WO2006131998A1 - Fire alarm system - Google Patents

Fire alarm system Download PDF

Info

Publication number
WO2006131998A1
WO2006131998A1 PCT/JP2005/016505 JP2005016505W WO2006131998A1 WO 2006131998 A1 WO2006131998 A1 WO 2006131998A1 JP 2005016505 W JP2005016505 W JP 2005016505W WO 2006131998 A1 WO2006131998 A1 WO 2006131998A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
receiver
time slot
fire detector
received
Prior art date
Application number
PCT/JP2005/016505
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Nagata
Hideki Kasai
Takashi Fujii
Satoshi Hirata
Gon Mozumi
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to EP05782278A priority Critical patent/EP1855260B1/en
Priority to DK05782278.5T priority patent/DK1855260T3/en
Priority to DE602005023219T priority patent/DE602005023219D1/en
Priority to AT05782278T priority patent/ATE479174T1/en
Publication of WO2006131998A1 publication Critical patent/WO2006131998A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/007Details of data content structure of message packets; data protocols
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/007Wireless interrogation

Definitions

  • the present invention relates to a fire alarm system including a plurality of fire detectors for detecting a fire and a receiver for receiving a fire signal by receiving a signal of each fire detector force, and more specifically, fire detection.
  • the present invention relates to a fire alarm system in which a receiver and a receiver communicate with each other wirelessly.
  • Japanese Patent No. 3029716 is provided with a plurality of fire detectors for detecting a fire, and a receiver for receiving a signal of each fire detector power and notifying the fire, A fire alarm system that communicates wirelessly with the receiver is disclosed.
  • each fire detector receives a response indicating its own operating status such as battery information. Send the message back to the receiver. Based on the received response message, the receiver determines whether or not the fire detector has a failure (eg, a battery is dead).
  • the fire alarm system in the above document adopts the CSMA method (Carrier Sense Multiple Access Method), which checks the available frequency and transmits data in order to avoid communication collisions.
  • CSMA Carrier Sense Multiple Access Method
  • the receiver power is required for each fire detector in turn.
  • a polling method to send a message and a fire detector that sent a receiver response message send an acknowledgment (ACK), and each fire detector sends a response message until an acknowledgment is received
  • ARQ automatic retransmission Request
  • token ring method registered trademark
  • the transmission frequency of the receiver increases in proportion to the number of fire detectors.
  • a wireless fire alarm system uses a frequency that does not require a license, but such a frequency does not require a transmission time duty (that is, an allowable transmission time per unit time (1 hour)).
  • the duty must be less than 0.1%. Therefore, in the polling method and the ARQ method, if the number of fire detectors increases, the duty exceeds the limit, so the number of fire detectors cannot be increased so much.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a fire alarm system that can reliably avoid a collision even if the frequency of regular communication is high.
  • a fire alarm system includes a plurality of fire detectors and receivers.
  • Each of the fire detectors includes a sensing means for sensing a fire and a wireless transmission / reception means for transmitting / receiving a wireless signal to / from the receiver.
  • the wireless transmission / reception means is configured to detect the fire when the sensing means senses a fire. Periodic communication is performed with the receiver, which transmits a radio signal to the receiver and informs the receiver of the operation state of each fire detector at predetermined time intervals.
  • the receiver includes: a wireless transmission / reception unit that transmits / receives a wireless signal to / from each of the fire detectors; and a notification unit that notifies a fire to the outside when the received wireless signal includes fire detection information. Prepare.
  • a feature of the present invention is that each of the fire detectors and the receiver includes a receiver side force, one downstream time slot to the fire detector side, and a plurality of fire detectors to the receiver side.
  • Wireless communication is performed using a super frame composed of a plurality of frames composed of upstream time slots.
  • the wireless signal is transmitted by being assigned to one of the uplink time slots. Therefore, in the fire alarm system of the present invention, each fire detector transmits a radio signal in a separate uplink time slot, so that it is possible to reliably avoid a collision even if the frequency of regular communication is high.
  • the receiver transmits a synchronization signal to all the fire detectors at least in a downstream time slot in the first frame included in the superframe.
  • Each fire detector determines the start timing of the upstream time slot assigned to itself, based on the time when the synchronization signal is received. In this case, all the fire detectors can operate in synchronism by receiving the synchronization signal and performing individual synchronization adjustments. In addition, the reception timing of the downlink time slot of the next frame can be obtained from the timing at which the synchronization signal is received and the frame period, and each fire detector performs the reception operation only during the time period in which the downlink time slot is received. As a result, wasteful power consumption can be reduced.
  • the receiver transmits a reply request message for requesting the periodic communication in the same downlink time slot as the synchronization signal to all the fire detectors,
  • Each fire detector that has received the reply request message transmits a response message to the receiver in an uplink time slot assigned to the fire detector, informing the operation state of the fire detector.
  • regular communication can be performed without increasing the frequency of transmission from the receiver to each fire detector.
  • the fire assigned to the upstream time slot that could not be received in the downstream time slot of the next frame the fire assigned to the upstream time slot that could not be received in the downstream time slot of the next frame.
  • the fire detector that retransmits the reply request message to the sensor and receives the reply request message again sends the response message to the receiver in the next upstream time slot assigned to the fire sensor. Send. in this case
  • the receiver does not receive the response message in any uplink time slot, the receiver is assigned to the uplink time slot that could not be received in the downlink time slot of the next frame. Resend the reply request message to the fire detector, The fire detector that has received the reply request message may transmit the response message to the receiver again in a plurality of arbitrary upstream time slots. In this case, periodic communication can be performed more reliably by returning a response message using a plurality of arbitrary uplink time slots.
  • the receiver when the receiver cannot receive the response message in any uplink time slot, the receiver is assigned to the uplink time slot that could not be received in the downlink time slot of the next frame.
  • the fire detector that has received the reply request message by re-sending the reply request message by designating one or more upstream time slots that have received the reply message to the fire sensor,
  • the response message may be transmitted to the receiver again in the uplink time slot. In this case, it is possible to reliably perform regular communication by sending back a response message using a time slot that has been successfully received.
