WO2007049748A1 - Composite material - Google Patents

Composite material Download PDF

Info

Publication number
WO2007049748A1
WO2007049748A1 PCT/JP2006/321506 JP2006321506W WO2007049748A1 WO 2007049748 A1 WO2007049748 A1 WO 2007049748A1 JP 2006321506 W JP2006321506 W JP 2006321506W WO 2007049748 A1 WO2007049748 A1 WO 2007049748A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
carbon
composite material
fiber structure
matrix
Prior art date
Application number
PCT/JP2006/321506
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Tsukada
Jiayi Shan
Jin Chen
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Publication of WO2007049748A1 publication Critical patent/WO2007049748A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a novel composite material. More specifically, the present invention relates to a composite material having a tough special structure with flexibility and high strength in a matrix and further containing a fine carbon fiber structure containing boron.
  • composite materials include not only fiber reinforced materials but also fine particle reinforced materials.
  • functional materials that focus on electrical / electronic properties, optical properties, and chemical properties are also treated as composite materials!
  • a conductive polymer material imparted with a conductivity function by blending a highly conductive filler is widely used.
  • the conductive filler metal fiber and metal powder, carbon black, carbon fiber, etc. are generally used.
  • the corrosion resistance is poor and the mechanical strength is low.
  • the mechanical strength is low.
  • desired strength and elastic modulus can be achieved by blending a certain amount of general reinforcing carbon fiber.
  • the contact area between the matrix resin and the fibers is increased, so that it is expected to be excellent in conductivity imparting effect.
  • Carbon fibers are currently precursor organic polymers, particularly cellulose or polyacrylonitrile, under carefully maintained tensile forces to ensure good orientation of the anisotropic sheet of carbon atoms in the final filament. It is manufactured by pyrolyzing the continuous filaments under control, and becomes expensive due to the weight loss in carbonization and slow carbonization rate.
  • CNT carbon nanotubes
  • the graphite layer constituting the carbon nanostructure is a substance having a regular, six-membered ring arrangement structure, and chemically, mechanically and thermally stable properties as well as its unique electrical properties. Therefore, for example, by dispersing and dispersing such fine carbon fibers in solid materials such as various types of resin, ceramics, and metals, or liquid materials such as fuel oil and lubricant, the above-described physical properties can be obtained. If it can be utilized, its use as an additive is expected.
  • Patent Document 1 describes an aggregate in which carbon fibrils having a diameter of 3.5 to 70 nm are entangled with each other, and the longest diameter is 0.25 mm or less and the diameter is 0.10 to 0.25 mm.
  • a rosin composition containing is disclosed.
  • numerical values such as the longest diameter and diameter of the carbon fibril aggregate are characteristic values of the aggregate before blending with the coconut oil.
  • Patent Document 2 is an aggregate of carbon fibers having a diameter of 50 to 5000 nm, and the contact between the fibers is fixed by carbonaceous carbide.
  • a composite comprising a carbon fiber material mainly composed of a structure having a size of 5 ⁇ m to 500 ⁇ m in a matrix is disclosed. Also in this Patent Document 2, the numerical values such as the size of the structure are characteristic values before blending with the fat.
  • the agglomerate described in Patent Document 1 is a force obtained by dispersing carbon fibrils by applying a shearing force with a vibrating ball mill or the like. Additives that improve conductivity and other properties that improve efficiency are still unsatisfactory.
  • the contact points between the fibers are fixed in a state where the carbon fiber aggregates are compression-molded to form the contact points between the fibers after the carbon fibers are manufactured. It is formed by carbonizing residual organic matter such as pitch or organic matter added as a binder that remains on the carbon fiber surface after heat treatment.
  • the electrical characteristics of the film were not very good. Therefore, when it is blended in a matrix such as rosin, its contact point is easily dissociated, so that the shape of the structure cannot be maintained. For example, good electrical characteristics can be obtained by adding a small amount. It has been difficult to form a good conductive path in the matrix. Furthermore, when carbonization is performed by adding a binder or the like to fix the contact point, it is difficult to attach the noda etc. only to the contact point part, and it adheres to the entire fiber. In this case, the fiber diameter was large as a whole and the surface characteristics were inferior, and there was a high possibility that it would not be obtained.
  • Patent Document 3 a technique of containing boron in the carbon fiber crystals is known (for example, Patent Document 3).
  • the aim of this technology is to improve the crystallinity of the carbon fiber by incorporating boron into the crystal of the carbon fiber, and to control the electronic state by appropriately generating defects, thereby improving the conductive characteristics. It is.
  • Patent Document 1 Japanese Patent No. 2862578
  • Patent Document 2 JP 2004-119386 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-3097
  • the present invention has novel physical properties as a composite material filler, and can improve physical properties such as electrical properties, mechanical properties, thermal properties, etc., without damaging the properties of the matrix, with a small amount of addition.
  • the present invention provides a composite material including a carbon fiber structure having a unique structure.
  • the present invention for solving the above problems has a three-dimensional network shape in which a carbon fiber force having an outer diameter of 15 to: LOOnm is also formed, and the carbon fiber structure has a plurality of carbon fibers extending.
  • the carbon fiber has a granular portion for bonding the carbon fibers to each other, and the granular portion is formed in the growth process of the carbon fiber, and further contains fluorine.
  • the composite material is characterized in that the carbon fiber structure is contained in the matrix in a ratio of 0.001 to 30% by mass of the total.
  • the present invention also shows the composite material, wherein the boron content is 0.001-2. 1% by mass with respect to the carbon fiber structure.
  • the present invention also shows the composite material, wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to: LOO / zm.
  • the present invention further shows the composite material, wherein the carbon fiber structure has a bulk density of 0.0001 to 0.05 gZcm 3 .
  • the carbon fiber structure is measured by Raman spectroscopy.
  • the present invention also provides the composite material, wherein the carbon fiber structure has a combustion start temperature in air of 700 ° C or higher.
  • the present invention also shows the composite material described above, wherein a particle size of the granular portion is larger than an outer diameter of the carbon fiber at the bonded portion of the carbon fiber.
  • the present invention also shows the composite material, wherein the carbon fiber structure is produced using at least two or more carbon compounds having different decomposition temperatures as a carbon source. .
  • the present invention also shows the above composite material in which the matrix contains an organic polymer.
  • the present invention also shows the above composite material in which the matrix contains an inorganic material.
  • the present invention also shows the above composite material in which the matrix includes a metal.
  • the present invention also includes that the matrix further includes at least one filler selected from the group of metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, glass fiber and carbon fiber strength.
  • the matrix further includes at least one filler selected from the group of metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, glass fiber and carbon fiber strength.
  • the composite material as described above is shown. The invention's effect
  • the carbon fiber structure is made up of fine carbon fibers arranged in a three-dimensional network as described above by the granular parts formed in the carbon fiber growth process.
  • the carbon fiber structure has a sparse structure when blended in a matrix such as greaves because it has a shape in which a plurality of the carbon fibers extend from the granular part. Even when added in a small amount, the fine carbon fibers can be evenly spread in the matrix.
  • each of the carbon fibers and the granular portion can be made of a highly crystalline carbon fiber. And change the electronic state.
  • a carbon fiber structure having a fine and high crystallinity in the entire matrix can be obtained by arranging a relatively small amount of the above-described carbon fiber structure. Since the body is uniformly distributed, for example, in terms of electrical characteristics, a good conductive path can be formed in the entire matrix, and the electrical conductivity can be improved. In addition, the filler can be evenly distributed throughout the matrix, and the characteristics can be improved. Therefore, according to the present invention, a composite material useful as a functional material excellent in electrical conductivity, radio wave shielding property, thermal conductivity, etc., a structural material having high strength, etc. can be obtained.
  • FIG. 1 is an SEM photograph of an intermediate of a carbon fiber structure used for a composite material of the present invention.
  • FIG. 2 is a TEM photograph of an intermediate of a carbon fiber structure used in the composite material of the present invention.
  • FIG. 3B is a TEM photograph of an intermediate of the carbon fiber structure used in the composite material of the present invention.
  • FIG. 4 is an SEM photograph of a carbon fiber structure used in the composite material of the present invention.
  • FIG. 5 is an SEM photograph of a carbon fiber structure used in the composite material of the present invention.
  • FIG. 6 is a drawing showing a schematic configuration of a production furnace used for producing a carbon fiber structure in an example of the present invention.
  • the composite material of the present invention is characterized in that a three-dimensional network-like carbon fiber structure having a predetermined structure as described later is contained in a matrix in a ratio of 0.001 to 30% by mass. is there.
  • the carbon fiber structure used in the present invention has, for example, a three-dimensional network shape in which a carbon fiber force having an outer diameter of 15 to LOONm is also formed, as seen in the TEM photographs shown in FIGS. 3A and 3B. It is a carbon fiber structure, Comprising: The said carbon fiber structure has the granule part which couple
  • the carbon fiber structure used in the present invention is a carbon fiber structure characterized by further containing boron in the carbon fiber structure shown in FIGS. 3A and 3B.
  • the carbon fiber constituting the carbon fiber structure has an outer diameter in the range of 15 to LOONm.
  • the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later.
  • the smaller the diameter of the carbon fiber the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction and the higher the electrical conductivity, so that the outer diameter exceeding lOOnm can be obtained. It is because it is not suitable as a carbon fiber structure arranged as a modifier or additive in a matrix such as rosin.
  • the outer diameter of the carbon fiber is particularly desirable because it is in the range of 20 to 70 nm.
  • cylindrical graph sheets laminated in the direction perpendicular to the axis are given the ability to return to their original shape even after deformation, ie they are difficult to bend. Therefore, even after the carbon fiber structure is compressed, it is easy to adopt a sparse structure after being arranged in a matrix such as rosin.
  • the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that a kind of anchor effect is produced in the carbon fiber in a matrix such as greaves. As a result, the dispersion stability increases.
  • fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network, and these carbon fibers are grown on the carbon fibers.
  • the granular portions formed in this manner are bonded to each other, and a plurality of the carbon fibers extend from the granular portions.
  • the fine carbon fibers are simply entangled with each other, and they are bonded to each other in a granular part that is not solid, so that they are firmly bonded to each other.
  • the structure can be dispersed and blended in the matrix as a bulky structure without being dispersed as a single carbon fiber.
  • the carbon fibers are bonded to each other by the granular portion formed in the growth process of the carbon fiber.
  • the electrical resistance value measured at a constant compression density indicates that the mere entanglement of fine carbon fibers, or the junction between the fine carbon fibers after the synthesis of the carbon fibers.
  • the value of the structure or the like formed by the substance or its carbide it shows a very low value, and when dispersed and blended in the matrix, a good conductive path can be formed.
  • the carbon-carbon bond in the granular part is sufficiently developed, and it is not clear exactly. Appears to contain a mixed state of sp 2 and sp 3 bonds.
  • the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter After the high temperature heat treatment, as shown in FIGS. 3A and 3B, at least a part of the graphene layer constituting the granular part is continuous with the graphene layer constituting the fine carbon fiber extending from the granular part. To be.
  • the graphene layer constituting the granular portion as described above is continuous with the graphene layer constituting the fine carbon fiber. Symbolized by the carbon crystal structure bond (at least a part of the bond is formed, thereby forming a strong bond between the granular portion and the fine carbon fiber. It is what.
  • the term “extends carbon fiber force from the granular part” means that the granular part and the carbon fiber are merely apparently formed by other binder (including carbonaceous material). It is not meant to indicate a connected state, but mainly means a state of being connected by a carbon crystal structural bond as described above!
  • the granular part is formed in the growth process of the carbon fiber.
  • at least one catalyst particle or the catalyst particle is subjected to a subsequent heat treatment inside the granular part.
  • These pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small part is incidental) Some of them are connected to the hollow part;).
  • the number of catalyst particles or pores is not particularly limited, but there are about 1 to about LOOO, more preferably about 3 to 500 per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
  • each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and still more preferably 3 to 15 nm. .
  • the particle diameter of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in FIG.
  • the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and further preferably 2.0 to 25 times.
  • the said value is an average value.
  • the particle size of the granular part which is the bonding point between the carbon fibers, is sufficiently large, 1.3 times the outer diameter of the fine carbon fiber.
  • the fibrous properties of the carbon fiber structure may be impaired. For example, into the various matrices. This is not desirable because it may not be suitable as an additive or compounding agent.
  • the “particle size of the granular part” in the present specification is a value measured by regarding the granular part which is a bonding point between carbon fibers as one particle.
  • the specific particle size of the granular portion is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fibers in the carbon fiber structure.
  • the average value is 20 to 5000 nm. It is preferably 25 to 2000 nm, more preferably about 30 to 500 nm.
  • the granular portion is formed in the carbon fiber growth process as described above, it has a relatively spherical shape, and its circularity is 0.2 on average.
  • the granular portion is formed in the carbon fiber growth process, and for example, the carbonaceous material is formed after the carbon fiber is synthesized at the junction between the fine carbon fibers.
  • the bonding between the carbon fibers in the granular portion is very strong compared to a structure or the like attached by the carbide, and the carbon fiber breaks in the carbon fiber structure. Even below, this granular part (joint part) is kept stable.
  • the carbon fiber structure is dispersed in a liquid medium, and an ultrasonic wave with a predetermined output and a predetermined frequency is applied to the carbon fiber structure, so that the average length of the carbon fibers is almost halved. Even under such a load condition, the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, and the granular part, that is, the bonded part of the fibers is stably held. It is what.
  • each carbon fiber can be made into a carbon fiber with high crystallinity.
  • the phrase “boron is contained in the carbon fiber structure” refers only to a state in which a part of carbon atoms in the carbon fiber and the granular part constituting the carbon fiber structure are substituted with boron. Not including the state in which boron is attached to the surface.
  • the present invention is not particularly limited.
  • the carbon fiber structure is only heat treated at a low temperature (eg, 1500 ° C or less).
  • the crystal is still developed, and the carbon fiber in the state is further heat-treated, and the carbon fiber in the (azugroun) state and boron (including boron compound) are mixed, and then graphitized at a high temperature.
  • boron can be contained in the carbon fiber structure. It is not impossible to incorporate boron into carbon fibers that have been annealed at temperatures of 1600 ° C or higher, or even 1800 ° C or higher.
  • Boron also acts as a catalyst for promoting crystallization of carbon fibers, and is effective in removing the catalytic metal during annealing. Therefore, it is preferable to contain boron before the annealing treatment. .
  • the present invention is not particularly limited as boron contained in the carbon fiber structure.
  • “boron” in the present invention is a concept including not only elemental boron but also boron compounds.
  • boron when boron is included in the carbon fiber structure, boron that is not evaporated by decomposition or the like before reaching at least 1600 ° C due to the annealing treatment at a high temperature (for example, 1600 ° C or more). It is necessary to use Examples of boron that satisfies this condition include elemental boron, B 2 O 3, H BO, B C,
  • the boron content is preferably 0.001-2.1% by mass with respect to the carbon fiber structure, and is particularly preferably 0.01-: L 8% by mass.
  • the boron content is less than 0.001% by mass, it is difficult to improve the effect of boron content, that is, the crystallinity of the carbon fiber.
  • the content exceeds 2.1% by mass, it will exceed the solid solution limit, and even if added, the effect will be small and the processing cost will be high.
  • the surface of the fiber is covered with a boron compound, which adversely affects conductivity.
  • the carbon fiber structure used in the present invention desirably has an area-based circle-equivalent mean diameter of about 50-100 ⁇ m, more preferably about 60-90 ⁇ m.
  • the product-based circle-equivalent mean diameter is obtained by taking an outline of a carbon fiber structure using an electron microscope, etc., and in this photographed image, the outline of each carbon fiber structure is converted into an appropriate image analysis software such as WinRoof. (Trade name, manufactured by Mitani Shoji Co., Ltd.) is used to obtain the area within the contour, calculate the equivalent circle diameter of each fiber structure, and average it.
  • the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and the granular portion force is described above.
  • the average distance is, for example, 0.5 m to 300 m, more preferably 0.5 ⁇ 100 ⁇ m, and further preferably about 1 to 50 / ⁇ ⁇ .
  • the distance between the adjacent granular parts is a distance measured from the central part of one granular body to the central part of the granular part adjacent thereto.
  • the carbon fiber will not be sufficiently developed into a three-dimensional network. For example, when dispersed in a matrix, a good conductive path will be obtained. On the other hand, if the average distance exceeds 300 m, it becomes a factor to increase the viscosity when dispersed and mixed in the matrix, and the carbon fiber structure with respect to the matrix This is because the dispersibility may decrease.
  • the carbon fibers existing in a three-dimensional network are bonded to each other in the granular part, and the carbon part is described above.
  • the carbon fiber has a shape in which a plurality of carbon fibers extend, and thus the structure has a bulky structure in which carbon fibers are sparsely present.
  • the bulk density is 0.001. It is desirable to be ⁇ 0.05 g / cm 3 , more preferably 0.001-0.02 g / cm 3 . This is because if the bulk density exceeds 0.05 gZcm 3 , it becomes difficult to improve the physical properties of the matrix such as rosin by adding a small amount.
  • the carbon fiber structure used in the present invention is such that the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion formed during the growth process! Therefore, as described above, the force that the electrical characteristics of the structure itself is very excellent, for example, the powder resistance value force measured at a constant compression density of 0.8 gZcm 3 is 0.02 ⁇ • cm or less. Desirably, it is preferably 0.001-0.010 ⁇ 'cm. This is because when the powder resistance value exceeds 0.02 ⁇ 'cm, it becomes difficult to form a good conductive path when blended in a matrix such as resin.
  • the carbon fiber structure used in the present invention has high strength and conductivity, and it is desirable that the graph end sheet constituting the carbon fiber contains boron.
  • the ID ⁇ ratio measured by Raman spectroscopy is
  • the carbon fiber structure used in the present invention has a combustion start temperature in air of 700 ° C or higher, more preferably 750 to 900 ° C.
  • the graph ensheet of the carbon fiber structure contains boron and the carbon fiber has an intended outer diameter, it has such a high thermal stability. .
  • the carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows.
  • an organic compound such as hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), to which boron or a boron compound is added. Further heat treatment is performed in the mixed state.
  • Boron or a boron compound may be mixed in advance with an organic compound such as hydrocarbon (that is, boron is added before obtaining an intermediate), and further boron is mixed after high-temperature heat treatment. This is also possible.
  • the raw material organic compound hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used.
  • at least two or more carbon compounds having different decomposition temperatures as the carbon source.
  • “at least two or more carbon compounds” does not necessarily mean that two or more kinds of raw material organic compounds are used, but a case where one kind of raw material organic compound is used. Even in the process of synthesizing the fiber structure, for example, a reaction such as hydrodealkylation of toluene-xylene occurs, and the subsequent pyrolysis reaction system! It also includes a mode in which two or more carbon compounds having different!
  • the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Therefore, by adjusting the composition ratio of two or more carbon compounds in the raw material gas, a relatively large number of combinations are used as the carbon compounds. be able to.
  • alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, Alkenes such as propylene, butylenes, pentenes, heptenes, cyclopentene, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; , Aromatic or heteroaromatic hydrocarbons such as styrene, xylene, naphthalene, methenolenaphthalene, indene, and phenanthrene, especially those having about 6 to 18 carbon atoms.
  • Alcohols such as aromatic or heteroaromatic hydrocarbons, methanol, ethanol, etc., especially alcohols with about 1 to 7 carbon atoms; in addition, two or more types of carbon with selected medium strengths such as carbon monoxide, ketones and ethers Adjust the gas partial pressure so that the compound can exhibit different decomposition temperatures within the desired thermal decomposition reaction temperature range and use them in combination, and Z or the residence time in the specified temperature range
  • the carbon fiber structure according to the present invention can be efficiently produced by optimizing the mixing ratio.
  • the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, More preferably, 3 to: LOO is desirable.
  • This value is the gas composition ratio at the inlet of the reactor.
  • toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : In consideration of what occurs in 1, it is sufficient to supply the shortage of methane separately.
  • the molar ratio of methane to benzene is 3, add 2 moles of methane to 1 mole of toluene.
  • methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
  • composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which both the carbon fiber portion and the granular portion are sufficiently developed.
  • an inert gas such as argon, helium, xenon, or hydrogen can be used as the atmospheric gas.
  • transition metals such as iron, cobalt and molybdenum, transition metal compounds such as iron cene and acetate metal salts, and sulfur compounds such as sulfur, thiophene and iron sulfide is used.
  • the synthesis of the intermediate is carried out by using a CVD method such as hydrocarbon, which is usually performed, and evaporating the mixed liquid of hydrocarbon and catalyst as raw materials and introducing hydrogen gas or the like into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C.
  • a plurality of carbon fiber structures having a sparse three-dimensional structure in which the fibers having an outer diameter of 15 to: LOOnm are joined together by granular materials grown using the catalyst particles as nuclei. cm force size of several tens of centimeters Synthesize the aggregate.
  • the thermal decomposition reaction of the hydrocarbon as a raw material is mainly produced on the surface of granular particles that are grown using the catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is caused by the catalyst particles or granular materials. By proceeding in a certain direction, it grows in a fibrous form.
  • the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source.
  • the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in one-dimensional direction.
  • the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, The temperature distribution is also affected, and the balance between the pyrolysis reaction and the growth rate is affected not only by the type of carbon source as described above but also by the reaction temperature and gas temperature.
  • the carbon material grows in a fibrous form, whereas when the pyrolysis rate is faster than the growth rate, the carbon material becomes a catalyst particle. Grows in the circumferential direction.
  • the growth direction of the carbon material as described above is made to be a multi-direction under control without making the growth direction constant.
  • Such a three-dimensional structure can be formed.
  • the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas It is desirable to optimize the temperature and the like.
  • a reactor other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio is used.
  • One approach is to generate turbulent flow in the vicinity of the supply port of the source gas supplied to the tank.
  • the turbulent flow here is a turbulent flow that is a vortex and a flow that rushes.
  • metal catalyst fine particles are formed by decomposition of the transition metal compound as a catalyst in the raw material mixed gas immediately after the raw material gas is introduced into the reaction furnace from the supply port. This is brought about through the following steps. That is, first, the transition The metal compound is decomposed into metal atoms, and then cluster formation occurs by collision of a plurality of metal atoms, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3 ⁇ ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
  • each metal catalyst fine particle of the aggregate is radially formed as a nucleus.
  • the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular portion is formed around the aggregate to efficiently form a carbon fiber structure having an intended three-dimensional structure.
  • the aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction.
  • This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
  • the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with patch-like sheet pieces that also contain carbon nuclear power. It has a combined (incomplete, burnt-in) structure, and when subjected to Raman spectroscopic analysis, there are many defects with very large and small G 'bands. Further, the produced intermediate contains unreacted raw material, non-fibrous carbide, tar content and catalytic metal.
  • high-temperature heat treatment at 1600 to 3000 ° C is performed by an appropriate method.
  • this intermediate is heated at 800 to 1200 ° C to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 1600 to 3000 ° C.
  • the desired structure is prepared, and at the same time, the catalyst metal contained in the fiber is removed by evaporation.
  • a reducing gas or a trace amount of carbon monoxide or carbon dioxide may be added to the inert gas atmosphere.
  • the intermediate is annealed at a temperature in the range of 1600 to 3000 ° C, the patch-like sheet pieces made of carbon atoms are bonded together to form a plurality of graph-ensheet-like layers.
  • boron can be contained (doped) in the carbon fiber structure by mixing the intermediate and boron.
  • fluorine (or boron compound) particles having the smallest possible particle size. If the particles are large, a high-concentration region is partially generated, which may cause solidification.
  • the average particle size of boron is 100 m or less, preferably 50 ⁇ m or less, more preferably 20 m or less.
  • boric acid or the like When boric acid or the like is used as the boron source, a method of adding a solution and evaporating the solvent in advance or a method of evaporating the solvent during the heating process can be used. If the solution is mixed uniformly, the boron compound will be It can be uniformly attached to the surface.
  • a step of crushing the circle-equivalent mean diameter of the carbon fiber structure to several cm, and a circle-equivalent mean diameter of the crushed carbon fiber structure Through a step of pulverizing to 50 to L00 m to obtain a carbon fiber structure having a desired equivalent circular average diameter.
  • annealing is further performed in a state where the bulk density is low (a state in which fibers are stretched as much as possible and a porosity is large). Effective for imparting conductivity to fat.
  • the fine carbon fiber structure used in the present invention comprises:
  • an organic polymer an inorganic material, a metal, or the like can be preferably used, and an organic polymer is most preferable. .
  • organic polymer examples include polypropylene, polyethylene, polystyrene, polyvinyl chloride, polyacetal, polyethylene terephthalate, polycarbonate, polyvinyl acetate, polyamide, polyamide imide, polyether imide, polyether ether ketone, polybutyl alcohol, polyphenol.
  • Renether poly (meth) acrylate and liquid crystal poly
  • thermoplastic resins such as mer, epoxy resins, bulle ester resins, phenol resins, unsaturated polyester resins, furan resins, imide resins, urethane resins, melamine resins, silicone resins and
  • thermosetting resins such as urea resin, natural rubber, styrene 'butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), ethylene' propylene rubber (E PDM), -tolyl rubber (NBR),
  • Various elastomers such as chloroprene rubber (CR), butyl rubber (IIR), urethane rubber, silicone rubber, fluorine rubber, acrylic rubber (ACM), epichlorohydrin rubber, ethylene acrylic rubber, norbornene rubber and thermoplastic elastomer are available. Can be mentioned.
  • the organic polymer may be in the form of various compositions such as adhesives, fibers, paints, and inks.
  • matrix strength For example, epoxy adhesive, acrylic adhesive, urethane adhesive, phenol adhesive, polyester adhesive, vinyl chloride adhesive, urea adhesive, melamine Adhesives, olefinic adhesives, butyl acetate adhesives, hot melt adhesives, cyanoacrylate adhesives, rubber adhesives and cellulose adhesives, acrylic fibers, acetate fibers, aramid fibers, Fibers such as nylon fiber, novoloid fiber, cellulose fiber, viscose rayon fiber, vinylidene fiber, vinylon fiber, fluorine fiber, polyacetal fiber, polyurethane fiber, polyester fiber, polyethylene fiber, polyvinyl chloride fiber and polypropylene fiber Furthermore, phenolic resin, epoxy resin alkyd resin Fat-based coating, acrylic ⁇ based paints, unsaturated Poriesu ether-based paints, polyurethane based paints, silicone paints, fluorine ⁇ based paint, a paint such as a synthetic resin Emarujiyon based paints.
  • the inorganic material for example, a ceramic material or an inorganic oxide polymer force can be used.
  • Preferred examples include carbon materials such as carbon carbon composites, glass, glass fiber, sheet glass and other molded glass, silicate ceramics and other refractory ceramics such as acid aluminum, carbon carbide, Examples include magnesium oxide, silicon nitride, boron nitride, and zirconium oxide.
  • suitable metals include aluminum, magnesium, lead, copper, tungsten, titanium, niobium, hafnium, vanadium, and combinations thereof. Gold and mixtures are mentioned.
  • the composite material of the present invention may contain other fillers in addition to the carbon fiber structure described above.
  • fillers include metal fine particles, silica, calcium carbonate. , Magnesium carbonate, carbon black, glass fiber, carbon fiber, and the like. These can be used alone or in combination of two or more.
  • the composite material of the present invention includes an effective amount of the above-described carbon fiber structure in the matrix as described above.
  • the amount is about 0.001% to 30% depending on the application of the composite material and the matrix. If it is less than 001%, the reinforcing effect of strength as a structural material is small, and the electrical conductivity is not sufficient. On the other hand, if it exceeds 30%, the strength decreases, and the adhesion of paints, adhesives, etc. also deteriorates.
  • the composite material of the present invention even if the amount of the carbon fiber structure as the filler is relatively low, fine carbon fibers can be arranged in the matrix with a uniform spread, As described above, it is a composite material useful as a functional material having excellent electrical conductivity, radio wave shielding properties, thermal conductivity, etc., high strength, and structural material.
  • the fine fibers of the carbon fiber structure have excellent strength, flexibility, and excellent filler characteristics that constitute a network structure. By utilizing this characteristic, it can contribute to the enhancement of the electrodes of the energy devices such as lithium-ion secondary battery, lead-acid battery, capacitor, fuel cell and the improvement of cycle characteristics.
  • each physical property value of the carbon fiber structure used in the present invention was measured as follows.
  • TG-DTA manufactured by Mac Science
  • the temperature was increased at a rate of 10 ° CZ while circulating air at a flow rate of 0.1 LZ, and the combustion behavior was measured.
  • TG shows a decrease in weight
  • DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
  • CNT powder lg is weighed, filled and compressed into a resin die (inner dimensions L 40mm, W 10mm, H 80mm), and the displacement and load are read.
  • the voltage at that time was measured, and when the density was measured to 0.9 gZcm 3 , the pressure was released and the density after restoration was measured.
  • the resistance when compressed to 0.5, 0.8 and 0.9 g / cm 3 shall be measured.
  • the particle part which is the bonding point between carbon fibers, is regarded as one particle, and its outline is image analysis software WinRoof (trade name, Mitani Corp.
  • the area within the contour was obtained, and the equivalent circle diameter of each granular part was calculated and averaged to obtain the average particle diameter of the granular part.
  • the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the actual contour length (L) of each granular portion. The degree was obtained and averaged.
  • the outer diameter of the fine carbon fiber in each of the targeted carbon fiber structures is obtained, and from this and the equivalent circle diameter of the granular portion of each of the carbon fiber structures, the granular portion in each carbon fiber structure was determined as a ratio to the fine carbon fiber and averaged.
  • a carbon fiber structure was added to 100 ml of toluene placed in a vial with a lid at a rate of 30 gZml to prepare a dispersion sample of the carbon fiber structure.
  • an ultrasonic cleaner with a transmission frequency of 38 kHz and an output of 150 w (trade name: USK-3, manufactured by SENUDY Co., Ltd.) Ultrasonic waves were irradiated, and changes in the carbon fiber structure in the dispersion sample were observed over time.
  • an ultrasonic wave is irradiated, and after a lapse of 30 minutes, a predetermined amount of 2 ml of the dispersion liquid sample is withdrawn from the bottle, and a photograph of the carbon fiber structure in the dispersion liquid is taken with an SEM.
  • 200 fine carbon fibers (fine carbon fibers with at least one end bonded to the granular part) in the carbon fiber structure of the obtained SEM photograph were randomly selected, and each selected fine carbon fiber was selected. The length was measured to determine the D average value, which was used as the initial average fiber length.
  • the 50 50 average diameter was determined in the same manner as described above.
  • the calculated D average length of fine carbon fibers is about half of the initial average fiber length.
  • the D average diameter of the granular portion at the time was compared with the initial average diameter, and the fluctuation ratio (%) was examined.
  • a carbon fiber structure was synthesized using toluene as a raw material by the CVD method.
  • the catalyst was a mixture of Huekousen and Thiophene, and the reaction was carried out in a hydrogen gas reducing atmosphere. Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain a carbon fiber structure (first intermediate).
  • Fig. 6 shows a schematic configuration of a generating furnace used when manufacturing this carbon fiber structure (first intermediate).
  • the production furnace 1 has a power having an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst and hydrogen gas as described above into the production furnace 1 at its upper end.
  • a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision part 3 can interfere with the flow of the raw material gas introduced into the reactor through the raw material gas supply port 4 located at the lower end of the introduction nozzle 2.
  • the feed gas introduction rate into the reactor was 1850 NLZmin and the pressure was 1.03 atm.
  • the boron-added second intermediate was heat-treated at 2300 ° C in argon at a high temperature, and the resulting carbon fiber structure aggregate was pulverized by an airflow pulverizer. The carbon fiber structure used was obtained.
  • Fig. 4 shows an SEM photograph of the obtained carbon fiber structure dispersed in toluene with ultrasonic waves and observed after preparation of a sample for an electron microscope.
  • Fig. 5 shows the SEM photograph of the obtained carbon fiber structure as it is placed on the electron microscope sample holder, and Table 1 shows the particle size distribution.
  • the obtained carbon fiber structure had an equivalent circle average diameter of 75.8 m and a bulk density of 0.003.
  • the powder resistance value was 0.0032 ⁇ 'cm, and the density after restoration was 0.33 g / cm 3 .
  • the average particle size of the granular portion in the carbon fiber structure was 452 nm (SD208 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure.
  • the circularity of the granular part was 0.68 (SD 0.14) on average.
  • the average diameter (D) of the granular part 500 minutes after application of ultrasonic waves was compared with the initial initial average diameter (D) 30 minutes after application of ultrasonic waves.
  • Table 2 summarizes various physical property values of the carbon fiber structure synthesized in Example 1.
  • a composite material of the present invention containing the carbon fiber structure of Example 1 synthesized in i) above in the matrix was produced.
  • the carbon fiber structure synthesized in the above i) having the composition shown in Table 3 below was prepared by using an epoxy resin (Adeka Resin, manufactured by Asahi Denka Kogyo Co., Ltd.), a curing agent (Ade force hardener, Asahi Denki). And then kneaded for 10 minutes with a rotating and revolving centrifugal stirrer (Awatori Netaro AR-250, manufactured by Sinky) to produce an epoxy adhesive composition.
  • an epoxy resin Alka Resin, manufactured by Asahi Denka Kogyo Co., Ltd.
  • a curing agent Ade force hardener, Asahi Denki
  • the epoxy adhesive composition obtained here was applied onto a glass plate with an applicator having a coating width of 100 mm and a gap of 200 m, and kept at 170 ° C for 30 minutes to form a cured coating film. Produced. The prepared coating film was cut into a 50 mm square to obtain a test piece. Volume resistivity and thermal conductivity were measured using this test piece. The results are shown in Table 3.
  • an epoxy resin film was formed in the same manner so that the content of the carbon fiber structure was 0.5 mass%.
  • the specific method is the same as that for producing the composite material in Example 1 except that carbon black is used instead of the carbon fiber structure.
  • P-4100E Asahi Denka Kogyo Co., Ltd., Adeka Resin EP-4100E; Bisphenol A type epoxy resin, epoxy equivalent 190
  • volume resistivity and thermal conductivity can be improved by incorporating boron into the carbon fiber structure constituting the composite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Fibers (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

