下するため好ましくない。尚、本明細書における当該数値は、 当該無機化合物層が形成された後における、当該層中の当該金属量であるが、この 数値は、焼入れ前に鉄鋼表面に付着させたセラミック前駆体液中の金属量と同一で ある。また、任意金属の量は、必須金属の約 20%以下であることが好適である。
[0019] 次に、本発明に係る「焼入れ鉄鋼部材」の用途につ!/、て説明する。本発明に係る焼 入れ鉄鋼部材は、高圧領域で使用されるものであることが好ましぐ好ましい面圧の 範囲は、約 0. 5Mpa〜3. 5Mpaである。また、鉄鋼部材の形状、部品種は特に限定さ れず、例えば、軸、歯車、ピストン、シャフト、カム等を挙げること力 Sできる。
[0020] 次に、本発明に係る「鉄鋼部材の焼入れ方法」及び「焼入れ鉄鋼部材の製造方法」 を説明する。本方法は、表面に硬質窒化物層を有する鉄鋼材料にセラミック前駆体 含有液を適用する適用工程と、前記液が適用された鉄鋼材料を焼入れ処理する焼 入れ工程とを必須工程として含む。尚、本方法は、その他、例えば、鉄鋼部材表面に 適用したセラミック前駆体液の溶媒を除去するための乾燥工程等を含んでいてもよ い。この場合、当該乾燥工程は、焼入れ前に行うことが好ましぐ自然乾燥、加熱乾 燥等、方法は問わない。
[0021] ここで、まず、適用工程に関して説明すると、焼入れ前に、表面に硬質窒化物層( 例えば窒化鉄を含む層)を有する鉄鋼材料を、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 M o及び A なる群の中から選択される少なくとも 1種の元素を、酸化物、水和酸化 物、イオン、錯イオンの中から選ばれる少なくとも 1種の状態として含有するセラミック 前駆体を含む溶液に接触させることが好適である。ここで、当該溶液は、これらの元 素に加えて、さらに Ca、 Mg、 Y、 Sc及び Baの中力、ら選ばれる元素を含むことがより 好ましい。接触方法としては、特に限定されず、例えば、スプレー、ディップ、刷毛塗 り、フローコート、ロールコート、電解析出等が可能である。
[0022] 次に、焼入れ工程に関して説明すると、本工程は、特に限定されず、例えば、塩浴 焼入れ、フレーム焼入れ、高周波焼入れ等を挙げることができ、高周波焼入れが最も 好ましい。ここで、焼入れ条件としては、例えば低合金鋼材料の場合、一般的に焼入 れは、材料のオーステナイト化温度より 50〜60°C高い 900〜930°Cに設定されるが 、本発明ではあらかじめ窒化処理が施されているため、急速加熱が可能な高周波焼 入れの場合、 800〜850°Cに設定することがより好ましい。
[0023] ここで、鉄鋼部材表面に適用されたセラミック前駆体中の金属は、当該焼入れ工程 で、当該金属が酸化物の形態にない場合には酸化物形成プロセスを経て、焼きしめ られてセラミックス化する。尚、前記のように、当該金属は酸化物の形態よりも窒化物 の形態が安定であるので、当該焼入れ工程の際に、当該金属と窒化物層からの窒 素とが反応し、当該金属の窒化物も形成される。 [0024] 次に、上記方法で用いられる、本発明に係る「焼入れ表面保護剤」は、 Ti、 Zr、 Hf 、 V、 Nb、 Ta、 Cr、 W、 Mo及び A なる群の中力、ら選択される少なくとも 1種の元 素を、酸化物、水和酸化物、イオン、錯イオンの中から選ばれる少なくとも 1種の状態 で含有するセラミック前駆体を含む溶液であることが好適である。これらの金属のうち 、主成分としては、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 W、 Mo及び Alの酸化物、水和酸化物 、イオン又は錯イオンが好ましぐこれらに補助的に Ca、 Mg、 Ba、 Y及び Scの酸化 物、水和酸化物、イオン又は錯イオンを添加することがより好ましい。また、セラミック 前駆体を含む液 (例えば溶液)の溶媒としては、安全性の面から、水を主な溶媒とす ることが好ましぐ鉄鋼部材の腐食を防ぐためには中性〜アルカリ性であることがより 好ましい。尚、溶液の固形分濃度は、特に限定されないが、 0. ;!〜 10wt%が好まし い。
[0025] ここで、本発明に係る「焼入れ表面保護剤」の製造方法 (セラミック前駆体溶液の調 製方法)としては、金属化合物原料として、硝酸塩、酢酸塩、シユウ酸塩等の当該金 属塩ゃ金属アルコキシド等が好適に使用できる。これらの金属化合物原料は、その まま溶媒に希釈して使用してもよいが、加水分解、加熱結晶化等により酸化物や水 和酸化物の分散ゾルとして使用してもよい。また、市販のこれらの金属酸化物ゾルも 使用すること力できる。また、本発明の焼入れ表面保護剤には、ゾルの分散剤や安 定化剤、濡れ性向上剤、増粘剤等、その他の有機/無機添加成分を補助的に含む ことも好ましレ、。
実施例
[0026] 以下に本発明の実施形態を実施例を挙げて説明するが、本発明の範囲は、以下 の実施例に限定されるものではない。
[0027] <実施例 1〉
基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、溶融塩浴中で 570°Cで 2時間塩浴軟窒化処理 (タフトライド処理:日本 パーカライジング (株)製)して油冷し、鋼材表面に厚さ 12 111の窒化鉄からなる化合 物層を形成した。