  • the receiver when the receiver cannot receive the response message in any uplink time slot, the receiver designates a different uplink time slot for each frame and sends the reply request message.
  • the fire detector that has retransmitted and received the reply request message may transmit the response message to the receiver again in the designated uplink time slot. In this case, regular communication can be reliably performed by returning a response message while changing the uplink time slot.
  • the receiver determines one transmission time from the transmission time allowed in the superframe, the time required for one uplink Z downlink time slot, and the number of uplink time slots in one frame. Obtain the upper limit of the number of transmissions to each fire detector power receiver allowed in the superframe, and transmit the number of transmissions below the upper limit to all the fire detectors together with the reply request message. Each fire detector that has received the reply request message transmits the response message to the receiver in an uplink time slot assigned to the fire detector until the number of transmissions is reached within one superframe. May be. In this case, regular communication can be reliably performed by returning a response message repeatedly while satisfying the transmission time limit set when using a frequency that does not require a license.
  • the receiver includes detection means for detecting the signal strength of the received radio signal, and the receiver transmits the radio sensor having a relatively high signal strength to the fire detector. It is preferable that the number of transmissions to the fire detector that has transmitted a radio signal with a relatively low signal strength and a relatively low signal strength is relatively increased within the upper limit. In this case, it is possible to reduce unnecessary traffic while reliably performing regular communication.
  • each fire detector transmits fire detection information to the receiver in the next upstream time slot assigned to the fire detector when the sensing means detects the fire. Is preferred. In this case, it is possible to reliably notify the receiver of the fire without causing the fire detection information to collide with wireless signals such as response messages and fire detection information transmitted from other fire detectors.
  • the receiver when the receiver receives the fire detection information, the receiver transmits a confirmation message to the fire detector that has transmitted the fire detection information in the next downlink time slot, and the fire detection information is transmitted.
  • the fire detector that transmitted the information transmits the fire detection information to the receiver in an uplink time slot assigned to the fire detector until the confirmation message is received.
  • the fire detection information can be reliably transmitted to the receiver.
  • each of the fire detectors has a unique address, and the lower address of the unique address corresponds to the position of the upstream time slot assigned to the fire detector. In this case, it is not necessary for each fire detector to store the upstream time slot position separately from the unique address of the fire detector.
  • each of the fire detectors when transmitting a radio signal to the receiver, serves as information indicating the fire detector of the transmission source, and the higher address excluding the lower address. Send address.
  • each fire detector needs to transmit only the upper address excluding the lower address from the unique address. Good transmission time can be shortened, and as a result, power consumption can be reduced.
  • each of the fire detectors measures a time from when reception of the time slot including the synchronization signal is completed until reception of the time slot including the synchronization signal is started in the next superframe.
  • An error is calculated between the time measured by the timer and the timing of actually receiving the time slot including the synchronization signal, and the subsequent measurement time of the timer is corrected using the error. .
  • the error of the operation clock of the receiver and each fire detector can be corrected, and the receiver and each fire detector can be surely synchronized.
  • FIG. 1 is a block diagram of a fire alarm system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of each fire detector of the fire alarm system of FIG.
  • FIG. 3 is a block diagram of a receiver of the fire alarm system in FIG. 1.
  • FIG. 4 is a diagram for explaining a data format used in the fire alarm system of FIG.
  • FIG. 5 is a diagram for explaining a configuration of a super frame used in the fire alarm system of FIG. 1.
  • FIG. 6 is a flowchart for explaining the operation of the fire detector of the fire alarm system of FIG.
  • FIG. 7 is a diagram illustrating a timer used for the fire detector of the fire alarm system in FIG. 1.
  • FIG. 8 is a diagram for explaining the operation of the fire alarm system of FIG. 1.
  • FIG. 9 is a flowchart for explaining the operation of the fire detector of the fire alarm system of FIG.
  • FIG. 10 is a diagram for explaining the operation of the fire alarm system of FIG. 1.
  • FIG. 11 is a diagram for explaining another operation of the fire alarm system of FIG. 1.
  • FIG. 12 is a flowchart for explaining another operation of the fire alarm system of FIG.
  • FIG. 13 is a flowchart for explaining another operation of the fire alarm system in FIG. 1.
  • FIG. 14 is a diagram for explaining another operation of the fire alarm system of FIG. 1.
  • FIG. 15 is a diagram for explaining another operation of the fire alarm system of FIG. 1.
  • FIG. 1 shows a configuration diagram of a fire alarm system according to an embodiment of the present invention.
  • This fire alarm system consists of one receiver 1 and six fire detectors 10 ⁇ : LO.
  • the fire detectors 10 to 10 are installed, for example, on the ceiling of the facility.
  • a radio signal is sent between the sensing unit 11 that senses a fire by detecting temperature changes and smoke generated by the fire, and a receiver 1 that modulates and demodulates the data format described below to a carrier wave of a specified frequency.
  • Wireless transmission / reception unit 12 for transmitting and receiving, battery power supply unit 14 for supplying power to each unit using a battery, switch 16 for opening / closing between battery power supply unit 14 and wireless transmission / reception unit 12, wireless transmission / reception unit 12 and A control unit 13 for controlling the switch 16 and an antenna 15 for transmitting and receiving radio signals are provided.
  • the control unit 13 is mainly composed of a microcomputer and a nonvolatile memory such as an EEPROM, and a program for executing various processes is stored in the nonvolatile memory.
  • the wireless transmission / reception unit 12 transmits a wireless signal to the receiver 1 when the detection unit 11 detects a fire, and performs periodic communication with the receiver to notify the receiver 1 of the operation state of the device at predetermined time intervals. Between.
  • Each fire detector 10 is given a unique address, which will be described later, at the time of manufacture or construction, and is stored in the nonvolatile memory of the control unit 13.
  • the receiver 1 is installed in a management room of a building, for example, and modulates and demodulates a data format to be described later to a carrier wave of a prescribed frequency as shown in FIGS.