A composite material containing carbon fiber structures of a novel structure which have properties desirable for fillers for composite materials and, when added in a small amount, can improve physical properties including electrical properties, mechanical properties, and thermal properties without impairing the properties of the matrix. The carbon fiber structures each has a three-dimensional network form constituted of carbon fibers with an outer diameter of 15-100 nm and has a granular part which bonds the carbon fibers to one another and from which the carbon fibers project, the granular part having been formed in the course of growth of the carbon fibers. The carbon fiber structures contain boron. The composite material is obtained by incorporating the carbon fiber structures into a matrix in an amount of 0.001-30 mass% based on the whole composition.

Description

明 細 書  Specification
複合材料  Composite material
技術分野  Technical field
[0001] 本発明は、新規な複合材料に関するものである。詳しく述べると、本発明は、マトリ ックス中に柔軟で強度が高ぐ強靭な特殊構造を有し、さらにホウ素を含有する微細 炭素繊維構造体を配合してなる複合材料に関する。  [0001] The present invention relates to a novel composite material. More specifically, the present invention relates to a composite material having a tough special structure with flexibility and high strength in a matrix and further containing a fine carbon fiber structure containing boron.
背景技術  Background art
[0002] 単独の素材では得られな 、特性を得るために素材の複合が行われて 、る。従来、 複合材料としては、ガラス繊維強化プラスチックが広く用いられていたが、炭素繊維 が開発され、炭素繊維補強した繊維補強プラスチック (CFRP)が開発されてから、特 に複合材料が一般的となった。  [0002] Materials cannot be obtained with a single material but are combined to obtain characteristics. Conventionally, glass fiber reinforced plastic has been widely used as a composite material, but since carbon fiber was developed and carbon fiber reinforced fiber reinforced plastic (CFRP) was developed, composite materials became particularly popular. It was.
[0003] これらの材料はスポーツ用品などに広く用いられると共に、航空機用の軽量かつ高 強度 '高弾性率の構造材料として注目されるようになった。その後、複合材料には、 繊維補強材料のみならず、微粒子補強の材料も含まれるようになった。さらに、強度 や耐熱性などが重要視される構造材料に加えて、電気 ·電子特性、光学特性、化学 特性に着目する機能材料も複合材料として扱われて!/ヽる。  [0003] These materials have been widely used in sporting goods and the like, and have come to be noticed as lightweight and high strength 'high elastic modulus structural materials for aircraft. Later, composite materials included not only fiber reinforced materials but also fine particle reinforced materials. In addition to structural materials where strength and heat resistance are important, functional materials that focus on electrical / electronic properties, optical properties, and chemical properties are also treated as composite materials!
[0004] 一方、電子機器の普及に伴い、電子部品から発生するノイズが周辺機器に影響を 与える電波障害や、静電気による誤動作等のトラブルが増大し、大きな問題となって いる。これらの問題の解決のために、この分野では導電性や制動性に優れた材料が 要求されている。  [0004] On the other hand, with the widespread use of electronic devices, troubles such as radio wave interference in which peripheral devices are affected by noise generated from electronic components and malfunctions due to static electricity have become serious problems. In order to solve these problems, a material having excellent conductivity and braking performance is required in this field.
従来より、導電性の乏しい高分子材料においては、導電性の高いフイラ一等を配合 することにより、導電性機能を付与させた導電性高分子材料が広く利用されている。 導電性フイラ一としては、金属繊維及び金属粉末、カーボンブラック、炭素繊維など が一般に用いられているが、金属繊維及び金属粉末を導電性フィラーとして用いた 場合、耐食性に劣り、また機械的強度が得にくいという欠点がある。一方、炭素繊維 を導電性フイラ一として使用する場合、一般の補強用炭素繊維では、所望の強度、 弾性率はある程度の量を配合することにより達成することができるが、導電性に関し ては十分なものとはならず、所望の導電性を得ようとすると高充填を必要とするため、 元の榭脂本来の物性を低下させてしまう。なお、炭素繊維では、繊維径が細かい方 が同量の繊維を加えた場合にマトリックス榭脂と繊維との間の接触面積が大きくなる ため導電性付与効果に優れることが期待される。 Conventionally, in a polymer material with poor conductivity, a conductive polymer material imparted with a conductivity function by blending a highly conductive filler is widely used. As the conductive filler, metal fiber and metal powder, carbon black, carbon fiber, etc. are generally used. However, when the metal fiber and metal powder are used as a conductive filler, the corrosion resistance is poor and the mechanical strength is low. There is a disadvantage that it is difficult to obtain. On the other hand, when carbon fiber is used as a conductive filler, desired strength and elastic modulus can be achieved by blending a certain amount of general reinforcing carbon fiber. However, it does not become sufficient, and high filling is required to obtain the desired conductivity, so that the original physical properties of the original resin are reduced. In addition, in the case of carbon fibers, when the same amount of fibers is added to the finer fiber diameter, the contact area between the matrix resin and the fibers is increased, so that it is expected to be excellent in conductivity imparting effect.
[0005] 炭素繊維は、現在、最終フィラメントにおいて炭素原子の異方性シートの良好な配 向が確保されるように、注意深く維持した引張り力の下で前駆物質たる有機ポリマー 、特にセルロース又はポリアクリロニトリルの連続フィラメントを制御下に熱分解するこ とによって製造されており、炭化における重量損失や炭化速度が遅いなどのため高 価になる。  [0005] Carbon fibers are currently precursor organic polymers, particularly cellulose or polyacrylonitrile, under carefully maintained tensile forces to ensure good orientation of the anisotropic sheet of carbon atoms in the final filament. It is manufactured by pyrolyzing the continuous filaments under control, and becomes expensive due to the weight loss in carbonization and slow carbonization rate.
[0006] さらに、近年、炭素繊維に関する別のものとして、カーボンナノチューブ(以下、「C NT」とも記する。 )に代表されるカーボンナノ構造体などの微細炭素繊維が注目され ている。  [0006] Further, in recent years, attention has been focused on fine carbon fibers such as carbon nanostructures represented by carbon nanotubes (hereinafter also referred to as “CNT”) as another carbon fiber.
カーボンナノ構造体を構成するグラフアイト層は、通常では規則正しい六員環配列 構造を有し、その特異な電気的性質とともに、化学的、機械的および熱的に安定した 性質を持つ物質である。従って、例えば、各種榭脂、セラミックス、金属等の固体材 料、あるいは燃料油、潤滑剤等の液体材料中に、このような微細炭素繊維を分散配 合することにより、前記したような物性を生かすことができれば、その添加剤としての 用途が期待されることとなる。  The graphite layer constituting the carbon nanostructure is a substance having a regular, six-membered ring arrangement structure, and chemically, mechanically and thermally stable properties as well as its unique electrical properties. Therefore, for example, by dispersing and dispersing such fine carbon fibers in solid materials such as various types of resin, ceramics, and metals, or liquid materials such as fuel oil and lubricant, the above-described physical properties can be obtained. If it can be utilized, its use as an additive is expected.
[0007] し力しながら、一方で、このような微細炭素繊維は、生成時点で既に塊になってしま い、これをそのまま使用すると、マトリックス中において分散が進まず性能不良をきた すおそれがある。従って、榭脂等のマトリックスに導電性等の所定の特性を発揮させ ようとする場合には、かなりの添加量を必要とするものであった。  [0007] However, on the other hand, such fine carbon fibers are already agglomerated at the time of production, and if they are used as they are, there is a possibility that dispersion will not progress in the matrix and performance may be deteriorated. is there. Therefore, when trying to exhibit predetermined characteristics such as conductivity in a matrix such as resin, a considerable amount of addition is required.
[0008] 特許文献 1には、 3. 5〜70nmの直径の炭素フィブリルが互いに絡み合った凝集 体で、その最長径が 0. 25mm以下で、径が 0. 10-0. 25mmの凝集体を含有する 榭脂組成物が開示されている。なお、特許文献 1における実施例等の記載から明ら かなように、この炭素フィブリル凝集体の最長径、直径等の数値は、榭脂へ配合する 前の凝集体の特性値である。また、特許文献 2には 50〜5000nmの直径の炭素繊 維の凝集体であって、その繊維同士の接点が炭素質物の炭化物によって固着され た大きさが 5 μ m〜500 μ mの構造体を主体とする炭素繊維材料をマトリックス中に 配合してなる複合体が開示されている。この特許文献 2においても、構造体の大きさ 等の数値は、榭脂へ配合する前の特性値である。 [0008] Patent Document 1 describes an aggregate in which carbon fibrils having a diameter of 3.5 to 70 nm are entangled with each other, and the longest diameter is 0.25 mm or less and the diameter is 0.10 to 0.25 mm. A rosin composition containing is disclosed. As is clear from the description of Examples and the like in Patent Document 1, numerical values such as the longest diameter and diameter of the carbon fibril aggregate are characteristic values of the aggregate before blending with the coconut oil. Further, Patent Document 2 is an aggregate of carbon fibers having a diameter of 50 to 5000 nm, and the contact between the fibers is fixed by carbonaceous carbide. A composite comprising a carbon fiber material mainly composed of a structure having a size of 5 μm to 500 μm in a matrix is disclosed. Also in this Patent Document 2, the numerical values such as the size of the structure are characteristic values before blending with the fat.
[0009] このような炭素繊維凝集体を用いることにより、榭脂マトリックスへの分散性の向上 は、より大きな塊で混合した場合よりもある程度期待される。し力しながら、特許文献 1 に記載される凝集体は、例えば、炭素フィブリルを振動ボールミル等でせん断力をか けて分散処理することによって得られるものである力 嵩密度は高いため、少量の添 加にて効率良ぐ導電性等の特性を改善する添加剤としては、未だ満足のいくもので はなかった。また、特許文献 2において示される炭素繊維構造体においては、繊維 同士の接触点の固着が、炭素繊維の製造後に、この炭素繊維集合体を圧縮成形し て繊維同士の接触点と形成した状態において熱処理し、炭素繊維表面に残留する ピッチ等の残留有機物あるいはバインダーとして添加された有機物を炭化することに よって形成されるものであることから、接触点の固着力が弱ぐまた、その構造体自体 の電気的特'性はあまり良好なものとはいえないものであった。従って、榭脂等のマトリ ックス中に配合された場合に、容易にその接触点が解離してしまうためその構造体形 状を保持できないものとなり、例えば、少量添加にて、良好な電気的特性を発揮する 上での、良好な導電パスをマトリックス中に形成することが困難であった。さらに、接 触点の固着のためにバインダー等を添加して炭化すると、その接触点の部位のみに ノインダ一等を付着させることが困難であり、繊維全体にも付着するため、得られる 構造体にお ヽては、繊維径が全体として太くかつ表面特性に劣るようなものしカゝ得ら れな 、こととなる虞れが高 、ものであった。 [0009] By using such a carbon fiber aggregate, an improvement in dispersibility in the resin matrix is expected to some extent as compared with the case of mixing in a larger lump. However, the agglomerate described in Patent Document 1 is a force obtained by dispersing carbon fibrils by applying a shearing force with a vibrating ball mill or the like. Additives that improve conductivity and other properties that improve efficiency are still unsatisfactory. In the carbon fiber structure shown in Patent Document 2, the contact points between the fibers are fixed in a state where the carbon fiber aggregates are compression-molded to form the contact points between the fibers after the carbon fibers are manufactured. It is formed by carbonizing residual organic matter such as pitch or organic matter added as a binder that remains on the carbon fiber surface after heat treatment. The electrical characteristics of the film were not very good. Therefore, when it is blended in a matrix such as rosin, its contact point is easily dissociated, so that the shape of the structure cannot be maintained. For example, good electrical characteristics can be obtained by adding a small amount. It has been difficult to form a good conductive path in the matrix. Furthermore, when carbonization is performed by adding a binder or the like to fix the contact point, it is difficult to attach the noda etc. only to the contact point part, and it adheres to the entire fiber. In this case, the fiber diameter was large as a whole and the surface characteristics were inferior, and there was a high possibility that it would not be obtained.
[0010] ところで、炭素繊維を榭脂等のマトリックス中に配合することにより導電性を付与す るに際し、当該炭素繊維の結晶内にホウ素を含有する技術が知られている(例えば 特許文献 3)。当該技術は、炭素繊維の結晶内にホウ素を含有せしめることにより、炭 素繊維の結晶性を向上させるとともに、適度に欠陥を生じさせることで電子状態を制 御し、導電特性を上げることがねらいである。 [0010] By the way, when imparting conductivity by blending carbon fibers in a matrix such as resin, a technique of containing boron in the carbon fiber crystals is known (for example, Patent Document 3). . The aim of this technology is to improve the crystallinity of the carbon fiber by incorporating boron into the crystal of the carbon fiber, and to control the electronic state by appropriately generating defects, thereby improving the conductive characteristics. It is.
[0011] し力しながら、前記で述べた理由と同様の理由により、特許文献 3に開示されている 炭素繊維では、必ずしも良好な導電パスをマトリックス中に形成することは困難であつ た。 However, for the same reason as described above, it is difficult for the carbon fiber disclosed in Patent Document 3 to form a good conductive path in the matrix. It was.
特許文献 1:特許第 2862578号公報  Patent Document 1: Japanese Patent No. 2862578
特許文献 2:特開 2004 - 119386号公報  Patent Document 2: JP 2004-119386 A
特許文献 3:特開 2004 - 3097号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-3097
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明は、複合材料用フイラ一として好ましい物性を持ち、少量の添加にて、マトリ ッタスの特性を損なわずに電気的特性、機械的特性、熱特性等の物理特性を改善 できる新規な構造の炭素繊維構造体を含む複合材料を提供するものである。 [0012] The present invention has novel physical properties as a composite material filler, and can improve physical properties such as electrical properties, mechanical properties, thermal properties, etc., without damaging the properties of the matrix, with a small amount of addition. The present invention provides a composite material including a carbon fiber structure having a unique structure.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決するために、本発明者らは鋭意検討の結果、その添加量が少なく ても十分な特性向上を発揮させるためには、可能な限り微細な炭素繊維を用い、さら にこれら炭素繊維が一本一本ばらばらになることなく互いに強固に結合し、疎な構造 体でマトリックスに保持されるものであること、また炭素繊維自体の一本一本が極力欠 陥の少ないものであることが有効であるとともに、ホウ素を含有せしめることで電子状 態を変えることが有効であることを見出し、本発明に到達したものである。  [0013] In order to solve the above-mentioned problems, the present inventors have intensively studied, and in order to achieve a sufficient improvement in characteristics even if the addition amount is small, the finest possible carbon fiber is used. In addition, these carbon fibers are firmly bonded to each other without being separated and are held in a matrix with a sparse structure, and each carbon fiber itself has as few defects as possible. It has been found that it is effective to change the electronic state by incorporating boron, and the present invention has been achieved.
[0014] すなわち、上記課題を解決する本発明は、外径 15〜: LOOnmの炭素繊維力も構成 される 3次元ネットワーク状を呈しており、前記炭素繊維構造体は、前記炭素繊維が 複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当 該粒状部は前記炭素繊維の成長過程において形成されてなるものであり、さらに、ホ ゥ素が含有されているものである炭素繊維構造体を、全体の 0. 001〜30質量%の 割合でマトリックス中に含有することを特徴する複合材料である。  [0014] That is, the present invention for solving the above problems has a three-dimensional network shape in which a carbon fiber force having an outer diameter of 15 to: LOOnm is also formed, and the carbon fiber structure has a plurality of carbon fibers extending. In this embodiment, the carbon fiber has a granular portion for bonding the carbon fibers to each other, and the granular portion is formed in the growth process of the carbon fiber, and further contains fluorine. The composite material is characterized in that the carbon fiber structure is contained in the matrix in a ratio of 0.001 to 30% by mass of the total.
[0015] 本発明はまた、前記ホウ素の含有量が、前記炭素繊維構造体に対して 0. 001-2 . 1質量%であることを特徴とする上記複合材料を示すものである。  [0015] The present invention also shows the composite material, wherein the boron content is 0.001-2. 1% by mass with respect to the carbon fiber structure.
[0016] 本発明はまた、前記炭素繊維構造体は、面積基準の円相当平均径が 50〜: LOO /z mであることを特徴とする上記複合材料を示すものである。  [0016] The present invention also shows the composite material, wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to: LOO / zm.
[0017] 本発明はさらに、前記炭素繊維構造体は、嵩密度が、 0. 0001〜0. 05gZcm3で あることを特徴とする上記複合材料を示すものである。 [0018] 本発明はまた、前記炭素繊維構造体は、ラマン分光分析法で測定される I [0017] The present invention further shows the composite material, wherein the carbon fiber structure has a bulk density of 0.0001 to 0.05 gZcm 3 . [0018] In the present invention, the carbon fiber structure is measured by Raman spectroscopy.
D Λ力^ G  D Λ force ^ G
. 2〜: L 4であり、且つ、 I /1が 0. 25-0. 75であることを特徴とする上記複合材  2 to: the composite material described above, characterized in that it is L 4 and I / 1 is 0.25-0.75
G' G  G 'G
料を示すものである。  Charge.
[0019] 本発明はまた、前記炭素繊維構造体は、空気中での燃焼開始温度が 700°C以上 であることを特徴とする上記複合材料を示すものである。  [0019] The present invention also provides the composite material, wherein the carbon fiber structure has a combustion start temperature in air of 700 ° C or higher.
[0020] 本発明はまた、前記炭素繊維の結合箇所において、前記粒状部の粒径が、前記 炭素繊維の外径よりも大きいことを特徴とする上記複合材料を示すものである。 [0020] The present invention also shows the composite material described above, wherein a particle size of the granular portion is larger than an outer diameter of the carbon fiber at the bonded portion of the carbon fiber.
[0021] 本発明はまた、前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくと も 2つ以上の炭素化合物を用いて、生成されたものである上記複合材料を示すもの である。 [0021] The present invention also shows the composite material, wherein the carbon fiber structure is produced using at least two or more carbon compounds having different decomposition temperatures as a carbon source. .
[0022] 本発明はまた、マトリックスが有機ポリマーを含むものである上記複合材料を示すも のである。  [0022] The present invention also shows the above composite material in which the matrix contains an organic polymer.
[0023] 本発明はまた、マトリックスが無機材料を含むものである上記複合材料を示すもの である。  [0023] The present invention also shows the above composite material in which the matrix contains an inorganic material.