[0028] こうして表面に窒化鉄層を形成した鋼材に対して、さらに濃度 4%の酸化チタン中 性水分散ゾル(ノ ノレチタン 5603:アナターゼ +アモルファスゾル 日本パーカライジ ング (株)製)をディップコーティングし、余分な液を除去した後、 180°Cで乾燥させた 。 Ti付着量を蛍光 X線分析装置で測定したところ、 150mg/m2であった。
[0029] このようにして酸化チタンを含む無機化合物層を形成した窒化鉄層を形成した鋼材 につ!/、て、さらに高周波焼入れ装置を使用して約 150°C/secの速度で加熱して 85 0°C X 3秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0030] <実施例 2〉
基材として直径 20mm、長さ 40mmの調質材(SCM440)を使用し、この表面を脱 脂洗浄したのち、溶融塩浴中で 570°Cで 2時間軟窒化処理 (タフトライド処理:日本 パーカライジング (株)製)して鋼材表面に厚さ ΙΟ πιの窒化鉄からなる化合物層を 形成した。
[0031] こうして表面に窒化鉄層を形成した鋼材に対して、さらに濃度 8%の炭酸ジルコユウ ムアンモニゥム(第一稀元素化学工業 (株)製)及び酸化イットリウムを含むコーティン グ剤溶液を刷毛塗りした後、 150°Cで乾燥させた。 Zrと Yの付着量を蛍光 X線分析装 置で測定したところ、 Zrが 850mg/m2、 Yが 50mg/m2であった。
[0032] このようにしてジルコニウム及びイットリウムを含む酸化物からなる無機化合物層を形 成した窒化鉄層を形成した鋼材について、さらに実施例 1と同じ高周波焼入れ装置 を使用して 800°C X 5秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0033] <実施例 3〉
基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、溶融塩浴中で 570°Cで 2時間軟窒化処理(タフトライド処理:日本パー力 ライジング (株)製)して鋼材表面に厚さ 12 ,i mの窒化鉄層を形成した。
[0034] こうして表面に窒化鉄層を形成した鋼材に対して、さらに濃度 10%のアルミナゾル( アルミナゾル 200 日産化学工業 (株)製)を刷毛塗りした後、乾燥させた。 A1付着量 を蛍光 X線分析装置で測定したところ、 1300mg/m2であった。
[0035] このようにして酸化アルミニウムを含む無機化合物層を形成した窒化鉄層を形成し た鋼材につ!/、て、さらに実施例 1と同じ高周波焼入れ装置を使用して 850°C X 3秒間 の高周波を加えて、直ちに水冷して焼入れを行った。 [0036] <実施例 4〉
基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、溶融塩浴中で 570°Cで 2時間軟窒化処理(タフトライド処理:日本パー力 ライジング (株)製)して鋼材表面に厚さ 12 ,i mの窒化鉄層を形成した。
[0037] こうして表面に窒化鉄層を形成した鋼材に対して、さらに濃度 3%のモリブデン酸ァ ンモニゥムと 2%のタングステン酸アンモニゥムを含むコーティング剤溶液をディップ コートした後、乾燥させた。 Moと Wの付着量を蛍光 X線分析装置で測定したところ、 Mo力 150mg/m2、 Wが 100mg/m2であった。
[0038] このようにしてタングステン及びモリブデンを含む酸化物からなる無機化合物層を形 成した窒化鉄層を形成した鋼材について、さらに実施例 1と同じ高周波焼入れ装置 を使用して 800°C X 5秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0039] <実施例 5〉
基材として直径 20mm、長さ 40mmの調質材(SCM440)を使用し、この表面を脱 脂洗浄したのち、溶融塩浴中で 570°Cで 2時間軟窒化処理 (タフトライド処理:日本 パーカライジング (株)製)して鋼材表面に厚さ ΙΟ ΐηの窒化鉄層を形成した。
[0040] こうして表面に窒化鉄層を形成した鋼材は、さらに濃度 0. 8%の水和酸化クロム(III )ゾル (クロム酸を還元して調製)をディップコートした後、乾燥させた。 Cr付着量を蛍 光 X線分析装置で測定したところ、 25mg/m2であった。
[0041] このようにして酸化クロムを含む無機化合物層を形成した窒化鉄層を形成した鋼材 について、さらに実施例 1と同じ高周波焼入れ装置を使用して 850°C X 3秒間の高 周波を加えて、直ちに水冷して焼入れを行った。
[0042] <実施例 6〉
基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、溶融塩浴中で 570°Cで 2時間軟窒化処理(タフトライド処理:日本パー力 ライジング (株)製)して鋼材表面に厚さ 12 ,i mの窒化鉄層を形成した。