  • Wireless transmitter / receiver 2 that transmits / receives wireless signals to / from each fire detector 10 to 10
  • Operation switch 3a for setting the alarm, liquid crystal display 3b for performing a fire alarm and various displays, and a notification unit 3 including a speaker 3c for sounding an alarm sound, an alarm message, etc. 3 includes a control unit 4 that performs control 3, a power supply unit 5 that supplies power to each unit of commercial power, and an antenna 6 that transmits and receives radio signals.
  • the control unit 4 mainly consists of a microcomputer and a nonvolatile memory such as an EEPROM, and programs for executing various processes are stored in the nonvolatile memory.
  • a unique address different from that of the fire detector 10 is assigned to the receiver 1 at the time of manufacture or construction, and is stored in the non-volatile memory of the control unit 4.
  • the receiver 1 and each of the fire detectors 10 to 10 wirelessly communicate using a frequency that does not require a license. I do. For this reason, it must satisfy radio characteristics in accordance with low-power security and specific low-power wireless standards in Japan, FCC Regulations Part 15 Subpart C in the US, and Short Range Device standards in Europe.
  • FIG. 4 shows.
  • This data format is a 32-bit preamble PR (bit synchronization pattern) in which 1 and 0 alternate, a 16-bit unique word UW (frame synchronization pattern) consisting of a specified bit string, and a fire alarm system.
  • 32 A unique system ID (SysID) of bits, an 8-bit unique sensor ID (Node ID) assigned to each fire sensor 10, a 16-bit message Msg, and a 16-bit error detection code CRC Composed. That is, the unique address of each fire sensor is the system ID + sensor ID, and the unique address of receiver 1 is the system ID.
  • the sensor ID of that fire sensor 10 is designated as the sensor ID (NodelD) of the data format, and all When broadcasting a message to fire detector 10, specify “0 (zero)” for the sensor ID in the data format. Also, when each fire sensor returns to Receiver 1, set its own sensor ID to the sensor ID of the data format and send it.
  • Each fire detector or receiver 1 that has received the radio signal amplifies the received signal at the radio transmission / reception units 12, 2, demodulates the data format, and outputs it to the control units 13, 4.
  • the control units 13 and 4 sample the data demodulated by the radio transmission / reception units 12 and 2 at the digital input port of the microcomputer, extract the bit timing during reception of the preamble PR, and then receive the next 16 bits of reception. A unique word is detected by shifting the bits one bit at a time until they match the specified unique word. Next, the control units 13 and 4 compare the received system ID and sensor ID with the unique addresses stored in the non-volatile memory, and if they match and no bit error is detected. The message Msg is received and the preprogrammed process is performed.
  • the message Msg includes a reply request message in which the receiver 1 requests periodic communication to the fire detector 10, a response message to the reply request message, fire detection information to inform the receiver 1 of the occurrence of a fire, and the like. is there.
  • the receiver 1 can insert a synchronization signal into the message Msg and transmit the message Msg including the synchronization signal to the fire detector 10.
  • the fire detector 10 that has received the synchronization signal uses the timing at which the synchronization signal is received as a reference, the timing at which the upstream time slot assigned to itself starts, and the time slot that includes the synchronization signal in the next superframe. Determine the time to start receiving.
  • wireless communication between the receiver 1 and each of the fire detectors 10 to 10 is sometimes performed.
  • FIG. 5 shows the configuration of the superframe used for the wireless communication of this embodiment.
  • This super frame SF is composed of 30 frames F1 to F30.
  • Each frame has one time slot B in the downstream direction (receiver side ⁇ fire detector side) and 99 upstream directions (fire). It consists of upstream time slots D1 to D99 on the sensor side ⁇ receiver side).
  • the time required for each time slot B, D1 to D99 is 0.1 second, the time required for each frame is 10 seconds, and the period of the superframe is 300 seconds.
  • the breakdown of each time slot B, D1 to D99 is that the data format shown in Fig.
  • the radio transceivers 2 and 12 of the receiver 1 and fire detector 10 are activated to stabilize the carrier frequency.
  • the start-up time for transmitting with is 20 milliseconds and the guard time is around 15 milliseconds.
  • the guard time is a free time for absorbing a timing difference caused by an error in the operation clock frequency of the fire detector 10 and the receiver 1 (the operation clock frequency of the microcomputer configuring the control units 13 and 4).
  • Each fire detector 10 to 10 is connected to any one of the different upstream time slots D1 to D99.
  • the assignment can be set by the dip switch provided for each fire detector 10 ⁇ 10.
  • the slot number is stored in the non-volatile memory of the controller 13, or there is! / ⁇ assigns each fire detector 10 in order from the receiver 1 using wireless communication at the time of installation.
  • There are methods such as storing in the non-volatile memory of the control unit 13.
  • the sensor ID lower address
  • the control unit 13 of each fire detector has a non-volatile memory function. From the lower address of the stored unique address, the own uplink slot number is determined. In this case, it is possible to save the trouble of storing the slot number separately from the unique address and setting the slot number separately.
  • receiver 1 sends a reply request message to each fire detector, and each fire detector 10 ⁇ : LO that received the reply request message
  • the content of the response message is the presence or absence of an abnormality in the fire detector (for example, the battery voltage has dropped below a threshold value or a malfunction has occurred in the sensing unit 11). If there is an error in the response message, the receiver 1 displays the detector ID of the fire detector 10 that returned the response message on the notification unit 3, etc. Inform about the occurrence.
  • the control unit 4 of the receiver 1 sets the sensor ID of the data format to "0" in the downstream time slot B of the first frame F1 of the superframe SF. Set and send a reply request message including a synchronization signal to all fire detectors 10 as message Msg.
  • the control unit 13 closes the switch 16 to supply power to the wireless transmission / reception unit 12, and a response request message including a synchronization signal is sent. Until it is received (steps SI and S2 in Fig. 6).
