WO2007094441A1 - Biaxially oriented polyester film for molding application - Google Patents

Biaxially oriented polyester film for molding application Download PDF

Info

Publication number
WO2007094441A1
WO2007094441A1 PCT/JP2007/052808 JP2007052808W WO2007094441A1 WO 2007094441 A1 WO2007094441 A1 WO 2007094441A1 JP 2007052808 W JP2007052808 W JP 2007052808W WO 2007094441 A1 WO2007094441 A1 WO 2007094441A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
coating layer
polyester film
oriented polyester
Prior art date
Application number
PCT/JP2007/052808
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Manabe
Ryosuke Matsui
Tsutomu Morimoto
Masahiro Kimura
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2007522854A priority Critical patent/JP5458492B2/en
Publication of WO2007094441A1 publication Critical patent/WO2007094441A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biaxially oriented polyester film for molding, and exhibits excellent releasability and non-adhesiveness after repeated use, high-temperature heat treatment, use after retort treatment, and use in a water atmosphere.
  • the present invention relates to a film exhibiting stable performance with small variations and a method for producing the same.
  • the present invention relates to a film that does not change in surface condition before and after molding and exhibits excellent release properties and non-adhesive properties even after molding. For this reason, when it is pasted to a substrate, etc., and molded or the film itself is molded into a container, the contents are excellent in releasability and non-adhesiveness. It is suitable for food containers.
  • a form used for the inner surface of a metal can which is molded after being laminated on a metal plate such as steel or aluminum is a very preferable embodiment.
  • Polyester films are used in a wide range of fields such as industrial materials, magnetic recording materials, optical materials, information materials, and packaging materials because of their excellent mechanical strength, thermal characteristics, humidity characteristics, and many other excellent characteristics. Used.
  • polyester films have been widely used as containers or the like by taking advantage of their excellent characteristics and forming them after being bonded to a base material, or forming a polyester film itself.
  • polyester has a problem that its molecular skeleton force is poor in releasability, and the contents adhere when used on the inner surface of a container or the like.
  • a polyester film added with wax has been proposed (for example, Patent Document 1).
  • Patent Document 1 since nitrogen is added at the time of polyester polymerization or wax master pellets are used, the nitrogen is not efficiently dispersed on the surface, and the non-adhesive effect is small.
  • Patent Document 2 a film in which a polyester film surface is coated with silicone resin, fluorine-based resin, or the like to provide releasability.
  • Patent Document 2 a film in which a polyester film surface is coated with silicone resin, fluorine-based resin, or the like to provide releasability.
  • Patent Document 2 since it is inferior in formability, it cannot be used for molding processing applications, and the performance is remarkably deteriorated when retort treatment is applied. There was a problem that when the molding process was performed, defects such as roughness and dents were generated on the surface.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-220453
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-115566
  • An object of the present invention is to eliminate the above-mentioned problems of the prior art, exhibiting excellent non-adhesiveness even after high-temperature heat treatment and retort treatment, and forming biaxially oriented polyester film combined with molding processing Is to provide. Means for solving the problem
  • the biaxially oriented polyester film for molding of the present invention has the following constitution.
  • a coating layer having a surface free energy of 15 to 35 mNZ m is laminated on at least one side of the polyester film,
  • the coating layer has a center line average roughness of 1 to 50 nm
  • the contact angle of the coating layer with water is 90 to 120 °
  • the center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C. is 1 to 50 nm (1) or ( A biaxially oriented polyester film for molding as described in 2).
  • the contact angle between the coating layer and water when subjected to retort treatment at 125 ° C, 0.12 MPa and 90 minutes is 90 to 120 °, according to any one of (1) to (8) Biaxially oriented polyester eno refinolem for molding.
  • the biaxially oriented polyester film for molding of the present invention has a large contact angle with water and low surface free energy, it is excellent in releasability and non-adhesiveness and can be used for various applications.
  • high water contact angle after high temperature heat treatment that changes the surface roughness after molding Therefore, even after the film is formed or heat-treated, excellent release properties and non-adhesiveness can be maintained.
  • it is preferably excellent in moldability and has a high water contact angle even after retort treatment, so that it can be used particularly for container molding applications such as food.
  • the biaxially oriented polyester film for molding of the present invention is formed by laminating a coating layer on at least one side of a polyester film. By laminating the coating layer, the characteristics of the film surface can be improved efficiently.
  • the method for laminating the coating layer in the present invention is not particularly limited, and an extrusion lamination method or a melt coating method may be used.
  • gravure coating, reverse coating may be used because a thin film can be coated at high speed.
  • a method of laminating by spray coating, kiss coating, die coating or metering bar coating is preferably used. It is also possible to laminate a coating layer in-line, and if it is applied after longitudinal stretching in the middle of the film production process by the usual sequential biaxial stretching method, drying, heat treatment and lateral stretching are performed in the tenter.
  • a coating layer in-line and if it is applied after longitudinal stretching in the middle of the film production process by the usual sequential biaxial stretching method, drying, heat treatment and lateral stretching are performed in the tenter.
  • the film before the coating of the coating material, the film is subjected to surface activation treatment, such as corona discharge treatment, ozone treatment, ultraviolet treatment, sand mat processing, chemical treatment, etc.
  • the surface free energy is preferably set to 47 mNZm or more, more preferably 50 mNZm or more, because it can improve the adhesion between the coating layer and the polyester film, and can eliminate coating defects.
  • the surface free energy of the coating layer needs to be 15 to 35 mN / m from the viewpoints of releasability, non-adhesiveness, and handleability. If the surface free energy of the coating layer is greater than 35 mNZm, the releasability and non-adhesiveness are poor. Further, if the surface free energy is less than 15 mNZm, the film is not easily cut and processed, and the fulcrum in the case of laminating is not stable. A more preferred range of surface free energy is 17 to 33 mNZm, most preferably 20 to 30 mNZm.
  • the surface free energy of the coating layer after extending the film twice in an arbitrary direction at 23 ° C is 15 to 35 mNZm. is necessary. If the surface free energy of the coating layer after stretching the film twice in any direction is 15 to 35 mNZm, it can be molded after the film is bonded to the base material or after the film itself is molded. In addition, excellent properties can be exhibited in releasability and non-adhesiveness.
  • the more preferred range of surface free energy after stretching the film in any direction, 2 times, is 17-33mNZm, most preferably 20-30mNZm! / ,.
  • the contact angle of the coating layer with water is preferably 90 to 120 ° in terms of releasability, non-adhesiveness, and handleability. If the contact angle with water is in the above range, releasability, non-adhesiveness, and handleability can be compatible. If the contact angle with water is less than 90 °, the releasability and non-adhesiveness are poor. Also, if the contact angle with water is greater than 120 °, the film may be poorly cut and processed, and the fulcrum of the laminated sheet may not be stable. A more preferable range of the contact angle of the coating layer with water is 95 to 120 °, and 97 to 120 ° is most preferable.
  • the contact angle between the coating layer and water when the heat treatment is performed at 180 ° C for 120 minutes is 90 to 120 °. If the contact angle between the coating layer and water after heat treatment at 180 ° C for 120 minutes is 90 to 120 °, it can be used for molding and food containers even after thermoforming and dry heat sterilization. Can be used.
  • a more preferable range of the contact angle with water after heat treatment at 180 ° C for 120 minutes is 95 to 120 °, and most preferably 97 to 120 °.
  • the composition constituting the coating layer may be composed only of a water-repellent compound, but may contain a resin, a solvent, water, a metal and the like as long as the characteristics of the present invention are not impaired.
  • Coat water repellent compound By uniformly dispersing on the surface of the inging layer, the water contact angle and the surface free energy can be within the above ranges.
  • water-repellent compound examples include straight silicones such as dimethyl silicone, methyl phenol silicone, and methyl hydrogen silicone, amino groups, epoxy groups, carboxyl groups, carbinol groups, alkyl groups, poly groups on the side chain and Z or terminal.
  • Silicone compounds such as modified silicone introduced with organic groups such as ether groups, natural waxes such as whale wax, beeswax, lanolin, carnauba wax, canderia wax, montan wax, rice wax, stearyl stearate, paraffin Wax compounds such as wax, microcrystalline wax, oxidized wax, ester wax, synthetic wax such as low molecular weight polyethylene, polytetrafluoroethylene, tetrafluoroethylene z perfluoroalkoxy Fluorine compounds such as a copolymer of ethylene and tetrafluoroethylene Z and ethylene, etc. are mentioned, but a silicone compound is preferred from the viewpoints of handleability, economy, heat resistance, and water repellent effect. Used.
  • organic groups such as ether groups
  • natural waxes such as whale wax, beeswax, lanolin, carnauba wax, canderia wax, montan wax, rice wax, stearyl stearate
  • paraffin Wax compounds such as wax, microcrystalline
  • the silicone compound preferably used for the coating layer is preferably composed of a main agent and a crosslinking agent in terms of adhesion to a polyester film, water resistance, heat resistance, and the like.
  • the main agent the above-mentioned silicone compound can be used.
  • the main agent as used herein refers to a component that is contained most in the silicone compound based on mass.
  • the cross-linking agent is not particularly limited as long as it undergoes a cross-linking reaction with the main agent.
  • main agent alkenyl group-containing Z cross-linking agent: Si-H bond-containing
  • main agent silanol group or alkoxy
  • Group-containing Z cross-linking agents combinations containing alkoxy groups, hydroxyl groups such as acyloxy groups
  • main agents hydroxyl group-containing Z cross-linking agents: containing isocyanate groups, etc.
  • silicone compounds obtained by addition reaction using organopolysiloxane containing alkenyl group as the main agent and hydrogenpolysiloxane as the cross-linking agent are preferably used.
  • platinum compounds such as chloroplatinic acid, alcohol-modified chloroplatinic acid, chloroplatinic acid, vinyl siloxane complex, and rhodium compounds such as RhCl (Ph P) described in JP-A-4 352793 are used. It is preferable to add.
  • Preferable amounts of the main agent and the crosslinking agent are 100 parts by weight of the main agent and 0.05 to 20 parts by weight of the cross-linking agent. More preferably, it is 0.1 to 15 parts by weight, and most preferably 0.1 to 10 parts by weight.
  • the addition amount of the addition reaction catalyst is 0.0001 to 1 weight per 100 weight% of the main agent from the viewpoint of economical efficiency and catalytic effect. S preferred ⁇ , 0.0002 to 0.8 weight. More preferred is 0.005-0. 5 parts by weight.
  • the coating composition when forming the coating layer, it is preferable to prepare a coating composition containing the water-repellent compound and use this to form the coating layer.
  • the form of the coating composition is not particularly limited, and examples thereof include an oil type, an emulsion type, a solution type, a baking type, a paste type, and a spray type.
  • the coating composition refers to a raw material composition when a coating layer is applied, and may include a component that volatilizes in a drying step or the like because of the composition before coating.
  • a preferred coating composition is an emulsion type in terms of workability, economy, and handleability.
  • the emulsion type coating composition can be used by diluting with water depending on the coating property.
  • polybutyl alcohol polymers or derivatives thereof cellulose conductors such as carboxymethyl cellulose and hydroxyethyl cellulose, etherified starches, starches such as dextrins, polybutylpyrrolidone, sulfoisophthalate.
  • a polymer compound or the like can be used in combination as a thickener.
  • the preferred viscosity range is 5 to: LOOOmPa's, more preferably 10 to 800 mPa's, and most preferably 20 to 500 mPa's.
  • the viscosity value here is measured based on JIS K-7117 and is at 23 ° C.
  • an organic solvent such as methanol, ethanol, isopropyl alcohol, benzene, hexane, heptane, or acetone is added in order to reduce the surface free energy of the coating composition and improve the coating property to the film. May be used.
  • the surface free energy of the coating composition is preferably 30 to 60 mNZm from the viewpoints of coating properties and handling properties.
  • the surface free energy of the coating composition is greater than 60mNZm In some cases, the coatability is inferior.
  • the surface free energy is less than 30 mNZm, it is necessary to add a large amount of an organic solvent having a small surface free energy, which is not preferable because the handling property is lowered.
  • a more preferred range of surface free energy of the coating composition is 30-55 mNZm, with 35-50 mNZm being most preferred.
  • the range is excellent even when the surface free energy is high, and conversely, when the surface free energy of the coating agent is within the preferable range, the viscosity is low. Since the coating property is excellent, the viscosity and surface free energy can be appropriately selected and adjusted according to the explosion-proof equipment in the coating process, the storage environment of the coating composition, and the like. By increasing the coating property, the effect of the water repellent compound is enhanced, and the contact angle with water and the surface free energy are reduced to the above ranges, which is very preferable.
  • the preferred concentration of the water-repellent compound is in terms of uniform dispersibility, coatability, releasability and non-adhesiveness.
  • the total coating composition is 100 to 60% by mass, and is 0.1 to 60% by mass, more preferably 0.5 to 50% by mass, and most preferably 1 to 40% by mass.
  • concentration of the water repellent compound is high, the coatability and the uniform dispersibility may be inferior. Further, if the water repellent compound concentration is low, it may be inferior in releasability and non-adhesiveness.
  • the concentration of the water repellency compound within the above-mentioned preferable range, it is efficiently dispersed on the surface of the coating layer, the contact angle with water is 90 to 120 °, and the surface free energy is 15 to 35 mNZm. Can be achieved.
  • the center line average roughness of the coating layer is required to be 1 to 50 nm.
  • the centerline average roughness means a value obtained by folding the roughness curve with the centerline force and dividing the area obtained by the roughness curve and the centerline by the measurement length.
  • five 5 cm ⁇ 5 cm samples are sampled in the width direction (250 mm) of the film, and each sample is evaluated.
  • the coating layer 1 to 50 nm In order to make the center line average roughness of the coating layer 1 to 50 nm, it is effective to smooth the coated surface of the polyester film to be coated. If the polyester film surface is not smooth, it is difficult to apply the coating layer uniformly, and the surface of the coating layer, which is a thin film, may also be affected.
  • a method for reducing the particle content of the polyester film and a method for reducing the particle size of the particles to be used can be used within a range without impairing handling and properties.
  • the handling property as used herein refers to film tearability, film transportability during coating, continuous processability during film formation, and the like.
  • the center line average roughness of the polyester film is adjusted so that the particle content in the polyester film before coating is less than 5% by mass, preferably less than 4% by mass, based on 100% by mass of the entire polyester film. Is effective because it can be reduced to 50 ⁇ m or less. However, if the particle content in the polyester film is less than 0.1% by mass, the center line average roughness of the polyester film may be less than lnm, which may reduce the handling of the film. . It is effective if the particle size used is 4 ⁇ m or less, preferably 2.5 ⁇ m or less.
  • the particle diameter here means the number average diameter. The number average diameter can be obtained by the following formula.
  • D ⁇ DiZN (Di: equivalent circle diameter of particles, N: number of particles)
  • the particle size can be measured by, for example, using a scanning electron microscope or the like on the cross section of the film, observing 100 particles at a magnification of 100000 times, and using the observed image on an image analyzer or the like. Can be measured by capturing and analyzing images [0029] Further, by improving the uniform application property of the coating layer, the center line average roughness of the coating layer can be in the above range. In order to improve the uniform coatability of the coating layer, it is effective to set the surface free energy of the coating surface to 47 mNZm or more.
  • the coating layer in-line.
  • the coating composition is applied after the longitudinal stretching, and the coating layer is dried, heat-treated and laterally stretched in the tenter. It is stretched uniformly and is effective in bringing the average roughness of the center line of the coating layer into the above range.
  • a more preferable range of the center line average roughness is 2 to 30 nm, and 3 to 20 nm is most preferable.
  • the center line average roughness of the coating layer after extending the film twice in an arbitrary direction at 23 ° C is 1 to 50 nm.
  • the center line of the coating layer after stretching the film twice in any direction means that the average roughness is greater than 50 nm, which means that the coating layer is roughened by stretching the film twice. This is not preferable because releasability and non-adhesiveness are lowered. Also, to make it less than lnm, it is necessary to make the center line average roughness of the film before molding less than Inm, which is not preferable because the handleability may be lowered. If the center line average roughness of the coating layer after stretching the film twice in any direction is 1 to 50 nm, the surface free energy of the coating layer after stretching twice can be maintained at 15 to 35 mNZm. This is very preferable because it can be done.
  • a more preferable range of the center line average roughness of the coating layer after extending the film twice in an arbitrary direction at 23 ° C is 2 to 30 nm, and most preferably 3 to 20 nm.
  • the center line average roughness of the coating layer after the film was stretched twice was measured by cutting a film into a rectangular shape with a length of 150 mm and a width of 20 mm in one direction and the direction perpendicular to that direction. To make. Sampling is performed in 30 ° increments from any direction, and 6 samples are taken. Using a tensile tester (Orientec's Tensilon UCT-100), the initial tension chuck distance is 50 mm and the tensile speed is 300 mmZ. A tensile test is performed on the sample. For each sample (6 samples), use a sample that is 2 cm long x 1.5 cm wide from the center in the length direction. Is the value of each sample.
  • the coating layer In order to make the center line average roughness of the coating layer after extending the film twice in an arbitrary direction at 23 ° C to 1-50nm, the coating layer has excellent adhesion and molding followability. It is effective. In order to improve the adhesion of the coating layer, it is effective to set the surface free energy of the coating surface of the film to 47 mNZm or more and to introduce a crosslinked structure in the coating layer.
  • the thickness of the coating layer is preferably 0.01 to 3 / zm.
  • the thickness of the coating layer refers to the dry thickness after coating. If the coating layer is made 3 m or more, cracks may occur if the coating layer becomes rough during molding. Conversely, if the thickness of the coating layer is less than 0.01 ⁇ m, the characteristics of the coating layer may not be sufficiently exhibited, which is not preferable.
  • the layer thickness of the coating layer can be adjusted by adjusting the solid content concentration of the coating composition or stretching the film after coating. For example, in the case of a metering bar coat, the thickness of the coating layer can also be adjusted by the count of the metal ring bar.
  • a more preferable layer thickness of the coating layer is 0.05 to 1.5 m, and most preferably 0.1 to Lm.
  • the heat treatment temperature is too low or the heat treatment time is too short, the adhesion and strength of the coating film may be lowered, resulting in poor molding followability.
  • the heat treatment temperature is too high or the heat treatment time is too long, the coating film becomes hard and may have a structure that is difficult to stretch, which may reduce the molding followability.
  • a heat treatment temperature of 50-250 ° C is preferred 8 If it is 0-245 degreeC, in order to shorten the coating process more preferable, it is most preferable if it is 150-240 degreeC.
  • the preferable heat treatment time varies depending on the heat treatment temperature, but is 1 to 120 seconds. If it is 2 to 60 seconds, 3 to 30 seconds is the most preferable from the viewpoint of more preferable economy.
  • the biaxially oriented polyester film for molding of the present invention has a center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C. Is preferably 1 to 50 nm. At 200 ° C, the centerline average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in the direction perpendicular to that direction is measured in any one direction and the direction perpendicular thereto.
  • the center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in one direction perpendicular to the direction at 200 ° C is 1 to 50 nm, Even in high-temperature processing and molding, it is very preferable because it can exhibit excellent mold release and non-adhesive properties even after molding into various shapes that are difficult to roughen the coating layer. .
  • the average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in the direction perpendicular to the direction at 200 ° C is greater than 50 nm, coating is performed during thermoforming. Roughness may occur in the layer, which is not preferable because the releasability and non-adhesiveness are lowered.
  • the film orientation is balanced. For example, if the film is significantly oriented in a certain direction, the film and the coating layer may be stressed when stretched in the oriented direction, resulting in a rough surface.
  • the biaxially oriented polyester film for molding of the present invention has no problem whether the coating layer is laminated on only one side or laminated on both sides, but a metal plate, a resin sheet, paper, wood, etc.
  • the coating layer which is preferably laminated only on one side is preferably a surface which is not on the substrate side.
  • the coating layer is on the substrate side, it is not preferable because the adhesiveness to the substrate may be poor.
  • the contact angle between the coating layer and water is preferably 90 to 120 ° when retort treatment is performed at 125 ° C, 0.12 MPa, and 90 minutes.
  • the contact angle between the coating layer and water is 90-120 °, which means that the surface properties of the coating layer change before and after the retort treatment. It indicates that there is no. If there is no change in the surface properties of the coating layer before and after the retort treatment, for example, when the biaxially oriented polyester film for molding of the present invention is used for food containers.
  • the biaxially oriented polyester film for molding of the present invention is very preferable because applicable applications can be remarkably increased.
  • the biaxially oriented polyester film for molding according to the present invention preferably has heat resistance, handling of resin, and properties from the viewpoint of power.
  • the melting point is preferably 246 to 270 ° C. If the melting point is less than 246 ° C, the heat resistance is poor, and at 200 ° C, the surface becomes rough when stretched 1.5 times in any direction of the film and in the direction perpendicular to that direction. Since it may occur, it is not preferable. On the other hand, when the temperature is higher than 270 ° C., it may be inferior in adhesion to a base material such as a metal plate, a resin sheet, paper, or wood, which is not preferable.
  • the melting point of the biaxially oriented polyester film for forming of the present invention is the endothermic peak temperature that appears in the melting phenomenon when measured at a heating rate of 20 ° CZ using a differential scanning calorimeter (DSC). It is. When blending polyester rosin with different compositions and using it as a film, multiple endothermic peaks associated with melting may appear. In that case, the endothermic peak temperature that appears at the highest temperature is used as the molding temperature of the present invention.
  • the melting point of the biaxially oriented polyester film It is even more preferable if the melting point is 250-270 ° C.
  • the melting point As a method of setting the temperature range that makes the melting point of the polyester film strong, it is preferable to set the melting point in the range of 246 to 270 ° C in the polyester resin stage used when forming the film. Even when using a resin, a polyester resin having a melting point of 246 ° C or higher is used. When a polyester resin is used with a low melting point, the resin used during melt-kneading is used. In order to suppress the melting point drop due to the transesterification reaction, the catalyst remaining in the resin in advance is deactivated, or a phosphorus compound is added to reduce the catalytic ability. Moreover, the melting point can be adjusted to a range of 246 to 270 ° C.
  • the biaxially oriented polyester film for molding of the present invention has a stress F100 value at 100% elongation in any direction (A direction) of the film at 100 ° C.
  • L is preferred to be lOMPa! /.
  • the polyester film of the present invention is 100. F100 value in C and F100 value that
  • each is 20 ⁇ : L lOMPa, it is very excellent in moldability such as applying molding force after film is bonded to substrate or molding film itself. Therefore it is preferable.
  • the F100 value at 100 ° C and the F100 value are within the above range.
  • the value may not fall within the preferred range, and the surface may become rough.
  • the film surface may become rough when heat is applied, or the film may become too low and wrinkles may occur when the film is rolled up, or the handling may soon deteriorate. Therefore, it is not preferable.
  • the biaxially oriented polyester film for molding of the present invention is excellent in the mold following ability of the coating layer in addition to the moldability of the single film, and therefore can be easily molded into various shapes, and the surface after molding. The releasability and non-adhesiveness can be maintained. In addition, because it holds the waist of the film, it is excellent in heat resistance and handling.
  • the polyester film of the present invention in order to set the stress at 100% elongation at 100 ° C in an arbitrary direction and a direction perpendicular thereto to 20 to: L LOMPa, it is produced by a preferred production method described later. It is preferable to do.
  • the FIOO value is most preferably 20 to: L lOMPa.
  • the FIOO value is 20 to: L lOMPa. Even when there is a direction not shown, if there is at least one combination satisfying the F 100 value of 20 to: L 1 OMPa, excellent moldability is exhibited.
  • a method of controlling the orientation of the film according to the film forming conditions is preferably used. Furthermore, a method of controlling the melting point and glass transition point of the polyester used, and the copolymer composition and copolymerization ratio can also be preferably used. From the viewpoint of productivity, the method controlled by the film forming conditions is preferred, and in particular, it can be achieved by setting the stretching ratio, stretching temperature, and stretching speed during stretching within the preferable ranges in the film production method described later. is there.