[0024] 本発明はまた、マトリックスが金属を含むものである上記複合材料を示すものである  [0024] The present invention also shows the above composite material in which the matrix includes a metal.
[0025] 本発明はまた、マトリックス中に、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネ シゥム、カーボンブラック、ガラス繊維および炭素繊維力もなる群力も選ばれた少なく とも一種の充填剤をさらに含むことを特徴とする上記複合材料を示すものである。 発明の効果 [0025] The present invention also includes that the matrix further includes at least one filler selected from the group of metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, glass fiber and carbon fiber strength. The composite material as described above is shown. The invention's effect
[0026] 本発明においては、炭素繊維構造体が、上記したように 3次元ネットワーク状に配さ れた微細径の炭素繊維が、前記炭素繊維の成長過程において形成された粒状部に よって互いに強固に結合され、該粒状部から前記炭素繊維が複数延出する形状を 有するものであるために、榭脂等のマトリックス中に配合した場合に、当該炭素繊維 構造体は、疎な構造を残したまま容易に分散し、少量の添加量においても、マトリック ス中に、微細な炭素繊維を均一な広がりをもって配置することができる。  [0026] In the present invention, the carbon fiber structure is made up of fine carbon fibers arranged in a three-dimensional network as described above by the granular parts formed in the carbon fiber growth process. The carbon fiber structure has a sparse structure when blended in a matrix such as greaves because it has a shape in which a plurality of the carbon fibers extend from the granular part. Even when added in a small amount, the fine carbon fibers can be evenly spread in the matrix.
[0027] さらに、本願発明においては、炭素繊維構造体にはホウ素が含有せしめられている ので、当該炭素繊維一本一本及び粒状部を結晶性の高 、炭素繊維とすることができ るとともに、電子状態を変えることができる。 [0027] Further, in the present invention, since the carbon fiber structure contains boron, each of the carbon fibers and the granular portion can be made of a highly crystalline carbon fiber. And change the electronic state.
[0028] また、ホウ素が含有せしめられていることで、触媒金属の除去が促進され、金属含 有量が少なく不純物の少ない炭素繊維構造体を得ることができる。  [0028] Further, since boron is contained, the removal of the catalytic metal is promoted, and a carbon fiber structure having a low metal content and a small amount of impurities can be obtained.
[0029] このように、本発明に係る複合材料にお!ヽては、上述の炭素繊維構造体を比較的 微量配することによつても、マトリックス全体に微細で結晶性の高い炭素繊維構造体 が均一に分散分布されているため、例えば、電気的特性に関しては、マトリックス全 体に良好な導電性パスが形成され、導電性向上させることができ、また機械的特性、 熱特性等に関しても、マトリックス全体に微細炭素繊維力もなるフィラーが満遍なく配 されることで、特性向上が図れることとなるものである。このため、本発明により、電気 伝導性、電波遮蔽性、熱伝導性等に優れた機能材料、強度の高い構造材料等とし て有用な複合材料が得られる。  [0029] Thus, in the composite material according to the present invention, a carbon fiber structure having a fine and high crystallinity in the entire matrix can be obtained by arranging a relatively small amount of the above-described carbon fiber structure. Since the body is uniformly distributed, for example, in terms of electrical characteristics, a good conductive path can be formed in the entire matrix, and the electrical conductivity can be improved. In addition, the filler can be evenly distributed throughout the matrix, and the characteristics can be improved. Therefore, according to the present invention, a composite material useful as a functional material excellent in electrical conductivity, radio wave shielding property, thermal conductivity, etc., a structural material having high strength, etc. can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明の複合材料に用いる炭素繊維構造体の中間体の SEM写真である。  FIG. 1 is an SEM photograph of an intermediate of a carbon fiber structure used for a composite material of the present invention.
[図 2]本発明の複合材料に用いる炭素繊維構造体の中間体の TEM写真である。  FIG. 2 is a TEM photograph of an intermediate of a carbon fiber structure used in the composite material of the present invention.
[図 3A]、  [Figure 3A]
[図 3B]は、それぞれ本発明の複合材料に用いる炭素繊維構造体の中間体の TEM 写真である。  [FIG. 3B] is a TEM photograph of an intermediate of the carbon fiber structure used in the composite material of the present invention.
[図 4]本発明の複合材料に用いる炭素繊維構造体の SEM写真である。  FIG. 4 is an SEM photograph of a carbon fiber structure used in the composite material of the present invention.
[図 5]本発明の複合材料に用いる炭素繊維構造体の SEM写真である。  FIG. 5 is an SEM photograph of a carbon fiber structure used in the composite material of the present invention.
[図 6]本発明の実施例において炭素繊維構造体の製造に用いた生成炉の概略構成 を示す図面である。  FIG. 6 is a drawing showing a schematic configuration of a production furnace used for producing a carbon fiber structure in an example of the present invention.
符号の説明  Explanation of symbols
[0031] 1 生成炉 [0031] 1 Generation furnace
2 導入ノズル  2 Introduction nozzle
3 衝突部  3 Collision
4 原料ガス供給口  4 Source gas supply port
a 導入ノズルの内径  a Inner nozzle inner diameter
b 生成炉の内径 c 衝突部の内径 b Inner diameter of the generating furnace c Inner diameter of collision part
d 生成炉の上端から原料混合ガス導入口までの距離  d Distance from the top of the generator to the raw material gas inlet
e 原料混合ガス導入ロカ 衝突部の下端までの距離  e Raw material mixed gas introduction loca Distance to the bottom of the collision part
f 原料混合ガス導入口から生成炉の下端までの距離  f Distance from the raw material gas inlet to the bottom of the generator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0032] 以下、本発明を好ましい実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on preferred embodiments.
本発明の複合材料は、後述するような所定構造を有する 3次元ネットワーク状の炭 素繊維構造体を、全体の 0. 001〜30質量%の割合でマトリックス中に含有すること を特徴するものである。  The composite material of the present invention is characterized in that a three-dimensional network-like carbon fiber structure having a predetermined structure as described later is contained in a matrix in a ratio of 0.001 to 30% by mass. is there.
[0033] 本発明において用いられる炭素繊維構造体は、例えば、図 3Aおよび図 3Bに示す TEM写真に見られるように、外径 15〜: LOOnmの炭素繊維力も構成される 3次元ネ ットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が 複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有している。そして 、本発明において用いられる炭素繊維構造体は、図 3Aおよび図 3Bに示す炭素繊 維構造体に、さらにホウ素が含有されていることを特徴とする炭素繊維構造体である  [0033] The carbon fiber structure used in the present invention has, for example, a three-dimensional network shape in which a carbon fiber force having an outer diameter of 15 to LOONm is also formed, as seen in the TEM photographs shown in FIGS. 3A and 3B. It is a carbon fiber structure, Comprising: The said carbon fiber structure has the granule part which couple | bonds the said carbon fiber mutually in the aspect with which the said carbon fiber extends in multiple numbers. The carbon fiber structure used in the present invention is a carbon fiber structure characterized by further containing boron in the carbon fiber structure shown in FIGS. 3A and 3B.
[0034] 炭素繊維構造体を構成する炭素繊維の外径を、 15〜: LOOnmの範囲のものとする のは、外径が 15nm未満であると、後述するように炭素繊維の断面が多角形状となら ず、一方、炭素繊維の物性上直径が小さいほど単位量あたりの本数が増えるとともに 、炭素繊維の軸方向への長さも長くなり、高い導電性が得られるため、 lOOnmを越 える外径を有することは、榭脂等のマトリックスへ改質剤、添加剤として配される炭素 繊維構造体として適当でないためである。なお、炭素繊維の外径としては特に、 20 〜70nmの範囲内にあること力 より望ましい。この外径範囲のもので、筒状のグラフ エンシートが軸直角方向に積層したもの、すなわち多層であるものは、曲がりにくぐ 弾性、すなわち変形後も元の形状に戻ろうとする性質が付与されるため、炭素繊維 構造体がー且圧縮された後においても、榭脂等のマトリックスに配された後において 、疎な構造を採りやすくなる。 [0034] The carbon fiber constituting the carbon fiber structure has an outer diameter in the range of 15 to LOONm. When the outer diameter is less than 15 nm, the carbon fiber has a polygonal cross section as described later. However, on the other hand, the smaller the diameter of the carbon fiber, the greater the number per unit amount, and the longer the length of the carbon fiber in the axial direction and the higher the electrical conductivity, so that the outer diameter exceeding lOOnm can be obtained. It is because it is not suitable as a carbon fiber structure arranged as a modifier or additive in a matrix such as rosin. The outer diameter of the carbon fiber is particularly desirable because it is in the range of 20 to 70 nm. In this outer diameter range, cylindrical graph sheets laminated in the direction perpendicular to the axis, that is, multi-layered, are given the ability to return to their original shape even after deformation, ie they are difficult to bend. Therefore, even after the carbon fiber structure is compressed, it is easy to adopt a sparse structure after being arranged in a matrix such as rosin.
[0035] なお、 2400°C以上でァニール処理すると、積層したグラフエンシートの面間隔が狭 まり真密度が 1. 89g/cm3から 2. lg/cm3に増加するとともに、炭素繊維の軸直交 断面が多角形状となり、この構造の炭素繊維は、積層方向および炭素繊維を構成す る筒状のグラフエンシートの面方向の両方において緻密で欠陥の少ないものとなるた め、曲げ剛性 (EI)が向上する。 [0035] Note that when annealing is performed at 2400 ° C or higher, the surface spacing of the laminated graph sheets is narrow. The true density increases from 1.89 g / cm 3 to 2. lg / cm 3 , and the carbon fiber has a polygonal cross section perpendicular to the axis. Flexural rigidity (EI) is improved because it is dense and has few defects in both directions of the surface of the graph-like sheet.
[0036] カロえて、該微細炭素繊維は、その外径が軸方向に沿って変化するものであることが 望ましい。このように炭素繊維の外径が軸方向に沿って一定でなぐ変化するもので あると、榭脂等のマトリックス中において当該炭素繊維に一種のアンカー効果が生じ るものと思われ、マトリックス中における移動が生じに《分散安定性が高まるものとな る。 [0036] It is desirable that the fine carbon fiber has an outer diameter that changes along the axial direction. If the outer diameter of the carbon fiber is constant and changes along the axial direction in this way, it is considered that a kind of anchor effect is produced in the carbon fiber in a matrix such as greaves. As a result, the dispersion stability increases.
[0037] そして本発明に係る炭素繊維構造体にぉ 、ては、このような所定外径を有する微 細炭素繊維が 3次元ネットワーク状に存在するが、これら炭素繊維は、当該炭素繊維 の成長過程にお 、て形成された粒状部にぉ 、て互いに結合され、該粒状部から前 記炭素繊維が複数延出する形状を呈しているものである。このように、微細炭素繊維 同士が単に絡合して 、るものではなぐ粒状部にぉ 、て相互に強固に結合されて!ヽ るものであることから、榭脂等のマトリックス中に配した場合に当該構造体が炭素繊維 単体として分散されることなぐ嵩高な構造体のままマトリックス中に分散配合されるこ とができる。また、本発明に係る炭素繊維構造体においては、当該炭素繊維の成長 過程にお 、て形成された粒状部によって炭素繊維同士が互 、に結合されて 、ること から、その構造体自体の電気的特性等も非常に優れたものであり、例えば、一定圧 縮密度において測定した電気抵抗値は、微細炭素繊維の単なる絡合体、あるいは 微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質物質ないしその炭化 物によって付着させてなる構造体等の値と比較して、非常に低い値を示し、マトリック ス中に分散配合された場合に、良好な導電パスを形成できることができる。  [0037] And, in the carbon fiber structure according to the present invention, fine carbon fibers having such a predetermined outer diameter exist in a three-dimensional network, and these carbon fibers are grown on the carbon fibers. In the process, the granular portions formed in this manner are bonded to each other, and a plurality of the carbon fibers extend from the granular portions. In this way, the fine carbon fibers are simply entangled with each other, and they are bonded to each other in a granular part that is not solid, so that they are firmly bonded to each other. In this case, the structure can be dispersed and blended in the matrix as a bulky structure without being dispersed as a single carbon fiber. Further, in the carbon fiber structure according to the present invention, the carbon fibers are bonded to each other by the granular portion formed in the growth process of the carbon fiber. For example, the electrical resistance value measured at a constant compression density indicates that the mere entanglement of fine carbon fibers, or the junction between the fine carbon fibers after the synthesis of the carbon fibers. Compared with the value of the structure or the like formed by the substance or its carbide, it shows a very low value, and when dispersed and blended in the matrix, a good conductive path can be formed.
[0038] 当該粒状部は、上述するように炭素繊維の成長過程において形成されるものであ るため、当該粒状部における炭素間結合は十分に発達したものとなり、正確には明ら かではないが、 sp2結合および sp3結合の混合状態を含むと思われる。そして、生成 後 (後述する中間体および第一中間体)においては、粒状部と繊維部とが、炭素原 子力もなるパッチ状のシート片を貼り合せたような構造をもって連続しており、その後 の高温熱処理後においては、図 3Aおよび図 3Bに示されるように、粒状部を構成す るグラフェン層の少なくとも一部は、当該粒状部より延出する微細炭素繊維を構成す るグラフェン層に連続するものとなる。本発明に係る炭素繊維構造体において、粒状 部と微細炭素繊維との間は、上記したような粒状部を構成するグラフ ン層が微細炭 素繊維を構成するグラフ ン層と連続していることに象徴されるように、炭素結晶構造 的な結合によって (少なくともその一部カ 繋がっているものであって、これによつて粒 状部と微細炭素繊維との間の強固な結合が形成されているものである。 [0038] Since the granular part is formed in the growth process of the carbon fiber as described above, the carbon-carbon bond in the granular part is sufficiently developed, and it is not clear exactly. Appears to contain a mixed state of sp 2 and sp 3 bonds. After generation (intermediate and first intermediate described later), the granular part and the fiber part are continuous with a structure in which patch-like sheet pieces having carbon atomic force are bonded together, and thereafter After the high temperature heat treatment, as shown in FIGS. 3A and 3B, at least a part of the graphene layer constituting the granular part is continuous with the graphene layer constituting the fine carbon fiber extending from the granular part. To be. In the carbon fiber structure according to the present invention, between the granular portion and the fine carbon fiber, the graphene layer constituting the granular portion as described above is continuous with the graphene layer constituting the fine carbon fiber. Symbolized by the carbon crystal structure bond (at least a part of the bond is formed, thereby forming a strong bond between the granular portion and the fine carbon fiber. It is what.
[0039] なお、本願明細書において、粒状部から炭素繊維力 ^延出する」するとは、粒状部 と炭素繊維とが他の結着剤 (炭素質のものを含む)によって、単に見かけ上で繋がつ ているような状態をさすものではなぐ上記したように炭素結晶構造的な結合によって 繋がって!/、る状態を主として意味するものである。  [0039] In the present specification, the term "extends carbon fiber force from the granular part" means that the granular part and the carbon fiber are merely apparently formed by other binder (including carbonaceous material). It is not meant to indicate a connected state, but mainly means a state of being connected by a carbon crystal structural bond as described above!
[0040] また、当該粒状部は、上述するように炭素繊維の成長過程において形成されるが、 その痕跡として粒状部の内部には、少なくとも 1つの触媒粒子、あるいはその触媒粒 子がその後の熱処理工程にぉ 、て揮発除去されて生じる空孔を有して 、る。この空 孔 (ないし触媒粒子)は、粒状部より延出している各微細炭素繊維の内部に形成され る中空部とは、本質的に独立したものである(なお、ごく一部に、偶発的に中空部と連 続してしまったものも観察される。;)。  [0040] Further, as described above, the granular part is formed in the growth process of the carbon fiber. As a trace, at least one catalyst particle or the catalyst particle is subjected to a subsequent heat treatment inside the granular part. In the process, there are vacancies generated by volatilization and removal. These pores (or catalyst particles) are essentially independent of the hollow portion formed inside each fine carbon fiber extending from the granular portion (note that only a small part is incidental) Some of them are connected to the hollow part;).
[0041] この触媒粒子ないし空孔の数としては特に限定されるものではないが、粒状部 1つ 当りに 1〜: LOOO個程度、より望ましくは 3〜500個程度存在する。このような範囲の数 の触媒粒子の存在下で粒状部が形成されたことによって、後述するような所望の大き さの粒状部とすることができる。  [0041] The number of catalyst particles or pores is not particularly limited, but there are about 1 to about LOOO, more preferably about 3 to 500 per granular part. By forming the granular portion in the presence of such a number of catalyst particles, it is possible to obtain a granular portion having a desired size as described later.
[0042] また、この粒状部中に存在する触媒粒子ないし空孔の 1つ当りの大きさとしては、例 えば、 1〜: LOOnm、より好ましくは 2〜40nm、さらに好ましくは 3〜15nmである。  [0042] The size of each catalyst particle or hole existing in the granular part is, for example, 1 to: LOOnm, more preferably 2 to 40 nm, and still more preferably 3 to 15 nm. .
[0043] さらに、特に限定されるわけではないが、この粒状部の粒径は、図 2に示すように、 前記微細炭素繊維の外径よりも大きいことが望ましい。具体的には、例えば、前記微 細炭素繊維の外径の 1. 3〜250倍、より好ましくは 1. 5〜: LOO倍、さらに好ましくは 2 . 0〜25倍である。なお、前記値は平均値である。このように炭素繊維相互の結合点 である粒状部の粒径が微細炭素繊維外径の 1. 3倍以上と十分に大きなものであると 、当該粒状部より延出する炭素繊維に対して高い結合力がもたらされ、榭脂等のマト リックス中に当該炭素繊維構造体を配した場合に、ある程度のせん弾力を加えた場 合であっても、 3次元ネットワーク構造を保持したままマトリックス中に分散させることが できる。一方、粒状部の大きさが微細炭素繊維の外径の 250倍を超える極端に大き なものとなると、炭素繊維構造体の繊維状の特性が損なわれる虞れがあり、例えば、 各種マトリックス中への添加剤、配合剤として適当なものとならない虞れがあるために 望ましくない。なお、本明細書でいう「粒状部の粒径」とは、炭素繊維相互の結合点 である粒状部を 1つの粒子とみなして測定した値である。 [0043] Further, although not particularly limited, it is desirable that the particle diameter of the granular portion is larger than the outer diameter of the fine carbon fiber as shown in FIG. Specifically, for example, the outer diameter of the fine carbon fiber is 1.3 to 250 times, more preferably 1.5 to: LOO times, and further preferably 2.0 to 25 times. In addition, the said value is an average value. In this way, the particle size of the granular part, which is the bonding point between the carbon fibers, is sufficiently large, 1.3 times the outer diameter of the fine carbon fiber. When the carbon fiber structure is arranged in a matrix such as greaves, a certain amount of elasticity is applied to the carbon fiber extending from the granular part. Even in this case, it can be distributed in the matrix while maintaining the 3D network structure. On the other hand, if the size of the granular part is extremely large exceeding 250 times the outer diameter of the fine carbon fiber, the fibrous properties of the carbon fiber structure may be impaired. For example, into the various matrices. This is not desirable because it may not be suitable as an additive or compounding agent. The “particle size of the granular part” in the present specification is a value measured by regarding the granular part which is a bonding point between carbon fibers as one particle.