  • each fire detector 10 When each fire detector 10 receives the reply request message including the synchronization signal, the control unit 13 opens the switch 16 to stop the power supply to the wireless transmission / reception unit 12 and stop the reception (step of FIG. 6). S3). Each fire detector 10 simultaneously activates the first timer, the second timer, and the third timer built in the microcomputer of the control unit 13 (step S4 in FIG. 6).
  • the third timer counts the time from reception of downlink time slot B to reception of downlink time slot B in the next frame.
  • the time required for each frame is 10 seconds
  • each fire detector 10 sends a response message to the wireless transmission / reception unit 1 2 when the count of the second timer ends (that is, in the upstream time slot Di allocated to the own device). After the transmission, each fire detector starts the 4th timer built in the microcomputer (Steps S5 and S6 in Fig. 6).
  • the fourth timer counts from the end time of the uplink time slot Di assigned to the own device to the start time of the uplink time slot Di assigned to the own device in the next frame.
  • the fourth timer allows each fire detector to determine the start timing of the upstream time slot Di assigned to itself in the next frame.
  • the fourth timer counts 10 ⁇ 0.1.9.9 from the end time of the upstream time slot Di.
  • each fire detector waits until the third timer ends and the message Msg from the receiver 1 is sent in the downlink time slot B of the next frame (step S7 in FIG. 6).
  • control unit 4 of the receiver 1 receives a response message returned from each fire detector 10 while the third timer is activated, that is, in the upstream time slots D1 to D99.
  • the control unit 4 knows that the reception was successful as the message Msg in the downstream time slot B of the second frame F2.
  • a reception completion message is broadcast to all fire detectors 10.
  • the control unit 13 closes the switch 16 again to operate the wireless transmission / reception unit 12 and receives the downlink time slot B from the receiver 1. After receiving, the third timer is started again (step S8 in Fig. 6).
  • step S9 in FIG. 6 the control unit 13 of the fire detector 10 switches until the first timer is completed. 16 is opened to stop the operation of the radio transmission / reception unit 12 (step S10 in FIG. 6), and when the first timer ends and the next superframe SF starts, the switch 16 is closed again and the downlink time Slot B is received (step S11 in Fig. 6), and the operations from step S4 above are repeated.
  • receiver 1 may not be able to normally receive the response message from the fire detector due to the influence of noise, interference waves, and the like.
  • receiver 1 designates the ID of the fire detector that cannot be received as the sensor ID of the data format in FIG. 4 and substitutes for the reception completion message in downstream time slot B of the next frame F2.
  • a reply request message is sent to the fire detector. For example, as shown in Fig. 8, if receiver 1 is unable to receive a response message of 10 fire detectors,
  • Receiver 1 specifies the ID of fire detector 10 as the detector ID, and the downstream time of frame F2
  • T indicates a transmission state
  • R indicates a reception state
  • each fire detector receives the downstream time slot B of the next frame F2, but the fire detectors other than fire detector 10 have the data format sent.
  • step S9 and S12 in Fig. 6 Since the sensor ID does not match the ID of its own device, the data is discarded (steps S9 and S12 in Fig. 6), switch 16 is opened until the end of the third timer, wireless transmitter / receiver 12 is stopped, and reception is completed. Steps S7, S8, S9 and S12 are repeated until a completion message is received.
  • control unit 13 of the fire detector 10 performs the downstream time of the second frame F2.
  • a reception completion message is sent as a message Msg to all fire detectors.
  • the receiver can successfully receive the response message from the fire detector 10
  • receiver 1 If there are multiple fire detectors that are unable to receive the response message, receiver 1 detects each fire in the second and subsequent frames F2, F3, ... within the upper limit of the number of transmissions. A reply request message may be transmitted to the device.
  • each fire detector uses the second and fourth timers to determine the start timing of the upstream time slot assigned to the fire detector based on the time when the synchronization signal is received. .
  • each fire detector uses the third timer to perform the receiving operation only during the time period for receiving downlink time slot B, thus reducing unnecessary power consumption.
  • each fire detector that has finished regular communication uses the first timer 1 to stop the operation of the wireless transmission / reception unit 12 until the reception timing of the next superframe synchronization signal. Can be reduced.
  • each receiver 1 since the receiver 1 transmits a reply request message to all the fire detectors in the same downlink time slot B as the synchronization signal, each receiver 1 receives each response even if the number of fire detectors increases. Regular communication can be performed without increasing the frequency of transmission to the fire detector.
  • the transmission time duty is less than 0.1%. The knowledge system meets this limitation.
  • the upper limit L1 of the number of transmissions from the receiver 1 to the fire sensor is the limit value of the transmission time duty. Limited by. For example, according to the European Radio Law mentioned above, the limit value of the duty cycle of the European Alarm frequency is 0.1%, so the upper limit L1 of the transmission time per hour is
  • the time T of the downlink time slot is 0.1 second.
  • the upper limit of the number of transmissions to the fire detector is
  • the limit of 36 times per hour is observed, for example, if receiver 1 is unable to receive a response message normally, it will transmit downlink time slot B in several consecutive frames, It is also possible to prohibit transmission of downlink time slot B in the frame after processing is complete.
  • the upper limit of the number of transmissions may be stored in the nonvolatile memory of the control unit 4 or the like. Note that the upper limit of 36 transmissions per hour is between receiver 1 and each fire detector 10-: LO.
  • each fire detector 10 detects a fire with the sensing unit 11, it determines whether or not the second timer is counting (step Sl in FIG. 9). If the second timer is counting, when the second timer ends, that is, in the upstream time slot Di of the frame F1, the fire that informs the detection of fire instead of the periodic communication response message.
  • the sensing information is transmitted as message Msg to receiver 1, and the fourth timer is started after transmission (steps S2 and S3 in FIG. 9). If the count of the second timer has expired, the fire detector will detect when the fourth timer expires, that is, the upstream time slot assigned to itself in a frame. Di sends fire detection information to receiver 1 and starts the fourth timer after transmission (steps S7 and S3 in Fig. 9).
  • the receiver 1 that has received the fire detection information transmits a fire detection information reception completion message to the fire detector that is the transmission source of the fire detection information.