  • the F100 value and the F100 value tend to decrease by decreasing the stretching ratio or increasing the preheating temperature and stretching temperature during stretching.
  • the F100 value at 100 ° C and the F100 value are 30 to: LOOMPa is more preferable.
  • Most preferred is 40 to 90 MPa.
  • the biaxially oriented polyester film for molding of the present invention preferably has a film thickness of 5 to 100 ⁇ m in terms of moldability and handling properties. If the film thickness is less than 5 ⁇ m, the shape retention may be inferior. Also, if the film thickness exceeds 100 m, even if the deformation stress during thermoforming is reduced, the actual load increases, which may cause partial deformation or Since it takes time to raise the temperature, productivity may be reduced, which is not preferable. A more preferred range of film thickness is 8-50 / ⁇ ⁇ , and most preferred is 10-30 m.
  • the polyester resin constituting the biaxially oriented polyester film for molding of the present invention is a general term for polymer compounds having an ester bond as the main bond in the main chain, and is usually a dicarboxylic acid component.
  • a glycol component can be obtained by polycondensation reaction.
  • examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium.
  • Aromatic dicarboxylic acids such as sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, cyclohexyne dicarboxylic acid, etc. Examples thereof include alicyclic dicarboxylic acids, and oxycarboxylic acids such as Poxybenzoic acid.
  • glycol component examples include ethylene glycol, 1,2 propanediol, 1,3 propanediol, 1,3 butanediol, 1,4 butanediol, 1,5 butanediol, and 1,6 hexanediol.
  • Aliphatic glycols such as neopentyl glycol, diethylene glycol, polyethylene glycol, polypropylene glycol
  • polyoxyalkylene glycols such as polytetramethylene glycol, alicyclic glycols such as 1,4-cyclohexanedimethanol, and aromatic glycols such as bisphenol A and bisphenol S. Two or more of these dicarboxylic acid components and glycol components may be used in combination.
  • the polyester used in the present invention may be a single polyester or a blend of two or more polyesters! /.
  • Particularly preferably used polyester is mainly composed of ethylene terephthalate which can be obtained by polycondensation reaction of terephthalic acid or dimethyl terephthalate and ethylene glycol by esterification reaction or transesterification reaction. It is preferable because of its excellent thermal characteristics and humidity characteristics. Note here, saying that main gutter Unowa, ethylene terephthalate component in the polyester is 30 mol 0/0 or more
  • reaction catalyst examples include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compound germanium compounds, and coloring inhibitors include phosphorus compounds. Although a compound etc. can be used, in this invention, it does not specifically limit to these.
  • an antimony compound, a germanium compound, and Z or a titanium compound as a polymerization catalyst at any stage before the production of the polyester is completed.
  • a germanium compound is taken as an example, a method of adding a germanium compound powder as it is or a method of dissolving a germanium compound in a glycol component which is a starting material of polyester is used. To do it can.
  • germanium compounds examples include germanium dioxide, germanium hydroxide hydrate, germanium tetramethoxide, and germanium ethylene glycol oxide.
  • Germanium alkoxide compounds, germanium phenoxide compounds, phosphoric acid-containing germanium compounds such as germanium phosphate and germanium phosphite, and germanium acetate can be used. Of these, germanium diacid germanium is preferably used.
  • the antimony compound is not particularly limited.
  • oxides such as antimony trioxide and antimony acetate can be used.
  • the titanium compound is not particularly limited, but titanium tetraalkoxide such as titanium tetraethoxide and titanium tetrabutoxide can be preferably used.
  • the biaxially oriented polyester film for molding of the present invention preferably contains particles having a number average particle diameter of 0.01 to 5 m from the viewpoint of improving handleability and preventing scratches during processing.
  • the number average particle diameter is more preferably 0.05 to 4 ⁇ m from the viewpoint of prevention of scratches during heating and prevention of missing particles, and 0.1 to 3 / ⁇ ⁇ is particularly preferable.
  • particles to be added for example, internal particles, inorganic particles, and organic particles can be preferably used.
  • the particles are preferably 0.01 to 5% by mass, more preferably 0.03 to 3% by mass, and still more preferably, with respect to the biaxially oriented polyester film.
  • the particle concentration of the layer to which the particles are added is 0.01 to 5% by mass. A mass% is particularly preferred.
  • Examples of the method for precipitating the internal particles on the polyester film of the present invention include, for example, JP-A-48-61556, JP-A-51-12860, JP-A-53-41355, and JP-A-53-41355.
  • the technique described in Japanese Patent Laid-Open No. 54-90397 can be employed.
  • other particles described in JP-B-55-20496 and JP-A-59-204617 can be used in combination.
  • the method for measuring the concentration of the contained particles is not particularly limited! However, for example, a solvent that dissolves the polyester and does not dissolve the inert particles is selected, and the inert particles are separated from the polyester by centrifugation. There is a method in which the mass of particles in the mass is used as the particle concentration.
  • the solvent orthoclonal phenol, hexafluoroisopropanol, m-talesol and the like are preferably used.
  • the method for producing the polyester film of the present invention is not particularly limited.
  • polyester resin is dried as necessary, and then supplied to a melt extruder, and a slit die is also extruded into a sheet.
  • either simultaneous biaxial stretching or sequential biaxial stretching may be used.
  • a method is employed in which an unstretched sheet is stretched and heat-treated in the longitudinal direction and the width direction of the film to obtain a film having a desired degree of plane orientation.
  • the tenter method is preferred in terms of film quality, and then it is stretched in the longitudinal direction, followed by a sequential biaxial stretching method that extends in the width direction, or in the longitudinal direction and the width direction almost simultaneously.
  • the simultaneous biaxial stretching method of stretching is preferably used to reduce variation in the plane orientation coefficient and to suppress uneven thickness.
  • the draw ratio employed is preferably 1.6 to 4.2 times, more preferably 2.4 to 4.0 times in each direction.
  • the stretching speed is 100 to 200,000% Z min. Force that can be set to any temperature within a temperature range of + 100 ° C, preferably 80 to 170 ° C, particularly preferably 90 to 150 ° C in the longitudinal stretching temperature and stretching in the width direction.
  • the temperature should be between 100 ° C and 150 ° C.
  • the film can be heat-treated after biaxial stretching.
  • This heat treatment can be performed by any method such as in an oven or on a heated roll.
  • the heat treatment temperature can be any temperature within the range of the stretching temperature to the melting point of the raw material, but is preferably a heat treatment temperature of 160 to 235 ° C. from the viewpoint of molding processability and impact resistance. If the temperature is lower than the temperature at which it is applied, the impact resistance may be poor, and if it is high, the molding cache property may be poor.
  • the heat treatment time is preferably within 1 to 30 seconds without deteriorating other characteristics and within a range.
  • heat treatment may be performed by relaxing the film in the longitudinal direction and the Z or width direction.
  • the biaxially oriented polyester film for molding of the present invention is laminated with a coating layer with the inline as described above, in the above production method, after coating before stretching, A method of stretching or a method of stretching after uniaxially stretching in the longitudinal direction and then coating in the width direction can be used.
  • additives such as an antistatic agent, a thermal stabilizer, an antioxidant, a crystal nucleating agent, a weathering agent, and an ultraviolet absorber are impaired. It can be used to the extent that it is not.
  • surface unevenness processing such as embossing force and sand matting, or surface treatment such as corona discharge treatment, plasma treatment, and alkali treatment may be performed as necessary.
  • the biaxially oriented polyester film for molding of the present invention has an easy-adhesion treatment agent, an antistatic agent, a water vapor 'gas nolia agent (such as polysalt / vinylidene), a release agent, an adhesive, an adhesive, a flame retardant, an ultraviolet ray.
  • Absorbents, matting agents, pigments, dyes, etc. can be coated or printed on aluminum, acid aluminum, silicon oxide,
  • the purpose and method of vacuum deposition of a metal such as radium or a compound thereof for the purpose of light shielding, water vapor 'gas barrier, surface conductivity, infrared reflection and the like are not limited to the above.
  • the biaxially stretched polyester film for molding of the present invention can be suitably used for molding processing.
  • the biaxially stretched polyester film for molding is subjected to molding processing from pasting to a base material, or the film itself is molded and processed.
  • the physical properties and characteristics of the polymer and film were measured and evaluated by the following methods.
  • the contact angle after the heat treatment was also measured in the same manner as described above.
  • the heat treatment was performed by attaching the film to a 12 cm ⁇ 12 cm metal frame with double-sided tape and fixing it in a hot air oven at 180 ° C. for 120 minutes. Retort treatment is also fixed to the metal frame in the same way, and sterilized with 125. The test was performed under the conditions of C and 0.12 MPa for 90 minutes.
  • the sample after the retort treatment was cut out to a size of 10 cm x 10 cm from the metal frame, measured 10 times each, and the average value was taken as the contact angle of the sample.
  • a sample was prepared by cutting a film into a rectangular shape having a length of 150 mm and a width of 20 mm in an arbitrary direction and a direction perpendicular to the direction. Similarly, sampling was performed in 30 ° C increments from any direction, and 6 samples were collected. Using a tensile tester (Orientec Tensilon UCT-100), the initial tensile chuck distance was 50 mm, the tensile speed was 300 mmZ, and each sample was subjected to a tensile test at 23 ° C and stretched 100%.
  • a tensile tester Orientec Tensilon UCT-100
  • a film stretched at 200 ° C (manufactured by Toyo Seiki Seisakusho Co., Ltd.) is placed in one direction and in a direction perpendicular to that direction, a film cut into a size of 90 X 90 mm is set, and preheating for 20 seconds Later, in both directions, the film was stretched by simultaneous biaxial stretching at a speed of 2000% Z at a time of 1.5 times. In addition, sampling was performed in 30 ° increments from one arbitrary direction, 3 samples were collected, and each sample was elongated.
  • the coating layer side two-dimensional line roughness was measured and calculated from the data.
  • the measurement sample used was a sample of five 5 cm ⁇ 5 cm samples in the width direction of the film (250 mm). For each sample, 6 points were extracted at regular intervals from the edge of the film and measured (total of 30 points). The measurement was performed with an objective lens of 100 times, a measurement pitch of 0.01 m, a measurement length of 100 m, and a cutoff of 0.08 mm.
  • the cross section of the film was photographed with a transmission electron microscope (TEM H7100, manufactured by Hitachi, Ltd.) by an ultrathin section method, and the thickness of the coating layer was measured. The measurement was performed at an arbitrary 5 locations in the center in the film width direction at a magnification of 20000, and the average value was taken as the thickness of the coating layer.
  • TEM H7100 manufactured by Hitachi, Ltd.
  • Measurement was performed using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). If 5 mg of the sample is used as the sample and there are multiple endothermic peaks whose melting point is the endothermic peak temperature when the temperature is increased from 25 ° C to 300 ° C in 10 ° CZ minutes, the peak temperature of the endothermic peak on the highest temperature side The degree was taken as the melting point.
  • the film was cut into a rectangular shape with a length of 150 mm and a width of 10 mm in an arbitrary direction and a direction perpendicular thereto.
  • a tensile tester Orientec's Tensilon UCT-100
  • the initial tensile chuck distance was 50 mm
  • the tensile speed was 300 mmZ
  • tensile tests were performed in the longitudinal and width directions of the film.
  • a film sample was set in a constant temperature layer set to 100 ° C in advance, and a tensile test was performed after 90 seconds of preheating.
  • an acrylic adhesive tape (Nitto Denko Corporation Knit Polyester Tape 31B) with a width of 19 mm is applied to the coating layer surface of the film sample that has been stretched twice in any direction to a length of 200 mm. In this way, it was pressed with a rubber roller (linear pressure 2 kg / cm). This adhesive tape was peeled off at 25 ° C and 65% RH at a peeling angle of 90 °. Evaluated in quasi.
  • a film sample stretched 1.5 times in the longitudinal direction and width direction by the method of (4) is stored on an ABS sheet (200 X 300 mm) stored in a hot air oven at 200 ° C for 2 minutes via an adhesive sheet.
  • a laminator 180 ° C, lm / min, 0.3 MPa
  • the ABS sheet was taken out, and the amount (weight) attached to the film surface was judged according to the following criteria.
  • the adhesive sheet was prepared by melt pressing (120 ° C, 4 MPa, lmin) (Nippon Synthetic Chemical Industry Co., Ltd. Polyester SP 170).
  • a far-infrared heater heated to 200 ° C was used to heat the surface temperature to 180 ° C, and vacuum forming was performed using a cylindrical mold (bottom diameter 50 mm) to form a film.
  • the state of being molded along the cylindrical mold was evaluated according to the following criteria using the degree of molding (drawing ratio: molding height Z bottom diameter).
  • Impossible B Wrinkles occurred in large quantities, and the film blocked.
  • polyester resin used in the following examples and comparative examples was produced as follows.
  • a mixture of 100 parts by mass of terephthalic acid and 110 parts by mass of 1,4 butanediol was heated to 140 ° C under a nitrogen atmosphere to obtain a homogeneous solution, and then 0.054 parts by mass of tetra-n-butyl orthotitanate, Esterification reaction was performed by adding 0.054 parts by mass of monohydroxybutyltin oxide. Next, 0.066 part by mass of tetra-n-butyl orthotitanate was added, and a polycondensation reaction was performed under reduced pressure to prepare polybutylene terephthalate resin having an intrinsic viscosity of 0.88.
  • PBT polybutylene terephthalate resin
  • PTT 100 parts by weight of dimethyl terephthalate, 80 parts by weight of 1,3-propanediol using tetrabutyl titanate as a catalyst under nitrogen atmosphere, gradually increasing the temperature from 140 ° C to 230 ° C, while distilling methanol A transesterification reaction was performed. Furthermore, polycondensation resin having an intrinsic viscosity [7?] Of 0.86 was obtained by polycondensation reaction for 3 hours at a constant temperature of 250 ° C.
  • the polycondensation reaction is carried out until the degree reaches 0.67, and then discharged into a strand, cooled, and cut to obtain polyethylene terephthalate resin copolymerized with 4 mol% of 1,4-cyclohexanedimethanol. It was.
  • the polyester resin was obtained by cutting the polymer into cubes having a diameter of 3 mm and performing solid-phase polymerization using a rotary vacuum polymerization apparatus under a reduced pressure of lhPa at 225 ° C until the intrinsic viscosity was 0.8.
  • the coating composition used in the following experiments was prepared as follows.
  • Alkal group-containing organopolysiloxane / hydrogen polysiloxane-attached silicone-reacted silicone emulsion (X—52—195), 100 parts by weight, catalyst (CAT—PM—10), manufactured by Shin-Etsu Silicone Co., Ltd. 3 parts by mass, polyvinyl alcohol QP-18) 5 mass% aqueous solution manufactured by Nippon Vinegar Poval Co., Ltd. was mixed with 300 parts by mass to obtain a coating composition B.
  • Alkal group-containing organopolysiloxane / hydrogen polysiloxane-attached silicone-reacted silicone emulsion (X—52—195), 100 parts by weight, catalyst (CAT—PM—10), manufactured by Shin-Etsu Silicone Co., Ltd. 1 part by mass, 200 parts by mass of isopropyl alcohol, and 1000 parts by mass of water were mixed to obtain a coating composition C.
  • silicone emulsion 100 parts by mass of silicone emulsion (SILCOLEASE902) manufactured by Arakawa Chemical Industries, Ltd., 10 parts by mass of catalyst (CATA903), and 600 parts by mass of water were mixed to obtain a coating composition D.
  • Alkale group-containing organopolysiloxane manufactured by Toray Dow Cowing Silicone Co., Ltd.
  • a coating composition E was obtained by mixing 100 parts by mass of Z hydrogendiene polysiloxane-attached silicone reaction purged (LTC750A), 1 part by mass of catalyst (SRX-212) and 500 parts by mass of toluene.
  • the coating composition F was acrylic emerald (Nifengsol Y-9105) manufactured by Nippon Carbide Industries Co., Ltd.
  • a coating composition G was prepared by mixing 100 parts by mass of Shin-Nakamura's long-chain alkyl acrylate (TR-7) with 60 parts by mass of water.
  • a coating composition H was prepared by mixing 100 parts by mass of Shin-Nakamura's long chain alkyl acrylate (TR-7), 50 parts by mass of water and 20 parts by mass of isopropyl alcohol.
  • a coating composition I was obtained by mixing 100 parts by mass of a wax emulsion (KEK-T) manufactured by Guangei Chemical Industry Co., Ltd., 20 parts by mass of isopropyl alcohol, and 150 parts by mass of water.
  • KEK-T wax emulsion manufactured by Guangei Chemical Industry Co., Ltd.
  • Wax emulsion (KEK-T) manufactured by Guangei Chemical Industry Co., Ltd. was used as coating composition J.
  • PET and particle master were mixed at a mass ratio of 99: 1, dried at 180 ° C for 4 hours in a vacuum dryer, and after sufficiently removing water, supplied to a single screw extruder, melted at 280 ° C, After removal and leveling of the extrusion amount, the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to a cooling drum to obtain an unstretched film.
  • the film temperature was raised with a heating roll before stretching in the longitudinal direction, and finally the film was stretched 3.0 times in the longitudinal direction at a film temperature of 105 ° C, and the temperature was immediately controlled to 40 ° C. Cooled with a metal roll.
  • This uniaxially stretched film was subjected to corona discharge treatment in air, and the surface free energy of the polyester film was set to 52 mNZm.
  • the treated surface was coated with coating composition A using a metalling bar (# 6).
  • the tenter type Stretched 3.0 times in the width direction at a pre-heating temperature of 95 ° C and a stretching temperature of 120 ° C with a horizontal stretching machine, and while maintaining a 4% relaxation in the width direction in the tenter for 5 seconds at a temperature of 210 ° C.
  • Heat treatment was performed to obtain a biaxially oriented polyester film in which a coating layer having a film thickness of 15 ⁇ m was laminated.
  • Example except that PET and particle master were mixed at a mass ratio of 97: 3, coating composition B was used, and the draw ratio in the longitudinal direction was 3.1 times and the draw ratio in the width direction was 3.1 times.
  • a biaxially oriented polyester film on which a coating layer having a film thickness of 12 ⁇ m was laminated was obtained.
  • Example 2 The same procedure as in Example 2, except that coating composition G was used, the film temperature during stretching in the longitudinal direction was 95 ° C, the stretching ratio was 3.1 times, and the stretching ratio in the width direction was 3.2 times.
  • a biaxially oriented polyester film with a 20 ⁇ m thick coating layer was used, the film temperature during stretching in the longitudinal direction was 95 ° C, the stretching ratio was 3.1 times, and the stretching ratio in the width direction was 3.2 times.
  • PET, PBT, and particle master are mixed at a mass ratio of 77: 20: 3, dried in a vacuum dryer at 180 ° C for 3 hours to sufficiently remove moisture, then supplied to a single screw extruder, melted at 280 ° C After removing foreign substances and leveling the amount of extrusion, the product was discharged in a sheet form from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched film.
  • the film temperature was raised with a heating roll, and finally, the film was stretched 3.0 times in the longitudinal direction at a film temperature of 100 ° C and immediately heated to 40 ° C. Cooled with a controlled metal roll.
  • This uniaxially stretched film was subjected to corona discharge treatment in air, and the surface free energy of the polyester film was set to 52 mNZm.
  • the treated surface was coated with coating composition E using a metalling bar (# 6).
  • PET, PET-G and particle master are mixed at a mass ratio of 16: 80: 4, dried in a vacuum dryer at 180 ° C for 4 hours, and after sufficiently removing moisture, supplied to a single screw extruder, 280 ° C After being melted at, removal of foreign matter and leveling of the amount of extrusion were performed, and then discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, electrostatic application was performed using a wire electrode having a diameter of 0.1 mm, and the film was brought into close contact with the cooling drum to obtain an unstretched film.
  • the film temperature was raised with a heating roll, and finally, the film was stretched 3.0 times in the longitudinal direction at a film temperature of 100 ° C and immediately heated to 40 ° C. Cooled with a controlled metal roll.
  • This uniaxially stretched film was subjected to corona discharge treatment in air, and the surface free energy of the polyester film was set to 52 mNZm.
  • the treated surface was coated with coating composition I using a metalling bar (# 10).
  • it was stretched 3.0 times in the width direction at a preheating temperature of 95 ° C and a stretching temperature of 110 ° C with a tenter type horizontal stretching machine, and the temperature was 220 ° while relaxing 4% in the width direction in the tenter.
  • Heat treatment was performed at C for 5 seconds to obtain a biaxially oriented polyester film having a film thickness of 12 ⁇ m.
  • PET and particle master were mixed at a mass ratio of 97: 3, dried in a vacuum dryer at 180 ° C for 4 hours, after sufficiently removing moisture, supplied to a single screw extruder, melted at 280 ° C, After removal and leveling of the extrusion amount, the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to a cooling drum to obtain an unstretched film.
  • the film temperature is raised with a heating roll before stretching in the longitudinal direction, and finally the film is stretched 3.1 times in the longitudinal direction at a film temperature of 105 ° C.
  • the preheating temperature is 95 with a tenter type transverse stretching machine.
  • the film is stretched 3.1 times in the width direction at a temperature of 110 ° C and stretched at 110 ° C, and heat treated for 5 seconds at a temperature of 210 ° C while relaxing 4% in the width direction in the tenter.
  • a ⁇ m biaxially oriented polyester film was obtained.
  • This biaxially oriented polyester film was subjected to corona discharge treatment in air, the surface free energy was set to 54 mNZm, and coating composition E was coated using a metalling bar (# 8) in a hot air dryer at 120 ° C.
  • the biaxially oriented polyester film is dried for 60 seconds and laminated with a coating layer Got.
  • PET and particle master were mixed at a mass ratio of 99.8: 0.2, and coating composition H was used, except that the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.2 times.
  • coating composition H was used, except that the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.2 times.
  • PET, PBT, PTT, and particle master are mixed at a mass ratio of 67: 15: 15: 3, and coating composition K is used.
  • the stretching temperature in the longitudinal direction is 100 ° C
  • the stretching temperature in the width direction is 110 ° C
  • a biaxially oriented polyester film in which a coating layer having a film thickness of 20 m was laminated was obtained in the same manner as in Example 1 except that the heat treatment temperature was 240 ° C.
  • PET, carnauba wax master, and particle master were mixed at a mass ratio of 47: 50: 3, dried in a vacuum dryer at 180 ° C for 4 hours to remove water sufficiently, and then a single screw extruder. , Melted at 280 ° C, removed foreign matter, and leveled the amount of extrusion, and discharged from a T-die onto a cooling drum controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched film.
  • the film temperature was raised with a heating roll, and finally the film temperature was stretched 3.3 times in the longitudinal direction at 95 ° C and immediately heated to 40 ° C. Cooled with a controlled metal roll. Next, it was stretched 3.3 times in the width direction at a preheating temperature of 90 ° C and a stretching temperature of 100 ° C with a tenter-type transverse stretching machine, and the temperature was maintained at 230 ° C while relaxing 4% in the width direction in the tenter. A heat treatment was carried out at C for 5 seconds to obtain a biaxially oriented polyester resin having a film thickness of 12 ⁇ m.
  • PET and particle master were mixed at a mass ratio of 97: 3, dried at 180 ° C for 4 hours in a vacuum dryer to sufficiently remove moisture, then supplied to a single screw extruder, melted at 280 ° C, After removal and leveling of the extrusion amount, the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to a cooling drum to obtain an unstretched film.
  • the film temperature was raised with a heating roll before stretching in the longitudinal direction, and finally the film was stretched 3.3 times in the longitudinal direction at a film temperature of 95 ° C and immediately controlled to 40 ° C. Cooled with a metal roll. Next, it was stretched 3.3 times in the width direction at a preheating temperature of 90 ° C and a stretching temperature of 100 ° C with a tenter-type transverse stretching machine, and the temperature was maintained at 230 ° C while relaxing 4% in the width direction in the tenter.
  • a biaxially oriented polyester film having a film thickness of 15 ⁇ m was obtained by heat treatment at C for 5 seconds.
  • This biaxially oriented polyester film was subjected to corona discharge treatment in air, the surface free energy was set to 54 mNZm, the coating composition J was coated using a metalling bar (# 5), and hot air at 120 ° C was applied. Dry in the dryer for 60 seconds, A biaxially oriented polyester film laminated with a single layer was obtained.
  • a biaxially oriented polyester film in which a coating layer having a film thickness of 15 m was laminated was obtained in the same manner as in Example 4 except that the coating composition F was used.
  • PET and particle master are mixed at a mass ratio of 94: 6, and coating composition B is used.
  • the stretching ratio in the longitudinal direction is 3.3 times, the stretching temperature is 100 ° C, and the stretching ratio in the width direction is 3.2 times.
  • a biaxially oriented polyester film in which a coating layer having a film thickness of 15 m was laminated was obtained in the same manner as in Example 1 except that.
  • PET After PET is dried at 180 ° C for 4 hours in a vacuum dryer to sufficiently remove moisture, it is supplied to a single screw extruder, melted at 280 ° C, foreign matter is removed, and the amount of extrusion is leveled.
  • the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a non-stretched film was obtained by applying a static electricity using a wire electrode having a diameter of 0.1 mm and closely contacting the cooling drum.
  • Example 1 Thereafter, Example 1 was used except that the coating composition J was used, except that the stretching ratio in the longitudinal direction was 3.0 times, the stretching temperature was 100 ° C, and the stretching ratio in the width direction was 3.8 times. Similarly, a biaxially oriented polyester film in which a coating layer having a film thickness of 15 m was laminated was obtained.
  • the biaxially oriented polyester film for molding of the present invention has a large contact angle with water and low surface free energy, it is excellent in releasability and non-adhesiveness, and should be used for various applications. Can do. In addition, it has excellent moldability and exhibits excellent mold release and non-adhesive properties after molding, high temperature heat treatment, and retort treatment, so it can be used for container molding applications such as foods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Wrappers (AREA)

