WO2008001870A1 - Elastic laminated tube - Google Patents
Elastic laminated tube Download PDFInfo
- Publication number
- WO2008001870A1 WO2008001870A1 PCT/JP2007/063048 JP2007063048W WO2008001870A1 WO 2008001870 A1 WO2008001870 A1 WO 2008001870A1 JP 2007063048 W JP2007063048 W JP 2007063048W WO 2008001870 A1 WO2008001870 A1 WO 2008001870A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- elastic
- fluorine resin
- laminated
- tube according
- Prior art date
Links
- 239000011148 porous material Substances 0.000 claims abstract description 33
- 238000011049 filling Methods 0.000 claims abstract description 16
- 229920005989 resin Polymers 0.000 claims description 196
- 239000011347 resin Substances 0.000 claims description 196
- 239000011737 fluorine Substances 0.000 claims description 182
- 229910052731 fluorine Inorganic materials 0.000 claims description 182
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 180
- 229920001971 elastomer Polymers 0.000 claims description 66
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 61
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 61
- 239000007788 liquid Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 49
- 229920002379 silicone rubber Polymers 0.000 claims description 49
- 239000000806 elastomer Substances 0.000 claims description 46
- 239000013013 elastic material Substances 0.000 claims description 45
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 35
- -1 polytetrafluoroethylene Polymers 0.000 claims description 29
- 239000007787 solid Substances 0.000 claims description 17
- 229920005560 fluorosilicone rubber Polymers 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 11
- 239000002033 PVDF binder Substances 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- 238000004804 winding Methods 0.000 claims description 10
- 229920006129 ethylene fluorinated ethylene propylene Polymers 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 claims description 7
- 239000004814 polyurethane Substances 0.000 claims description 7
- 229920009638 Tetrafluoroethylene-Hexafluoropropylene-Vinylidenefluoride Copolymer Polymers 0.000 claims description 6
- 229920009441 perflouroethylene propylene Polymers 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 6
- 229920001169 thermoplastic Polymers 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 5
- 229920002647 polyamide Polymers 0.000 claims description 5
- 229920000098 polyolefin Polymers 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- 229920006132 styrene block copolymer Polymers 0.000 claims description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 claims 2
- 238000005299 abrasion Methods 0.000 claims 1
- 229920001400 block copolymer Polymers 0.000 claims 1
- 239000010410 layer Substances 0.000 description 414
- 239000010408 film Substances 0.000 description 96
- 239000000126 substance Substances 0.000 description 29
- 238000003825 pressing Methods 0.000 description 26
- 239000004945 silicone rubber Substances 0.000 description 23
- 239000012530 fluid Substances 0.000 description 21
- 239000005060 rubber Substances 0.000 description 20
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 19
- 229910001220 stainless steel Inorganic materials 0.000 description 18
- 239000010935 stainless steel Substances 0.000 description 18
- 229920001973 fluoroelastomer Polymers 0.000 description 16
- 238000001125 extrusion Methods 0.000 description 15
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 12
- 239000004944 Liquid Silicone Rubber Substances 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 229920000544 Gore-Tex Polymers 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 230000004323 axial length Effects 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000004073 vulcanization Methods 0.000 description 6
- 238000007259 addition reaction Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 5
- 229920002313 fluoropolymer Polymers 0.000 description 5
- 239000004811 fluoropolymer Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 238000013007 heat curing Methods 0.000 description 4
- 238000005304 joining Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000010702 perfluoropolyether Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 229920002397 thermoplastic olefin Polymers 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920006169 Perfluoroelastomer Polymers 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000280 densification Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- GWTYBAOENKSFAY-UHFFFAOYSA-N 1,1,1,2,2-pentafluoro-2-(1,2,2-trifluoroethenoxy)ethane Chemical compound FC(F)=C(F)OC(F)(F)C(F)(F)F GWTYBAOENKSFAY-UHFFFAOYSA-N 0.000 description 1
- PEVRKKOYEFPFMN-UHFFFAOYSA-N 1,1,2,3,3,3-hexafluoroprop-1-ene;1,1,2,2-tetrafluoroethene Chemical group FC(F)=C(F)F.FC(F)=C(F)C(F)(F)F PEVRKKOYEFPFMN-UHFFFAOYSA-N 0.000 description 1
- XMEMIJBXYCTOMD-UHFFFAOYSA-N 1-(1,1,2,2,2-pentafluoroethoxy)butane Chemical compound CCCCOC(F)(F)C(F)(F)F XMEMIJBXYCTOMD-UHFFFAOYSA-N 0.000 description 1
- VSHZYKQXSOVQDR-UHFFFAOYSA-N 1-(1,1,2,2,3,3,3-heptafluoropropoxy)butane Chemical compound CCCCOC(F)(F)C(F)(F)C(F)(F)F VSHZYKQXSOVQDR-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 235000010650 Hyssopus officinalis Nutrition 0.000 description 1
- 240000001812 Hyssopus officinalis Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 101001012040 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Immunomodulating metalloprotease Proteins 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 240000002871 Tectona grandis Species 0.000 description 1
- 229920001646 UPILEX Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000005192 alkyl ethylene group Chemical group 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 150000002221 fluorine Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GRPIQKZLNSCFTB-UHFFFAOYSA-N n-[bis(dimethylamino)-fluoroimino-$l^{5}-phosphanyl]-n-methylmethanamine Chemical compound CN(C)P(=NF)(N(C)C)N(C)C GRPIQKZLNSCFTB-UHFFFAOYSA-N 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920013653 perfluoroalkoxyethylene Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- VPRUMANMDWQMNF-UHFFFAOYSA-N phenylethane boronic acid Chemical compound OB(O)CCC1=CC=CC=C1 VPRUMANMDWQMNF-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000012763 reinforcing filler Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920006344 thermoplastic copolyester Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/04—Hoses, i.e. flexible pipes made of rubber or flexible plastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B1/00—Layered products having a non-planar shape
- B32B1/08—Tubular products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
Definitions
- the present invention relates to an elastic tube having an inner surface made of fluorine resin, and more preferably to an elastic tube that repeatedly receives pressure in the tube radial direction, and more preferably used for a pinch valve or a roller pump.
- the present invention relates to an elastic tube useful for controlling the flow of fluid in the hollow of the tube by the radial pressing, such as an elastic tube.
- a pinch valve In a pinch valve, the flow of a fluid (such as a liquid) is stopped by pressing an elastic tube in the radial direction, and the flow of the fluid is started by releasing the pressure.
- the elastic tube In the roller pump, the elastic tube is pressed with a roller in the radial direction, and fluid (liquid etc.) is sent out by moving the roller in the axial direction of the tube while maintaining this pressed state.
- the flow path structure can be simplified and the possibility of contaminating the fluid is less than that of ordinary valve pumps. For this reason, it is often used in the field of food and medical equipment, and in recent years, it is also used for the transfer of photoresist when manufacturing semiconductors.
- silicone rubber is generally used because of its excellent elasticity (for example, Document 1).
- silicone rubber is inferior in chemical resistance compared to fluorine resin.
- the elastic tube of Document 1 uses highly corrosive fluids (photoresist liquids, liquids for operating process machinery, highly corrosive liquids used in fields such as pharmaceuticals, foods, medicine, and chemistry). ), The durability of the tube is greatly impaired.
- a fluorine-based elastic tube is also known in which the elastomer is replaced with a silicone rubber-powered fluorine elastomer (Reference 2).
- a flexible fluorine-based elastomer that can be used as an elastic tube has high tackiness. Therefore, for example, if you leave the elastic tube pressed with a roller pump roller, The tubes may stick together and cannot be restored, and the tube may become blocked.
- the tackiness is high, so that the inner surface of the tube is damaged, and the durability is inferior to that of the silicone-based elastic tube.
- an ePTFE (stretched polytetrafluoroethylene) film impregnated with an elastomer (silicone elastomer, perfluoropolyether elastomer, etc.) is wound to cure the elastomer.
- the elastic tube obtained by this is disclosed. Tubes using silicone elastomer are sold under the name “STA—PUR EJ” by Japan Gore-Tex Co., Ltd., and tubes using perfluoropolyether elastomer are “CHEM—SURE Is sold under the product name.
- these tubes have dramatically improved durability due to the ePT FE membrane, they use silicone elastomers and perfluoroelastomers, so that they are essentially the same as those described in References 1 and 2.
- the problem is inherent. That is, when a silicone elastomer is used, the chemical resistance is inferior, and when a perfluoropolyether elastomer is used, the inner surface is more easily damaged than when a silicone elastomer is used.
- the stress when stress is repeatedly applied in the radial direction of the tube, the stress concentrates on the joint interface between the inner surface layer and the elastomer layer, and delamination occurs particularly at the bent portion, which is called the “teak portion”. Durability cannot be obtained.
- Document 6 discloses that a fluorine-containing polymer layer and a thermoplastic elastomer layer are bonded via an intermediate layer.
- This intermediate layer has a sea-island structure of a thermoplastic elastomer and a fluoropolymer, and in the vicinity of the interface between the thermoplastic elastomer layer, the thermoplastic polymer forms a sea phase and the fluoropolymer forms an island phase. In the vicinity of the interface with the fluoropolymer layer, the fluoropolymer forms a sea phase and the thermoplastic polymer forms an island phase. The formation of such an intermediate layer is thought to improve the delamination problem.
- the intermediate layer in Reference 6 is a complex structure in which the sea and islands of the sea-island structure are reversed on both sides of the layer.
- Such a complicated intermediate layer is obtained by co-extruding the intermediate layer with a thermoplastic elastomer layer and a fluorine-containing polymer layer. ) Can be formed by adjusting.
- the intermediate layer is made of polyester-based thermoplastic elastomer (TPEE) and ethylene-tetrafluoroethylene copolymer (ETFE), polymer temperature 200 to 260 ° C, cutting speed 0 to: Conditions of LOOOsec- 1 (Condition 1) Then, TPEE forms the sea phase, ETFE forms the island phase, and the polymer temperature is 230 to 310 ° C and the shear rate is 0 to 100 sec- 1 (condition 2). ETF E is the sea phase and TPEE is the island phase. It will be formed.
- TPEE polyester-based thermoplastic elastomer
- ETFE ethylene-tetrafluoroethylene copolymer
- the force that requires the polymer temperature to be different between the inside and outside of the intermediate layer, the actual intermediate layer thickness is only about 0.1 mm (Example), and this slight thickness difference It is highly questionable whether it is practically possible to vary the temperature between the two.
- the polymer temperature range of 230 to 260 ° C is included in both conditions 1 and 2 above, it is unclear what phase structure it will be, and the polymer temperature must be set to ensure that TPEE is in the sea phase.
- the temperature must be 230 ° C or lower, and the polymer temperature must be 260 ° C or higher to ensure that TPEE is in the island phase.
- Document 7 discloses that an elastic layer in which an elastic body is filled in the pores of a porous fluororesin film is laminated on a release layer having a fluororesin film force.
- this document 7 relates to a toner fixing member.
- the elastic layer is directly laminated on the fluorine resin film.
- the present invention has been made paying attention to the circumstances as described above, and an object of the present invention is to provide an elastic tube capable of reliably improving durability against repeated pressing and chemical resistance. It is in.
- Reference 1 Japanese Patent Laid-Open No. 2000-179753
- an intermediate layer in which the pores of porous fluorine resin are filled with an elastic body includes an inner layer fluorine resin layer and an outer elastic layer.
- the inner surface fluorine resin layer and the intermediate layer porous fluorine resin are joined together, and the outer elastic layer and the intermediate layer elastic body are joined together.
- the present inventors have found that the adhesion between the resin layer and the outer elastic layer can be remarkably improved, and the durability against repeated pressing and the chemical resistance can be reliably improved.
- the laminated elastic tube according to the present invention is
- the inner surface (inner layer) is composed of a fluorine resin layer
- An elastic layer (outer layer) is formed on the outer side of this fluorocoagulant layer,
- porous fluorine resin such as porous polytetrafluoroethylene
- elasticity filling the pores of the porous fluorine resin
- the inner fluororesin layer and the intermediate porous fluororesin are joined (particularly heat-sealed),
- the gist is that the elastic layer of the outer layer and the elastic body of the intermediate layer are joined.
- the inner surface of the fluorine resin layer is preferably a tube wound with a fluorine resin film.
- this fluorine resin layer is stretched in a direction orthogonal to the length direction of the tube.
- a particularly preferred fluorine resin layer is a fully stretched fluorine resin layer (particularly a fully stretched polytetrafluoroethylene layer).
- the fluorine resin layer on the inner surface is a meltable fluorine resin layer. It may be formed from fat (PFA, FEP, PVDF, THV, EFEP, etc.).
- the inner surface of the fluorine resin layer may be formed by laminating two or more kinds of fluorine resins.
- two or more types of fluorine resin may each be a tube, and this tube may be laminated in order of the inner force.
- two or more kinds of fluorine resins may be laminated in a planar shape, and the planar laminate may be wound into a tube shape.
- one of the two or more types of fluorine resins is a fully expanded fluorine resin, and the other one is a meltable fluorine resin (PFA, FEP, PVDF, THV, EFEP, etc.). It is desirable to dispose the meltable fluorine resin on the outermost side of the fluorine resin layer on the inner surface.
- a silicone elastomer, a fluorine elastomer, a fluorosilicone elastomer, or the like can be used as the elastic body of the intermediate layer or the outer layer.
- the elastic material of the intermediate layer and outer layer is polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyolefin thermoplastic elastomer, styrenic block copolymer elastomer, thermoplastic vulcanized elastomer, polyamide. It may be a thermoplastic elastomer. In the present invention, it is recommended to use the same resin for the elastic body of the intermediate layer and the elastic body of the outer layer.
- the storage elastic modulus E of the elastic layer is, for example, about 1 ⁇ 10 2 to 1 ⁇ 10 8 Pa.
- the elastic layer includes (1) a first layer having elastic force, (2) a porous polytetrafluoroethylene film, and an elastic body filling the pores of the porous polytetrafluoroethylene film. It may have a spiral laminated structure in which the second layer is overlapped.
- the ratio of the thickness of the first layer to the thickness of the second layer (first layer Z second layer) is, for example, about 6.5 Z1 or less.
- the thickness of the laminated elastic tube of the present invention is, for example, as follows.
- Inner layer (Fluororesin layer): 1 to 200 ⁇ m
- the thickness of the elastic layer is, for example, about 10 to 200% with respect to the inner diameter of the laminated elastic tube.
- a wear-resistant layer (such as a polytetrafluoroethylene tube) may be formed outside the elastic layer.
- the laminated elastic tube of the present invention has a porous tube made of a fluorine resin layer (inner layer). After coating with fluorine resin and heat-sealing them,
- Porous fluorine resin side force By filling the pores of the porous fluorine resin with a liquid elastic material, and forming a three-dimensional network structure after filling, the elastic material is made into an elastic body. Can be manufactured. Preferably, a three-dimensional network structure is formed after forming a layer containing an elastic material on the outer side of the porous fluorine resin.
- the laminated elastic tube of the present invention is useful for a pinch valve or a roller pump.
- FIG. 1 is a schematic cross-sectional view showing an example of a laminated elastic tube according to the present invention.
- FIG. 2 is an enlarged view of a main part of the laminated elastic tube of the present invention.
- FIG. 3 is a schematic cross-sectional view showing an example of an outer layer (elastic layer) used in the present invention.
- FIG. 4 is a schematic cross-sectional view showing another example of the laminated elastic tube of the present invention.
- FIG. 1 is a schematic cross-sectional view showing an example of a laminated elastic tube of the present invention
- FIG. 2 is an enlarged view of a main part of the cross-sectional view.
- the laminated elastic tube of the present invention has an inner surface composed of a fluorine resin layer 20, and an elastic layer 10 formed outside the fluorine resin layer 20.
- An intermediate layer 30 is formed between the oil layer 20 and the elastic layer 10.
- the intermediate layer 30 is composed of a porous fluorine resin 32 and an elastic body 31 that fills the pores of the porous fluorine resin.
- the inner surface of the fluorocarbon resin layer 20 and the intermediate layer 30 of the porous fluorocarbon resin 32 are bonded together, and the outer elastic layer 10 and the intermediate layer 30 of the elastic body 31 are bonded together.
- the adhesion between the fluorine resin layer 20 and the elastic layer 10 can be remarkably improved.
- the sea-island structure even if the sea part is a continuous structure, the island part becomes an independent structure, whereas in the intermediate layer 30 according to the present invention in which the pores of the porous fluorocarbon resin 32 are filled with the elastic body 31, , Both porous fluororesin 32 and elastic body 31 have a continuous structure
- the area of the continuous interface between the elastic body and the fluorocoagulant increases dramatically. This is thought to have led to a dramatic improvement in adhesion.
- this laminated type rigid tube can be manufactured without thermally degrading the elastic layer 10 and the elastic body 31, and the elasticity can be reliably ensured.
- the elasticity of the laminated elastic tube of the present invention is achieved by an elastic layer 10 including an elastic body 11 (hereinafter also referred to as an outer layer).
- the elastic body 11 include silicone elastomer, fluorine elastomer (crosslinked fluorine elastomer, fluorine thermoplastic elastomer, etc.), fluorosilicone elastomer, polyester elastomer, and polyurethane.
- Elastomer polyurethane rubber, polyurethane thermoplastic elastomer, etc.
- polyolefin elastomer polyolefin elastomer
- styrene elastomer polyamide elastomer
- fluoro-phosphazene elastomer fluoro-phosphazene elastomer
- nitrinole rubber styrene butadiene rubber
- SBR styrene butadiene rubber
- chloroprene rubber chloroprene rubber and the like.
- These elastic bodies 11 can be used alone or in combination of two or more.
- the elastic body 11 may be a thermoplastic elastomer that may be a crosslinked elastomer (for example, a crosslinked elastomer corresponding to a silicone elastomer, a fluorine elastomer, a fluorosilicone elastomer, etc.).
- a crosslinked elastomer for example, a crosslinked elastomer corresponding to a silicone elastomer, a fluorine elastomer, a fluorosilicone elastomer, etc.
- Elastomers preferably polyester-based thermoplastic elastomers (especially Copolyester Thermoplastic Elastomers: C OPE)), polyurethane-based thermoplastic elastomers (Thermoplastic Polyurethane Elastomers: TPU), polyolefin-based thermoplastic elastomers (Thermoplastic Olefin Elastomers: TPO), Fluorine Thermoplastic Elastomers, Styrenic Block Copolymer Elastomers (SBC), Thermoplastic Elastomers (COPE) , Polyamide Thermoplastic Elastomers: P EBA) and the like; preferably COPE, TPU, TPO, SBC, COPE, PEBA).
- the cross-linked elastomer is excellent in that the operating temperature of the laminated elastic tube can be increased.
- Thermoplastic elastomers are excellent in that they can be produced continuously by extrusion and have a high elasticity.
- Particularly preferred elastic bodies 11 are silicone elastomers, fluorine elastomers, fluorosilicone elastomers, and the like. These particularly preferred elastic bodies 11 are excellent in any of heat resistance, chemical resistance, and durability against repeated pressing.
- silicone elastomers are particularly excellent in mechanical strength, elasticity sustainability, and shape recovery when releasing compressive stress.
- the fluorine-based elastomer is excellent in chemical resistance. Fluorosilicone elastomers exhibit intermediate properties between both silicone elastomers and fluorine elastomers.
- the silicone elastomer has a crosslinked organopolysiloxane (methylsilicone rubber or the like) in which a methyl group is bonded to the key chain, and an aromatic hydrocarbon bonded to the key! Silicone rubber such as cross-linked products (such as vinyl silicone rubber) are included.
- the fluorine-based elastomer includes a crosslinked polymer having fluoromethylene as a main chain, a fluorine-based thermoplastic elastomer, and the like.
- the cross-linked products include FKM (binary FKM, ternary FKM, perfluorobule ether-containing FKM), FFKM, TFE-Pr fluororubber, TFE-Pr-VdF fluororubber, fluorinated poly This includes rubber (such as liquid fluororubber) in which the ether skeleton is Si-crosslinked (see the following formula). Liquid fluororubber is available from Shin-Etsu Chemical Co., Ltd. as “SIFEL” (trade name).
- CF 3 fluorosilicone elastomers include fluorosilicone rubbers such as crosslinked organopolysiloxanes in which fluoroalkyl groups are bonded to silicon.
- fluorosilicone rubbers such as crosslinked organopolysiloxanes in which fluoroalkyl groups are bonded to silicon.
- a cross-linked polysiloxane bonded with a fluoroalkyl group (FMVQ, etc .; see the following formula) corresponds to a fluorosilicone rubber.
- the cross-linked elastomer is cross-linked or the hard segments of the thermoplastic elastomer are allowed to interact with each other to finally cure (not limited to cross-linking, and widely forms a three-dimensional network structure).
- the elastic body 11 may not be cured at the raw material stage.
- the elastic material 11 may be solid (kneadability) or liquid.
- the elastic body 11 obtained from the solid (kneadable) elastic material 11 is particularly excellent in mechanical strength and shape recovery property when releasing compressive stress.
- a millable (kneaded) type silicone rubber can be used as the solid elastic material 11.
- Millable silicone rubber is a rubber that contains a high viscosity silicone rubber compound and a curing agent (vulcanizing agent) and cures when heated.
- Heat-curing silicone rubber HCR (Heat Cured Rubber), HVR (Heat) Vulcanizing Rubber) and HTV (High Temperature Vulcanizing; rubber).
- the liquid elastic material 11 is useful when the elastic body 11 is reinforced with another material, as will be described later.
- the elastic body 11 may be reinforced by filling the pores of the porous body. If the liquid elastic material 11 is used, the pores of the porous body can be easily impregnated.
- the liquid elastic material 11 means a liquid material 11 that is liquid before curing and exhibits elasticity after curing.
- a liquid silicone elastomer such as liquid silicone rubber
- Liquid fluoroelastomers liquid fluororubber, etc.
- liquid fluorosilicone elastomers liquid fluorosilicone rubber, etc.
- heat heated to liquid (fluid) by dissolving in a solvent for example, a plastic elastomer.
- Liquid silicone rubber, liquid fluororubber, liquid fluorosilicone rubber, etc. are crosslinked reaction methods, such as a condensation reaction type that crosslinks with moisture in the air, an addition reaction type that crosslinks with a noble metal catalyst, and a crosslink by heating. In view of mass productivity, the addition reaction type and the thermosetting type are preferred.
- the viscosity (25 ° C.) before curing (crosslinking) is, for example, about 1000 boise or less, preferably about 200 boise or less. The lower the viscosity As will be described later, it becomes easy to impregnate the porous material with the elastic material 11.
- Such a liquid silicone rubber can be obtained from Shin-Etsu Chemical Co., Ltd.
- the liquid fluororubber is available as rsiFELj (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
- the liquid fluorosilicone rubber can be obtained from Shin-Etsu Chemical Co., Ltd. as “oil resistant / solvent resistant fluorosilicone”, for example.
- the elastic body 11 of the elastic layer 10 may be used in combination with other materials.
- the elastic body 11 is mixed with fabric, organic fibers, inorganic fibers, carbons, metal fine particles, inorganic powder, etc.
- the elastic layer 10 is formed in terms of mechanical strength, electrical characteristics, thermal conductivity, and the like. Can improve.
- the mechanical strength when the elastic tube of the present invention is used for a pinch valve or a roller pump, it is possible to prevent the elastic layer 10 from being damaged by the pressing force to a higher degree. If the elastic layer 10 is improved in terms of electrical characteristics, thermal conductivity, etc., the antistatic property of the resulting laminated elastic tube will be improved, and the heating of the laminated elastic tube will be easier.
- a particularly preferred reinforced elastic layer 10 is a spiral laminate in which a first layer 12 composed of an elastic body 11 and a layer 13 (second layer) of a porous film filled with pores by the elastic body 11 are overlapped. It has a structure (hereinafter referred to as a spiral elastic layer 10).
- FIG. 3 is a schematic sectional view showing an example of the spiral elastic layer 10.
- the spiral elastic layer 10 can be produced by winding a porous film impregnated (coated) inside and on the surface of a porous film, as described in JP-T-2002-502735.
- the mechanical strength of the elastic layer 10 can be dramatically increased.
- the spiral elastic layer 10 is remarkably superior in terms of shape recovery when releasing the compressive stress!
- the porous film constituting the spiral elastic layer 10 is not particularly limited as long as it is flexible and does not impair the elasticity of the elastic body 11.
- the porous fluororesin 32 constituting the intermediate layer 30 and A porous film (for example, a polyimide porous film) formed from a resin other than fluorine resin may be used.
- a preferable porous film is a porous film excellent in heat resistance (such as a porous fluororesin film and a polyimide porous film).
- a particularly preferred porous film is a porous body (porous fluororesin film, particularly porous polytetrafluoroethylene film) excellent in chemical resistance, heat resistance, flexibility and the like.
- the elastic tube consisting of the spiral elastic layer 10 in which the elastic body 11 is silicone rubber and the porous film is porous polytetrafluoroethylene film is a product of “STA-PURE” from Japan Gore-Tex Co., Ltd. Available by name.
- An elastic tube comprising a spiral elastic layer 10 in which the elastic body 11 is a fluoro rubber and the porous film is a porous polytetrafluoroethylene film is a product of “CHEM—SURE” from Japan Gore-Tex Co., Ltd. Available under the trade name.
- Thickness ratio (first layer Z) of the first layer 12 (elastic body) and the second layer 13 (porous film with pores filled with an elastic body) of the spiral elastic layer 10 The second layer) is, for example, about 6.5Z1 or less. As the thickness ratio decreases, the strength of the elastic layer 10 increases.
- a preferred thickness ratio (first layer Z second layer) is about 5Z1 or less, particularly about 3Z1 or less.
- the lower limit of the thickness ratio (first layer Z second layer) is not particularly limited, and the elastic layer 10 may be substantially composed of the second layer 13 alone.
- the thickness ratio is the ratio of the elastic body formed on the surface of the porous film when the spiral elastic layer is manufactured by winding the porous film impregnated (coated) with the elastic body. It can be adjusted by controlling the thickness.
- the tensile strength (JIS K 6249) of the elastic layer 10 is higher because the durability of the tube is improved as it is higher.
- JIS K 6249 tensile strength
- the tensile strength (JIS K 6249) of the elastic layer 10 is higher because the durability of the tube is improved as it is higher.
- 0. IMPa or higher preferably 3 MPa or higher, more preferably 7 MPa or higher (for example, 7MPa to 75MPa).
- the elastic body 11 constituting the elastic layer 10 also has high mechanical strength. If the mechanical strength of the elastic body 11 is high, not only can the mechanical strength of the elastic layer 10 be increased to increase the durability of the elastic layer 10, but also the bondability with the intermediate layer 30 can be improved.
- the tensile strength (JIS K 6249) of the elastic body 11 can be set, for example, in the range of about 0.1 to 75 MPa, preferably about 0.3 to 75 MPa.
- the storage elastic modulus E '(temperature 20 ° C, frequency 1 ⁇ , compression method) of the elastic layer 10 is, for example, about 1 X 10 2 to 1 X 10 8 Pa. If the storage elastic modulus is too low, the shape recoverability when releasing the compressive stress will be poor. On the other hand, if the storage modulus is too high, it will be difficult to crush the tube, It becomes difficult to use for pinch valves and roller pumps.
- a preferable storage elastic modulus E is about 1 ⁇ 10 4 to 1 ⁇ 10 8 Pa, particularly about 1 ⁇ 10 5 to 5 ⁇ 10 7 Pa.
- the storage elastic modulus E by the compression method is the value obtained by dividing the normal stress component in phase with the normal strain by the amount of strain described in Japanese Industrial Standard CFIS) K6200 Term No. 621 1. "Means.
- the storage elastic modulus E ′ can be measured by using, for example, a dynamic viscoelasticity measuring device “DMS6100” (manufactured by SII Nanotechnology Co., Ltd.).
- the thickness of the elastic layer 10 is, for example, about 10 to 200%, preferably about 20 to 150%, more preferably, with respect to the inner diameter of the laminated elastic tube constituted by the inertia layer 10. It is about 25-125%.
- the thickness of the elastic layer 10 (outer layer) is, for example, about 0.15 to 80 mm, preferably about 0.3 to 60 mm, and more preferably about 0.4 to 50 mm. If the elastic layer 10 is too thin, when the tube is used for a pinch valve or a roller pump, the tube may not withstand the internal pressure of the fluid in the tube and may burst. In addition, the shape recoverability when releasing the compressive stress (pressing force) becomes insufficient. Conversely, if the elastic layer 10 is too thick, it becomes difficult to close the tube by pressing.