[0043] こうして表面に窒化鉄層を形成した鋼材に対して、さらに濃度 3%のペルォキソチタ ン酸ゾルと 0. 2%のシユウ酸カルシウムを含むコーティング剤溶液をディップコートし た後、 250°Cで乾燥させた。 Tiと Caの付着量を蛍光 X線分析装置で測定したところ、 Ti力 S310mg/m2、 Ca力 0mg/m2であった。
[0044] このようにして Ti及び Caを含む酸化物からなる無機化合物層を形成した窒化鉄層 を形成した鋼材について、さらに実施例 1と同じ高周波焼入れ装置を使用して 800°C
X 5秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0045] <実施例 7〉
基材として直径 20mm、長さ 40mmの調質材(SCM440)を使用し、この表面を脱 脂洗浄したのち、イオンプレーティング装置により 1時間処理し、鋼材表面に厚さ 3 mの窒化チタンからなる硬質窒化物層を形成した。
[0046] こうして表面に窒化チタン層を形成した鋼材に対して、さらに濃度 8%の炭酸ジルコ ユウムアンモニゥム(第一稀元素化学工業 (株)製)及び酸化イットリウムを含むコーテ イング剤溶液を刷毛塗りした後、 150°Cで乾燥させた。 Zrと Yの付着量を蛍光 X線分 析装置で測定したところ、 Zrが 600mg/m2、 Yが 35mg/m2であった。
[0047] このようにしてジルコニウム及びイットリウムを含む酸化物からなる無機化合物層を 形成した窒化チタン層を形成した鋼材について、さらに実施例 1と同じ高周波焼入れ 装置を使用して 800°C X 5秒間の高周波を加えて、直ちに水冷して焼入れを行った
[0048] <実施例 8〉
基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、イオンプレーティング装置で 2時間処理し、鋼材表面に厚さ 5 mの窒 化クロムからなる硬質窒化物層を形成した。
[0049] こうして表面に窒化クロム層を形成した鋼材に対して、さらに濃度 4%の酸化チタン 中性水分散ゾル(ノ ノレチタン 5603:アナターゼ +アモルファスゾル 日本パー力ライ ジング (株)製)をディップコーティングし、余分な液を除去した後、 180°Cで乾燥させ た。 Ti付着量を蛍光 X線分析装置で測定したところ、 180mg/m2であった。
[0050] このようにして酸化チタンを含む無機化合物層を形成した窒化クロム層を形成した 鋼材について、さらに高周波焼入れ装置を使用して約 150°C/secの速度で加熱し て 850°C X 3秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0051] <実施例 9〉 基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、プラズマ CVD装置で 3時間処理し、鋼材表面に厚さ 3 mの窒化ホウ素 力 なる硬質窒化物層を形成した。
[0052] こうして表面に窒化ホウ素層を形成した鋼材に対して、さらに濃度 4%の酸化チタン 中性水分散ゾル(ノ ノレチタン 5603:アナターゼ +アモルファスゾル 日本パー力ライ ジング (株)製)をディップコーティングし、余分な液を除去した後、 180°Cで乾燥させ た。 Ti付着量を蛍光 X線分析装置で測定したところ、 160mg/m2であった。
[0053] このようにして酸化チタンを含む無機化合物層を形成した窒化ホウ素層を形成した 鋼材について、さらに高周波焼入れ装置を使用して約 150°C/secの速度で加熱し て 850°C X 3秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0054] <実施例 10〉
基材として直径 20mm、長さ 40mmの調質材(SCM440)を使用し、この表面を脱 脂洗浄したのち、イオンプレーティング装置により 2時間処理して鋼材表面に厚さ 3 a mの窒化ジルコニウム層を形成した。
[0055] こうして表面に硬質窒化物層を形成した鋼材に対して、さらに濃度 2%の水酸化タ ンタル及び濃度 0. 3%の水酸化ニオブのゾル溶液をディップコートした後、乾燥させ た。タンタルの付着量を蛍光 X線分析装置で測定したところ、 70mg/m2であった。
[0056] このようにしてタンタル及びニオブを含む無機化合物層を形成した窒化ジルコユウ ム層を形成した鋼材について、さらに実施例 1と同じ高周波焼入れ装置を使用して 8 50°C X 3秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0057] <実施例 11〉
基材として直径 8mm、長さ 12mmの SCM440調質材を使用し、この表面を脱脂洗 浄したのち、溶融塩浴中で 570°Cで 2時間軟室化処理(タフトライド処理:日本パー力 ライジング (株)製)して鋼材表面に厚さ 12 ,i mの窒化鉄層を形成した。
[0058] こうして表面に窒化鉄層を形成した鋼材は、さらに濃度 2%のシユウ酸ノ、フニゥムを 含むコーティング剤溶液をディップコートした後、 250°Cで乾燥させた。 Hfの付着量 を蛍光 X線分析装置で測定したところ、 Hfが 120mg/m2であった。