Abstract

[PROBLEMS] To provide a biaxially oriented polyester film for molding application, which has excellent mold release property and non-adhesive property and also has a molding processability. [MEANS FOR SOLVING PROBLEMS] The biaxially oriented polyester film comprises a polyester film and a coating layer laminated on at least one surface of the polyester film, wherein the coating film has a surface free energy of 15 to 35 mN/m. The coating layer also has a centerline average roughness of 1 to 50 nm. After the film is stretched in an arbitrary direction by two-fold, the centerline average roughness of the coating layer becomes 1 to 50 nm.

Description

明 細 書  Specification
成形用二軸配向ポリエステルフィルム  Biaxially oriented polyester film for molding
技術分野  Technical field
[0001] 本発明は、成形用二軸配向ポリエステルフィルム関し、繰返しの使用や高温熱処 理、レトルト処理後の使用、水雰囲気での使用後にも優れた離型性、非付着性を発 現し、かつバラツキが小さぐ安定した性能を発揮するフィルムおよびその製造方法 に関するものである。また、成形した前後で、表面状態が変化せず、成形後も優れた 離型性、非付着性を示すフィルムに関するものである。このため、基材などに貼り合 わせた後、成形加工を施したり、フィルムそのものを成形して、容器などとした場合、 内容物の離型性、非付着性に優れているため、具体的には食品用容器用途などに 適している。特にスチールやアルミニウム等の金属板にラミネート後、成形加工される 金属缶内面用として使用する形態が非常に好ましい態様である。  [0001] The present invention relates to a biaxially oriented polyester film for molding, and exhibits excellent releasability and non-adhesiveness after repeated use, high-temperature heat treatment, use after retort treatment, and use in a water atmosphere. In addition, the present invention relates to a film exhibiting stable performance with small variations and a method for producing the same. Further, the present invention relates to a film that does not change in surface condition before and after molding and exhibits excellent release properties and non-adhesive properties even after molding. For this reason, when it is pasted to a substrate, etc., and molded or the film itself is molded into a container, the contents are excellent in releasability and non-adhesiveness. It is suitable for food containers. In particular, a form used for the inner surface of a metal can which is molded after being laminated on a metal plate such as steel or aluminum is a very preferable embodiment.
背景技術  Background art
[0002] ポリエステルフィルムは、良好な機械強度、熱的特性、湿度特性、その他多くの優 れた特性から、工業材料、磁気記録材料、光学材料、情報材料、包装材料など広い 分野にお 、て使用されて 、る。  [0002] Polyester films are used in a wide range of fields such as industrial materials, magnetic recording materials, optical materials, information materials, and packaging materials because of their excellent mechanical strength, thermal characteristics, humidity characteristics, and many other excellent characteristics. Used.
[0003] 近年、ポリエステルフィルムはその優れた特性を生かし、基材に貼り合わせた後に 成形加工を施したり、ポリエステルフィルムそのものを成形カ卩ェし、容器などとして多 く使用されている。し力しながらポリエステルは、その分子骨格力も離型性には乏しく 、容器などの内面に使用した場合、内容物が付着してしまうという問題がある。この内 容物の非付着性を付与するために、ワックスを添加したポリエステルフィルムが提案さ れている(例えば特許文献 1)。し力しながら、この提案ではポリエステル重合時にヮッ タスを添加、またはワックスマスターペレットを使用しているため、表面に効率よくヮッ タスが分散せず、非付着性の効果は小さいものであった。また、ポリエステルフィルム 表面にシリコーン榭脂、フッ素系榭脂などをコートして離型性を付与したフィルムが提 案されている(例えば特許文献 2)。し力しながら、成形性に劣るため、成形加工用途 には使用できず、またレトルト処理を施した際に、性能が著しく低下してしまうという問 題や、成形加工を施した際に、表面に粗れや、凹みなどの欠点が発生してしまうとい う問題があった。 [0003] In recent years, polyester films have been widely used as containers or the like by taking advantage of their excellent characteristics and forming them after being bonded to a base material, or forming a polyester film itself. However, polyester has a problem that its molecular skeleton force is poor in releasability, and the contents adhere when used on the inner surface of a container or the like. In order to impart non-adhesiveness to the contents, a polyester film added with wax has been proposed (for example, Patent Document 1). However, in this proposal, since nitrogen is added at the time of polyester polymerization or wax master pellets are used, the nitrogen is not efficiently dispersed on the surface, and the non-adhesive effect is small. In addition, there has been proposed a film in which a polyester film surface is coated with silicone resin, fluorine-based resin, or the like to provide releasability (for example, Patent Document 2). However, since it is inferior in formability, it cannot be used for molding processing applications, and the performance is remarkably deteriorated when retort treatment is applied. There was a problem that when the molding process was performed, defects such as roughness and dents were generated on the surface.
特許文献 1:特開 2001— 220453号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-220453
特許文献 2:特開 2004 - 115566号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-115566
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明の目的は、上記した従来技術の問題点を解消することにあり、高温熱処理、 レトルト処理後にも優れた非付着性を示し、成形加工を兼ね備えた成形用二軸配向 ポリエステルフィルムを提供することである。 課題を解決するための手段 [0004] An object of the present invention is to eliminate the above-mentioned problems of the prior art, exhibiting excellent non-adhesiveness even after high-temperature heat treatment and retort treatment, and forming biaxially oriented polyester film combined with molding processing Is to provide. Means for solving the problem
[0005] 上記課題を解決するため、本発明の成形用二軸配向ポリエステルフィルムは、以下 の構成を有する。 [0005] In order to solve the above problems, the biaxially oriented polyester film for molding of the present invention has the following constitution.
(1) ポリエステルフィルムの少なくとも片面に表面自由エネルギーが 15〜35mNZ mであるコーティング層が積層されてなり、  (1) A coating layer having a surface free energy of 15 to 35 mNZ m is laminated on at least one side of the polyester film,
該コ一ティング層の中心線平均粗さが 1〜 50nmであり、  The coating layer has a center line average roughness of 1 to 50 nm,
かつフィルムを任意の方向に 23°Cにて 2倍伸長した後のコーティング層の中心線平 均粗さが 1〜 50nmである成形用二軸配向ポリエステルフィルム。  A biaxially oriented polyester film for molding in which the center line average roughness of the coating layer after stretching the film twice in any direction at 23 ° C is 1 to 50 nm.
(2) 前記コーティング層の水との接触角が 90〜120° であり、  (2) The contact angle of the coating layer with water is 90 to 120 °,
かつ 180°C120分間の熱処理後の水との接触角が 90〜120° である  And the contact angle with water after heat treatment at 180 ° C for 120 minutes is 90-120 °
(1)に記載の成形用二軸配向ポリエステルフィルム。  The biaxially oriented polyester film for molding described in (1).
(3) 200°Cで、フィルムの任意の一方向および、その方向に直交する方向に 1. 5倍 伸長した後のコーティング層の中心線平均粗さが l〜50nmである(1)又は(2)に記 載の成形用二軸配向ポリエステルフィルム。  (3) The center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C. is 1 to 50 nm (1) or ( A biaxially oriented polyester film for molding as described in 2).
(4) フィルムを任意の方向に 23°Cにて 2倍伸長した後のコーティング層の表面自由 エネルギーが 15〜35mNZmである(1)〜(3)のいずれかに記載の成形用二軸配 向ポリエステルフィルム。  (4) The biaxial alignment for molding according to any one of (1) to (3), wherein the surface free energy of the coating layer after the film is stretched twice in any direction at 23 ° C is 15 to 35 mNZm Polyester film.
(5) コーティング層がシリコーンィ匕合物を用いてなる(1)〜 (4)の 、ずれかに記載の 成形用二軸配向ポリエステルフィルム。 (6) 前記シリコーンィ匕合物力 主剤と架橋剤とを用いてなる(5)に記載の成形用二 軸配向ポリエステルフィルム。 (5) The biaxially oriented polyester film for molding according to any one of (1) to (4), wherein the coating layer is made of a silicone compound. (6) The biaxially oriented polyester film for molding according to (5), wherein the silicone compound strength is obtained by using a main agent and a crosslinking agent.
(7) 前記シリコーンィ匕合物力 主剤としてアルケニル基を含有するオルガノポリシ口 キサン、架橋剤としてハイドロジエンポリシロキサンが付加反応されてなる(6)に記載 の成形用二軸配向ポリエステルフィルム。  (7) The biaxially oriented polyester film for molding according to (6), wherein an organopolysiloxane containing an alkenyl group as a main agent and a hydrodiene polysiloxane as a crosslinking agent are subjected to an addition reaction.
(8) コーティング層の層厚みが 0. 01〜3 iu mでぁる(l)〜(7)のぃずれかに記載の 成形用二軸配向ポリエステルフィルム。 (8) The biaxially oriented polyester film for molding according to any one of (l) to (7), wherein the coating layer has a thickness of 0.01 to 3 i um.
(9) 125°C、 0. 12MPa、 90分間のレトルト処理を施した際の、コーティング層と水 との接触角が 90〜 120° である(1)〜(8)のいずれかに記載の成形用二軸配向ポリ エステノレフイノレム。  (9) The contact angle between the coating layer and water when subjected to retort treatment at 125 ° C, 0.12 MPa and 90 minutes is 90 to 120 °, according to any one of (1) to (8) Biaxially oriented polyester eno refinolem for molding.
(10) 融点が 246〜270°Cである(1)〜(9)のいずれかに記載の成形用二軸配向 ポリエステノレフイノレム。  (10) The biaxially oriented polyester oleorenolem for molding according to any one of (1) to (9), which has a melting point of 246 to 270 ° C.
(11) 100°Cにおける、フィルムの任意の方向(A方向)の 100%伸張時応力 F100 値および、その方向に直交する方向(B方向)の 100%伸長時応力 F100値がそれ (11) At 100 ° C, the 100% elongation stress F100 value in any direction (A direction) of the film and the 100% elongation stress F100 value in the direction perpendicular to that direction (B direction)
A B A B
ぞれ 20〜: L lOMPaである(1)〜(10)のいずれかに記載の成形用二軸配向ポリエス テルフィルム。 20 to each: The biaxially oriented polyester film for molding according to any one of (1) to (10), which is LlOMPa.
(12) 金属板貼合せ用途に使用される(1)〜(11)のいずれかに記載の成形用二 軸配向ポリエステルフィルム。  (12) The biaxially oriented polyester film for molding according to any one of (1) to (11), which is used for bonding metal plates.
(13) 容器成形用に使用される(1)〜(12)のいずれかに記載の成形用二軸配向ポ リエステルフィルム。  (13) The biaxially oriented polyester film for molding according to any one of (1) to (12), which is used for container molding.
(14) (1)に記載の成形用二軸配向ポリエステルフィルムを製造する方法であって、 コーティング面の表面自由エネルギーを 47mNZm以上とした後に、ェマルジヨン型 コーティング剤をコーティングすることを特徴とする成形用二軸配向ポリエステルフィ ルムの製造方法。  (14) A method for producing the biaxially oriented polyester film for molding as described in (1), wherein the surface free energy of the coating surface is set to 47 mNZm or more, and then coated with an emulsion type coating agent. For producing biaxially oriented polyester film.
発明の効果 The invention's effect
本発明の成形用二軸配向ポリエステルフィルムは、水との接触角が大きぐ表面自 由エネルギーが低いため、離型性、非付着性に優れており、様々な用途に使用する ことができる。また、成形後も表面粗さに変化がなぐ高温熱処理後も高い水接触角 を示すため、フィルムを成形したり、熱処理を施した後でも、優れた離型性、非付着 性を保持することができる。さらに、好ましくは成形性にも優れ、レトルト処理後も水接 触角が高いので、特に食品などの容器成形用途に使用することができる。 Since the biaxially oriented polyester film for molding of the present invention has a large contact angle with water and low surface free energy, it is excellent in releasability and non-adhesiveness and can be used for various applications. In addition, high water contact angle after high temperature heat treatment that changes the surface roughness after molding Therefore, even after the film is formed or heat-treated, excellent release properties and non-adhesiveness can be maintained. Furthermore, it is preferably excellent in moldability and has a high water contact angle even after retort treatment, so that it can be used particularly for container molding applications such as food.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0007] 本発明の成形用二軸配向ポリエステルフィルムは、ポリエステルフィルムの少なくと も片面にコーティング層を積層してなる。コーティング層を積層することで、フィルム表 面の特性を効率よく向上させることができる。  [0007] The biaxially oriented polyester film for molding of the present invention is formed by laminating a coating layer on at least one side of a polyester film. By laminating the coating layer, the characteristics of the film surface can be improved efficiently.
[0008] 本発明におけるコーティング層を積層する方法としては特に限定されず、押出ラミ ネート法、メルトコーティング法を用いてもよいが、高速で薄膜コートできる点で、例え ば、グラビアコート、リバースコート、スプレーコート、キッスコート、ダイコート、あるい はメタリングバーコートすることにより積層する方法が好ましく使用される。また、インラ インでコーティング層を積層することも可能であり、通常の逐次二軸延伸法によるフィ ルム製造工程途中の縦延伸後に塗布すれば、テンター内で乾燥 ·熱処理および横 延伸が行なわれるため好ま 、。  [0008] The method for laminating the coating layer in the present invention is not particularly limited, and an extrusion lamination method or a melt coating method may be used. For example, gravure coating, reverse coating may be used because a thin film can be coated at high speed. A method of laminating by spray coating, kiss coating, die coating or metering bar coating is preferably used. It is also possible to laminate a coating layer in-line, and if it is applied after longitudinal stretching in the middle of the film production process by the usual sequential biaxial stretching method, drying, heat treatment and lateral stretching are performed in the tenter. Favored ,.
[0009] なお、本発明にお 、ては、塗材のコーティング前に、該フィルムに表面活性ィ匕処理 、例えばコロナ放電処理、オゾン処理、紫外線処理、サンドマット加工処理、薬液処 理などの処理を施し、表面自由エネルギーを好ましくは 47mNZm以上、より好まし くは 50mNZm以上とすること力 コーティング層とポリエステルフィルムとの密着性を 向上させたり、塗布欠点を解消することができるため好ましい。コーティング層とポリェ ステルフィルムとの密着性を向上することで、コーティング層の耐熱性、耐水性、耐レ トルト性を向上することができる。  In the present invention, before the coating of the coating material, the film is subjected to surface activation treatment, such as corona discharge treatment, ozone treatment, ultraviolet treatment, sand mat processing, chemical treatment, etc. The surface free energy is preferably set to 47 mNZm or more, more preferably 50 mNZm or more, because it can improve the adhesion between the coating layer and the polyester film, and can eliminate coating defects. By improving the adhesion between the coating layer and the polyester film, the heat resistance, water resistance and retort resistance of the coating layer can be improved.
[0010] 本発明にお 、て、コーティング層の表面自由エネルギーは、離型性、非付着性、取 り扱い性の点から、 15〜35mN/mであることが必要である。コーティング層の表面 自由エネルギーが 35mNZmより大きくなると、離型性、非付着性に劣る。また、表面 自由エネルギーが 15mNZm未満であると、フィルムの卷取性、加工性が劣ったり、 ラミネートでの-ップゃ成形カ卩ェにおける支点が安定しなくなる。表面自由エネルギ 一のより好ましい範囲は、 17〜33mNZmであり、 20〜30mNZmであれば最も好 ましい。 [0011] また、本発明の成形用二軸配向ポリエステルフィルムは、フィルムを任意の方向に、 23°Cにて 2倍伸長した後のコーティング層の表面自由エネルギーが 15〜35mNZ mであることが必要である。フィルムを任意の方向に、 2倍伸長した後のコーティング 層の表面自由エネルギーが 15〜35mNZmであれば、フィルムを基材と貼り合わせ た後に成形加工を施したり、フィルム自体を成形加工した後も、離型性、非付着性に おいて、優れた特性を示すことができる。フィルムを任意の方向に、 2倍伸長した後の 表面自由エネルギーのより好ましい範囲は、 17〜33mNZmであり、 20〜30mNZ mであれば最も好まし!/、。 [0010] In the present invention, the surface free energy of the coating layer needs to be 15 to 35 mN / m from the viewpoints of releasability, non-adhesiveness, and handleability. If the surface free energy of the coating layer is greater than 35 mNZm, the releasability and non-adhesiveness are poor. Further, if the surface free energy is less than 15 mNZm, the film is not easily cut and processed, and the fulcrum in the case of laminating is not stable. A more preferred range of surface free energy is 17 to 33 mNZm, most preferably 20 to 30 mNZm. [0011] Further, in the biaxially oriented polyester film for molding of the present invention, the surface free energy of the coating layer after extending the film twice in an arbitrary direction at 23 ° C is 15 to 35 mNZm. is necessary. If the surface free energy of the coating layer after stretching the film twice in any direction is 15 to 35 mNZm, it can be molded after the film is bonded to the base material or after the film itself is molded. In addition, excellent properties can be exhibited in releasability and non-adhesiveness. The more preferred range of surface free energy after stretching the film in any direction, 2 times, is 17-33mNZm, most preferably 20-30mNZm! / ,.
[0012] また、本発明にお 、て、コーティング層の水との接触角は離型性、非付着性、取扱 い性の点で、 90〜120° であることが好ましい。水との接触角が上記範囲であれば、 離型性、非付着性と、取扱い性を両立することができる。水との接触角が 90° 未満 であれば、離型性、非付着性に劣る。また、水との接触角が 120° より大きくなれば、 フィルムの卷取性、加工性が劣ったり、ラミネートでの-ップゃ成形カ卩ェにおける支 点が安定しないことがある。コーティング層の水との接触角のより好ましい範囲は、 95 〜120° であり、 97〜120° であれば最も好ましい。  [0012] In the present invention, the contact angle of the coating layer with water is preferably 90 to 120 ° in terms of releasability, non-adhesiveness, and handleability. If the contact angle with water is in the above range, releasability, non-adhesiveness, and handleability can be compatible. If the contact angle with water is less than 90 °, the releasability and non-adhesiveness are poor. Also, if the contact angle with water is greater than 120 °, the film may be poorly cut and processed, and the fulcrum of the laminated sheet may not be stable. A more preferable range of the contact angle of the coating layer with water is 95 to 120 °, and 97 to 120 ° is most preferable.
[0013] 本発明において、 180°C120分間の熱処理を施した際の、コーティング層と水との 接触角が 90〜120° であることが好ましい。 180°C120分間の熱処理後の、コーティ ング層と水との接触角が 90〜 120° であれば、加熱成形、乾熱殺菌処理を行った後 でも、成形加工用途、さらには食品容器用途として使用することができる。  [0013] In the present invention, it is preferable that the contact angle between the coating layer and water when the heat treatment is performed at 180 ° C for 120 minutes is 90 to 120 °. If the contact angle between the coating layer and water after heat treatment at 180 ° C for 120 minutes is 90 to 120 °, it can be used for molding and food containers even after thermoforming and dry heat sterilization. Can be used.
[0014] 180°C120分間の熱処理後の接触角を上記の範囲とするためには、耐熱性の高い コーティングィ匕合物を使用したり、ポリエステルフィルムとコーティングィ匕合物との密着 性を向上させたり、コーティングィ匕合物に架橋構造を導入することが好ましい。  [0014] In order to set the contact angle after heat treatment at 180 ° C for 120 minutes within the above range, a coating compound with high heat resistance is used, or the adhesion between the polyester film and the coating compound is increased. It is preferable to improve or introduce a crosslinked structure into the coating composite.
[0015] 180°C120分間の熱処理後の、水との接触角のより好ましい範囲は、 95〜120° であり、 97〜120° であれば最も好ましい。  [0015] A more preferable range of the contact angle with water after heat treatment at 180 ° C for 120 minutes is 95 to 120 °, and most preferably 97 to 120 °.
[0016] コーティング層の表面自由エネルギー、水との接触角を上記の範囲内にするため には、コーティング層に、撥水性化合物を含むことが有効である。コーティング層を構 成する組成は、撥水性ィ匕合物のみ力も構成されていてもよいが、本発明の特性を損 なわない範囲で、榭脂、溶剤、水、金属などを含んでも良い。撥水性ィ匕合物をコーテ イング層の表面に均一に分散させることによって、水接触角、表面自由エネルギーを 上記の範囲にすることができる。 [0016] In order to make the surface free energy of the coating layer and the contact angle with water within the above ranges, it is effective to include a water repellent compound in the coating layer. The composition constituting the coating layer may be composed only of a water-repellent compound, but may contain a resin, a solvent, water, a metal and the like as long as the characteristics of the present invention are not impaired. Coat water repellent compound By uniformly dispersing on the surface of the inging layer, the water contact angle and the surface free energy can be within the above ranges.
[0017] 撥水性化合物としては、ジメチルシリコーン、メチルフエ-ルシリコーン、メチルハイ ドロジェンシリコーンなどのストレートシリコーン、側鎖および Zまたは末端にアミノ基、 エポキシ基、カルボキシル基、カルビノール基、アルキル基、ポリエーテル基などの 有機基を導入した変性シリコーンなどのシリコーンィ匕合物、鯨ロウ、ミツロウ、ラノリン、 カルナゥバワックス、キャンデリアワックス、モンタンワックス、ライスワックス、ステアリル ステアレートなどの天然ワックス、パラフィンワックス、マイクロクリスタリンワックス、酸化 ワックス、エステルワックス、低分子量ポリエチレンなどの合成ワックスといったワックス 化合物、ポリテトラフルォロエチレン、テトラフルォロエチレン zパーフルォロアルコキ シエチレン共重合体、テトラフルォロエチレン Zエチレン共重合体などのフッ素系化 合物などが挙げられるが、取扱い性、経済性、耐熱性、撥水効果の観点から、シリコ ーン化合物が好ましく用いられる。  [0017] Examples of the water-repellent compound include straight silicones such as dimethyl silicone, methyl phenol silicone, and methyl hydrogen silicone, amino groups, epoxy groups, carboxyl groups, carbinol groups, alkyl groups, poly groups on the side chain and Z or terminal. Silicone compounds such as modified silicone introduced with organic groups such as ether groups, natural waxes such as whale wax, beeswax, lanolin, carnauba wax, canderia wax, montan wax, rice wax, stearyl stearate, paraffin Wax compounds such as wax, microcrystalline wax, oxidized wax, ester wax, synthetic wax such as low molecular weight polyethylene, polytetrafluoroethylene, tetrafluoroethylene z perfluoroalkoxy Fluorine compounds such as a copolymer of ethylene and tetrafluoroethylene Z and ethylene, etc. are mentioned, but a silicone compound is preferred from the viewpoints of handleability, economy, heat resistance, and water repellent effect. Used.
[0018] 本発明において、コーティング層に好ましく用いられるシリコーン化合物は、ポリエ ステルフィルムとの密着性、耐水性、耐熱性などの点で、主剤と架橋剤とを用いてな ることが好ましい。主剤としては、上記したシリコーンィ匕合物を用いることができる。こ こでいう主剤とは、質量を基準としてシリコーンィ匕合物中で最も多く含まれている成分 のことを指す。  [0018] In the present invention, the silicone compound preferably used for the coating layer is preferably composed of a main agent and a crosslinking agent in terms of adhesion to a polyester film, water resistance, heat resistance, and the like. As the main agent, the above-mentioned silicone compound can be used. The main agent as used herein refers to a component that is contained most in the silicone compound based on mass.
[0019] また、架橋剤としては、主剤と架橋反応をするものであれば特に限定されないが、 例えば、主剤:アルケニル基含有 Z架橋剤: Si— H結合含有、主剤:シラノール基ま たはアルコキシ基含有 Z架橋剤:アルコキシ基、ァシロキシ基などの加水分解基含 有、主剤:ヒドロキシル基含有 Z架橋剤:イソシァネート基含有などの組み合わせなど が好ましく使用される。中でも、密着性、耐熱性、耐水性、耐レトルト性の点で、主剤 としてァルケ-ル基を含有するオルガノポリシロキサン、架橋剤としてハイドロジェンポ リシロキサンを用いて付加反応して得られるシリコーン化合物が好ましく使用される。 この場合は、付加反応触媒として、塩化白金酸、アルコール変性塩化白金酸、塩ィ匕 白金酸 ビニルシロキサン錯体などの白金化合物、特開平 4 352793号公報記載 の RhCl (Ph P) などのロジウム化合物を添加することが好ましい。 [0020] 主剤と架橋剤との好ましい配合量は、主剤を 100重量部として、架橋剤を 0. 05〜 20重量部である。より好ましくは、 0. 1〜15重量部であり、 0. 15〜10重量部であれ ば最も好ましい。また、付加反応触媒の添加量としては、経済性、触媒効果の観点か ら、主剤 100重量咅に対して、 0. 0001〜1重量咅力 S好まし <、 0. 0002〜0. 8重量 部であればさらに好ましぐ 0. 0005-0. 5重量部であれば最も好ましい。 [0019] The cross-linking agent is not particularly limited as long as it undergoes a cross-linking reaction with the main agent. For example, main agent: alkenyl group-containing Z cross-linking agent: Si-H bond-containing, main agent: silanol group or alkoxy Group-containing Z cross-linking agents: combinations containing alkoxy groups, hydroxyl groups such as acyloxy groups, main agents: hydroxyl group-containing Z cross-linking agents: containing isocyanate groups, etc. are preferably used. Among these, in terms of adhesion, heat resistance, water resistance, and retort resistance, silicone compounds obtained by addition reaction using organopolysiloxane containing alkenyl group as the main agent and hydrogenpolysiloxane as the cross-linking agent. Are preferably used. In this case, as an addition reaction catalyst, platinum compounds such as chloroplatinic acid, alcohol-modified chloroplatinic acid, chloroplatinic acid, vinyl siloxane complex, and rhodium compounds such as RhCl (Ph P) described in JP-A-4 352793 are used. It is preferable to add. [0020] Preferable amounts of the main agent and the crosslinking agent are 100 parts by weight of the main agent and 0.05 to 20 parts by weight of the cross-linking agent. More preferably, it is 0.1 to 15 parts by weight, and most preferably 0.1 to 10 parts by weight. In addition, the addition amount of the addition reaction catalyst is 0.0001 to 1 weight per 100 weight% of the main agent from the viewpoint of economical efficiency and catalytic effect. S preferred <, 0.0002 to 0.8 weight. More preferred is 0.005-0. 5 parts by weight.
[0021] また、本発明では、コーティング層を形成させる際、上記撥水性化合物を含むコー ティング組成物を作製し、これを用いてコーティング層を形成することが好ましい。コ 一ティング組成物の形態としては特に限定されないが、例えば、オイル型、ェマルジ ヨン型、溶液型、焼き付け型、ペースト型、スプレー型などが挙げられる。ここでいう、 コーティング組成物とは、コーティング層を施すときの原料組成物のことであり、コー ティングする前の構成物のため、乾燥工程等で揮発する成分を含む場合もある。好 ましいコーティング組成物の形態は、作業性、経済性、取扱い性などの点でェマルジ ヨン型が挙げられる。ェマルジヨン型コーティング組成物は、塗布性に応じて、水で希 釈して使用することができる。また、塗布性を更に向上させるために、ポリビュルアル コール系重合体またはその誘導体、カルボキシメチルセルロース、ヒドロキシェチル セルロースなどのセルロース導体、エーテル化でんぷん、デキストリンなどのでんぷ ん類、ポリビュルピロリドン、スルホイソフタル酸などの極性基を含有する共重合ポリ エステル、ポリヒドロキシェチルメタタリレートまたはその共重合体などのビュル系重合 体、アクリル系高分子、ウレタン系高分子、エーテル系高分子などの水溶性高分子 化合物などを増粘剤として併用することもできる。塗布性の点から、好ましい粘度の 範囲は 5〜: LOOOmPa' sであり、 10〜800mPa' sであればさらに好ましく、 20〜500 mPa' sであれば最も好ましい。なお、ここでの粘度の値は、 JIS K— 7117に基づい て測定され、 23°Cでのものである。  In the present invention, when forming the coating layer, it is preferable to prepare a coating composition containing the water-repellent compound and use this to form the coating layer. The form of the coating composition is not particularly limited, and examples thereof include an oil type, an emulsion type, a solution type, a baking type, a paste type, and a spray type. As used herein, the coating composition refers to a raw material composition when a coating layer is applied, and may include a component that volatilizes in a drying step or the like because of the composition before coating. A preferred coating composition is an emulsion type in terms of workability, economy, and handleability. The emulsion type coating composition can be used by diluting with water depending on the coating property. In addition, in order to further improve the coating properties, polybutyl alcohol polymers or derivatives thereof, cellulose conductors such as carboxymethyl cellulose and hydroxyethyl cellulose, etherified starches, starches such as dextrins, polybutylpyrrolidone, sulfoisophthalate. Water-soluble, such as copolymerized polyesters containing polar groups such as acids, butyl polymers such as polyhydroxyethyl methacrylate or copolymers thereof, acrylic polymers, urethane polymers, ether polymers A polymer compound or the like can be used in combination as a thickener. From the viewpoint of applicability, the preferred viscosity range is 5 to: LOOOmPa's, more preferably 10 to 800 mPa's, and most preferably 20 to 500 mPa's. The viscosity value here is measured based on JIS K-7117 and is at 23 ° C.