[0044] その粒状部の具体的な粒径は、炭素繊維構造体の大きさ、炭素繊維構造体中の 微細炭素繊維の外径にも左右される力 例えば、平均値で 20〜5000nm、より好ま しくは 25〜2000nm、さらに好ましくは 30〜500nm程度である。  [0044] The specific particle size of the granular portion is a force that depends on the size of the carbon fiber structure and the outer diameter of the fine carbon fibers in the carbon fiber structure. For example, the average value is 20 to 5000 nm. It is preferably 25 to 2000 nm, more preferably about 30 to 500 nm.
[0045] さらにこの粒状部は、前記したように炭素繊維の成長過程において形成されるもの であるため、比較的球状に近い形状を有しており、その円形度は、平均値で 0. 2〜 < 1、好ましく ίま 0. 5〜0. 99、より好ましく ίま 0. 7〜0. 98程度である。  [0045] Further, since the granular portion is formed in the carbon fiber growth process as described above, it has a relatively spherical shape, and its circularity is 0.2 on average. ~ <1, preferably ί or 0.5 to 0.99, more preferably ί or about 0.7 to 0.98.
[0046] カロえて、この粒状部は、前記したように炭素繊維の成長過程にお 、て形成されるも のであって、例えば、微細炭素繊維同士の接合点を当該炭素繊維合成後に炭素質 物質ないしその炭化物によって付着させてなる構造体等と比較して、当該粒状部に おける、炭素繊維同士の結合は非常に強固なものであり、炭素繊維構造体における 炭素繊維の破断が生じるような条件下においても、この粒状部 (結合部)は安定に保 持される。具体的には例えば、後述する実施例において示すように、当該炭素繊維 構造体を液状媒体中に分散させ、これに一定出力で所定周波数の超音波をかけて 、炭素繊維の平均長がほぼ半減する程度の負荷条件としても、該粒状部の平均粒 径の変化率は、 10%未満、より好ましくは 5%未満であって、粒状部、すなわち、繊維 同士の結合部は、安定に保持されているものである。  [0046] As described above, the granular portion is formed in the carbon fiber growth process, and for example, the carbonaceous material is formed after the carbon fiber is synthesized at the junction between the fine carbon fibers. In addition, the bonding between the carbon fibers in the granular portion is very strong compared to a structure or the like attached by the carbide, and the carbon fiber breaks in the carbon fiber structure. Even below, this granular part (joint part) is kept stable. Specifically, for example, as shown in Examples described later, the carbon fiber structure is dispersed in a liquid medium, and an ultrasonic wave with a predetermined output and a predetermined frequency is applied to the carbon fiber structure, so that the average length of the carbon fibers is almost halved. Even under such a load condition, the change rate of the average particle diameter of the granular part is less than 10%, more preferably less than 5%, and the granular part, that is, the bonded part of the fibers is stably held. It is what.
[0047] さらにまた、本発明に用いられる炭素繊維構造体にはホウ素が含有されているため 、炭素繊維一本一本を結晶性の高い炭素繊維とすることができる。本発明において 、「炭素繊維構造体にホウ素が含有されている」とは、炭素繊維構造体を構成する炭 素繊維及び粒状部における炭素原子の一部がホウ素に置換されている状態のみな らず、その表面にホウ素が付着した状態をも含むものをいう。 [0047] Furthermore, since the carbon fiber structure used in the present invention contains boron, each carbon fiber can be made into a carbon fiber with high crystallinity. In the present invention, the phrase “boron is contained in the carbon fiber structure” refers only to a state in which a part of carbon atoms in the carbon fiber and the granular part constituting the carbon fiber structure are substituted with boron. Not including the state in which boron is attached to the surface.
[0048] 炭素繊維構造体にホウ素を含有 (ドーピング)する方法につ!、ては、本発明は特に 限定することはないが、例えば、低温 (例えば 1500°C以下)で熱処理されたのみで 未だ結晶の発達して 、な 、状態の炭素繊維、さらには熱処理して 、な 、(ァズグロウ ン)状態の炭素繊維とホウ素 (ホウ素化合物を含む)とを混合し、その後、高温で黒鉛 化処理 (アニーリング処理)することにより、炭素繊維構造体にホウ素を含有せしめる ことができる。 1600°C以上、さらには 1800°C以上の温度でアニーリング処理された 状態の炭素繊維にホウ素を含有せしめることも不可能ではないが、ホウ素をドーピン グさせるためのエネルギーの面力も考えれば好ましくなぐホウ素は炭素繊維の結晶 化を促進するための触媒としても作用し、また、アニーリングの際に触媒金属の除去 に効果があることから、アニーリング処理の前段階でホウ素を含有せしめることが好適 である。  [0048] Regarding a method for doping (doping) boron into the carbon fiber structure, the present invention is not particularly limited. For example, the carbon fiber structure is only heat treated at a low temperature (eg, 1500 ° C or less). The crystal is still developed, and the carbon fiber in the state is further heat-treated, and the carbon fiber in the (azugroun) state and boron (including boron compound) are mixed, and then graphitized at a high temperature. By carrying out (annealing treatment), boron can be contained in the carbon fiber structure. It is not impossible to incorporate boron into carbon fibers that have been annealed at temperatures of 1600 ° C or higher, or even 1800 ° C or higher. Boron also acts as a catalyst for promoting crystallization of carbon fibers, and is effective in removing the catalytic metal during annealing. Therefore, it is preferable to contain boron before the annealing treatment. .
[0049] 炭素繊維構造体に含有するホウ素としても、本発明は特に限定することはない。な おここで、本発明における「ホウ素」とは、元素状のホウ素のみならずホウ素化合物も 包含する概念である。前記のように炭素繊維構造体にホウ素を含有せしめるにあつ ては、高温 (例えば 1600°C以上)でアニーリング処理を行う関係上、少なくとも 1600 °Cに達する前に分解などによって蒸発しない状態のホウ素を用いることが必要である 。この条件を満たすホウ素としては、例えば、元素状のホウ素、 B O , H BO , B C,  [0049] The present invention is not particularly limited as boron contained in the carbon fiber structure. Here, “boron” in the present invention is a concept including not only elemental boron but also boron compounds. As described above, when boron is included in the carbon fiber structure, boron that is not evaporated by decomposition or the like before reaching at least 1600 ° C due to the annealing treatment at a high temperature (for example, 1600 ° C or more). It is necessary to use Examples of boron that satisfies this condition include elemental boron, B 2 O 3, H BO, B C,
2 3 3 4 4 2 3 3 4 4
BNなどを挙げることができる。 BN etc. can be mentioned.
[0050] ホウ素の含有量としては、炭素繊維構造体に対して 0. 001-2. 1質量%であるこ と力 子ましく、 0. 01〜: L 8質量%であることが特に好ましい。ホウ素の含有量が 0. 0 01質量%未満の場合、ホウ素含有による効果、つまり炭素繊維の結晶性を向上せし めることが難しくなる。一方、含有量が 2. 1質量%を超えると、固溶限界を超えるため 添加しても効果が少なぐ処理コストが高くなるだけでなぐ熱処理の段階で、溶融燒 結し易ぐ固まったり、繊維表面をホウ素化合物が被覆してしまい、逆に導電性を悪 ィ匕させる場合がある。 [0050] The boron content is preferably 0.001-2.1% by mass with respect to the carbon fiber structure, and is particularly preferably 0.01-: L 8% by mass. When the boron content is less than 0.001% by mass, it is difficult to improve the effect of boron content, that is, the crystallinity of the carbon fiber. On the other hand, if the content exceeds 2.1% by mass, it will exceed the solid solution limit, and even if added, the effect will be small and the processing cost will be high. In some cases, the surface of the fiber is covered with a boron compound, which adversely affects conductivity.
[0051] また、本発明において用いられる炭素繊維構造体は、面積基準の円相当平均径が 50-100 μ m、より好ましくは 60〜90 μ m程度程度であることが望ましい。ここで面 積基準の円相当平均径とは、炭素繊維構造体の外形を電子顕微鏡などを用いて撮 影し、この撮影画像において、各炭素繊維構造体の輪郭を、適当な画像解析ソフト ウェア、例えば WinRoof (商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の 面積を求め、各繊維構造体の円相当径を計算し、これを平均化したものである。 [0051] The carbon fiber structure used in the present invention desirably has an area-based circle-equivalent mean diameter of about 50-100 μm, more preferably about 60-90 μm. Here face The product-based circle-equivalent mean diameter is obtained by taking an outline of a carbon fiber structure using an electron microscope, etc., and in this photographed image, the outline of each carbon fiber structure is converted into an appropriate image analysis software such as WinRoof. (Trade name, manufactured by Mitani Shoji Co., Ltd.) is used to obtain the area within the contour, calculate the equivalent circle diameter of each fiber structure, and average it.
[0052] 複合ィ匕される榭脂等のマトリックス材の種類によっても左右されるため、全ての場合 において適用されるわけではないが、この円相当平均径は、榭脂等のマトリックス中 に配合された場合における当該炭素繊維構造体の最長の長さを決める要因となるも のであり、概して、円相当平均径が 50 m未満であると、導電性が十分に発揮され ないおそれがあり、一方、 100 mを越えるものであると、例えば、マトリックス中へ混 練等によって配合する際に大きな粘度上昇が起こり混合分散が困難あるいは成形性 が劣化する虞れがあるためである。  [0052] Since it depends on the type of matrix material such as resin to be combined, it may not be applied in all cases, but this circle-equivalent mean diameter is included in the matrix such as resin. If the average equivalent circle diameter is less than 50 m, the electrical conductivity may not be sufficiently exhibited. If it exceeds 100 m, for example, when blended into a matrix by kneading or the like, a large increase in viscosity occurs, making it difficult to mix and disperse or to deteriorate moldability.
[0053] また、本発明にお 、て用いられる炭素繊維構造体は、上記したように、 3次元ネット ワーク状に存在する炭素繊維が粒状部において互いに結合され、該粒状部力 前 記炭素繊維が複数延出する形状を呈しているが、 1つの炭素繊維構造体において、 炭素繊維を結合する粒状部が複数個存在して 3次元ネットワークを形成している場 合、隣接する粒状部間の平均距離は、例えば、 0. 5 m〜300 m、より好ましくは 0. 5^100 ^ m,さらに好ましくは 1〜50 /ζ πι程度となる。なお、この隣接する粒状部 間の距離は、 1つの粒状体の中心部からこれに隣接する粒状部の中心部までの距離 を測定したものである。粒状体間の平均距離が、 0. 5 m未満であると、炭素繊維が 3次元ネットワーク状に十分に発展した形態とならないため、例えば、マトリックス中に 分散配合された場合に、良好な導電パスを形成し得ないものとなる虞れがあり、一方 、平均距離が 300 mを越えるものであると、マトリックス中に分散配合させる際に、 粘性を高くさせる要因となり、炭素繊維構造体のマトリックスに対する分散性が低下 する虞れがあるためである。  [0053] Further, in the carbon fiber structure used in the present invention, as described above, the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion, and the granular portion force is described above. In a single carbon fiber structure, if there are multiple granular parts that combine carbon fibers to form a three-dimensional network, there is a gap between adjacent granular parts. The average distance is, for example, 0.5 m to 300 m, more preferably 0.5 ^ 100 ^ m, and further preferably about 1 to 50 / ζ πι. The distance between the adjacent granular parts is a distance measured from the central part of one granular body to the central part of the granular part adjacent thereto. If the average distance between the granular materials is less than 0.5 m, the carbon fiber will not be sufficiently developed into a three-dimensional network. For example, when dispersed in a matrix, a good conductive path will be obtained. On the other hand, if the average distance exceeds 300 m, it becomes a factor to increase the viscosity when dispersed and mixed in the matrix, and the carbon fiber structure with respect to the matrix This is because the dispersibility may decrease.
[0054] さらに、本発明において用いられる炭素繊維構造体は、上記したように、 3次元ネッ トワーク状に存在する炭素繊維が粒状部にお 、て互 ヽに結合され、該粒状部から前 記炭素繊維が複数延出する形状を呈しており、このため当該構造体は炭素繊維が 疎に存在した嵩高な構造を有するが、具体的には、例えば、その嵩密度が 0. 0001 〜0. 05g/cm3、より好ましくは 0. 001-0. 02g/cm3であることが望ましい。嵩密 度が 0. 05gZcm3を超えるものであると、少量添加によって、榭脂等のマトリックスの 物性を改善することが難しくなるためである。 [0054] Further, as described above, in the carbon fiber structure used in the present invention, the carbon fibers existing in a three-dimensional network are bonded to each other in the granular part, and the carbon part is described above. The carbon fiber has a shape in which a plurality of carbon fibers extend, and thus the structure has a bulky structure in which carbon fibers are sparsely present. Specifically, for example, the bulk density is 0.001. It is desirable to be ˜0.05 g / cm 3 , more preferably 0.001-0.02 g / cm 3 . This is because if the bulk density exceeds 0.05 gZcm 3 , it becomes difficult to improve the physical properties of the matrix such as rosin by adding a small amount.
[0055] また、本発明において用いられる炭素繊維構造体は、 3次元ネットワーク状に存在 する炭素繊維がその成長過程にお 、て形成された粒状部にお 、て互いに結合され て!、ることから、上記したように構造体自体の電気的特性等も非常に優れたものであ る力 例えば、一定圧縮密度 0. 8gZcm3において測定した粉体抵抗値力 0. 02 Ω •cm以下、より望ましくは、 0. 001-0. 010 Ω ' cmであることが好ましい。粉体抵抗 値が 0. 02 Ω 'cmを超えるものであると、榭脂等のマトリックスに配合された際に、良 好な導電パスを形成することが難しくなるためである。 [0055] Further, the carbon fiber structure used in the present invention is such that the carbon fibers existing in a three-dimensional network are bonded to each other in the granular portion formed during the growth process! Therefore, as described above, the force that the electrical characteristics of the structure itself is very excellent, for example, the powder resistance value force measured at a constant compression density of 0.8 gZcm 3 is 0.02 Ω • cm or less. Desirably, it is preferably 0.001-0.010 Ω 'cm. This is because when the powder resistance value exceeds 0.02 Ω'cm, it becomes difficult to form a good conductive path when blended in a matrix such as resin.
[0056] また、本発明において用いられる炭素繊維構造体は、高い強度および導電性を有 する上から、炭素繊維を構成するグラフエンシート中にホウ素が含有されて ヽることが 望ましぐ具体的には、例えば、ラマン分光分析法で測定される I D Λ比が  [0056] In addition, the carbon fiber structure used in the present invention has high strength and conductivity, and it is desirable that the graph end sheet constituting the carbon fiber contains boron. For example, the ID Λ ratio measured by Raman spectroscopy is
G 0. 2〜1. G 0. 2 to 1.
4であり、且つ、 I Zl が 0. 25-0. 75であることが望ましい。ここで、ラマン分光分 4 and I Zl is preferably 0.25-0.75. Where Raman spectroscopy
G' G  G 'G
析では、大きな単結晶の黒鉛では 1580cm_1付近のピーク(Gバンド)しか現れない 。結晶が有限の微小サイズであることや格子欠陥により、 1360cm_1付近にピーク( Dバンド)が出現する。また、測定範囲を広げると、 2700cm— 1付近に G'バンドが出 現する。このため、 Dバンドと Gバンドの強度比 (R=I /\ =1 ZI )及び G,バ The analysis, the peak around 1580 cm _1 in a large single crystal graphite (G-band) only appear. Crystals by and lattice defects is finite ultrafine sizes, the peak (D band) appears near 1360 cm _1. In addition, when the measurement range is expanded, a G 'band appears around 2700cm- 1 . Therefore, the intensity ratio of D band and G band (R = I / \ = 1 ZI) and G,
1360 1580 D G  1360 1580 D G
ンドと Gバンドの強度比 (I /\ =i Zi )が上記したように所定範囲であると、  If the intensity ratio (I / \ = i Zi) of the band and G band is within the predetermined range as described above,
2700 1580 G' G  2700 1580 G 'G
グラフエンシート中にホウ素が含有されていると考えられる力もである。なお、ホウ素が グラフエンシート内に含有されるとラマン分光における Gバンドの波形が非対称となり 、高波数側に肩が認められるようになる。  It is also a force considered that boron is contained in the graph end sheet. When boron is contained in the graph ensheet, the G band waveform in Raman spectroscopy becomes asymmetric, and a shoulder is recognized on the high wave number side.
[0057] また、本発明において用いられる前記炭素繊維構造体は、空気中での燃焼開始温 度が 700°C以上、より好ましくは 750〜900°Cであることが望ましい。前記したように 炭素繊維構造体のグラフエンシート中にホウ素を含有し、かつ炭素繊維が所期の外 径を有するものであることから、このような高 、熱的安定性を有するものとなる。  [0057] Further, it is desirable that the carbon fiber structure used in the present invention has a combustion start temperature in air of 700 ° C or higher, more preferably 750 to 900 ° C. As described above, since the graph ensheet of the carbon fiber structure contains boron and the carbon fiber has an intended outer diameter, it has such a high thermal stability. .
[0058] 上記したような所期の形状を有する炭素繊維構造体は、特に限定されるものではな いが、例えば、次のようにして調製することができる。 [0059] 基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物を CVD法 で化学熱分解して繊維構造体 (以下、中間体という)を得、これにホウ素またはホウ素 化合物を混合した状態でさらに高温熱処理する。なお、ホウ素またはホウ素化合物 は、炭化水素等の有機化合物に予め混合せしめておいてもよく(つまり中間体を得る 前段階でホウ素を添加しておく)、さらには、高温熱処理後にホウ素を混合せしめるこ とも可能である。 [0058] The carbon fiber structure having the desired shape as described above is not particularly limited, and can be prepared, for example, as follows. [0059] Basically, an organic compound such as hydrocarbon is chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), to which boron or a boron compound is added. Further heat treatment is performed in the mixed state. Boron or a boron compound may be mixed in advance with an organic compound such as hydrocarbon (that is, boron is added before obtaining an intermediate), and further boron is mixed after high-temperature heat treatment. This is also possible.
[0060] 原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭 素(CO)、エタノール等のアルコール類などが使用できる。特に限定されるわけでは ないが、本発明において用いる繊維構造体を得る上においては、炭素源として、分 解温度の異なる少なくとも 2つ以上の炭素化合物を用いることが好ましい。なお、本 明細書において述べる「少なくとも 2つ以上の炭素化合物」とは、必ずしも原料有機 化合物として 2種以上のものを使用するというものではなぐ原料有機化合物としては 1種のものを使用した場合であっても、繊維構造体の合成反応過程において、例え ば、トルエンゃキシレンの水素脱アルキル化(hydrodealkylation)などのような反応を 生じて、その後の熱分解反応系にお!、ては分解温度の異なる 2つ以上の炭素化合 物となって!/ヽるような態様も含むものである。  [0060] As the raw material organic compound, hydrocarbons such as benzene, toluene and xylene, alcohols such as carbon monoxide (CO) and ethanol can be used. Although not particularly limited, in obtaining the fiber structure used in the present invention, it is preferable to use at least two or more carbon compounds having different decomposition temperatures as the carbon source. As used herein, “at least two or more carbon compounds” does not necessarily mean that two or more kinds of raw material organic compounds are used, but a case where one kind of raw material organic compound is used. Even in the process of synthesizing the fiber structure, for example, a reaction such as hydrodealkylation of toluene-xylene occurs, and the subsequent pyrolysis reaction system! It also includes a mode in which two or more carbon compounds having different!