[0059] このようにして Hfを含む酸化物からなる無機化合物層を形成した窒化鉄層を形成 した鋼材は、さらに実施例 1と同じ高周波焼き入れ装置を使用して 800°C X 5秒間の 高周波を加えて、直ちに水冷して焼き入れを行った。
[0060] <比較例 1〉
基材として実施例 1と同じ炭素鋼材を使用し、この表面を脱脂洗浄したのち、溶融 塩浴中で 570°Cで 1時間軟窒化処理 (タフトライド処理:日本パーカライジング (株)製 )して鋼板表面に厚さ 12 inの窒化鉄層を形成したのち、そのまま実施例 1と同じ高 周波焼入れ装置を使用して 850°C X 3秒間の高周波を加えて、直ちに水冷して焼入 れを行った。
[0061] <比較例 2〉
基材として実施例 1と同じ炭素鋼材を使用し、この表面を脱脂洗浄したのち、溶融 塩浴中で 570°Cで 1時間軟窒化処理 (タフトライド処理:日本パーカライジング (株)製 )して鋼板表面に厚さ約 5 11 mの窒化鉄層を形成した。
[0062] こうして表面に窒化鉄層を形成した鋼材に対して、さらに酸化ケィ素を成分とする 浸炭防止剤溶液をディップコーティングし、余分な液を除去した後、乾燥させた。 Si 付着量を蛍光 X線分析装置で測定したところ、 350mg/m2であった。
[0063] このようにして酸化チタンを含む無機化合物層を形成した窒化鉄層を形成した鋼材 について、さらに実施例 1と同じ高周波焼入れ装置を使用して 850°C X 3秒間の高 周波を加えて加熱したのち、直ちに水冷して焼入れを行った。
[0064] <比較例 3〉
基材として実施例 1と同じ炭素鋼材を使用し、この表面を脱脂洗浄したのち、イオン プレーティング装置により 1時間処理し、鋼材表面に厚さ 3 mの窒化チタンからなる 硬質窒化物層を形成した。さらに、実施例 1と同じ高周波焼入れ装置を使用して 850 °C X 3秒間の高周波を加えて、直ちに水冷して焼入れを行った。
[0065] <比較例 4 >
基材として実施例 1と同じ炭素鋼材を使用し、この表面を脱脂洗浄したのち、イオン プレーティング装置により 1時間処理し、鋼材表面に鋼材表面に厚さ 5 mの窒化ク ロムからなる硬質窒化物層を形成した。さらに、実施例 1と同じ高周波焼入れ装置を 使用して 850°C X 3秒間の高周波を加えて、直ちに水冷して焼入れを行った。 [0066] <比較例 5〉
基材として実施例 1と同じ炭素鋼材を使用し、この表面を脱脂洗浄したのち、プラズ マ CVD装置で 3時間処理し、鋼材表面に厚さ 3 mの窒化ホウ素からなる硬質窒化 物層を形成した。さらに実施例 1と同じ高周波焼入れ装置を使用して 850°C X 3秒間 の高周波を加えて、直ちに水冷して焼入れを行った。
[0067] (評価試験)
これらの処理を行った鋼材は、マイクロカッターで切断し、窒化物層の残存状態を 金属顕微鏡で確認するとともに、最表面及び表面から 0. 1mmの断面の硬度をマイ クロビッカース硬度計で測定した。表 1に評価試験結果の一覧を示す。また、図 1〜 図 3に、実施例 1、比較例 1及び比較例 2における、断面の金属顕微鏡写真を示す。 尚、図 1〜図 3の中央の白色部が窒化鉄を含む無機化合物層であり、その下部が鉄 鋼基材部である。
[表 1]
Figure imgf000015_0001
表から、本発明の実施例;!〜 11では、焼入れ後においても表面の窒化物層がダメ ージを受けることなく残存しており、表面硬度及び表面から一定深さまでの断面の硬 度も十分高いことがわかる。これに対し、保護層のコーティングを行わな力、つた比較 例 1では、窒化鉄からなる化合物層の酸化分解が進行しており、窒化物が酸化物に 変化して表面の硬度が低下していた。一方、 Si酸化物で保護層を形成した比較例 2 でも、化合物層が損傷を受けて一部が失われており、 SiO膜の熱伝導性が悪いため
2
に十分な焼入れ効果が得られておらず、断面硬度の低下が認められるため好ましく ないことがわかる。
[0069] 本発明の鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材、焼入れ鉄鋼部材の製造方法 及び焼入れ表面保護剤は、機械、自動車、産業機械、工作機械等のギア、シャフト、 カム等の部品、工具、金型、軸受等、硬度、耐磨耗性、疲労強度を要求される全ての 鉄鋼部材に適用することができる。また、無機化合物層の組成を選択することによつ て、耐食性や接着'密着性や帯電防止性も同時に付与することが可能なため、これら 以外の用途にも好適に使用することができるため産業上利用できる範囲が広い。 図面の簡単な説明
[0070] [図 1]実施例 1の鋼材の焼入れ後の化合物層断面写真である。
[図 2]比較例 1の鋼材の焼入れ後の化合物層断面写真である。
[図 3]比較例 2の鋼材の焼入れ後の化合物層断面写真である。

Claims

請求の範囲
[1] 鉄鋼材料の表面に硬質窒化物層が形成され、さらにその上層として、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び A 、らなる群の中から選択される少なくとも 1種の金属 酸化物を含む無機化合物層が形成されたことを特徴とする焼入れ鉄鋼部材。