  • the system administrator is notified of the fire using the liquid crystal display 3b and speaker 3c of the receiver 1.
  • step S4 in FIG. 9 the fire detector that transmitted the fire detection information closes switch 16 to receive the next downlink time slot B, and after receiving the third timer, Start again (step S5 in FIG. 9). If the content of message Msg in downlink time slot B is a fire detection information reception completion message, the fire detector that sent the fire detection information returns to the main routine (flow chart in FIG. 6) (step S6 in FIG. 9). .
  • the receiver 1 If the reception completion message of the fire detection information is not received, the receiver 1 has received the fire detection information normally, and there is a possibility that the fire will be detected when the fourth timer expires. Resend disaster detection information (steps S8 and S3 in FIG. 9). Until the reception completion message is received from receiver 1, steps S3 to S6 and S8 in FIG. 9 are repeated to reliably notify receiver 1 of the occurrence of a fire.
  • Fire detector 1 Suppose a fire is detected before the uptime slot D3 of sensor 10. Fire detector 1
  • 0 means that the second timer has already expired when a fire is detected.
  • Fire sensor 10 has a second timer that has expired when a fire is detected.
  • fire detection information is sent to receiver 1 in upstream time slot D3 of frame F1.
  • Receiver 1 fires fire detector 10 in downstream time slot B of second frame F2.
  • Fire detector 10 is the second frame
  • the receiver 1 is connected to the fire detector 10 in the downstream time slot B of the third frame F3.
  • Fire detector 10 is the third
  • the 3 2 transmits fire detection information continuously.
  • the upper limit of the number of transmissions in the superframe SF is set so that the transmission time duty does not exceed the limit value.
  • the fire detector 10 that has detected the fire transmits the fire detection information to the receiver 1 in the frame Fk + 1 after the frame Fk at the time of detecting the fire at the latest. Then, the fire detection information can be sent to the receiver 1 within 10 seconds, which is the required time of the frame.
  • the European EN standard (EN54-25) stipulates that transmission should be made within 10 seconds after detection, so the fire alarm system of this embodiment satisfies this standard.
  • the receiver 1 has a response message of 10 fire detectors.
  • the fire detector that received the response request message sent a response message again in the same uplink time slot (see Figure 8).
  • a fire detector that has received a reply request message again may send a response message in multiple arbitrary upstream timeslots.
  • the sensor 10 sends a response message in two upstream time slots D3 and D4.
  • the response message can be transmitted to the receiver 1 more reliably by transmitting the response message in a plurality of uplink time slots.
  • the plurality of time slots may be determined based on a random number generated by the control unit 13, or a plurality of uplink time slots having an earlier number may be used.
  • each fire detector has the sensor ID of the sent data format matched with its own ID. If they do not match, the data is discarded (step S12 in FIG. 12), and steps S7, S8, S9, and S12 are repeated until a reception completion message is received.
  • the fire detector whose sensor ID matches the ID of the received data format receives the return request message and determines the number of multiple upstream time slots using random numbers. Then, a plurality of timers are set according to the determined start time of the uplink time slot, and when the timer ends, the wireless transmission / reception unit 12 is operated to transmit the response message again (step S13 in FIG. 12).
  • FIG. 12 is a flowchart showing the operation at the time of regular communication. Even when the power receiver 1 is unable to receive the fire detection information normally, each fire detector will not perform the steps shown in FIG. As shown in S8, it is preferable to retransmit the fire detection information in a plurality of arbitrary upstream time slots in the next frame. Note that steps S1 to S7 in FIG. 13 are the same as steps Sl to S7 in FIG.
  • the receiver 1 designates one or more uplink time slots in which the message can be received and transmits a reply request message again.
  • This reply request message The fire detector that received the message may send a response message back to the receiver 1 again at the specified time slot.
  • the device 1 selects one or more uplink time slots, for example, two uplink time slots Dl and D3 from the uplink time slots that have successfully received the response message in the frame F1, and selects the selected uplink time slot Dl, Specify D3 and send a reply again to Fire Detector 10.
  • Fire detector 10 is the finger in second time slot F2.
  • the response message is returned again in the specified upstream time slots Dl and D3.
  • the receiver 1 selects the uplink time slot Di, if the uplink time slot with the earliest number is selected from a plurality of uplink time slots Di that have been received, the response message can be transmitted in a shorter time. Can be received by the receiver 1.
  • the number of uplink time slots Di to be selected may be three or more as long as it does not exceed the limit of the transmission time duty.
  • the receiver 1 may specify a different time slot for each frame and transmit a reply request message again.
  • the receiver 1 normally receives a response message of 10 fire detectors assigned to the upstream time slot D2 in the frame F1.
  • the receiver 1 designates the time slot D1 in the next frame F2 and transmits a reply request message again. In the next frame F3, the receiver 1 sets a time slot D3 different from the time slot D1. Specify and send the reply request message again.
  • the fire detector 10 returns a response message in the designated upstream time slot.
  • the response message By transmitting the response message by changing the uplink time slot for each frame, even when there is periodic noise close to the required time of frame F, the response message can be reliably transmitted to the receiver 1. it can.
  • each fire sensor in response to the reply request message from the receiver 1, each fire sensor transmits a response message once, and only the fire sensor to which the reply request message is individually transmitted, Although the reply request message was sent multiple times, each fire detector responded several times within the limit of the transmission time duty in order to send the response message to the receiver 1 more reliably. May be sent. That is, the receiver 1 uses one superframe based on the transmission time allowed in one superframe SF, the time required for one uplink Z downlink time slot, and the number of uplink time slots in one frame. Obtain the upper limit of the number of transmissions allowed to each fire detector in the frame, and send the number of transmissions below the upper limit to all fire detectors together with the reply request message. Each fire detector should send a response message to receiver 1 in the uplink time slot assigned to itself until it reaches the number of transmissions within one superframe. [0079] That is, the time of superframe SF is T, the time of uplink time slot is
  • the upper limit L2 of the number of transmissions in one superframe SF of each fire detector due to the transmission time duty limit value is
  • the upper limit of the number of transmissions from each fire detector to receiver 1 allowed in one superframe is y if y ⁇ L2, and L2 if y is L2.