- the laminated elastic tube of the present invention includes a fluorine resin layer 20 in addition to the elastic layer 10.
- the fluorine resin layer 20 is formed on the inner side of the elastic layer 10 and constitutes the inner surface of the tube.
- the fluororesin layer 20 may be referred to as an inner layer.
- the inner surface of the fluororesin layer 20 has excellent chemical resistance and low tack (adhesiveness).
- the elastic body 11 of the elastic layer 10 is inferior in chemical resistance such as silicone rubber, the chemical resistance of the tube itself is generally lowered, but the inner surface is made into the fluorine resin layer 20 as in the present invention.
- the fluorine resin layer 20 on the inner surface can be used as a barrier layer, and the chemical resistance of the tube can be increased.
- the elastic body 11 of the elastic layer 10 has a high tackiness (adhesiveness) like a fluorine elastomer!
- the inner surfaces adhere to each other and the tube is blocked, or the tube inner surface is damaged.
- the inner surface is made into the fluorine resin layer 20 as in the present invention. If so, these problems can be reduced. Furthermore, elution and swelling of the tube material can be prevented.
- the fluorine resin used for the inner layer 20 has low tackiness (adhesiveness).
- fluorine resin examples include a non-meltable (polytetrafluoroethylene (PTFE) having melt viscosity (for example, viscosity at 340 ° C) force of 10 1Q Pa ⁇ s or more).
- PTFE polytetrafluoroethylene
- fluororesin tetrafluoroethylene perfluoroalkoxyethylene copolymer (PFA) having a melt viscosity (for example, a viscosity at 340 ° C of less than 10 1Q Pa's)) , Tetrafluoroethylene Monohexafluoropropylene Copolymer (FEP), Ethylene Tetrafluoroethylene Copolymer (ETFE), Polychlorinated Trifluoroethylene (PCTFE), Polyvinylidene Fluoride (PVDF) ), Polybulufluoride (PVF), Tetrafluoroethylene Hexafluoropropylene Bi-Ridene Fluoride Ternary Copolymer (THV), EFEP (Neoflon EFEP (trade name) manufactured by Daikin Industries, Ltd.) ), Etc.
- PFA tetrafluoroethylene perfluoroalkoxyethylene copolymer having a melt viscosity (for example, a visco
- PTFE has a relatively small amount of comonomer, such as tetrafluoroethylene (relative to tetrafluoroethylene, for example, about 1% by mass or less (preferably about 0.1 to 0.3% by mass)).
- tetrafluoroethylene relative to tetrafluoroethylene, for example, about 1% by mass or less (preferably about 0.1 to 0.3% by mass)
- HFP high-fluoropropylene
- P PVE perfluoropropyl butyl ether
- PEVE perfluoroethyl butyl ether
- C TFE black trifluoroethylene
- modified PTFE copolymerized with alkylethylene etc. From the viewpoint of adhesion to other layers, meltable fluorine resin (especially PFA, FEP, PVDF, THV, EFEP, etc.) is excellent.
- PTFE is excellent, and PTFE is also excellent in that it can be thinned by stretching.
- PTFE it is recommended to use PTFE for the fluorine resin of the inner layer 20.
- Inner layer If both 20 and the intermediate layer 30 are formed of PTFE, the inner layer 20 and the intermediate layer 30 can be easily heat-sealed.
- the fluorinated resin one type may be used, or two or more types may be used.
- the inner layer 20 will be described in more detail on the assumption that one type of fluorine resin is used, and later, the change points when two or more types of fluorine resin are used will be described.
- the fluorinated resin of the inner layer 20 is usually a solid (folly-dense fluororesin). However, it may be a porous body (porous fluororesin).
- the porous body can be used when the elastic body 31 of the intermediate layer 30 has excellent chemical resistance such as a fluorine-based elastomer.
- the solid fluorine resin means a fluorine resin substantially free of pores, and the porosity is, for example, less than 10%, preferably 5% or less, more preferably 1% or less. Especially 0%.
- the solid fluorine resin is usually obtained by extrusion as in the case of a general resin film, and after that, it can be obtained by stretching if necessary.
- the solid PTFE is obtained in the same manner as a general resin film. It is difficult. Solid PTFE can be obtained, for example, by scraping the non-porous sintered PTFE force (generally referred to as skived PTFE), or densifying the porous fluororesin (ePTFE) described later by compression or the like. (This is called densified PTFE).
- a fluorine resin having both a full structure and a stretched structure may be hereinafter referred to as a folly-dense expanded fluororesin.
- the porous fluorine resin may be a fluorine resin obtained by forming a mixture of a fluorine resin powder and a solvent-soluble fine powder and then eluting the soluble fine powder with a solvent.
- a porous PTFE obtained by stretching expanded porous PTFE (ePT FE: also known as expanded porous polytetrailuoroethylene)
- ePTFE is a mixture of PTFE fine powder and molding aid. This ePTFE may be uniaxially stretched, but preferably biaxially stretched, after being stretched at a high temperature and high speed after being removed.
- Microscopically, uniaxially stretched PTFE has thin island-like nodes (folded crystals) that are substantially perpendicular to the stretch direction, and interdigital fibrils that connect between the nodes (the folded crystals are stretched by stretching).
- the biaxially stretched PTFE has a fibril spreading radially and islands connecting the fibrils in islands. It has a microscopic feature in that it has a spider web-like fibrous structure that is dotted with many spaces defined by fibrils and nodes. Can be set as appropriate according to the amount of the fine particles and the draw ratio, for example, 10% or more, 30 It may be% or more.
- the upper limit of the porosity is not particularly limited, but is, for example, about 95% or less, preferably about 85% or less.
- the porosity is the apparent density p (unit: g / cm 3 , JIS K 6885)
- stretched fluorine resins solid expanded fluorine resin, expanded porous fluorine resin, etc .; hereinafter, these are combined and referred to as expanded fluororesin
- expanded fluororesin a fluorinated resin that is biaxially stretched is preferred.
- the inner layer 20 can be strengthened by stretching.
- the stretching direction is not particularly limited, but it is preferably stretched in a direction (circumferential direction) orthogonal to the longitudinal direction of the tube.
- a direction circumferential direction
- the phenomenon that the tube tears in the longitudinal direction (vertical crack) when the tube is repeatedly pressed can be reduced.
- Fluororesin is a fully stretched fluorinated resin.
- Fully stretched fluorinated resin is excellent in all of barrier properties against chemicals, slidability, and mechanical strength. In particular, when densification treatment such as compression is applied, both the effect of improving the strength in the surface direction by stretching and the improvement of the strength in the thickness direction by densification are exhibited, and the mechanical strength of the inner layer 20 is remarkably increased. Can do. Further, it is excellent in flexibility, and even when subjected to repeated pressing, peeling occurs between the inner layer 20 and the intermediate layer 30. Furthermore, according to the fully-stretched fluorinated resin, a thin film made of the fluorinated resin can be easily obtained, which is advantageous for producing a wound film described later.
- the form of the inner-layer fluorine resin layer 20 is not particularly limited, and is obtained by extruding a wound film obtained by winding a fluorine resin film or a fluorine resin in a tube shape. Any of an extruded tube and a coating layer obtained by coating a fluorine resin-containing liquid on the inner surface of the tube molded body may be used. Preferred forms are wound films, particularly wound films and extruded tubes. According to the wound film, an inner layer having high mechanical strength can be formed, and it is easy to match the stretching direction of the fluorine resin with the circumferential direction of the tube. [0056] In the wound film, the films that are wound and laminated may be bonded as appropriate.
- the films may be bonded together with an adhesive via a primer or the like, or the films may be heat-sealed.
- the films are heat-sealed. If heat-sealed, the film layers can be bonded extremely firmly.
- fluorine resin has a high molecular weight to ensure practical mechanical strength with low intermolecular cohesion.
- the molecular weight of PTFE is about 5 to 8 million according to an indirect measurement method such as an isop method. Even when such a high molecular weight fluorocobalt is heated above its melting point, the viscosity is high (for example, the viscosity when PTFE is heated above its melting point is about 10 1Q to 10 12 Pa's).
- melting point and thermal decomposition conditions (temperature, time) of fluorocarbon resin differ depending on the type, grade, and processing conditions (processing environment, etc.) of fluorocarbon resin, so DSC (differential scanning calorimeter) and TG ( It is desirable to know in advance using a thermogravimetric analyzer.
- the inner layer 20 is a wound film
- a process (tapering process) for inclining the corners of the wound end may be performed. If the inner side edge is tapered, the adverse effect on the fluid in the tube can be reduced. Further, if the outer side edge portion is tapered, the adhesion between the inner layer 20 and the intermediate layer 30 can be improved. In order to taper, for example, a heating plate may be pressed against the winding end. Further, for the same purpose, the film thickness that can be inclined with respect to the tube center axis is sufficiently thin (for example, about 0.1 to 30 111, preferably 0). 5: about LO / zm, more preferably about 1-5 / ⁇ ⁇ ).
- a table such as corona discharge treatment, excimer laser treatment, sand blast treatment, etching treatment with metallic sodium or liquid ammonia, etc.
- Surface treatment may be performed. By applying these surface treatments, the films can be bonded more firmly.
- the outer surface of the fluorine resin layer 20 may be subjected to the same surface treatment for the same purpose.
- the inner layer 20 may be formed of two or more (for example, about 2 to 4 types, particularly 2 types) fluorine resins. Functions (chemical resistance, adhesiveness, etc.) can be shared among multiple fluorocarbons so that excellent functions can be exhibited as a whole.
- fluorine resin with excellent chemical resistance and mechanical strength such as fully-stretched fluorine resin
- fluorine resin with excellent adhesion such as meltable fluorine resin
- Fluororesin which is particularly excellent in properties and mechanical strength, can be firmly bonded to the intermediate layer 30.
- each fluorine resin may be formed into a tube shape, and two or more types of tubes (fluorine resin) may be laminated in order from the inside. Good.
- Two or more kinds of fluorine resins may be laminated in a planar shape, and the planar laminate may be wound once or more (preferably a plurality of times) to form a tube.
- two or more kinds of fluorine resins can be arranged without being biased, so that the performance of the inner layer 20 as a whole can be further improved.
- the outermost side of the inner layer 20 be composed of a meltable fluorocarbon resin. This is because adhesion to the intermediate layer 30 is enhanced.
- the thickness of the inner surface of the fluororesin layer 20 is, for example, about 1 to 200 ⁇ m, preferably about 5 to 100 ⁇ m, and more preferably about 5 to 40 / zm. If the inner layer 20 is too thin, the mechanical strength decreases. Therefore, it becomes difficult to improve the chemical barrier properties and the slidability of the tube inner surface. On the other hand, if the inner layer 20 is too thick, the entire tube becomes hard. Therefore, the shape recoverability when releasing the compressive stress (pressing force) tends to be insufficient. In addition, defects such as cracks are likely to occur due to repeated pressing.
- the inner surface of the fluororesin layer 20 may be mixed with carbon or metal powder in order to impart conductivity or improve thermal conductivity.
- a feature of the laminated elastic tube of the present invention is that an intermediate layer 30 is formed between the fluorine resin layer 20 (inner layer) and the elastic layer 10 (outer layer).
- the intermediate layer 30 includes a porous fluorine resin 32 and an elastic body 31 that fills the pores of the porous fluorine resin 32.
- the inner layer fluorine resin layer 20 and the intermediate layer 30 porous fluorine resin 32 are joined.
- the elastic layer 10 of the outer layer and the elastic body 31 of the intermediate layer 30 are joined.
- the fluorocarbon power exemplified in the above-mentioned inner layer 20 can also be selected, and preferably PTFE, PFA, PVDF, etc. (particularly PTFE) can be selected.
- PTFE the aforementioned ePTFE can be used.
- PFA PFA having pores formed by forming a mixture of PFA powder and solvent-soluble fine powder and then dissolving the soluble fine powder with a solvent can be used.
- the porous PVDF PVDF having pores formed by a dissolution method or the like can be used.
- a preferred porous fluorocarbon resin 32 is a stretched porous fluorocarbon resin 32.
- the stretching direction of the elongated porous fluorocarbon resin 32 is not particularly limited, but it is preferably stretched in a direction (circumferential direction) perpendicular to the longitudinal direction of the tube. If the tube is stretched in the circumferential direction, it is possible to reduce a phenomenon (longitudinal crack) in which the tube tears in the longitudinal direction when the tube is repeatedly pressed.
- the stretched porous fluororesin 32 may be uniaxially stretched or biaxially stretched, but is preferably biaxially stretched.
- the expanded porous fluorocarbon resin 32 is ePTFE.
- ePTFE the porosity can be made sufficiently high, and a sufficient amount of the elastic body 31 can be filled in the pores. Moreover, it is excellent in flexibility, and there is no possibility that the function of the elastic body 31 is lowered. Furthermore, it is excellent in mechanical strength.
- ePTFE is available from Japan Gore-Tex Co., Ltd. as “ePTFE film”.
- the porosity of the porous fluorocarbon resin 32 of the intermediate layer 30 is, for example, about 40 to 98%, preferably about 50 to 95%, and more preferably about 60 to 90%. If the porosity is too small, the filling amount of the elastic body 31 becomes small and the pressing force buffering function is lowered. On the other hand, if the porosity is too large, the mechanical strength of the porous fluorocarbon resin 32 is lowered and the bonding force with the inner layer 20 is lowered.
- the maximum pore diameter of the porous fluororesin 32 of the intermediate layer 30 is the elastic body or elastic to be filled. From the viewpoint of the properties (ease of filling) of the elastic body raw material (details will be described later in detail) for forming a solid body, it may be set as appropriate, for example, 0.01 ⁇ m or more, preferably 0 .: L m or more, and below, preferably 10 m or less. If the maximum pore size is too small, it is difficult to fill the elastic body. If the maximum pore diameter is too large, the mechanical strength may be insufficient. The maximum pore size can be measured in accordance with the provisions of ASTM F316-86 (agent used: ethanol).
- the form of the porous fluororesin 32 of the intermediate layer 30 is not particularly limited, and a wound porous film obtained by winding a porous fluororesin film, the fluororesin in a tube shape. Any of a porous extruded tube obtained by extrusion molding may be used. A preferred form is a wound porous film. According to the wound porous film, an intermediate layer having high mechanical strength can be formed, and it is easy to match the stretching direction of the fluorine resin with the circumferential direction of the tube.
- the intermediate layer 30 is formed of a wound porous film
- the same treatment as in the case of forming the inner layer 20 of a wound film may be performed.
- the film thickness can be obtained by heat-bonding the films together or by tapering the wound end of the film or by making the edge of the wound end (end line) oblique to the central axis of the tube.
- the film may be sufficiently thin (for example, 1 to: about LOO / zm, preferably about 5 to 50 / ⁇ ⁇ , more preferably about 10 to 40 / ⁇ ⁇ ). Good.
- the surface treatment may be performed on the inner surface and the ridge or the outer surface of the intermediate layer 30.
- the elastic body 31 filling the pores of the porous fluorocarbon resin 32
- various cured liquid elastic material raw materials exemplified in the outer layer 10 can be used.
- the liquid elastic material is the same as in the outer layer 10.
- the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 are preferably selected from the same resin. If the same resin is selected, the bondability between the intermediate layer 30 and the outer layer 10 can be improved.
- the “same rosin” means the same viewpoint power of bonding properties, and preferably refers to completely the same repellency, a group of rosins having a common monomer component, etc., but the main monomer is common. And a group of rosins whose main monomers are of the same strain.
- the elastic body 31 of the intermediate layer 30 is combined with other materials in the same manner as the elastic body 11 of the outer layer 10. May be used.
- the elastic body 31 may be mixed with organic fibers, inorganic fibers, carbons, metal fine particles, inorganic powders, and the like.
- the tensile strength of the elastic body 31 of the intermediate layer 30 can be designed from the viewpoint of the bondability with the outer layer 10, and the range is approximately the same as the tensile strength of the elastic body 11 of the outer layer 10.
- the tensile strength (JIS K 6249) of the intermediate layer 30 formed from the elastic body 31 and the porous fluororesin 32 is, for example, about 0.1 to 75 MPa, preferably about 2 to 75 MPa, and more preferably. Is about 5 to 75 MPa.
- the storage elastic modulus E of the intermediate layer 30 (temperature 20 ° C, vibration frequency 1 ⁇ , compression method) is, for example, about 1 X 10 2 to 1 X 10 8 Pa, preferably 1 X 10 3 to 1 X 10 It is about 8 Pa, more preferably about 1 ⁇ 10 6 to 1 ⁇ 10 8 Pa. If the mechanical strength or storage elastic modulus E ′ is too low, the durability of the tube against repeated pressing is reduced. On the other hand, if the storage elastic modulus E ′ is too high, the followability to the outer layer 10 (elastic layer) is lowered, and the durability of the tube against repeated pressing is lowered.
- the thickness of the intermediate layer 30 is, for example, about 10 to 2000 ⁇ m, preferably about 20 to 1500 ⁇ m, and more preferably about 50 to about LOOO m. If the intermediate layer 30 is too thin, durability during tube pressing will decrease. On the other hand, if the intermediate layer 30 is too thick, it begins to inhibit the elastic function of the outer layer 10.
- the intermediate layer 30 of the present invention is bonded to the inner surface fluorine resin layer 20, the porous fluorine resin 32 is exposed on the inner surface side. Further, the elastic body 31 is exposed on the outer surface side of the intermediate layer 30 in order to join with the outer elastic layer 10.
- the laminated elastic tube of the present invention joins the inner fluororesin layer 20 and the porous fluororesin 32 of the intermediate layer 30, and the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10. Can be obtained by joining. By joining them, the inner layer 20, the intermediate layer 30, and the outer layer 10 can be integrated.
- the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 may be joined by primer treatment or may be joined via an adhesive, but may be joined directly. It is desirable to do. If directly joined, there is no risk of impairing the elasticity of the intermediate layer 30 and the outer layer 10.
- the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 are directly joined, at least one elastic material is brought into contact with the other elastic body (or elastic material) to form a three-dimensional network structure ( Curing).
- the rubbery body can be three-dimensional network structured (cured) by crosslinking.
- the thermoplastic elastomer can be cured (cured) by, for example, cooling the thermoplastic state force or removing the cause of fluidization such as a solvent.
- the most preferable joining method is a method in which the elastic raw material 31 of the intermediate layer 30 and the elastic raw material 11 of the outer layer 10 are brought into contact with each other, and both elastic raw materials 31 and 11 are made into a three-dimensional network structure (cured). . According to this method, higher bonding strength can be obtained.
- Method 1 After the outer side of the inner layer 20 is coated with the intermediate layer 30, the outer side of the intermediate layer 30 may be coated with the outer layer 10.
- Method 2 A laminate of the intermediate layer 30 and the outer layer 10 is formed. Thereafter, the inner layer 20 may be coated on the inner surface of the intermediate layer 30.
- the filling of the liquid elastic material 31 into the intermediate layer 30 may be performed before or after the intermediate layer 30 is stacked. Also, the timing of curing the liquid elastic material 31 of the intermediate layer 30 is not particularly limited!
- Method 1 A preferred production procedure is (Method 1) in which the outer side of the inner layer 20 is coated with the intermediate layer 30 and then the outer side of the intermediate layer 30 is coated with the outer layer 10.
- Method 1 the inner layer fluorine resin 20 and the intermediate layer 30 porous fluorine resin 32 can be heat-sealed.
- the filling of the liquid elastic material 31 into the intermediate layer 30 is preferably performed after the intermediate layer 30 (porous fluorine resin 32) is laminated ( Method 1-When Doo liquid elastic material 31 is filled after lamination, porous fluorine resin 32 is exposed before being laminated without being covered with liquid elastic material 31. Therefore, the inner layer fluorine resin 20 is The intermediate layer of porous fluorocarbon resin 32 can be reliably heat-sealed, and the elastic body 31 can be heat-sealed. There is no risk of thermal degradation under certain conditions.
- the liquid elastic material 31 may be filled in and a three-dimensional network structure may be formed after filling.
- liquid elastic material 31 When the liquid elastic material 31 is filled in the intermediate layer 30 (porous fluorine resin 32), it may be filled in the required amount accurately or excessively, and then the excess may be removed by force. Good. It can also be used as the outer layer 10 (elastic layer) by hardening without surrendering excess.
- the outer layer 10 may be laminated on the intermediate layer 30 after being cured (Method A), or the intermediate layer in an uncured state. It may be stacked on 30 and cured (Method B).
- Method A the intermediate layer 30 and the outer layer 10 can be joined by using a primer treatment or an adhesive.
- Method B A preferred method is Method B. According to method B, the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 can be directly joined.
- uncured outer layer 10 liquid elastic material, solid (kneadable) elastic material, etc.
- intermediate layer 30 uncured outer layer 10 is intermediate layer 30.
- the intermediate layer 30 may be laminated (Method Bl), and the intermediate layer 30 may also be filled with the elastic material 31 (particularly the liquid elastic material).
- Laminate 30 (Method B2).
- the uncured outer layer 10 may be laminated after the elastic material 31 of the intermediate layer 30 is cured (Method Bla), and is uncured before the elastic material 31 of the intermediate layer 30 is cured.
- the outer layer 10 may be laminated (Method Bib).
- the elastic material 31 of the intermediate layer 30 and the elastic material 11 of the outer layer 10 can be cured at the same time, and the bonding strength can be significantly increased.
- a specific method for forming the outer layer 10 is exemplified as follows.
- a cylindrical intermediate body obtained by heat-sealing the inner layer 20 (a tube made of a fluorine resin layer) and the porous fluorine resin 32 is a cylinder having an inner diameter larger than the outer diameter of the intermediate body.
- (V) A method in which the cylindrical intermediate body is inserted into an outer layer 10 (elastic tube) that has been molded and cured in advance into a cylindrical shape, and these are bonded together with an adhesive or the like.
- a wear resistant layer 40 (wear resistant tube) may be further formed outside the outer layer 10 (elastic layer) as required. Yes.
- the wear resistant layer 40 can further enhance the durability of the tube.
- the wear resistant layer 40 (wear resistant tube) includes polymer materials such as butyl chloride, polystyrene, polyester (polyethylene terephthalate, etc.), polyolefin (polyethylene, polypropylene, etc.), polyamide, polyimide, fluorine resin, Various materials such as inorganic materials such as glass fiber can be used.
- the wear-resistant layer 40 (wear-resistant tube) is composed of a coated body, an extrusion-molded tube, an extruded stretched tube, a stretched film roll, a full film roll, a porous film roll, Any shape such as a knitted body in which yarns are knitted in a tube shape, a woven fabric, a knitted fabric, a braided body, a wound body such as a lace or a net may be used.
- the wear resistant layer 40 has a followability and resistance to the elastic layer 10. It is important to have both wear characteristics, and the shape can be selected according to the hardness of the material.
- the wear resistant layer 40 may or may not be fixed to the elastic layer 10, but is preferably fixed from the viewpoint of further improving the wear resistance.
- the fixing method is not particularly limited. For example, it may be fixed using an adhesive, but by using the same elastic body as the outer layer 10 as an adhesive. It is preferable to fix the wear-resistant layer 40. It is also preferable to laminate and fix the wear resistant layer 40 (wear resistant tube) using the shrinkage force of the wear resistant layer 40 (wear resistant tube). If the contraction force is used, the elasticity of the tube will not be impaired.
- the wear-resistant layer 40 is a fluorine resin tube, particularly a PTFE tube.
- Fluororesin tubing especially PTFE tubing
- the wear-resistant tube 40 is formed of fluorine resin (particularly PTFE)
- the tube includes a wound body of a porous fluorine resin film, a knitted body obtained by knitting fluorine resin yarn in a tube shape, fluorine It is desirable to use a wound body of woven fabric, knitted fabric, braided fabric, lace, net, etc. made of a resin yarn. If these are used, since the adhesive or elastic material penetrates into the pores or between the fibers, the wear-resistant layer 40 can be firmly joined to the elastic layer 10.
- a plurality of wear-resistant layers 40 may be stacked, for example, a fluorocarbon resin tube and a glass cloth roll may be stacked.
- the size of the laminated elastic tube of the present invention differs depending on the application and is difficult to define uniformly.
- an inner diameter lmm or more (for example, l ⁇ 40 mm), outer diameter: 100 mm or less (eg, about 3 to 100 mm, especially about 5 to 60 mm), and length of about 50 to 1500 mm.
- the laminated elastic tube of the present invention can be used as a member that controls the flow of fluid by pressing, and can be used, for example, as an elastic tube of a pinch valve or a roller pump.
- a pinch nore is a pinch operated by fluid pressure (pneumatic, hydraulic, etc.) or electricity.
- This is a device that controls the flow of fluid in the tube by pressing the elastic tube in the radial direction from the side with a valve and flattening (especially closing) the cross section of the tube.
- a roller pump is a roller or other pressing member that presses the inertial tube in the radial direction and moves the pressing member in the axial direction of the elastic tube while maintaining this pressing state (especially repeated from the upstream side to the downstream side). It is a device that sends out the fluid in the tube by moving.
- the type of fluid flowing through the tube is not particularly limited, and may be gas or liquid! /, But is preferably liquid.
- the laminated elastic tube of the present invention since the laminated elastic tube of the present invention has excellent chemical resistance, it is highly corrosive used in the fields of photoresist liquids, liquids for operating process machinery, pharmaceuticals, food, medicine, chemistry, etc. It is also possible to circulate fluids such as other liquids.
- the laminated elastic tube of the present invention has low tackiness, it can be used even for applications that dislike the flow component adhering to the inner surface of the tube.
- the laminated elastic tube of the present invention can also be used as a cable tube (push-pull tube) in which a metal wire for transmitting torque or the like is passed through the tube. Since the elastic tube of the present invention has a high slip property of the fluorine resin layer 20 on the inner surface, torque can be transmitted smoothly.
- the laminated elastic tube of the present invention is used for an application where elasticity is not necessarily required such as a hose or piping, the outer elastic layer 10 is not necessary.
- the intermediate layer in which the pores of the porous fluorine resin are filled with an elastic body is interposed between the fluorine resin layer on the inner surface and the outer elastic layer.
- Press surface size 750mm x 750mm, maximum pressure: 2MN hot
- the densified PTFE film is cut into a size of width: 400 mm, length (depth): 158 mm, and a stainless steel rod so that the length (depth) direction is the winding direction (circumferential direction).
- the material (outer diameter: 5 mm) was wound 10 times to form an inner layer having a thickness of about 20 m.
- 10g of addition reaction type liquid silicone rubber (“KE1031” manufactured by Shin-Etsu Chemical Co., Ltd.) to the porous fluororesin film surface of the cylindrical intermediate using a rubber spatula.
- KE1031 manufactured by Shin-Etsu Chemical Co., Ltd.
- Heat-curing type mirabilized silicone rubber ( ⁇ 551—U ”manufactured by Shin-Etsu Chemical Co., Ltd.) and a vulcanizing agent "C-23" manufactured by Shin-Etsu Chemical Co., Ltd.) was blended at a mass ratio of 100: 1 and kneaded using a mixing roll machine.
- the cylindrical intermediate body was inserted into the crosshead for use with an inlet side force.
- the kneaded heat-vulcanized silicone rubber was pushed in from the middle side of the inlet and outlet of the crosshead for extrusion with a screw.
- the cylindrical intermediate Due to the rubber pressure flow caused by the indentation, the cylindrical intermediate is also discharged from the outlet side of the extrusion head, then heated at a primary vulcanization temperature of 170 ° C for 20 minutes, and then at a secondary vulcanization temperature of 200 ° C. Both liquid silicone rubber and millable silicone rubber were crosslinked by heating for a period of time.
- Biaxially stretched porous PTFE film (“ePTFE film” manufactured by Japan Gore-Tex Co., Ltd.), width: 400mm, length (depth): 816mm, porosity: 78%, maximum pore diameter: 0.4 / ⁇ ⁇ , thickness: 18 m), addition reaction type liquid silicone rubber (“KE1 031” manufactured by Shin-Etsu Chemical Co., Ltd.) was applied from one side.
- the coated film was wound around the cylindrical intermediate body to make an outer layer while keeping the coated surface inward and preventing air from being entrained (number of wrinkles: 35 times).