[2] 前記金属酸化物を含む無機化合物層が、さらに Ca、 Mg、 Y、 Sc及び Baの中から 選ばれる少なくとも 1種を含むものである、請求項 1に記載の焼入れ鉄鋼部材。
[3] 前記硬質窒化物層が、 Fe、 Ti、 Zr、 Mo、 W、 Cr、 B及び Siの中から選ばれる少な くとも 1種の窒化物である、請求項 1又は 2に記載の焼入れ鉄鋼部材。
[4] 前記無機化合物層が、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び Alからなる群の 中から選択される少なくとも 1種の金属を、該金属換算の合計で l〜2000mg/m2の 範囲で含有するものである、請求項 1〜3のいずれか一項に記載の焼入れ鉄鋼部材
[5] 前記鉄鋼部材が、高面圧領域で使用される機械構造部品である、請求項;!〜 4の
V、ずれか一項に記載の焼入れ鉄鋼部材。
[6] 表面に硬質窒化物層を有する鉄鋼材料を、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo 及び Alからなる群の中から選択される少なくとも 1種の元素を含有するセラミック前駆 体を含む液に接触させたのち、焼入れ処理を行うことを特徴とする鉄鋼部材の焼入 れ方法。
[7] 前記セラミック前駆体を含む液が、さらに Ca、 Mg、 Y、 Sc及び Baの中から選ばれる 少なくとも 1種の元素を含有する、請求項 6に記載の鉄鋼部材の焼入れ方法。
[8] 前記焼入れ処理が高周波焼入れである、請求項 6又は 7に記載の鉄鋼部材の焼入 れ方法。
[9] 表面に硬質窒化物層を有する鉄鋼材料を、 Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo 及び Alからなる群の中から選択される少なくとも 1種の元素を含有するセラミック前駆 体を含む液に接触させたのち、焼入れ処理を行うことを特徴とする焼入れ鉄鋼部材 の製造方法。
[10] 前記セラミック前駆体を含む液が、さらに Ca、 Mg、 Y、 Sc及び Baの中から選ばれる 少なくとも 1種の元素を含有する、請求項 9に記載の焼入れ鉄鋼部材の製造方法。
[11] 前記焼入れ処理が高周波焼入れである、請求項 9又は 10に記載の焼入れ鉄鋼部 材の製造方法。
[12] Ti、 Zr、 Hf、 V、 Nb、 Ta、 Cr、 W、 Mo及び A 、らなる群の中から選択される少なく とも 1種の元素を含有するセラミック前駆体を含む液であることを特徴とする焼入れ表 面保護剤。
[13] 前記セラミック前駆体を含む液が、さらに Ca、 Mg、 Y、 Sc及び Baの中から選ばれる 少なくとも 1種の元素を含有する、請求項 12に記載の焼入れ表面保護剤。
PCT/JP2007/064847 2006-08-09 2007-07-30 Method for quenching of steel member, quenched steel member, and agent for protecting quenched surface WO2008018308A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20070791541 EP2053144B1 (en) 2006-08-09 2007-07-30 Method for producing quenching of steel member, quenched steel member, and use of a surface protecting agent in a process for producing quenched steel member
KR1020097004702A KR101140464B1 (ko) 2006-08-09 2007-07-30 철강 부재의 켄칭 방법, 켄칭 철강 부재 및 켄칭 표면 보호제
US12/376,861 US20100163138A1 (en) 2006-08-09 2007-07-30 Method for quenching of steel member, quenched steel member, and agent for protecting quenched surface
CN2007800292953A CN101501247B (zh) 2006-08-09 2007-07-30 钢铁部件的淬火方法、淬火钢铁部件以及淬火表面保护剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006216577A JP4762077B2 (ja) 2006-08-09 2006-08-09 鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤
JP2006-216577 2006-08-09

Publications (1)

Publication Number Publication Date
WO2008018308A1 true WO2008018308A1 (en) 2008-02-14

Family

