WO2007026093A1 - Procède de scellement ou de soudure de deux éléments entre eux. - Google Patents

Procède de scellement ou de soudure de deux éléments entre eux. Download PDF

Info

Publication number
WO2007026093A1
WO2007026093A1 PCT/FR2006/050807 FR2006050807W WO2007026093A1 WO 2007026093 A1 WO2007026093 A1 WO 2007026093A1 FR 2006050807 W FR2006050807 W FR 2006050807W WO 2007026093 A1 WO2007026093 A1 WO 2007026093A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
elements
welding
sealing material
wettability
Prior art date
Application number
PCT/FR2006/050807
Other languages
English (en)
Inventor
François Marion
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP06808248A priority Critical patent/EP1919822A1/fr
Priority to JP2008528559A priority patent/JP2009506565A/ja
Publication of WO2007026093A1 publication Critical patent/WO2007026093A1/fr
Priority to US12/013,624 priority patent/US7772041B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/002Aligning microparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0172Seals
    • B81C2203/019Seals characterised by the material or arrangement of seals between parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/032Gluing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • H01L2224/29013Shape in top view being rectangular or square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81053Bonding environment
    • H01L2224/81054Composition of the atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • PROCESS FOR SEALING OR SOLDING TWO ELEMENTS BETWEEN THEM PROCESS FOR SEALING OR SOLDING TWO ELEMENTS BETWEEN THEM.
  • the invention relates to the field of microelectronics, and more particularly that of hybridization and welding techniques, in particular waterproof and hermetic a cover or a protective housing on active components, electrical or electronic.
  • the invention thus relates to the more general field of microcomponents, more conventionally referred to as electronic chips, but also to micro-sensors, micro-actuators, such as MEMs (according to the Anglo-Saxon expression “Micro Electro-Mechanical System”) etc. ....
  • microcomponents that are the subject of the present invention are conventionally deposited on a substrate of appropriate nature, for example of the semiconductor type (monocrystalline silicon, sapphire, etc.) for electronic components.
  • These substrates are provided with electrically conductive tracks, which radiate from the microcomponent in the direction of the periphery of the substrate, in order to allow, in addition to the electrical power supply of the component, if necessary, also, and above all, the treatment and the exploitation of the signals that said component is called to generate, or the control of the functions that it incorporates.
  • these components are encapsulated within a structure of the type housing or protective cover or equivalent, which provides protection against shock, corrosion, parasitic electromagnetic radiation, etc.
  • This cover or housing may further incorporate a transparent window to electromagnetic radiation to be detected by said component, or integrate one or more concentration lenses of said radiation at the component.
  • microcomponents require, for their operation, to work under vacuum or under a controlled atmosphere (pressure, neutral gas, etc.) or in a sealed manner with respect to the ambient atmosphere.
  • a controlled atmosphere pressure, neutral gas, etc.
  • the aforesaid housing or hood is used to define a cavity above said component, containing the controlled atmosphere or a vacuum more or less advanced.
  • various technical problems are grafted during their production.
  • wafer welding on wafer (wafer being the Anglo-Saxon expression dedicated to designate a wafer of a semiconductor substrate). It thus comes to cap the wafer containing the electrical or electronic components or with another wafer in which have already machined one or more cavities specific to define the volume to be confined.
  • Fixing occurs by welding, especially anodic, melting or sintering of the glass.
  • the principle thus implemented if it gives satisfaction in terms of tightness, on the other hand presents some difficulties with regard to the connection. Indeed, the access to interconnect pads or pads to allow the welding of the son of connectors is complex, so that the topology that can be implemented is limited. Moreover, a high welding temperature is generally required, so that it limits quite drastically the number of electronic components that can be implemented within the volumes thus defined.
  • hoods by deposition of thin layers.
  • an active component cavity is formed on a wafer and then capped using thin film sealing techniques.
  • a LPCVD Low Pressure Chemical Vapor Deposition
  • the dimensions of the cover can be reduced to those of the active component.
  • a hood or housing on a wafer by implementing either chips - hood, that is to say that each active component receives a hood, or by the implementation of a larger chip that can cover several active components on a single wafer.
  • This technique is conventionally carried out in several stages: it consists of aligning the cap (s) above the components, all within a chamber capable of providing a controlled atmosphere or, on the contrary, a vacuum enclosure, then sealing the or the covers on the component (s) according to technologies known to those skilled in the art, including implementing a solder joint made for example of indium or tin / lead alloy.
  • FIGS. 1 to 3 show this particular embodiment thus described.
  • a wafer 1 made for example of silicon is reported by conventional techniques an electronic component 3.
  • a surface or wettability zone 5 intended to receive a weld bead 8 made of indium or a tin / lead alloy.
  • the balls 7 defining the caliper supporting the cover 2 are positioned outside the weld bead, the assembly being placed within an enclosure in which the desired controlled atmosphere or vacuum prevails.
  • a simple rise in temperature, sufficient to melt the material constituting the balls 7 and the weld bead 8, makes it possible to induce the lowering of the cover 2 until the latter comes into contact with said weld bead so as to to ensure the tight closure of the cavity thus defined.
  • the balls 7 are also positioned on a wettability surface 6.
  • the underside of the cover 2 also receives wettability surfaces, respectively 5 'and 6'. .
  • cowhide hood type hood rollover techniques requires the realization of the effective sealing operation of the bonnet under controlled atmosphere.
  • thermocompression In order to achieve such a weld without flux, it has been proposed to make the cowling by thermocompression. This technique consists in performing the pressing at a temperature below the melting temperature of the welding material. Said material is generally found on both sides before the welding operation.
  • the AuSn alloy is a material with a high Young's modulus, thus not satisfying this requirement in terms of mechanical properties.