[0022] また、コーティング組成物の表面自由エネルギーを下げ、フィルムへの塗布性を向 上させるために、メタノール、エタノール、イソプロピルアルコール、ベンゼン、へキサ ン、ヘプタン、アセトンなどの有機溶剤を添加して使用してもよい。塗布性、取り扱い 性の点で、コーティング組成物の表面自由エネルギーは 30〜60mNZmであること が好ましい。コーティング組成物の表面自由エネルギーが 60mNZmより大きくなる と、塗布性に劣る場合がある。また、表面自由エネルギーを 30mNZm未満にしょう とすると、表面自由エネルギーの小さい有機溶剤を大量に添加する必要があり、取り 扱い性が低下してしまうので好ましくない。コーティング組成物の表面自由エネルギ 一のより好ましい範囲は、 30〜55mNZmであり、 35〜50mNZmであれば最も好 ましい。 [0022] In addition, an organic solvent such as methanol, ethanol, isopropyl alcohol, benzene, hexane, heptane, or acetone is added in order to reduce the surface free energy of the coating composition and improve the coating property to the film. May be used. The surface free energy of the coating composition is preferably 30 to 60 mNZm from the viewpoints of coating properties and handling properties. The surface free energy of the coating composition is greater than 60mNZm In some cases, the coatability is inferior. In addition, if the surface free energy is less than 30 mNZm, it is necessary to add a large amount of an organic solvent having a small surface free energy, which is not preferable because the handling property is lowered. A more preferred range of surface free energy of the coating composition is 30-55 mNZm, with 35-50 mNZm being most preferred.
[0023] コーティング組成物の粘度を好ま U、範囲にした場合は、表面自由エネルギーは 高くても塗布性に優れ、逆にコーティング剤の表面自由エネルギーを好ましい範囲と した場合は粘度が低くても塗布性に優れるため、粘度、表面自由エネルギーについ ては、コーティング工程の防爆設備や、コーティング組成物の保存環境などに応じて 、適宜選択、調整することができる。塗布性を高めることで、撥水性化合物の効果が 高まり、水との接触角、表面自由エネルギーを上記の範囲にしゃすくなるので、非常 に好ましい。  [0023] When the viscosity of the coating composition is preferably U, the range is excellent even when the surface free energy is high, and conversely, when the surface free energy of the coating agent is within the preferable range, the viscosity is low. Since the coating property is excellent, the viscosity and surface free energy can be appropriately selected and adjusted according to the explosion-proof equipment in the coating process, the storage environment of the coating composition, and the like. By increasing the coating property, the effect of the water repellent compound is enhanced, and the contact angle with water and the surface free energy are reduced to the above ranges, which is very preferable.
[0024] 水溶性高分子化合物や、有機溶剤などを添加してコーティング組成物とする場合、 撥水性化合物分の好ましい濃度は、均一分散性、塗布性、離型性、非付着性の点 で、コーティング組成物全体を 100質量%として、 0. 1〜60質量%であり、 0. 5〜50 質量%であればさらに好ましぐ 1〜40質量%であれば最も好ましい。撥水性化合物 濃度が高くなると、塗布性、均一分散性に劣る場合がある。また、撥水性化合物濃度 が低くなると、離型性、非付着性に劣る場合があるので好ましくない。  [0024] When a coating composition is prepared by adding a water-soluble polymer compound, an organic solvent, or the like, the preferred concentration of the water-repellent compound is in terms of uniform dispersibility, coatability, releasability and non-adhesiveness. The total coating composition is 100 to 60% by mass, and is 0.1 to 60% by mass, more preferably 0.5 to 50% by mass, and most preferably 1 to 40% by mass. When the concentration of the water repellent compound is high, the coatability and the uniform dispersibility may be inferior. Further, if the water repellent compound concentration is low, it may be inferior in releasability and non-adhesiveness.
[0025] 撥水性ィ匕合物の濃度を上記の好ましい範囲にすることで、効率よくコーティング層 の表面に分散して、水との接触角 90〜120° 、および表面自由エネルギー 15〜35 mNZmを達成することができる。  [0025] By making the concentration of the water repellency compound within the above-mentioned preferable range, it is efficiently dispersed on the surface of the coating layer, the contact angle with water is 90 to 120 °, and the surface free energy is 15 to 35 mNZm. Can be achieved.
[0026] 本発明の成形用二軸配向ポリエステルフィルムは、コーティング層の中心線平均粗 さが l〜50nmであることが必要である。ここでいう、中心線平均粗さとは、粗さ曲線を 中心線力 折り返し、その粗さ曲線と中心線によって得られた面積を測定長で割った 値のことを表わす。本発明では、フィルムの幅方向(250mm)に、 5cm X 5cmのサン プル 5枚サンプリングし、各サンプルについて、評価を行う。  [0026] In the biaxially oriented polyester film for molding of the present invention, the center line average roughness of the coating layer is required to be 1 to 50 nm. Here, the centerline average roughness means a value obtained by folding the roughness curve with the centerline force and dividing the area obtained by the roughness curve and the centerline by the measurement length. In the present invention, five 5 cm × 5 cm samples are sampled in the width direction (250 mm) of the film, and each sample is evaluated.
[0027] 評価方法としては、例えば、レーザー顕微鏡で各サンプルとも、フィルム端から、等 間隔で 6箇所抽出し、 2次元線粗さを測定し、そのデータの平均値を中心線平均粗さ とする (合計 30箇所の平均値)。コーティング層の中心線平均粗さを lnm未満とする ためには、コーティング前のポリエステルフィルムの中心線平均粗さを lnm未満にす る必要があり、ポリエステルフィルムの取扱い性が低下してしまうため好ましくない。コ 一ティング層の中心線平均粗さが 50nmより大き 、ということは、コ一ティング層が均 一に塗布されてない状態である場合があり、成形後に塗布むらの部分が欠点となる。 たとえ成形後の表面粗さ自体が好ましい範囲内となった場合でも、凹みなどの大きな 欠点が発生する場合があり、離型性、非付着性が悪ィ匕する可能性があるため好まし くない。 [0027] As an evaluation method, for example, for each sample with a laser microscope, six points are extracted at equal intervals from the edge of the film, two-dimensional line roughness is measured, and the average value of the data is calculated as the centerline average roughness. (Average of 30 locations in total). In order to reduce the center line average roughness of the coating layer to less than 1 nm, it is necessary to reduce the center line average roughness of the polyester film before coating to less than 1 nm. Absent. That the center line average roughness of the coating layer is larger than 50 nm may mean that the coating layer is not uniformly applied, and the uneven coating after molding is a drawback. Even if the surface roughness after molding is within the preferable range, it may cause a major defect such as a dent, which may cause bad release and non-adhesiveness. Absent.
コ一ティング層の中心線平均粗さを 1〜 50nmにするためには、コ一ティングを施す ポリエステルフィルムの被コーティング面を平滑にすることが有効である。ポリエステ ルフィルム面が平滑でなければ、コーティング層を均一に塗布することが困難であり、 さらに薄膜であるコーティング層の表面にも影響が及ぼされる場合がある。そのため には、取扱 、性を損ねな 、範囲にぉ 、てポリエステルフィルムの粒子含有量を低減 する方法、使用する粒子の粒径を小さくする方法などを挙げることができる。ここでい う取扱い性とは、フィルムの卷取り性、コーティング時のフィルムの搬送性、フィルム成 形時の連続加工性などを指す。具体的には、コーティング前のポリエステルフィルム 中の粒子含有量を、ポリエステルフィルム全体を 100質量%として、 5質量%未満、 好ましくは 4質量%未満にすることで、ポリエステルフィルムの中心線平均粗さを 50η m以下にすることができるため有効である。ただ、ポリエステルフィルムへの粒子含有 量を、 0. 1質量%未満にすると、ポリエステルフィルムの中心線平均粗さが lnm未満 になる場合があるため、フィルムの取扱い性が低下してしまう場合がある。また、使用 する粒子の粒径は 4 μ m以下、好ましくは 2. 5 μ m以下であれば有効である。ここで いう粒径とは、数平均径のことを言う。なお、数平均径は、下記式によって求めること ができる。  In order to make the center line average roughness of the coating layer 1 to 50 nm, it is effective to smooth the coated surface of the polyester film to be coated. If the polyester film surface is not smooth, it is difficult to apply the coating layer uniformly, and the surface of the coating layer, which is a thin film, may also be affected. For this purpose, a method for reducing the particle content of the polyester film and a method for reducing the particle size of the particles to be used can be used within a range without impairing handling and properties. The handling property as used herein refers to film tearability, film transportability during coating, continuous processability during film formation, and the like. Specifically, the center line average roughness of the polyester film is adjusted so that the particle content in the polyester film before coating is less than 5% by mass, preferably less than 4% by mass, based on 100% by mass of the entire polyester film. Is effective because it can be reduced to 50ηm or less. However, if the particle content in the polyester film is less than 0.1% by mass, the center line average roughness of the polyester film may be less than lnm, which may reduce the handling of the film. . It is effective if the particle size used is 4 μm or less, preferably 2.5 μm or less. The particle diameter here means the number average diameter. The number average diameter can be obtained by the following formula.
D =∑DiZN (Di:粒子の円相当径、 N :粒子数)  D = ∑DiZN (Di: equivalent circle diameter of particles, N: number of particles)
なお、粒径の測定方法は、例えば、フィルムの断面を走査型電子顕微鏡などを用 いて、 100000倍の倍率で場所を変えて粒子を 100個観察して、観察した画像をィメ ージアナライザーなどに取り込んで、画像解析することによって測定することができる [0029] また、コーティング層の均一塗布性を向上することによって、コーティング層の中心 線平均粗さを上記の範囲にすることができる。コーティング層の均一塗布性を向上さ せるためには、コーティング面の表面自由エネルギーを 47mNZm以上とすることが 有効である。 The particle size can be measured by, for example, using a scanning electron microscope or the like on the cross section of the film, observing 100 particles at a magnification of 100000 times, and using the observed image on an image analyzer or the like. Can be measured by capturing and analyzing images [0029] Further, by improving the uniform application property of the coating layer, the center line average roughness of the coating layer can be in the above range. In order to improve the uniform coatability of the coating layer, it is effective to set the surface free energy of the coating surface to 47 mNZm or more.
[0030] さらに、インラインでコーティング層を積層することが好ましぐこの場合、縦延伸後 にコ一ティング組成物を塗布し、テンター内で乾燥 ·熱処理および横延伸を行なうた め、コーティング層が均一に引き延ばされ、コーティング層の中心線平均粗さを上記 の範囲にするために有効である。  [0030] Further, in this case, it is preferable to laminate the coating layer in-line. In this case, the coating composition is applied after the longitudinal stretching, and the coating layer is dried, heat-treated and laterally stretched in the tenter. It is stretched uniformly and is effective in bringing the average roughness of the center line of the coating layer into the above range.
[0031] 中心線平均粗さのさらに好ましい範囲は、 2〜30nmであり、 3〜20nmであれば最 も好ましい。  [0031] A more preferable range of the center line average roughness is 2 to 30 nm, and 3 to 20 nm is most preferable.
[0032] また、本発明の成形用二軸配向ポリエステルフィルムは、フィルムを任意の方向に、 23°Cにて 2倍伸長した後のコーティング層の中心線平均粗さが l〜50nmであること が必要である。フィルムを任意の方向に、 2倍伸長した後のコーティング層の中心線 平均粗さが 50nmより大きいということは、フィルムを 2倍伸長することによって、コーテ イング層に粗れが発生している場合があり、離型性、非付着性が低下してしまうため 好ましくない。また、 lnm未満にするには、成形前のフィルムの中心線平均粗さを In m未満にする必要性があり、取扱い性が低下してしまう可能性があるため好ましくな い。フィルムを任意の方向に、 2倍伸長した後のコーティング層の中心線平均粗さが l〜50nmであれば、 2倍伸長した後のコーティング層の表面自由エネルギーを 15 〜35mNZmに保持することができるので、非常に好ましい。  [0032] Further, in the biaxially oriented polyester film for molding of the present invention, the center line average roughness of the coating layer after extending the film twice in an arbitrary direction at 23 ° C is 1 to 50 nm. is required. The center line of the coating layer after stretching the film twice in any direction means that the average roughness is greater than 50 nm, which means that the coating layer is roughened by stretching the film twice. This is not preferable because releasability and non-adhesiveness are lowered. Also, to make it less than lnm, it is necessary to make the center line average roughness of the film before molding less than Inm, which is not preferable because the handleability may be lowered. If the center line average roughness of the coating layer after stretching the film twice in any direction is 1 to 50 nm, the surface free energy of the coating layer after stretching twice can be maintained at 15 to 35 mNZm. This is very preferable because it can be done.
[0033] フィルムを任意の方向に、 23°Cにて 2倍伸長した後のコーティング層の中心線平均 粗さのさらに好ましい範囲は、 2〜30nmであり、 3〜20nmであれば最も好ましい。  [0033] A more preferable range of the center line average roughness of the coating layer after extending the film twice in an arbitrary direction at 23 ° C is 2 to 30 nm, and most preferably 3 to 20 nm.
[0034] フィルムを 2倍伸長した後のコーティング層の中心線平均粗さの測定は、フィルムを 任意の一方向および、その方向に直交する方向に長さ 150mm X幅 20mmの矩形 に切り出したサンプルを作製して行う。任意の一方向から、 30° 刻みにサンプリング を行い、 6サンプルを採取する。引張試験機 (オリエンテック製テンシロン UCT— 100 )を用いて、初期引張チャック間距離 50mmとし、引張速度を 300mmZ分として各 サンプルについて、引張試験を行う。各サンプル(6サンプル)について、長さ方向の 中央部から、長さ 2cm X幅 1. 5cmにサンプリングしたものを使用し、各 6サンプルに ついて、各々 5箇所抽出して測定を行い、平均値を各サンプルの値とする。 [0034] The center line average roughness of the coating layer after the film was stretched twice was measured by cutting a film into a rectangular shape with a length of 150 mm and a width of 20 mm in one direction and the direction perpendicular to that direction. To make. Sampling is performed in 30 ° increments from any direction, and 6 samples are taken. Using a tensile tester (Orientec's Tensilon UCT-100), the initial tension chuck distance is 50 mm and the tensile speed is 300 mmZ. A tensile test is performed on the sample. For each sample (6 samples), use a sample that is 2 cm long x 1.5 cm wide from the center in the length direction. Is the value of each sample.
[0035] 任意の一方向から、 30° 刻みにサンプリングした 6組のサンプルについて、 2倍伸 長後の中心線平均粗さの値が上記した範囲に含まれていると、ある方向における測 定で仮に中心線平均粗さが上記の範囲外となる場合があつたとしても、フィルム成形 後のコーティング層の粗れは見られず、優れた特性を示すことができる。  [0035] With respect to six sets of samples sampled in 30 ° increments from one arbitrary direction, if the value of the centerline average roughness after double-stretching is included in the above range, measurement in a certain direction is possible. Even if the center line average roughness is outside the above range, the coating layer after film formation is not rough and can exhibit excellent characteristics.
[0036] フィルムを任意の方向に、 23°Cにて 2倍伸長した後のコーティング層の中心線平均 粗さを l〜50nmとするためには、コーティング層が密着性、成形追従性に優れてい ることが有効である。コーティング層の密着性を向上させるためには、フィルムのコー ティング面の表面自由エネルギーを 47mNZm以上とすること、コーティング層中に 架橋構造を導入することが有効である。  [0036] In order to make the center line average roughness of the coating layer after extending the film twice in an arbitrary direction at 23 ° C to 1-50nm, the coating layer has excellent adhesion and molding followability. It is effective. In order to improve the adhesion of the coating layer, it is effective to set the surface free energy of the coating surface of the film to 47 mNZm or more and to introduce a crosslinked structure in the coating layer.
[0037] また、成形追従性を向上させるためには、コーティング層の厚みを 0. 01〜3 /z mと することが好ましい。ここで、コーティング層の厚みとは、コーティング後の乾燥厚みの ことをいう。コーティング層を 3 m以上にしょうとすると、成形時にコーティング層に粗 れゃ、割れなどが発生してしまう場合がある。逆に、コーティング層の層厚みが 0. 01 μ m未満であれば、コーティング層の特性が十分に発現しない場合があるので好まし くない。コーティング層の層厚みは、コーティング組成物の固形分濃度を調整したり、 コーティング後のフィルムの延伸などによって調整することができる。また、例えばメタ リングバーコートであれば、メタリングバーの番手によってもコーティング層の厚みを 調整することができる。コーティング層のより好ましい層厚みは 0. 05-1. 5 mであ り、 0. 1〜: L mであれば最も好ましい。  [0037] Further, in order to improve the molding followability, the thickness of the coating layer is preferably 0.01 to 3 / zm. Here, the thickness of the coating layer refers to the dry thickness after coating. If the coating layer is made 3 m or more, cracks may occur if the coating layer becomes rough during molding. Conversely, if the thickness of the coating layer is less than 0.01 μm, the characteristics of the coating layer may not be sufficiently exhibited, which is not preferable. The layer thickness of the coating layer can be adjusted by adjusting the solid content concentration of the coating composition or stretching the film after coating. For example, in the case of a metering bar coat, the thickness of the coating layer can also be adjusted by the count of the metal ring bar. A more preferable layer thickness of the coating layer is 0.05 to 1.5 m, and most preferably 0.1 to Lm.
[0038] さらに、成形追従性を向上させるために、コーティング層を塗布した後の熱処理条 件を適宜コントロールすることが重要である。熱処理温度が低すぎたり、熱処理時間 が短すぎると、コーティング膜の密着性、強度が低くなる場合があり、成形追従性が 劣る結果になることがある。また、熱処理温度が高すぎたり、熱処理時間が長すぎる と、コーティング膜が硬くなつてしまい、伸びにくい構造となる場合があるので、成形 追従性が低下してしまうことがある。熱処理温度は、 50〜250°Cであれば好ましぐ 8 0〜245°Cであればさらに好ましぐコーティング工程の短時間化のためには、 150 〜240°Cであれば最も好ましい。また、好ましい熱処理時間は、熱処理温度によって も異なるが、 1〜120秒であり、 2〜60秒であればさらに好ましぐ経済性の点からは 、 3〜30秒が最も好ましい。 [0038] Further, in order to improve the molding followability, it is important to appropriately control the heat treatment conditions after the coating layer is applied. If the heat treatment temperature is too low or the heat treatment time is too short, the adhesion and strength of the coating film may be lowered, resulting in poor molding followability. In addition, if the heat treatment temperature is too high or the heat treatment time is too long, the coating film becomes hard and may have a structure that is difficult to stretch, which may reduce the molding followability. A heat treatment temperature of 50-250 ° C is preferred 8 If it is 0-245 degreeC, in order to shorten the coating process more preferable, it is most preferable if it is 150-240 degreeC. The preferable heat treatment time varies depending on the heat treatment temperature, but is 1 to 120 seconds. If it is 2 to 60 seconds, 3 to 30 seconds is the most preferable from the viewpoint of more preferable economy.
[0039] また、上記したように、コーティング層とフィルムとの密着力を向上させることは、コー ティング層の成形追従性の観点力もも非常に重要となる。  [0039] As described above, improving the adhesion between the coating layer and the film is also very important from the viewpoint of the molding followability of the coating layer.
[0040] 本発明の成形用二軸配向ポリエステルフィルムは、 200°Cで、フィルムの任意の一 方向および、その方向に直交する方向に 1. 5倍伸長した後のコーティング層の中心 線平均粗さが l〜50nmであることが好ましい。 200°Cで、フィルムの任意の一方向 および、その方向と直交する方向に 1. 5倍伸長した後のコーティング層の中心線平 均粗さの測定は、任意の一方向とそれに直交する方向の組合せを、以下の通り 3つ の組合せにつ!、て測定する。 200°Cに加熱したフィルムストレッチヤー( (株)東洋精 機製作所製)に任意の一方向および、その方向に直交する方向に、 90 X 90mmの 大きさに切り出したフィルムをセットし 20秒間の予熱後、どちらの方向にも 1. 5倍ず つ同時に 2000%Z分の速度で同時二軸延伸を行い伸長させサンプルを作製する。 その任意の一方向から、 30° 刻みで 3サンプルを採取し、各サンプルについて上記 のとおり伸長し、各サンプル (3サンプル)中央部分から、(任意方向 10cm) X (それ に直行する方向 10cm)のサンプルをサンプリングし、各サンプルについて、 10箇所 中心線平均粗さを測定し、平均値を求める。  [0040] The biaxially oriented polyester film for molding of the present invention has a center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C. Is preferably 1 to 50 nm. At 200 ° C, the centerline average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in the direction perpendicular to that direction is measured in any one direction and the direction perpendicular thereto. Measure the three combinations as follows: Set a film stretched to a size of 90 x 90 mm in one direction and perpendicular to that direction on a film stretcher heated to 200 ° C (manufactured by Toyo Seiki Seisakusho Co., Ltd.) for 20 seconds. After preheating, samples are prepared by stretching by biaxial stretching at a rate of 2000% Z in both directions at the same time in 1.5 times. Take 3 samples in 30 ° increments from any one direction, and extend for each sample as described above. From each sample (3 samples) central part, (arbitrary direction 10cm) X (direction perpendicular to it 10cm) Sample 10 samples and measure the center line average roughness at 10 locations for each sample to obtain the average value.
[0041] (任意方向 10cm) X (それに直行する方向 10cm)に 30° 刻みでサンプリングした 3組のサンプルについて、 200°Cで 1. 5 X 1. 5倍に伸長した後の中心線平均粗さの 値が上記した範囲に含まれていると、ある方向における測定で仮に中心線平均粗さ が上記の範囲外となる場合があつたとしても、高温でのフィルム成形後のコーティン グ層の粗れは見られず、優れた特性を示すことができる。  [0041] (Arbitrary direction 10cm) X (In the direction perpendicular to it 10cm) Three samples sampled at 30 ° increments, centerline average roughness after stretching 1.5 X 1.5 times at 200 ° C If the thickness value is included in the above range, even if the centerline average roughness may be outside the above range in the measurement in a certain direction, the coating layer after film formation at high temperature Roughness is not seen, and excellent characteristics can be shown.
[0042] 200°Cで、フィルムの任意の一方向および、その方向に直交する一方向に 1. 5倍 伸長した後のコ一ティング層の中心線平均粗さが 1〜 50nmであれば、高温下での 加工成形においても、コーティング層に粗れが発生しにくぐ様々な形状に成形加工 を行った後でも、優れた離型性、非付着性を示すことができるため、非常に好ましい 。 200°Cで、フィルムの任意の一方向および、その方向に直交する方向に 1. 5倍伸 長した後のコ一ティング層の中心線平均粗さが 50nmより大きくなると、加熱成形時 にコーティング層に粗れが発生する場合があり、離型性、非付着性が低下してしまう ため好ましくない。また、 lnm未満にするには、成形前のフィルムの中心線平均粗さ を lnm未満にする必要性があり、取扱い性が低下してしまう可能性があるため好まし くない。 [0042] If the center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in one direction perpendicular to the direction at 200 ° C is 1 to 50 nm, Even in high-temperature processing and molding, it is very preferable because it can exhibit excellent mold release and non-adhesive properties even after molding into various shapes that are difficult to roughen the coating layer. . When the average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in the direction perpendicular to the direction at 200 ° C is greater than 50 nm, coating is performed during thermoforming. Roughness may occur in the layer, which is not preferable because the releasability and non-adhesiveness are lowered. In addition, in order to make it less than lnm, it is necessary to make the center line average roughness of the film before molding less than lnm.
[0043] 200°Cで、フィルムの任意の一方向および、その方向に直交する方向に 1. 5倍伸 長した後のコーティング層の中心線平均粗さを上記の範囲とするためには、コーティ ング層の密着性、成形追従性を向上させることは非常に重要であり、それに加えて、 耐熱性の高いコーティングィ匕合物を使用することが好ましい。コーティングィ匕合物の 耐熱性が低いと、高温での成形時に表面が熱により変形し、粗くなる場合がある。  [0043] In order to make the center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C within the above range, It is very important to improve the adhesion and molding followability of the coating layer. In addition, it is preferable to use a coating compound having high heat resistance. When the heat resistance of the coating compound is low, the surface may be deformed and roughened by heat during molding at high temperature.
[0044] さらに、任意の一方向とその方向に直行する方向に伸長させるため、フィルムの配 向がバランス化されていることが好ましい。例えば、フィルムがある方向に著しく配向 していると、配向している方向に伸長させる際に、フィルムおよびコーティング層にスト レスがかかるので、表面が粗くなつてしまう場合がある。  [0044] Further, since the film is stretched in an arbitrary direction and a direction perpendicular to the direction, it is preferable that the film orientation is balanced. For example, if the film is significantly oriented in a certain direction, the film and the coating layer may be stressed when stretched in the oriented direction, resulting in a rough surface.
[0045] 本発明の成形用二軸配向ポリエステルフィルムはコ一ティング層を片面のみに積 層しても、両面に積層しても問題はないが、金属板、榭脂シート、紙、木材などの基 材に貼り合わせて使用する場合は、片面のみに積層するのが好ましぐコーティング 層は基材側ではなぐ表面となることが好ましい。コーティング層が基材側になると、 基材との接着性に劣る場合があるために好ましくない。コーティング層を表面側とす ることで、離型性、非付着性などの表面特性を発揮することができるので好ましい態 様である。  [0045] The biaxially oriented polyester film for molding of the present invention has no problem whether the coating layer is laminated on only one side or laminated on both sides, but a metal plate, a resin sheet, paper, wood, etc. In the case of being used by bonding to the base material, the coating layer which is preferably laminated only on one side is preferably a surface which is not on the substrate side. When the coating layer is on the substrate side, it is not preferable because the adhesiveness to the substrate may be poor. By making the coating layer on the surface side, surface characteristics such as releasability and non-adhesiveness can be exhibited, which is a preferable mode.
[0046] 本発明において、 125°C、 0. 12MPa、 90分間のレトルト処理を施した際の、コー ティング層と水との接触角が 90〜 120° であることが好ましい。 125°C、 0. 12MPa、 90分間のレトルト処理を施した際の、コーティング層と水との接触角が 90〜120° で あるということは、レトルト処理前後で、コーティング層の表面特性に変化がないことを 示している。レトルト処理前後で、コーティング層の表面特性に変化がなければ、例 えば、本発明の成形用二軸配向ポリエステルフィルムを食品容器用として使用した場 合、内容物の殺菌処理としてレトルト処理を施した後においても、非付着性を示すこ とができるので、内容物取り出し性に優れる。この、耐レトルト処理性を示すことによつ て、本発明の成形用二軸配向ポリエステルフィルムは、適用できる用途が飛躍的に 増加するので非常に好ましいことである。 [0046] In the present invention, the contact angle between the coating layer and water is preferably 90 to 120 ° when retort treatment is performed at 125 ° C, 0.12 MPa, and 90 minutes. When the retort treatment is performed at 125 ° C, 0.12 MPa for 90 minutes, the contact angle between the coating layer and water is 90-120 °, which means that the surface properties of the coating layer change before and after the retort treatment. It indicates that there is no. If there is no change in the surface properties of the coating layer before and after the retort treatment, for example, when the biaxially oriented polyester film for molding of the present invention is used for food containers. In this case, even after the retort treatment is performed as a sterilization treatment of the contents, the non-adhesiveness can be exhibited, so that the contents can be easily taken out. By exhibiting the resistance to retort treatment, the biaxially oriented polyester film for molding of the present invention is very preferable because applicable applications can be remarkably increased.