ID=39032842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064847 WO2008018308A1 (en) 2006-08-09 2007-07-30 Method for quenching of steel member, quenched steel member, and agent for protecting quenched surface

Country Status (6)

Country Link
US (1) US20100163138A1 (ja)
EP (1) EP2053144B1 (ja)
JP (1) JP4762077B2 (ja)
KR (1) KR101140464B1 (ja)
CN (1) CN101501247B (ja)
WO (1) WO2008018308A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013559A1 (ja) * 2009-07-31 2011-02-03 高周波熱錬株式会社 複合熱処理方法及び焼入れ鉄鋼部材
EP2287360A1 (en) * 2008-05-19 2011-02-23 Neturen Co., Ltd. Iron and steel material having quenched surface layer part, process for producing the iron and steel material, and quenched component

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328545B2 (ja) * 2009-07-31 2013-10-30 日本パーカライジング株式会社 窒素化合物層を有する鉄鋼部材、及びその製造方法
DE102010017354A1 (de) * 2010-06-14 2011-12-15 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgeformten und gehärteten, mit einer metallischen Korrosionsschutzbeschichtung überzogenen Stahlbauteils aus einem Stahlflachprodukt
JP5649884B2 (ja) * 2010-09-14 2015-01-07 日本パーカライジング株式会社 窒素化合物層を有する鉄鋼部材、及びその製造方法
EP2634571B1 (en) * 2010-10-26 2020-02-19 Neturen Co., Ltd. Quenching depth measuring method and quenching depth measuring device
US20130291813A1 (en) * 2010-12-13 2013-11-07 Kawasaki Jukogyo Kabushiki Kaisha Drive Cam and Valve Operating System in Engine
DE102013107100A1 (de) * 2013-07-05 2015-01-08 Thyssenkrupp Steel Europe Ag Verschleißfestes, zumindest teilweise unbeschichtetes Stahlteil
CN104017424B (zh) * 2014-05-30 2015-10-28 攀钢集团攀枝花钢铁研究院有限公司 水性钛锭耐高温吸氧涂料及其应用以及钛锭的生产方法
CN104017426B (zh) * 2014-05-30 2015-10-28 攀钢集团攀枝花钢铁研究院有限公司 耐高温保护涂料及其应用以及钛锭的生产方法
CN104004401B (zh) * 2014-05-30 2015-09-16 攀钢集团攀枝花钢铁研究院有限公司 保护涂料及其应用以及钛锭的生产方法
CN104004399B (zh) * 2014-05-30 2015-09-16 攀钢集团攀枝花钢铁研究院有限公司 高温保护涂料及其应用以及钛锭的生产方法
CN104151909B (zh) * 2014-07-02 2016-03-16 攀钢集团攀枝花钢铁研究院有限公司 油性耐高温涂料及其应用以及钛锭的生产方法
CN104151912B (zh) * 2014-07-02 2015-09-16 攀钢集团攀枝花钢铁研究院有限公司 油性耐高温保护涂料及其应用以及钛锭的生产方法
CN104151910B (zh) * 2014-07-02 2015-08-12 攀钢集团攀枝花钢铁研究院有限公司 油性抗高温涂料及其应用以及钛锭的生产方法
CN105132660A (zh) * 2015-09-25 2015-12-09 尚成荣 一种脚踏式锯床用检具的热处理方法
SE539347C2 (en) 2015-11-02 2017-07-18 Solid lubricant-coated steel articles, method and apparatus for manufacturing thereof and quenching oil used in the manufacturing