  • the present invention therefore aims at a welding or sealing process, combining both a low cost of implementation, and optimized reliability of the final component.
  • This method of welding or sealing two elements between them positioned within a chamber within which the vacuum or a controlled atmosphere prevails consists of: to achieve on the surfaces facing the elements to be welded, a wettability zone, also called hooked surface; depositing on one of these areas a quantity of suitable sealing material; bringing the wettability zone of the other element into contact with said deposited material; to raise the temperature of the enclosure in which the elements to be welded or sealed are positioned, until at least the melting temperature of the sealing material is reached, in order to ensure the effective sealing of the two elements together by effect of reflow.
  • the wettability zone of the element which has not received the sealing or welding material consists of a layer of gold; the surface of the wettability zone of the element positioned in contact with the sealing material is greater than the surface of the wettability zone on which said material is deposited (so-called UBM layer for the English expression "Under Bump Metallization”"); the sealing material is indium; and the melting of said sealing material in order to effectively seal the two elements together takes place at a temperature greater than 250 ° C. under a non-oxidizing atmosphere, and advantageously greater than 300 ° C.
  • the invention consists in implementing these four cumulative conditions, which makes it possible to use a bead of indium as a sealing material, of which, in known manner, the raw material costs are very much lower those of the alloy gold / tin, and this typically by a factor of 10.
  • the invention consists in carrying out the melting of the sealing material at a temperature that is very much greater than that of the effective melting of the iridium. Indeed, even though the melting temperature of iridium is 156 ° C., the temperature recommended by the invention for sealing is 250 ° C., or even 300 ° C., ie more than 1.6 times. the melting temperature of indium.
  • iridium is a soft or relatively ductile material, and its mechanical properties make it possible: to drastically relax the post-welding stresses between the assembled elements; to develop increased reliability compared with gold-based welds, particularly in relation to the thermal cycling encountered by detectors implementing such technology, these thermal cycling being well known to generate shears and thus rapid failures because of the differences in coefficients of thermal expansion between the materials used.
  • the surface of the wettability zone, and in particular its width when it is a ribbon, of the element positioned on the sealing material is at least one and a half times greater than that of the corresponding surface or size of the underlying wettability zone UBM.
  • the reflow temperature ensuring the effective sealing of the two elements together is greater than 300 ° C.
  • FIGS. 1, 2 and 3 illustrate the prior state of the art
  • FIGS. 1 and 3 being diagrammatic representations in section of a support substrate and a cover, respectively before and after elevation. temperature causing reflow of the sealing bead
  • Figure 2 being a schematic view of the upper face of the substrate.
  • Figure 4 is also a sectional view of a detail of the prior art.
  • Figure 5 is a schematic representation in section of a detail of the general principle of the invention
  • Figure 6 is a schematic sectional view of a hood prior to its sealing on wafer.
  • Figure 4 is a sectional view to illustrate in more detail the prior art.
  • the surfaces S1 and S2 respectively of the so-called "UBM" metallization layer 5 formed on the substrate 1 and of the wettability zone 5 'made on the underside of the cap are substantially of the same dimensions.
  • the weld bead 8 or in general, the sealing material is constituted gold / tin AuSn.
  • FIG. 5, which illustrates the invention, is very clearly intended to indicate the various characteristics that are specific to it.
  • zones of wettability 10 and 11 are used.
  • these wettability zones are made of gold, to the exclusion of any other material.
  • These gold layers surmount a layer acting as a barrier and hooked, typically made of titanium alloy, such as TiNi, TiW, TiPd, etc.
  • the dimensions of the wettability zones 10 and 11, respectively receiving the weld bead 8 and made on the cover 2 are of different geometry.
  • the sealing material is made of indium to the exclusion of any other material.
  • this technology significantly reduces the costs associated with deposition of sealant or solder material by eliminating any photo-masking step while allowing the use of available full-slice solder deposition techniques.
  • the indium layer can be reformed under a deoxidizing flow. It is carried out at a temperature above the melting point of indium, and therefore greater than 156 ° C., and advantageously greater than 170 ° C.
  • This indium layer is deposited on the metallization zone 10 made of gold, platinum or another noble material, and of surface Sl, in this case of width S1.
  • the wettability zone 11, limited to gold, made on the underside of the cap 2 has a surface S2, and in this case it is a ribbon with a width S2 greater than the width.
  • Sl of the metallization zone 10 and typically more than one and a half times greater than the latter.
  • the sealing operation of the cover 2 on the substrate 1 is carried out by reflow at a temperature greater than 250 ° C. It is advantageously greater than 300 ° C. and is carried out under a non-oxidizing atmosphere, typically under vacuum or under a rare gas .
  • This high temperature allows the continuous formation of intermediate gold / indium binary compounds, capable of maintaining the materials of the contact zone between the weld bead 8 or the connecting beads or microbeads 7 in the liquid state during the process of welding, and thus promote hermeticity.
  • This technology makes it possible to achieve collective and simultaneous rollover of many components made on a single semiconductor plate. It also allows hybridization of multi-chip modules to be carried out, without the need for cleaning of any flow and without a time limit which is intimately linked to it.
  • the invention makes it possible to produce infrared detection matrices with bolometric detectors under vacuum on a CMOS plate by transferring caps that are transparent to infrared radiation, and possibly provided with getter layers.
  • caps that are transparent to infrared radiation, and possibly provided with getter layers.
  • hybrid optical components on a silicon bench and tight hoods with possibly the implementation of optical and / or intraconnections on the hood.
  • MEMS collectively covered under vacuum on a CMOS plate by carrying caps possibly provided with getter layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Wire Bonding (AREA)