[0061] なお、熱分解反応系にお 、て炭素源としてこのように 2種以上の炭素化合物を存在 させた場合、それぞれの炭素化合物の分解温度は、炭素化合物の種類のみでなぐ 原料ガス中の各炭素化合物のガス分圧ないしモル比によっても変動するものである ため、原料ガス中における 2種以上の炭素化合物の組成比を調整することにより、炭 素化合物として比較的多くの組み合わせを用いることができる。  [0061] When two or more types of carbon compounds are present as carbon sources in the thermal decomposition reaction system, the decomposition temperature of each carbon compound is not limited to the type of carbon compound. Therefore, by adjusting the composition ratio of two or more carbon compounds in the raw material gas, a relatively large number of combinations are used as the carbon compounds. be able to.
[0062] 例えば、メタン、ェタン、プロパン類、ブタン類、ペンタン類、へキサン類、ヘプタン 類、シクロプロパン、シクロへキサンなどといったアルカンないしシクロアルカン、特に 炭素数 1〜7程度のアルカン;エチレン、プロピレン、ブチレン類、ペンテン類、ヘプテ ン類、シクロペンテンなどといったアルケンないしシクロォレフイン、特に炭素数 1〜7 程度のアルケン;アセチレン、プロピン等のアルキン、特に炭素数 1〜7程度のアルキ ン;ベンゼン、トノレェン、スチレン、キシレン、ナフタレン、メチノレナフタレン、インデン、 フ ナントレン等の芳香族ないし複素芳香族炭化水素、特に炭素数 6〜18程度の芳 香族ないし複素芳香族炭化水素、メタノール、エタノール等のアルコール類、特に炭 素数 1〜7程度のアルコール類;その他、一酸化炭素、ケトン類、エーテル類等の中 力も選択した 2種以上の炭素化合物を、所期の熱分解反応温度域にぉ 、て異なる分 解温度を発揮できるようにガス分圧を調整し、組み合わせて用いること、および Zま たは、所定の温度領域における滞留時間を調整することで可能であり、その混合比 を最適化することで効率よく本発明に係る炭素繊維構造体を製造することができる。 [0062] For example, alkanes or cycloalkanes such as methane, ethane, propanes, butanes, pentanes, hexanes, heptanes, cyclopropane, cyclohexane, etc., particularly alkanes having about 1 to 7 carbon atoms; ethylene, Alkenes such as propylene, butylenes, pentenes, heptenes, cyclopentene, etc., especially alkenes having about 1 to 7 carbon atoms; alkynes such as acetylene and propyne, especially alkynes having about 1 to 7 carbon atoms; , Aromatic or heteroaromatic hydrocarbons such as styrene, xylene, naphthalene, methenolenaphthalene, indene, and phenanthrene, especially those having about 6 to 18 carbon atoms. Alcohols such as aromatic or heteroaromatic hydrocarbons, methanol, ethanol, etc., especially alcohols with about 1 to 7 carbon atoms; in addition, two or more types of carbon with selected medium strengths such as carbon monoxide, ketones and ethers Adjust the gas partial pressure so that the compound can exhibit different decomposition temperatures within the desired thermal decomposition reaction temperature range and use them in combination, and Z or the residence time in the specified temperature range The carbon fiber structure according to the present invention can be efficiently produced by optimizing the mixing ratio.
[0063] このような 2種以上の炭素化合物の組み合わせのうち、例えば、メタンとベンゼンと の組み合わせにおいては、メタン/ベンゼンのモル比が、 > 1〜600、より好ましくは 1. 1〜200、さらに好ましくは 3〜: LOOとすることが望ましい。なお、この値は、反応炉 の入り口におけるガス組成比であり、例えば、炭素源の 1つとしてトルエンを使用する 場合には、反応炉内でトルエンが 100%分解して、メタンおよびベンゼンが 1: 1で生 じることを考慮して、不足分のメタンを別途供給するようにすれば良い。例えば、メタ ン Zベンゼンのモル比を 3とする場合には、トルエン 1モルに対し、メタン 2モルを添 加すれば良い。なお、このようなトルエンに対して添加するメタンとしては、必ずしも新 鮮なメタンを別途用意する方法のみならず、当該反応炉より排出される排ガス中に含 まれる未反応のメタンを循環使用することにより用いることも可能である。  [0063] Among such combinations of two or more carbon compounds, for example, in the combination of methane and benzene, the molar ratio of methane / benzene is> 1 to 600, more preferably 1.1 to 200, More preferably, 3 to: LOO is desirable. This value is the gas composition ratio at the inlet of the reactor. For example, when toluene is used as one of the carbon sources, toluene is decomposed 100% in the reactor and methane and benzene are 1 : In consideration of what occurs in 1, it is sufficient to supply the shortage of methane separately. For example, if the molar ratio of methane to benzene is 3, add 2 moles of methane to 1 mole of toluene. Note that methane to be added to toluene is not limited to the method of preparing fresh methane separately, but unreacted methane contained in the exhaust gas discharged from the reactor is circulated and used. It is also possible to use it.
[0064] このような範囲内の組成比とすることで、炭素繊維部および粒状部のいずれもが十 分を発達した構造を有する炭素繊維構造体を得ることが可能となる。  [0064] By setting the composition ratio within such a range, it is possible to obtain a carbon fiber structure having a structure in which both the carbon fiber portion and the granular portion are sufficiently developed.
[0065] なお、雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い ることがでさる。  [0065] Note that an inert gas such as argon, helium, xenon, or hydrogen can be used as the atmospheric gas.
[0066] また、触媒としては、鉄、コバルト、モリブデンなどの遷移金属あるいはフエ口セン、 酢酸金属塩などの遷移金属化合物と硫黄あるいはチォフェン、硫化鉄などの硫黄化 合物の混合物を使用する。  [0066] Further, as the catalyst, a mixture of transition metals such as iron, cobalt and molybdenum, transition metal compounds such as iron cene and acetate metal salts, and sulfur compounds such as sulfur, thiophene and iron sulfide is used.
[0067] 中間体の合成は、通常行われている炭化水素等の CVD法を用い、原料となる炭 化水素および触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に 導入し、 800〜1300°Cの温度で熱分解する。これにより、外径が 15〜: LOOnmの繊 維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元 構造を有する炭素繊維構造体(中間体)が複数集まった数 cm力 数十センチの大き さの集合体を合成する。 [0067] The synthesis of the intermediate is carried out by using a CVD method such as hydrocarbon, which is usually performed, and evaporating the mixed liquid of hydrocarbon and catalyst as raw materials and introducing hydrogen gas or the like into the reactor as a carrier gas. And pyrolyze at a temperature of 800-1300 ° C. As a result, a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which the fibers having an outer diameter of 15 to: LOOnm are joined together by granular materials grown using the catalyst particles as nuclei. cm force size of several tens of centimeters Synthesize the aggregate.
[0068] 原料となる炭化水素の熱分解反応は、主として触媒粒子な 、しこれを核として成長 した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒 子ないし粒状体より一定方向に進むことで、繊維状に成長する。し力しながら、本発 明に係る炭素繊維構造体を得る上においては、このような熱分解速度と成長速度と のノ ランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異 なる少なくとも 2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質 を成長させることなぐ粒状体を中心として三次元的に炭素物質を成長させる。もちろ ん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスに のみ依存するものではなぐ触媒粒子の結晶面選択性、反応炉内における滞留時間 、炉内温度分布等によっても影響を受け、また、前記熱分解反応と成長速度とのバラ ンスは、上記したような炭素源の種類のみならず、反応温度およびガス温度等によつ ても影響受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、 炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素 物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバラン スを意図的に変化させることで、上記したような炭素物質の成長方向を一定方向とす ることなく、制御下に多方向として、本発明に係るような三次元構造を形成することが できるものである。なお、生成する中間体において、繊維相互が粒状体により結合さ れた前記したような三次元構造を容易に形成する上では、触媒等の組成、反応炉内 における滞留時間、反応温度、およびガス温度等を最適化することが望ましい。  [0068] The thermal decomposition reaction of the hydrocarbon as a raw material is mainly produced on the surface of granular particles that are grown using the catalyst particles as a nucleus, and the recrystallization of carbon generated by the decomposition is caused by the catalyst particles or granular materials. By proceeding in a certain direction, it grows in a fibrous form. However, in order to obtain the carbon fiber structure according to the present invention, the tolerance between the thermal decomposition rate and the growth rate is intentionally changed, for example, as described above, the decomposition temperature as a carbon source. By using at least two or more different carbon compounds, the carbon material is grown three-dimensionally around the granular material that does not grow the carbon material only in one-dimensional direction. Of course, the growth of such three-dimensional carbon fibers is not dependent only on the balance between the pyrolysis rate and the growth rate, but the crystal face selectivity of the catalyst particles, the residence time in the reactor, The temperature distribution is also affected, and the balance between the pyrolysis reaction and the growth rate is affected not only by the type of carbon source as described above but also by the reaction temperature and gas temperature. In general, when the growth rate is faster than the pyrolysis rate as described above, the carbon material grows in a fibrous form, whereas when the pyrolysis rate is faster than the growth rate, the carbon material becomes a catalyst particle. Grows in the circumferential direction. Therefore, by intentionally changing the balance between the thermal decomposition rate and the growth rate, the growth direction of the carbon material as described above is made to be a multi-direction under control without making the growth direction constant. Such a three-dimensional structure can be formed. In order to easily form a three-dimensional structure as described above in which the fibers are bonded together by granular materials in the produced intermediate, the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas It is desirable to optimize the temperature and the like.
[0069] なお、本発明に係る炭素繊維構造体を効率良く製造する方法としては、上記したよ うな分解温度の異なる 2つ以上の炭素化合物を最適な混合比にて用いるアプローチ 以外に、反応炉に供給される原料ガスに、その供給口近傍において乱流を生じさせ るアプローチを挙げることができる。ここでいう乱流とは、激しく乱れた流れであり、渦 卷、ヽて流れるような流れを ヽぅ。  [0069] As a method for efficiently producing the carbon fiber structure according to the present invention, a reactor other than the above-described approach using two or more carbon compounds having different decomposition temperatures at an optimum mixing ratio is used. One approach is to generate turbulent flow in the vicinity of the supply port of the source gas supplied to the tank. The turbulent flow here is a turbulent flow that is a vortex and a flow that rushes.
[0070] 反応炉においては、原料ガスが、その供給口より反応炉内へ導入された直後にお いて、原料混合ガス中の触媒としての遷移金属化合物の分解により金属触媒微粒子 が形成されるが、これは、次のような段階を経てもたらされる。すなわち、まず、遷移 金属化合物が分解され金属原子となり、次いで、複数個、例えば、約 100原子程度 の金属原子の衝突によりクラスター生成が起こる。この生成したクラスターの段階では 、微細炭素繊維の触媒として作用せず、生成したクラスター同士が衝突により更に集 合し、約 3ηπ!〜 lOnm程度の金属の結晶性粒子に成長して、微細炭素繊維の製造 用の金属触媒微粒子として利用されることとなる。 [0070] In the reaction furnace, metal catalyst fine particles are formed by decomposition of the transition metal compound as a catalyst in the raw material mixed gas immediately after the raw material gas is introduced into the reaction furnace from the supply port. This is brought about through the following steps. That is, first, the transition The metal compound is decomposed into metal atoms, and then cluster formation occurs by collision of a plurality of metal atoms, for example, about 100 atoms. At the stage of this generated cluster, it does not act as a catalyst for fine carbon fibers, and the generated clusters further gather together by collision, resulting in about 3ηπ! It grows to crystalline particles of about lOnm and is used as metal catalyst fine particles for the production of fine carbon fibers.
[0071] この触媒形成過程において、上記したように激しい乱流による渦流が存在すると、 ブラウン運動のみの金属原子又はクラスター同士の衝突と比してより激しい衝突が可 能となり、単位時間あたりの衝突回数の増加によって金属触媒微粒子が短時間に高 収率で得られ、又、渦流によって濃度、温度等が均一化されることにより粒子のサイ ズの揃った金属触媒微粒子を得ることができる。さらに、金属触媒微粒子が形成され る過程で、渦流による激しい衝突により金属の結晶性粒子が多数集合した金属触媒 微粒子の集合体を形成する。このようにして金属触媒微粒子が速やかに生成される ため、炭素化合物の分解が促進されて、十分な炭素物質が供給されることになり、前 記集合体の各々の金属触媒微粒子を核として放射状に微細炭素繊維が成長し、一 方で、前記したように一部の炭素化合物の熱分解速度が炭素物質の成長速度よりも 速いと、炭素物質は触媒粒子の周面方向にも成長し、前記集合体の周りに粒状部を 形成し、所期の三次元構造を有する炭素繊維構造体を効率よく形成する。なお、前 記金属触媒微粒子の集合体中には、他の触媒微粒子よりも活性の低 ヽな ヽしは反 応途中で失活してしまった触媒微粒子も一部に含まれていることも考えられ、集合体 として凝集するより以前にこのような触媒微粒子の表面に成長していた、あるいは集 合体となった後にこのような触媒微粒子を核として成長した非繊維状ないしはごく短 い繊維状の炭素物質層が、集合体の周縁位置に存在することで、本発明に係る炭 素繊維構造体の粒状部を形成しているものとも思われる。  [0071] In this catalyst formation process, if there is a vortex due to a strong turbulent flow as described above, a more intense collision is possible as compared to a collision between metal atoms or clusters with only Brownian motion, and a collision per unit time. By increasing the number of times, the metal catalyst fine particles can be obtained in a high yield in a short time, and the concentration, temperature, etc. can be made uniform by the vortex flow to obtain metal catalyst fine particles having a uniform particle size. Furthermore, in the process of forming the metal catalyst fine particles, an aggregate of metal catalyst fine particles in which a large number of metal crystalline particles are gathered is formed by vigorous collision due to the vortex. Since the metal catalyst fine particles are generated promptly in this way, the decomposition of the carbon compound is promoted and sufficient carbon material is supplied, and each metal catalyst fine particle of the aggregate is radially formed as a nucleus. On the other hand, if the thermal decomposition rate of some of the carbon compounds is faster than the growth rate of the carbon material as described above, the carbon material also grows in the circumferential direction of the catalyst particles, A granular portion is formed around the aggregate to efficiently form a carbon fiber structure having an intended three-dimensional structure. The aggregate of metal catalyst fine particles may include catalyst fine particles that are less active than other catalyst fine particles or that have been deactivated during the reaction. The non-fibrous or very short fibrous shape that has grown on the surface of such a catalyst fine particle before agglomerating as an aggregate, or has grown with such a catalyst fine particle as a nucleus after becoming an aggregate. This carbon material layer is considered to form the granular part of the carbon fiber structure according to the present invention by being present at the peripheral position of the aggregate.
[0072] 反応炉の原料ガス供給口近傍にお!、て、原料ガスの流れに乱流を生じさせる具体 的手段としては、特に限定されるものではなぐ例えば、原料ガス供給口より反応炉 内に導出される原料ガスの流れに干渉し得る位置に、何らかの衝突部を設ける等の 手段を採ることができる。前記衝突部の形状としては、何ら限定されるものではなぐ 衝突部を起点として発生した渦流によって十分な乱流が反応炉内に形成されるもの であれば良いが、例えば、各種形状の邪魔板、パドル、テーパ管、傘状体等を単独 であるいは複数組み合わせて 1な 、し複数個配置すると 、つた形態を採択することが できる。 [0072] In the vicinity of the raw material gas supply port of the reaction furnace, there is no particular limitation on the specific means for generating a turbulent flow in the raw material gas flow. It is possible to adopt a means such as providing some kind of collision part at a position where it can interfere with the flow of the raw material gas led out to. The shape of the collision part is not limited at all. Sufficient turbulent flow is formed in the reactor by the vortex generated from the collision part. However, for example, when a plurality of baffle plates, paddles, taper tubes, umbrellas, and the like having various shapes are used alone or in combination, a plurality of shapes can be adopted.
[0073] このようにして、触媒および炭化水素の混合ガスを 800〜1300°Cの範囲の一定温 度で加熱生成して得られた中間体は、炭素原子力もなるパッチ状のシート片を貼り合 わせたような (生焼け状態の、不完全な)構造を有し、ラマン分光分析をすると、 ンドが非常に大きぐまた、 G'バンドが小さぐ欠陥が多い。また、生成した中間体は 、未反応原料、非繊維状炭化物、タール分および触媒金属を含んでいる。  [0073] In this way, the intermediate obtained by heating the catalyst and hydrocarbon mixed gas at a constant temperature in the range of 800 to 1300 ° C is pasted with patch-like sheet pieces that also contain carbon nuclear power. It has a combined (incomplete, burnt-in) structure, and when subjected to Raman spectroscopic analysis, there are many defects with very large and small G 'bands. Further, the produced intermediate contains unreacted raw material, non-fibrous carbide, tar content and catalytic metal.
このような中間体力 これら残留物を除去し、欠陥が少ない所期の炭素繊維構造体 を得るために、適切な方法で 1600〜3000°Cの高温熱処理する。  In order to remove these residues and obtain the desired carbon fiber structure with few defects, high-temperature heat treatment at 1600 to 3000 ° C is performed by an appropriate method.
[0074] すなわち、例えば、この中間体を 800〜1200°Cで加熱して未反応原料やタール分 などの揮発分を除去した後、 1600〜3000°Cの高温でァニール処理することによつ て所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。 なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガスや微量の 一酸ィ匕炭素ガスを添加してもよ ヽ。  [0074] That is, for example, this intermediate is heated at 800 to 1200 ° C to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 1600 to 3000 ° C. Thus, the desired structure is prepared, and at the same time, the catalyst metal contained in the fiber is removed by evaporation. At this time, in order to protect the material structure, a reducing gas or a trace amount of carbon monoxide or carbon dioxide may be added to the inert gas atmosphere.
[0075] 前記中間体を 1600〜3000°Cの範囲の温度でァニール処理すると、炭素原子か らなるパッチ状のシート片は、それぞれ結合して複数のグラフエンシート状の層を形 成する。  [0075] When the intermediate is annealed at a temperature in the range of 1600 to 3000 ° C, the patch-like sheet pieces made of carbon atoms are bonded together to form a plurality of graph-ensheet-like layers.