- Heat-cured liquid fluororubber (“SIFEL—8070A / BJ” manufactured by Shin-Etsu Chemical Co., Ltd.), biaxially stretched outer layer
- An elastic tube was obtained in the same manner as in Example 2 except that the heat-curing liquid fluororubber (“SIFEL-610” manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the rubber applied to the expanded porous PTFE film.
- Heat vulcanized millable silicone rubber (“KE551—U” manufactured by Shin-Etsu Chemical Co., Ltd.) and a vulcanizing agent (manufactured by Shin-Etsu Chemical Co., Ltd.) C-23 ”) was blended at a mass ratio of 100: 1 and kneaded using a mixing roll machine.
- a stainless steel bar with an outer diameter of 5 mm was inserted into a metal extrusion cloth head concentrically arranged with a die having an inner diameter of 9.6 mm and a 5-pull inner diameter.
- the kneaded heat-vulcanized silicone rubber was pushed in by a screw from the intermediate side surface of the inlet and outlet of the extrusion cloth head.
- the stainless steel bar Due to the pressure flow of the rubber due to indentation, the stainless steel bar is also discharged at the outlet side of the extrusion head, then heated at a primary vulcanization temperature of 170 ° C for 20 minutes, and further heated at a secondary vulcanization temperature of 200 ° C for 4 hours. By doing so, the millable silicone rubber was crosslinked.
- Biaxially stretched porous PTFE film used in Example 2 ("eP TFE film” manufactured by Japan Gore-Tex Co., Ltd.), width: 400mm, length (depth): 826mm, porosity: 78%, maximum pore diameter : 0.4 m, thickness: 18 m), an addition reaction type liquid silicone rubber (“KE1031” manufactured by Shin-Etsu Chemical Co., Ltd.) was applied from one side.
- the coated film was wound around a stainless steel bar (outer diameter: 5 mm) while keeping the coated surface inward and without entraining air (number of creases: 36 times). Liquid silicone rubber was crosslinked by heating at 150 ° C for 30 minutes.
- SEIFEL-6 10 heat-cured liquid fluororubber
- a densified PTFE film was obtained in the same manner as in Example 1.
- This densified PTFE film is cut into a size of width: 400mm, length (depth): 158mm, and a stainless steel rod so that the length (depth) direction is the winding direction (circumferential direction)
- the material (outer diameter: 5 mm) was wound 10 times.
- a forced hot air circulation / ventilation type constant temperature and humidity chamber (Espec Co., Ltd., “STPH-201”), heated at a temperature of 375 ° C for 30 minutes, heat-sealed between the PTFE films, A 20 m inner layer was formed.
- Heat-curing type mirabil silicone rubber ( ⁇ 551—U, manufactured by Shin-Etsu Chemical Co., Ltd.) and vulcanizing agent (Shin-Etsu Chemical Co., Ltd.), which are pre-mixed with various additives such as reinforcing fillers and plasticizers.
- “C-23” manufactured by Kogyo Co., Ltd. was blended at a mass ratio of 100: 1 and kneaded using a mixing roll machine. The inlet side force was inserted into a metal extrusion cross head in which a die having an inner diameter of 9.6 mm and a 5-pull inner diameter were concentrically arranged while the inner layer was wound around a stainless steel bar.
- the kneaded heat vulcanized silicone rubber was pushed in from the middle side of the inlet and outlet of the extrusion crosshead with a screw.
- the inner layer wound around the stainless steel bar is discharged by the pressure flow of the rubber due to the indentation, the outlet side force of the extrusion head is discharged, then heated at the primary vulcanization temperature of 170 ° C for 20 minutes, and further the secondary vulcanization temperature
- the millable silicone rubber was crosslinked by heating at 200 ° C for 4 hours.
- twist the outer layer (elastic layer) by hand to loosen the inner layer densified PTFE and the core material (stainless steel bar), and pull out the stainless steel bar to pull out the elastic tube. Obtained (inner diameter: 5 mm, outer diameter: 9.6 mm, axial length: 400 mm, inner layer thickness: 20 m, outer layer thickness: 2.3 mm).
- Cyclohexane was filled in the hollow of the elastic tube and kept at a temperature of 20-25 ° C for 70 hours. After discharging cyclohexane, the change in mass of the tube before and after the test was measured and evaluated according to the following criteria.
- Mass change is 30% or more
- Resin pinch valve for wet process manufactured by Asahi Organic Materials Co., Ltd., trade name “Dymatri X
- AVPV3 was fitted with an elastic tube.
- This pinch valve can press a 15 mm x 10 mm prismatic piston (the peripheral edge of the tip is chamfered (curvature 0.4)) toward the flat plate with compressed air. Press the tube between.
- the elastic tube was repeatedly pressed with a piston that did not allow liquid to pass through the tube.
- the conditions for pressing are as follows.
- the elastic tubes of Examples 1 to 3 have durability against repeated pressing and resistance because the inner layer and outer layer (elastic layer) are joined by an appropriate intermediate layer. Excellent chemical properties.
- the laminated elastic tube of the present invention is used, for example, for applications in which a fluid flows in the tube (especially an elastic tube used for a pinch valve or a roller pump). For applications such as controlling the flow of fluid in a tube) or applications that allow non-fluid to pass through a tube (for example, a cable tube (push-pull tube) with a metal wire passed through it to transmit torque, etc.) Can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
Abstract
Disclosed is an elastic laminated tube wherein the inner surface is composed of a fluororesin layer (20) and an elastic layer (10) is formed on the outer side of the fluororesin layer (20). In this elastic laminated tube, an intermediate layer (30) composed of a porous fluororesin (32) and an elastic body (31) filling the pores of the porous fluororesin (32) is formed between the fluororesin layer (20) and the elastic layer (10). The fluororesin layer (20) as the inner surface of the tube is joined with the porous fluororesin (32) of the intermediate layer (30), and the elastic layer (10) on the outer side is joined with the elastic body (31) of the intermediate layer (30).
Description
明 細 書 Specification
積層型弾性チューブ Laminated elastic tube
技術分野 Technical field
[0001] 本発明は、内面がフッ素榭脂で構成された弾性チューブに関するものであり、好ま しくはチューブ径方向の押圧を繰り返して受ける弾性チューブに関し、より好ましくは 、ピンチバルブやローラーポンプに使用される弾性チューブなどのように、前記径方 向の押圧によってチューブ中空内の流体の流通を制御するのに有用な弾性チュー ブに関するものである。 TECHNICAL FIELD [0001] The present invention relates to an elastic tube having an inner surface made of fluorine resin, and more preferably to an elastic tube that repeatedly receives pressure in the tube radial direction, and more preferably used for a pinch valve or a roller pump. The present invention relates to an elastic tube useful for controlling the flow of fluid in the hollow of the tube by the radial pressing, such as an elastic tube.
背景技術 Background art
[0002] ピンチバルブでは、弾性チューブを径方向に押圧することによって流体 (液体など) の流通を停止し、前記押圧を解除することによって流体の流通を開始している。また ローラーポンプでは、弾性チューブを径方向にローラーで押圧し、この押圧状態を維 持しながらローラーをチューブの軸方向に移動させることによって、流体 (液体など) を送り出している。これらピンチバルブやローラーポンプでは、一般のバルブゃポン プに比べて流路の構造を簡単にでき、流体を汚染する虞が少ない。そのため、食品 や医療機器などの分野で利用されることが多ぐ近年では半導体を製造する際のフ オトレジストの送液にも使用されている。 [0002] In a pinch valve, the flow of a fluid (such as a liquid) is stopped by pressing an elastic tube in the radial direction, and the flow of the fluid is started by releasing the pressure. In the roller pump, the elastic tube is pressed with a roller in the radial direction, and fluid (liquid etc.) is sent out by moving the roller in the axial direction of the tube while maintaining this pressed state. With these pinch valves and roller pumps, the flow path structure can be simplified and the possibility of contaminating the fluid is less than that of ordinary valve pumps. For this reason, it is often used in the field of food and medical equipment, and in recent years, it is also used for the transfer of photoresist when manufacturing semiconductors.
[0003] 弾性チューブには、弾性の持続性に優れることから、一般にシリコーンゴムが使用 されている(例えば、文献 1など)。しかし、シリコーンゴムはフッ素榭脂等と比べて耐 薬品性に劣る。そのため文献 1の弾性チューブでは、腐食性の強い流体 (フォトレジ スト液、プロセス機械装置を作動させる為の液体、製薬、食品、医療、化学などの分 野で使用される高腐食性の液体など)を流通させると、チューブの耐久性が大きく損 なわれる。 [0003] For elastic tubes, silicone rubber is generally used because of its excellent elasticity (for example, Document 1). However, silicone rubber is inferior in chemical resistance compared to fluorine resin. For this reason, the elastic tube of Document 1 uses highly corrosive fluids (photoresist liquids, liquids for operating process machinery, highly corrosive liquids used in fields such as pharmaceuticals, foods, medicine, and chemistry). ), The durability of the tube is greatly impaired.
[0004] チューブの耐薬品性を改善するため、エラストマ一をシリコーンゴム力 フッ素系ェ ラストマーに代えたフッ素系弾性チューブも知られている(文献 2)。しかし弾性チュー ブとして適用可能な柔軟なフッ素系エラストマ一は、タック性が高い。そのため例えば ローラーポンプのローラーで弾性チューブを押圧したままの状態で放置すると、内面
同士がくっついて復元せず、チューブが閉塞してしまうことがある。また繰り返し使用 した場合にタック性が高いためにチューブ内面が損傷しやすぐ前記シリコーン系弹 性チューブよりも耐久性が劣る。 [0004] In order to improve the chemical resistance of the tube, a fluorine-based elastic tube is also known in which the elastomer is replaced with a silicone rubber-powered fluorine elastomer (Reference 2). However, a flexible fluorine-based elastomer that can be used as an elastic tube has high tackiness. Therefore, for example, if you leave the elastic tube pressed with a roller pump roller, The tubes may stick together and cannot be restored, and the tube may become blocked. In addition, when used repeatedly, the tackiness is high, so that the inner surface of the tube is damaged, and the durability is inferior to that of the silicone-based elastic tube.
[0005] 文献 3には、 ePTFE (延伸ポリテトラフルォロエチレン)膜にエラストマ一(シリコーン エラストマ一、パーフルォロポリエーテルエラストマ一など)を含浸したものを卷回し、 エラストマ一を硬化することによって得られる弾性チューブが開示されている。シリコ ーンエラストマ一を利用したチューブは、ジャパンゴァテックス (株)から「STA— PUR EJの商品名で販売されており、パーフルォロポリエーテルエラストマ一を利用したチ ユーブは、「CHEM— SURE」の商品名で販売されている。これらチューブは、 ePT FE膜によって耐久性が飛躍的に向上しているものの、シリコーンエラストマ一やパー フルォロエラストマ一を利用して 、るため、前記文献 1や文献 2と本質的に同様の問 題を内在している。すなわちシリコーンエラストマ一を利用した場合には耐薬品性に 劣り、パーフルォロポリエーテルエラストマ一を利用した場合には、シリコーンエラスト マーを利用した場合に比べて内面が損傷し易い。 [0005] In Reference 3, an ePTFE (stretched polytetrafluoroethylene) film impregnated with an elastomer (silicone elastomer, perfluoropolyether elastomer, etc.) is wound to cure the elastomer. The elastic tube obtained by this is disclosed. Tubes using silicone elastomer are sold under the name “STA—PUR EJ” by Japan Gore-Tex Co., Ltd., and tubes using perfluoropolyether elastomer are “CHEM—SURE Is sold under the product name. Although these tubes have dramatically improved durability due to the ePT FE membrane, they use silicone elastomers and perfluoroelastomers, so that they are essentially the same as those described in References 1 and 2. The problem is inherent. That is, when a silicone elastomer is used, the chemical resistance is inferior, and when a perfluoropolyether elastomer is used, the inner surface is more easily damaged than when a silicone elastomer is used.
[0006] シリコーンエラストマ一を利用したチューブの耐薬品性を改善するため、内面をフッ 素榭脂層で保護することも提案されて ヽる (文献 4など)。またフッ素系エラストマ一を 利用したチューブ内面のタック性を改善するため、内面をフッ素榭脂層で保護するこ とも提案されている(文献 5など)。しかしこれら多層構造のチューブは、エラストマ一 層と、内面のフッ素榭脂層との間の密着性が十分ではない。特にチューブの径方向 に圧縮開放の繰り返しストレスを負荷すると、内面層とエラストマ一層の接合界面に 該ストレスが集中し、特に"チーク部"と言われる屈曲部において、層間剥離を発生し 、十分な耐久性が得られない。 [0006] In order to improve the chemical resistance of a tube using a silicone elastomer, it has also been proposed to protect the inner surface with a fluorocarbon resin layer (Reference 4, etc.). In order to improve the tackiness of the inner surface of the tube using a fluorine-based elastomer, it has also been proposed to protect the inner surface with a fluorine resin layer (Reference 5, etc.). However, these multi-layered tubes have insufficient adhesion between the elastomer layer and the inner surface of the fluororesin layer. In particular, when stress is repeatedly applied in the radial direction of the tube, the stress concentrates on the joint interface between the inner surface layer and the elastomer layer, and delamination occurs particularly at the bent portion, which is called the “teak portion”. Durability cannot be obtained.
[0007] 文献 6には含フッ素ポリマー層と熱可塑性エラストマ一層とを、中間層を介して接着 することが開示されている。この中間層は、熱可塑性エラストマ一と含フッ素ポリマー の海島構造をしており、熱可塑性エラストマ一層との界面近傍では、熱可塑性ポリマ 一が海相を、含フッ素ポリマーが島相を形成しており、含フッ素ポリマー層との界面 近傍では含フッ素ポリマーが海相を、熱可塑性ポリマーが島相を形成するものである 。このような中間層を形成すると、前記層間剥離の問題は、改善されるものと思料され
る。し力し文献 6の中間層は、層の表裏で海島構造の海と島が逆転する複雑な構造 である。そしてこのような複雑な中間層は、該中間層を熱可塑性エラストマ一層及び 含フッ素ポリマー層と共押出しすることとし、この共押出条件 (設定温度、押出量、引 取速度、ダイ構造、スクリュー構造)を調整することによって形成できるとのことである 。例えば中間層がポリエステル系熱可塑性エラストマ一 (TPEE)とエチレンーテトラ フルォロエチレン共重合体 (ETFE)とから成る場合、ポリマー温度 200〜260°C、剪 断速度 0〜: LOOOsec— 1の条件(条件 1)では TPEEが海相を、 ETFEが島相を形成し 、ポリマー温度が 230〜310°C、剪断速度 0〜1000sec— 1の条件(条件 2)では ETF Eが海相を、 TPEEが島相を形成するとのことである。しかし、この方法では、中間層 の内側と外側でポリマー温度を異ならせる必要がある力 実際の中間層の厚さは僅 力 0. 1mm程度であり(実施例)、この程度の僅かな厚み差の間で温度を異ならせる ことが現実的に可能であるのか大いに疑問である。特にポリマー温度が 230〜260 °Cの範囲は前記条件 1及び条件 2の両方に含まれるため、いかなる相構造になるの か不明であり、 TPEEを確実に海相にするためにはポリマー温度を 230°C以下にす る必要があり、また TPEEを確実に島相にするためにはポリマー温度を 260°C以上に する必要がある。僅か 0. 1mmの間に、 30°C ( = 260— 230°C)以上の温度差を生じ させるのは、事実上、不可能に近いのではないかと思われる。また万が一実現できた としても、再現性に乏しぐ品質の確保が極めて難しいと思料される。さらに文献 6に よれば、層の表裏で海島構造の海と島が逆転する複雑な構造を採用する必要がある ため、使用できるエラストマ一と含フッ素ポリマーの組み合わせは、事実上、極めて限 られたものにならざるを得ない。さらに共押出しのためにエラストマ一が長時間加熱さ れてしまう。そのためエラストマ一が熱劣化し、弾性も低下する。 [0007] Document 6 discloses that a fluorine-containing polymer layer and a thermoplastic elastomer layer are bonded via an intermediate layer. This intermediate layer has a sea-island structure of a thermoplastic elastomer and a fluoropolymer, and in the vicinity of the interface between the thermoplastic elastomer layer, the thermoplastic polymer forms a sea phase and the fluoropolymer forms an island phase. In the vicinity of the interface with the fluoropolymer layer, the fluoropolymer forms a sea phase and the thermoplastic polymer forms an island phase. The formation of such an intermediate layer is thought to improve the delamination problem. The However, the intermediate layer in Reference 6 is a complex structure in which the sea and islands of the sea-island structure are reversed on both sides of the layer. Such a complicated intermediate layer is obtained by co-extruding the intermediate layer with a thermoplastic elastomer layer and a fluorine-containing polymer layer. ) Can be formed by adjusting. For example, when the intermediate layer is made of polyester-based thermoplastic elastomer (TPEE) and ethylene-tetrafluoroethylene copolymer (ETFE), polymer temperature 200 to 260 ° C, cutting speed 0 to: Conditions of LOOOsec- 1 (Condition 1) Then, TPEE forms the sea phase, ETFE forms the island phase, and the polymer temperature is 230 to 310 ° C and the shear rate is 0 to 100 sec- 1 (condition 2). ETF E is the sea phase and TPEE is the island phase. It will be formed. However, with this method, the force that requires the polymer temperature to be different between the inside and outside of the intermediate layer, the actual intermediate layer thickness is only about 0.1 mm (Example), and this slight thickness difference It is highly questionable whether it is practically possible to vary the temperature between the two. In particular, since the polymer temperature range of 230 to 260 ° C is included in both conditions 1 and 2 above, it is unclear what phase structure it will be, and the polymer temperature must be set to ensure that TPEE is in the sea phase. The temperature must be 230 ° C or lower, and the polymer temperature must be 260 ° C or higher to ensure that TPEE is in the island phase. It seems virtually impossible to create a temperature difference of more than 30 ° C (= 260–230 ° C) in just 0.1 mm. Even if it can be realized, it seems extremely difficult to ensure quality that is poorly reproducible. Furthermore, according to Reference 6, it is necessary to adopt a complex structure in which the sea and islands of the sea-island structure are reversed on the front and back of the layer, so the usable combinations of elastomers and fluoropolymers are practically very limited. It must be a thing. Furthermore, the elastomer is heated for a long time due to co-extrusion. Therefore, the elastomer is thermally deteriorated and the elasticity is also lowered.
[0008] なお文献 7には、多孔質フッ素榭脂フィルムの細孔内に弾性体を充填した弾性層 を、フッ素榭脂フィルム力もなる離型層に積層することが開示されている。しかし、この 文献 7はトナー定着部材に関するものである。また前記弾性層は、フッ素榭脂フィル ムに直接積層されている。 [0008] Note that Document 7 discloses that an elastic layer in which an elastic body is filled in the pores of a porous fluororesin film is laminated on a release layer having a fluororesin film force. However, this document 7 relates to a toner fixing member. The elastic layer is directly laminated on the fluorine resin film.
[0009] 本発明は上記の様な事情に着目してなされたものであって、その目的は、繰り返し 押圧に対する耐久性、及び耐薬品性を確実に改善できる弾性チューブを提供するこ
とにある。 [0009] The present invention has been made paying attention to the circumstances as described above, and an object of the present invention is to provide an elastic tube capable of reliably improving durability against repeated pressing and chemical resistance. It is in.
[0010] 文献 1 :特開 2000— 179753号公報 [0010] Reference 1: Japanese Patent Laid-Open No. 2000-179753
文献 2 :実開昭 59— 41687号公報 Reference 2: Japanese Utility Model Publication 59-41687
文献 3:特表 2002— 502735号公報 Reference 3: Special Table 2002-502735
文献 4 :実開平 4 47185号公報 Reference 4: Japanese Utility Model Publication No. 4 47185
文献 5:特開 2001— 193659号公報 Reference 5: Japanese Patent Laid-Open No. 2001-193659
文献 6 :特開平 9 131833号公報 Reference 6: JP-A-9 131833
文献 7:特開 2005 - 257762号公報 Reference 7: Japanese Unexamined Patent Application Publication No. 2005-257762
発明の開示 Disclosure of the invention
[0011] 本発明者は、前記課題を解決するために鋭意研究を重ねた結果、多孔質フッ素 榭脂の細孔に弾性体を充填した中間層を内面のフッ素榭脂層と外側の弾性層との 間に介挿し、内面のフッ素榭脂層と、中間層の多孔質フッ素榭脂とを接合し、かつ外 側の弾性層と、中間層の弾性体とを接合すれば、内面のフッ素榭脂層と外側の弾性 層との間の密着性を確実に著しく改善でき、繰り返し押圧に対する耐久性、及び耐 薬品性を確実に改善できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventor has determined that an intermediate layer in which the pores of porous fluorine resin are filled with an elastic body includes an inner layer fluorine resin layer and an outer elastic layer. The inner surface fluorine resin layer and the intermediate layer porous fluorine resin are joined together, and the outer elastic layer and the intermediate layer elastic body are joined together. The present inventors have found that the adhesion between the resin layer and the outer elastic layer can be remarkably improved, and the durability against repeated pressing and the chemical resistance can be reliably improved.
[0012] すなわち、本発明に係る積層型弾性チューブは、 [0012] That is, the laminated elastic tube according to the present invention is
内面(内層)がフッ素榭脂層で構成され、 The inner surface (inner layer) is composed of a fluorine resin layer,
このフッ素榭脂層よりも外側に弾性層 (外層)が形成されており、 An elastic layer (outer layer) is formed on the outer side of this fluorocoagulant layer,
前記フッ素榭脂層(内層)と弾性層 (外層)との間に、多孔質フッ素榭脂 (多孔質ポリ テトラフルォロエチレンなど)と、この多孔質フッ素榭脂の細孔を充填する弾性体とか ら構成される中間層が形成されており、 Between the fluorine resin layer (inner layer) and the elastic layer (outer layer), porous fluorine resin (such as porous polytetrafluoroethylene) and the elasticity filling the pores of the porous fluorine resin An intermediate layer composed of the body is formed,
内層のフッ素榭脂層と、中間層の多孔質フッ素榭脂とが接合 (特に熱融着)してお り、 The inner fluororesin layer and the intermediate porous fluororesin are joined (particularly heat-sealed),
外層の弾性層と、中間層の弾性体とが接合している点に要旨を有する。 The gist is that the elastic layer of the outer layer and the elastic body of the intermediate layer are joined.
[0013] 前記内面のフッ素榭脂層は、フッ素榭脂フィルムを卷回したチューブが好ましい。 The inner surface of the fluorine resin layer is preferably a tube wound with a fluorine resin film.
またこのフッ素榭脂層は、チューブの長さ方向と直交する方向に延伸されているのが 望ましい。特に好ましいフッ素榭脂層は、充実延伸フッ素榭脂層 (特に充実延伸ポリ テトラフルォロエチレン層)である。なお前記内面のフッ素榭脂層は、溶融性フッ素榭
脂(PFA、 FEP、 PVDF、 THV、 EFEPなど)から形成してもよい。 Further, it is desirable that this fluorine resin layer is stretched in a direction orthogonal to the length direction of the tube. A particularly preferred fluorine resin layer is a fully stretched fluorine resin layer (particularly a fully stretched polytetrafluoroethylene layer). The fluorine resin layer on the inner surface is a meltable fluorine resin layer. It may be formed from fat (PFA, FEP, PVDF, THV, EFEP, etc.).
[0014] また前記内面のフッ素榭脂層は、 2種以上のフッ素榭脂を積層することによって形 成してもよい。例えば 2種以上のフッ素榭脂がそれぞれチューブになっており、このチ ユーブが内側力も順に積層されていてもよい。また 2種以上のフッ素榭脂を平面状に 積層し、この平面状積層体を卷回してチューブ状にしてもよい。 2種以上のフッ素榭 脂のうち 1種は、充実延伸フッ素榭脂であり、また他の 1種は溶融性フッ素榭脂(PFA 、 FEP、 PVDF、 THV、 EFEPなど)であるのが好ましい。溶融性フッ素榭脂は、内 面のフッ素榭脂層の最も外側に配するのが望ましい。 [0014] Further, the inner surface of the fluorine resin layer may be formed by laminating two or more kinds of fluorine resins. For example, two or more types of fluorine resin may each be a tube, and this tube may be laminated in order of the inner force. Further, two or more kinds of fluorine resins may be laminated in a planar shape, and the planar laminate may be wound into a tube shape. It is preferable that one of the two or more types of fluorine resins is a fully expanded fluorine resin, and the other one is a meltable fluorine resin (PFA, FEP, PVDF, THV, EFEP, etc.). It is desirable to dispose the meltable fluorine resin on the outermost side of the fluorine resin layer on the inner surface.
[0015] 前記中間層や外層の弾性体としては、シリコーン系エラストマ一、フッ素系エラスト マー、フルォロシリコーン系エラストマ一などが使用できる。また中間層や外層の弾性 体は、ポリエステル系熱可塑性エラストマ一、ポリウレタン系熱可塑性エラストマ一、ポ リオレフイン系熱可塑性エラストマ一、スチレン系ブロック共重合体エラストマ一、熱可 塑性加硫エラストマ一、ポリアミド系熱可塑性エラストマ一などであってもよい。本発 明では、中間層の弾性体と外層の弾性体に、同じ榭脂を使用するのが推奨される。 弾性層(外層)の貯蔵弾性率 E,は、例えば、 1 X 102〜1 X 108Pa程度である。弾性 層は、(1)弾性体力 なる第 1の層と、(2)多孔質ポリテトラフルォロエチレンフィルム と、この多孔質ポリテトラフルォロエチレンフィルムの細孔を充填する弾性体とからな る第 2の層とが重なった渦巻き状の積層構造を有していてもよい。前記第 1の層の厚 さと第 2の層の厚さの比(第 1の層 Z第 2の層)は、例えば、 6. 5Z1以下程度である。 [0015] As the elastic body of the intermediate layer or the outer layer, a silicone elastomer, a fluorine elastomer, a fluorosilicone elastomer, or the like can be used. The elastic material of the intermediate layer and outer layer is polyester thermoplastic elastomer, polyurethane thermoplastic elastomer, polyolefin thermoplastic elastomer, styrenic block copolymer elastomer, thermoplastic vulcanized elastomer, polyamide. It may be a thermoplastic elastomer. In the present invention, it is recommended to use the same resin for the elastic body of the intermediate layer and the elastic body of the outer layer. The storage elastic modulus E of the elastic layer (outer layer) is, for example, about 1 × 10 2 to 1 × 10 8 Pa. The elastic layer includes (1) a first layer having elastic force, (2) a porous polytetrafluoroethylene film, and an elastic body filling the pores of the porous polytetrafluoroethylene film. It may have a spiral laminated structure in which the second layer is overlapped. The ratio of the thickness of the first layer to the thickness of the second layer (first layer Z second layer) is, for example, about 6.5 Z1 or less.
[0016] 本発明の積層型弾性チューブの厚みは、例えば、以下の通りである。 [0016] The thickness of the laminated elastic tube of the present invention is, for example, as follows.
内層(フッ素榭脂層): 1〜200 μ m Inner layer (Fluororesin layer): 1 to 200 μm
中間層: 10〜 2000 /z m Intermediate layer: 10-2000 / z m
外層(弾性層): 0. 15〜80mm Outer layer (elastic layer): 0.15-80mm
また弾性層の厚さは、積層型弾性チューブの内径に対して、例えば、 10〜200% 程度である。 The thickness of the elastic layer is, for example, about 10 to 200% with respect to the inner diameter of the laminated elastic tube.
[0017] 弾性層よりも外側に、耐摩耗層(ポリテトラフルォロエチレンのチューブ状物など)が 形成されていてもよい。 [0017] A wear-resistant layer (such as a polytetrafluoroethylene tube) may be formed outside the elastic layer.
[0018] 本発明の積層型弾性チューブは、フッ素榭脂層(内層)からなるチューブを多孔質
フッ素榭脂で被覆し、これらを熱融着した後、 [0018] The laminated elastic tube of the present invention has a porous tube made of a fluorine resin layer (inner layer). After coating with fluorine resin and heat-sealing them,
多孔質フッ素榭脂側力 多孔質フッ素榭脂の細孔に液状の弾性体原料を充填し、 充填後、三次元網目構造を形成させて前記弾性体原料を弾性体にすることによつ て製造できる。好ましくは、前記多孔質フッ素榭脂の外側に、弾性体原料を含む層を 形成した後で三次元網目構造を形成する。 Porous fluorine resin side force By filling the pores of the porous fluorine resin with a liquid elastic material, and forming a three-dimensional network structure after filling, the elastic material is made into an elastic body. Can be manufactured. Preferably, a three-dimensional network structure is formed after forming a layer containing an elastic material on the outer side of the porous fluorine resin.