[0047] レトルト処理後の接触角を上記の範囲とするためには、コーティングィ匕合物に架橋 剤を併用して使用し、コ一ティング層中に架橋構造を導入することが好まし 、。  [0047] In order to set the contact angle after the retort treatment in the above range, it is preferable to use a coating agent in combination with a crosslinking agent and introduce a crosslinked structure into the coating layer. .
[0048] 125°C、 0. 12MPa、 90分間のレトルト熱処理を施した際の、水との接触角のより好 まし!/ヽ $g¾i¾、 95〜120° であり、 97〜120° であれ 女子まし ヽ。  [0048] 125 ° C, 0.12 MPa, 90 minutes of retort heat treatment, better contact angle with water! / ヽ $ g¾i¾, 95-120 °, 97-120 ° Women's dress
[0049] 本発明の成形用二軸配向ポリエステルフィルムは耐熱性、榭脂の取扱 、性の観点 力 融点が 246〜270°Cであることが好ましい。融点が 246°C未満であれば、耐熱性 に劣るため、 200°Cで、フィルムの任意の一方向および、その方向に直交する方向 に 1. 5倍伸長する際に、表面に粗れが発生してしまう場合があるので好ましくない。 逆に、 270°Cより高くなると、金属板、榭脂シート、紙、木材などの基材と貼合せて使 用する際、基材との密着性に劣る場合があるので好ましくない。ここで、本発明の成 形用二軸配向ポリエステルフィルムの融点は示差走査熱量計 (DSC)を用いて、昇 温速度 20°CZ分で測定を行った際の融解現象で発現する吸熱ピーク温度である。 異なる組成のポリエステル榭脂をブレンドして使用し、フィルムとした場合には複数の 融解に伴う吸熱ピークが現れる場合があるが、その場合、最も高温に現われる吸熱ピ ーク温度を本発明の成形用二軸配向ポリエステルフィルムの融点とする。融点が 25 0〜270°Cであればより一層好まし 、。ポリエステルフィルムの融点を力かる温度範囲 とする方法としては、フィルム製膜時に使用するポリエステル榭脂段階において、融 点を 246〜270°Cの範囲としておくことが好ましぐまた、異なる組成のポリエステル 榭脂を用いる場合でも、融点が 246°C以上であるポリエステル榭脂を使用し、また、 融点が低 、ポリエステル榭脂をブレンドして使用する場合にぉ 、ても、溶融混練時の 榭脂間でのエステル交換反応による融点降下を抑制するために、予め榭脂中に残 存している触媒を失活させたり、触媒能を低減させるためにリンィ匕合物を添加する。 また、残存触媒量の低いポリエステル榭脂を準備するなどをすることで、融点を 246 〜270°Cの範囲にすることができる。 [0050] 本発明の成形用二軸配向ポリエステルフィルムは、成形性、取扱い性の観点から、 100°Cにおける、フィルムの任意の方向(A方向)の 100%伸張時応力 F100値およ [0049] The biaxially oriented polyester film for molding according to the present invention preferably has heat resistance, handling of resin, and properties from the viewpoint of power. The melting point is preferably 246 to 270 ° C. If the melting point is less than 246 ° C, the heat resistance is poor, and at 200 ° C, the surface becomes rough when stretched 1.5 times in any direction of the film and in the direction perpendicular to that direction. Since it may occur, it is not preferable. On the other hand, when the temperature is higher than 270 ° C., it may be inferior in adhesion to a base material such as a metal plate, a resin sheet, paper, or wood, which is not preferable. Here, the melting point of the biaxially oriented polyester film for forming of the present invention is the endothermic peak temperature that appears in the melting phenomenon when measured at a heating rate of 20 ° CZ using a differential scanning calorimeter (DSC). It is. When blending polyester rosin with different compositions and using it as a film, multiple endothermic peaks associated with melting may appear. In that case, the endothermic peak temperature that appears at the highest temperature is used as the molding temperature of the present invention. The melting point of the biaxially oriented polyester film. It is even more preferable if the melting point is 250-270 ° C. As a method of setting the temperature range that makes the melting point of the polyester film strong, it is preferable to set the melting point in the range of 246 to 270 ° C in the polyester resin stage used when forming the film. Even when using a resin, a polyester resin having a melting point of 246 ° C or higher is used. When a polyester resin is used with a low melting point, the resin used during melt-kneading is used. In order to suppress the melting point drop due to the transesterification reaction, the catalyst remaining in the resin in advance is deactivated, or a phosphorus compound is added to reduce the catalytic ability. Moreover, the melting point can be adjusted to a range of 246 to 270 ° C. by preparing a polyester resin having a low residual catalyst amount. [0050] From the viewpoint of moldability and handleability, the biaxially oriented polyester film for molding of the present invention has a stress F100 value at 100% elongation in any direction (A direction) of the film at 100 ° C.
A  A
び、その方向に直交する方向(B方向)の 100%伸長時応力 F100値がそれぞれ 20  And 100% elongation stress in the direction perpendicular to that direction (B direction)
B  B
〜: L lOMPaであることが好まし!/、。  ~: L is preferred to be lOMPa! /.
[0051] 本発明のポリエステルフィルムは、 100。Cにおける F100値および、 F100値それ [0051] The polyester film of the present invention is 100. F100 value in C and F100 value that
A B  A B
ぞれが、 20〜: L lOMPaであれば、フィルムを基材に貼り合わせた後に成形力卩ェを施 したり、フィルムそのものを成形カ卩ェするなどの成形カ卩ェ性に非常に優れるため好ま しい。  If each is 20 ~: L lOMPa, it is very excellent in moldability such as applying molding force after film is bonded to substrate or molding film itself. Therefore it is preferable.
[0052] 100°Cにおける F100値および、 F100値力 10より大きくなると、コーティング層  [0052] When the F100 value at 100 ° C and the F100 value force becomes larger than 10, the coating layer
A B  A B
の成形追従性が良好であっても、成形時のストレスが高くなつてしまい、コーティング 層にひずみによる粗れが発生してしまう場合があるので好ましくない。また、逆にフィ ルム単体では 100°Cにおける F100値および、 F100値が上記の範囲に入るような  Even if the molding followability is good, the stress during molding becomes high, and the coating layer may be rough due to strain, which is not preferable. Conversely, with the film alone, the F100 value at 100 ° C and the F100 value are within the above range.
A B  A B
成形性が良好なフィルムであっても、コーティング層の成形追従性が悪いと、本発明 の成形用二軸配向ポリエステルフィルムの 100°Cにおける F100値および、 F100  Even if the film has good moldability, the F100 value of the biaxially oriented polyester film for molding of the present invention at 100 ° C and F100
A B  A B
値が好ましい範囲内に入らなくなってしまい、さらには表面が粗れてしまう場合がある  The value may not fall within the preferred range, and the surface may become rough.
[0053] また、 F100値および、 F100値を 20MPa未満にしょうとすると、フィルムの而熱 [0053] If the F100 value and the F100 value are less than 20 MPa,
A B  A B
性が低下して、熱をカ卩えた場合にフィルムの表面が粗れてしまったり、フィルムの腰が 低くなりすぎて、フィルムの巻き取り時にしわが入りやすぐ取り扱い性が悪くなる場合 があるので好ましくない。  The film surface may become rough when heat is applied, or the film may become too low and wrinkles may occur when the film is rolled up, or the handling may soon deteriorate. Therefore, it is not preferable.
[0054] 本発明の成形用二軸配向ポリエステルフィルムは、フィルム単体の成形性に加え、 コーティング層の成形追従性にも優れるため、様々な形状に容易に成形ができ、さら に成形後の表面の離型性、非付着性を保持することができるものである。また、フィル ムの腰は保持しているので、耐熱性、取り扱い性にも優れる。  [0054] The biaxially oriented polyester film for molding of the present invention is excellent in the mold following ability of the coating layer in addition to the moldability of the single film, and therefore can be easily molded into various shapes, and the surface after molding. The releasability and non-adhesiveness can be maintained. In addition, because it holds the waist of the film, it is excellent in heat resistance and handling.
[0055] なお、本発明のポリエステルフィルムにおいて、任意方向とそれに直交する方向の 100°Cにおける 100%伸張時応力を 20〜: L lOMPaとするためには、後に述べる好 ましい製造方法で製造することが好ましい。また、どの方向においても FIOO値は 20 〜: L lOMPaになることが最も好ましいが、本発明では、 FIOO値が 20〜: L lOMPaを 示さない方向がある場合でも、 F 100値が 20〜: L 1 OMPaを満たす組み合わせが 1組 でもあると、優れた成形加工性を示す。 [0055] In the polyester film of the present invention, in order to set the stress at 100% elongation at 100 ° C in an arbitrary direction and a direction perpendicular thereto to 20 to: L LOMPa, it is produced by a preferred production method described later. It is preferable to do. In any direction, the FIOO value is most preferably 20 to: L lOMPa. However, in the present invention, the FIOO value is 20 to: L lOMPa. Even when there is a direction not shown, if there is at least one combination satisfying the F 100 value of 20 to: L 1 OMPa, excellent moldability is exhibited.
[0056] 100°Cにおける F100値および、 F100値それぞれを、 20〜: L lOMPaとする方法 [0056] F100 value at 100 ° C and F100 value 20 to: L lOMPa
A B  A B
としては、フィルムの配向を製膜条件により制御する手法が好ましく用いられる。さら には、使用するポリエステルの融点やガラス転移点、さらには共重合組成や共重合 比率などを制御する手法も好ましく用いることができる。生産性の点からは製膜条件 により制御する方法が好ましぐ特に延伸時の延伸倍率、延伸温度、延伸速度を後 述するフィルムの製造方法における好ましい範囲とすることにより達成することが可能 である。  As such, a method of controlling the orientation of the film according to the film forming conditions is preferably used. Furthermore, a method of controlling the melting point and glass transition point of the polyester used, and the copolymer composition and copolymerization ratio can also be preferably used. From the viewpoint of productivity, the method controlled by the film forming conditions is preferred, and in particular, it can be achieved by setting the stretching ratio, stretching temperature, and stretching speed during stretching within the preferable ranges in the film production method described later. is there.
[0057] 例えば、延伸倍率を低くしたり、延伸時の予熱温度、延伸温度を高くすることで、 F 100値および F100値は小さくなる傾向になる。  [0057] For example, the F100 value and the F100 value tend to decrease by decreasing the stretching ratio or increasing the preheating temperature and stretching temperature during stretching.
A B  A B
[0058] 100°Cにおける F100値および、 F100値は、 30〜: LOOMPaであれば、さらに好  [0058] The F100 value at 100 ° C and the F100 value are 30 to: LOOMPa is more preferable.
A B  A B
ましぐ 40〜90MPaであれば最も好ましい。  Most preferred is 40 to 90 MPa.
[0059] 本発明の成形用二軸配向ポリエステルフィルムは、成形性、取扱 ヽ性の点でフィル ム厚みは、 5-100 μ mであることが好ましい。フィルム厚みが 5 μ m未満となると形状 保持の点に劣る場合がある。また、フィルム厚みが 100 mを超えると、いくら熱成形 時の変形応力を低減しても、実際に掛カる荷重が大きくなつてしまうために、偏変形 する場合があったり、成形加工のための昇温に時間が掛カるため生産性が低下する 場合があるので、好ましくない。フィルム厚みのさらに好ましい範囲は、 8〜50 /ζ πιで あり、 10〜 30 mであれば最も好ましい。  [0059] The biaxially oriented polyester film for molding of the present invention preferably has a film thickness of 5 to 100 µm in terms of moldability and handling properties. If the film thickness is less than 5 μm, the shape retention may be inferior. Also, if the film thickness exceeds 100 m, even if the deformation stress during thermoforming is reduced, the actual load increases, which may cause partial deformation or Since it takes time to raise the temperature, productivity may be reduced, which is not preferable. A more preferred range of film thickness is 8-50 / ζ πι, and most preferred is 10-30 m.
[0060] ここで、本発明の成形用二軸配向ポリエステルフィルムを構成するポリエステル榭 脂とは、主鎖中の主要な結合をエステル結合とする高分子化合物の総称であって、 通常ジカルボン酸成分とグリコール成分を重縮合反応させることによって得ることが できる。ここでジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタ ル酸、 2, 6—ナフタレンジカルボン酸、ジフエ-ルジカルボン酸、ジフエニルスルホン ジカルボン酸、ジフエノキシエタンジカルボン酸、 5—ナトリウムスルホイソフタル酸な どの芳香族ジカルボン酸、シユウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸 、マレイン酸、フマル酸などの脂肪族ジカルボン酸、シクロへキシンジカルボン酸など の脂環族ジカルボン酸、 P ォキシ安息香酸などのォキシカルボン酸などを挙げるこ とがでさる。 [0060] Here, the polyester resin constituting the biaxially oriented polyester film for molding of the present invention is a general term for polymer compounds having an ester bond as the main bond in the main chain, and is usually a dicarboxylic acid component. And a glycol component can be obtained by polycondensation reaction. Here, examples of the dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, and 5-sodium. Aromatic dicarboxylic acids such as sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid and other aliphatic dicarboxylic acids, cyclohexyne dicarboxylic acid, etc. Examples thereof include alicyclic dicarboxylic acids, and oxycarboxylic acids such as Poxybenzoic acid.
[0061] また、グリコール成分としては、例えばエチレングリコール、 1, 2 プロパンジォー ル、 1, 3 プロパンジオール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 1, 5 ブタンジオール、 1, 6 へキサンジオール、ネオペンチルグリコールなどの脂肪族 グリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコーノレ [0061] Examples of the glycol component include ethylene glycol, 1,2 propanediol, 1,3 propanediol, 1,3 butanediol, 1,4 butanediol, 1,5 butanediol, and 1,6 hexanediol. , Aliphatic glycols such as neopentyl glycol, diethylene glycol, polyethylene glycol, polypropylene glycol
、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール、 1, 4ーシクロへ キサンジメタノールなどの脂環族グリコール、ビスフエノール A、ビスフエノール Sなど の芳香族グリコールなどを挙げることができる。これらの、ジカルボン酸成分、グリコー ル成分は 2種以上併用してもよい。また、本発明に用いるポリエステルは 1種のポリェ ステルであっても、 2種以上のポリエステルのブレンドであってもよ!/、。 And polyoxyalkylene glycols such as polytetramethylene glycol, alicyclic glycols such as 1,4-cyclohexanedimethanol, and aromatic glycols such as bisphenol A and bisphenol S. Two or more of these dicarboxylic acid components and glycol components may be used in combination. The polyester used in the present invention may be a single polyester or a blend of two or more polyesters! /.
[0062] 特に好ましく用いられるポリエステルはテレフタル酸あるいはテレフタル酸ジメチル とエチレングリコールをエステルイ匕反応もしくはエステル交換反応による重縮合反応 によって得ることができるエチレンテレフタレートを主たる構成成分とすることが機械 強度、加工性、熱特性、湿度特性などに優れるため好ましい。なおここで、主たるとい うのは、ポリエステル中のエチレンテレフタレート成分が 30モル0 /0以上であることを言 [0062] Particularly preferably used polyester is mainly composed of ethylene terephthalate which can be obtained by polycondensation reaction of terephthalic acid or dimethyl terephthalate and ethylene glycol by esterification reaction or transesterification reaction. It is preferable because of its excellent thermal characteristics and humidity characteristics. Note here, saying that main gutter Unowa, ethylene terephthalate component in the polyester is 30 mol 0/0 or more
[0063] 本発明のポリエステルフィルムを構成するポリエステル榭脂を製造するに際しては、 反応触媒、着色防止剤を使用することができる。反応触媒としては、例えば、アルカリ 金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、 コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物ゲルマニウム 化合物などを、また着色防止剤としては、リン化合物などを使用することができるが、 本発明では特にこれらに限定するものではない。 [0063] In the production of the polyester resin constituting the polyester film of the present invention, a reaction catalyst and a coloring inhibitor can be used. Examples of the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compound germanium compounds, and coloring inhibitors include phosphorus compounds. Although a compound etc. can be used, in this invention, it does not specifically limit to these.
[0064] 通常、ポリエステルの製造が完結する以前の任意の段階にぉ 、て、重合触媒として 、アンチモンィ匕合物、ゲルマニウム化合物及び Zまたはチタン化合物を添加すること が好ましい。このような方法としては、例えば、ゲルマニウム化合物を例にすると、ゲ ルマニウム化合物粉体をそのまま添加する方法や、ポリエステルの出発原料であるグ リコール成分中にゲルマニウム化合物を溶解させて添加する方法を使用することが できる。 [0064] Normally, it is preferable to add an antimony compound, a germanium compound, and Z or a titanium compound as a polymerization catalyst at any stage before the production of the polyester is completed. As such a method, for example, when a germanium compound is taken as an example, a method of adding a germanium compound powder as it is or a method of dissolving a germanium compound in a glycol component which is a starting material of polyester is used. To do it can.
[0065] 力かるゲルマニウム化合物としては、例えば、二酸化ゲルマニウム、水酸化ゲルマ 二ゥム水和物あるいは、ゲルマニウムテトラメトキシド、ゲルマニウムエチレングリコキ シド  [0065] Examples of the germanium compounds that can be used include germanium dioxide, germanium hydroxide hydrate, germanium tetramethoxide, and germanium ethylene glycol oxide.
などのゲルマニウムアルコキシド化合物、ゲルマニウムフオノキシド化合物、リン酸ゲ ルマニウム、亜リン酸ゲルマニウムなどのリン酸含有ゲルマニウム化合物、酢酸ゲル マニウムなどを使用することができる。中でも二酸ィ匕ゲルマニウムが好ましく用いられ る。  Germanium alkoxide compounds, germanium phenoxide compounds, phosphoric acid-containing germanium compounds such as germanium phosphate and germanium phosphite, and germanium acetate can be used. Of these, germanium diacid germanium is preferably used.
[0066] また、アンチモン化合物としては特に限定されないが、例えば三酸ィ匕アンチモンな どの酸化物、酢酸アンチモンなどが使用できる。また、さらにチタン化合物としては、 特に限定しないが、チタンテトラエトキシド、チタンテトラブトキシドなどのチタンテトラ アルコキシドを好ましく用いることができる。  [0066] The antimony compound is not particularly limited. For example, oxides such as antimony trioxide and antimony acetate can be used. Further, the titanium compound is not particularly limited, but titanium tetraalkoxide such as titanium tetraethoxide and titanium tetrabutoxide can be preferably used.
[0067] 本発明の成形用二軸配向ポリエステルフィルムは、取扱い性向上、加工時のキズ 防止の観点から、数平均粒子径 0. 01〜5 mの粒子を含有することが好ましい。加 ェ時のキズ防止、粒子の欠落防止の観点からは数平均粒子径は 0. 05〜4 μ mであ ればより好ましぐ 0. 1〜3 /ζ πιであれば特に好ましい。添加する粒子としては、たと えば、内部粒子、無機粒子、有機粒子を好ましく用いることができる。本発明の好まし V、態様の二軸配向ポリエステルフィルムでは、二軸配向ポリエステルフィルムに対し て粒子を好ましくは 0. 01〜5質量%、より好ましくは 0. 03〜3質量%、さらに好ましく は 0. 05〜2質量%、特に好ましくは 0. 05〜1質量%含有させることができる。また、 上述した通り、積層フィルムとして特定の層にのみ粒子を添加する場合は、粒子を添 加した層の粒子濃度が 0. 01〜5質量%であることが好ましぐ 0. 05〜1質量%であ れば特に好ましい。  [0067] The biaxially oriented polyester film for molding of the present invention preferably contains particles having a number average particle diameter of 0.01 to 5 m from the viewpoint of improving handleability and preventing scratches during processing. The number average particle diameter is more preferably 0.05 to 4 μm from the viewpoint of prevention of scratches during heating and prevention of missing particles, and 0.1 to 3 / ζ πι is particularly preferable. As particles to be added, for example, internal particles, inorganic particles, and organic particles can be preferably used. In the biaxially oriented polyester film of the preferred V, embodiment of the present invention, the particles are preferably 0.01 to 5% by mass, more preferably 0.03 to 3% by mass, and still more preferably, with respect to the biaxially oriented polyester film. It can be contained in an amount of 0.05 to 2% by mass, particularly preferably 0.05 to 1% by mass. Further, as described above, when particles are added only to a specific layer as a laminated film, it is preferable that the particle concentration of the layer to which the particles are added is 0.01 to 5% by mass. A mass% is particularly preferred.
[0068] 本発明のポリエステルフィルムに内部粒子を析出させる方法としては、たとえば、特 開昭 48— 61556号公報、特開昭 51— 12860号公報、特開昭 53— 41355号公報 、および特開昭 54— 90397号公報などに記載の技術を採用することができる。さら に、特公昭 55— 20496号公報や特開昭 59— 204617号公報などに記載の他の粒 子を併用することもできる。 [0069] 含有する粒子濃度の測定方法は特に限定されな!、が、例えば、ポリエステルを溶 解し、不活性粒子は溶解させない溶媒を選択し、不活性粒子をポリエステルから遠 心分離し、全体質量中の粒子の質量を粒子濃度とする方法が挙げられる。溶媒とし ては、オルトクロ口フエノール、へキサフルォロイソプロパノール、 m—タレゾールなど が好ましく使用される。 [0068] Examples of the method for precipitating the internal particles on the polyester film of the present invention include, for example, JP-A-48-61556, JP-A-51-12860, JP-A-53-41355, and JP-A-53-41355. The technique described in Japanese Patent Laid-Open No. 54-90397 can be employed. Furthermore, other particles described in JP-B-55-20496 and JP-A-59-204617 can be used in combination. [0069] The method for measuring the concentration of the contained particles is not particularly limited! However, for example, a solvent that dissolves the polyester and does not dissolve the inert particles is selected, and the inert particles are separated from the polyester by centrifugation. There is a method in which the mass of particles in the mass is used as the particle concentration. As the solvent, orthoclonal phenol, hexafluoroisopropanol, m-talesol and the like are preferably used.
[0070] 本発明のポリエステルフィルムに含有させることができる無機粒子としては、たとえ ば、湿式および乾式シリカ、コロイダルシリカ、ケィ酸アルミ、酸化チタン、炭酸カルシ ゥム、リン酸カルシウム、硫酸バリウム、酸化アルミ、マイ力、カオリン、クレーなど、有 機粒子としては、スチレン、シリコーン、アクリル酸類、メタクリル酸類、ポリエステル類 、ジビ-ルイ匕合物などを構成成分とする粒子を使用することができる。なかでも、湿式 および乾式シリカ、アルミナなどの無機粒子およびスチレン、シリコーン、アクリル酸、 メタクリル酸、ポリエステル、ジビニルベンゼンなどを構成成分とする粒子を使用する ことが好ましい。さらに、これらの内部粒子、無機粒子および有機粒子は二種以上を 併用してちょい。  [0070] Examples of inorganic particles that can be contained in the polyester film of the present invention include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, aluminum oxide, As organic particles such as My strength, kaolin, and clay, particles containing styrene, silicone, acrylic acid, methacrylic acid, polyester, divinyl compound, etc. as constituent components can be used. Among these, it is preferable to use inorganic particles such as wet and dry silica and alumina, and particles containing styrene, silicone, acrylic acid, methacrylic acid, polyester, divinylbenzene and the like as constituent components. In addition, use a combination of two or more of these internal, inorganic and organic particles.
[0071] 本発明のポリエステルフィルムの製造方法は特に限定されないが、例えばポリエス テル榭脂を必要に応じて乾燥した後、溶融押出機に供給し、スリット状のダイカもシ ート状に押出し、静電印加などの方式により、キャスティングドラムに密着させ、冷却 固化し未延伸シートを得た後、かかる未延伸シートを延伸する方法が挙げられる。  [0071] The method for producing the polyester film of the present invention is not particularly limited. For example, polyester resin is dried as necessary, and then supplied to a melt extruder, and a slit die is also extruded into a sheet. There is a method in which the unstretched sheet is stretched after being brought into close contact with a casting drum by cooling, solidifying and obtaining an unstretched sheet by a method such as electrostatic application.
[0072] 力かる延伸方式としては、同時二軸延伸、逐次二軸延伸のいずれでもよい。すなわ ち、未延伸シートをフィルムの長手方向及び幅方向に延伸、熱処理し、 目的とする面 配向度のフィルムを得る方法が採用される。これらの方式の中では、フィルムの品質 の点で、テンター方式によるものが好ましぐ長手方向に延伸した後に、幅方向に延 伸する逐次二軸延伸方式、または長手方向、幅方向をほぼ同時に延伸していく同時 二軸延伸方式などが面配向係数のばらつき抑制、厚みむら抑制の点力 好ましく用 いられる。  [0072] As a powerful stretching method, either simultaneous biaxial stretching or sequential biaxial stretching may be used. In other words, a method is employed in which an unstretched sheet is stretched and heat-treated in the longitudinal direction and the width direction of the film to obtain a film having a desired degree of plane orientation. Among these methods, the tenter method is preferred in terms of film quality, and then it is stretched in the longitudinal direction, followed by a sequential biaxial stretching method that extends in the width direction, or in the longitudinal direction and the width direction almost simultaneously. The simultaneous biaxial stretching method of stretching is preferably used to reduce variation in the plane orientation coefficient and to suppress uneven thickness.
[0073] 力かる延伸方法において、採用される延伸倍率としては、それぞれの方向に好まし くは 1. 6〜4. 2倍、さらに好ましくは 2. 4〜4. 0倍である。また、延伸速度は 100〜2 00000%Z分であることが望ましぐ延伸温度はポリエステルのガラス転移点〜ガラ ス転移点 +100°Cの温度範囲であれば任意の温度とすることができる力 好ましくは、 80〜170°C、特に好ましくは長手方向の延伸温度を 90〜150°C、幅方向の延伸温 度を 100°C〜150°Cとするのがよい。フィルムに非常に優れた成形性を付与するた めには、特に長手方向の延伸温度を 100〜130°Cとすることが好ましぐ特に縦延伸 前において、 100°C以上の高温で 1〜: LOO秒間程度、結晶化しない範囲において予 熱した後、延伸することは、均一な延伸による優れた平面性、配向むら抑制による優 れた成形性の発現などの点で好ましい。さらに、延伸は各方向に対して複数回行つ てもよい。 [0073] In the intensive drawing method, the draw ratio employed is preferably 1.6 to 4.2 times, more preferably 2.4 to 4.0 times in each direction. In addition, it is desirable that the stretching speed is 100 to 200,000% Z min. Force that can be set to any temperature within a temperature range of + 100 ° C, preferably 80 to 170 ° C, particularly preferably 90 to 150 ° C in the longitudinal stretching temperature and stretching in the width direction. The temperature should be between 100 ° C and 150 ° C. In order to give the film a very good formability, it is particularly preferable to set the stretching temperature in the longitudinal direction to 100 to 130 ° C, particularly at a high temperature of 100 ° C or higher, especially before longitudinal stretching. : It is preferable to stretch after preheating for about LOO seconds in a range where it does not crystallize from the viewpoints of excellent flatness due to uniform stretching and excellent formability due to suppression of uneven orientation. Furthermore, the stretching may be performed a plurality of times in each direction.
[0074] さらに二軸延伸の後にフィルムの熱処理を行うことができる。この熱処理は、オーブ ン中、加熱されたロール上などの任意の方法により行うことができる。熱処理温度は、 延伸温度〜原料の融点の範囲の任意の温度とすることができるが、成形加工性と耐 衝撃性の点から 160〜235°Cの熱処理温度であることが好ましい。力かる温度より低 温であれば、耐衝撃性が悪ィ匕し、高温であれば成形カ卩ェ性が悪ィ匕することがある。 また、熱処理時間は他の特性を悪化させな 、範囲にぉ 、ては任意とすることができ る力 通常 1〜30秒間行うのが好ましい。さらに、熱処理はフィルムを長手方向及び Zまたは幅方向に弛緩させて行ってもょ 、。  Furthermore, the film can be heat-treated after biaxial stretching. This heat treatment can be performed by any method such as in an oven or on a heated roll. The heat treatment temperature can be any temperature within the range of the stretching temperature to the melting point of the raw material, but is preferably a heat treatment temperature of 160 to 235 ° C. from the viewpoint of molding processability and impact resistance. If the temperature is lower than the temperature at which it is applied, the impact resistance may be poor, and if it is high, the molding cache property may be poor. In addition, the heat treatment time is preferably within 1 to 30 seconds without deteriorating other characteristics and within a range. Furthermore, heat treatment may be performed by relaxing the film in the longitudinal direction and the Z or width direction.