Abstract

Ce procédé de soudure ou de scellement de deux éléments entre eux positionnés au sein d'une enceinte au sein de laquelle règne le vide ou une atmosphère contrôlée, consiste : à réaliser sur les surfaces en regard des éléments à souder, une zone de mouillabilité 10, 11; dont l'une 11 est constituée d'une couche d'or et présente une surface S2 supérieure à la surface Sl de l'autre zone de mouillabilité ; - à déposer sur l'une 10 de ces zones une quantité de matériau de scellement appropriée, ledit matériau étant constitué d'indium ; à mettre en contact la zone de mouillabilité 11 de l'autre élément sur ledit matériau ainsi déposé ; à élever la température de l'enceinte au sein de laquelle sont positionnés les éléments à souder ou à sceller, jusqu'à atteindre au moins 250 0C sous atmosphère non oxydante, pour assurer le scellement effectif des deux éléments entre eux par effet de refusion.

Description

PROCÈDE DE SCELLEMENT OU DE SOUDURE DE DEUX ÉLÉMENTS ENTRE EUX.
DOMAINE DE L'INVENTION
L'invention concerne le domaine de la microélectronique, et plus particulièrement celui des techniques d'hybridation et de soudure, notamment étanche et hermétique d'un capot ou d'un boîtier de protection sur des composants actifs, électriques ou électroniques.
L'invention se rattache donc au domaine plus général des microcomposants, plus classiquement dénommés puces électroniques, mais également aux micro-capteurs, micro-actuateurs, tels que les MEMs (selon l'expression anglo-saxonne « Micro Electro-mechanical System) etc....
ETAT ANTÉRIEURDE LA TECHNIQUE
Les microcomposants dont il est question dans la présente invention, sont classiquement déposés sur un substrat de nature appropriée, par exemple de type semiconducteur (silicium monocristallin, saphir, etc) pour des composants électroniques.
Ces substrats sont munis de pistes conductrices de l'électricité, qui rayonnent à partir du microcomposant en direction de la périphérie du substrat, afin de permettre outre l'alimentation électrique du composant, le cas échéant, requise, également et surtout le traitement et l'exploitation des signaux que ledit composant est appelé à générer, ou encore le pilotage des fonctions qu'il incorpore.
Dans certains cas, ces composants sont encapsulés au sein d'une structure de type boîtier ou capot de protection ou équivalent, qui permet d'assurer une protection contre les chocs, la corrosion, les rayons électromagnétiques parasites, etc. Ce capot ou boîtier peut en outre intégrer une fenêtre transparente à un rayonnement électromagnétique à détecter par ledit composant, ou intégrer une ou plusieurs lentilles de concentration dudit rayonnement au niveau du composant.
Certains de ces microcomposants nécessitent pour leur fonctionnement de travailler sous vide ou sous atmosphère contrôlée (pression, gaz neutre, etc.) ou de manière étanche par rapport à l'atmosphère ambiante. De fait, le boîtier ou capot précité est mis à contribution afin de définir une cavité au-dessus dudit composant, renfermant l'atmosphère contrôlée ou un vide plus ou moins poussé. Dans le cas particulier de ces microcomposants encapsulés, différents problèmes techniques viennent se greffer lors de leur réalisation.
Tout d'abord, intervient la qualité de l'herméticité de la liaison capot ou boîtier avec le composant pour s'assurer de l'isolation effective dudit composant par rapport aux agents extérieurs, et ce, de manière indépendante de la nature de l'atmosphère alors emprisonnée dans le volume défini.
Il convient ensuite de pouvoir contrôler la nature de l'atmosphère confinée dans ledit volume, imposant de fait que cette atmosphère soit communiquée au sein de ce volume préalablement au scellement, et de manière générale à la fixation du capot sur le composant.
Différentes techniques ont été mises en œuvre à ce jour pour permettre la réalisation d'une telle encapsulation d'un composant électrique ou électronique.
Parmi celles-ci, figure le principe du soudage wafer sur wafer (wafer étant l'expression anglo-saxonne consacrée pour désigner une plaquette d'un substrat semi-conducteur). On vient ainsi coiffer le wafer contenant le ou les composants électriques ou électroniques avec un autre wafer dans lequel ont déjà usinées un ou plusieurs cavités propres à définir le volume à confiner.
La fixation intervient par soudage, notamment anodique, par fusion ou par scellement par frittage du verre. Le principe ainsi mis en œuvre, s'il donne satisfaction sur le plan de l'étanchéité, en revanche présente quelques difficultés s'agissant de la connectique. En effet, l'accès aux plots d'interconnexion ou pads pour permettre le soudage des fils de connectique s'avère complexe, de sorte que la topologie susceptible d'être mise en œuvre est limitée. Au demeurant, une haute température de soudage est généralement requise, de sorte que cela limite de manière assez drastique le nombre de composants électroniques susceptibles d'être mis en œuvre au sein des volumes ainsi définis.
Une autre alternative consiste à réaliser des capots par dépôt de couches minces. Ainsi, une cavité pour composant actif est formée sur un wafer, puis bouchée en utilisant des techniques de scellement en couches minces. Par exemple, on fait croître une couche par LPCVD (« Low Pressure Chemical Vapor Déposition ») ou simplement en recouvrant la cavité. Les dimensions du capot peuvent se réduire à celles du composant actif. Si cette technique est certes complexe à mettre en œuvre, elle présente cependant l'avantage de pouvoir sceller collectivement de nombreux wafers comportant des composants actifs de très petites dimensions.