[0019] 本発明の積層型弾性チューブは、ピンチバルブやローラーポンプに有用である。 The laminated elastic tube of the present invention is useful for a pinch valve or a roller pump.
図面の簡単な説明 Brief Description of Drawings
[0020] [図 1]図 1は、本発明の積層型弾性チューブの一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated elastic tube according to the present invention.
[図 2]図 2は、本発明の積層型弾性チューブの要部拡大図である。 FIG. 2 is an enlarged view of a main part of the laminated elastic tube of the present invention.
[図 3]図 3は、本発明で使用する外層(弾性層)の一例を示す概略断面図である。 FIG. 3 is a schematic cross-sectional view showing an example of an outer layer (elastic layer) used in the present invention.
[図 4]図 4は、本発明の積層型弾性チューブの他の例を示す概略断面図である。 発明を実施するための最良の形態 FIG. 4 is a schematic cross-sectional view showing another example of the laminated elastic tube of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、図面を適宜参照しながら本発明をより具体的に説明するが、本発明はもとよ り図示例に限定される訳ではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変更を 加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含され る。 [0021] Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate. However, the present invention is not limited to the illustrated examples, and is suitable within a range that can meet the purpose described above. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention.
[0022] 図 1は本発明の積層型弾性チューブの一例を示す概略断面図であり、図 2はこの 断面図の要部拡大図である。図 1に示されるように、本発明の積層型弾性チューブは 、内面がフッ素榭脂層 20で構成され、このフッ素榭脂層 20よりも外側に弾性層 10が 形成されており、これらフッ素榭脂層 20と弾性層 10との間に中間層 30が形成されて いる。この中間層 30は、多孔質フッ素榭脂 32と、この多孔質フッ素榭脂の細孔を充 填する弾性体 31とから構成されている。そして内面のフッ素榭脂層 20と、中間層 30 の多孔質フッ素榭脂 32とが接合しており、外側の弾性層 10と、中間層 30の弾性体 3 1とが接合している。 FIG. 1 is a schematic cross-sectional view showing an example of a laminated elastic tube of the present invention, and FIG. 2 is an enlarged view of a main part of the cross-sectional view. As shown in FIG. 1, the laminated elastic tube of the present invention has an inner surface composed of a fluorine resin layer 20, and an elastic layer 10 formed outside the fluorine resin layer 20. An intermediate layer 30 is formed between the oil layer 20 and the elastic layer 10. The intermediate layer 30 is composed of a porous fluorine resin 32 and an elastic body 31 that fills the pores of the porous fluorine resin. The inner surface of the fluorocarbon resin layer 20 and the intermediate layer 30 of the porous fluorocarbon resin 32 are bonded together, and the outer elastic layer 10 and the intermediate layer 30 of the elastic body 31 are bonded together.
[0023] この中間層 30を採用するとフッ素榭脂層 20と弾性層 10との間の密着性を飛躍的 に高めることができる。海島構造では、海部は連続構造であっても、島部は独立構造 になってしまうのに対し、多孔質フッ素榭脂 32の細孔に弾性体 31を充填する本願発 明の中間層 30では、多孔質フッ素榭脂 32及び弾性体 31のいずれもが連続構造に
なるため、弾性体とフッ素榭脂との間の連続界面の面積が飛躍的に増大する。このこ とが密着性の飛躍的な向上に結びついているものと思料される。またこの積層型弹 性チューブは、弾性層 10や弾性体 31を熱劣化させることなく製造することも可能で あり、弾性を確実に確保できる。 When the intermediate layer 30 is employed, the adhesion between the fluorine resin layer 20 and the elastic layer 10 can be remarkably improved. In the sea-island structure, even if the sea part is a continuous structure, the island part becomes an independent structure, whereas in the intermediate layer 30 according to the present invention in which the pores of the porous fluorocarbon resin 32 are filled with the elastic body 31, , Both porous fluororesin 32 and elastic body 31 have a continuous structure As a result, the area of the continuous interface between the elastic body and the fluorocoagulant increases dramatically. This is thought to have led to a dramatic improvement in adhesion. In addition, this laminated type rigid tube can be manufactured without thermally degrading the elastic layer 10 and the elastic body 31, and the elasticity can be reliably ensured.
[0024] 以下、各構成についてより詳細に説明する。 Hereinafter, each configuration will be described in more detail.
[0025] 1 : 弾性層(外層) 10 [0025] 1: Elastic layer (outer layer) 10
本発明の積層型弾性チューブの弾性は、弾性体 11を含む弾性層 10 (以下、外層 と称する場合もある)によって達成される。この弾性体 11としては、シリコーン系エラス トマ一、フッ素系エラストマ一(架橋型フッ素系エラストマ一、フッ素系熱可塑性エラス トマ一など)、フルォロシリコーン系エラストマ一、ポリエステル系エラストマ一、ポリウレ タン系エラストマ一(ポリウレタンゴム、ポリウレタン系熱可塑性エラストマ一など)、ポリ ォレフィン系エラストマ一、スチレン系エラストマ一、ポリアミド系エラストマ一、フルォ 口フォスファゼンエラストマ一、ホスファゼンゴム、二トリノレゴム、スチレン ブタジエン ゴム(SBR)、クロロプレンゴムなどが例示できる。これら弾性体 11は、単独で又は二 種以上を組み合わせて使用できる。 The elasticity of the laminated elastic tube of the present invention is achieved by an elastic layer 10 including an elastic body 11 (hereinafter also referred to as an outer layer). Examples of the elastic body 11 include silicone elastomer, fluorine elastomer (crosslinked fluorine elastomer, fluorine thermoplastic elastomer, etc.), fluorosilicone elastomer, polyester elastomer, and polyurethane. Elastomer (polyurethane rubber, polyurethane thermoplastic elastomer, etc.), polyolefin elastomer, styrene elastomer, polyamide elastomer, fluoro-phosphazene elastomer, phosphazene rubber, nitrinole rubber, styrene butadiene rubber ( SBR), chloroprene rubber and the like. These elastic bodies 11 can be used alone or in combination of two or more.
[0026] 前記弾性体 11は、架橋型エラストマ一(例えば、シリコーン系エラストマ一、フッ素 系エラストマ一、フルォロシリコーン系エラストマ一などに該当する架橋型エラストマ 一)であってもよぐ熱可塑性エラストマ一(好ましくはポリエステル系熱可塑性エラス トマ一(特に熱可塑性共重合ポリエステル(Copolyester Thermoplastic Elastomers : C OPE) )、ポリウレタン系熱可塑性エラストマ一(Thermoplastic Polyurethane Elastome rs :TPU)、ポリオレフイン系熱可塑性エラストマ一(Thermoplastic Olefin Elastomers: TPO)、フッ素系熱可塑性エラストマ一、スチレン系ブロック共重合体エラストマ一(St yrenic Block Copolymer Elastomers: SBC)、熱可塑'性カ卩硫エラストマ一 (Copolyeste r Thermoplastic Elastomers: COPE)、ポリアミド系熱可塑性エラストマ一(Polyamide Thermoplastic Elastomers : PEBA)など;好ましくは COPE、 TPU、 TPO、 SBC、 CO PE、 PEBA)であってもよい。架橋型エラストマ一は、積層型弾性チューブの使用温 度を高めることができる点で優れている。熱可塑性エラストマ一は、押出しによる連続 生産が可能である点、弾性が高 ヽ点などで優れて ヽる。
[0027] 特に好ましい弾性体 11は、シリコーン系エラストマ一、フッ素系エラストマ一、フル ォロシリコーン系エラストマ一などである。これら特に好ましい弾性体 11は、耐熱性、 耐薬品性、又は繰り返し押圧に対する耐久性のいずれかの点で優れている。例えば シリコーン系エラストマ一は、機械的強度、弾性の持続性、圧縮応力解放時の形状 復元性などに特に優れている。フッ素系エラストマ一は、耐薬品性に優れている。フ ルォロシリコーン系エラストマ一は、シリコーン系エラストマ一とフッ素系エラストマ一 両者の中間の性質を示す。 [0026] The elastic body 11 may be a thermoplastic elastomer that may be a crosslinked elastomer (for example, a crosslinked elastomer corresponding to a silicone elastomer, a fluorine elastomer, a fluorosilicone elastomer, etc.). Elastomers (preferably polyester-based thermoplastic elastomers (especially Copolyester Thermoplastic Elastomers: C OPE)), polyurethane-based thermoplastic elastomers (Thermoplastic Polyurethane Elastomers: TPU), polyolefin-based thermoplastic elastomers (Thermoplastic Olefin Elastomers: TPO), Fluorine Thermoplastic Elastomers, Styrenic Block Copolymer Elastomers (SBC), Thermoplastic Elastomers (COPE) , Polyamide Thermoplastic Elastomers: P EBA) and the like; preferably COPE, TPU, TPO, SBC, COPE, PEBA). The cross-linked elastomer is excellent in that the operating temperature of the laminated elastic tube can be increased. Thermoplastic elastomers are excellent in that they can be produced continuously by extrusion and have a high elasticity. [0027] Particularly preferred elastic bodies 11 are silicone elastomers, fluorine elastomers, fluorosilicone elastomers, and the like. These particularly preferred elastic bodies 11 are excellent in any of heat resistance, chemical resistance, and durability against repeated pressing. For example, silicone elastomers are particularly excellent in mechanical strength, elasticity sustainability, and shape recovery when releasing compressive stress. The fluorine-based elastomer is excellent in chemical resistance. Fluorosilicone elastomers exhibit intermediate properties between both silicone elastomers and fluorine elastomers.
[0028] 前記シリコーン系エラストマ一には、ケィ素にメチル基が結合しているオルガノポリ シロキサンの架橋体 (メチルシリコーンゴムなど)、ケィ素に芳香族炭化水素が結合し て!、るオルガノポリシロキサンの架橋体(フエ-ルシリコーンゴムなど)などのシリコー ンゴムが含まれる。 [0028] The silicone elastomer has a crosslinked organopolysiloxane (methylsilicone rubber or the like) in which a methyl group is bonded to the key chain, and an aromatic hydrocarbon bonded to the key! Silicone rubber such as cross-linked products (such as vinyl silicone rubber) are included.
[0029] 前記フッ素系エラストマ一には、フルォロメチレンを主鎖に有するポリマーの架橋体 、フッ素系熱可塑性エラストマ一などが含まれる。前記架橋体には、 FKM (2元系 FK M、 3元系 FKM、パーフルォロビュルエーテル含有 FKM)、 FFKM、 TFE— Pr系 フッ素ゴム、 TFE— Pr—VdF系フッ素ゴム、フッ素化ポリエーテル骨格が Si架橋され たゴム (液状フッ素ゴムなど)などが含まれる(下記式参照)。なお液状フッ素ゴムは、 「SIFEL」(商品名)として信越化学工業 (株)力 入手できる。 [0029] The fluorine-based elastomer includes a crosslinked polymer having fluoromethylene as a main chain, a fluorine-based thermoplastic elastomer, and the like. The cross-linked products include FKM (binary FKM, ternary FKM, perfluorobule ether-containing FKM), FFKM, TFE-Pr fluororubber, TFE-Pr-VdF fluororubber, fluorinated poly This includes rubber (such as liquid fluororubber) in which the ether skeleton is Si-crosslinked (see the following formula). Liquid fluororubber is available from Shin-Etsu Chemical Co., Ltd. as “SIFEL” (trade name).
[0030] [化 1]
[0030] [Chemical 1]
2元系 F KM Binary F KM
― (C F2- C H2) m- (C F2- n -― (CF 2 -CH 2) m- ( CF 2- n-
C F3 CF 3
3元系 F KM Ternary F KM
- (C F2- C H2) (C F2-C F) n- CC F2- C F2) し- -(CF 2 -CH 2 ) (CF 2 -CF) n -CC F 2 -CF 2 )
C F3 CF 3
パーフルォロビニルェ一テル含有 F KM Perfluorovinyl ester containing F KM
- (C F2- C H2〕 m- (C F2-C F2) n- (C F2-C F) し- -(CF 2 -CH 2 ) m- (CF 2 -CF 2 ) n- (CF 2 -CF)
F F KM °"R f FF KM ° " R f
(パ一フル才ロふつ素ゴム) (Perfect full-fledged rubber rubber)
- (C F„- C FJ - (C F9— C F) - 2 2 m Z I n -(CF „-C FJ-(CF 9 — CF)-2 2 m ZI n
O-R f O-R f
F E P F E P
T F E- P r系フッ素ゴム T F E- P r series fluoro rubber
- (C F2—C F2) m- (C F2-C H) n - -(CF 2 —CF 2 ) m- (CF 2 -CH) n-
C H3 CH 3
T F E- P r - d F系フッ素ゴム T F E- P r-d F series fluororubber
- (C F2— C F2) m— (C H2-C H) n— (C F2-C H2) -(CF 2 — CF 2 ) m — (CH 2 -CH) n — (CF 2 -CH 2 )
C H3 CH 3
フッ素系熱可塑性エラストマ一 Fluorine-based thermoplastic elastomer
一 (H S) m— ( F KM) 一 CH S) n— One (H S) m— (F KM) One CH S) n—
H S : Hard segment ( E T F Eなど) H S: Hard segment (E T F E, etc.)
液状フッ素ゴム Liquid fluoro rubber
〜S i - (O-C F2- C F) m- S i ~ ~ S i-(OC F 2 -CF) m -S i ~
C F3 フルォロシリコーン系エラストマ一には、ケィ素にフルォロアルキル基が結合したオル ガノポリシロキサンの架橋体などのフルォロシリコーンゴムが含まれる。フルォロアル キル基が結合したポリシロキサンの架橋体 (FMVQなど;下記式参照)は、フルォロ シリコーンゴムに該当する。 CF 3 fluorosilicone elastomers include fluorosilicone rubbers such as crosslinked organopolysiloxanes in which fluoroalkyl groups are bonded to silicon. A cross-linked polysiloxane bonded with a fluoroalkyl group (FMVQ, etc .; see the following formula) corresponds to a fluorosilicone rubber.
[化 2]
^ H 2C H 2 C F 3 [Chemical 2] ^ H 2 CH 2 CF 3
F M V Q — ( S i - O ) - F M V Q — (S i-O)-
I π I π
C H 3 CH 3
[0032] 架橋型エラストマ一が架橋したり、熱可塑性エラストマ一のハードセグメント同士が 相互作用することによって最終的に硬化 (架橋に限定されず、広く三次元網目構造 を形成することを意味する。以下、特に断りがない限り、同じ)する限り、前記弾性体 1 1は原料段階では硬化していなくてもよい。また弾性体原料 11は、固体状 (混練性) であってもよぐ液状であってもよい。固体状 (混練性)弾性体原料 11から得られる弾 性体 11は、機械的強度や圧縮応力解放時の形状復元性などが特に優れている。固 体状弾性体原料 11としては、特にミラブル (混練)型シリコーンゴムが使用できる。ミラ ブル型シリコーンゴムとは、高粘度のシリコーンゴムコンパウンドと硬化剤 (加硫剤)を 含み、加熱によって硬化するゴムであり、熱加硫型シリコーンゴム(HCR (Heat Cured Rubber)、 HVR (Heat Vulcanizing Rubber)、 HTV (High Temperature Vulcanizing; ゴム)とも称される。 [0032] This means that the cross-linked elastomer is cross-linked or the hard segments of the thermoplastic elastomer are allowed to interact with each other to finally cure (not limited to cross-linking, and widely forms a three-dimensional network structure). Hereinafter, unless otherwise specified, the elastic body 11 may not be cured at the raw material stage. The elastic material 11 may be solid (kneadability) or liquid. The elastic body 11 obtained from the solid (kneadable) elastic material 11 is particularly excellent in mechanical strength and shape recovery property when releasing compressive stress. As the solid elastic material 11, a millable (kneaded) type silicone rubber can be used. Millable silicone rubber is a rubber that contains a high viscosity silicone rubber compound and a curing agent (vulcanizing agent) and cures when heated. Heat-curing silicone rubber (HCR (Heat Cured Rubber), HVR (Heat) Vulcanizing Rubber) and HTV (High Temperature Vulcanizing; rubber).
[0033] 一方、液状弾性体原料 11は、後述するように、弾性体 11を他の材料で補強する場 合に有用である。例えば弾性体 11を多孔質体の細孔に充填して補強する場合があ り、液状弾性体原料 11を使用すれば、多孔質体の細孔への含浸が容易になる。 On the other hand, the liquid elastic material 11 is useful when the elastic body 11 is reinforced with another material, as will be described later. For example, the elastic body 11 may be reinforced by filling the pores of the porous body. If the liquid elastic material 11 is used, the pores of the porous body can be easily impregnated.
[0034] 液状弾性体原料 11とは、硬化前は液状であり、硬化後に弾性を示すようになる弹 性体原料 11のことを意味し、例えば、液状のシリコーン系エラストマ一 (液状シリコー ンゴムなど)、液状のフッ素系エラストマ一(液状フッ素ゴムなど)、液状のフルォロシリ コーン系エラストマ一 (液状フルォロシリコーンゴムなど)、加温したり溶剤で溶解する ことによって液状 (流動状)にした熱可塑性エラストマ一などが挙げられる。 [0034] The liquid elastic material 11 means a liquid material 11 that is liquid before curing and exhibits elasticity after curing. For example, a liquid silicone elastomer (such as liquid silicone rubber) ), Liquid fluoroelastomers (liquid fluororubber, etc.), liquid fluorosilicone elastomers (liquid fluorosilicone rubber, etc.), heat heated to liquid (fluid) by dissolving in a solvent For example, a plastic elastomer.
[0035] なお液状シリコーンゴム、液状フッ素ゴム、液状フルォロシリコーンゴムなどは、架橋 反応方式によって、空気中の湿気で架橋する縮合反応型、貴金属触媒によって架 橋する付加反応型、加熱によって架橋する加熱硬化型などに分類され、量産性など を考慮すると付加反応型や加熱硬化型が好ま 、。硬化 (架橋)前の粘度(25°C)は 、例えば、 1000ボイズ以下、好ましくは 200ボイズ以下程度である。粘度が低いほど
、後述するように、該弾性体原料 11を多孔質体に含浸させるのが容易になる。このよ うな液状シリコーンゴムは、例えば信越化学工業 (株)から「電気 ·電子 ·一般工業用 R TVゴム」として入手できる。また液状フッ素ゴムは、前述した様に、 rsiFELj (商品名 、信越ィ匕学工業 (株)製)として入手できる。液状フルォロシリコーンゴムは、例えば、 信越化学工業 (株)から「耐油 ·耐溶剤フロロシリコーン」として入手できる。 [0035] Liquid silicone rubber, liquid fluororubber, liquid fluorosilicone rubber, etc. are crosslinked reaction methods, such as a condensation reaction type that crosslinks with moisture in the air, an addition reaction type that crosslinks with a noble metal catalyst, and a crosslink by heating. In view of mass productivity, the addition reaction type and the thermosetting type are preferred. The viscosity (25 ° C.) before curing (crosslinking) is, for example, about 1000 boise or less, preferably about 200 boise or less. The lower the viscosity As will be described later, it becomes easy to impregnate the porous material with the elastic material 11. Such a liquid silicone rubber can be obtained from Shin-Etsu Chemical Co., Ltd. as “RTV rubber for electric / electronic / general industry”. Further, as described above, the liquid fluororubber is available as rsiFELj (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.). The liquid fluorosilicone rubber can be obtained from Shin-Etsu Chemical Co., Ltd. as “oil resistant / solvent resistant fluorosilicone”, for example.
[0036] 弾性層 10の弾性体 11は、他の素材と組み合わせて使用してもよい。例えば、弾性 体 11に、布帛、有機繊維、無機繊維、カーボン類、金属微粒子、無機粉体などを混 入すれば、機械的強度、電気的特性、熱伝導性などの点で弾性層 10を改善できる。 機械的強度を改善することにより、本発明の弾性チューブをピンチバルブやローラー ポンプに使用した場合に、弾性層 10が押圧力によって損傷するのをより高度に防止 できる。電気的特性、熱伝導性などの点で弾性層 10を改善すれば、得られる積層型 弾性チューブの帯電防止性が良くなり、また積層型弾性チューブの加温が容易にな る。 [0036] The elastic body 11 of the elastic layer 10 may be used in combination with other materials. For example, if the elastic body 11 is mixed with fabric, organic fibers, inorganic fibers, carbons, metal fine particles, inorganic powder, etc., the elastic layer 10 is formed in terms of mechanical strength, electrical characteristics, thermal conductivity, and the like. Can improve. By improving the mechanical strength, when the elastic tube of the present invention is used for a pinch valve or a roller pump, it is possible to prevent the elastic layer 10 from being damaged by the pressing force to a higher degree. If the elastic layer 10 is improved in terms of electrical characteristics, thermal conductivity, etc., the antistatic property of the resulting laminated elastic tube will be improved, and the heating of the laminated elastic tube will be easier.
[0037] 弾性層 10の機械的強度を高める場合、多孔質体の細孔に弾性体 11を充填するの が最も望ましい。弾性体 11を多孔質体で支持することにより、弾性を損なうことなく弾 性層 10の機械的強度を高めることができる。特に好ましい強化弾性層 10は、弾性体 11からなる第 1の層 12と、弾性体 11によって細孔が充填された多孔質フィルムの層 13 (第 2の層)とが重なった渦巻き状の積層構造を有するものである(以下、渦巻き状 弾性層 10と 、う)。図 3はこの渦巻き状弾性層 10の一例を示す概略断面図である。 渦巻き状弾性層 10は、特表 2002— 502735号公報に記載されているように、多孔 質フィルムの内部及び表面に弾性体を含浸 (コーティング)したものを卷回すること〖こ よって製造でき、弾性層 10の機械的強度を飛躍的に高めることができる。また渦巻き 状弾性層 10は、圧縮応力解放時の形状復元性の点でも顕著に優れて!/、る。 [0037] In order to increase the mechanical strength of the elastic layer 10, it is most desirable to fill the pores of the porous body with the elastic body 11. By supporting the elastic body 11 with the porous body, the mechanical strength of the elastic layer 10 can be increased without impairing the elasticity. A particularly preferred reinforced elastic layer 10 is a spiral laminate in which a first layer 12 composed of an elastic body 11 and a layer 13 (second layer) of a porous film filled with pores by the elastic body 11 are overlapped. It has a structure (hereinafter referred to as a spiral elastic layer 10). FIG. 3 is a schematic sectional view showing an example of the spiral elastic layer 10. The spiral elastic layer 10 can be produced by winding a porous film impregnated (coated) inside and on the surface of a porous film, as described in JP-T-2002-502735. The mechanical strength of the elastic layer 10 can be dramatically increased. In addition, the spiral elastic layer 10 is remarkably superior in terms of shape recovery when releasing the compressive stress!
[0038] 前記渦巻き状弾性層 10を構成する多孔質フィルムは、柔軟性があって弾性体 11 の弾性を損なわない限り特に限定されず、中間層 30を構成する多孔質フッ素榭脂 3 2と同様であってもよぐフッ素榭脂以外の榭脂から形成される多孔質フィルム (例え ば、ポリイミド多孔質フィルム)であってもよい。好ましい多孔質フィルムは、耐熱性に 優れる多孔質フィルム(多孔質フッ素榭脂フィルム、ポリイミド多孔質フィルムなど)で
あり、特に好ましい多孔質フィルムは耐薬品性、耐熱性、柔軟性などに優れる多孔質 体 (多孔質フッ素榭脂フィルム、特に多孔質ポリテトラフルォロエチレンフィルム)であ る。弾性体 11がシリコーンゴムであり多孔質フィルムが多孔質ポリテトラフルォロェチ レンフィルムである渦巻き状弾性層 10からなる弾性チューブは、ジャパンゴァテックス (株)から「STA— PURE」の商品名で入手できる。また弾性体 11がフッ素ゴムであり 多孔質フィルムが多孔質ポリテトラフルォロエチレンフィルムである渦巻き状弾性層 1 0からなる弾性チューブは、ジャパンゴァテックス (株)から「CHEM— SURE」の商品 名で入手できる。 [0038] The porous film constituting the spiral elastic layer 10 is not particularly limited as long as it is flexible and does not impair the elasticity of the elastic body 11. The porous fluororesin 32 constituting the intermediate layer 30 and A porous film (for example, a polyimide porous film) formed from a resin other than fluorine resin may be used. A preferable porous film is a porous film excellent in heat resistance (such as a porous fluororesin film and a polyimide porous film). A particularly preferred porous film is a porous body (porous fluororesin film, particularly porous polytetrafluoroethylene film) excellent in chemical resistance, heat resistance, flexibility and the like. The elastic tube consisting of the spiral elastic layer 10 in which the elastic body 11 is silicone rubber and the porous film is porous polytetrafluoroethylene film is a product of “STA-PURE” from Japan Gore-Tex Co., Ltd. Available by name. An elastic tube comprising a spiral elastic layer 10 in which the elastic body 11 is a fluoro rubber and the porous film is a porous polytetrafluoroethylene film is a product of “CHEM—SURE” from Japan Gore-Tex Co., Ltd. Available under the trade name.
[0039] 渦巻き状弾性層 10の第 1の層 12 (弾性体)と第 2の層 13 (細孔に弾性体が充填さ れた多孔質フィルム)の厚さの比(第 1の層 Z第 2の層)は、例えば、 6. 5Z1以下程 度である。前記厚さの比が小さくなるほど、弾性層 10の強度が高くなる。好ましい厚さ の比 (第 1の層 Z第 2の層)は、 5Z1以下程度、特に 3Z1以下程度である。一方、前 記厚さの比 (第 1の層 Z第 2の層)の下限は特に限定されず、弾性層 10が実質的に 第 2の層 13単独で構成されていてもよい。なお厚さの比は、多孔質フィルムの内部及 び表面に弾性体を含浸 (コーティング)したものを卷回して渦巻き状弾性層を製造す る際に、多孔質フィルム表面に形成する弾性体の厚みを制御することによって調整 できる。 [0039] Thickness ratio (first layer Z) of the first layer 12 (elastic body) and the second layer 13 (porous film with pores filled with an elastic body) of the spiral elastic layer 10 The second layer) is, for example, about 6.5Z1 or less. As the thickness ratio decreases, the strength of the elastic layer 10 increases. A preferred thickness ratio (first layer Z second layer) is about 5Z1 or less, particularly about 3Z1 or less. On the other hand, the lower limit of the thickness ratio (first layer Z second layer) is not particularly limited, and the elastic layer 10 may be substantially composed of the second layer 13 alone. The thickness ratio is the ratio of the elastic body formed on the surface of the porous film when the spiral elastic layer is manufactured by winding the porous film impregnated (coated) with the elastic body. It can be adjusted by controlling the thickness.
[0040] 弾性層 10の引張強さ (JIS K 6249)は、高いほどチューブの耐久性が向上する ため望ましぐ例えば、 0. IMPa以上、好ましくは 3MPa以上、さらに好ましくは 7MP a以上(例えば、 7MPa〜75MPa程度)である。 [0040] The tensile strength (JIS K 6249) of the elastic layer 10 is higher because the durability of the tube is improved as it is higher. For example, 0. IMPa or higher, preferably 3 MPa or higher, more preferably 7 MPa or higher (for example, 7MPa to 75MPa).
[0041] なお弾性層 10を構成する弾性体 11もまた機械的強度が高 ヽことが望ま ヽ。弾性 体 11の機械的強度が高いと、弾性層 10の機械的強度を高めて弾性層 10の耐久性 を高めることに貢献できるのみならず、中間層 30との接合性も高めることができる。弹 性体 11の引張強さ(JIS K 6249)は、例えば、 0. l〜75MPa程度、好ましくは 0. 3〜75MPa程度の範囲力 設定できる。 [0041] It is desirable that the elastic body 11 constituting the elastic layer 10 also has high mechanical strength. If the mechanical strength of the elastic body 11 is high, not only can the mechanical strength of the elastic layer 10 be increased to increase the durability of the elastic layer 10, but also the bondability with the intermediate layer 30 can be improved. The tensile strength (JIS K 6249) of the elastic body 11 can be set, for example, in the range of about 0.1 to 75 MPa, preferably about 0.3 to 75 MPa.