  • T 300 seconds
  • Z 0.1%
  • the receiver 1 designates the number of transmissions within three times, for example, two times, and sends a response request message to all the fire detectors. Sends a response message to receiver 1 twice in one superframe. In this case, the possibility that the receiver 1 receives the response message can be increased.
  • the receiver 1 includes a sensor (detection means; not shown) that detects the signal strength of the received radio signal, and transmits a radio signal having a relatively high signal strength.
  • a sensor detection means; not shown
  • the number of transmissions is relatively low, and for fire detectors that have transmitted wireless signals with relatively low signal strength, the number of transmissions is within the upper limit. Increase relatively. For example, if the signal strength of fire detector 10 is relatively high,
  • the data format shown in FIG. 4 is used and the sensor ID of the own device is designated as the sensor ID. And sent.
  • the receiver 1 is the time slot number. Force Can identify the detector ID of the source fire detector. Therefore, it is preferable for each fire detector to transmit only the upper address (that is, the system ID (SysID)) excluding the sensor ID which is the lower address from the unique address. The power consumption can be reduced.
  • the timing at which reception of a time slot including a synchronization signal is started in the next superframe SF by the first timer is estimated.
  • an error occurs in the time counted by the first timer due to an error between the operation clock of the microcomputer configuring the control unit 1 3 and the operation clock of the microcomputer configuring the control unit 4 of the receiver 1.
  • a guard time of 15 milliseconds is provided before and after each upstream and downstream time slot B, Di.
  • the absolute error allowed for the microcomputer that constitutes the control units 13 and 4 of the fire detector 10 and the receiver 1 is ⁇ 25 ppm, even if the clock of the microcomputer is created using a crystal oscillator. In order to satisfy the absolute error, the cost is considerably increased.
  • the control unit 13 of the fire detector 10 receives the time slot including the synchronization signal in the next superframe. Time and start time, including the actual synchronization signal It is preferable to obtain an error from the timing at which the timer was received and to correct the subsequent measurement time of the timer using the error. In this case, the allowable error in the operation clock of the microcomputer can be alleviated and the cost can be reduced.
  • the synchronization signal is inserted only in the message Msg of the first frame of the super frame SF !, but may be inserted in the message Msg other than the first frame.
  • the notification unit 3 of the present embodiment is configured by the liquid crystal display 3b and the speaker 3c. However, a plurality of receivers 1 are connected to the central monitoring panel by wire, and the receivers 1 are fired. When the detection information is received, the notification unit 3 transmits the fire detection information to the central monitoring panel, and the central monitoring panel performs necessary actions (for example, issuing a fire alarm or reporting to the fire department). It doesn't matter.
  • the time length of the frames constituting the superframe and the time length of the time slot are not limited to the above values, and the fire radio alarm system is based on the number of fire detectors used and other factors. Of course, the design should be changed accordingly.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fire Alarms (AREA)
  • Alarm Systems (AREA)

Abstract

A fire alarm system comprises a single receiver (1) and a plurality of fire sensors. The receiver (1) and fire sensors are in wireless communication with each other, using a super-frame (SF) consisting of a plurality of frames (F1-F30) each consisting of a single downstream time slot (B), which is used for the downstream from the receiver to the fire sensors, and a plurality of upstream time slots (D1-D99) used for the upstream from the fire sensors to the receiver. Each of the fire sensors transmits a radio signal by use of a respective one of the different upstream time slots assigned to that fire sensor.

Description

明 細 書  Specification
火災報知システム  Fire alarm system
技術分野  Technical field
[0001] 本発明は、火災を感知する複数の火災感知器と、各火災感知器力 の信号を受信 して火災を報知する受信器とからなる火災報知システムに関し、より詳細には、火災 感知器と受信器とが無線で通信する火災報知システムに関する。  [0001] The present invention relates to a fire alarm system including a plurality of fire detectors for detecting a fire and a receiver for receiving a fire signal by receiving a signal of each fire detector force, and more specifically, fire detection. The present invention relates to a fire alarm system in which a receiver and a receiver communicate with each other wirelessly.
背景技術  Background art
[0002] 日本特許第 3029716号公報は、火災を感知する複数の火災感知器と、各火災感 知器力 の信号を受信して、火災を報知する受信器とを備え、各火災感知器と受信 器とが無線で通信を行う火災報知システムを開示している。  [0002] Japanese Patent No. 3029716 is provided with a plurality of fire detectors for detecting a fire, and a receiver for receiving a signal of each fire detector power and notifying the fire, A fire alarm system that communicates wirelessly with the receiver is disclosed.
[0003] この火災報知システムでは、各火災感知器が正常に動作していることを確認するた めに、所定の時間間隔で定期通信を行っている。すなわち、受信器から各火災感知 器に対して、数時間に一回返信要求メッセージを送信し、各火災感知器は、上記返 信要求メッセージを受けると、電池情報など自身の動作状態を示す応答メッセージを 受信器に返信する。受信器は、受信した応答メッセージに基づいて、火災感知器で 故障 (例えば、電池切れ)が発生している力否かを判断する。  [0003] In this fire alarm system, periodic communication is performed at predetermined time intervals in order to confirm that each fire detector is operating normally. In other words, a response request message is sent once every few hours from the receiver to each fire detector. Upon receiving the response request message, each fire detector receives a response indicating its own operating status such as battery information. Send the message back to the receiver. Based on the received response message, the receiver determines whether or not the fire detector has a failure (eg, a battery is dead).
[0004] 近年、火災報知システムの信頼性を高めるために、定期通信をより頻繁に行うこと が求められている。例えば、欧州規格案 (Pr— EN54— 25)では、 300秒以下に 1回 の割合で定期通信を行うことが義務づけられる予定である。  [0004] In recent years, in order to improve the reliability of fire alarm systems, it is required to perform regular communication more frequently. For example, the European standard draft (Pr-EN54-25) is scheduled to require regular communication once every 300 seconds or less.