Enfin, une autre technique consiste à souder un capot ou boîtier sur un wafer, en mettant en œuvre soit des puces - capot, c'est-à-dire que chaque composant actif reçoit un capot, soit encore par la mise en œuvre d'une puce plus large, susceptible de recouvrir plusieurs composants actifs sur un seul wafer.
Cette technique s'effectue classiquement sur plusieurs étapes : elle consiste à aligner le ou les capots au-dessus des composants, le tout au sein d'une enceinte propre à assurer une atmosphère contrôlée ou au contraire une enceinte sous vide, puis à sceller le ou les capots sur le(s) composant(s) selon des technologies connues de l'homme du métier, mettant notamment en œuvre un joint de soudure réalisé par exemple en indium ou en alliage étain/plomb.
On conçoit aisément que, dès lors qu'une multiplicité de ce type d'opérations doit être effectuée, ou que l'on mette en œuvre un support multi - composants, l'installation destinée à assurer ces opérations devient très complexe, attendu que l'ensemble de celles-ci doit être opéré au sein de l'enceinte assurant comme déjà dit le maintien de l'atmosphère contrôlée ou le maintien sous vide. En outre, une telle opération est fortement consommatrice de temps puisqu'elle doit se répéter autant de fois qu'il y a de capots à sceller. Ce faisant, le coût induit s'avère important.
Afin d'optimiser cette durée, on a proposé une solution dans le document FR 2 780 200, qui illustre dans l'une de ses formes de réalisation, la mise en œuvre d'un composant électrique encapsulé. On a représenté en relation avec les figures 1 à 3, cette forme de réalisation particulière ainsi décrite.
Ainsi, sur un wafer 1 réalisé par exemple en silicium, est rapporté par les techniques classiques un composant électronique 3. Sur la surface supérieure 4 du wafer 1 et à la périphérie du composant électronique 3 est réalisée une surface ou zone de mouillabilité 5, destinée à recevoir un cordon de soudure 8 réalisé en indium ou en un alliage étain/plomb. Ce document mentionne également la présence d'une calle constituée de billes 7, également réalisées en un matériau thermofusible, avantageusement identique à celui constitutif du cordon de soudure 8, et sur lesquelles repose un capot 2, propre à définir, avec le wafer 1 et le cordon de soudure 8, la cavité recherchée 9 contenant l'atmosphère contrôlée ou au contraire le vide.
Afin de ménager au sein de ladite cavité 9 l'atmosphère souhaitée, les billes 7 définissant la calle supportant le capot 2 sont positionnées à l'extérieur du cordon de soudure, l'ensemble étant placé au sein d'une enceinte au sein de laquelle règne l'atmosphère contrôlée souhaitée ou le vide. Une simple élévation de température, suffisante pour faire fondre le matériau constitutif des billes 7 et du cordon de soudure 8, permet d'induire l'abaissement du capot 2 jusqu'à ce que ce dernier entre en contact avec ledit cordon de soudure, afin d'assurer la fermeture étanche de la cavité ainsi définie.
Dans la pratique, les billes 7 sont également positionnées sur une surface de mouillabilité 6. De même, afin de favoriser le contact, et surtout l'étanchéité, la face inférieure du capot 2 reçoit également des surfaces de mouillabilité, respectivement 5' et 6'.
Ce faisant, la mise en oeuvre d'une telle technologie permet de gagner un temps considérable par rapport au procédé précédemment décrit. Cette diminution de la durée d'encapsulation est très significative, puisque la durée de mise sous atmosphère contrôlée ou de mise sous vide est très supérieure à la durée du dépôt du capot.
Si sur le plan théorique, la solution technique proposée par ce document s'avère des plus intéressante, la mise en œuvre des techniques de capotage par cordon de soudure de type capot sur wafer impose la réalisation de l'opération de scellement effectif du capot sous atmosphère contrôlée.
Plus précisément, la brasure de l'indium sur une surface réalisée en or nécessite la mise en oeuvre d'agents désoxydants liquides ou gazeux, également dénommée soudure sous flux.
Or, l'utilisation de flux de soudure est prohibée, car la pratique montre qu'un tel flux engendre la présence proscrite de résidus de flux non nettoyables en fin de soudure, en raison même de l'herméticité du scellement opéré. Au surplus, lorsque l'on effectue ce scellement ou cette soudure sous vide, il n'est pas envisageable d'utiliser un flux, attendu que celui-ci dégaze en général lors de l'élévation de température engendrant la fusion pour réaliser la soudure.
Afin de réaliser une telle soudure sans flux, on a proposé de réaliser le capotage par thermocompression. Cette technique consiste à effectuer le pressage à une température inférieure à la température de fusion du matériau de soudure. Ledit matériau se retrouve généralement des deux cotés avant l'opération de soudure.
Cette technique particulière s'avère coûteuse et en outre consommatrice de temps puisque le caractère collectif du scellement est difficile, voire impossible.
On a également proposé afin de solutionner ce problème, de mettre en œuvre un matériau de soudure inoxydable.