[0042] 弾性層 10の貯蔵弾性率 E' (温度 20°C、振動数 1Ηζ、圧縮法)は、例えば、 1 X 10 2〜1 X 108Pa程度である。貯蔵弾性率が低すぎると、圧縮応力解放時の形状復元性 が乏しくなる。一方、貯蔵弾性率が高すぎると、チューブを押し潰すことが難しくなり、
ピンチバルブやローラーポンプに使用し難くなる。好ましい貯蔵弾性率 E,は、 1 X 10 4〜1 X 108Pa程度、特に 1 X 105〜5 X 107Pa程度である。 [0042] The storage elastic modulus E '(temperature 20 ° C, frequency 1Ηζ, compression method) of the elastic layer 10 is, for example, about 1 X 10 2 to 1 X 10 8 Pa. If the storage elastic modulus is too low, the shape recoverability when releasing the compressive stress will be poor. On the other hand, if the storage modulus is too high, it will be difficult to crush the tube, It becomes difficult to use for pinch valves and roller pumps. A preferable storage elastic modulus E is about 1 × 10 4 to 1 × 10 8 Pa, particularly about 1 × 10 5 to 5 × 10 7 Pa.
[0043] なお圧縮法による貯蔵弾性率 E,は、 日本工業規格 CFIS) K6200 用語番号 621 1に記載されている「法線ひずみと同位相の、法線応力成分を、ひずみ量で除した値 」のことを意味する。この貯蔵弾性率 E'は、例えば、動的粘弾性測定装置「DMS61 00」(エスアイアイ'ナノテクノロジー (株)製)を用いれば測定できる。 [0043] The storage elastic modulus E by the compression method is the value obtained by dividing the normal stress component in phase with the normal strain by the amount of strain described in Japanese Industrial Standard CFIS) K6200 Term No. 621 1. "Means. The storage elastic modulus E ′ can be measured by using, for example, a dynamic viscoelasticity measuring device “DMS6100” (manufactured by SII Nanotechnology Co., Ltd.).
[0044] 弾性層 10 (外層)の厚さは、該弹性層 10によって構成される積層型弾性チューブ の内径に対して、例えば、 10〜200%程度、好ましくは 20〜150%程度、さらに好ま しくは 25〜125%程度である。また弾性層 10 (外層)の厚さは、例えば、 0. 15〜80 mm程度、好ましくは 0. 3〜60mm程度、さらに好ましくは 0. 4〜50mm程度である 。弾性層 10の厚さが薄すぎると、チューブをピンチバルブやローラーポンプに使用し た際、チューブ内の流体の内圧にチューブが耐えきれずに破裂する虞がある。また 圧縮応力(押圧力)を解放した時の形状回復性が不十分になる。逆に弾性層 10の厚 さが厚すぎると、押圧によるチューブの閉塞が難しくなる。 [0044] The thickness of the elastic layer 10 (outer layer) is, for example, about 10 to 200%, preferably about 20 to 150%, more preferably, with respect to the inner diameter of the laminated elastic tube constituted by the inertia layer 10. It is about 25-125%. The thickness of the elastic layer 10 (outer layer) is, for example, about 0.15 to 80 mm, preferably about 0.3 to 60 mm, and more preferably about 0.4 to 50 mm. If the elastic layer 10 is too thin, when the tube is used for a pinch valve or a roller pump, the tube may not withstand the internal pressure of the fluid in the tube and may burst. In addition, the shape recoverability when releasing the compressive stress (pressing force) becomes insufficient. Conversely, if the elastic layer 10 is too thick, it becomes difficult to close the tube by pressing.
[0045] 2 : フッ素榭脂層(内層) 20 [0045] 2: Fluororesin layer (inner layer) 20
本発明の積層型弾性チューブは、前記弾性層 10に加え、フッ素榭脂層 20も備え ている。このフッ素榭脂層 20は、前記弾性層 10よりも内側に形成されており、チュー ブの内面を構成する。なお、以下、このフッ素榭脂層 20を内層と称する場合もある。 内面のフッ素榭脂層 20は、耐薬品性に優れており、タック性 (粘着性)が低い。弾性 層 10の弾性体 11がシリコーンゴムなどの様に耐薬品性に劣る場合、一般には、チュ ーブ自体の耐薬品性も低下するが、本発明のように内面をフッ素榭脂層 20にすれ ば、この内面のフッ素榭脂層 20をバリア層として利用でき、チューブの耐薬品性を高 めることができる。さらには、流体がチューブ内面に付着することも防止できる。また 弾性層 10の弾性体 11がフッ素系エラストマ一などの様にタック性 (粘着性)が高!、場 合、一般には、上述したように内面同士がくっついてチューブが閉塞したり、チューブ 内面が損傷するなどの不具合が生じるのに対して、本発明のように内面をフッ素榭脂 層 20にすれば、これら不具合を低減できる。さらにはチューブ材料の溶出や膨潤も 防止できる。
[0046] 内層 20に使用されるフッ素榭脂は、タック性 (粘着性)が低い。また耐薬品性が優 れており、例えば、酸、アルカリ、有機溶剤などに対する耐久性が優れている。そのた め、例えば、フォトレジスト液、プロセス機械装置を作動させる為の液体、製薬、食品 、医療、化学などの分野で使用される高腐食性の液体などのような流体を流通させる ことも可能である。このようなフッ素榭脂としては、例えば、非溶融性 (溶融粘度 (例え ば、 340°Cでの粘度)力 101QPa · s以上)のフッ素榭脂(ポリテトラフルォロエチレン (P TFE)など)、溶融性 (溶融粘度 (例えば、 340°Cでの粘度)が 101QPa' s未満)のフッ 素榭脂(テトラフルォロエチレン パーフルォロアルコキシエチレン共重合体(PFA) 、テトラフルォロエチレン一へキサフルォロプロピレン共重合体(FEP)、エチレン テトラフルォロエチレン共重合体(ETFE)、ポリクロ口トリフルォロエチレン(PCTFE) 、ポリビ-リデンフルオライド(PVDF)、ポリビュルフルオライド(PVF)、テトラフルォロ エチレン へキサフルォロプロピレン ビ-リデンフルオライド三元共重合体 (THV) 、 EFEP (ダイキン工業 (株)製の「ネオフロン EFEP」(商品名)など)などが例示でき る。なお前記 PTFEには、テトラフルォロエチレンと比較的少量 (テトラフルォロェチレ ンに対して、例えば、 1質量%以下程度 (好ましくは 0. 1〜0. 3質量%程度))のコモ ノマー(へキサフルォロプロピレン(HFP)、ペルフルォロプロピルビュルエーテル (P PVE)、ペルフルォロェチルビ-ルエーテル(PEVE)、クロ口トリフルォロエチレン(C TFE)、ペルフルォロアルキルエチレンなど)とを共重合させた変性 PTFEも含まれる 。他の層との接着性の観点からは、溶融性フッ素榭脂(特に PFA、 FEP、 PVDF、 T HV、 EFEPなど)が優れており、耐薬品性、耐熱性の観点からは PTFEが優れてい る。また PTFEは、延伸加工による薄膜ィ匕が可能な点でも優れている。なお中間層 3 0の多孔質フッ素榭脂 32が PTFEの場合、内層 20のフッ素榭脂も PTFEを採用する ことが推奨される。内層 20と中間層 30の両方を PTFEで形成すると、内層 20と中間 層 30の熱融着が容易になる。 The laminated elastic tube of the present invention includes a fluorine resin layer 20 in addition to the elastic layer 10. The fluorine resin layer 20 is formed on the inner side of the elastic layer 10 and constitutes the inner surface of the tube. Hereinafter, the fluororesin layer 20 may be referred to as an inner layer. The inner surface of the fluororesin layer 20 has excellent chemical resistance and low tack (adhesiveness). When the elastic body 11 of the elastic layer 10 is inferior in chemical resistance such as silicone rubber, the chemical resistance of the tube itself is generally lowered, but the inner surface is made into the fluorine resin layer 20 as in the present invention. In this case, the fluorine resin layer 20 on the inner surface can be used as a barrier layer, and the chemical resistance of the tube can be increased. Furthermore, it is possible to prevent the fluid from adhering to the inner surface of the tube. In addition, the elastic body 11 of the elastic layer 10 has a high tackiness (adhesiveness) like a fluorine elastomer! In general, in this case, as described above, the inner surfaces adhere to each other and the tube is blocked, or the tube inner surface is damaged. On the other hand, the inner surface is made into the fluorine resin layer 20 as in the present invention. If so, these problems can be reduced. Furthermore, elution and swelling of the tube material can be prevented. [0046] The fluorine resin used for the inner layer 20 has low tackiness (adhesiveness). It also has excellent chemical resistance, for example, excellent durability against acids, alkalis and organic solvents. Therefore, it is also possible to distribute fluids such as photoresist liquids, liquids for operating process machinery, and highly corrosive liquids used in fields such as pharmaceuticals, food, medicine, and chemistry. It is. Examples of such a fluorine resin include a non-meltable (polytetrafluoroethylene (PTFE) having melt viscosity (for example, viscosity at 340 ° C) force of 10 1Q Pa · s or more). ), Etc.), fluororesin (tetrafluoroethylene perfluoroalkoxyethylene copolymer (PFA) having a melt viscosity (for example, a viscosity at 340 ° C of less than 10 1Q Pa's)) , Tetrafluoroethylene Monohexafluoropropylene Copolymer (FEP), Ethylene Tetrafluoroethylene Copolymer (ETFE), Polychlorinated Trifluoroethylene (PCTFE), Polyvinylidene Fluoride (PVDF) ), Polybulufluoride (PVF), Tetrafluoroethylene Hexafluoropropylene Bi-Ridene Fluoride Ternary Copolymer (THV), EFEP (Neoflon EFEP (trade name) manufactured by Daikin Industries, Ltd.) ), Etc. PTFE has a relatively small amount of comonomer, such as tetrafluoroethylene (relative to tetrafluoroethylene, for example, about 1% by mass or less (preferably about 0.1 to 0.3% by mass)). (Hexafluoropropylene (HFP), perfluoropropyl butyl ether (P PVE), perfluoroethyl butyl ether (PEVE), black trifluoroethylene (C TFE), perfluoro Also included are modified PTFE copolymerized with alkylethylene, etc. From the viewpoint of adhesion to other layers, meltable fluorine resin (especially PFA, FEP, PVDF, THV, EFEP, etc.) is excellent. From the viewpoint of chemical resistance and heat resistance, PTFE is excellent, and PTFE is also excellent in that it can be thinned by stretching. In the case of PTFE, it is recommended to use PTFE for the fluorine resin of the inner layer 20. Inner layer If both 20 and the intermediate layer 30 are formed of PTFE, the inner layer 20 and the intermediate layer 30 can be easily heat-sealed.
[0047] 前記フッ素榭脂としては、 1種を使用してもよぐ 2種以上を使用してもよい。まず 1 種のフッ素榭脂を使用する場合を前提として内層 20をさらに詳細に説明し、後から 2 種以上のフッ素榭脂を使用する場合の変更箇所について説明する。 [0047] As the fluorinated resin, one type may be used, or two or more types may be used. First, the inner layer 20 will be described in more detail on the assumption that one type of fluorine resin is used, and later, the change points when two or more types of fluorine resin are used will be described.
[0048] 内層 20のフッ素榭脂は、通常、充実体(充実フッ素榭脂: folly-dense fluororesin)
であるが、多孔質体(多孔質フッ素榭脂: porous fluororesin)であってもよい。多孔質 体は、中間層 30の弾性体 31がフッ素系エラストマ一などの様に耐薬品性が優れて いる場合に使用できる。 [0048] The fluorinated resin of the inner layer 20 is usually a solid (folly-dense fluororesin). However, it may be a porous body (porous fluororesin). The porous body can be used when the elastic body 31 of the intermediate layer 30 has excellent chemical resistance such as a fluorine-based elastomer.
[0049] 充実フッ素榭脂とは、実質的に空孔を有さないフッ素榭脂を意味し、空孔率は、例 えば、 10%未満、好ましくは 5%以下、さらに好ましくは 1%以下、特に 0%である。該 充実フッ素榭脂は、通常、一般の榭脂フィルムと同様に押出成形によって、またその 後必要に応じて延伸することによって得ることができる力 充実 PTFEは一般の榭脂 フィルムと同様にして得るのは困難である。充実 PTFEは、例えば無孔の焼結 PTFE 力も削り出すことによって得ることができ(一般に、スカイブド PTFEと称される)、また は後述する多孔質フッ素榭脂 (ePTFE)を圧縮等によって緻密化することによって得 ることができる(緻密化 PTFEという)。緻密化 PTFEの製造方法の詳細は、特開 200 2— 275280号公報に詳しい。なお充実構造と延伸構造の両方を兼ね備えたフッ素 榭脂を、以下、充実延伸フッ素榭脂(folly-dense expanded fluororesin)と称する場合 がある。 [0049] The solid fluorine resin means a fluorine resin substantially free of pores, and the porosity is, for example, less than 10%, preferably 5% or less, more preferably 1% or less. Especially 0%. The solid fluorine resin is usually obtained by extrusion as in the case of a general resin film, and after that, it can be obtained by stretching if necessary. The solid PTFE is obtained in the same manner as a general resin film. It is difficult. Solid PTFE can be obtained, for example, by scraping the non-porous sintered PTFE force (generally referred to as skived PTFE), or densifying the porous fluororesin (ePTFE) described later by compression or the like. (This is called densified PTFE). Details of the method for producing densified PTFE are described in JP-A-2002-275280. In addition, a fluorine resin having both a full structure and a stretched structure may be hereinafter referred to as a folly-dense expanded fluororesin.
[0050] 多孔質フッ素榭脂は、フッ素榭脂粉末と溶剤可溶性の微粉末との混合物を成形し た後、溶剤によって可溶性微粉末を溶出することによって得られるフッ素榭脂であつ てもよ 、が、好ましくは延伸によって得られる多孔質 PTFE (延伸多孔質 PTFE (ePT FE: expanded porous polytetrailuoroethyleneノとも ヽつ)である。 ePTFEは、 PTFEの ファインパウダーと成形助剤を混合成形し、成形助剤を除去した後、高温高速度で 延伸し、さらに必要に応じて焼成することによって得られる。この ePTFEは、 1軸延伸 されたものであってもよいが、好ましくは 2軸延伸されたものである。 1軸延伸 PTFEは 、ミクロ的には、延伸方向と略直交する細い島状のノード (折り畳み結晶)が存在し、 このノード間を繋ぐようなすだれ状のフィブリル (前記折り畳み結晶が延伸により解け て引出された直鎖状の分子束)が延伸方向に配向している点にミクロ的な特徴がある 。また 2軸延伸 PTFEは、フィブリルが放射状に広がり、フィブリルを繋ぐノードが島状 に点在して、フィブリルとノードとで画された空間が多数存在するクモの巣状の繊維 質構造となっている点にミクロ的な特徴がある。多孔質フッ素榭脂の空孔率は、可溶 性微粒子の量や延伸倍率などに応じて適宜設定でき、例えば、 10%以上であり、 30
%以上であってもよい。空孔率の上限は特に限定されないが、例えば、 95%以下程 度、好ましくは 85%以下程度である。 [0050] The porous fluorine resin may be a fluorine resin obtained by forming a mixture of a fluorine resin powder and a solvent-soluble fine powder and then eluting the soluble fine powder with a solvent. Is preferably a porous PTFE obtained by stretching (expanded porous PTFE (ePT FE: also known as expanded porous polytetrailuoroethylene)) ePTFE is a mixture of PTFE fine powder and molding aid. This ePTFE may be uniaxially stretched, but preferably biaxially stretched, after being stretched at a high temperature and high speed after being removed. Microscopically, uniaxially stretched PTFE has thin island-like nodes (folded crystals) that are substantially perpendicular to the stretch direction, and interdigital fibrils that connect between the nodes (the folded crystals are stretched by stretching). The biaxially stretched PTFE has a fibril spreading radially and islands connecting the fibrils in islands. It has a microscopic feature in that it has a spider web-like fibrous structure that is dotted with many spaces defined by fibrils and nodes. Can be set as appropriate according to the amount of the fine particles and the draw ratio, for example, 10% or more, 30 It may be% or more. The upper limit of the porosity is not particularly limited, but is, for example, about 95% or less, preferably about 85% or less.
[0051] なお空孔率は、多孔質フッ素榭脂の見掛け密度 p (単位: g/cm3、JIS K 6885 [0051] It should be noted that the porosity is the apparent density p (unit: g / cm 3 , JIS K 6885)
1 1
に準じて測定される)と、多孔質化してな ヽ場合のフッ素榭脂本来の密度 (真密度) p (PTFEの場合は 2. 2g/cm3)から、下記式に基づいて算出される値である。 ) And the original density (true density) p (2.2 g / cm 3 in the case of PTFE) of the fluorocarbon resin when it is not made porous. Value.
2 2
空孔率 (%) = - ) / β X IOO Porosity (%) =-) / β X IOO
2 1 2 2 1 2
[0052] 前記各種フッ素榭脂のうち、延伸されているフッ素榭脂 (充実延伸フッ素榭脂、延 伸多孔質フッ素榭脂など;以下、これらを合わせて延伸フッ素榭脂(expanded fluoror esin)と称する場合がある)、特に 2軸延伸されているフッ素榭脂が好ましい。延伸によ つて内層 20を強化できる。 [0052] Among the various types of fluorine resins, stretched fluorine resins (solid expanded fluorine resin, expanded porous fluorine resin, etc .; hereinafter, these are combined and referred to as expanded fluororesin) In particular, a fluorinated resin that is biaxially stretched is preferred. The inner layer 20 can be strengthened by stretching.
[0053] 延伸方向は特に限定されないが、チューブの長手方向と直交する方向(周方向)に 延伸されているのが好ましい。周方向に延伸されていると、チューブを繰り返し押圧し た際にチューブが長手方向に裂ける現象 (縦割れ)を低減できる。 [0053] The stretching direction is not particularly limited, but it is preferably stretched in a direction (circumferential direction) orthogonal to the longitudinal direction of the tube. When the tube is stretched in the circumferential direction, the phenomenon that the tube tears in the longitudinal direction (vertical crack) when the tube is repeatedly pressed can be reduced.
[0054] 最も好まし!/ヽフッ素榭脂は、充実延伸フッ素榭脂である。充実延伸フッ素榭脂は、 薬品に対するバリア性、摺動性、機械的強度の全てにおいて優れている。特に圧縮 等の緻密化処理が施されている場合、延伸による面方向の強度向上と緻密化による 厚さ方向の強度向上の双方の効果が発揮され、内層 20の機械的強度を著しく高め ることができる。また柔軟性にも優れており、繰り返しの押圧を受けても、この内層 20 と中間層 30との間で剥離が生じに《なる。さらには充実延伸フッ素榭脂によれば、 該フッ素榭脂からなる薄肉フィルムが容易に得られ、後述の卷回フィルムを製造する のに有利である。 [0054] Most preferred! / ヽ Fluororesin is a fully stretched fluorinated resin. Fully stretched fluorinated resin is excellent in all of barrier properties against chemicals, slidability, and mechanical strength. In particular, when densification treatment such as compression is applied, both the effect of improving the strength in the surface direction by stretching and the improvement of the strength in the thickness direction by densification are exhibited, and the mechanical strength of the inner layer 20 is remarkably increased. Can do. Further, it is excellent in flexibility, and even when subjected to repeated pressing, peeling occurs between the inner layer 20 and the intermediate layer 30. Furthermore, according to the fully-stretched fluorinated resin, a thin film made of the fluorinated resin can be easily obtained, which is advantageous for producing a wound film described later.
[0055] 内層のフッ素榭脂層 20の形態は特に限定されず、フッ素榭脂フィルムを卷回する ことによって得られる卷回フィルム、フッ素榭脂をチューブ状に押出成形することによ つて得られる押出チューブ、チューブ成形体の内面にフッ素榭脂含有液を塗布する ことによって得られる塗布層などのいずれであってもよい。好ましい形態は、卷回フィ ルム及び押出チューブなど、特に卷回フィルムである。卷回フィルムによれば、機械 的強度の高い内層を形成でき、またチューブの周方向にフッ素榭脂の延伸方向を合 わせるのが容易である。
[0056] なお卷回フィルムでは、卷回積層されるフィルム同士を適宜接着してもよい。例え ば、プライマーなどを介してフィルム同士を接着剤により接着してもよぐフィルム同士 を熱融着してもよい。好ましくはフィルム同士を熱融着する。熱融着すれば、各フィル ム層を極めて強固に接着できる。一般にフッ素榭脂は、分子間凝集力が小さぐ実用 的な機械的強度を確保するために、分子量を高めている。例えば PTFEの分子量は 、アイソープ法などの間接的な測定法によれば、約 500万〜 800万程度である。この ような高分子量のフッ素榭脂を融点以上に加熱しても、粘度が高いため(例えば、 PT FEを融点以上に加熱した時の粘度は、 101Q〜1012Pa' s程度)、一般的な溶融成形 は困難とされている。他方、フッ素榭脂フィルム同士を、該フッ素榭脂の融点以上で( 且つ熱分解を起こさない程度の条件 (温度、時間)で)加圧すると、フッ素榭脂フィル ム同士が融着することが知られている。この熱融着により得られる層間接着力は強固 であり、プライマーなどを介して接着剤によりフッ素榭脂フィルム同士を接着した場合 に比べて、同等乃至それ以上の接着力が得られる。フッ素榭脂フィルム同士の熱融 着が困難な場合は、溶融性フッ素榭脂フィルムやフッ素榭脂のディスパージヨンなど をフィルム間に介して熱融着することもできる。なお、フッ素榭脂の融点および熱分解 条件 (温度、時間)は、フッ素榭脂の種類、グレード、加工条件 (加工環境など)に応 じて異なるため、 DSC (示差走査熱量計)や TG (熱重量分析計)などを用いて予め 把握しておくことが望ましい。 [0055] The form of the inner-layer fluorine resin layer 20 is not particularly limited, and is obtained by extruding a wound film obtained by winding a fluorine resin film or a fluorine resin in a tube shape. Any of an extruded tube and a coating layer obtained by coating a fluorine resin-containing liquid on the inner surface of the tube molded body may be used. Preferred forms are wound films, particularly wound films and extruded tubes. According to the wound film, an inner layer having high mechanical strength can be formed, and it is easy to match the stretching direction of the fluorine resin with the circumferential direction of the tube. [0056] In the wound film, the films that are wound and laminated may be bonded as appropriate. For example, the films may be bonded together with an adhesive via a primer or the like, or the films may be heat-sealed. Preferably, the films are heat-sealed. If heat-sealed, the film layers can be bonded extremely firmly. In general, fluorine resin has a high molecular weight to ensure practical mechanical strength with low intermolecular cohesion. For example, the molecular weight of PTFE is about 5 to 8 million according to an indirect measurement method such as an isop method. Even when such a high molecular weight fluorocobalt is heated above its melting point, the viscosity is high (for example, the viscosity when PTFE is heated above its melting point is about 10 1Q to 10 12 Pa's). Melt molding is considered difficult. On the other hand, when the fluororesin films are pressed to each other above the melting point of the fluororesin (and under conditions (temperature, time) that do not cause thermal decomposition), the fluororesin films may be fused. Are known. The interlayer adhesive force obtained by this heat fusion is strong, and an adhesive force equal to or higher than that obtained when the fluororesin films are bonded to each other with an adhesive via a primer or the like can be obtained. When it is difficult to heat-seal the fluorine resin films, it is possible to heat-seal the film through a meltable fluorine resin film or fluorine resin dispersion. Note that the melting point and thermal decomposition conditions (temperature, time) of fluorocarbon resin differ depending on the type, grade, and processing conditions (processing environment, etc.) of fluorocarbon resin, so DSC (differential scanning calorimeter) and TG ( It is desirable to know in advance using a thermogravimetric analyzer.
[0057] また内層 20が卷回フィルムの場合、卷回端(内面側端部、外面側端部)の角部に 傾斜をつける処理 (テーパー処理)をしてもょ 、。内面側端部をテーパー処理すれば 、チューブ内の流体への悪影響を低減できる。また外面側端部をテーパー処理すれ ば、内層 20と中間層 30との接着性を向上できる。テーパー処理するためには、例え ば、卷回端に加熱板を押し当てればよい。さらに同様の目的で、卷回端の端辺 (端 線)をチューブ中心軸に対して斜めにしてもよぐフィルム厚さを十分に薄く(例えば、 0. 1〜30 111程度、好ましくは0. 5〜: LO /z m程度、さらに好ましくは 1〜5 /ζ πι程度) にしてもよい。 [0057] In the case where the inner layer 20 is a wound film, a process (tapering process) for inclining the corners of the wound end (end on the inner surface side, end on the outer surface side) may be performed. If the inner side edge is tapered, the adverse effect on the fluid in the tube can be reduced. Further, if the outer side edge portion is tapered, the adhesion between the inner layer 20 and the intermediate layer 30 can be improved. In order to taper, for example, a heating plate may be pressed against the winding end. Further, for the same purpose, the film thickness that can be inclined with respect to the tube center axis is sufficiently thin (for example, about 0.1 to 30 111, preferably 0). 5: about LO / zm, more preferably about 1-5 / ζ πι).
[0058] さらにフィルムの片面又は両面に、コロナ放電処理、エキシマレーザー処理、サンド ブラスト処理、金属ナトリウムや液体アンモ-ゥムなどによるエッチング処理などの表
面処理を施してもよい。これら表面処理を施せば、フィルム同士をより強固に接着で きる。なおフッ素榭脂層 20の外面も、同様の目的で、同様の表面処理を施してもよい [0058] Further, on one side or both sides of the film, a table such as corona discharge treatment, excimer laser treatment, sand blast treatment, etching treatment with metallic sodium or liquid ammonia, etc. Surface treatment may be performed. By applying these surface treatments, the films can be bonded more firmly. In addition, the outer surface of the fluorine resin layer 20 may be subjected to the same surface treatment for the same purpose.
[0059] 内層 20は、上述したように、 2種以上 (例えば、 2〜4種程度。特に 2種)のフッ素榭 脂で形成してもよい。複数のフッ素榭脂の間で機能 (耐薬品性、接着性など)を分担 させ、全体として優れた機能を示すようにすることができる。例えば耐薬品性や機械 的強度が特に優れたフッ素榭脂 (充実延伸フッ素榭脂など)と、接着性の優れたフッ 素榭脂 (溶融性フッ素榭脂など)とを組み合わせれば、耐薬品性や機械的強度が特 に優れたフッ素榭脂を中間層 30と強固に接着できる。 [0059] As described above, the inner layer 20 may be formed of two or more (for example, about 2 to 4 types, particularly 2 types) fluorine resins. Functions (chemical resistance, adhesiveness, etc.) can be shared among multiple fluorocarbons so that excellent functions can be exhibited as a whole. For example, a combination of fluorine resin with excellent chemical resistance and mechanical strength (such as fully-stretched fluorine resin) and fluorine resin with excellent adhesion (such as meltable fluorine resin) Fluororesin, which is particularly excellent in properties and mechanical strength, can be firmly bonded to the intermediate layer 30.
[0060] 2種以上のフッ素榭脂で内層 20を形成する場合、それぞれのフッ素榭脂をチュー ブ状にし、 2種以上のチューブ (フッ素榭脂)が内側から順に積層されるようにしてもよ い。また 2種以上のフッ素榭脂を平面状に積層し、この平面状積層体を 1回以上 (好 ましくは複数回)卷回してチューブ状にしてもよい。後者の方が、 2種以上のフッ素榭 脂を偏ることなく配することができるため、内層 20全体としての性能をより向上させる ことができる。なお前者及び後者を問わず、内層 20の最も外側が溶融性フッ素榭脂 で構成されていることが推奨される。中間層 30との接着性が高まるためである。 [0060] When the inner layer 20 is formed of two or more types of fluorine resin, each fluorine resin may be formed into a tube shape, and two or more types of tubes (fluorine resin) may be laminated in order from the inside. Good. Two or more kinds of fluorine resins may be laminated in a planar shape, and the planar laminate may be wound once or more (preferably a plurality of times) to form a tube. In the latter case, two or more kinds of fluorine resins can be arranged without being biased, so that the performance of the inner layer 20 as a whole can be further improved. Regardless of the former or the latter, it is recommended that the outermost side of the inner layer 20 be composed of a meltable fluorocarbon resin. This is because adhesion to the intermediate layer 30 is enhanced.