[0076] なお、当該高温熱処理をする段階において、前記中間体とホウ素とを混合しておく ことにより、炭素繊維構造体にホウ素を含有せしめる(ドーピングする)ことができる。こ こで、炭素繊維構造体にホウ素を効率良く含有せしめるためには、中間体とホウ素と をよく混合し、これらが均一に接触するようにすることが必要である。そのためには、ホ ゥ素(またはホウ素化合物)の粒子はできるだけ粒径の小さいものを使用することが好 ましい。粒子が大きいと部分的に高濃度領域が発生することになり、固結化の原因に なりかねない。具体的にはホウ素の粒度は平均粒径で 100 m以下、好ましくは 50 μ m以下、より好ましくは 20 m以下とする。また、ホウ素源として硼酸等を用いる場 合は、溶液添加し、予め溶剤を蒸発させる方法や加熱過程で溶剤を蒸発する方法も 用いることができる。溶液を均一に混合すれば溶剤蒸発後はホウ素化合物を繊維表 面に均一に付着させることができる。 [0076] In addition, in the stage of performing the high temperature heat treatment, boron can be contained (doped) in the carbon fiber structure by mixing the intermediate and boron. Here, in order to efficiently contain boron in the carbon fiber structure, it is necessary to mix the intermediate and boron well so that they are in uniform contact. For this purpose, it is preferable to use fluorine (or boron compound) particles having the smallest possible particle size. If the particles are large, a high-concentration region is partially generated, which may cause solidification. Specifically, the average particle size of boron is 100 m or less, preferably 50 μm or less, more preferably 20 m or less. When boric acid or the like is used as the boron source, a method of adding a solution and evaporating the solvent in advance or a method of evaporating the solvent during the heating process can be used. If the solution is mixed uniformly, the boron compound will be It can be uniformly attached to the surface.
[0077] また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当 平均径を数 cmに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当 平均径を 50〜: L00 mに粉砕処理する工程とを経ることで、所望の円相当平均径を 有する炭素繊維構造体を得る。なお、解砕処理を経ることなぐ粉砕処理を行っても 良い。また、本発明に係る炭素繊維構造体を複数有する集合体を、使いやすい形、 大きさ、嵩密度に造粒する処理を行っても良い。さら〖こ好ましくは、反応時に形成さ れた上記構造を有効に活用するために、嵩密度が低い状態 (極力繊維が伸びきつた 状態でかつ空隙率が大きい状態)で、ァニール処理するとさらに榭脂への導電性付 与に効果的である。  [0077] Further, before or after such high-temperature heat treatment, a step of crushing the circle-equivalent mean diameter of the carbon fiber structure to several cm, and a circle-equivalent mean diameter of the crushed carbon fiber structure Through a step of pulverizing to 50 to L00 m to obtain a carbon fiber structure having a desired equivalent circular average diameter. In addition, you may perform the grinding | pulverization process which does not pass through a crushing process. Moreover, you may perform the process which granulates the aggregate | assembly which has two or more carbon fiber structures based on this invention in the shape, size, and bulk density which are easy to use. More preferably, in order to effectively utilize the above structure formed during the reaction, annealing is further performed in a state where the bulk density is low (a state in which fibers are stretched as much as possible and a porosity is large). Effective for imparting conductivity to fat.
[0078] 本発明にお 、て用いられる微細炭素繊維構造体は、  [0078] The fine carbon fiber structure used in the present invention comprises:
A)嵩密度が低い、  A) Low bulk density,
B)榭脂等のマトリックスに対する分散性が良い、  B) Good dispersibility in matrix such as rosin
C)導電性が高い、  C) High conductivity,
D)熱伝導性が高い、  D) High thermal conductivity,
E)摺動性が良い、  E) Good slidability,
F)化学的安定性が良い、  F) Good chemical stability,
G)熱的安定性が高い、  G) High thermal stability,
などの特性があり、これらを活力して後述するような榭脂、セラミックス、金属等の固体 材料に対する複合材料用フイラ一として広い範囲に利用でき、本発明に係る複合材 料とすることができる。  And can be used in a wide range as a composite material filler for solid materials such as resin, ceramics, and metals as will be described later, and can be used as a composite material according to the present invention. .
[0079] 次に、本発明の複合材料において、前述のごとき炭素繊維構造体を分散させるマト リックスとしては、有機ポリマー、無機材料、金属等が好ましく使用することができ、有 機ポリマーが最も好ましい。  [0079] Next, in the composite material of the present invention, as the matrix for dispersing the carbon fiber structure as described above, an organic polymer, an inorganic material, a metal, or the like can be preferably used, and an organic polymer is most preferable. .
[0080] 有機ポリマーとして、例えばポリプロピレン、ポリエチレン、ポリスチレン、ポリ塩化ビ -ル、ポリアセタール、ポリエチレンテレフタレート、ポリカーボネート、ポリビニルァセ テート、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、 ポリビュルアルコール、ポリフエ-レンエーテル、ポリ(メタ)アタリレート及び液晶ポリ マー等の各種熱可塑性榭脂、エポキシ榭脂、ビュルエステル榭脂、フエノール榭脂、 不飽和ポリエステル榭脂、フラン榭脂、イミド榭脂、ウレタン榭脂、メラミン榭脂、シリコ ーン榭脂およびユリア榭脂等の各種熱硬化性榭脂、天然ゴム、スチレン 'ブタジエン ゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、エチレン 'プロピレンゴム(E PDM)、 -トリルゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ウレタンゴ ム、シリコーンゴム、フッ素ゴム、アクリルゴム(ACM)、ェピクロロヒドリンゴム、ェチレ ンアクリルゴム、ノルボルネンゴム及び熱可塑性エラストマ一等の各種エラストマ一が 挙げられる。 [0080] Examples of the organic polymer include polypropylene, polyethylene, polystyrene, polyvinyl chloride, polyacetal, polyethylene terephthalate, polycarbonate, polyvinyl acetate, polyamide, polyamide imide, polyether imide, polyether ether ketone, polybutyl alcohol, polyphenol. Renether, poly (meth) acrylate and liquid crystal poly Various types of thermoplastic resins such as mer, epoxy resins, bulle ester resins, phenol resins, unsaturated polyester resins, furan resins, imide resins, urethane resins, melamine resins, silicone resins and Various thermosetting resins such as urea resin, natural rubber, styrene 'butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), ethylene' propylene rubber (E PDM), -tolyl rubber (NBR), Various elastomers such as chloroprene rubber (CR), butyl rubber (IIR), urethane rubber, silicone rubber, fluorine rubber, acrylic rubber (ACM), epichlorohydrin rubber, ethylene acrylic rubber, norbornene rubber and thermoplastic elastomer are available. Can be mentioned.
[0081] また、有機ポリマーは、接着剤、繊維、塗料、インキ等の各種組成物の形態であつ てもよい。  [0081] The organic polymer may be in the form of various compositions such as adhesives, fibers, paints, and inks.
[0082] すなわち、マトリックス力 例えば、エポキシ系接着剤、アクリル系接着剤、ウレタン 系接着剤、フエノール系接着剤、ポリエステル系接着剤、塩ィ匕ビニル系接着剤、ユリ ァ系接着剤、メラミン系接着剤、ォレフィン系接着剤、酢酸ビュル系接着剤、ホットメ ルト系接着剤、シァノアクリレート系接着剤、ゴム系接着剤及びセルロース系接着剤 等の接着剤、アクリル繊維、アセテート繊維、ァラミド繊維、ナイロン繊維、ノボロイド 繊維、セルロース繊維、ビスコースレーヨン繊維、ビ-リデン繊維、ビニロン繊維、フッ 素繊維、ポリアセタール繊維、ポリウレタン繊維、ポリエステル繊維、ポリエチレン繊維 、ポリ塩ィ匕ビニル繊維及びポリプロピレン繊維等の繊維、さらにフエノール榭脂系塗 料、アルキド榭脂系塗料エポキシ榭脂系塗料、アクリル榭脂系塗料、不飽和ポリエス テル系塗料、ポリウレタン系塗料、シリコーン系塗料、フッ素榭脂系塗料、合成樹脂 ェマルジヨン系塗料等の塗料であってよ 、。  [0082] That is, matrix strength For example, epoxy adhesive, acrylic adhesive, urethane adhesive, phenol adhesive, polyester adhesive, vinyl chloride adhesive, urea adhesive, melamine Adhesives, olefinic adhesives, butyl acetate adhesives, hot melt adhesives, cyanoacrylate adhesives, rubber adhesives and cellulose adhesives, acrylic fibers, acetate fibers, aramid fibers, Fibers such as nylon fiber, novoloid fiber, cellulose fiber, viscose rayon fiber, vinylidene fiber, vinylon fiber, fluorine fiber, polyacetal fiber, polyurethane fiber, polyester fiber, polyethylene fiber, polyvinyl chloride fiber and polypropylene fiber Furthermore, phenolic resin, epoxy resin alkyd resin Fat-based coating, acrylic 榭脂 based paints, unsaturated Poriesu ether-based paints, polyurethane based paints, silicone paints, fluorine 榭脂 based paint, a paint such as a synthetic resin Emarujiyon based paints.
[0083] 無機材料としては、例えばセラミック材料又は無機酸ィ匕物ポリマー力もなる。好まし い具体例としては、カーボンカーボンコンポジットなどの炭素材料、ガラス、ガラス繊 維、板ガラス及び他の成形ガラス、ケィ酸塩セラミクス並びに他の耐火性セラミタス、 例えば酸ィ匕アルミニウム、炭化ケィ素、酸化マグネシウム、窒化ケィ素、窒化ホウ素及 び酸化ジルコニウムが挙げられる。  [0083] As the inorganic material, for example, a ceramic material or an inorganic oxide polymer force can be used. Preferred examples include carbon materials such as carbon carbon composites, glass, glass fiber, sheet glass and other molded glass, silicate ceramics and other refractory ceramics such as acid aluminum, carbon carbide, Examples include magnesium oxide, silicon nitride, boron nitride, and zirconium oxide.
[0084] また、マトリクスが金属である場合、適切な金属としては、アルミニウム、マグネシウム 、鉛、銅、タングステン、チタン、ニオブ、ハフニウム、バナジウム、並びにこれらの合 金及び混合物が挙げられる。 [0084] When the matrix is a metal, suitable metals include aluminum, magnesium, lead, copper, tungsten, titanium, niobium, hafnium, vanadium, and combinations thereof. Gold and mixtures are mentioned.
[0085] さらに、本発明の複合材料には、上述した炭素繊維構造体に加えて他の充填剤を 含んでいてもよぐそのような充填剤としては例えば、金属微粒子、シリカ、炭酸カル シゥム、炭酸マグネシウム、カーボンブラック、ガラス繊維、炭素繊維などが挙げられ 、これらを一種または二種以上組み合わせて用いることができる。  [0085] Further, the composite material of the present invention may contain other fillers in addition to the carbon fiber structure described above. Examples of such fillers include metal fine particles, silica, calcium carbonate. , Magnesium carbonate, carbon black, glass fiber, carbon fiber, and the like. These can be used alone or in combination of two or more.
[0086] 本発明の複合材料は、前記のようなマトリックスに前述の炭素繊維構造体を有効量 含む。  [0086] The composite material of the present invention includes an effective amount of the above-described carbon fiber structure in the matrix as described above.
その量は、複合材料の用途やマトリックスによって異なる力 凡そ 0. 001%〜30% である。 0. 001%未満では、構造材としての強度の補強効果が小さ力つたり、電気 導電性も十分でない。 30%より多くなると、逆に強度が低下し、塗料、接着剤等の接 着性も悪くなる。本発明の複合材料においては、このようにフィラーとしての炭素繊維 構造体の配合量が比較的低いものであっても、マトリックス中に、微細な炭素繊維を 均一な広がりをもって配置することができ、上述したように電気伝導性、電波遮蔽性、 熱伝導性等に優れた機能材料、強度の高!、構造材料等として有用な複合材料とな るものである。  The amount is about 0.001% to 30% depending on the application of the composite material and the matrix. If it is less than 001%, the reinforcing effect of strength as a structural material is small, and the electrical conductivity is not sufficient. On the other hand, if it exceeds 30%, the strength decreases, and the adhesion of paints, adhesives, etc. also deteriorates. In the composite material of the present invention, even if the amount of the carbon fiber structure as the filler is relatively low, fine carbon fibers can be arranged in the matrix with a uniform spread, As described above, it is a composite material useful as a functional material having excellent electrical conductivity, radio wave shielding properties, thermal conductivity, etc., high strength, and structural material.
[0087] さらに、本発明に係る複合材料に関して、これを、配合される炭素繊維構造体の機 能別に具体例を示すと、次のようなものが例示されるが、もちろん、これらに何ら限定 されるものではない。  [0087] Furthermore, regarding the composite material according to the present invention, specific examples of the composite material according to the function of the carbon fiber structure to be blended are as follows. Is not to be done.
[0088] 1)導電性を利用するもの [0088] 1) Using electrical conductivity
榭脂に混合することによる、導電性榭脂及び導電性榭脂成型体として,例えば包 装材、ガスケット、容器、抵抗体、導電性繊維、電線、接着剤、インク、塗料等に好適 に用いられる。また、榭脂との複合材に加え、無機材料、特にセラミックス、金属等の 材料に添加した複合材においても同様の効果が期待できる。  Suitable for use as, for example, packaging materials, gaskets, containers, resistors, conductive fibers, electric wires, adhesives, inks, paints, etc. It is done. The same effect can be expected for composite materials added to inorganic materials, particularly ceramics, metals, etc., in addition to composite materials with greaves.
[0089] 2)熱伝導性を利用するもの [0089] 2) Using thermal conductivity
上記導電性の利用の場合と同様の用い方ができる。  It can be used in the same manner as in the case of using the conductivity.
[0090] 3)電磁波遮蔽性を利用するもの [0090] 3) Using electromagnetic wave shielding
榭脂に混合することにより、電磁波遮蔽性塗料や成形して電磁波遮蔽材等として好 適である。 [0091] 4)物理的特性を利用するもの By mixing it with rosin, it is suitable as an electromagnetic wave shielding paint or molded electromagnetic wave shielding material. [0091] 4) Using physical properties
摺動性を高めるために榭脂、金属に混合してロール、ブレーキ部品、タイヤ、ベアリ ング、潤滑油、歯車、パンタグラフ等に利用する。  In order to improve slidability, it is mixed with resin and metal and used for rolls, brake parts, tires, bearings, lubricants, gears, pantographs, etc.
[0092] また、軽量で強靭な特性を活かして電線、家電 '車輛'飛行機等のボディ、機械の ハウジングに利用できる。 [0092] Further, it can be used for the body of electric wires, home appliances 'vehicles' airplanes, etc., and housings of machines by utilizing its light weight and tough characteristics.
[0093] このほか、従来の炭素繊維、ビーズの代替としても使用でき、例えば電池の極材、 スィッチ、防振材に応用する。 [0093] In addition, it can also be used as a substitute for conventional carbon fibers and beads, and is applied to, for example, battery pole materials, switches, and vibration-proof materials.
[0094] 5)フィラー特性を利用するもの [0094] 5) Using filler properties
炭素繊維構造体の有する微細繊維は優れた強度を持ち、柔軟性があり、網目構造 を構成するフイラ一特性が優れている。この特性を利用することによって、リチウムィ オン 2次電池、鉛蓄電池、キャパシター、燃料電池等のエネルギーディバイスの電極 の強化とサイクル特性の向上に寄与できる。  The fine fibers of the carbon fiber structure have excellent strength, flexibility, and excellent filler characteristics that constitute a network structure. By utilizing this characteristic, it can contribute to the enhancement of the electrodes of the energy devices such as lithium-ion secondary battery, lead-acid battery, capacitor, fuel cell and the improvement of cycle characteristics.
実施例  Example
[0095] 以下、実施例により本発明を更に詳しく説明するが、本発明は下記の実施例に何 ら限定されるものではない。  [0095] Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples.
なお、以下において、本発明に用いられる炭素繊維構造体の各物性値は次のよう にして測定した。  In the following, each physical property value of the carbon fiber structure used in the present invention was measured as follows.
[0096] <面積基準の円相当平均径>  [0096] <Circular equivalent average diameter based on area>
まず、粉砕品の写真を SEMで撮影する。得られた SEM写真において、炭素繊維 構造体の輪郭が明瞭なもののみを対象とし、炭素繊維構造体が崩れているようなも のは輪郭が不明瞭であるために対象としな力つた。 1視野で対象とできる炭素繊維構 造体 (60〜80個程度)はすべて用い、 3視野で約 200個の炭素繊維構造体を対象と した。対象とされた各炭素繊維構造体の輪郭を、画像解析ソフトウェア WinRoof ( 商品名、三谷商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各繊維構造 体の円相当径を計算し、これを平均化した。  First, take a photograph of the pulverized product with SEM. In the obtained SEM photograph, only the carbon fiber structure with a clear outline was the target, and the carbon fiber structure that was broken was unclear because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view. The contour of each carbon fiber structure is traced using image analysis software WinRoof (trade name, manufactured by Mitani Corporation), the area within the contour is obtained, and the equivalent circle diameter of each fiber structure is calculated. This was averaged.
[0097] <嵩密度の測定 >  [0097] <Measurement of bulk density>
内径 70mmで分散板付透明円筒に lg粉体を充填し、圧力 0. IMpa、容量 1. 3リツ トルの空気を分散板下部力 送り粉体を吹出し、自然沈降させる。 5回吹出した時点 で沈降後の粉体層の高さを測定する。このとき測定箇所は 6箇所とることとし、 6箇所 の平均を求めた後、嵩密度を算出した。 Fill a transparent cylinder with an inner diameter of 70 mm with lg powder, pressure 0. IMpa, capacity 1.3 liters of air. When it blows out 5 times Measure the height of the powder layer after settling. At this time, the number of measurement locations was assumed to be 6, and the average of the 6 locations was obtained, and then the bulk density was calculated.
[0098] <ラマン分光分析 > [0098] <Raman spectroscopy>
堀場ジョバンイボン製 LabRam800を用い、アルゴンレーザーの 514nmの波長を 用いて測定した。  Using a LabRam800 manufactured by Horiba Jobin Yvon, measurement was performed using an argon laser at a wavelength of 514 nm.
<TG燃焼温度 >  <TG combustion temperature>
マックサイエンス製 TG— DTAを用い、空気を 0. 1LZ分の流速で流通させながら 、 10°CZ分の速度で昇温し、燃焼挙動を測定した。燃焼時に TGは減量を示し、 DT Aは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義した。  Using TG-DTA manufactured by Mac Science, the temperature was increased at a rate of 10 ° CZ while circulating air at a flow rate of 0.1 LZ, and the combustion behavior was measured. During combustion, TG shows a decrease in weight and DTA shows an exothermic peak, so the top position of the exothermic peak was defined as the combustion start temperature.
[0099] <粉体抵抗および復元性 >  [0099] <Powder resistance and resilience>
CNT粉体 lgを秤取り、榭脂製ダイス(内寸 L 40mm, W 10mm, H 80mm) に充填圧縮し、変位および荷重を読み取る。 4端子法で定電流を流して、そのときの 電圧を測定し、 0. 9gZcm3の密度まで測定したら、圧力を解除し復元後の密度を測 定した。粉体抵抗については、 0. 5、 0. 8および 0. 9g/cm3に圧縮したときの抵抗 を測定することとする。 CNT powder lg is weighed, filled and compressed into a resin die (inner dimensions L 40mm, W 10mm, H 80mm), and the displacement and load are read. When a constant current was passed by the 4-terminal method, the voltage at that time was measured, and when the density was measured to 0.9 gZcm 3 , the pressure was released and the density after restoration was measured. For powder resistance, the resistance when compressed to 0.5, 0.8 and 0.9 g / cm 3 shall be measured.
[0100] <粒状部の平均粒径、円形度、微細炭素繊維との比 >  [0100] <Average particle size of granular part, circularity, ratio with fine carbon fiber>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。  As with the measurement of the circle-based average diameter based on area, first take a picture of the carbon fiber structure with SEM. In the obtained SEM photographs, only the carbon fiber structure with a clear outline was targeted, and those with a collapsed carbon fiber structure were not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view.