[0075] また、本発明の成型用二軸配向ポリエステルフィルムを、先に述べたようなインライ ンでコーティング層を積層する場合は、上記製造方法において、延伸前にコーティン グした後、同時二軸延伸を行う方法や、長手方向に一軸に延伸した後にコーティン グし、幅方向に延伸する方法を用いることができる。  [0075] Further, when the biaxially oriented polyester film for molding of the present invention is laminated with a coating layer with the inline as described above, in the above production method, after coating before stretching, A method of stretching or a method of stretching after uniaxially stretching in the longitudinal direction and then coating in the width direction can be used.
[0076] 本発明の成形用二軸配向ポリエステルフィルムには、帯電防止剤、熱安定剤、酸 化防止剤、結晶核剤、耐候剤、紫外線吸収剤などの添加剤を本発明の目的を損な わない程度において用いることができる。また、エンボス力卩ェ、サンドマットカ卩ェなど の表面凹凸加工、あるいはコロナ放電処理、プラズマ処理、アルカリ処理などの表面 処理を必要に応じて施してもよい。さらに、本発明の成形用二軸配向ポリエステルフ イルムに易接着処理剤、帯電防止剤、水蒸気'ガスノリア剤 (ポリ塩ィ匕ビユリデンなど )、離型剤、粘着剤、接着剤、難燃剤、紫外線吸収剤、マット化剤、顔料、染料などの コーティングや印刷を行なってもよぐアルミニウム、酸ィ匕アルミニウム、酸化珪素、パ ラジウムなどの金属やその化合物を遮光、水蒸気'ガスバリア、表面導電性、赤外線 反射などの目的で真空蒸着してもよぐその目的、方法については上記に限定され ない。 [0076] In the biaxially oriented polyester film for molding of the present invention, additives such as an antistatic agent, a thermal stabilizer, an antioxidant, a crystal nucleating agent, a weathering agent, and an ultraviolet absorber are impaired. It can be used to the extent that it is not. In addition, surface unevenness processing such as embossing force and sand matting, or surface treatment such as corona discharge treatment, plasma treatment, and alkali treatment may be performed as necessary. Furthermore, the biaxially oriented polyester film for molding of the present invention has an easy-adhesion treatment agent, an antistatic agent, a water vapor 'gas nolia agent (such as polysalt / vinylidene), a release agent, an adhesive, an adhesive, a flame retardant, an ultraviolet ray. Absorbents, matting agents, pigments, dyes, etc. can be coated or printed on aluminum, acid aluminum, silicon oxide, The purpose and method of vacuum deposition of a metal such as radium or a compound thereof for the purpose of light shielding, water vapor 'gas barrier, surface conductivity, infrared reflection and the like are not limited to the above.
[0077] 本発明の成形用二軸延伸ポリエステルフィルムは、成形加工用に好適に使用する ことができ、例えば、基材に貼合せから成形加工を施したり、フィルムそのものを成形 加工し、容器用途として使用することができる。特に、内容物との離型性、非付着性 に優れて 、るため、食品を保存するための金属板貼合せ成形力卩ェ用フィルムとして 好適に使用することができる。  [0077] The biaxially stretched polyester film for molding of the present invention can be suitably used for molding processing. For example, the biaxially stretched polyester film for molding is subjected to molding processing from pasting to a base material, or the film itself is molded and processed. Can be used as In particular, since it is excellent in releasability and non-adhesiveness with respect to the contents, it can be suitably used as a metal plate laminating film strength film for storing food.
実施例  Example
[0078] (物性'評価)  [0078] (Physical property 'evaluation)
ポリマー、フィルムの物性、特性は以下の方法にて測定、評価した。  The physical properties and characteristics of the polymer and film were measured and evaluated by the following methods.
[0079] (1)水との接触角  [0079] (1) Contact angle with water
23°C、 65%RHの条件下で、 24時間調湿したサンプルについて、接触角計 (協和 界面化学 (株)製 CA—D型)を使用して、水との静的接触角を測定した。サンプルサ ィズは lOcmX IOcmのものを使用し、そのサンプルについて、 10回ずつ測定を行 い、その平均値をサンプルの接触角とした。  Using a contact angle meter (CA-D type manufactured by Kyowa Interface Chemical Co., Ltd.), the static contact angle with water was measured on a sample conditioned at 23 ° C and 65% RH for 24 hours. did. A sample size of lOcmX IOcm was used. The sample was measured 10 times, and the average value was taken as the contact angle of the sample.
[0080] また、熱処理後の接触角についても上記と同様にして、測定を行った。熱処理は、 フィルムを 12cmX 12cmの金属枠に両面テープで貼り付けて固定し、熱風オーブン にて、 180°C、 120分間行った。レトルト処理も同様に金属枠に固定し、滅菌器にて 1 25。C、 0. 12MPaの条件下で、 90分間行った。  [0080] Further, the contact angle after the heat treatment was also measured in the same manner as described above. The heat treatment was performed by attaching the film to a 12 cm × 12 cm metal frame with double-sided tape and fixing it in a hot air oven at 180 ° C. for 120 minutes. Retort treatment is also fixed to the metal frame in the same way, and sterilized with 125. The test was performed under the conditions of C and 0.12 MPa for 90 minutes.
[0081] 熱処理後、レトルト処理後のサンプルについては金属枠より 10cm X 10cmの大き さに切り出して、それぞれ 10回ずつ測定を行い、その平均値をサンプルの接触角と した。  [0081] After the heat treatment, the sample after the retort treatment was cut out to a size of 10 cm x 10 cm from the metal frame, measured 10 times each, and the average value was taken as the contact angle of the sample.
[0082] (2)表面自由エネノレギー  [0082] (2) Surface free energy
(1)と同様にして、水、エチレングリコール、ホルムアミド、ヨウ化メチレンとの静的接 触角をそれぞれ測定し、表 1の各液体の表面張力成分を用いて、下記の連立方程 式を立てた(水、エチレングリコール、ホルムアミド、ヨウ化メチレンのそれぞれの測定 液を 1、 2、 3、 4とし、表 1の Lを 1、 2、 3、 4と置き換えた)。この方程式から、数値計算 ソフト「Mathematica」の" FindMinimum" (複素数からなる関数の局所的な極小値 を検索するコマンド)を用いて、その極小値を与える γ d, γ °, γ hを求め、この方程 式の最も確率の高い解とし、これを測定したフィルム表面の表面自由エネルギーとし た。 In the same manner as in (1), the static contact angles with water, ethylene glycol, formamide, and methylene iodide were measured, and the following cubic equations were established using the surface tension components of each liquid in Table 1. (Measurement solutions for water, ethylene glycol, formamide, and methylene iodide were changed to 1, 2, 3, and 4, and L in Table 1 was replaced with 1, 2, 3, and 4). From this equation, numerical calculation Using software "Mathematica""FindMinimum" (command to find the local minimum value of a function consisting of complex numbers), find the γ d , γ °, γ h that gives the local minimum value. This was the surface free energy of the measured film surface.
[表 1] [table 1]
0 θ0 θ
Figure imgf000024_0002
Figure imgf000024_0001
Figure imgf000024_0002
Figure imgf000024_0001
1/2 P\ 1/2 1/2 _ , \ /n 1/2 P \ 1/2 1/2 _, \ / n
\ y ' y ) + { y · y ) + { y · y ) ― y (1 + cos Θ ) / 2  \ y 'y) + (y y y) + (y y y) ― y (1 + cos Θ) / 2
3 3 3 3 3  3 3 3 3 3
1/2 1/2 1/2 _ , n \ /o  1/2 1/2 1/2 _, n \ / o
{ y ' y ) + { y ' y ) + { y ' y ) ― y (1 + cos Θ ) /2。  (y'y) + (y'y) + (y'y)-y (1 + cos Θ) / 2.
4 4 4 4 4  4 4 4 4 4
[0085] (3)フィルムの任意の方向への 2倍伸長  [0085] (3) Double-stretching the film in any direction
フィルムを任意の一方向および、その方向に直交する方向に長さ 150mm X幅 20 mmの矩形に切り出したサンプルを作製した。同様にして、任意の方向から、 30°C刻 みにサンプリングを行い、 6サンプルを採取した。引張試験機 (オリエンテック製テン シロン UCT— 100)を用いて、初期引張チャック間距離 50mmとし、引張速度を 300 mmZ分として各サンプルについて、 23°Cにて引張試験を行い、 100%伸長させた  A sample was prepared by cutting a film into a rectangular shape having a length of 150 mm and a width of 20 mm in an arbitrary direction and a direction perpendicular to the direction. Similarly, sampling was performed in 30 ° C increments from any direction, and 6 samples were collected. Using a tensile tester (Orientec Tensilon UCT-100), the initial tensile chuck distance was 50 mm, the tensile speed was 300 mmZ, and each sample was subjected to a tensile test at 23 ° C and stretched 100%. The
[0086] (4)フィルムの任意の一方向および、その方向に直交する方向への 1. 5倍伸長 [0086] (4) Stretch 1.5 times in any direction of the film and in the direction perpendicular to the direction
200°Cに加熱したフィルムストレッチヤー((株)東洋精機製作所製)に任意の一方 向および、その方向に直交する方向に、 90 X 90mmの大きさに切り出したフィルムを セットし 20秒間の予熱後、どちらの方向にも 1. 5倍ずつ同時に 2000%Z分の速度 で同時二軸延伸を行い伸長させた。なお、任意の一方向から、 30° 刻みでサンプリ ングを行い、 3サンプルを採取し、各サンプルについて伸長した。  A film stretched at 200 ° C (manufactured by Toyo Seiki Seisakusho Co., Ltd.) is placed in one direction and in a direction perpendicular to that direction, a film cut into a size of 90 X 90 mm is set, and preheating for 20 seconds Later, in both directions, the film was stretched by simultaneous biaxial stretching at a speed of 2000% Z at a time of 1.5 times. In addition, sampling was performed in 30 ° increments from one arbitrary direction, 3 samples were collected, and each sample was elongated.
[0087] (5)中心線平均粗さ  [0087] (5) Centerline average roughness
超深度形状測定顕微鏡 VK— 8500 ( (株)キーエンス製)を使用して、コーティング 層側 2次元線粗さを測定し、そのデータより算出した。測定サンプルは、フィルムの幅 方向(250mm)に、 5cm X 5cmのサンプル 5枚サンプリングしたものを使用した。各 サンプルについて、フィルム端から、等間隔で 6箇所抽出し、測定を行った (合計 30 箇所)。対物レンズは 100倍、測定ピッチは 0. 01 ^ m,測長は 100 m、カットオフは 0. 08mmとして、測定を行った。  Using an ultra-deep shape measuring microscope VK-8500 (manufactured by Keyence Corporation), the coating layer side two-dimensional line roughness was measured and calculated from the data. The measurement sample used was a sample of five 5 cm × 5 cm samples in the width direction of the film (250 mm). For each sample, 6 points were extracted at regular intervals from the edge of the film and measured (total of 30 points). The measurement was performed with an objective lens of 100 times, a measurement pitch of 0.01 m, a measurement length of 100 m, and a cutoff of 0.08 mm.
[0088] なお、フィルムを任意の方向に 2倍伸長した後のコーティング層の中心線平均粗さ の測定は、(3)で作製した各サンプル (6サンプル)について、長さ方向の中央部から 、長さ 2cm X幅 1. 5cmにサンプリングしたものを使用し、各 6サンプルについて、各 々 5箇所抽出して行い、平均値を各サンプルの値とした。  [0088] The measurement of the center line average roughness of the coating layer after the film was stretched twice in an arbitrary direction was measured from the center in the length direction for each sample (6 samples) prepared in (3). Samples that were sampled to a length of 2 cm x a width of 1.5 cm were used, and each of 6 samples was extracted at 5 locations, and the average value was taken as the value of each sample.
[0089] また、 200°Cで、フィルムの任意の一方向および、その方向と直交する方向に 1. 5 倍伸長した後のコーティング層の中心線平均粗さの測定は、(4)で作製した各サン プル(3サンプル)中央部分から、(任意方向 10cm) X (それに直行する方向 10cm) のサンプルをサンプリングし、各サンプルについて、 10箇所抽出して行い、平均値を 各サンプルの値とした。 [0089] In addition, the measurement of the centerline average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C was made in (4) Each sun Samples of (arbitrary direction 10cm) X (direction 10cm perpendicular to it) were sampled from the center of the pull (3 samples), and 10 samples were extracted for each sample, and the average value was taken as the value of each sample.
[0090] (6)コーティング層厚み  [0090] (6) Coating layer thickness
フィルムの断面を超薄切片法で透過型電子顕微鏡 (日立製作所製 TEM H7100 )にて写真撮影し、コーティング層の厚みを測定した。測定はフィルム幅方向での中 央部の任意の 5ケ所につ 、て倍率 20000倍で観察し、その平均値をコーティング層 の厚みとした。  The cross section of the film was photographed with a transmission electron microscope (TEM H7100, manufactured by Hitachi, Ltd.) by an ultrathin section method, and the thickness of the coating layer was measured. The measurement was performed at an arbitrary 5 locations in the center in the film width direction at a magnification of 20000, and the average value was taken as the thickness of the coating layer.
[0091] (7)フィルムの融点  [0091] (7) Melting point of film
示差走査熱量計 (セイコー電子工業製、 RDC220)を用いて測定した。試料 5mgを サンプルに用い、 25°Cから 10°CZ分で 300°Cまで昇温した際の吸熱ピーク温度を 融点とした吸熱ピークが複数存在する場合は、最も高温側の吸熱ピークのピーク温 度を融点とした。  Measurement was performed using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220). If 5 mg of the sample is used as the sample and there are multiple endothermic peaks whose melting point is the endothermic peak temperature when the temperature is increased from 25 ° C to 300 ° C in 10 ° CZ minutes, the peak temperature of the endothermic peak on the highest temperature side The degree was taken as the melting point.
[0092] (8) 100%伸長時の応力  [0092] (8) Stress at 100% elongation
フィルムを任意の方向およびそれに直行する方向に長さ 150mm X幅 10mmの矩 形に切り出しサンプルとした。引張試験機 (オリエンテック製テンシロン UCT— 100) を用いて、初期引張チャック間距離 50mmとし、引張速度を 300mmZ分としてフィ ルムの長手方向と幅方向にそれぞれ引張試験を行った。測定は予め 100°Cに設定 した恒温層中にフィルムサンプルをセットし、 90秒間の予熱の後で引張試験を行つ た。サンプルが 100%伸長したとき(チャック間距離が 100mmとなったとき)のフィル ムに力かる荷重を読み取り、試験前の試料の断面積 (フィルム厚み X 10mm)で除し た値を 100%伸長時応力(F100値)とした。なお、測定は各サンプル、各方向に 5回 ずつ行い、その平均値で評価を行った。  The film was cut into a rectangular shape with a length of 150 mm and a width of 10 mm in an arbitrary direction and a direction perpendicular thereto. Using a tensile tester (Orientec's Tensilon UCT-100), the initial tensile chuck distance was 50 mm, the tensile speed was 300 mmZ, and tensile tests were performed in the longitudinal and width directions of the film. For the measurement, a film sample was set in a constant temperature layer set to 100 ° C in advance, and a tensile test was performed after 90 seconds of preheating. Read the load applied to the film when the sample is stretched 100% (when the chuck-to-chuck distance is 100 mm), and the value divided by the cross-sectional area of the sample before the test (film thickness x 10 mm) is stretched by 100% Time stress (F100 value). The measurement was performed 5 times for each sample and in each direction, and the average value was evaluated.
[0093] (9)離型性  [0093] (9) Releasability
(3)の方法で、任意の方向に 2倍伸長させた、フィルムサンプルのコーティング層面 に、幅 19mmのアクリル型粘着テープ(日東電工 (株)製ニット一ポリエステルテープ 31B)を長さ 200mmとなるように貼り付けゴムローラー(線圧 2kg/cm)で圧着した。 この粘着テープを 25°C、 65%RH雰囲気下で、剥離角度 90度で剥離し、以下の基 準で評価した。 Using the method of (3), an acrylic adhesive tape (Nitto Denko Corporation Knit Polyester Tape 31B) with a width of 19 mm is applied to the coating layer surface of the film sample that has been stretched twice in any direction to a length of 200 mm. In this way, it was pressed with a rubber roller (linear pressure 2 kg / cm). This adhesive tape was peeled off at 25 ° C and 65% RH at a peeling angle of 90 °. Evaluated in quasi.
優:全く抵抗無く剥離できた。  Yu: I could peel off without any resistance.
良:ほとんど抵抗無く剥離できた。  Good: Peeled almost without resistance.
可:やや抵抗は感じたが、問題なく剥離できた。  OK: I felt some resistance, but I could peel off without any problems.
不可:強い抵抗を感じ、剥離しにくかった。  Impossible: I felt strong resistance and it was difficult to peel off.
[0094] (10)非付着性  [0094] (10) Non-adhesive
(4)の方法で、長手方向および幅方向に 1. 5倍伸長させたフィルムサンプルを 200 °Cの熱風オーブン中に 2分間保存した ABSシート(200 X 300mm)に、接着シート を介して、フィルムをラミネーター(180°C、 lm/min, 0. 3MPa)で貼り合わせた後 、市販のミンチ肉を詰めたバットに入れ、 40°C、 65RH%で 72時間養生した後、フィ ルムをラミネートした ABSシートを取り出し、フィルム表面への付着量 (重量)を以下 の基準で判定した。なお、接着シートは(日本合成化学工業 (株)製 ポリエスター SP 170)をメルトプレス(120°C、 4MPa、 lmin)することで作製した。  A film sample stretched 1.5 times in the longitudinal direction and width direction by the method of (4) is stored on an ABS sheet (200 X 300 mm) stored in a hot air oven at 200 ° C for 2 minutes via an adhesive sheet. After laminating the film with a laminator (180 ° C, lm / min, 0.3 MPa), placing it in a bat filled with commercially available minced meat, curing at 40 ° C and 65RH% for 72 hours, and then laminating the film The ABS sheet was taken out, and the amount (weight) attached to the film surface was judged according to the following criteria. The adhesive sheet was prepared by melt pressing (120 ° C, 4 MPa, lmin) (Nippon Synthetic Chemical Industry Co., Ltd. Polyester SP 170).
優: 0〜10%  Excellent: 0-10%
良: 10〜30%  Good: 10-30%
可: 30〜50%  Acceptable: 30-50%
不可: 50〜100%。  Impossible: 50-100%.
[0095] (11)成形性  [0095] (11) Formability
200°Cに加熱した遠赤外線ヒーターを用いて、表面温度が 180°Cの温度になるよう に加熱し円柱状の金型 (底面直径 50mm)を用いて真空成形を行 、フィルムを成形 した。円筒形金型に沿って成形できた状態を成形度合 ヽ (絞り比:成形高さ Z底面直 径)を用いて以下の基準で評価した。  A far-infrared heater heated to 200 ° C was used to heat the surface temperature to 180 ° C, and vacuum forming was performed using a cylindrical mold (bottom diameter 50 mm) to form a film. The state of being molded along the cylindrical mold was evaluated according to the following criteria using the degree of molding (drawing ratio: molding height Z bottom diameter).
優:絞り比 0. 5以上で成形できた。  Excellent: Molding was possible at a drawing ratio of 0.5 or more.
良:絞り比 0. 5〜0. 3で成形できた。  Good: Molding was possible at a drawing ratio of 0.5 to 0.3.
可:絞り比 0. 2〜0. 3で成形できた。  Good: Molding was possible at a drawing ratio of 0.2 to 0.3.
不可:破れが発生し、絞り比 0. 2で成形できなかった。  Not possible: tearing occurred and molding could not be performed with a drawing ratio of 0.2.
[0096] (12)取り扱い性  [0096] (12) Handling
幅 250mmのフィルムを 20mZminの速度で、直径 100mm、長さ 400mmのコア に巻き取り、そのときの巻き取り易さを以下の基準で評価し、取り扱い性とした。 優:しわや、卷きずれを起こさず、全く問題なく巻き取れた。 A 250mm wide film at a speed of 20mZmin, a core with a diameter of 100mm and a length of 400mm The ease of winding at that time was evaluated according to the following criteria to make it easy to handle. Yu: Wrinkles and wrinkles did not occur, and I was able to wind up without any problems.
良:フィルムにしわが入りやすぐ注意を要するが、問題なく巻き取ることができた。 可:フィルムにしわが入った力 問題なく巻き取ることができた。  Good: The film was wrinkled and required immediate attention, but could be wound up without any problem. Good: Wrinkled film The film could be wound up without any problem.
不可 A:フィルムが滑り、コアに巻き取ることができなかった。  No A: The film slipped and could not be wound on the core.
不可 B :しわが大量に発生し、さらにフィルムがブロッキングした。  Impossible B: Wrinkles occurred in large quantities, and the film blocked.
[0097] (ポリエステルの製造方法)  [0097] (Production method of polyester)
以下の実施例、比較例において使用したポリエステル榭脂は以下のようにして製造 した。  The polyester resin used in the following examples and comparative examples was produced as follows.
[0098] (PET)  [0098] (PET)
テレフタル酸ジメチル 100質量部、およびエチレングリコール 70質量部の混合物に 、 0. 09質量部の酢酸マグネシウムと 0. 03質量部の三酸化アンチモンとを添カ卩して 、徐々に昇温し、最終的には 220°Cでメタノールを留出させながらエステル交換反応 を行った。ついで、該エステル交換反応生成物に、 0. 020質量部のリン酸 85%水溶 液を添加した後、重縮合反応釜に移行した。重合釜内で加熱昇温しながら反応系を 徐々に減圧して lhPaの減圧下、 290°Cで重縮合反応を行い、固有粘度 0. 65,副 生したジエチレングリコールが 2モル%共重合されたポリエチレンテレフタレート榭脂 を得た。  To a mixture of 100 parts by weight of dimethyl terephthalate and 70 parts by weight of ethylene glycol, 0.09 part by weight of magnesium acetate and 0.03 part by weight of antimony trioxide were added, and the temperature was gradually raised. Specifically, transesterification was performed while distilling methanol at 220 ° C. Subsequently, 0.020 part by mass of an 85% aqueous solution of phosphoric acid was added to the transesterification reaction product, and then transferred to a polycondensation reaction kettle. The reaction system was gradually depressurized while heating in the polymerization kettle, and the polycondensation reaction was carried out at 290 ° C under a reduced pressure of lhPa. The inherent viscosity was 0.65, and 2 mol% of the by-produced diethylene glycol was copolymerized. Polyethylene terephthalate resin was obtained.
[0099] (PBT) [0099] (PBT)
テレフタル酸 100質量部、および 1, 4 ブタンジオール 110質量部の混合物を、 窒素雰囲気下で 140°Cまで昇温して均一溶液とした後、オルトチタン酸テトラー n— ブチル 0. 054質量部、モノヒドロキシブチルスズオキサイド 0. 054質量部を添加し、 エステル化反応を行った。次いで、オルトチタン酸テトラー n—ブチル 0. 066質量部 を添加して、減圧下で重縮合反応を行い、固有粘度 0. 88のポリブチレンテレフタレ 一ト榭脂を作製した。その後、 140°C、窒素雰囲気下で結晶化を行い、ついで窒素 雰囲気下で 200°C、 6時間の固相重合を行い、固有粘度 1. 22のポリブチレンテレフ タレート榭脂 (PBT)を得た。  A mixture of 100 parts by mass of terephthalic acid and 110 parts by mass of 1,4 butanediol was heated to 140 ° C under a nitrogen atmosphere to obtain a homogeneous solution, and then 0.054 parts by mass of tetra-n-butyl orthotitanate, Esterification reaction was performed by adding 0.054 parts by mass of monohydroxybutyltin oxide. Next, 0.066 part by mass of tetra-n-butyl orthotitanate was added, and a polycondensation reaction was performed under reduced pressure to prepare polybutylene terephthalate resin having an intrinsic viscosity of 0.88. Thereafter, crystallization is performed at 140 ° C in a nitrogen atmosphere, followed by solid-phase polymerization at 200 ° C for 6 hours in a nitrogen atmosphere to obtain polybutylene terephthalate resin (PBT) having an intrinsic viscosity of 1.22. It was.
[0100] (PTT) テレフタル酸ジメチル 100質量部、 1, 3—プロパンジオール 80質量部を窒素雰囲 気下でテトラブチルチタネートを触媒として用い、 140°Cから 230°Cまで徐々に昇温 し、メタノールを留出しつつエステル交換反応を行った。さら〖こ、 250°C温度一定の 条件下で 3時間重縮合反応を行い、極限粘度 [ 7? ]が 0. 86のポリトリメチレンテレフタ レート榭脂を得た。 [0100] (PTT) 100 parts by weight of dimethyl terephthalate, 80 parts by weight of 1,3-propanediol using tetrabutyl titanate as a catalyst under nitrogen atmosphere, gradually increasing the temperature from 140 ° C to 230 ° C, while distilling methanol A transesterification reaction was performed. Furthermore, polycondensation resin having an intrinsic viscosity [7?] Of 0.86 was obtained by polycondensation reaction for 3 hours at a constant temperature of 250 ° C.
[0101] (PET— G) [0101] (PET— G)
テレフタル酸ジメチルを 100質量部、エチレングリコール 70質量部、 1, 4ーシクロ へキサンジメタノール 7質量部の混合物に、酢酸マンガンを 0. 04質量部を加え、徐 々に昇温し、最終的には 220°Cメタノールを留出させながらエステル交換反応を行つ た。次いで、リン酸 85%水溶液 0. 045質量部、二酸化ゲルマニウム 0. 01質量部を 添加して、徐々に昇温、減圧し、最終的に 275°C、 lhPaまで昇温、減圧し、極限粘 度が 0. 67となるまで重縮合反応を行い、その後ストランド状に吐出、冷却し、カツティ ングして 1, 4—シクロへキサンジメタノールを 4モル%共重合したポリエチレンテレフ タレート榭脂を得た。該ポリマーを 3mm径の立方体に切断し、回転型真空重合装置 を用いて、 lhPaの減圧下、 225°Cで極限粘度が 0. 8になるまで固相重合を行い得 た、ポリエステル榭脂を粉末状に凍結粉砕し、 1, 4—シクロへキサンジメタノール 30 モル共重合ポリエチレンテレフタレート(イーストマン.ケミカル社製 Eatster6763)を 85 : 15で均一に混合した。その後、 2軸ベント式押出機に供給し、溶融混練し、ストラ ンド状に押出し、水中で冷却後、チップ状にカットして 1, 4ーシクロへキサンジメタノ ールを 7. 9モル0 /0共重合した PET— Gを得た。 To a mixture of 100 parts by weight of dimethyl terephthalate, 70 parts by weight of ethylene glycol, and 7 parts by weight of 1,4-cyclohexanedimethanol, add 0.04 parts by weight of manganese acetate. Conducted transesterification while distilling 220 ° C methanol. Next, 0.045 parts by mass of 85% aqueous phosphoric acid solution and 0.01 parts by mass of germanium dioxide were added, the temperature was gradually raised and reduced, and finally the temperature was raised to 275 ° C and lhPa, and the pressure was reduced. The polycondensation reaction is carried out until the degree reaches 0.67, and then discharged into a strand, cooled, and cut to obtain polyethylene terephthalate resin copolymerized with 4 mol% of 1,4-cyclohexanedimethanol. It was. The polyester resin was obtained by cutting the polymer into cubes having a diameter of 3 mm and performing solid-phase polymerization using a rotary vacuum polymerization apparatus under a reduced pressure of lhPa at 225 ° C until the intrinsic viscosity was 0.8. This was freeze-pulverized into a powder form, and 1,4-cyclohexanedimethanol 30 mol copolymerized polyethylene terephthalate (Eatster6763 manufactured by Eastman Chemical Co.) was uniformly mixed at 85:15. Then, 2 is supplied to the shaft vented extruder, melt-kneaded, cooled to Stra command shape extrusion, in water, and cut into chips 1, 4 Kisanjimetano Lumpur to Shikuro 7.9 mole 0/0 both Polymerized PET-G was obtained.
[0102] (粒子マスター) [0102] (Particle Master)
また、テレフタル酸ジメチル 100質量部、エチレングリコール 70質量部の混合物に 酢酸マンガン 0. 04質量部を加え、徐々に昇温し、最終的には 220°Cでメタノールを 留出させながら、エステル交換反応を行った。次いで、リン酸 85%水溶液 0. 025質 量部、二酸化ゲルマニウム 0. 02質量部を添カ卩した。さらに、平均粒径 2. 2 mの湿 式シリカ凝集粒子のエチレングリコールスラリーを粒子濃度が 2質量%となるように添 カロして、徐々に昇温、減圧し、最終的に 290°C、 lhPaまで昇温、減圧し、極限粘度 が 0. 63となるまで重縮合反応を行い、その後ストランド状に吐出、冷却し、カッテイン グして粒子マスターを得た。 In addition, 0.04 parts by mass of manganese acetate was added to a mixture of 100 parts by mass of dimethyl terephthalate and 70 parts by mass of ethylene glycol, and the temperature was gradually raised. Finally, methanol was distilled at 220 ° C for transesterification. Reaction was performed. Next, 0.025 parts by mass of 85% phosphoric acid aqueous solution and 0.02 parts by mass of germanium dioxide were added. Further, add ethylene glycol slurry of wet silica agglomerated particles with an average particle size of 2.2 m so that the particle concentration becomes 2% by mass, gradually increase and decrease the pressure, and finally 290 ° C, The temperature is raised to lhPa, the pressure is reduced, and the polycondensation reaction is performed until the intrinsic viscosity becomes 0.63, and then discharged into a strand, cooled, and cut To obtain a particle master.
[0103] (コーティング組成物の製造方法)  [0103] (Method for producing coating composition)
以下の実験において使用したコーティング組成物は以下のようにして製造した。  The coating composition used in the following experiments was prepared as follows.
[0104] (コーティング組成物 A) [0104] (Coating composition A)
信越シリコーン (株)製のァルケ-ル基含有オルガノポリシロキサン/ハイドロジェン ポリシロキサンの付カ卩反応型シリコーンェマルジヨン (X— 52— 195) 100質量部、触 媒(CAT—PM—10) 5質量部、イソプロピルアルコール 100質量部、水 400質量部 を混合し、コーティング組成物 Aを得た。  Alkenyl group-containing organopolysiloxane / hydrogen polysiloxane-attached silicone-reacted silicone emulsion (X-52-195), 100 parts by weight, catalyst (CAT-PM-10), manufactured by Shin-Etsu Silicone Co., Ltd. 5 parts by mass, 100 parts by mass of isopropyl alcohol, and 400 parts by mass of water were mixed to obtain a coating composition A.