On souhaite cependant qu'un tel matériau soit d'un coût de mise en œuvre réduit, notamment au regard du coût engendré par l'utilisation de l'alliage or/étain AuSn, et qu'en outre, les propriétés mécaniques de la structure finale permette une excellente fiabilité du dispositif final, susceptible notamment de résister aux excursions thermiques. On veut également s'affranchir des phénomènes de dégazage, nés de la présence d'éventuels résidus issus du flux de soudure.
Or, l'alliage AuSn est un matériau à fort module d'Young, donc ne satisfaisant pas à cette exigence en termes de propriétés mécaniques.
En d'autres termes, tant les technologies que les matériaux connus de l'art antérieur ne permettent pas de satisfaire le but recherché par la présente invention.
EXPOSE DE L'INVENTION
La présente invention vise donc un procédé de soudure ou de scellement, alliant à la fois un faible coût de mise en œuvre, et une fiabilité optimisée du composant final.
Ce procédé de soudure ou de scellement de deux éléments entre eux positionnés au sein d'une enceinte au sein de laquelle règne le vide ou une atmosphère contrôlée, consiste : à réaliser sur les surfaces en regard des éléments à souder, une zone de mouillabilité, également dénommée surface d'accroché ; à déposer sur l'une de ces zones une quantité de matériau de scellement appropriée ; - à mettre en contact la zone de mouillabilité de l'autre élément sur ledit matériau ainsi déposé ; à élever la température de l'enceinte au sein de laquelle sont positionnés les éléments à souder ou à sceller, jusqu'à atteindre au moins la température de fusion du matériau de scellement, pour assurer le scellement effectif des deux éléments entre eux par effet de refusion.
Selon l'invention : la zone de mouillabilité de l'élément n'ayant pas reçu le matériau de scellement ou de soudure est constituée d'une couche d'or ; - la surface de la zone de mouillabilité de l'élément positionné au contact du matériau de scellement est supérieure à la surface de la zone de mouillabilité sur laquelle est déposée ledit matériau (couche dite UBM pour l'expression anglo- saxonne « Under Bump Metallization ») ; le matériau de scellement est constitué d'indium ; - et la fusion dudit matériau de scellement afin d'aboutir au scellement effectif des deux éléments entre eux intervient à une température supérieure à 250 0C sous atmosphère non oxydante, et avantageusement supérieure à 300 0C.
En d'autres termes, l'invention consiste à mettre en oeuvre ces quatre conditions cumulatives, ce qui permet d'utiliser comme matériau de scellement un cordon d'indium, dont, de manière connue, les coûts en matière première sont très nettement inférieurs à ceux de l'alliage or/étain, et ce typiquement d'un facteur 10.
En outre, l'invention consiste à réaliser la fusion du matériau de scellement à une température très largement supérieure à celle de la fusion effectif de l'iridium. En effet, alors même que la température de fusion de l'iridium est de 156 0C, la température préconisée par l'invention pour réaliser le scellement est de 250 0C, voire même 300 0C, soit plus de 1,6 fois la température de fusion de l'indium.
Ce faisant, on s'affranchit de tout flux pour assurer le scellement, et donc des inconvénients qu'il génère, tout en mettant en oeuvre de l'indium, dont les autres propriétés sont appréciées pour réaliser un cordon de soudure efficace. En effet, l'iridium est un matériau tendre ou relativement ductile, et ses propriétés mécaniques permettent : de relaxer de manière drastique les contraintes post- soudure entre les éléments assemblés ; - de développer une fiabilité accrue par rapport aux soudures à base d'or, notamment en relation avec les cyclages thermiques auxquels sont confrontés les détecteurs mettant en œuvre une telle technologie, ces cyclages thermiques étant bien connus pour générer des cisaillements et donc des défaillances rapides, en raison des différences de coefficients de dilatation thermique entre les matériaux mis en œuvre.
Selon une caractéristique avantageuse de l'invention, la surface de la zone de mouillabilité, et notamment sa largeur lorsqu'il s'agit d'un ruban, de l'élément positionné sur le matériau de scellement, est au moins une fois et demi supérieure à celle de la surface ou de la dimension correspondante de la zone de mouillabilité sous- jacente UBM.
Selon une autre caractéristique avantageuse de l'invention, la température de refusion assurant le scellement effectif des deux éléments entre eux est supérieur à 300 0C.
BREVE DESCRIPTION DES DESSINS
La manière dont l'invention peut être réalisée et les avantages qui en découlent ressortiront mieux des exemples de réalisation qui suivent, donnés à titre indicatif et non limitatif à l'appui des figures annexées.
Comme déjà dit, les figures 1, 2 et 3 illustrent l'état antérieur de la technique, les figures 1 et 3 étant des représentations schématiques en section d'un substrat support et d'un capot, respectivement préalablement et postérieurement à l'élévation de température entraînant la refusion du cordon de scellement, la figure 2 étant une vue schématique de la face supérieure du substrat.
La figure 4 est également une vue en section d'un détail de l'état antérieur de la technique.