[0061] 内面のフッ素榭脂層 20の厚さは、例えば、 1〜200 μ m程度、好ましくは 5〜100 μ m程度、さらに好ましくは 5〜40 /z m程度である。内層 20が薄すぎると、機械的強 度が低下する。そのため薬品のバリア性やチューブ内面の摺動性の向上が難しくな る。一方、内層 20が厚すぎると、チューブ全体が硬くなる。そのため圧縮応力(押圧 力)を解放した時の形状回復性が不十分になり易い。また繰り返しの押圧によって亀 裂等の不具合が発生し易くなる。 [0061] The thickness of the inner surface of the fluororesin layer 20 is, for example, about 1 to 200 μm, preferably about 5 to 100 μm, and more preferably about 5 to 40 / zm. If the inner layer 20 is too thin, the mechanical strength decreases. Therefore, it becomes difficult to improve the chemical barrier properties and the slidability of the tube inner surface. On the other hand, if the inner layer 20 is too thick, the entire tube becomes hard. Therefore, the shape recoverability when releasing the compressive stress (pressing force) tends to be insufficient. In addition, defects such as cracks are likely to occur due to repeated pressing.
[0062] 内面のフッ素榭脂層 20は、導電性の付与や熱伝導性向上の為にカーボンや金属 粉などが混入して 、てもよ 、。 [0062] The inner surface of the fluororesin layer 20 may be mixed with carbon or metal powder in order to impart conductivity or improve thermal conductivity.
[0063] 3 : 中間層 30 [0063] 3: Intermediate layer 30
本発明の積層型弾性チューブの特徴は、前記フッ素榭脂層 20 (内層)と前記弾性 層 10 (外層)との間に中間層 30が形成されている点にある。この中間層 30は、多孔 質フッ素榭脂 32と、この多孔質フッ素榭脂 32の細孔を充填する弾性体 31とから構成
されており、内層のフッ素榭脂層 20と、中間層 30の多孔質フッ素榭脂 32とが接合し ている。また外層の弾性層 10と、中間層 30の弾性体 31とが接合している。このような 中間層 30を形成することにより、押圧力によって内層 20と外層 10との間に働く剥離 力を緩衝できる。し力も前記接合によって内層 20と中間層 30を確実に強固に結びつ けることができる。そのため繰り返し押圧に対する耐久性及び耐薬品性を確実に改 善できる。 A feature of the laminated elastic tube of the present invention is that an intermediate layer 30 is formed between the fluorine resin layer 20 (inner layer) and the elastic layer 10 (outer layer). The intermediate layer 30 includes a porous fluorine resin 32 and an elastic body 31 that fills the pores of the porous fluorine resin 32. The inner layer fluorine resin layer 20 and the intermediate layer 30 porous fluorine resin 32 are joined. Further, the elastic layer 10 of the outer layer and the elastic body 31 of the intermediate layer 30 are joined. By forming such an intermediate layer 30, the peeling force acting between the inner layer 20 and the outer layer 10 can be buffered by the pressing force. In addition, the inner layer 20 and the intermediate layer 30 can be securely and firmly connected to each other by the bonding. Therefore, durability against repeated pressing and chemical resistance can be improved reliably.
[0064] 中間層 30の多孔質フッ素榭脂 32は、通常、上述の内層 20で例示したフッ素榭脂 力も選択でき、好ましくは PTFE、 PFA、 PVDFなど(特に PTFE)が選択できる。な お多孔質 PTFEとしては前述の ePTFEが使用できる。多孔質 PFAとしては、 PFA粉 末と溶剤可溶性の微粉末との混合物を成形した後、溶剤によって可溶性微粉末を溶 出することによって孔を形成した PFAなどが使用できる。多孔質 PVDFとしては、溶 解法などによって孔を形成した PVDFが使用できる。 [0064] For the porous fluorocarbon resin 32 of the intermediate layer 30, the fluorocarbon power exemplified in the above-mentioned inner layer 20 can also be selected, and preferably PTFE, PFA, PVDF, etc. (particularly PTFE) can be selected. As the porous PTFE, the aforementioned ePTFE can be used. As the porous PFA, PFA having pores formed by forming a mixture of PFA powder and solvent-soluble fine powder and then dissolving the soluble fine powder with a solvent can be used. As the porous PVDF, PVDF having pores formed by a dissolution method or the like can be used.
[0065] 好ましい多孔質フッ素榭脂 32は、延伸されている多孔質フッ素榭脂 32である。延 伸多孔質フッ素榭脂 32の延伸方向は特に限定されないが、チューブの長手方向と 直交する方向(周方向)に延伸されているのが好ましい。周方向に延伸されていると、 チューブを繰り返し押圧した際にチューブが長手方向に裂ける現象 (縦割れ)を低減 できる。延伸多孔質フッ素榭脂 32は 1軸延伸されていてもよぐ 2軸延伸されていても よいが、好ましくは 2軸延伸されている。 [0065] A preferred porous fluorocarbon resin 32 is a stretched porous fluorocarbon resin 32. The stretching direction of the elongated porous fluorocarbon resin 32 is not particularly limited, but it is preferably stretched in a direction (circumferential direction) perpendicular to the longitudinal direction of the tube. If the tube is stretched in the circumferential direction, it is possible to reduce a phenomenon (longitudinal crack) in which the tube tears in the longitudinal direction when the tube is repeatedly pressed. The stretched porous fluororesin 32 may be uniaxially stretched or biaxially stretched, but is preferably biaxially stretched.
[0066] 好まし!/、延伸多孔質フッ素榭脂 32は、 ePTFEである。 ePTFEによれば、空孔率を 十分に高くでき、十分な量の弾性体 31を細孔内に充填できる。また柔軟性に優れて おり、弾性体 31の機能を低下させる虞がない。さらには機械的強度にも優れている。 ePTFEは、ジャパンゴァテックス (株)から「ePTFEフィルム」として入手できる。 [0066] Preferable! / The expanded porous fluorocarbon resin 32 is ePTFE. According to ePTFE, the porosity can be made sufficiently high, and a sufficient amount of the elastic body 31 can be filled in the pores. Moreover, it is excellent in flexibility, and there is no possibility that the function of the elastic body 31 is lowered. Furthermore, it is excellent in mechanical strength. ePTFE is available from Japan Gore-Tex Co., Ltd. as “ePTFE film”.
[0067] 中間層 30の多孔質フッ素榭脂 32の空孔率は、例えば、 40〜98%程度、好ましく は 50〜95%程度、さらに好ましくは 60〜90%程度である。空孔率が小さすぎると、 弾性体 31の充填量が小さくなり、押圧力の緩衝機能が低下する。一方、空孔率が大 きすぎると、多孔質フッ素榭脂 32の機械的強度が低下し、内層 20との間の接合力が 低下する。 [0067] The porosity of the porous fluorocarbon resin 32 of the intermediate layer 30 is, for example, about 40 to 98%, preferably about 50 to 95%, and more preferably about 60 to 90%. If the porosity is too small, the filling amount of the elastic body 31 becomes small and the pressing force buffering function is lowered. On the other hand, if the porosity is too large, the mechanical strength of the porous fluorocarbon resin 32 is lowered and the bonding force with the inner layer 20 is lowered.
[0068] 中間層 30の多孔質フッ素榭脂 32の最大細孔径は、充填すべき弾性体ほたは弾
性体を形成するための弾性体原料 (詳しくは後述する) ]の特性 (充填の容易さ)など の観点から、適宜設定すればよぐ例えば、 0. 01 μ m以上、好ましくは 0.: L m以 上であって、 以下、好ましくは 10 m以下である。最大細孔径が小さすぎると 弾性体の充填が困難である。また最大細孔径が大きすぎると、機械的強度が不十分 となることがある。なお最大細孔径は、 ASTM F316— 86の規定 (使用薬剤:ェタノ ール)に従って測定できる。 [0068] The maximum pore diameter of the porous fluororesin 32 of the intermediate layer 30 is the elastic body or elastic to be filled. From the viewpoint of the properties (ease of filling) of the elastic body raw material (details will be described later in detail) for forming a solid body, it may be set as appropriate, for example, 0.01 μm or more, preferably 0 .: L m or more, and below, preferably 10 m or less. If the maximum pore size is too small, it is difficult to fill the elastic body. If the maximum pore diameter is too large, the mechanical strength may be insufficient. The maximum pore size can be measured in accordance with the provisions of ASTM F316-86 (agent used: ethanol).
[0069] なお中間層 30の多孔質フッ素榭脂 32の形態は特に限定されず、多孔質フッ素榭 脂フィルムを卷回することによって得られる卷回多孔質フィルム、フッ素榭脂をチュー ブ状に押出成形することによって得られる多孔質押出チューブなどのいずれであつ てもよい。好ましい形態は、卷回多孔質フィルムである。卷回多孔質フィルムによれば 、機械的強度の高い中間層を形成でき、またチューブの周方向にフッ素榭脂の延伸 方向を合わせるのが容易である。 [0069] The form of the porous fluororesin 32 of the intermediate layer 30 is not particularly limited, and a wound porous film obtained by winding a porous fluororesin film, the fluororesin in a tube shape. Any of a porous extruded tube obtained by extrusion molding may be used. A preferred form is a wound porous film. According to the wound porous film, an intermediate layer having high mechanical strength can be formed, and it is easy to match the stretching direction of the fluorine resin with the circumferential direction of the tube.
[0070] 卷回多孔質フィルムによって中間層 30を形成する場合、卷回フィルムによって内層 20を形成する場合と同様の処理を施してもょ 、。すなわちフィルム同士を熱融着して もよぐフィルム卷回端をテーパー処理してもよぐ卷回端の端辺 (端線)をチューブ 中心軸に対して斜めにしてもよぐフィルム厚さを十分に薄く(例えば、 1〜: LOO /z m 程度、好ましくは 5〜50 /ζ πι程度、さらに好ましくは 10〜40 /ζ πι程度に)してもよぐ フィルムに表面処理を施してもよい。なお中間層 30の内面及び Ζ又は外面に前記 表面処理を施してもよい。 [0070] When the intermediate layer 30 is formed of a wound porous film, the same treatment as in the case of forming the inner layer 20 of a wound film may be performed. In other words, the film thickness can be obtained by heat-bonding the films together or by tapering the wound end of the film or by making the edge of the wound end (end line) oblique to the central axis of the tube. The film may be sufficiently thin (for example, 1 to: about LOO / zm, preferably about 5 to 50 / ζ πι, more preferably about 10 to 40 / ζ πι). Good. Note that the surface treatment may be performed on the inner surface and the ridge or the outer surface of the intermediate layer 30.
[0071] 一方、多孔質フッ素榭脂 32の細孔を充填する弾性体 31としては、通常、上述の外 層 10で例示した種々の液状弾性体原料の硬化体を利用できる。好まし!、液状弾性 体原料は、外層 10の場合と同様である。 [0071] On the other hand, as the elastic body 31 filling the pores of the porous fluorocarbon resin 32, various cured liquid elastic material raw materials exemplified in the outer layer 10 can be used. Preferably, the liquid elastic material is the same as in the outer layer 10.
[0072] 中間層 30の弾性体 31と外層 10の弾性体 11は、同じ樹脂から選択することが望ま しい。同じ樹脂から選択すれば、中間層 30と外層 10の接合性を高めることができる。 ところで「同じ榭脂」とは、接合性の観点力 同じであることを意味し、好ましくは完全 に同一の榭脂、モノマー成分が共通する一群の榭脂などを指すが、主モノマーが共 通する一群の榭脂、主モノマーが同系統である一群の榭脂なども含む。 [0072] The elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 are preferably selected from the same resin. If the same resin is selected, the bondability between the intermediate layer 30 and the outer layer 10 can be improved. By the way, the “same rosin” means the same viewpoint power of bonding properties, and preferably refers to completely the same repellency, a group of rosins having a common monomer component, etc., but the main monomer is common. And a group of rosins whose main monomers are of the same strain.
[0073] 中間層 30の弾性体 31は、外層 10の弾性体 11と同様、他の素材と組み合わせて
使用してもよい。例えば弾性体 31に、有機繊維、無機繊維、カーボン類、金属微粒 子、無機粉体などを混入してもよい。 [0073] The elastic body 31 of the intermediate layer 30 is combined with other materials in the same manner as the elastic body 11 of the outer layer 10. May be used. For example, the elastic body 31 may be mixed with organic fibers, inorganic fibers, carbons, metal fine particles, inorganic powders, and the like.
[0074] 中間層 30の弾性体 31の引張強さは、外層 10との接合性の観点から設計でき、そ の範囲は外層 10の弾性体 11の引張強さと同程度である。 [0074] The tensile strength of the elastic body 31 of the intermediate layer 30 can be designed from the viewpoint of the bondability with the outer layer 10, and the range is approximately the same as the tensile strength of the elastic body 11 of the outer layer 10.
[0075] これら弾性体 31と前記多孔質フッ素榭脂 32から形成される中間層 30の引張強さ( JIS K 6249)は、例えば 0. l〜75MPa程度、好ましくは 2〜75MPa程度、さらに 好ましくは 5〜75MPa程度である。また中間層 30の貯蔵弾性率 E,(温度 20°C、振 動数 1Ηζ、圧縮法)は、例えば、 1 X 102〜1 X 108Pa程度、好ましくは 1 X 103〜1 X 108Pa程度、さらに好ましくは 1 X 106〜1 X 108Pa程度である。機械的強度又は貯蔵 弾性率 E'が低すぎると、繰り返しの押圧に対するチューブの耐久性が低下する。一 方、貯蔵弾性率 E'が高すぎると、外層 10 (弾性層)に対する追従性が低下し、繰り返 しの押圧に対するチューブの耐久性が低下する。 [0075] The tensile strength (JIS K 6249) of the intermediate layer 30 formed from the elastic body 31 and the porous fluororesin 32 is, for example, about 0.1 to 75 MPa, preferably about 2 to 75 MPa, and more preferably. Is about 5 to 75 MPa. The storage elastic modulus E of the intermediate layer 30 (temperature 20 ° C, vibration frequency 1Ηζ, compression method) is, for example, about 1 X 10 2 to 1 X 10 8 Pa, preferably 1 X 10 3 to 1 X 10 It is about 8 Pa, more preferably about 1 × 10 6 to 1 × 10 8 Pa. If the mechanical strength or storage elastic modulus E ′ is too low, the durability of the tube against repeated pressing is reduced. On the other hand, if the storage elastic modulus E ′ is too high, the followability to the outer layer 10 (elastic layer) is lowered, and the durability of the tube against repeated pressing is lowered.
[0076] 中間層 30の厚さは、例えば、 10〜2000 μ m程度、好ましくは 20〜 1500 μ m程度 、さらに好ましくは 50〜: LOOO m程度である。中間層 30が薄すぎると、チューブ押 圧時の耐久性が低下する。一方、中間層 30が厚すぎると、外層 10の弾性的機能を 阻害し始める。 [0076] The thickness of the intermediate layer 30 is, for example, about 10 to 2000 μm, preferably about 20 to 1500 μm, and more preferably about 50 to about LOOO m. If the intermediate layer 30 is too thin, durability during tube pressing will decrease. On the other hand, if the intermediate layer 30 is too thick, it begins to inhibit the elastic function of the outer layer 10.
[0077] なお本発明の中間層 30は、内面のフッ素榭脂層 20と接合する為、多孔質フッ素榭 脂 32が内面側に露出している。また外側の弾性層 10と接合する為、弾性体 31が中 間層 30の外面側に露出している。 [0077] Since the intermediate layer 30 of the present invention is bonded to the inner surface fluorine resin layer 20, the porous fluorine resin 32 is exposed on the inner surface side. Further, the elastic body 31 is exposed on the outer surface side of the intermediate layer 30 in order to join with the outer elastic layer 10.
[0078] 4 : 製造方法 [0078] 4: Manufacturing method
本発明の積層型弾性チューブは、内層のフッ素榭脂層 20と、中間層 30の多孔質 フッ素榭脂 32とを接合し、かつ中間層 30の弾性体 31と、外層 10の弾性体 11とを接 合すること〖こよって得ることができる。これらを接合すること〖こよって、内層 20、中間層 30、外層 10を一体ィ匕できる。 The laminated elastic tube of the present invention joins the inner fluororesin layer 20 and the porous fluororesin 32 of the intermediate layer 30, and the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10. Can be obtained by joining. By joining them, the inner layer 20, the intermediate layer 30, and the outer layer 10 can be integrated.
[0079] 内層のフッ素榭脂層 20と、中間層 30の多孔質フッ素榭脂 32とは、熱融着によって 接合するのが推奨されるが、界面に接着のためのフッ素榭脂 (溶融性フッ素榭脂、フ ッ素榭脂のディスパージヨンなど)を介在させてから接着 (熱融着)してもょ ヽ。なお熱 融着する場合、フッ素榭脂の熱分解を防止することが重要である。そのため、上述し
たように、フッ素榭脂の融点および熱分解条件 (温度、時間)を、 DSC (示差走査熱 量計)や TG (熱重量分析計)などを用いて予め把握しておくことが望ま 、。 [0079] Although it is recommended that the inner layer fluorine resin layer 20 and the porous fluorine resin layer 32 of the intermediate layer 30 be bonded by thermal fusion, a fluorine resin (melting property) for bonding to the interface is recommended. Adhesion (heat fusion) after interposing fluorine resin, fluorine resin dispersion, etc.). When heat-sealing, it is important to prevent thermal decomposition of fluorine resin. Therefore, As described above, it is desirable to know in advance the melting point and thermal decomposition conditions (temperature, time) of fluorinated resin using DSC (differential scanning calorimeter) or TG (thermogravimetric analyzer).
[0080] 中間層 30の弾性体 31と、外層 10の弾性体 11とは、プライマー処理することによつ て接合してもよぐまた接着剤を介して接合してもよいが、直接接合するのが望ましい 。直接接合すれば、中間層 30や外層 10の弾性を損なう虞がない。中間層 30の弾性 体 31と外層 10の弾性体 11とを直接接合する場合は、少なくとも一方の弾性体原料 を、他方の弾性体 (又は弾性体原料)と接触させながら三次元網目構造化 (硬化)す ればよい。なおゴム質体は、架橋することによって三次元網目構造化 (硬化)できる。 また熱可塑性エラストマ一は、例えば熱可塑性状態力 冷却することによって、又は 溶剤などの流動化原因を除去することによって三次元網目構造ィ匕 (硬化)できる。最 も好ましい接合方法は、中間層 30の弾性体原料 31と外層 10の弾性体原料 11とを 接触させながら、両方の弾性体原料 31、 11を三次元網目構造化 (硬化)する方法で ある。この方法によれば、より高い接合強度が得られる。 [0080] The elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 may be joined by primer treatment or may be joined via an adhesive, but may be joined directly. It is desirable to do. If directly joined, there is no risk of impairing the elasticity of the intermediate layer 30 and the outer layer 10. When the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 are directly joined, at least one elastic material is brought into contact with the other elastic body (or elastic material) to form a three-dimensional network structure ( Curing). The rubbery body can be three-dimensional network structured (cured) by crosslinking. Further, the thermoplastic elastomer can be cured (cured) by, for example, cooling the thermoplastic state force or removing the cause of fluidization such as a solvent. The most preferable joining method is a method in which the elastic raw material 31 of the intermediate layer 30 and the elastic raw material 11 of the outer layer 10 are brought into contact with each other, and both elastic raw materials 31 and 11 are made into a three-dimensional network structure (cured). . According to this method, higher bonding strength can be obtained.
[0081] 本発明の積層型弾性チューブは、上記各接合が可能である限り、様々な製造方法 が採用できる。例えば、(方法 1)内層 20の外側を中間層 30で被覆した後、中間層 3 0の外側を外層 10で被覆してもよぐ(方法 2)中間層 30と外層 10の積層体を形成し た後、中間層 30の内面に内層 20をコートしてもよい。また前記方法 1、 2のいずれの 場合においても、中間層 30への液状弾性体原料 31の充填は、中間層 30の積層前 に行ってもよぐ中間層 30の積層後に行ってもよい。また中間層 30の液状弾性体原 料 31の硬化のタイミングも特に限定されな!、。 [0081] Various production methods can be adopted for the laminated elastic tube of the present invention as long as the above-described joining is possible. For example, (Method 1) After the outer side of the inner layer 20 is coated with the intermediate layer 30, the outer side of the intermediate layer 30 may be coated with the outer layer 10. (Method 2) A laminate of the intermediate layer 30 and the outer layer 10 is formed. Thereafter, the inner layer 20 may be coated on the inner surface of the intermediate layer 30. In either case of the methods 1 and 2, the filling of the liquid elastic material 31 into the intermediate layer 30 may be performed before or after the intermediate layer 30 is stacked. Also, the timing of curing the liquid elastic material 31 of the intermediate layer 30 is not particularly limited!
[0082] 好ましい製造手順は、(方法 1)内層 20の外側を中間層 30で被覆した後、中間層 3 0の外側を外層 10で被覆する方法である。この方法 1によれば、内層のフッ素榭脂 2 0と中間層 30の多孔質フッ素榭脂 32とを熱融着できる。 A preferred production procedure is (Method 1) in which the outer side of the inner layer 20 is coated with the intermediate layer 30 and then the outer side of the intermediate layer 30 is coated with the outer layer 10. According to Method 1, the inner layer fluorine resin 20 and the intermediate layer 30 porous fluorine resin 32 can be heat-sealed.
[0083] この方法 1による場合、中間層 30 (多孔質フッ素榭脂 32)への液状弾性体原料 31 の充填は、中間層 30 (多孔質フッ素榭脂 32)の積層後に行うことが望ましい (方法 1 - D o液状弾性体原料 31の充填を積層後にすると、積層前には多孔質フッ素榭脂 32が液状弾性体原料 31に覆われることなく露出する。そのため内層のフッ素榭脂 2 0と中間層の多孔質フッ素榭脂 32とを確実に熱融着できる。また弾性体 31が熱融着
条件で熱劣化する虞もない。そして内層 20 (フッ素榭脂層からなるチューブ)を多孔 質フッ素榭脂 32で被覆し、これらを熱融着した後は、多孔質フッ素榭脂 32側力も多 孔質フッ素榭脂 32の細孔に液状の弾性体原料 31を充填し、充填後、三次元網目構 造を形成させればよい。 [0083] According to this method 1, the filling of the liquid elastic material 31 into the intermediate layer 30 (porous fluorine resin 32) is preferably performed after the intermediate layer 30 (porous fluorine resin 32) is laminated ( Method 1-When Doo liquid elastic material 31 is filled after lamination, porous fluorine resin 32 is exposed before being laminated without being covered with liquid elastic material 31. Therefore, the inner layer fluorine resin 20 is The intermediate layer of porous fluorocarbon resin 32 can be reliably heat-sealed, and the elastic body 31 can be heat-sealed. There is no risk of thermal degradation under certain conditions. Then, after covering the inner layer 20 (the tube made of the fluorine resin layer) with the porous fluorine resin 32 and heat-sealing them, the porous fluorine resin 32 side force is also reduced in the pores of the porous fluorine resin 32. The liquid elastic material 31 may be filled in and a three-dimensional network structure may be formed after filling.
[0084] 中間層 30 (多孔質フッ素榭脂 32)に液状弾性体原料 31を充填する場合、必要量 を正確に充填してもよぐ過剰に充填した後、余剰分を力き落としてもよい。また余剰 分を力き落とすことなぐ硬化して外層 10 (弾性層)として利用してもよい。 [0084] When the liquid elastic material 31 is filled in the intermediate layer 30 (porous fluorine resin 32), it may be filled in the required amount accurately or excessively, and then the excess may be removed by force. Good. It can also be used as the outer layer 10 (elastic layer) by hardening without surrendering excess.
[0085] 前記方法 1 - 1によって積層型弾性チューブを製造する場合、外層 10は、硬化し た後の状態で中間層 30に積層してもよく(方法 A)、未硬化の状態で中間層 30に積 層してカゝら硬化してもよい(方法 B)。方法 Aの場合、プライマー処理や接着剤を利用 することにより、中間層 30と外層 10を接合できる。好ましい方法は、方法 Bである。方 法 Bによれば、中間層 30の弾性体 31と外層 10の弾性体 11とを直接接合できる。 [0085] When the laminated elastic tube is manufactured by the method 1-1, the outer layer 10 may be laminated on the intermediate layer 30 after being cured (Method A), or the intermediate layer in an uncured state. It may be stacked on 30 and cured (Method B). In the case of Method A, the intermediate layer 30 and the outer layer 10 can be joined by using a primer treatment or an adhesive. A preferred method is Method B. According to method B, the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 can be directly joined.
[0086] 未硬化の外層 10 (液状弾性体原料、固体状 (混練性)弾性体原料など)を中間層 3 0に積層する場合 (方法 B)、該未硬化の外層 10は、中間層 30への弾性体原料 31の 充填が終わった後に、中間層 30に積層してもよく(方法 Bl)、中間層 30への弾性体 原料 31 (特に液状弾性体原料)の充填を兼ねながら中間層 30に積層してもょ 、 (方 法 B2)。方法 B1の場合、中間層 30の弾性体原料 31が硬化してから未硬化の外層 1 0を積層してもよく(方法 Bla)、中間層 30の弾性体原料 31を硬化させる前に未硬化 の外層 10を積層してもよい(方法 Bib)。方法 B2及び方法 Bibの場合、中間層 30の 弾性体原料 31と外層 10の弾性体原料 11を同時に硬化させることができ、接合強度 を著しく高めることができる。また方法 Bibの場合、中間層 30の弾性体 31と外層 10 の弾性体 11は、同じ樹脂から選択するのが望ましいが、異なる榭脂を使用してもよい [0086] When uncured outer layer 10 (liquid elastic material, solid (kneadable) elastic material, etc.) is laminated on intermediate layer 30 (method B), uncured outer layer 10 is intermediate layer 30. After filling the elastic material 31 into the intermediate layer 30, the intermediate layer 30 may be laminated (Method Bl), and the intermediate layer 30 may also be filled with the elastic material 31 (particularly the liquid elastic material). Laminate 30 (Method B2). In the case of Method B1, the uncured outer layer 10 may be laminated after the elastic material 31 of the intermediate layer 30 is cured (Method Bla), and is uncured before the elastic material 31 of the intermediate layer 30 is cured. The outer layer 10 may be laminated (Method Bib). In the case of the method B2 and the method Bib, the elastic material 31 of the intermediate layer 30 and the elastic material 11 of the outer layer 10 can be cured at the same time, and the bonding strength can be significantly increased. In the case of the method Bib, it is desirable to select the elastic body 31 of the intermediate layer 30 and the elastic body 11 of the outer layer 10 from the same resin, but different types of resin may be used.
[0087] 具体的な外層 10の形成方法を例示すると、以下の通りである。 A specific method for forming the outer layer 10 is exemplified as follows.
(i)内層 20 (フッ素榭脂層からなるチューブ)と多孔質フッ素榭脂 32を熱融着するこ とによって得られる円筒状中間体を、該中間体の外径よりも大きな内径を有する円筒 体の中心にセットし、空隙部に弾性体原料 11 (液状弾性体原料、固体状 (混練性)弾 性体原料など)を注型し、硬化後、脱型する方法。なお円筒体としてダイスを使用す
る場合、円筒状中間体を中心に正しくセットするため、 -ップルを使用することが多い (i) A cylindrical intermediate body obtained by heat-sealing the inner layer 20 (a tube made of a fluorine resin layer) and the porous fluorine resin 32 is a cylinder having an inner diameter larger than the outer diameter of the intermediate body. A method of setting in the center of the body, casting an elastic material 11 (liquid elastic material, solid (kneading) elastic material, etc.) into the void, and then demolding after curing. Use a die as a cylinder. In order to set the center of the cylindrical intermediate correctly, -pull is often used
(ii)前記円筒状中間体の外側面に弾性体原料 11 (特に固体状 (混練性)弾性体原 料)を押出によって積層し、外面を整えた後、硬化させる方法 (ii) Method of laminating elastic material 11 (especially solid (kneadable) elastic material) on the outer surface of the cylindrical intermediate body by extrusion, preparing the outer surface, and curing
(iii)前記円筒状中間体の外側面に弾性体原料 11 (特に固体状 (混練性)弾性体 原料)を押出によって積層し、硬化させた後、外面を研磨などによって整える方法 (iii) A method in which elastic material 11 (especially solid (kneadable) elastic material) is laminated on the outer surface of the cylindrical intermediate body by extrusion and cured, and then the outer surface is prepared by polishing or the like.