[0005] 定期通信を頻繁に行った場合、火災感知器の送信タイミングが重なり、通信の衝突 が発生する確率が高くなる。上記文献の火災報知システムでは、通信の衝突を避け るために、使用する周波数の空きを確認して力もデータの送信を行う CSMA方式 (キ ャリアセンス多元接続方式)を採用している。し力しながら、 CSMA方式では、無線回 路の受信から送信への切り替えに一定の時間を要し、受信力 送信への切り替えの 間に他の火災感知器がデータを送信したことを感知できな 、ため、完全に衝突を回 避することができない、という問題があった。  [0005] If regular communication is frequently performed, the transmission timing of the fire detectors overlap, and the probability of communication collisions increases. The fire alarm system in the above document adopts the CSMA method (Carrier Sense Multiple Access Method), which checks the available frequency and transmits data in order to avoid communication collisions. However, with the CSMA method, it takes a certain amount of time to switch from wireless circuit reception to transmission, and can detect when other fire detectors transmit data during the switch to reception power transmission. Therefore, there was a problem that the collision could not be completely avoided.
[0006] CSMA方式以外の衝突回避方法として、受信器力 各火災感知器に順番に要求 メッセージを送信するポーリング方式や、受信器力 応答メッセージを送信した火災 感知器に受信確認 (ACK)を送信し、各火災感知器は受信確認を受信するまで応 答メッセージを送信する ARQ (自動再送要求)方式や、火災感知器間でトークンを循 環させるトークンリング方式 (登録商標)などが考えられる。 [0006] As a collision avoidance method other than the CSMA method, the receiver power is required for each fire detector in turn. A polling method to send a message and a fire detector that sent a receiver response message send an acknowledgment (ACK), and each fire detector sends a response message until an acknowledgment is received ARQ (automatic retransmission Request) method and token ring method (registered trademark) that circulates tokens between fire detectors.
[0007] し力しながら、ポーリング方式や ARQ方式では、受信器の送信頻度が、火災感知 器の台数に比例して増加する。一般に、無線式の火災報知システムは免許が不要な 周波数を使用するが、そのような免許が不要な周波数には、送信時間デューティ (す なわち、単位時間(1時間)当たりの許容送信時間)に厳しい制限が設けられている。 例えば、欧州連合においては、火災報知システムに用いられるアラーム用の周波数 では、上記デューティは 0. 1%未満でなければならない。従って、ポーリング方式や 、 ARQ方式では、火災感知器の台数が増えると上記デューティが制限を越えるため 、火災感知器の台数をあまり増やすことができない。  However, in the polling method and the ARQ method, the transmission frequency of the receiver increases in proportion to the number of fire detectors. Generally, a wireless fire alarm system uses a frequency that does not require a license, but such a frequency does not require a transmission time duty (that is, an allowable transmission time per unit time (1 hour)). There are strict restrictions on For example, in the European Union, for alarm frequencies used in fire alarm systems, the duty must be less than 0.1%. Therefore, in the polling method and the ARQ method, if the number of fire detectors increases, the duty exceeds the limit, so the number of fire detectors cannot be increased so much.
[0008] また、トークンリング方式では、火災感知器力 ^台でも故障するとトークンが消滅し、 全ての火災感知器が送信できなくなる恐れがある。  [0008] Further, in the token ring system, if a fire detector has a power failure, the token disappears and all the fire detectors may not be able to transmit.
発明の開示  Disclosure of the invention
[0009] 本発明は上記の問題点を解決するために為されたものであって、定期通信の頻度 が高くても衝突を確実に回避できる火災報知システムを提供することを目的とする。  [0009] The present invention has been made to solve the above problems, and an object of the present invention is to provide a fire alarm system that can reliably avoid a collision even if the frequency of regular communication is high.
[0010] 本発明に力かる火災報知システムは、複数の火災感知器と受信器とを備えて 、る。 [0010] A fire alarm system according to the present invention includes a plurality of fire detectors and receivers.
前記各火災感知器は、火災を感知する感知手段と、前記受信器との間で無線信号 を送受信する無線送受信手段とを備え、前記無線送受信手段は、前記感知手段が 火災を感知した時に前記受信器に対して無線信号を送信すると共に各火災感知器 の動作状態を所定の時間間隔で受信器に知らせる定期通信を受信器との間で行う。 前記受信器は、前記各火災感知器との間で無線信号を送受信する無線送受信手段 と、受信した無線信号に火災感知情報が含まれていると、火災を外部に報知する報 知手段とを備える。本発明の特徴とするところは、前記各火災感知器と前記受信器と は、受信器側力 火災感知器側への 1つの下りタイムスロットと、火災感知器側から受 信器側への複数の上りタイムスロットとから構成されるフレームが複数集まって構成さ れたスーパーフレームを用いて無線通信を行い、各火災感知器は、互いに異なる前 記上りタイムスロットの何れかに割り当てられて無線信号を送信する点にある。従って 、本発明の火災報知システムは、各火災感知器は、別個の上りタイムスロットで無線 信号を送信するので、定期通信の頻度が高くても衝突を確実に回避することができる Each of the fire detectors includes a sensing means for sensing a fire and a wireless transmission / reception means for transmitting / receiving a wireless signal to / from the receiver. The wireless transmission / reception means is configured to detect the fire when the sensing means senses a fire. Periodic communication is performed with the receiver, which transmits a radio signal to the receiver and informs the receiver of the operation state of each fire detector at predetermined time intervals. The receiver includes: a wireless transmission / reception unit that transmits / receives a wireless signal to / from each of the fire detectors; and a notification unit that notifies a fire to the outside when the received wireless signal includes fire detection information. Prepare. A feature of the present invention is that each of the fire detectors and the receiver includes a receiver side force, one downstream time slot to the fire detector side, and a plurality of fire detectors to the receiver side. Wireless communication is performed using a super frame composed of a plurality of frames composed of upstream time slots. The wireless signal is transmitted by being assigned to one of the uplink time slots. Therefore, in the fire alarm system of the present invention, each fire detector transmits a radio signal in a separate uplink time slot, so that it is possible to reliably avoid a collision even if the frequency of regular communication is high.