La figure 5 est une représentation schématique en section d'un détail du principe général de l'invention, dont la figure 6 est une vue schématique en section d'un capot préalablement à son scellement sur wafer. DESCRIPTION DÉTAILLÉE DE L'INVENTION
La figure 4 est une vue en section visant à illustrer de manière plus détaillée l'état antérieur de la technique.
On peut ainsi observer que les surfaces Sl et S2 respectivement de la couche de métallisation 5 dite « UBM » réalisée sur le substrat 1 et de la zone de mouillabilité 5' réalisée sur la face inférieure du capot sont sensiblement de mêmes dimensions. Dans cet exemple, le cordon de soudure 8, ou de manière générale, le matériau de scellement est constitué
Figure imgf000010_0001
or/étain AuSn.
On s'est largement appesanti sur les inconvénients liés à la mise en œuvre d'un tel matériau de scellement, de sorte qu'il n'y a pas lieu ici d'y revenir plus en détail.
La figure 5 qui illustre l'invention, vise très clairement à indiquer les différentes caractéristiques qui lui sont propres.
Là encore, des zones de mouillabilité 10 et 11 sont mises en oeuvre. Dans la présente invention cependant, ces zones de mouillabilité sont constituées d'or, à l'exclusion de tout autre matériau. Ces couches d'or surmontent une couche faisant fonction de barrière et d'accroché, typiquement réalisée en alliage à base de titane, tel qu'en TiNi, TiW, TiPd, etc.
La réalisation des ces zones s'effectue de manière classique à l'aide des technologies parfaitement connues de l'homme du métier, de sorte qu'il n'y a pas lieu de les décrire ici plus en détail.
Cependant, et selon l'une des caractéristiques de l'invention, les dimensions des zones de mouillabilité 10 et 11, respectivement recevant le cordon de soudure 8 et réalisée sur le capot 2 sont de géométrie différente.
De plus, et selon une autre caractéristique de l'invention, le matériau de scellement est constitué d'indium à l'exclusion de tout autre matériau.
II est déposé par tout moyen tel que l'évaporation, la sérigraphie, l'électrolyse voire par la technique dite d'impression métallique ou d'emboutissage décrite dans la demande de brevet déposée le même jour que la présente demande. En résumé, cette technologie permet de réduire de manière importante les coûts associés au dépôt du matériau de scellement ou de soudure en supprimant toute étape de photo-masquage, tout en permettant l'utilisation des techniques de dépôt de soudure pleine tranche disponibles.
Après dépôt, la couche d'indium peut être remise en forme sous flux désoxydant. Elle est effectuée à une température supérieure à la température de fusion de l'indium, et donc supérieur à 156 0C, et avantageusement supérieure à 170 0C.
Cette couche d'indium est déposée sur la zone de métallisation 10 réalisée en or, en platine ou en un autre matériau noble, et de surface Sl, en l'espèce de largeur Sl.
En revanche, la zone de mouillabilité 11, limitativement constituée d'or, réalisée sur la face inférieure du capot 2 présente une surface S2, et en l'espèce il s'agit d'un ruban d'une largeur S2 supérieure à la largeur Sl de la zone de métallisation 10 et typiquement plus d'une fois et demi supérieure à cette dernière.
L'opération de scellement du capot 2 sur le substrat 1 s'effectue par refusion à une température supérieure à 250 0C. Elle est avantageusement supérieure à 3000C et elle est réalisée sous atmosphère non oxydante, typiquement sous vide ou sous gaz rare.
Cette température élevée permet la formation continue de composés binaires or/indium intermédiaires, susceptibles de maintenir les matériaux de la zone de contact entre le cordon de soudure 8 ou les billes ou micro-billes de connexion 7 à l'état liquide lors du processus de soudure, et ainsi favoriser l'herméticité.
Ce faisant, on dispose d'un scellement à faible prix de revient, à propriétés mécaniques améliorées, donc optimisant la fiabilité du détecteur en résultant, et permettant en outre de réaliser une herméticité collective par la mise en œuvre de la technologie de capotage auto-aligné, telle que décrite dans le document déjà cité FR 2 780 200.
On peut ainsi réaliser le capotage sous vide de bolomètre construit sur une plaque de silicium ainsi que le capotage sous azote de composants optoélectroniques. II est possible, à l'instar des enseignements du document précité, de réaliser simultanément la connexion par billes fusibles (mise en œuvre de la technologie dite « βipchip ») et la réalisation d'une herméticité périphérique au moyen d'un cordon de soudure.
Cette technologie permet donc de réaliser le capotage collectif et simultané de nombreux composants réalisés sur une seule plaque de semi-conducteur. Elle permet également la réalisation d'hybridation de modules à puces multiples, sans nécessiter de nettoyage de quelconque flux et sans limite de temps qui lui est intimement lié.
Ainsi, à titre exemplatif, l'invention permet la réalisation de matrices de détection infrarouge à détecteurs bolométriques sous vide sur plaque CMOS par report de capots transparent au rayonnement infrarouge, et éventuellement munis de couches getter. On peut également citer la réalisation de composants optiques hybrides sur banc silicium et capotes hermétiquement avec éventuellement la mise en œuvre d'optiques et/ou d'intraconnexions sur le capot. Enfin, on peut mentionner la réalisation de MEMS capotées collectivement sous vide sur plaque CMOS par report de capots éventuellement munis de couches getter.