(iv)弾性体原料 11 (第 1の層 12)と、この弾性体原料 11 (特に液状弾性体原料)を 含浸させた多孔質フィルム (第 2の層 13)とからなる積層フィルム 10を、弾性体原料 1 1 (第 1の層 12)が中間層 30と接触するようにしながら、前記円筒状中間体の外側面 に巻き付け、硬化する方法 (iv) a laminated film 10 comprising an elastic material 11 (first layer 12) and a porous film (second layer 13) impregnated with the elastic material 11 (particularly a liquid elastic material), A method in which the elastic raw material 11 (first layer 12) is wound around the outer surface of the cylindrical intermediate body and cured while being in contact with the intermediate layer 30.
(V)予め円筒状に成形し硬化させた外層 10 (弾性チューブ)内に、前記円筒状中 間体を挿入し、これらを接着剤などによって接合する方法 (V) A method in which the cylindrical intermediate body is inserted into an outer layer 10 (elastic tube) that has been molded and cured in advance into a cylindrical shape, and these are bonded together with an adhesive or the like.
なおこれら (i)〜 (V)はバッチ式の生産を想定したものである力 適宜変更を加え、 連続的に製造してもよい。また (iv)の方法で硬化又は未硬化の弾性層を形成した後 、さらに (i)〜 (iii)又は (V)の方法により弾性層を形成するなど、(i)〜(v)の方法を適 宜組み合わせて製造してもよ 、。 These (i) to (V) may be continuously manufactured by appropriately changing the force that assumes batch production. Further, after forming a cured or uncured elastic layer by the method (iv), an elastic layer is further formed by the method (i) to (iii) or (V). They can be manufactured in any suitable combination.
[0088] 5 : 耐摩耗層 40 [0088] 5: Wear resistant layer 40
本発明の積層型弾性チューブは、図 4の概略断面図に示すように、必要に応じて 前記外層 10 (弾性層)の外側にさらに耐摩耗層 40 (耐摩耗チューブ)を形成してもよ い。耐摩耗層 40によりチューブの耐久性をさらに高めることができる。 In the laminated elastic tube of the present invention, as shown in the schematic cross-sectional view of FIG. 4, a wear resistant layer 40 (wear resistant tube) may be further formed outside the outer layer 10 (elastic layer) as required. Yes. The wear resistant layer 40 can further enhance the durability of the tube.
[0089] 耐摩耗層 40 (耐摩耗チューブ)には、塩化ビュル、ポリスチレン、ポリエステル (ポリ エチレンテレフタレートなど)、ポリオレフイン(ポリエチレン、ポリプロピレンなど)、ポリ アミド、ポリイミド、フッ素榭脂などの高分子材料、ガラス繊維などの無機質材料など の各種材料が使用できる。 [0089] The wear resistant layer 40 (wear resistant tube) includes polymer materials such as butyl chloride, polystyrene, polyester (polyethylene terephthalate, etc.), polyolefin (polyethylene, polypropylene, etc.), polyamide, polyimide, fluorine resin, Various materials such as inorganic materials such as glass fiber can be used.
[0090] また耐摩耗層 40 (耐摩耗チューブ)は、塗布体、押出成形チューブ、押出延伸チュ ーブ、延伸フィルムの卷回体、充実フィルムの卷回体、多孔質フィルムの卷回体、糸 をチューブ状に編成した編成体、織物、編み物、組み物、レース、網などの卷回体な どのいずれの形状であってもよい。耐摩耗層 40は、弾性層 10に対する追従性と耐
摩耗性の両方を兼ね備えていることが重要であり、材料の硬度に応じて形状を選択 できる。 [0090] The wear-resistant layer 40 (wear-resistant tube) is composed of a coated body, an extrusion-molded tube, an extruded stretched tube, a stretched film roll, a full film roll, a porous film roll, Any shape such as a knitted body in which yarns are knitted in a tube shape, a woven fabric, a knitted fabric, a braided body, a wound body such as a lace or a net may be used. The wear resistant layer 40 has a followability and resistance to the elastic layer 10. It is important to have both wear characteristics, and the shape can be selected according to the hardness of the material.
[0091] 耐摩耗層 40 (耐摩耗チューブ)は弾性層 10と固定しても、固定しなくてもよいが、耐 摩耗性をさらに向上する観点から固定するのが好ましい。耐摩耗層 40と弾性層とを 固定する場合、固定方法は特に限定されず、例えば、接着剤を用いて固定してもよ いが、外層 10と同じ弾性体を接着剤として利用することによって耐摩耗層 40を固定 するのが好ましい。また耐摩耗層 40 (耐摩耗チューブ)の収縮力を利用して、耐摩耗 層 40 (耐摩耗チューブ)を積層固定することも好ましい。収縮力を利用すれば、チュ ーブの弾性を損ねることがな 、。 [0091] The wear resistant layer 40 (wear resistant tube) may or may not be fixed to the elastic layer 10, but is preferably fixed from the viewpoint of further improving the wear resistance. When the wear-resistant layer 40 and the elastic layer are fixed, the fixing method is not particularly limited. For example, it may be fixed using an adhesive, but by using the same elastic body as the outer layer 10 as an adhesive. It is preferable to fix the wear-resistant layer 40. It is also preferable to laminate and fix the wear resistant layer 40 (wear resistant tube) using the shrinkage force of the wear resistant layer 40 (wear resistant tube). If the contraction force is used, the elasticity of the tube will not be impaired.
[0092] 好ま 、耐摩耗層 40 (耐摩耗チューブ)は、フッ素榭脂のチューブ状物、特に PTF Eのチューブ状物である。フッ素榭脂のチューブ状物(特に PTFEのチューブ状物) は、耐摩耗性、耐薬品性、耐熱性などに優れている。 [0092] Preferably, the wear-resistant layer 40 (wear-resistant tube) is a fluorine resin tube, particularly a PTFE tube. Fluororesin tubing (especially PTFE tubing) has excellent wear resistance, chemical resistance, and heat resistance.
[0093] フッ素榭脂(特に PTFE)で耐摩耗チューブ 40を形成する場合、該チューブとして は、多孔質フッ素榭脂フィルムの卷回体、フッ素榭脂製糸をチューブ状に編成した編 成体、フッ素榭脂製糸からなる織物、編み物、組み物、レース、網などを卷回した卷 回体などを使用するのが望ましい。これらを使用すれば、空孔内又は繊維間に接着 剤や弾性体原料が浸透するため、耐摩耗層 40を弾性層 10に強固に接合できる。 [0093] When the wear-resistant tube 40 is formed of fluorine resin (particularly PTFE), the tube includes a wound body of a porous fluorine resin film, a knitted body obtained by knitting fluorine resin yarn in a tube shape, fluorine It is desirable to use a wound body of woven fabric, knitted fabric, braided fabric, lace, net, etc. made of a resin yarn. If these are used, since the adhesive or elastic material penetrates into the pores or between the fibers, the wear-resistant layer 40 can be firmly joined to the elastic layer 10.
[0094] なお複数の耐摩耗層 40 (耐摩耗チューブ)を重ねてもよぐ例えば、フッ素榭脂の チューブ状物とガラスクロスの卷回体を重ねてもよ 、。 [0094] It should be noted that a plurality of wear-resistant layers 40 (wear-resistant tubes) may be stacked, for example, a fluorocarbon resin tube and a glass cloth roll may be stacked.
[0095] 6 : 積層型弾性チューブ [0095] 6: Laminated elastic tube
本発明の積層型弾性チューブの大きさは、用途に応じて異なり一律に規定すること は難しいが、例えば、ピンチバルブ用及びローラーポンプ用の弾性チューブに使用 する場合、内径: lmm以上(例えば l〜40mm程度)、外径: 100mm以下(例えば 3 〜100mm程度、特に 5〜60mm程度)、長さ 50〜1500mm程度である。 The size of the laminated elastic tube of the present invention differs depending on the application and is difficult to define uniformly. For example, when used for an elastic tube for a pinch valve and a roller pump, an inner diameter: lmm or more (for example, l ˜40 mm), outer diameter: 100 mm or less (eg, about 3 to 100 mm, especially about 5 to 60 mm), and length of about 50 to 1500 mm.
[0096] 7 : 流体流通制御部材 [0096] 7: Fluid flow control member
本発明の積層型弾性チューブは、押圧することによって流体の流通を制御する部 材として使用でき、例えばピンチバルブやローラーポンプの弾性チューブとして使用 できる。ピンチノ レブとは、流体圧 (空気圧、油圧など)や電気などで作動するピンチ
弁によって弾性チューブを側方から径方向に押圧し、チューブ断面を扁平 (特に閉 塞)することにより、チューブ内の流体の流通を制御する装置である。またローラーポ ンプとは、ローラーなどの押圧部材で弹性チューブを径方向に押圧し、この押圧状 態を維持しながら押圧部材を弾性チューブの軸方向に移動 (特に、上流側から下流 側に繰り返して移動)することにより、チューブ内の流体を送り出す装置である。 The laminated elastic tube of the present invention can be used as a member that controls the flow of fluid by pressing, and can be used, for example, as an elastic tube of a pinch valve or a roller pump. A pinch nore is a pinch operated by fluid pressure (pneumatic, hydraulic, etc.) or electricity. This is a device that controls the flow of fluid in the tube by pressing the elastic tube in the radial direction from the side with a valve and flattening (especially closing) the cross section of the tube. A roller pump is a roller or other pressing member that presses the inertial tube in the radial direction and moves the pressing member in the axial direction of the elastic tube while maintaining this pressing state (especially repeated from the upstream side to the downstream side). It is a device that sends out the fluid in the tube by moving.
[0097] チューブ内を流通する流体の種類は特に限定されず、気体、液体の!/、ずれであつ てもよいが、好ましくは液体である。特に本発明の積層型弾性チューブは、耐薬品性 に優れているため、フォトレジスト液、プロセス機械装置を作動させる為の液体、製薬 、食品、医療、化学などの分野で使用される高腐食性の液体などのような流体を流通 させることも可能である。また本発明の積層型弾性チューブは、タック性が低いため、 チューブ内面に流通成分が付着するのを嫌う用途であっても使用できる。 [0097] The type of fluid flowing through the tube is not particularly limited, and may be gas or liquid! /, But is preferably liquid. In particular, since the laminated elastic tube of the present invention has excellent chemical resistance, it is highly corrosive used in the fields of photoresist liquids, liquids for operating process machinery, pharmaceuticals, food, medicine, chemistry, etc. It is also possible to circulate fluids such as other liquids. In addition, since the laminated elastic tube of the present invention has low tackiness, it can be used even for applications that dislike the flow component adhering to the inner surface of the tube.
[0098] さらに本発明の積層型弾性チューブは、チューブ内にトルクなどを伝達するための 金属ワイヤを揷通したケーブルチューブ (プッシュプルチューブ)としても使用できる。 本発明の弾性チューブは、内面のフッ素榭脂層 20のすベり性が高いため、トルク伝 達をスムーズに行うことができる。 Furthermore, the laminated elastic tube of the present invention can also be used as a cable tube (push-pull tube) in which a metal wire for transmitting torque or the like is passed through the tube. Since the elastic tube of the present invention has a high slip property of the fluorine resin layer 20 on the inner surface, torque can be transmitted smoothly.
[0099] なお本発明の積層型弾性チューブを、ホースや配管などの様に必ずしも弾性が求 められない用途に使用する場合には、外側の弾性層 10は不要である。 [0099] When the laminated elastic tube of the present invention is used for an application where elasticity is not necessarily required such as a hose or piping, the outer elastic layer 10 is not necessary.
[0100] 本発明によれば、多孔質フッ素榭脂の細孔に弾性体を充填した中間層を内面のフ ッ素榭脂層と外側の弾性層との間に介挿しているため、内面のフッ素榭脂層と外側 の弾性層との間の密着性を確実に著しく改善でき、繰り返し押圧に対する耐久性、 及び耐薬品性を確実に改善できる。 [0100] According to the present invention, the intermediate layer in which the pores of the porous fluorine resin are filled with an elastic body is interposed between the fluorine resin layer on the inner surface and the outer elastic layer. Thus, the adhesion between the fluorine resin layer and the outer elastic layer can be remarkably improved, and the durability against repeated pressing and the chemical resistance can be reliably improved.
実施例 Example
[0101] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範 囲に包含される。 [0101] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples as well as the present invention, and is appropriately modified within a range that can meet the purpose described above and below. Of course, the present invention can be carried out in addition to the above, and they are all included in the technical scope of the present invention.
[0102] 実施例 1 [0102] Example 1
外径: 300mm、幅: 600mm、而圧延反力: 1MN (最大)のカレンダーロール装置
を用い、ロール温度: 70°C、線圧: 8NZmm2、送り速度: 6mZ分の条件で二軸延伸 多孔質 PTFEフィルム(ジャパンゴァテックス(株)製の「ePTFEフィルム」、幅: 500m m、空孔率: 90%、厚さ: 20 m)を圧縮し、幅: 500mm、長さ: 500mm、空孔率: 5 %、厚さ 2. 1 mの白濁色のフィルムを得た。この白濁フィルムを 2枚のポリイミドフィ ルム(宇部興産 (株)製の「ユーピレックス 20S」(商品名))の間に挟み、プレス面の大 きさ: 750mm X 750mm、最大加圧力: 2MNのホットプレス装置を用いて、プレス板 温度: 400°C、面圧: lONZm2の条件で 5分間加熱プレスした後、面圧を保持した状 態で 60分かけて徐々にプレス板温度を 25°Cまで冷却することにより、幅: 500mm、 長さ: 500mm、空孔率: 0%、厚さ: 2 mで、透明な PTFEフィルム(緻密化 PTFEフ イルム)を得た。 Outer diameter: 300mm, width: 600mm, meta rolling reaction force: 1MN (maximum) calendar roll device Roll temperature: 70 ° C, linear pressure: 8NZmm 2 , feed rate: 6mZ biaxially stretched porous PTFE film ("ePTFE film" manufactured by Japan Gore-Tex Co., Ltd.), width: 500m m , Porosity: 90%, thickness: 20 m) was compressed to obtain a cloudy white film having a width: 500 mm, a length: 500 mm, a porosity: 5%, and a thickness of 2.1 m. This white turbid film is sandwiched between two polyimide films ("UPILEX 20S" (trade name) manufactured by Ube Industries, Ltd.). Press surface size: 750mm x 750mm, maximum pressure: 2MN hot Using a press machine, press the plate temperature: 400 ° C, surface pressure: lONZm 2 for 5 minutes, press the plate for 5 minutes, and gradually increase the plate temperature to 25 ° C over 60 minutes while maintaining the surface pressure. Was cooled to a width of 500 mm, length: 500 mm, porosity: 0%, thickness: 2 m, and a transparent PTFE film (densified PTFE film) was obtained.
[0103] 前記緻密化 PTFEフィルムを、幅: 400mm、長さ(奥行き): 158mmのサイズに切 断し、その長さ(奥行き)方向が巻き取り方向(周方向)になるようにステンレス鋼棒材 (外径: 5mm)に 10回巻き付けて、厚さ約 20 mの内層を形成した。 [0103] The densified PTFE film is cut into a size of width: 400 mm, length (depth): 158 mm, and a stainless steel rod so that the length (depth) direction is the winding direction (circumferential direction). The material (outer diameter: 5 mm) was wound 10 times to form an inner layer having a thickness of about 20 m.
[0104] 中間層の多孔質フッ素榭脂としての二軸延伸多孔質 PTFEフィルム(ジャパンゴァ テックス(株)製の「ePTFEフィルム」、幅: 400mm、長さ(奥行き):81mm、空孔率: 85%、最大細孔径: 0. 5 m、厚さ: 20 m)を、その長さ(奥行き)方向が巻き取り 方向(周方向)になる様に前記内層の上に卷回 (卷回数: 5)した。この卷回物を強制 熱風循環'換気方式の恒温恒湿器 (エスペック (株)製、「STPH— 201」)を用いて、 温度 375°Cで 30分間加熱し、内層のフィルム間、多孔質フッ素榭脂フィルムのフィル ム間、及び内層フィルムと多孔質フッ素榭脂フィルムの間をそれぞれ熱融着し、外径 5mmのステンレス鋼棒材を芯材とした外径 5. 2mmの円筒状中間体を得た。付加反 応型の液状シリコーンゴム (信越ィ匕学工業 (株)製「KE1031」) 10gを、該円筒状中 間体の多孔質フッ素榭脂フィルム面にゴムへらを用いて塗布し、細孔内に含浸させ た。余剰のシリコーンゴムは、ゴムへら及び不織布ワイパーで力き落とした。 [0104] Biaxially stretched porous PTFE film ("ePTFE film" manufactured by Japan Gore-Tex Co., Ltd.), width: 400mm, length (depth): 81mm, porosity: 85 %, Maximum pore diameter: 0.5 m, thickness: 20 m) on the inner layer so that its length (depth) direction is the winding direction (circumferential direction) (number of times of winding: 5 )did. This wound product is heated for 30 minutes at a temperature of 375 ° C using a forced hot air circulation / ventilation-type constant temperature and humidity chamber (Espec Co., Ltd., “STPH-201”). Cylindrical intermediate with an outer diameter of 5.2 mm using a stainless steel rod with an outer diameter of 5 mm as the core material between the films of the fluororesin film and between the inner layer film and the porous fluorine resin film. Got the body. Apply 10g of addition reaction type liquid silicone rubber (“KE1031” manufactured by Shin-Etsu Chemical Co., Ltd.) to the porous fluororesin film surface of the cylindrical intermediate using a rubber spatula. Was impregnated. Excess silicone rubber was rubbed off with a rubber spatula and non-woven wiper.
[0105] 別途、予め補強充填材ゃ可塑剤などの諸添加剤が配合されて!ヽる熱加硫型ミラブ ルシリコーンゴム (信越化学工業 (株)製 ΓΚΕ551— U」 )と加硫剤 (信越化学工業 (株 )製「C— 23」)を 100 : 1の質量比で配合し、ミキシングロール機を用いて混練した。 内径 9. 6mmのダイスと内径 5. 2mmの-ップルを同心円状に配置した金属製押出
用クロスヘッドに、前記円筒状中間体を入口側力 挿入した。この押出用クロスヘッド の入口と出口の中間側面から、上記混練済みの熱加硫型シリコーンゴムをスクリュー によって押し込んだ。押し込みによるゴムの圧力フローによって、円筒状中間体を押 出用ヘッドの出口側力も排出し、次いで一次加硫温度 170°Cで 20分間加熱し、さら に二次加硫温度 200°Cで 4時間加熱することによって液状シリコーンゴムとミラブル 型シリコーンゴムの両方を架橋した。 [0105] Heat-curing type mirabilized silicone rubber (ΓΚΕ551—U ”manufactured by Shin-Etsu Chemical Co., Ltd.) and a vulcanizing agent "C-23" manufactured by Shin-Etsu Chemical Co., Ltd.) was blended at a mass ratio of 100: 1 and kneaded using a mixing roll machine. Metal extrusion with a concentric arrangement of dies with an inner diameter of 9.6 mm and -pulls with an inner diameter of 5.2 mm The cylindrical intermediate body was inserted into the crosshead for use with an inlet side force. The kneaded heat-vulcanized silicone rubber was pushed in from the middle side of the inlet and outlet of the crosshead for extrusion with a screw. Due to the rubber pressure flow caused by the indentation, the cylindrical intermediate is also discharged from the outlet side of the extrusion head, then heated at a primary vulcanization temperature of 170 ° C for 20 minutes, and then at a secondary vulcanization temperature of 200 ° C. Both liquid silicone rubber and millable silicone rubber were crosslinked by heating for a period of time.
[0106] 冷却後、外層(弾性層)を手でひねって、内層の緻密化 PTFEと芯材 (ステンレス鋼 棒材)との間の圧着を緩め、ステンレス鋼棒材を引き抜くことにより積層型弾性チュー ブを得た(内径: 5mm、外径: 9. 6mm、軸方向の長さ: 400mm、内層の厚さ: 20 m、中間層の厚さ: 100 m、外層の厚さ: 2. 2mm)。 [0106] After cooling, twist the outer layer (elastic layer) by hand, loosen the inner layer densified PTFE and the core material (stainless steel bar), and pull out the stainless steel bar to laminate elasticity The tube was obtained (inner diameter: 5mm, outer diameter: 9.6mm, axial length: 400mm, inner layer thickness: 20m, middle layer thickness: 100m, outer layer thickness: 2.2mm ).
[0107] 実施例 2 [0107] Example 2
実施例 1と同様にして、液状シリコーンゴムを含浸した円筒状中間体を得た。 In the same manner as in Example 1, a cylindrical intermediate body impregnated with liquid silicone rubber was obtained.
[0108] 二軸延伸多孔質 PTFEフィルム(ジャパンゴァテックス(株)製「ePTFEフィルム」、 幅: 400mm、長さ(奥行き) : 816mm,空孔率: 78%、最大細孔径: 0. 4 /ζ πι、厚さ: 18 m)に、片側から付加反応型の液状シリコーンゴム (信越化学工業 (株)製「KE1 031」)を塗布した。塗布面を内側にしながら、かつ空気を巻き込まないようにしつつ 、この塗布フィルムを前記円筒状中間体に巻き付けて外層にした (卷回数: 35回)。 [0108] Biaxially stretched porous PTFE film ("ePTFE film" manufactured by Japan Gore-Tex Co., Ltd.), width: 400mm, length (depth): 816mm, porosity: 78%, maximum pore diameter: 0.4 / ζ πι, thickness: 18 m), addition reaction type liquid silicone rubber (“KE1 031” manufactured by Shin-Etsu Chemical Co., Ltd.) was applied from one side. The coated film was wound around the cylindrical intermediate body to make an outer layer while keeping the coated surface inward and preventing air from being entrained (number of wrinkles: 35 times).
[0109] 温度 150°Cで 30分間加熱することにより、中間層及び外層の液状シリコーンゴムを 架橋した。 [0109] The liquid silicone rubber in the intermediate layer and the outer layer was crosslinked by heating at a temperature of 150 ° C for 30 minutes.
[0110] 冷却後、外層(弾性層)を手でひねって、内層の緻密化 PTFEと芯材 (ステンレス鋼 棒材)との間の圧着を緩め、ステンレス鋼棒材を引き抜くことにより積層型弾性チュー ブを得た(内径: 5mm、外径: 9. 6mm、軸方向の長さ: 400mm、内層の厚さ: 20 m、中間層の厚さ: 100 m、外層の厚さ: 2. 2mm、外層のシリコーンゴム層(第 1の 層)の厚さ: 1550 /ζ πι、外層の PTFEフィルム層(第 2の層)の厚さ: 630 m、第 1の 層の厚さ Z第 2の層の厚さ = 2. 5Zl)。 [0110] After cooling, twist the outer layer (elastic layer) by hand, loosen the inner layer densified PTFE and the core material (stainless steel bar), and pull out the stainless steel bar to laminate elasticity The tube was obtained (inner diameter: 5mm, outer diameter: 9.6mm, axial length: 400mm, inner layer thickness: 20m, middle layer thickness: 100m, outer layer thickness: 2.2mm , Outer silicone rubber layer (first layer) thickness: 1550 / ζ πι, outer layer PTFE film layer (second layer) thickness: 630 m, first layer thickness Z second Layer thickness = 2.5Zl).
[0111] 実施例 3 [0111] Example 3
中間層の二軸延伸多孔質 PTFEフィルムの細孔内に含浸させるゴムを加熱硬化型 の液状フッ素ゴム (信越化学工業 (株)製「SIFEL— 8070A/BJ )、外層のニ軸延
伸多孔質 PTFEフィルムに塗布するゴムを加熱硬化型の液状フッ素ゴム (信越ィ匕学 ェ業(株)製「SIFEL— 610」)にする以外は、実施例 2と同様にして弾性チューブを 得た(内径: 5mm、外径: 9. 6mm、軸方向の長さ: 400mm、内層の厚さ:20 πι、 中間層の厚さ: 100 m、外層の厚さ: 2. 2mm、外層のフッ素ゴム層(第 1の層)の厚 さ: 1550 /ζ πι、外層の PTFEフィルム層(第 2の層)の厚さ: 630 m、第 1の層の厚さ Z第 2の層の厚さ = 2. 5Zl)。 Heat-cured liquid fluororubber (“SIFEL—8070A / BJ” manufactured by Shin-Etsu Chemical Co., Ltd.), biaxially stretched outer layer An elastic tube was obtained in the same manner as in Example 2 except that the heat-curing liquid fluororubber (“SIFEL-610” manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the rubber applied to the expanded porous PTFE film. (Inner diameter: 5 mm, outer diameter: 9.6 mm, axial length: 400 mm, inner layer thickness: 20 πι, middle layer thickness: 100 m, outer layer thickness: 2.2 mm, outer layer fluorine Rubber layer (first layer) thickness: 1550 / ζ πι, outer PTFE film layer (second layer) thickness: 630 m, first layer thickness Z second layer thickness = 2.5Zl).
[0112] 比較例 1 [0112] Comparative Example 1
予め補強充填材ゃ可塑剤などの諸添加剤が配合されている熱加硫型ミラブルシリ コーンゴム (信越化学工業 (株)製「KE551— U」)と加硫剤 (信越化学工業 (株)製「 C— 23」)を 100 : 1の質量比で配合し、ミキシングロール機を用いて混練した。内径 9 . 6mmのダイスと内径 5mmの-ップルを同心円状に配置した金属製押出用クロスへ ッドに、外径 5mmのステンレス鋼棒材を入口側力 挿入した。この押出用クロスへッ ドの入口と出口の中間側面から、上記混練済みの熱加硫型シリコーンゴムをスクリュ 一によつて押し込んだ。押し込みによるゴムの圧力フローによって、ステンレス鋼棒材 を押出用ヘッドの出口側力も排出し、次いで一次加硫温度 170°Cで 20分間加熱し、 さらに二次加硫温度 200°Cで 4時間加熱することによってミラブル型シリコーンゴムを 架橋した。 Heat vulcanized millable silicone rubber (“KE551—U” manufactured by Shin-Etsu Chemical Co., Ltd.) and a vulcanizing agent (manufactured by Shin-Etsu Chemical Co., Ltd.) C-23 ") was blended at a mass ratio of 100: 1 and kneaded using a mixing roll machine. A stainless steel bar with an outer diameter of 5 mm was inserted into a metal extrusion cloth head concentrically arranged with a die having an inner diameter of 9.6 mm and a 5-pull inner diameter. The kneaded heat-vulcanized silicone rubber was pushed in by a screw from the intermediate side surface of the inlet and outlet of the extrusion cloth head. Due to the pressure flow of the rubber due to indentation, the stainless steel bar is also discharged at the outlet side of the extrusion head, then heated at a primary vulcanization temperature of 170 ° C for 20 minutes, and further heated at a secondary vulcanization temperature of 200 ° C for 4 hours. By doing so, the millable silicone rubber was crosslinked.
[0113] 冷却後、外側のシリコーンゴムを手でひねって、内側のステンレス鋼棒材との間の 圧着を緩め、ステンレス鋼棒材を引き抜くことにより弾性チューブを得た(内径: 5mm 、外径: 9. 6mm、軸方向の長さ: 400mm、厚さ: 2. 3mm)。 [0113] After cooling, twist the outer silicone rubber by hand to loosen the crimping with the inner stainless steel bar, and pull out the stainless steel bar to obtain an elastic tube (inner diameter: 5mm, outer diameter : 9.6mm, axial length: 400mm, thickness: 2.3mm).