JP6757194B2 (ja) * 2016-07-11 2020-09-16 日本パーカライジング株式会社 スケール除去性に優れた熱処理前炭素鋼材、熱処理後炭素鋼材及びそれらの製造方法、並びに、スケール除去方法及び易脱スケール性皮膜形成用剤
CN106398331B (zh) * 2016-08-31 2019-12-03 中钢集团邢台机械轧辊有限公司 一种离心复合高速钢轧辊端面热处理涂料及其制备方法和使用方法
JP2019035111A (ja) * 2017-08-16 2019-03-07 パーカー熱処理工業株式会社 鉄鋼部材及びその製造方法
CN113352708B (zh) * 2021-07-06 2022-02-22 华北电力大学 一种轻质高强Mg-Ta复合金属板材及其室温轧制成形方法
CN114645254B (zh) * 2022-03-25 2022-11-08 北京航空航天大学 一种TiAlMoNbW高熵合金氮化物薄膜及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896815A (ja) 1981-12-07 1983-06-09 Toyota Motor Corp 鋳鉄の熱処理方法
JPS6431984A (en) * 1987-07-28 1989-02-02 Mazda Motor Sliding structure of iron-based sliding member and al-based sliding member
JPH0790364A (ja) 1993-09-27 1995-04-04 Daido Steel Co Ltd 機械構造部品の製造方法
JPH11269631A (ja) * 1998-03-23 1999-10-05 Tokico Ltd 鋼製部品の表面処理方法
JP3145517B2 (ja) 1992-12-09 2001-03-12 株式会社神戸製鋼所 疲労強度特に面疲労強度に優れた機械構造用部品およびその製造方法
JP3193320B2 (ja) 1997-03-21 2001-07-30 川崎重工業株式会社 機械部品の熱処理方法
JP3327386B2 (ja) 1998-03-19 2002-09-24 川崎重工業株式会社 油圧ポンプ・モータのシリンダブロックの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0229325B1 (en) * 1981-10-15 1995-01-04 LUCAS INDUSTRIES public limited company Method of manufacturing a corrosion resistant steel component
JP3371142B2 (ja) * 1991-09-27 2003-01-27 日本フエロー株式会社 鋼材の酸化脱炭防止用組成物
JPH06101067A (ja) * 1992-09-24 1994-04-12 Tsuchiya:Kk ステンレス鋼の高温酸化防止用セラミックスコーティング液
JPH102336A (ja) * 1996-04-16 1998-01-06 Koyo Seiko Co Ltd 軸受用保持器とその製造方法
US6258141B1 (en) * 1999-08-20 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. Sol-gel alumina abrasive grain
KR100682416B1 (ko) * 2002-08-08 2007-02-15 가부시키가이샤 고베 세이코쇼 α형 결정 구조 주체의 알루미나 피막의 제조 방법, α형결정 구조 주체의 알루미나 피막과 그 알루미나 피막을포함하는 적층 피막, 그 알루미나 피막 또는 그 적층피막으로 피복된 부재와 그 제조 방법, 및 물리적 증착 장치
EP2865784A1 (en) * 2002-08-08 2015-04-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing alumina coating composed mainly of alpha-type crystal structure
US20040223906A1 (en) * 2003-05-09 2004-11-11 Chuanfu Wang Lithium nickel cobalt oxides and their methods of fabrication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896815A (ja) 1981-12-07 1983-06-09 Toyota Motor Corp 鋳鉄の熱処理方法
JPS6431984A (en) * 1987-07-28 1989-02-02 Mazda Motor Sliding structure of iron-based sliding member and al-based sliding member