Claims

REVENDICATIONS
1. Procédé de soudure ou de scellement de deux éléments entre eux positionnés au sein d'une enceinte au sein de laquelle règne le vide ou une atmosphère contrôlée, consistant : à réaliser sur les surfaces en regard des éléments à souder, une zone de mouillabilité 10, 11 ; à déposer sur l'une 10 de ces zones une quantité de matériau de scellement appropriée ; - à mettre en contact la zone de mouillabilité 11 de l'autre élément sur ledit matériau ainsi déposé ; à élever la température de l'enceinte au sein de laquelle sont positionnés les éléments à souder ou à sceller, jusqu'à atteindre au moins la température de fusion du matériau de scellement, pour assurer le scellement effectif des deux éléments entre eux par effet de refusion, caractérisé : en ce que la zone de mouillabilité 11 de l'élément n'ayant pas reçu le matériau de scellement est constituée d'une couche d'or ; en ce que la surface S2 de la zone de mouillabilité 11 de l'élément positionné au contact du matériau de scellement est supérieure à la surface
Sl de la zone de mouillabilité 10 sur laquelle est déposée ledit matériau ; en ce que le matériau de scellement est constitué d'indium ; et en ce que la fusion dudit matériau de scellement afin d'aboutir au scellement effectif des deux éléments entre eux intervient à une température supérieure à 250 0C sous atmosphère non oxydante.
2. Procédé de soudure ou de scellement de deux éléments entre eux selon la revendication 1, caractérisé en ce que la surface S2 de la zone de mouillabilité 11, et notamment sa largeur lorsqu'il s'agit d'un ruban, de l'élément positionné sur le matériau de scellement, est au moins une fois et demi supérieure à la surface Sl ou à la dimension correspondante de la zone de mouillabilité sous- jacente 10 ayant reçu le matériau de scellement.
3. Procédé de soudure ou de scellement de deux éléments entre eux selon l'une des revendications 1 et 2, caractérisé en ce que la température de refusion assurant le scellement effectif des deux éléments entre eux est supérieure à 300 0C.
4. Procédé de soudure ou de scellement de deux éléments entre eux selon l'une des revendications 1 à 3, caractérisé en ce que l'un des éléments est constitué par un substrat semi-conducteur, et notamment un wafer ou une plaquette intégrant un ou plusieurs composants actifs.
5. Procédé de soudure ou de scellement de deux éléments entre eux selon l'une des revendications 1 à 4, caractérisé en ce que l'un des éléments est constitué par un capot.
PCT/FR2006/050807 2005-08-30 2006-08-21 Procède de scellement ou de soudure de deux éléments entre eux. WO2007026093A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06808248A EP1919822A1 (fr) 2005-08-30 2006-08-21 Procède de scellement ou de soudure de deux éléments entre eux.
JP2008528559A JP2009506565A (ja) 2005-08-30 2006-08-21 2つの要素を互いにシーリングまたは溶接する方法
US12/013,624 US7772041B2 (en) 2005-08-30 2008-01-14 Method of sealing or welding two elements to one another

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0552612A FR2890067B1 (fr) 2005-08-30 2005-08-30 Procede de scellement ou de soudure de deux elements entre eux
FR0552612 2005-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/013,624 Continuation US7772041B2 (en) 2005-08-30 2008-01-14 Method of sealing or welding two elements to one another

Publications (1)

Publication Number Publication Date
WO2007026093A1 true WO2007026093A1 (fr) 2007-03-08

Family

ID=36581810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/050807 WO2007026093A1 (fr) 2005-08-30 2006-08-21 Procède de scellement ou de soudure de deux éléments entre eux.

Country Status (5)

Country Link
US (1) US7772041B2 (fr)
EP (1) EP1919822A1 (fr)
JP (1) JP2009506565A (fr)
FR (1) FR2890067B1 (fr)
WO (1) WO2007026093A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2473285A (en) * 2009-09-08 2011-03-09 Astron Advanced Materials Ltd Low temperature joining process
US8393526B2 (en) * 2010-10-21 2013-03-12 Raytheon Company System and method for packaging electronic devices
US9369066B2 (en) 2011-02-10 2016-06-14 Epcos Ag MEMS device comprising an under bump metallization
CN102371410A (zh) * 2011-09-07 2012-03-14 中国航天科技集团公司第九研究院第七七一研究所 一种在晶圆上真空钎焊制作无空洞高可靠凸点的工艺
CN102923638B (zh) * 2012-11-08 2016-02-03 姜利军 气密封装组件以及封装方法
FR3008228B1 (fr) 2013-07-02 2015-07-17 Commissariat Energie Atomique Procede d'assemblage de deux composants electroniques, de type flip-chip par recuit uv, assemblage obtenu
JP6314690B2 (ja) * 2014-06-26 2018-04-25 株式会社島津製作所 真空容器の形成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238951B1 (en) * 1993-05-28 2001-05-29 Commissariat A L'energie Atomique Process for producing a sealing and mechanical strength ring between a substrate and a chip hybridized by bumps on the substrate
US6566170B1 (en) * 1998-06-22 2003-05-20 Commissariat A L'energie Atomique Method for forming a device having a cavity with controlled atmosphere