[0101] 対象とされた各炭素繊維構造体にお!、て、炭素繊維相互の結合点である粒状部を 1つの粒子とみなして、その輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷 商事株式会社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計 算し、これを平均化して粒状部の平均粒径とした。また、円形度 (R)は、前記画像解 析ソフトウェアを用いて測定した輪郭内の面積 (A)と、各粒状部の実測の輪郭長さ (L )より、次式により各粒状部の円形度を求めこれを平均化した。  [0101] For each target carbon fiber structure, the particle part, which is the bonding point between carbon fibers, is regarded as one particle, and its outline is image analysis software WinRoof (trade name, Mitani Corp. The area within the contour was obtained, and the equivalent circle diameter of each granular part was calculated and averaged to obtain the average particle diameter of the granular part. Further, the circularity (R) is calculated based on the following equation from the area (A) in the contour measured using the image analysis software and the actual contour length (L) of each granular portion. The degree was obtained and averaged.
[0102] [数 1] R=A X 4 TU ZL2 [0102] [Equation 1] R = AX 4 TU ZL 2
[0103] さらに、対象とされた各炭素繊維構造体における微細炭素繊維の外径を求め、これ と前記各炭素繊維構造体の粒状部の円相当径から、各炭素繊維構造体における粒 状部の大きさを微細炭素繊維との比として求め、これを平均化した。  [0103] Further, the outer diameter of the fine carbon fiber in each of the targeted carbon fiber structures is obtained, and from this and the equivalent circle diameter of the granular portion of each of the carbon fiber structures, the granular portion in each carbon fiber structure Was determined as a ratio to the fine carbon fiber and averaged.
[0104] <粒状部の間の平均距離 >  [0104] <Average distance between granular parts>
面積基準の円相当平均径の測定と同様に、まず、炭素繊維構造体の写真を SEM で撮影する。得られた SEM写真において、炭素繊維構造体の輪郭が明瞭なものの みを対象とし、炭素繊維構造体が崩れているようなものは輪郭が不明瞭であるために 対象としな力つた。 1視野で対象とできる炭素繊維構造体 (60〜80個程度)はすべて 用い、 3視野で約 200個の炭素繊維構造体を対象とした。  As with the measurement of the circle-based average diameter based on area, first take a picture of the carbon fiber structure with SEM. In the obtained SEM photographs, only the carbon fiber structure with a clear outline was targeted, and those with a collapsed carbon fiber structure were not targeted because the outline was unclear. All carbon fiber structures (about 60 to 80) that can be targeted in one field of view were used, and about 200 carbon fiber structures were targeted in three fields of view.
[0105] 対象とされた各炭素繊維構造体において、粒状部が微細炭素繊維によって結ばれ ている箇所を全て探し出し、このように微細炭素繊維によって結ばれる隣接する粒状 部間の距離 (一端の粒状体の中心部力 他端の粒状体の中心部までを含めた微細 炭素繊維の長さ)をそれぞれ測定し、これを平均化した。  [0105] In each of the targeted carbon fiber structures, all the portions where the granular portions are connected by the fine carbon fibers are searched, and the distance between the adjacent granular portions connected by the fine carbon fibers in this way (the granularity at one end) Body center force The length of the fine carbon fiber including the center of the granular material at the other end) was measured and averaged.
[0106] <炭素繊維構造体の破壊試験 >  [0106] <Destructive test of carbon fiber structure>
蓋付バイアル瓶中に入れられたトルエン 100mlに、 30 gZmlの割合で炭素繊維 構造体を添加し、炭素繊維構造体の分散液試料を調製した。  A carbon fiber structure was added to 100 ml of toluene placed in a vial with a lid at a rate of 30 gZml to prepare a dispersion sample of the carbon fiber structure.
[0107] このようにして得られた炭素繊維構造体の分散液試料に対し、発信周波数 38kHz 、出力 150wの超音波洗浄器((株)エスェヌディ製、商品名: USK-3)を用いて、超音 波を照射し、分散液試料中の炭素繊維構造体の変化を経時的に観察した。  [0107] With respect to the carbon fiber structure dispersion liquid sample thus obtained, an ultrasonic cleaner with a transmission frequency of 38 kHz and an output of 150 w (trade name: USK-3, manufactured by SENUDY Co., Ltd.) Ultrasonic waves were irradiated, and changes in the carbon fiber structure in the dispersion sample were observed over time.
[0108] まず超音波を照射し、 30分経過後において、瓶中から一定量 2mlの分散液試料を 抜き取り、この分散液中の炭素繊維構造体の写真を SEMで撮影する。得られた SE M写真の炭素繊維構造体中における微細炭素繊維 (少なくとも一端部が粒状部に 結合している微細炭素繊維)をランダムに 200本を選出し、選出された各微細炭素繊 維の長さを測定し、 D 平均値を求め、これを初期平均繊維長とした。  [0108] First, an ultrasonic wave is irradiated, and after a lapse of 30 minutes, a predetermined amount of 2 ml of the dispersion liquid sample is withdrawn from the bottle, and a photograph of the carbon fiber structure in the dispersion liquid is taken with an SEM. 200 fine carbon fibers (fine carbon fibers with at least one end bonded to the granular part) in the carbon fiber structure of the obtained SEM photograph were randomly selected, and each selected fine carbon fiber was selected. The length was measured to determine the D average value, which was used as the initial average fiber length.
50  50
[0109] 一方、得られた SEM写真の炭素繊維構造体中における炭素繊維相互の結合点で ある粒状部をランダムに 200個を選出し、選出された各粒状部をそれぞれ 1つの粒子 とみなしてその輪郭を、画像解析ソフトウェア WinRoof (商品名、三谷商事株式会 社製)を用いてなぞり、輪郭内の面積を求め、各粒状部の円相当径を計算し、この D [0109] On the other hand, 200 granular parts, which are bonding points between carbon fibers in the carbon fiber structure of the obtained SEM photograph, were randomly selected, and each selected granular part was regarded as one particle. The image analysis software WinRoof (trade name, Mitani Trading Co., Ltd.) To obtain the area within the contour, and calculate the equivalent circle diameter of each granular part.
5 平均値を求めた。そして得られた D 平均値を粒状部の初期平均径とした。  5 Average values were determined. The obtained D average value was used as the initial average diameter of the granular portion.
0 50  0 50
[0110] その後、一定時間毎に、前記と同様に瓶中から一定量 2mlの分散液試料を抜き取 り、この分散液中の炭素繊維構造体の写真を SEMで撮影し、この得られた SEM写 真の炭素繊維構造体中における微細炭素繊維の D 平均長さおよび粒状部の D  [0110] After that, a fixed amount of 2 ml of the dispersion liquid sample was taken out from the bottle at regular time intervals in the same manner as described above, and a photograph of the carbon fiber structure in the dispersion liquid was taken with an SEM. SEM photo D Fine length of carbon fiber in carbon fiber structure and D of granular part
50 50 平均径を前記と同様にして求めた。  The 50 50 average diameter was determined in the same manner as described above.
[0111] そして、算出される微細炭素繊維の D 平均長さが、初期平均繊維長の約半分とな [0111] Then, the calculated D average length of fine carbon fibers is about half of the initial average fiber length.
50  50
つた時点 (本実施例においては超音波を照射し、 500分経過後)における、粒状部の D 平均径を、初期平均径と対比しその変動割合 (%)を調べた。  The D average diameter of the granular portion at the time (in this example was irradiated with ultrasonic waves and after 500 minutes had elapsed) was compared with the initial average diameter, and the fluctuation ratio (%) was examined.
50  50
[0112] <導電性 >  [0112] <Conductivity>
複合材料の試験片を、四探針式低抵抗率計 (ロレスタ GP、三菱ィ匕学製)を用いて 塗膜表面 9箇所の抵抗(Ω )を測定し、同抵抗計により体積抵抗率(Ω 'cm)に換算し 、平均値を算出した。  Using a four-point probe type low resistivity meter (Loresta GP, manufactured by Mitsubishi Igaku), measure the resistance (Ω) of the paint film surface at nine locations on the surface of the composite material, and the volume resistivity ( The average value was calculated in terms of Ω'cm).
[0113] <熱伝導率 > [0113] <Thermal conductivity>
試験片所定の形状に切り出し、レーザーフラッシュ法にて熱伝導率 (WZmK)を測 し 7こ。  Cut the test piece into a predetermined shape and measure the thermal conductivity (WZmK) by laser flash method.
[0114] (実施例 1) [0114] (Example 1)
i)炭素繊維構造体の合成  i) Synthesis of carbon fiber structure
CVD法によって、トルエンを原料として炭素繊維構造体を合成した。  A carbon fiber structure was synthesized using toluene as a raw material by the CVD method.
触媒としてフエ口セン及びチォフェンの混合物を使用し、水素ガスの還元雰囲気で 行った。トルエン、触媒を水素ガスとともに 380°Cに加熱し、生成炉に供給し、 1250 °Cで熱分解して、炭素繊維構造体 (第一中間体)を得た。  The catalyst was a mixture of Huekousen and Thiophene, and the reaction was carried out in a hydrogen gas reducing atmosphere. Toluene and catalyst were heated together with hydrogen gas to 380 ° C, supplied to the production furnace, and pyrolyzed at 1250 ° C to obtain a carbon fiber structure (first intermediate).
[0115] なお、この炭素繊維構造体 (第一中間体)を製造する際に用いられた生成炉の概 略構成を図 6に示す。図 6に示すように、生成炉 1は、その上端部に、上記したような トルエン、触媒および水素ガスからなる原料混合ガスを生成炉 1内へ導入する導入ノ ズル 2を有している力 さらにこの導入ノズル 2の外側方には、円筒状の衝突部 3が設 けられている。この衝突部 3は、導入ノズル 2の下端に位置する原料ガス供給口 4より 反応炉内に導出される原料ガスの流れに干渉し得るものとされている。なお、この実 施例において用いられた生成炉 1では、導入ノズル 2の内径 a、生成炉 1の内径 b、筒 状の衝突部 3の内径 c、生成炉 1の上端カゝら原料混合ガス導入口 4までの距離 d、原 料混合ガス導入口 4から衝突部 3の下端までの距離 e、原料混合ガス導入口 4から生 成炉 1の下端までの距離を fとすると、各々の寸法比は、おおよそ a :b : c : d: e :f=l . 0 : 3. 6 : 1. 8 : 3. 2 : 2. 0 : 21. 0に形成されていた。また、反応炉への原料ガス導入速 度は、 1850NLZmin、圧力は 1. 03atmとした。 [0115] Fig. 6 shows a schematic configuration of a generating furnace used when manufacturing this carbon fiber structure (first intermediate). As shown in FIG. 6, the production furnace 1 has a power having an introduction nozzle 2 for introducing a raw material mixed gas composed of toluene, a catalyst and hydrogen gas as described above into the production furnace 1 at its upper end. Further, a cylindrical collision portion 3 is provided outside the introduction nozzle 2. The collision part 3 can interfere with the flow of the raw material gas introduced into the reactor through the raw material gas supply port 4 located at the lower end of the introduction nozzle 2. This fruit In the generating furnace 1 used in the examples, the inner diameter a of the introducing nozzle 2, the inner diameter b of the generating furnace 1, the inner diameter c of the cylindrical collision part 3, the top end of the generating furnace 1 and the raw material mixed gas inlet 4 The distance from the raw material mixed gas inlet 4 to the lower end of the collision part 3, and the distance from the raw material mixed gas inlet 4 to the lower end of the generating furnace 1, f, a: b: c: d: e: f = l. 0: 3.6: 1.8: 3.2: 2.0: 21.0. The feed gas introduction rate into the reactor was 1850 NLZmin and the pressure was 1.03 atm.
[0116] 上記のようにして合成された中間体を窒素中で 900°Cで焼成して、タールなどの炭 化水素を分離し、第二中間体を得た。この第二中間体のラマン分光測定の R値は 0. 98であった。また、この第一中間体をトルエン中に分散して電子顕微鏡用試料調製 後に観察した SEMおよび TEM写真を図 1、 2に示す。  [0116] The intermediate synthesized as described above was calcined in nitrogen at 900 ° C to separate hydrocarbons such as tar to obtain a second intermediate. The R value of this second intermediate measured by Raman spectroscopy was 0.98. Figures 1 and 2 show SEM and TEM photographs of this first intermediate dispersed in toluene and observed after preparation of an electron microscope sample.
[0117] 次に、この第二中間体と、これに対し 0. 1質量0 /0の B O (Wako Chemical Compan [0117] Next, the a second intermediate, whereas 0.1 mass 0/0 of BO (Wako Chemical Compan
2 3  twenty three
y製)とを、 20分間エタノール中に超音波(KUBOTA UP50H)を用いて均一分散 せしめた。その後、 24時間減圧乾燥した。  y) was uniformly dispersed in ethanol for 20 minutes using ultrasonic waves (KUBOTA UP50H). Thereafter, it was dried under reduced pressure for 24 hours.
[0118] このホウ素を添カ卩した第二中間体をアルゴン中で 2300°Cで高温熱処理し、得られ た炭素繊維構造体の集合体を気流粉砕機にて粉砕し、本発明にお ヽて用いられる 炭素繊維構造体を得た。 [0118] The boron-added second intermediate was heat-treated at 2300 ° C in argon at a high temperature, and the resulting carbon fiber structure aggregate was pulverized by an airflow pulverizer. The carbon fiber structure used was obtained.
[0119] 得られた炭素繊維構造体をトルエン中に超音波で分散して電子顕微鏡用試料調 製後に観察した SEM写真を図 4に示す。 [0119] Fig. 4 shows an SEM photograph of the obtained carbon fiber structure dispersed in toluene with ultrasonic waves and observed after preparation of a sample for an electron microscope.
[0120] また、得られた炭素繊維構造体をそのまま電子顕微鏡用試料ホルダーに載置して 観察した SEM写真を図 5に、またその粒度分布を表 1に示した。 [0120] Fig. 5 shows the SEM photograph of the obtained carbon fiber structure as it is placed on the electron microscope sample holder, and Table 1 shows the particle size distribution.
[0121] また、得られた炭素繊維構造体の円相当平均径は、 75. 8 m、嵩密度は 0. 003[0121] The obtained carbon fiber structure had an equivalent circle average diameter of 75.8 m and a bulk density of 0.003.
5g/cm3、ラマン I /1 比値は 0. 68、 I 5g / cm 3 , Raman I / 1 ratio is 0.668, I
D G G' /\ 比値は 0. 44、 TG燃焼温度は 818°C  D G G '/ \ Ratio value is 0.44, TG combustion temperature is 818 ° C
G  G
、粉体抵抗値は 0. 0048 Ω 'cm、復元後の密度は 0. 33g/cm3であった。 The powder resistance value was 0.0032 Ω'cm, and the density after restoration was 0.33 g / cm 3 .
[0122] さらに炭素繊維構造体における粒状部の粒径は平均で、 452nm (SD208nm)で あり、炭素繊維構造体における微細炭素繊維の外径の 7. 38倍となる大きさであった[0122] Further, the average particle size of the granular portion in the carbon fiber structure was 452 nm (SD208 nm), which was 7.38 times the outer diameter of the fine carbon fiber in the carbon fiber structure.
。また粒状部の円形度は、平均値で 0. 68(SD0. 14)であった。 . The circularity of the granular part was 0.68 (SD 0.14) on average.
[0123] また、前記した手順によって炭素繊維構造体の破壊試験を行ったところ、超音波印 加 30分後の初期平均繊維長(D )は、 13. 0 mであったが、超音波印加 500分後 の平均繊維長 (D )は、6. 8 /z mとほぼ半分の長さとなり、炭素繊維構造体において [0123] Further, when the carbon fiber structure was subjected to a destructive test according to the procedure described above, the initial average fiber length (D) after 30 minutes of ultrasonic application was 13.0 m. 500 minutes later The average fiber length (D) of 6.8 / zm is almost half of the length, and in the carbon fiber structure
50  50
微細炭素繊維に多くの切断が生じたことが示された。し力しながら、超音波印加 500 分後の粒状部の平均径 (D )を、超音波印加 30分後の初期初期平均径 (D )と対  It was shown that many cuts occurred in the fine carbon fibers. The average diameter (D) of the granular part 500 minutes after application of ultrasonic waves was compared with the initial initial average diameter (D) 30 minutes after application of ultrasonic waves.
50 50 比したところ、その変動 (減少)割合は、わずか 4. 7%であり、測定誤差等を考慮する と、微細炭素繊維に多くの切断が生じた負荷条件下でも、切断粒状部自体はほとん ど破壊されることなぐ繊維相互の結合点として機能していることが明ら力となった。  When compared with 50 50, the fluctuation (decrease) rate is only 4.7%, and considering the measurement error, etc., the cut granular part itself does not break even under load conditions where many cuts occur in the fine carbon fiber. It became clear that it functioned as a bonding point between fibers that were hardly destroyed.
[0124] なお、実施例 1で合成した炭素繊維構造体の各種物性値を表 2にまとめた。  [0124] Table 2 summarizes various physical property values of the carbon fiber structure synthesized in Example 1.
[0125] [表 1]  [0125] [Table 1]
[0126] [: [0126] [:
Figure imgf000029_0001
ii)複合材料の生成
Figure imgf000029_0001
ii) Composite material generation
上記 i)で合成した実施例 1の炭素繊維構造体をマトリックス中に含有する、本発明 の複合材料を生成した。  A composite material of the present invention containing the carbon fiber structure of Example 1 synthesized in i) above in the matrix was produced.
具体的には、下記表 3に示す配合にて、上記 i)にて合成した炭素繊維構造体を、 エポキシ樹脂 (アデカレジン、旭電化工業 (株)製)、硬化剤 (アデ力ハードナー、旭電 化工業 (株)製)に配合し、自転一公転型遠心力撹拌機 (あわとり練太郎 AR— 250、 シンキー製)にて 10分間混練し、エポキシ系接着剤組成物を製造した。 Specifically, the carbon fiber structure synthesized in the above i) having the composition shown in Table 3 below was prepared by using an epoxy resin (Adeka Resin, manufactured by Asahi Denka Kogyo Co., Ltd.), a curing agent (Ade force hardener, Asahi Denki). And then kneaded for 10 minutes with a rotating and revolving centrifugal stirrer (Awatori Netaro AR-250, manufactured by Sinky) to produce an epoxy adhesive composition.
[0128] ここで得られたエポキシ系接着剤組成物を、ガラス板上に、塗布幅 100mm、間隙 2 00 mのアプリケータにて塗布し、 170°Cで 30分間保持し、硬化塗膜を作製した。 作製した塗膜を 50mm角に切り出し、試験片を得た。この試験片を用いて体積抵抗 率及び熱伝導率を測定した。その結果を表 3に示す。  [0128] The epoxy adhesive composition obtained here was applied onto a glass plate with an applicator having a coating width of 100 mm and a gap of 200 m, and kept at 170 ° C for 30 minutes to form a cured coating film. Produced. The prepared coating film was cut into a 50 mm square to obtain a test piece. Volume resistivity and thermal conductivity were measured using this test piece. The results are shown in Table 3.
[0129] また、炭素繊維構造体の含有量が 0. 5質量%となるようにして、同様にエポキシ榭 脂被膜を製膜した。  [0129] Further, an epoxy resin film was formed in the same manner so that the content of the carbon fiber structure was 0.5 mass%.
[0130] (比較例 1)  [0130] (Comparative Example 1)
ii)複合材料の生成  ii) Composite material generation
炭素繊維構造体に代えて、市販されているカーボンブラックをマトリクス中に含有する Instead of carbon fiber structure, contains commercially available carbon black in the matrix
、比較例 1の複合材料を生成した。 A composite material of Comparative Example 1 was produced.
具体的な方法は、炭素繊維構造体の代わりにカーボンブラックを用いた点以外は、 上記実施例 1における複合材料の生成と同様である。  The specific method is the same as that for producing the composite material in Example 1 except that carbon black is used instead of the carbon fiber structure.
[0131] 比較例 1の複合材料の試験片を用いて体積抵抗率及び熱伝導率を測定した。そ の結果を上記実施例 1のそれと併記して表 3に示す。 [0131] Using the composite specimen of Comparative Example 1, the volume resistivity and the thermal conductivity were measured. The results are shown in Table 3 together with those of Example 1 above.
[0132] [表 3] [0132] [Table 3]
Figure imgf000030_0001
Figure imgf000030_0001
P-4100E:旭電化工業 (株)製、アデカレジン EP- 4100E;ビスフエノール A型エポキシ 榭脂、エポキシ当量 190 P-4100E: Asahi Denka Kogyo Co., Ltd., Adeka Resin EP-4100E; Bisphenol A type epoxy resin, epoxy equivalent 190
上記表 1からも明らかなように、複合材料を構成する炭素繊維構造体ににホウ素を 含有せしめることにより、体積抵抗率および熱伝導率を向上することができる。  As is apparent from Table 1 above, volume resistivity and thermal conductivity can be improved by incorporating boron into the carbon fiber structure constituting the composite material.