[0105] (コーティング組成物 B) [0105] (Coating composition B)
信越シリコーン (株)製のァルケ-ル基含有オルガノポリシロキサン/ハイドロジェン ポリシロキサンの付カ卩反応型シリコーンェマルジヨン (X— 52— 195) 100質量部、触 媒(CAT— PM— 10) 3質量部、 日本酢ビ ·ポバール (株)製のポリビニルアルコール QP- 18) 5質量%水溶液 300質量部を混合し、コーティング組成物 Bを得た。  Alkal group-containing organopolysiloxane / hydrogen polysiloxane-attached silicone-reacted silicone emulsion (X—52—195), 100 parts by weight, catalyst (CAT—PM—10), manufactured by Shin-Etsu Silicone Co., Ltd. 3 parts by mass, polyvinyl alcohol QP-18) 5 mass% aqueous solution manufactured by Nippon Vinegar Poval Co., Ltd. was mixed with 300 parts by mass to obtain a coating composition B.
[0106] (コーティング組成物 C) [0106] (Coating composition C)
信越シリコーン (株)製のァルケ-ル基含有オルガノポリシロキサン/ハイドロジェン ポリシロキサンの付カ卩反応型シリコーンェマルジヨン (X— 52— 195) 100質量部、触 媒(CAT— PM— 10) 1質量部、イソプロピルアルコール 200質量部、水 1000質量 部を混合し、コーティング組成物 Cを得た。  Alkal group-containing organopolysiloxane / hydrogen polysiloxane-attached silicone-reacted silicone emulsion (X—52—195), 100 parts by weight, catalyst (CAT—PM—10), manufactured by Shin-Etsu Silicone Co., Ltd. 1 part by mass, 200 parts by mass of isopropyl alcohol, and 1000 parts by mass of water were mixed to obtain a coating composition C.
[0107] (コーティング組成物 D) [0107] (Coating composition D)
荒川化学工業 (株)製のシリコーンェマルジヨン(SILCOLEASE902) 100質量部 、触媒 (CATA903) 10質量部、水 600質量部とを混合し、コーティング組成物 Dを 得た。  100 parts by mass of silicone emulsion (SILCOLEASE902) manufactured by Arakawa Chemical Industries, Ltd., 10 parts by mass of catalyst (CATA903), and 600 parts by mass of water were mixed to obtain a coating composition D.
[0108] (コーティング組成物 E)  [0108] (Coating composition E)
東レ.ダウコーユングシリコーン (株)製のァルケ-ル基含有オルガノポリシロキサン Alkale group-containing organopolysiloxane manufactured by Toray Dow Cowing Silicone Co., Ltd.
Zハイドロジエンポリシロキサンの付カ卩反応型シリコーンデイスパージヨン(LTC750 A) 100質量部、触媒(SRX—212) 1質量部、トルエン 500質量部を混合し、コーテ イング組成物 Eを得た。 A coating composition E was obtained by mixing 100 parts by mass of Z hydrogendiene polysiloxane-attached silicone reaction purged (LTC750A), 1 part by mass of catalyst (SRX-212) and 500 parts by mass of toluene.
[0109] (コーティング組成物 F) 日本カーバイド工業 (株)製のアクリル系ェマルジヨン(二力ゾール Y— 9105)をコー ティング組成物 Fとした。 [0109] (Coating composition F) The coating composition F was acrylic emerald (Nifengsol Y-9105) manufactured by Nippon Carbide Industries Co., Ltd.
[0110] (コーティング組成物 G) [0110] (Coating composition G)
新中村ィ匕学の長鎖アルキルアタリレート (TR— 7)を 100質量部、水 60質量部とを 混合し、コーティング組成物 Gとした。  A coating composition G was prepared by mixing 100 parts by mass of Shin-Nakamura's long-chain alkyl acrylate (TR-7) with 60 parts by mass of water.
[0111] (コーティング組成物 H) [0111] (Coating composition H)
新中村ィ匕学の長鎖アルキルアタリレート (TR— 7)を 100質量部、水 50質量部、イソ プロピルアルコール 20質量部を混合し、コーティング組成物 Hとした。  A coating composition H was prepared by mixing 100 parts by mass of Shin-Nakamura's long chain alkyl acrylate (TR-7), 50 parts by mass of water and 20 parts by mass of isopropyl alcohol.
[0112] (コーティング組成物 I) [0112] (Coating composition I)
広栄化学工業 (株)製のワックスエマルジョン (KEK— T)を 100質量部、イソプロピ ルアルコール 20質量部、水 150質量部を混合して、コーティング組成物 Iを得た。  A coating composition I was obtained by mixing 100 parts by mass of a wax emulsion (KEK-T) manufactured by Guangei Chemical Industry Co., Ltd., 20 parts by mass of isopropyl alcohol, and 150 parts by mass of water.
[0113] (コーティング組成物 J) [0113] (Coating composition J)
広栄化学工業 (株)製のワックスェマルジヨン (KEK—T)を、コーティング組成物 Jと した。  Wax emulsion (KEK-T) manufactured by Guangei Chemical Industry Co., Ltd. was used as coating composition J.
[0114] (コーティング組成物 K)  [0114] (Coating composition K)
一方社油脂工業 (株)製の非シリコーン系ェマルジヨン型背面剥離剤 (ピーロィル 4 06) 100質量部、水 500質量部を混合して、コーティング組成物 Kとした。  On the other hand, 100 parts by mass of a non-silicone emulsion type back release agent (Pyroleel 40 6) manufactured by Ogyo Fat Industries Co., Ltd. and 500 parts by mass of water were mixed to obtain a coating composition K.
[0115] (実施例 1)  [0115] (Example 1)
PETと粒子マスターを質量比 99 : 1で混合し、真空乾燥機にて 180°C4時間乾燥し 、水分を十分に除去した後、単軸押出機に供給、 280°Cで溶融し、異物の除去、押 出量の均整化を行った後、 Tダイより 25°Cに温度制御した冷却ドラム上にシート状に 吐出した。その際、直径 0. 1mmのワイヤー状電極を使用して静電印加し、冷却ドラ ムに密着させ未延伸フィルムを得た。  PET and particle master were mixed at a mass ratio of 99: 1, dried at 180 ° C for 4 hours in a vacuum dryer, and after sufficiently removing water, supplied to a single screw extruder, melted at 280 ° C, After removal and leveling of the extrusion amount, the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to a cooling drum to obtain an unstretched film.
[0116] 次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、最終的 にフィルム温度 105°Cで長手方向に 3. 0倍延伸し、すぐに 40°Cに温度制御した金 属ロールで冷却化した。この一軸延伸フィルムに空気中でコロナ放電処理を施し、ポ リエステルフィルムの表面自由エネルギーを 52mNZmとした。その処理面にコーテ イング組成物 Aをメタリングバー ( # 6)を用いて、コーティングした。次 、でテンター式 横延伸機にて予熱温度 95°C、延伸温度 120°Cで幅方向に 3. 0倍延伸し、そのまま テンター内にて幅方向に 4%のリラックスを掛けながら温度 210°Cで 5秒間の熱処理 を行いフィルム厚み 15 μ mのコーティング層を積層した二軸配向ポリエステルフィル ムを得た。 [0116] Next, the film temperature was raised with a heating roll before stretching in the longitudinal direction, and finally the film was stretched 3.0 times in the longitudinal direction at a film temperature of 105 ° C, and the temperature was immediately controlled to 40 ° C. Cooled with a metal roll. This uniaxially stretched film was subjected to corona discharge treatment in air, and the surface free energy of the polyester film was set to 52 mNZm. The treated surface was coated with coating composition A using a metalling bar (# 6). Next, the tenter type Stretched 3.0 times in the width direction at a pre-heating temperature of 95 ° C and a stretching temperature of 120 ° C with a horizontal stretching machine, and while maintaining a 4% relaxation in the width direction in the tenter for 5 seconds at a temperature of 210 ° C. Heat treatment was performed to obtain a biaxially oriented polyester film in which a coating layer having a film thickness of 15 μm was laminated.
[0117] (実施例 2)  [0117] (Example 2)
PETと粒子マスターを質量比 97 : 3で混合し、コーティング組成物 Bを用い、長手方 向の延伸倍率を 3. 1倍、幅方向の延伸倍率を 3. 1倍とした以外は、実施例 1と同様 にして、フィルム厚み 12 μ mのコーティング層を積層した二軸配向ポリエステルフィル ムを得た。  Example except that PET and particle master were mixed at a mass ratio of 97: 3, coating composition B was used, and the draw ratio in the longitudinal direction was 3.1 times and the draw ratio in the width direction was 3.1 times. In the same manner as in 1, a biaxially oriented polyester film on which a coating layer having a film thickness of 12 μm was laminated was obtained.
[0118] (実施例 3)  [0118] (Example 3)
コーティング組成物 Gを用い、長手方向の延伸時のフィルム温度を 95°Cとし、延伸 倍率を 3. 1倍、幅方向の延伸倍率を 3. 2倍とした以外は、実施例 2と同様にして、フ イルム厚み 20 μ mのコーティング層を積層した二軸配向ポリエステルフィルムを得た  The same procedure as in Example 2, except that coating composition G was used, the film temperature during stretching in the longitudinal direction was 95 ° C, the stretching ratio was 3.1 times, and the stretching ratio in the width direction was 3.2 times. A biaxially oriented polyester film with a 20 μm thick coating layer
[0119] (実施例 4) [Example 4]
PETと PBTと粒子マスターを質量比 77: 20: 3で混合し、真空乾燥機にて 180°C3 時間乾燥して水分を十分に除去した後、単軸押出機に供給、 280°Cで溶融し、異物 の除去、押出量の均整化を行った後、 Tダイより 25°Cに温度制御した冷却ドラム上に シート状に吐出した。その際、直径 0. 1mmのワイヤー状電極を使用して静電印加し 、冷却ドラムに密着させ未延伸フィルムを得た。  PET, PBT, and particle master are mixed at a mass ratio of 77: 20: 3, dried in a vacuum dryer at 180 ° C for 3 hours to sufficiently remove moisture, then supplied to a single screw extruder, melted at 280 ° C After removing foreign substances and leveling the amount of extrusion, the product was discharged in a sheet form from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched film.
[0120] 次 、で、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、最終的 にフィルム温度 100°Cで長手方向に 3. 0倍延伸し、すぐに 40°Cに温度制御した金 属ロールで冷却化した。この一軸延伸フィルムに空気中でコロナ放電処理を施し、ポ リエステルフィルムの表面自由エネルギーを 52mNZmとした。その処理面にコーテ イング組成物 Eをメタリングバー ( # 6)を用いて、コーティングした。次 、でテンター式 横延伸機にて予熱温度 95°C、延伸温度 110°Cで幅方向に 3. 0倍延伸し、そのまま テンター内にて幅方向に 4%のリラックスを掛けながら温度 230°Cで 5秒間の熱処理 を行いフィルム厚み 15 μ mの二軸配向ポリエステルフィルムを得た。 [0121] (実施例 5) [0120] Next, before stretching in the longitudinal direction, the film temperature was raised with a heating roll, and finally, the film was stretched 3.0 times in the longitudinal direction at a film temperature of 100 ° C and immediately heated to 40 ° C. Cooled with a controlled metal roll. This uniaxially stretched film was subjected to corona discharge treatment in air, and the surface free energy of the polyester film was set to 52 mNZm. The treated surface was coated with coating composition E using a metalling bar (# 6). Next, it was stretched 3.0 times in the width direction at a preheating temperature of 95 ° C and a stretching temperature of 110 ° C with a tenter-type horizontal stretching machine, and the temperature was maintained at 230 ° C while relaxing 4% in the width direction in the tenter. A biaxially oriented polyester film having a film thickness of 15 μm was obtained by heat treatment at C for 5 seconds. [0121] (Example 5)
PETと PET— Gと粒子マスターを質量比 16 : 80: 4で混合し、真空乾燥機にて 180 °C4時間乾燥し、水分を十分に除去した後、単軸押出機に供給、 280°Cで溶融し、 異物の除去、押出量の均整化を行った後、 Tダイより 25°Cに温度制御した冷却ドラム 上にシート状に吐出した。その際、直径 0. 1mmのワイヤー状電極を使用して静電印 加し、冷却ドラムに密着させ未延伸フィルムを得た。  PET, PET-G and particle master are mixed at a mass ratio of 16: 80: 4, dried in a vacuum dryer at 180 ° C for 4 hours, and after sufficiently removing moisture, supplied to a single screw extruder, 280 ° C After being melted at, removal of foreign matter and leveling of the amount of extrusion were performed, and then discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, electrostatic application was performed using a wire electrode having a diameter of 0.1 mm, and the film was brought into close contact with the cooling drum to obtain an unstretched film.
[0122] 次 、で、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、最終的 にフィルム温度 100°Cで長手方向に 3. 0倍延伸し、すぐに 40°Cに温度制御した金 属ロールで冷却化した。この一軸延伸フィルムに空気中でコロナ放電処理を施し、ポ リエステルフィルムの表面自由エネルギーを 52mNZmとした。その処理面にコーテ イング組成物 Iをメタリングバー ( # 10)を用いて、コーティングした。次 、でテンター式 横延伸機にて予熱温度 95°C、延伸温度 110°Cで幅方向に 3. 0倍延伸し、そのまま テンター内にて幅方向に 4%のリラックスを掛けながら温度 220°Cで 5秒間の熱処理 を行いフィルム厚み 12 μ mの二軸配向ポリエステルフィルムを得た。  [0122] Next, before stretching in the longitudinal direction, the film temperature was raised with a heating roll, and finally, the film was stretched 3.0 times in the longitudinal direction at a film temperature of 100 ° C and immediately heated to 40 ° C. Cooled with a controlled metal roll. This uniaxially stretched film was subjected to corona discharge treatment in air, and the surface free energy of the polyester film was set to 52 mNZm. The treated surface was coated with coating composition I using a metalling bar (# 10). Next, it was stretched 3.0 times in the width direction at a preheating temperature of 95 ° C and a stretching temperature of 110 ° C with a tenter type horizontal stretching machine, and the temperature was 220 ° while relaxing 4% in the width direction in the tenter. Heat treatment was performed at C for 5 seconds to obtain a biaxially oriented polyester film having a film thickness of 12 μm.
[0123] (実施例 6)  [0123] (Example 6)
PETと粒子マスターを質量比 97: 3で混合し、真空乾燥機にて 180°C4時間乾燥し 、水分を十分に除去した後、単軸押出機に供給、 280°Cで溶融し、異物の除去、押 出量の均整化を行った後、 Tダイより 25°Cに温度制御した冷却ドラム上にシート状に 吐出した。その際、直径 0. 1mmのワイヤー状電極を使用して静電印加し、冷却ドラ ムに密着させ未延伸フィルムを得た。  PET and particle master were mixed at a mass ratio of 97: 3, dried in a vacuum dryer at 180 ° C for 4 hours, after sufficiently removing moisture, supplied to a single screw extruder, melted at 280 ° C, After removal and leveling of the extrusion amount, the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to a cooling drum to obtain an unstretched film.
次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、最終的に フィルム温度 105°Cで長手方向に 3. 1倍延伸し、次いでテンター式横延伸機にて予 熱温度 95°C、延伸温度 110°Cで幅方向に 3. 1倍延伸し、そのままテンター内にて幅 方向に 4%のリラックスを掛けながら温度 210°Cで 5秒間の熱処理を行 、フィルム厚 み 12 μ mの二軸配向ポリエステルフィルムを得た。この二軸配向ポリエステルフィル ムに空気中でコロナ放電処理を施し、表面自由エネルギーを 54mNZmとし、メタリ ングバー(# 8)を用いて、コーティング組成物 Eをコーティングし、 120°Cの熱風乾燥 機中で、 60秒乾燥させて、コーティング層を積層した二軸配向ポリエステルフィルム を得た。 Next, the film temperature is raised with a heating roll before stretching in the longitudinal direction, and finally the film is stretched 3.1 times in the longitudinal direction at a film temperature of 105 ° C. Then, the preheating temperature is 95 with a tenter type transverse stretching machine. The film is stretched 3.1 times in the width direction at a temperature of 110 ° C and stretched at 110 ° C, and heat treated for 5 seconds at a temperature of 210 ° C while relaxing 4% in the width direction in the tenter. A μm biaxially oriented polyester film was obtained. This biaxially oriented polyester film was subjected to corona discharge treatment in air, the surface free energy was set to 54 mNZm, and coating composition E was coated using a metalling bar (# 8) in a hot air dryer at 120 ° C. The biaxially oriented polyester film is dried for 60 seconds and laminated with a coating layer Got.
[0124] (実施例 7)  [0124] (Example 7)
PETと粒子マスターを質量比 99. 8 : 0. 2で混合し、コーティング組成物 Hを用い、 長手方向の延伸倍率を 3. 3倍、幅方向の延伸倍率を 3. 2倍とした以外は、実施例 1 と同様にして、フィルム厚み 12 mのコーティング層を積層した二軸配向ポリエステ ルフィルムを得た。  PET and particle master were mixed at a mass ratio of 99.8: 0.2, and coating composition H was used, except that the draw ratio in the longitudinal direction was 3.3 times and the draw ratio in the width direction was 3.2 times. In the same manner as in Example 1, a biaxially oriented polyester film on which a coating layer having a film thickness of 12 m was laminated was obtained.
[0125] (実施例 8) [0125] (Example 8)
PETと PBTと PTTと粒子マスターを質量比 67 : 15 : 15 : 3で混合し、コーティング組 成物 Kを用い、長手方向の延伸温度を 100°C、幅方向の延伸温度を 110°C、熱処理 温度を 240°Cとした以外は、実施例 1と同様にして、フィルム厚み 20 mのコーティン グ層を積層した二軸配向ポリエステルフィルムを得た。  PET, PBT, PTT, and particle master are mixed at a mass ratio of 67: 15: 15: 3, and coating composition K is used. The stretching temperature in the longitudinal direction is 100 ° C, the stretching temperature in the width direction is 110 ° C, A biaxially oriented polyester film in which a coating layer having a film thickness of 20 m was laminated was obtained in the same manner as in Example 1 except that the heat treatment temperature was 240 ° C.
[0126] (実施例 9) [0126] (Example 9)
PETと粒子マスターを質量比 99. 6 : 0. 4で混合し、コーティング組成物 Cを用いた 以外は、実施例 1と同様にして、フィルム厚み 15 mのコーティング層を積層した二 軸配向ポリエステルフィルムを得た。  Biaxially oriented polyester with a coating layer with a film thickness of 15 m laminated in the same manner as in Example 1 except that PET and particle master were mixed at a mass ratio of 99.6: 0.4 and coating composition C was used. A film was obtained.
[0127] (実施例 10) [Example 10]
PETと PBTと PTTと粒子マスターを質量比 69 : 20 : 10 : 1で混合し、コーティング組 成物 Bを用いた以外は、実施例 8と同様にして、フィルム厚み 15 mのコーティング 層を積層した二軸配向ポリエステルフィルムを得た。  Laminate a coating layer with a film thickness of 15 m in the same manner as in Example 8 except that PET, PBT, PTT, and particle master were mixed at a mass ratio of 69: 20: 10: 1 and coating composition B was used. A biaxially oriented polyester film was obtained.
[0128] (実施例 11) [0128] (Example 11)
PETと PBTと粒子マスターを質量比 67: 30: 3で混合し、コーティング組成物 Dを用 いた以外は、実施例 8と同様にして、フィルム厚み 12 /z mのコーティング層を積層し た二軸配向ポリエステルフィルムを得た。  Biaxially laminated PET / PBT and particle master at a mass ratio of 67: 30: 3 and a coating layer with a film thickness of 12 / zm as in Example 8 except that coating composition D was used. An oriented polyester film was obtained.
[0129] (実施例 12) [Example 12]
PETと PTTと粒子マスターを質量比 68: 30: 2で混合し、コーティング組成物 Gを用 いた以外は、実施例 8と同様にして、フィルム厚み 15 mのコーティング層を積層し た二軸配向ポリエステルフィルムを得た。  Biaxial orientation in which PET, PTT, and particle master were mixed at a mass ratio of 68: 30: 2 and a coating layer with a film thickness of 15 m was laminated in the same manner as in Example 8 except that coating composition G was used. A polyester film was obtained.
[0130] (比較例 1) 粉末状に凍結粉砕した PETと、カルナゥバワックスを質量比 98 : 2で混合し、均一 に混合した後、 2軸ベント式押出機に供給し、溶融混練し、ストランド状に押出し、水 中で冷却後、チップ状にカットしてワックスマスターチップを得た。 [0130] (Comparative Example 1) PET frozen in a powder form and carnauba wax are mixed at a mass ratio of 98: 2, mixed uniformly, then fed to a twin-screw vent type extruder, melt-kneaded, extruded into a strand, and extruded in water. After cooling, the wafer was cut into chips to obtain a wax master chip.
[0131] PETとカルナゥバワックスマスターと粒子マスターを質量比 47: 50: 3で混合し、真 空乾燥機にて 180°C4時間乾燥して水分を十分に除去した後、単軸押出機に供給、 280°Cで溶融し、異物の除去、押出量の均整化を行った後、 Tダイより 25°Cに温度 制御した冷却ドラム上にシート状に吐出した。その際、直径 0. 1mmのワイヤー状電 極を使用して静電印加し、冷却ドラムに密着させ未延伸フィルムを得た。  [0131] PET, carnauba wax master, and particle master were mixed at a mass ratio of 47: 50: 3, dried in a vacuum dryer at 180 ° C for 4 hours to remove water sufficiently, and then a single screw extruder. , Melted at 280 ° C, removed foreign matter, and leveled the amount of extrusion, and discharged from a T-die onto a cooling drum controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched film.
[0132] 次 、で、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、最終的 にフィルム温度 95°Cで長手方向に 3. 3倍延伸し、すぐに 40°Cに温度制御した金属 ロールで冷却化した。次いでテンター式横延伸機にて予熱温度 90°C、延伸温度 10 0°Cで幅方向に 3. 3倍延伸し、そのままテンター内にて幅方向に 4%のリラックスを掛 けながら温度 230°Cで 5秒間の熱処理を行いフィルム厚み 12 μ mの二軸配向ポリエ ステノレフイノレムを得た。  [0132] Next, before stretching in the longitudinal direction, the film temperature was raised with a heating roll, and finally the film temperature was stretched 3.3 times in the longitudinal direction at 95 ° C and immediately heated to 40 ° C. Cooled with a controlled metal roll. Next, it was stretched 3.3 times in the width direction at a preheating temperature of 90 ° C and a stretching temperature of 100 ° C with a tenter-type transverse stretching machine, and the temperature was maintained at 230 ° C while relaxing 4% in the width direction in the tenter. A heat treatment was carried out at C for 5 seconds to obtain a biaxially oriented polyester resin having a film thickness of 12 μm.
[0133] (比較例 2)  [0133] (Comparative Example 2)
PETと粒子マスターを質量比 97: 3で混合し、真空乾燥機にて 180°C4時間乾燥し て水分を十分に除去した後、単軸押出機に供給、 280°Cで溶融し、異物の除去、押 出量の均整化を行った後、 Tダイより 25°Cに温度制御した冷却ドラム上にシート状に 吐出した。その際、直径 0. 1mmのワイヤー状電極を使用して静電印加し、冷却ドラ ムに密着させ未延伸フィルムを得た。  PET and particle master were mixed at a mass ratio of 97: 3, dried at 180 ° C for 4 hours in a vacuum dryer to sufficiently remove moisture, then supplied to a single screw extruder, melted at 280 ° C, After removal and leveling of the extrusion amount, the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to a cooling drum to obtain an unstretched film.
[0134] 次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、最終的 にフィルム温度 95°Cで長手方向に 3. 3倍延伸し、すぐに 40°Cに温度制御した金属 ロールで冷却化した。次いでテンター式横延伸機にて予熱温度 90°C、延伸温度 10 0°Cで幅方向に 3. 3倍延伸し、そのままテンター内にて幅方向に 4%のリラックスを掛 けながら温度 230°Cで 5秒間の熱処理を行いフィルム厚み 15 μ mの二軸配向ポリエ ステルフィルムを得た。この二軸配向ポリエステルフィルムに空気中でコロナ放電処 理を施し、表面自由エネルギーを 54mNZmとし、メタリングバー( # 5)を用いて、コ 一ティング組成物 Jをコーティングし、 120°Cの熱風乾燥機中で、 60秒乾燥させて、コ 一ティング層を積層した二軸配向ポリエステルフィルムを得た。 [0134] Next, the film temperature was raised with a heating roll before stretching in the longitudinal direction, and finally the film was stretched 3.3 times in the longitudinal direction at a film temperature of 95 ° C and immediately controlled to 40 ° C. Cooled with a metal roll. Next, it was stretched 3.3 times in the width direction at a preheating temperature of 90 ° C and a stretching temperature of 100 ° C with a tenter-type transverse stretching machine, and the temperature was maintained at 230 ° C while relaxing 4% in the width direction in the tenter. A biaxially oriented polyester film having a film thickness of 15 μm was obtained by heat treatment at C for 5 seconds. This biaxially oriented polyester film was subjected to corona discharge treatment in air, the surface free energy was set to 54 mNZm, the coating composition J was coated using a metalling bar (# 5), and hot air at 120 ° C was applied. Dry in the dryer for 60 seconds, A biaxially oriented polyester film laminated with a single layer was obtained.
[0135] (比較例 3)  [0135] (Comparative Example 3)
コーティング組成物 Fを用いた以外は、実施例 4と同様にして、フィルム厚み 15 m のコーティング層を積層した二軸配向ポリエステルフィルムを得た。  A biaxially oriented polyester film in which a coating layer having a film thickness of 15 m was laminated was obtained in the same manner as in Example 4 except that the coating composition F was used.
[0136] (比較例 4)  [0136] (Comparative Example 4)
PETと粒子マスターを質量比 94 : 6で混合し、コーティング組成物 Bを用いて、長手 方向の延伸倍率を 3. 3倍、延伸温度を 100°C、幅方向の延伸倍率を 3. 2倍とした以 外は、実施例 1と同様にして、フィルム厚み 15 mのコーティング層を積層した二軸 配向ポリエステルフィルムを得た。  PET and particle master are mixed at a mass ratio of 94: 6, and coating composition B is used. The stretching ratio in the longitudinal direction is 3.3 times, the stretching temperature is 100 ° C, and the stretching ratio in the width direction is 3.2 times. A biaxially oriented polyester film in which a coating layer having a film thickness of 15 m was laminated was obtained in the same manner as in Example 1 except that.
[0137] (比較例 5)  [0137] (Comparative Example 5)
PETを真空乾燥機にて 180°C4時間乾燥して水分を十分に除去した後、単軸押出 機に供給、 280°Cで溶融し、異物の除去、押出量の均整化を行った後、 Tダイより 25 °Cに温度制御した冷却ドラム上にシート状に吐出した。その際、直径 0. 1mmのワイ ヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸フィルムを得た。  After PET is dried at 180 ° C for 4 hours in a vacuum dryer to sufficiently remove moisture, it is supplied to a single screw extruder, melted at 280 ° C, foreign matter is removed, and the amount of extrusion is leveled. The sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a non-stretched film was obtained by applying a static electricity using a wire electrode having a diameter of 0.1 mm and closely contacting the cooling drum.
[0138] その後、コーティング組成物 Jを用いて、長手方向の延伸倍率を 3. 0倍、延伸温度 を 100°C、幅方向の延伸倍率を 3. 8倍とした以外は、実施例 1と同様にして、フィル ム厚み 15 mのコーティング層を積層した二軸配向ポリエステルフィルムを得た。  [0138] Thereafter, Example 1 was used except that the coating composition J was used, except that the stretching ratio in the longitudinal direction was 3.0 times, the stretching temperature was 100 ° C, and the stretching ratio in the width direction was 3.8 times. Similarly, a biaxially oriented polyester film in which a coating layer having a film thickness of 15 m was laminated was obtained.
[0139] [表 2] [0139] [Table 2]
Figure imgf000037_0001
Figure imgf000037_0001
[ε挲] [owo] [ε 挲] [owo]
808ZSO/ .OOZdf/X3d LZ \ttt6QILmZ OAV
Figure imgf000039_0001
808ZSO / .OOZdf / X3d LZ \ ttt6QILmZ OAV
Figure imgf000039_0001
808ZS0/.00Zdf/X3d 68 1 60/ム00 OAV
Figure imgf000041_0001
808ZS0 / .00Zdf / X3d 68 1 60 / M 00 OAV
Figure imgf000041_0001
[0142] ※2倍伸長後の表面自由エネルギー、中心線平均粗さは、任意の方向に伸長した 6 サンプルについて、測定し、それらのうち、最大値および最小値のみ記載した。 ※※ 5 X 1. 5倍伸長後の中心線平均粗さは、任意の方向とそれに直交する方向 に伸長した 3組のサンプルについて、測定し、それらのうち、最大値および最小値の み記載した。 [0142] * Surface free energy and centerline average roughness after 2 times elongation were measured for 6 samples stretched in any direction, and only the maximum and minimum values were listed. ** 5 X 1.5 Centerline average roughness after stretching by 5 times is measured for three sets of samples stretched in an arbitrary direction and in a direction perpendicular thereto, and only the maximum and minimum values are listed. did.
※※※ :^ 、F100は、任意の方向とそれに直交するする方向に伸長した 3組の  * * *: ^ And F100 are three sets of extension in any direction and the direction perpendicular to it.
A B  A B
サンプルについて、測定し、それらのうち、最大値および最小値のみ記載した。 産業上の利用可能性  Samples were measured and only the maximum and minimum values were listed. Industrial applicability
[0143] 本発明の成形用二軸配向ポリエステルフィルムは、水との接触角が大きぐ表面自 由エネルギーが低いため、離型性、非付着性に優れており、様々な用途に使用する ことができる。また、成形性にも優れ、成形後、高温熱処理、レトルト処理後も優れた 離型性、非付着性を示すため、特に食品などの容器成形用途に使用することができ る。 [0143] Since the biaxially oriented polyester film for molding of the present invention has a large contact angle with water and low surface free energy, it is excellent in releasability and non-adhesiveness, and should be used for various applications. Can do. In addition, it has excellent moldability and exhibits excellent mold release and non-adhesive properties after molding, high temperature heat treatment, and retort treatment, so it can be used for container molding applications such as foods.