JP3145517B2 (ja) 1992-12-09 2001-03-12 株式会社神戸製鋼所 疲労強度特に面疲労強度に優れた機械構造用部品およびその製造方法
JPH0790364A (ja) 1993-09-27 1995-04-04 Daido Steel Co Ltd 機械構造部品の製造方法
JP3193320B2 (ja) 1997-03-21 2001-07-30 川崎重工業株式会社 機械部品の熱処理方法
JP3327386B2 (ja) 1998-03-19 2002-09-24 川崎重工業株式会社 油圧ポンプ・モータのシリンダブロックの製造方法
JPH11269631A (ja) * 1998-03-23 1999-10-05 Tokico Ltd 鋼製部品の表面処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEAT TREATMENT, vol. 16, no. 4, 1976, pages 206
See also references of EP2053144A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2287360A1 (en) * 2008-05-19 2011-02-23 Neturen Co., Ltd. Iron and steel material having quenched surface layer part, process for producing the iron and steel material, and quenched component
EP2287360A4 (en) * 2008-05-19 2011-07-06 Neturen Co Ltd IRON AND STEEL MATERIAL HAVING TEMPERED SURFACE LAYER PART, PROCESS FOR PRODUCING IRON AND STEEL MATERIAL, AND TEMPERED COMPONENT
WO2011013559A1 (ja) * 2009-07-31 2011-02-03 高周波熱錬株式会社 複合熱処理方法及び焼入れ鉄鋼部材
JP2011032536A (ja) * 2009-07-31 2011-02-17 Neturen Co Ltd 焼入れ鉄鋼部材の複合熱処理方法及び焼入れ鉄鋼部材

Also Published As

Publication number Publication date
KR101140464B1 (ko) 2012-04-30
EP2053144A1 (en) 2009-04-29
CN101501247A (zh) 2009-08-05
JP2008038220A (ja) 2008-02-21
CN101501247B (zh) 2011-11-23
KR20090051066A (ko) 2009-05-20
EP2053144B1 (en) 2015-05-06
EP2053144A4 (en) 2011-06-29
JP4762077B2 (ja) 2011-08-31
US20100163138A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
JP4762077B2 (ja) 鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤
KR101290609B1 (ko) 표층부가 담금질된 철강 재료 및 그 제조 방법, 및 담금질 부품
EP2946031B1 (en) Method for producing a chromium coating on a metal substrate
JP5328545B2 (ja) 窒素化合物層を有する鉄鋼部材、及びその製造方法
WO2011013559A1 (ja) 複合熱処理方法及び焼入れ鉄鋼部材
WO2011013360A1 (ja) 窒素化合物層を有する鉄鋼部材の保護膜形成処理液、および化合物層保護膜
JP2017508879A (ja) クロム被覆を製造する方法および被覆物体
JP5649884B2 (ja) 窒素化合物層を有する鉄鋼部材、及びその製造方法
JP5258928B2 (ja) 鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤
JP5520536B2 (ja) 窒素化合物層を有する鉄鋼部材の保護膜形成処理液、および化合物層保護膜
TW201809312A (zh) 高強度高伸長率熱浸鍍鋅鋼材之製造方法
JP4494995B2 (ja) 金属材表面処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029295.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007791541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097004702

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12376861

Country of ref document: US