[0114] 比較例 2 [0114] Comparative Example 2
実施例 2で用いた二軸延伸多孔質 PTFEフィルム (ジャパンゴァテックス (株)製「eP TFEフィルム」、幅: 400mm、長さ(奥行き) : 826mm,空孔率: 78%、最大細孔径: 0. 4 m、厚さ: 18 m)に、片側から付加反応型の液状シリコーンゴム (信越化学 工業 (株)製「KE1031」)を塗布した。塗布面を内側にしながら、かつ空気を巻き込 まな 、ようにしつつ、この塗布フィルムをステンレス鋼棒材(外径: 5mm)に巻き付け た (卷回数: 36回)。温度 150°Cで 30分間加熱することにより、液状シリコーンゴムを 架橋した。
[0115] 冷却後、ゴム質部分を手でひねって、内側のステンレス鋼棒材との間の圧着を緩め 、ステンレス鋼棒材を引き抜くことにより弾性チューブを得た(内径: 5mm、外径: 9. 6 mm、軸方向の長さ: 400mm、全体の厚さ: 2. 3mm、シリコーンゴム層(第 1の層)の 厚さ: 1650 μ m、 PTFEフィルム層(第 2の層)の厚さ: 650 μ m、第 1の層の厚さ Z第 2の層の厚さ =2. 5Zl)。 Biaxially stretched porous PTFE film used in Example 2 ("eP TFE film" manufactured by Japan Gore-Tex Co., Ltd.), width: 400mm, length (depth): 826mm, porosity: 78%, maximum pore diameter : 0.4 m, thickness: 18 m), an addition reaction type liquid silicone rubber (“KE1031” manufactured by Shin-Etsu Chemical Co., Ltd.) was applied from one side. The coated film was wound around a stainless steel bar (outer diameter: 5 mm) while keeping the coated surface inward and without entraining air (number of creases: 36 times). Liquid silicone rubber was crosslinked by heating at 150 ° C for 30 minutes. [0115] After cooling, the rubber part was twisted by hand to loosen the crimping with the inner stainless steel bar, and the elastic tube was obtained by pulling out the stainless steel bar (inner diameter: 5mm, outer diameter: 9.6 mm, axial length: 400 mm, total thickness: 2.3 mm, silicone rubber layer (first layer) thickness: 1650 μm, PTFE film layer (second layer) thickness Thickness: 650 μm, first layer thickness Z second layer thickness = 2.5 Zl).
[0116] 比較例 3 [0116] Comparative Example 3
塗布するゴムを加熱硬化型の液状フッ素ゴム (信越化学工業 (株)製「SEIFEL— 6 10」)にする以外は、比較例 2と同様にして弾性チューブを得た(内径: 5mm、外径: 9. 6mm、軸方向の長さ: 400mm、全体の厚さ: 2. 3mm、フッ素ゴム層(第 1の層) の厚さ: 1650 μ m、 PTFEフィルム層(第 2の層)の厚さ:650 μ m、第 1の層の厚さ Z 第 2の層の厚さ =2. 5Zl)。 An elastic tube was obtained (inner diameter: 5 mm, outer diameter) in the same manner as in Comparative Example 2 except that the rubber to be applied was heat-cured liquid fluororubber (“SEIFEL-6 10” manufactured by Shin-Etsu Chemical Co., Ltd.). : 9.6 mm, axial length: 400 mm, overall thickness: 2.3 mm, fluororubber layer (first layer) thickness: 1650 μm, PTFE film layer (second layer) thickness 650 μm, first layer thickness Z second layer thickness = 2.5 Zl).
[0117] 比較例 4 [0117] Comparative Example 4
実施例 1と同様にして緻密化 PTFEフィルムを得た。 A densified PTFE film was obtained in the same manner as in Example 1.
[0118] この緻密化 PTFEフィルムを、幅: 400mm、長さ(奥行き): 158mmのサイズに切 断し、その長さ(奥行き)方向が巻き取り方向(周方向)になるようにステンレス鋼棒材 (外径 : 5mm)に 10回巻き付けた。次いで強制熱風循環'換気方式の恒温恒湿器( エスペック(株)製、「STPH— 201」)を用いて、温度 375°Cで 30分間加熱し、 PTFE フィルム間を熱融着し、厚さ 20 mの内層を形成した。 [0118] This densified PTFE film is cut into a size of width: 400mm, length (depth): 158mm, and a stainless steel rod so that the length (depth) direction is the winding direction (circumferential direction) The material (outer diameter: 5 mm) was wound 10 times. Next, using a forced hot air circulation / ventilation type constant temperature and humidity chamber (Espec Co., Ltd., “STPH-201”), heated at a temperature of 375 ° C for 30 minutes, heat-sealed between the PTFE films, A 20 m inner layer was formed.
[0119] 別途、予め補強充填材ゃ可塑剤などの諸添加剤が配合されている熱加硫型ミラブ ルシリコーンゴム (信越化学工業 (株)製 ΓΚΕ551— U」 )と加硫剤 (信越化学工業 (株 )製「C— 23」)を 100 : 1の質量比で配合し、ミキシングロール機を用いて混練した。 内径 9. 6mmのダイスと内径 5mmの-ップルを同心円状に配置した金属製押出用ク ロスヘッドに、前記内層をステンレス鋼棒材に巻き付けたままで入口側力 挿入した。 この押出用クロスヘッドの入口と出口の中間側面から、上記混練済みの熱加硫型シリ コーンゴムをスクリューによって押し込んだ。押し込みによるゴムの圧力フローによつ て、ステンレス鋼棒材に巻き付けた内層を押出用ヘッドの出口側力 排出し、次いで 一次加硫温度 170°Cで 20分間加熱し、さらに二次加硫温度 200°Cで 4時間加熱す ることによってミラブル型シリコーンゴムを架橋した。
[0120] 冷却後、外層(弾性層)を手でひねって、内層の緻密化 PTFEと芯材 (ステンレス鋼 棒材)との間の圧着を緩め、ステンレス鋼棒材を引き抜くことにより弾性チューブを得 た(内径: 5mm、外径: 9. 6mm、軸方向の長さ: 400mm、内層の厚さ: 20 m、外 層の厚さ: 2. 3mm)。 [0119] Heat-curing type mirabil silicone rubber (Γ 551—U, manufactured by Shin-Etsu Chemical Co., Ltd.) and vulcanizing agent (Shin-Etsu Chemical Co., Ltd.), which are pre-mixed with various additives such as reinforcing fillers and plasticizers. “C-23” manufactured by Kogyo Co., Ltd. was blended at a mass ratio of 100: 1 and kneaded using a mixing roll machine. The inlet side force was inserted into a metal extrusion cross head in which a die having an inner diameter of 9.6 mm and a 5-pull inner diameter were concentrically arranged while the inner layer was wound around a stainless steel bar. The kneaded heat vulcanized silicone rubber was pushed in from the middle side of the inlet and outlet of the extrusion crosshead with a screw. The inner layer wound around the stainless steel bar is discharged by the pressure flow of the rubber due to the indentation, the outlet side force of the extrusion head is discharged, then heated at the primary vulcanization temperature of 170 ° C for 20 minutes, and further the secondary vulcanization temperature The millable silicone rubber was crosslinked by heating at 200 ° C for 4 hours. [0120] After cooling, twist the outer layer (elastic layer) by hand to loosen the inner layer densified PTFE and the core material (stainless steel bar), and pull out the stainless steel bar to pull out the elastic tube. Obtained (inner diameter: 5 mm, outer diameter: 9.6 mm, axial length: 400 mm, inner layer thickness: 20 m, outer layer thickness: 2.3 mm).
[0121] 実施例 1〜3及び比較例 1〜4で得られた弾性チューブの耐薬品性及び耐久性を 以下の様にして調べた。 [0121] The chemical resistance and durability of the elastic tubes obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were examined as follows.
[0122] 耐薬品性 [0122] Chemical resistance
弾性チューブの中空内にシクロへキサンを充填し、温度 20〜25°Cで 70時間保持 した。シクロへキサンを排出した後、試験前後のチューブの質量変化を測定し、下記 基準に従って評価した。 Cyclohexane was filled in the hollow of the elastic tube and kept at a temperature of 20-25 ° C for 70 hours. After discharging cyclohexane, the change in mass of the tube before and after the test was measured and evaluated according to the following criteria.
優 :質量変化が 30%未満 Excellent: Less than 30% mass change
不可:質量変化が 30%以上 Impossible: Mass change is 30% or more
[0123] 耐久性 [0123] Durability
ウエットプロセス用榭脂製ピンチバルブ (旭有機材工業 (株)製、商品名「DymatriX Resin pinch valve for wet process (manufactured by Asahi Organic Materials Co., Ltd., trade name “Dymatri X
AVPV3」)に弾性チューブを装着した。このピンチバルブは、 15mm X 10mmの 角柱状ピストン (先端の周縁部は、面取りされている(曲率 0. 4) )を圧縮空気で平板 体に向けて押しつけることができ、このピストンと平板体との間でチューブを押圧する 。チューブ内に液体を通水することなぐピストンで弾性チューブを繰り返し押圧した 。押圧の条件は、以下の通りである。 AVPV3 ”) was fitted with an elastic tube. This pinch valve can press a 15 mm x 10 mm prismatic piston (the peripheral edge of the tip is chamfered (curvature 0.4)) toward the flat plate with compressed air. Press the tube between. The elastic tube was repeatedly pressed with a piston that did not allow liquid to pass through the tube. The conditions for pressing are as follows.
押圧時間:1. 5秒 Z回 Pressing time: 1.5 seconds Z times
圧力解放時間: 1. 5秒 Z回 Pressure release time: 1.5 sec Z times
圧縮空気の圧力: 0. 4MPa Compressed air pressure: 0.4MPa
[0124] チューブの外面を目視で確認し、損傷が発生するまでの繰り返し数をカウントした。 [0124] The outer surface of the tube was visually confirmed, and the number of repetitions until damage occurred was counted.
またチューブの断面を目視で確認し、層間剥離が発生するまでの繰り返し数をカウン トした。 In addition, the cross section of the tube was visually confirmed, and the number of repetitions until delamination occurred was counted.
※は評価していないことを示す。
* Indicates not evaluated.
[0126] 表 1より明らかなように、実施例 1〜3の弾性チューブは、適切な中間層によって内 層と外層(弾性層)とが接合されているため、繰り返し押圧に対する耐久性、及び耐 薬品性に優れている。 [0126] As is clear from Table 1, the elastic tubes of Examples 1 to 3 have durability against repeated pressing and resistance because the inner layer and outer layer (elastic layer) are joined by an appropriate intermediate layer. Excellent chemical properties.
産業上の利用可能性 Industrial applicability
[0127] 本発明の積層型弾性チューブは、例えば、チューブ内に流体を流通させるような用 途 (特にピンチバルブやローラーポンプに使用される弾性チューブなどのように、径 方向の押圧によってチューブ中空内の流体の流通を制御する用途)や、チューブ内 に非流体を通すような用途 (例えば、チューブ内にトルクなどを伝達するための金属 ワイヤを揷通したケーブルチューブ(プッシュプルチューブ) )に使用できる。
[0127] The laminated elastic tube of the present invention is used, for example, for applications in which a fluid flows in the tube (especially an elastic tube used for a pinch valve or a roller pump). For applications such as controlling the flow of fluid in a tube) or applications that allow non-fluid to pass through a tube (for example, a cable tube (push-pull tube) with a metal wire passed through it to transmit torque, etc.) Can be used.
Claims
請求の範囲 The scope of the claims
[I] 内面がフッ素榭脂層で構成され、このフッ素榭脂層よりも外側に弾性層が形成され て 、る積層型弾性チューブであって、 [I] A laminated elastic tube having an inner surface composed of a fluorine resin layer and an elastic layer formed outside the fluorine resin layer,
前記フッ素榭脂層と弾性層との間に、多孔質フッ素榭脂と、この多孔質フッ素榭脂 の細孔を充填する弾性体とから構成される中間層が形成されており、 Between the fluorine resin layer and the elastic layer, an intermediate layer composed of a porous fluorine resin and an elastic body filling the pores of the porous fluorine resin is formed,
内面のフッ素榭脂層と、中間層の多孔質フッ素榭脂とが接合しており、 外側の弾性層と、中間層の弾性体とが接合していることを特徴とする積層型弾性チ ユーブ。 A laminated elastic tube characterized in that an inner surface fluorine resin layer and an intermediate layer porous fluorine resin are bonded, and an outer elastic layer and an intermediate layer elastic body are bonded. .
[2] 前記内面のフッ素榭脂層が、フッ素榭脂フィルムを卷回したチューブである請求項 [2] The fluorine resin layer on the inner surface is a tube wound with a fluorine resin film.
1に記載の積層型弾性チューブ。 1. The laminated elastic tube according to 1.
[3] 前記内面のフッ素榭脂層が、延伸フッ素榭脂層である請求項 1又は 2に記載の積 層型弾性チューブ。 [3] The laminated elastic tube according to [1] or [2], wherein the fluorine resin layer on the inner surface is a stretched fluorine resin layer.
[4] 前記延伸フッ素榭脂層の延伸方向が、チューブの長さ方向と直交している請求 項 3に記載の積層型弾性チューブ。 4. The laminated elastic tube according to claim 3, wherein a stretching direction of the stretched fluororesin layer is orthogonal to a length direction of the tube.
[5] 前記延伸フッ素榭脂層が、充実延伸フッ素榭脂層である請求項 3又は 4に記載の 積層型弾性チューブ。 [5] The laminated elastic tube according to [3] or [4], wherein the stretched fluorine resin layer is a solid stretched fluorine resin layer.
[6] 前記充実延伸フッ素榭脂層が、充実延伸ポリテトラフルォロエチレン層である請求 項 5に記載の積層型弾性チューブ。 [6] The laminated elastic tube according to [5], wherein the solid stretched fluorine resin layer is a solid stretched polytetrafluoroethylene layer.
[7] 前記内面のフッ素榭脂層が溶融性フッ素榭脂から形成されている請求項 1又は 2 に記載の積層型弾性チューブ。 [7] The laminated elastic tube according to [1] or [2], wherein the fluorine resin layer on the inner surface is formed of a meltable fluorine resin.
[8] 前記溶融性フッ素榭脂が、 PFA、 FEP、 PVDF、 THV、又は EFEPである請求項[8] The meltable fluorine resin is PFA, FEP, PVDF, THV, or EFEP.
7に記載の積層型弾性チューブ。 The laminated elastic tube according to 7.
[9] 前記内面のフッ素榭脂層が、 2種以上のフッ素榭脂を積層したものである請求項 1 に記載の積層型弾性チューブ。 [9] The laminated elastic tube according to [1], wherein the fluorine resin layer on the inner surface is a laminate of two or more kinds of fluorine resins.
[10] 前記 2種以上のフッ素榭脂がそれぞれチューブになっており、このチューブが内側 カゝら順に積層されている請求項 9に記載の積層型弾性チューブ。 10. The laminated elastic tube according to claim 9, wherein the two or more types of fluorine resin are each in a tube, and the tubes are laminated in order from the inner cover.
[II] 前記 2種以上のフッ素榭脂を平面状に積層し、この平面状積層体を卷回してチュ ーブ状にすることによって前記内面のフッ素榭脂層を形成している請求項 9に記載の
積層型弾性チューブ。 [II] The fluorine resin layer on the inner surface is formed by laminating the two or more kinds of fluorine resins in a planar shape and winding the planar laminate into a tube shape. Described in Laminated elastic tube.
[12] 前記 2種以上のフッ素榭脂のうち 1種は、充実延伸フッ素榭脂である請求項 9〜 11 の!、ずれかに記載の積層型弾性チューブ。 [12] The laminated elastic tube according to any one of [9] to [11], wherein one of the two or more types of fluorine resin is a fully-stretched fluorine resin.
[13] 前記 2種以上のフッ素榭脂のうち 1種は、溶融性フッ素榭脂である請求項 9〜 12の[13] The method according to any one of [9] to [12], wherein one of the two or more types of fluorine resin is a meltable fluorine resin.
V、ずれかに記載の積層型弾性チューブ。 V, laminated elastic tube according to any of the above.
[14] 前記溶融性フッ素榭脂が、内面のフッ素榭脂層の最も外側に配されている請求項 [14] The meltable fluorine resin is disposed on the outermost side of the fluorine resin layer on the inner surface.
13に記載の積層型弾性チューブ。 13. The laminated elastic tube according to 13.
[15] 前記溶融性フッ素榭脂が、 PFA、 FEP、 PVDF、 THV、又は EFEPである請求項[15] The meltable fluorine resin is PFA, FEP, PVDF, THV, or EFEP.
13又は 14に記載の積層型弾性チューブ。 The laminated elastic tube according to 13 or 14.
[16] 前記内面のフッ素榭脂層と、中間層の多孔質フッ素榭脂とが熱融着している請求 項 1〜15のいずれか〖こ記載の積層型弾性チューブ。 16. The laminated elastic tube according to any one of claims 1 to 15, wherein the fluorine resin layer on the inner surface and the porous fluorine resin on the intermediate layer are heat-sealed.
[17] 前記中間層の多孔質フッ素榭脂が、多孔質ポリテトラフルォロエチレンである請求 項 1〜16のいずれか〖こ記載の積層型弾性チューブ。 17. The laminated elastic tube according to any one of claims 1 to 16, wherein the porous fluorine resin in the intermediate layer is porous polytetrafluoroethylene.
[18] 前記中間層の弾性体が、シリコーン系エラストマ一、フッ素系エラストマ一、及びフ ルォロシリコーン系エラストマ一力も選択される少なくとも一種である請求項 1〜17の18. The elastic material of the intermediate layer is at least one selected from silicone elastomer, fluorine elastomer, and fluorosilicone elastomer.
V、ずれかに記載の積層型弾性チューブ。 V, laminated elastic tube according to any of the above.
[19] 前記中間層の弾性体が、ポリエステル系熱可塑性エラストマ一、ポリウレタン系熱可 塑性エラストマ一、ポリオレフイン系熱可塑性エラストマ一、スチレン系ブロック共重合 体エラストマ一、熱可塑性加硫エラストマ一、ポリアミド系熱可塑性エラストマ一力も選 択される少なくとも一種である請求項 1〜 17のいずれかに記載の積層型弾性チュー ブ。 [19] The elastic body of the intermediate layer includes a polyester-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, a styrene-based block copolymer elastomer, a thermoplastic vulcanized elastomer, a polyamide. The laminated elastic tube according to any one of claims 1 to 17, which is at least one kind selected from the group of thermoplastic elastomers.
[20] 前記外側の弾性層が、シリコーン系エラストマ一、フッ素系エラストマ一、及びフル ォロシリコーン系エラストマ一力も選択される少なくとも一種である請求項 1〜19のい ずれかに記載の積層型弾性チューブ。 [20] The laminated elastic tube according to any one of [1] to [19], wherein the outer elastic layer is at least one selected from the group consisting of a silicone elastomer, a fluorine elastomer, and a fluorosilicone elastomer. .
[21] 前記外側の弾性層が、ポリエステル系熱可塑性エラストマ一、ポリウレタン系熱可塑 性エラストマ一、ポリオレフイン系熱可塑性エラストマ一、スチレン系ブロック共重合体 エラストマ一、熱可塑性加硫エラストマ一、ポリアミド系熱可塑性エラストマ一力 選択 される少なくとも一種である請求項 1〜 19のいずれかに記載の積層型弾性チューブ
[21] The outer elastic layer comprises a polyester thermoplastic elastomer, a polyurethane thermoplastic elastomer, a polyolefin thermoplastic elastomer, a styrene block copolymer elastomer, a thermoplastic vulcanized elastomer, a polyamide system. The laminated elastic tube according to any one of claims 1 to 19, which is at least one kind selected from thermoplastic elastomers.
[22] 前記中間層の弾性体と、前記外側の弾性層の弾性体とがいずれも同じ樹脂から形 成されている請求項 1〜21のいずれかに記載の積層型弾性チューブ。 The laminated elastic tube according to any one of claims 1 to 21, wherein the elastic body of the intermediate layer and the elastic body of the outer elastic layer are both formed from the same resin.
[23] 前記外側の弾性層の貯蔵弾性率 E,力 1 X 102〜1 X 108Paである請求項 1〜22 の!、ずれかに記載の積層型弾性チューブ。 23. The laminated elastic tube according to claim 1, wherein the outer elastic layer has a storage elastic modulus E and a force of 1 × 10 2 to 1 × 10 8 Pa.
[24] 前記外側の弾性層が、(1)弾性体力もなる第 1の層と、(2)多孔質ポリテトラフルォ 口エチレンフィルムと、この多孔質ポリテトラフルォロエチレンフィルムの細孔を充填す る弾性体とからなる第 2の層とが重なった渦巻き状の積層構造を有している請求項 1[24] The outer elastic layer fills the pores of (1) a first layer also having elastic force, (2) a porous polytetrafluoroethylene film, and the porous polytetrafluoroethylene film. 2. A spiral laminated structure in which a second layer made of an elastic body overlaps with the second layer.
〜23の 、ずれかに記載の積層型弾性チューブ。 The laminated elastic tube according to any one of?
[25] 前記第 1の層の厚さと第 2の層の厚さの比 (第 1の層 Z第 2の層)が、 6. 5Z1以下 である請求項 24に記載の積層型弾性チューブ。 25. The laminated elastic tube according to claim 24, wherein a ratio of the thickness of the first layer to the thickness of the second layer (first layer Z second layer) is 6.5Z1 or less.
[26] 前記内面のフッ素榭脂層の厚さが 1〜200 /ζ πιであり、中間層の厚さが 10〜2000 [26] The thickness of the fluorine resin layer on the inner surface is 1 to 200 / ζ πι, and the thickness of the intermediate layer is 10 to 2000.
/z mであり、外側の弾性層の厚さが 0. 15〜80mmである請求項 1〜25のいずれか に記載の積層型弾性チューブ。 26. The laminated elastic tube according to any one of claims 1 to 25, wherein / z m and the thickness of the outer elastic layer is 0.15 to 80 mm.
[27] 前記外側の弾性層の厚さ力 積層型弾性チューブの内径に対して 10〜200%で ある請求項 1〜26のいずれかに記載の積層型弾性チューブ。 [27] The laminated elastic tube according to any one of [1] to [26], wherein the thickness force of the outer elastic layer is 10 to 200% with respect to the inner diameter of the laminated elastic tube.
[28] 前記外側の弾性層よりも外側に、耐摩耗層が形成されて 、る請求項 1〜27の ヽず れかに記載の積層型弾性チューブ。 [28] The laminated elastic tube according to any one of [1] to [27], wherein an abrasion-resistant layer is formed on the outer side of the outer elastic layer.
[29] 前記耐摩耗層がポリテトラフルォロエチレンのチューブ状物である請求項 28に記 載の積層型弾性チューブ。 29. The laminated elastic tube according to claim 28, wherein the wear-resistant layer is a polytetrafluoroethylene tubular material.
[30] 請求項 1〜29の 、ずれかに記載の積層型弾性チューブを用いたピンチバルブ。 [30] A pinch valve using the laminated elastic tube according to any one of claims 1 to 29.
[31] 請求項 1〜29のいずれかに記載の積層型弾性チューブを用いたローラーポンプ。 [31] A roller pump using the laminated elastic tube according to any one of claims 1 to 29.
[32] フッ素榭脂層からなるチューブを多孔質フッ素榭脂で被覆し、これらを熱融着した 後、 [32] After coating the tube made of the fluorine resin layer with porous fluorine resin, and heat-sealing them,
多孔質フッ素榭脂側力 多孔質フッ素榭脂の細孔に液状の弾性体原料を充填し、 充填後、三次元網目構造を形成させて前記弾性体原料を弾性体にする請求項 1 〜29のいずれかに記載の積層型弾性チューブの製造方法。 Porous Fluororesin Side Force A porous elastic raw material is filled with a liquid elastic raw material, and after filling, a three-dimensional network structure is formed to make the elastic raw material into an elastic body. A method for producing a laminated elastic tube according to any one of the above.
[33] フッ素榭脂層からなるチューブを多孔質フッ素榭脂で被覆し、これらを熱融着した
後、 [33] A tube composed of a fluorine resin layer was coated with porous fluorine resin, and these were heat-sealed. rear,
多孔質フッ素榭脂側力 多孔質フッ素榭脂の細孔に液状の弾性体原料を充填し、 さらに前記多孔質フッ素榭脂の外側に、弾性体原料を含む層を形成した後、 三次元網目構造を形成させて前記両方の弾性体原料を弾性体にする請求項 1〜 29のいずれかに記載の積層型弾性チューブの製造方法。
Porous fluorine resin side force After filling the pores of the porous fluorine resin with a liquid elastic material, and further forming a layer containing the elastic material on the outside of the porous fluorine resin, a three-dimensional network The method for producing a laminated elastic tube according to any one of claims 1 to 29, wherein a structure is formed to make both of the elastic body materials into an elastic body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006179861 | 2006-06-29 | ||
JP2006-179861 | 2006-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008001870A1 true WO2008001870A1 (en) | 2008-01-03 |
Family
ID=38845634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/063048 WO2008001870A1 (en) | 2006-06-29 | 2007-06-28 | Elastic laminated tube |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008001870A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2422974A1 (en) * | 2010-08-26 | 2012-02-29 | Uponor Innovation AB | Multi-layer plastic pipe |
CN105042206A (en) * | 2015-07-06 | 2015-11-11 | 苏州捷宁模塑有限公司 | Pressure-proof abrasion-resisting polytetrafluoroethylene sleeve |
CN109890433A (en) * | 2016-11-02 | 2019-06-14 | 圣犹达医疗用品心脏病学部门有限公司 | Contacting pipe for peristaltic pump |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63194718U (en) * | 1987-06-03 | 1988-12-15 | ||
JPH0636832U (en) * | 1992-10-27 | 1994-05-17 | 株式会社潤工社 | Fluororesin laminate |
JPH06270301A (en) * | 1993-03-17 | 1994-09-27 | Japan Gore Tex Inc | Flexible tube and manufacture thereof |
JPH0872178A (en) * | 1994-09-01 | 1996-03-19 | Japan Gore Tex Inc | Flexible multilayer tube |
WO2001036831A1 (en) * | 1999-11-12 | 2001-05-25 | Daikin Industries,Ltd. | Cylindrical article and method for manufacturing the same |
JP2005257762A (en) * | 2004-03-09 | 2005-09-22 | Japan Gore Tex Inc | Elastic member, toner-fixing member and fixing device, and method for manufacturing the elastic member |
-
2007
- 2007-06-28 WO PCT/JP2007/063048 patent/WO2008001870A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63194718U (en) * | 1987-06-03 | 1988-12-15 | ||
JPH0636832U (en) * | 1992-10-27 | 1994-05-17 | 株式会社潤工社 | Fluororesin laminate |
JPH06270301A (en) * | 1993-03-17 | 1994-09-27 | Japan Gore Tex Inc | Flexible tube and manufacture thereof |
JPH0872178A (en) * | 1994-09-01 | 1996-03-19 | Japan Gore Tex Inc | Flexible multilayer tube |
WO2001036831A1 (en) * | 1999-11-12 | 2001-05-25 | Daikin Industries,Ltd. | Cylindrical article and method for manufacturing the same |
JP2005257762A (en) * | 2004-03-09 | 2005-09-22 | Japan Gore Tex Inc | Elastic member, toner-fixing member and fixing device, and method for manufacturing the elastic member |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2422974A1 (en) * | 2010-08-26 | 2012-02-29 | Uponor Innovation AB | Multi-layer plastic pipe |
CN105042206A (en) * | 2015-07-06 | 2015-11-11 | 苏州捷宁模塑有限公司 | Pressure-proof abrasion-resisting polytetrafluoroethylene sleeve |
CN109890433A (en) * | 2016-11-02 | 2019-06-14 | 圣犹达医疗用品心脏病学部门有限公司 | Contacting pipe for peristaltic pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008030471A (en) | Layered type elastic tube | |
EP1054766B1 (en) | Flexure endurant composite elastomer compositions | |
US5320888A (en) | Fluoroelastomer laminates | |
EP1497112B2 (en) | Fluoropolymer articles | |
KR100723898B1 (en) | Multi-layer articles including a fluoroplastic layer | |
JP5449803B2 (en) | Fluorine-based elastic tube | |
EP3116711A1 (en) | Multilayer flexible tube and methods for making same | |
US7396499B2 (en) | Multiple layered membrane with fluorine containing polymer layer | |
WO2021149782A1 (en) | Tube | |
JP2004506548A (en) | Method for producing multilayer product having fluororesin layer and elastomer layer | |
CN108284659A (en) | Thermoplastic composite tubing with multilayer middle layer | |
WO2008001870A1 (en) | Elastic laminated tube | |
AU2018345731B2 (en) | Fluoroelastomer covered elastomeric for composite manufacturing | |
JP2013144380A (en) | Laminate tube | |
US20050048292A1 (en) | Composite plastic material | |
WO2005119071A1 (en) | Roll cover and method of manufacturing roll including the roll cover | |
JP2004330718A (en) | Heat-resistant cushioning material for press |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07767840 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07767840 Country of ref document: EP Kind code of ref document: A1 |