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206245A (ja) * 1985-03-08 1986-09-12 Sumitomo Metal Mining Co Ltd ハ−メチツクシ−ルカバ−及びその製造方法
US5448014A (en) * 1993-01-27 1995-09-05 Trw Inc. Mass simultaneous sealing and electrical connection of electronic devices
US6008071A (en) * 1995-09-20 1999-12-28 Fujitsu Limited Method of forming solder bumps onto an integrated circuit device
JP2000307016A (ja) * 1999-04-19 2000-11-02 Hitachi Ltd 半導体装置、半導体モジュール及びその製造方法
US6969667B2 (en) * 2002-04-01 2005-11-29 Hewlett-Packard Development Company, L.P. Electrical device and method of making
US6879035B2 (en) * 2003-05-02 2005-04-12 Athanasios J. Syllaios Vacuum package fabrication of integrated circuit components
US20050253282A1 (en) * 2004-04-27 2005-11-17 Daoqiang Lu Temperature resistant hermetic sealing formed at low temperatures for MEMS packages

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238951B1 (en) * 1993-05-28 2001-05-29 Commissariat A L'energie Atomique Process for producing a sealing and mechanical strength ring between a substrate and a chip hybridized by bumps on the substrate
US6566170B1 (en) * 1998-06-22 2003-05-20 Commissariat A L'energie Atomique Method for forming a device having a cavity with controlled atmosphere

Also Published As

Publication number Publication date
US20080110013A1 (en) 2008-05-15
JP2009506565A (ja) 2009-02-12
FR2890067B1 (fr) 2007-09-21
FR2890067A1 (fr) 2007-03-02
EP1919822A1 (fr) 2008-05-14
US7772041B2 (en) 2010-08-10

Similar Documents

Publication Publication Date Title
EP3169625B1 (fr) Procédé de fabrication d'un dispositif comprenant un boîtier hermétique sous vide et un getter
WO2007026093A1 (fr) Procède de scellement ou de soudure de deux éléments entre eux.
WO1999067818A1 (fr) Dispositif et procede de formation d'un dispositif presentant une cavite a atmosphere controlee
EP1243903B1 (fr) Détecteurs de rayonnement et procédés pour les fabriquer
FR2791811A1 (fr) Composant electrique ou electronique encapsule de maniere etanche
EP2308797B1 (fr) Structure à cavité comportant une interface de collage à base de matériau getter
EP1108677B1 (fr) Procédé d'encapsulation hermétique in situ de microsystèmes
FR2705832A1 (fr) Procédé de réalisation d'un cordon d'étanchéité et de tenue mécanique entre un substrat et une puce hybridée par billes sur le substrat.
EP1760041A2 (fr) Procédé d'encapsulation d'un composant, notamment électrique ou électronique au moyen d'un cordon de soudure amélioré
FR2964094A1 (fr) Assemblage d'objets par l'intermediaire d'un cordon de scellement comportant des composes intermetalliques
EP2022588B1 (fr) Procédé de soudure de deux éléments entre eux au moyen d'un matériau de brasure
EP2171752B1 (fr) Procédé d'enrobage de deux éléments hybrides entre eux au moyen d'un matériau de brasure
EP1427008B1 (fr) Procédé de fabrication d'un module électronique comportant un composant actif sur une embase
EP1824779B1 (fr) Dispositif et procede de fermeture hermetique d'une cavite d'un compose electronique
EP3031775B1 (fr) Procede de realisation d'une connexion electrique dans un via borgne
EP2571045B1 (fr) Procédé d'hybridation flip-chip pour la formation de cavites hermétiques et systèmes obtenus par un tel procédé
EP2009697B1 (fr) Procédé pour la réalisation d'une matrice de détection de rayonnements électromagnétiques et procédé pour remplacer un module élémentaire d'une telle matrice de détection
WO2024134059A1 (fr) Procédé de scellement eutectique de deux substrats
CH703289A2 (fr) Dispositif d'encapsulage pour MEMS.
FR2878506A1 (fr) Procede de conditionnement de micro-composants et ensemble de micro-composants en resultant
FR2857508A1 (fr) Procede pour la realisation d'un detecteur de rayonnements electromagnetiques, et notamment de rayonnements infrarouges, et detecteur ontenu au moyen de ce procede
FR2949903A1 (fr) Procede d'hybridation de composants electroniques, notamment de detection
FR2968647A1 (fr) Circuit comportant un composant recouvert d'un capot, procede pour realiser un tel circuit et dispositif pour la mise en oeuvre dudit procede

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12013624

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006808248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008528559

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006808248

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 12013624

Country of ref document: US