Claims

請求の範囲 The scope of the claims
[1] ポリエステルフィルムの少なくとも片面に表面自由エネルギーが 15〜35mNZmで あるコーティング層が積層されてなり、  [1] A coating layer with a surface free energy of 15 to 35 mNZm is laminated on at least one side of the polyester film,
該コ一ティング層の中心線平均粗さが 1〜 50nmであり、  The coating layer has a center line average roughness of 1 to 50 nm,
かつフィルムを任意の方向に 23°Cにて 2倍伸長した後のコーティング層の中心線平 均粗さが 1〜 50nmである成形用二軸配向ポリエステルフィルム。  A biaxially oriented polyester film for molding in which the center line average roughness of the coating layer after stretching the film twice in any direction at 23 ° C is 1 to 50 nm.
[2] 前記コーティング層の水との接触角が 90〜120° であり、 [2] The contact angle of the coating layer with water is 90 to 120 °,
かつ 180°C120分間の熱処理後の水との接触角が 90〜120° である  And the contact angle with water after heat treatment at 180 ° C for 120 minutes is 90-120 °
請求項 1に記載の成形用二軸配向ポリエステルフィルム。  The biaxially oriented polyester film for molding according to claim 1.
[3] 200°Cで、フィルムの任意の一方向および、その方向に直交する方向に 1. 5倍伸長 した後のコ一ティング層の中心線平均粗さが 1〜 50nmである請求項 1に記載の成形 用二軸配向ポリエステルフィルム。 [3] The center line average roughness of the coating layer after stretching 1.5 times in any one direction of the film and in a direction perpendicular to the direction at 200 ° C. is 1 to 50 nm. 2. A biaxially oriented polyester film for molding described in 1.
[4] フィルムを任意の方向に 23°Cにて 2倍伸長した後のコーティング層の表面自由エネ ルギ一が 15〜 35mNZmである請求項 1に記載の成形用二軸配向ポリエステルフィ ノレム。 [4] The biaxially oriented polyester phenolic for molding according to claim 1, wherein the surface free energy of the coating layer after stretching the film twice in an arbitrary direction at 23 ° C is 15 to 35 mNZm.
[5] コーティング層がシリコーンィ匕合物を用いてなる請求項 1に記載の成形用二軸配向 ポリエステノレフイノレム。  [5] The biaxially oriented polyester polyester for molding according to claim 1, wherein the coating layer is made of a silicone compound.
[6] 前記シリコーンィ匕合物が、主剤と架橋剤とを用いてなる請求項 5に記載の成形用二 軸配向ポリエステルフィルム。  6. The biaxially oriented polyester film for molding according to claim 5, wherein the silicone compound comprises a main agent and a crosslinking agent.
[7] 前記シリコーンィ匕合物力 主剤としてァルケ-ル基を含有するオルガノポリシロキサン[7] Silicone compound strength Organopolysiloxane containing alkell group as main ingredient
、架橋剤としてハイドロジエンポリシロキサンが付加反応されてなる請求項 6に記載の 成形用二軸配向ポリエステルフィルム。 7. The biaxially oriented polyester film for molding according to claim 6, wherein a hydrodiene polysiloxane is subjected to an addition reaction as a crosslinking agent.
[8] コーティング層の層厚みが 0. 01〜3 μ mである請求項 1に記載の成形用二軸配向ポ リエステルフィルム。 [8] The biaxially oriented polyester film for molding according to [1], wherein the coating layer has a thickness of 0.01 to 3 μm.
[9] 125°C、 0. 12MPa、 90分間のレトルト処理を施した際の、コーティング層と水との接 触角が 90〜120° である請求項 1に記載の成形用二軸配向ポリエステルフィルム。  [9] The biaxially oriented polyester film for molding according to claim 1, wherein the contact angle between the coating layer and water is 90 to 120 ° when retort treatment is performed at 125 ° C, 0.12 MPa, and 90 minutes. .
[10] 融点が 246〜270°Cである請求項 1に記載の成形用二軸配向ポリエステルフィルム [10] The biaxially oriented polyester film for molding according to claim 1, having a melting point of 246 to 270 ° C.
[11] 100°Cにおける、フィルムの任意の方向(A方向)の 100%伸張時応力 FlOO値およ [11] Stress at 100% elongation at 100 ° C in any direction (A direction) FlOO value and
A  A
び、その方向に直交する方向(B方向)の 100%伸長時応力 F100値がそれぞれ 20  And 100% elongation stress in the direction perpendicular to that direction (B direction)
B  B
〜: L lOMPaである請求項 1に記載の成形用二軸配向ポリエステルフィルム。  The biaxially oriented polyester film for molding according to claim 1, which is L: LOMPa.
[12] 金属板貼合せ用途に使用される請求項 1に記載の成形用二軸配向ポリエステルフィ ノレム。 [12] The biaxially oriented polyester phenolic for molding according to claim 1, which is used for bonding metal plates.
[13] 容器成形用に使用される請求項 1に記載の成形用二軸配向ポリエステルフィルム。  13. The biaxially oriented polyester film for molding according to claim 1, which is used for container molding.
[14] 請求項 1に記載の成形用二軸配向ポリエステルフィルムを製造する方法であって、コ 一ティング面の表面自由エネルギーを 47mNZm以上とした後に、ェマルジヨン型コ 一ティング剤をコーティングすることを特徴とする成形用二軸配向ポリエステルフィル ムの製造方法。 [14] The method for producing a biaxially oriented polyester film for molding according to claim 1, wherein the coating surface is coated with an emulsion type coating agent after the surface free energy of the coating surface is set to 47 mNZm or more. A method for producing a characteristic biaxially oriented polyester film for molding.
PCT/JP2007/052808 2006-02-16 2007-02-16 Biaxially oriented polyester film for molding application WO2007094441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007522854A JP5458492B2 (en) 2006-02-16 2007-02-16 Biaxially oriented polyester film for molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006038927 2006-02-16
JP2006-038927 2006-02-16
JP2006186354 2006-07-06
JP2006-186354 2006-07-06

Publications (1)

Publication Number Publication Date
WO2007094441A1 true WO2007094441A1 (en) 2007-08-23

Family

ID=38371617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052808 WO2007094441A1 (en) 2006-02-16 2007-02-16 Biaxially oriented polyester film for molding application

Country Status (2)

Country Link
JP (1) JP5458492B2 (en)
WO (1) WO2007094441A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509323A (en) * 2007-12-27 2011-03-24 コーロン インダストリーズ インク Release film
JP2012076821A (en) * 2010-10-06 2012-04-19 Showa Denko Packaging Co Ltd Lid material for preventing deposition of content, and method of manufacturing the same
JP2014237238A (en) * 2013-06-07 2014-12-18 東レ株式会社 Release film
WO2016136615A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Laminated polyester film
KR20170063439A (en) * 2014-10-03 2017-06-08 도레이 카부시키가이샤 Laminated film and method for producing same
JP2019034532A (en) * 2017-01-17 2019-03-07 東レ株式会社 Laminate film and method for production thereof
TWI689535B (en) * 2015-04-16 2020-04-01 義大利商思立科自然股份有限公司 Method for preparing silicone-treated films of polyethylene terephthalate (pet)
CN112519373A (en) * 2016-08-25 2021-03-19 东丽薄膜先端加工股份有限公司 Mold release film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141806A (en) * 1995-11-28 1997-06-03 Teijin Ltd Mold-releasing film
JPH09216963A (en) * 1995-10-17 1997-08-19 Hoechst Diafoil Co Polyester film coated with silicone release layer and method for coating
JPH09248888A (en) * 1996-03-15 1997-09-22 Teijin Ltd Moldable release sheet and its manufacture
JP2001220453A (en) * 1999-12-03 2001-08-14 Toray Ind Inc Biaxially oriented polyester film for molding processing
JP2002302560A (en) * 2001-04-06 2002-10-18 Toray Ind Inc Polyester film for container
JP2004066642A (en) * 2002-08-07 2004-03-04 Mitsubishi Polyester Film Copp Laminated polyester film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216963A (en) * 1995-10-17 1997-08-19 Hoechst Diafoil Co Polyester film coated with silicone release layer and method for coating
JPH09141806A (en) * 1995-11-28 1997-06-03 Teijin Ltd Mold-releasing film
JPH09248888A (en) * 1996-03-15 1997-09-22 Teijin Ltd Moldable release sheet and its manufacture
JP2001220453A (en) * 1999-12-03 2001-08-14 Toray Ind Inc Biaxially oriented polyester film for molding processing
JP2002302560A (en) * 2001-04-06 2002-10-18 Toray Ind Inc Polyester film for container
JP2004066642A (en) * 2002-08-07 2004-03-04 Mitsubishi Polyester Film Copp Laminated polyester film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011509323A (en) * 2007-12-27 2011-03-24 コーロン インダストリーズ インク Release film
JP2012076821A (en) * 2010-10-06 2012-04-19 Showa Denko Packaging Co Ltd Lid material for preventing deposition of content, and method of manufacturing the same
JP2014237238A (en) * 2013-06-07 2014-12-18 東レ株式会社 Release film
KR20210120121A (en) * 2014-10-03 2021-10-06 도레이 카부시키가이샤 Laminated film and method for producing same
KR102516506B1 (en) * 2014-10-03 2023-03-31 도레이 카부시키가이샤 Laminated film and method for producing same
KR20170063439A (en) * 2014-10-03 2017-06-08 도레이 카부시키가이샤 Laminated film and method for producing same
JPWO2016052171A1 (en) * 2014-10-03 2017-07-20 東レ株式会社 Laminated film and method for producing the same
KR102516507B1 (en) * 2014-10-03 2023-03-31 도레이 카부시키가이샤 Laminated film and method for producing same
CN107206778A (en) * 2015-02-27 2017-09-26 东丽株式会社 Laminated polyester film
US10589490B2 (en) 2015-02-27 2020-03-17 Toray Industries, Inc. Laminated polyester film
CN107206778B (en) * 2015-02-27 2019-05-10 东丽株式会社 Laminated polyester film
WO2016136615A1 (en) * 2015-02-27 2016-09-01 東レ株式会社 Laminated polyester film
TWI689535B (en) * 2015-04-16 2020-04-01 義大利商思立科自然股份有限公司 Method for preparing silicone-treated films of polyethylene terephthalate (pet)
CN112519373A (en) * 2016-08-25 2021-03-19 东丽薄膜先端加工股份有限公司 Mold release film
JP2019034532A (en) * 2017-01-17 2019-03-07 東レ株式会社 Laminate film and method for production thereof

Also Published As

Publication number Publication date
JP5458492B2 (en) 2014-04-02
JPWO2007094441A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP7017184B2 (en) Release film for manufacturing ceramic green sheets
WO2007094441A1 (en) Biaxially oriented polyester film for molding application
KR20150105943A (en) Mold release film and production method for same
JP7380910B2 (en) Laminated film and method for manufacturing laminated film
JP2001220453A (en) Biaxially oriented polyester film for molding processing
JP2013129075A (en) In-mold transfer polyester film
JP3647997B2 (en) Release film
JP2012025891A (en) Polyester film for double-sided self-adhesive sheet without substrate
JP4734694B2 (en) Biaxially stretched polyester film for molding process and molded laminate
JP2014226922A (en) Laminated film
JP7380916B2 (en) laminated film
JP4172233B2 (en) Biaxially oriented polyester film
JP3797185B2 (en) Peelable laminated film and process film for ceramic green sheet using the same
WO2024019039A1 (en) Laminated film and method for producing laminated film
JP2011173372A (en) In-mold transfer laminate film and in-mold transfer processing member comprising the same
JP4496601B2 (en) Biaxially stretched film for laminating rubber and laminate
JP2010090218A (en) Manufacturing method for mold-release film
WO2023234417A1 (en) Mold release film
WO2023026953A1 (en) Laminated film
WO2023189607A1 (en) Silicone-release-type polyester film and method for manufacturing same
TW202321356A (en) biaxially oriented polyester film
JP2012232494A (en) Release polyester film
JP2009167432A (en) Polyester film for transfer material
WO2010041407A1 (en) Method for producing mold-release polyester film
JP2010090219A (en) Manufacturing method for mold-release polyester film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007522854

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714338

Country of ref document: EP

Kind code of ref document: A1