Claims

請求の範囲  The scope of the claims
[I] 外径 15〜: LOOnmの炭素繊維力も構成される 3次元ネットワーク状を呈しており、前 記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有し ており、かつ、当該粒状部は前記炭素繊維の成長過程において形成されてなるもの であり、さらに、ホウ素が含有されているものである炭素繊維構造体を、全体の 0. 00 1〜30質量%の割合でマトリックス中に含有することを特徴する複合材料。  [I] Outer diameter 15 ~: It has a three-dimensional network configuration that also includes the LOOnm carbon fiber force, and has a granular part that binds the carbon fibers to each other in a manner in which a plurality of the carbon fibers extend. And the granular part is formed in the process of growing the carbon fiber, and the carbon fiber structure containing boron is further added to 0.001 to 30% by mass of the whole. A composite material characterized in that it is contained in the matrix in a proportion of
[2] 前記ホウ素の含有量が、前記炭素繊維構造体に対して 0. 001〜2. 1質量%であ ることを特徴とする請求項 1に記載の複合材料。  [2] The composite material according to claim 1, wherein a content of the boron is 0.001 to 2.1% by mass with respect to the carbon fiber structure.
[3] 前記炭素繊維構造体は、面積基準の円相当平均径が 50〜: LOO /z mであることを 特徴とする請求項 1または 2に記載の複合材料。 [3] The composite material according to claim 1 or 2, wherein the carbon fiber structure has an area-based circle-equivalent mean diameter of 50 to LOO / zm.
[4] 前記炭素繊維構造体は、嵩密度が、 0. 0001〜0. 05gZcm3であることを特徴と する請求項 1〜3のいずれ力 1つに記載の複合材料。 [4] The composite material according to any one of [1] to [3], wherein the carbon fiber structure has a bulk density of 0.0001 to 0.05 gZcm 3 .
[5] 前記炭素繊維構造体は、ラマン分光分析法で測定される I 2〜1. 4であ [5] The carbon fiber structure is I 2 to 1.4 measured by Raman spectroscopy.
D Λが 0.  D Λ is 0.
G  G
り、且つ、 I /\が 0· 25-0. 75であることを特徴とする請求項 1〜4のいずれか 1  And I / \ is 0 · 25-0.75. 1.
G' G  G 'G
つに記載の複合材料。  Composite material described in one.
[6] 前記炭素繊維構造体は、空気中での燃焼開始温度が 700°C以上であることを特徴 とする請求項 1〜5のいずれ力 1つに記載の複合材料。  6. The composite material according to any one of claims 1 to 5, wherein the carbon fiber structure has a combustion start temperature in air of 700 ° C or higher.
[7] 前記炭素繊維の結合箇所にお!、て、前記粒状部の粒径が、前記炭素繊維の外径 よりも大きいことを特徴とする請求項 1〜6のいずれか 1つに記載の複合材料。 [7] The carbon fiber bonding portion according to any one of claims 1 to 6, wherein a particle diameter of the granular portion is larger than an outer diameter of the carbon fiber. Composite material.
[8] 前記炭素繊維構造体は、炭素源として、分解温度の異なる少なくとも 2つ以上の炭 素化合物を用いて、生成されたものである請求項 1〜7のいずれか 1つに記載の複合 材料。 [8] The composite according to any one of [1] to [7], wherein the carbon fiber structure is produced using at least two or more carbon compounds having different decomposition temperatures as a carbon source. material.
[9] マトリックスが有機ポリマーを含むものである請求項 1〜8のいずれ力 1つに記載の 複合材料。  [9] The composite material according to any one of [1] to [8], wherein the matrix contains an organic polymer.
[10] マトリックスが無機材料を含むものである請求項 1〜8のいずれか 1つに記載の複合 材料。  [10] The composite material according to any one of claims 1 to 8, wherein the matrix contains an inorganic material.
[II] マトリックスが金属を含むものである請求項 1〜8のいずれか 1つに記載の複合材料 マトリックス中に、金属微粒子、シリカ、炭酸カルシウム、炭酸マグネシウム、カーボ ンブラック、ガラス繊維および炭素繊維力 なる群力 選ばれた少なくとも一種の充 填剤をさらに含むことを特徴とする請求項 1〜11のいずれか 1つに記載の複合材料 [II] The composite material according to any one of claims 1 to 8, wherein the matrix contains a metal. 12. The matrix further comprises at least one filler selected from the group power consisting of metal fine particles, silica, calcium carbonate, magnesium carbonate, carbon black, glass fiber, and carbon fiber strength. A composite material according to any one of
PCT/JP2006/321506 2005-10-28 2006-10-27 Composite material WO2007049748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005315310A JP2007119647A (en) 2005-10-28 2005-10-28 Composite material
JP2005-315310 2005-10-28

Publications (1)

Publication Number Publication Date
WO2007049748A1 true WO2007049748A1 (en) 2007-05-03

Family

ID=37967856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321506 WO2007049748A1 (en) 2005-10-28 2006-10-27 Composite material

Country Status (2)

Country Link
JP (1) JP2007119647A (en)
WO (1) WO2007049748A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138338A (en) * 2005-11-18 2007-06-07 Bussan Nanotech Research Institute Inc Composite material
JP5242124B2 (en) * 2007-10-19 2013-07-24 保土谷化学工業株式会社 Fine carbon fiber and composite material
JP5384372B2 (en) * 2008-02-20 2014-01-08 株式会社大成化研 Method for producing metal material containing carbon nanostructure material and CNT steel produced by the method
JP6397342B2 (en) * 2014-01-27 2018-09-26 積水化学工業株式会社 Exfoliated graphite, exfoliated graphite derivative, exfoliated graphite-resin composite material and production method thereof
CN111060234B (en) * 2019-12-30 2023-11-28 浙江清华柔性电子技术研究院 Functional slurry and application thereof
JP7431970B2 (en) * 2020-06-30 2024-02-15 ポリプラスチックス株式会社 Thermoplastic resin composition, member and method for producing the same, and method for developing electrical conductivity of thermoplastic resin composition
CN115885017B (en) * 2020-06-30 2024-08-23 宝理塑料株式会社 Thermoplastic resin composition, component, method for producing the same, and method for expressing conductivity of thermoplastic resin composition
JP2022015904A (en) * 2020-07-10 2022-01-21 ポリプラスチックス株式会社 Thermoplastic resin composition and member, and method for producing member composed of thermoplastic resin composition and method for improving mechanical strength

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117623A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber with branches
JP2002266140A (en) * 2001-03-01 2002-09-18 Kayoko Origuchi Wearing tool and method for wearing kimono using the same
JP2003081621A (en) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd Nanowire, production method therefor, nanonetwork obtained by using the same, method for producing nanonetwork, carbon structure, and electronic device
JP2003227039A (en) * 2001-11-07 2003-08-15 Showa Denko Kk Fine carbon fiber, method for producing the same and use thereof
JP2004176244A (en) * 2002-11-11 2004-06-24 Showa Denko Kk Vapor grown carbon fiber, and production method and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117623A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber with branches
JP2002266140A (en) * 2001-03-01 2002-09-18 Kayoko Origuchi Wearing tool and method for wearing kimono using the same
JP2003081621A (en) * 2001-09-06 2003-03-19 Fuji Xerox Co Ltd Nanowire, production method therefor, nanonetwork obtained by using the same, method for producing nanonetwork, carbon structure, and electronic device
JP2003227039A (en) * 2001-11-07 2003-08-15 Showa Denko Kk Fine carbon fiber, method for producing the same and use thereof
JP2004176244A (en) * 2002-11-11 2004-06-24 Showa Denko Kk Vapor grown carbon fiber, and production method and use thereof

Also Published As

Publication number Publication date
JP2007119647A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
KR100980186B1 (en) Carbon fiber conjugate and composite material using the same
KR100682445B1 (en) Composite material
WO2010002004A1 (en) Carbon fiber and composite material
JP3776111B1 (en) Carbon fiber structure
WO2007058298A1 (en) Recycled composite material
WO2007058300A1 (en) Composite material
WO2007049748A1 (en) Composite material
WO2007049590A1 (en) Electrically conductive sheet
WO2007058297A1 (en) Carbon fiber structure
WO2007049592A1 (en) Synthetic fiber
WO2007058299A1 (en) Composite material
KR100719421B1 (en) Carbon fibrous structure
WO2007052616A1 (en) Colored polymer composition
WO2007049591A1 (en) Molded fluororesin
JP2006183227A (en) Carbon fiber structure
JP5054915B2 (en) Method for producing carbon fiber structure
WO2007046413A1 (en) Electron emission source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822467

Country of ref document: EP

Kind code of ref document: A1