[0011] 好ましくは、前記受信器は、少なくとも、前記スーパーフレームに含まれる最初のフ レームの中の下りタイムスロットで全ての前記火災感知器に対して同期信号を送信し[0011] Preferably, the receiver transmits a synchronization signal to all the fire detectors at least in a downstream time slot in the first frame included in the superframe.
、各火災感知器は、前記同期信号を受信した時点を基準に、 自器に割り当てられた 上りタイムスロットの開始タイミングを決定する。この場合、前記同期信号を受信して 各火災感知器が個々に同期調整を行うことによって、全ての火災感知器が同期して 動作することができる。また、同期信号を受信したタイミングとフレームの周期とから、 次のフレームの下りタイムスロットの受信タイミングを求めることができ、各火災感知器 は、下りタイムスロットを受信する時間帯だけ受信動作を行うことで、無駄な消費電力 を削減できる。 Each fire detector determines the start timing of the upstream time slot assigned to itself, based on the time when the synchronization signal is received. In this case, all the fire detectors can operate in synchronism by receiving the synchronization signal and performing individual synchronization adjustments. In addition, the reception timing of the downlink time slot of the next frame can be obtained from the timing at which the synchronization signal is received and the frame period, and each fire detector performs the reception operation only during the time period in which the downlink time slot is received. As a result, wasteful power consumption can be reduced.
[0012] 定期通信の方法に関しては、好ましくは、前記受信器は、前記同期信号と同一の 下りタイムスロットで前記定期通信を要求する返信要求メッセージを全ての前記火災 感知器に対して送信し、前記返信要求メッセージを受信した各火災感知器は、 自器 に割り当てられた上りタイムスロットで、自器の動作状態を知らせる応答メッセージを 前記受信器に対して送信する。この場合、火災感知器の台数が増えても、受信器か ら各火災感知器への送信頻度を増やすことなぐ定期通信を行うことができる。  [0012] With regard to the method of periodic communication, preferably, the receiver transmits a reply request message for requesting the periodic communication in the same downlink time slot as the synchronization signal to all the fire detectors, Each fire detector that has received the reply request message transmits a response message to the receiver in an uplink time slot assigned to the fire detector, informing the operation state of the fire detector. In this case, even if the number of fire detectors increases, regular communication can be performed without increasing the frequency of transmission from the receiver to each fire detector.
[0013] 好ましくは、前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受 信できなかった場合、次のフレームの下りタイムスロットで、受信できなかった上りタイ ムスロットに割り当てられた火災感知器に対して前記返信要求メッセージを再送し、 前記返信要求メッセージを受信した火災感知器は、自器に割り当てられた次の上りタ ィムスロットで、再度、前記応答メッセージを前記受信器に対して送信する。この場合 [0013] Preferably, when the receiver cannot receive the response message in any upstream time slot, the fire assigned to the upstream time slot that could not be received in the downstream time slot of the next frame. The fire detector that retransmits the reply request message to the sensor and receives the reply request message again sends the response message to the receiver in the next upstream time slot assigned to the fire sensor. Send. in this case
、定期通信を確実に行うことができる。 Regular communication can be performed reliably.
[0014] 或 、は、前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信で きなかった場合、次のフレームの下りタイムスロットで、受信できなかった上りタイムス ロットに割り当てられた火災感知器に対して前記返信要求メッセージを再送し、前記 返信要求メッセージを受信した火災感知器は、複数の任意の上りタイムスロットで、再 度、前記応答メッセージを前記受信器に対して送信してもよい。この場合、複数の任 意の上りタイムスロットを用いて応答メッセージを返信することで、さらに確実に定期 通信を行うことができる。 [0014] Alternatively, if the receiver does not receive the response message in any uplink time slot, the receiver is assigned to the uplink time slot that could not be received in the downlink time slot of the next frame. Resend the reply request message to the fire detector, The fire detector that has received the reply request message may transmit the response message to the receiver again in a plurality of arbitrary upstream time slots. In this case, periodic communication can be performed more reliably by returning a response message using a plurality of arbitrary uplink time slots.
[0015] 或 、は、前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信で きなかった場合、次のフレームの下りタイムスロットで、受信できなかった上りタイムス ロットに割り当てられた火災感知器に対して、応答メッセージを受信できた 1乃至複数 の上りタイムスロットを指定して、前記返信要求メッセージを再送し、前記返信要求メ ッセージを受信した火災感知器は、指定された前記上りタイムスロットで、再度、前記 応答メッセージを前記受信器に対して送信してもよい。この場合、受信実績のある上 りタイムスロットを用いて応答メッセージを返信することで、確実に定期通信を行うこと ができる。  [0015] Alternatively, when the receiver cannot receive the response message in any uplink time slot, the receiver is assigned to the uplink time slot that could not be received in the downlink time slot of the next frame. The fire detector that has received the reply request message by re-sending the reply request message by designating one or more upstream time slots that have received the reply message to the fire sensor, The response message may be transmitted to the receiver again in the uplink time slot. In this case, it is possible to reliably perform regular communication by sending back a response message using a time slot that has been successfully received.
[0016] 或 、は、前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信で きなカゝつた場合、フレーム毎に異なる上りタイムスロットを指定して、前記返信要求メッ セージを再送し、前記返信要求メッセージを受信した火災感知器は、指定された前 記上りタイムスロットで、再度、前記応答メッセージを前記受信器に対して送信しても よい。この場合、上りタイムスロットを変えながら応答メッセージを返信することで、確 実に定期通信を行うことができる。  Alternatively, when the receiver cannot receive the response message in any uplink time slot, the receiver designates a different uplink time slot for each frame and sends the reply request message. The fire detector that has retransmitted and received the reply request message may transmit the response message to the receiver again in the designated uplink time slot. In this case, regular communication can be reliably performed by returning a response message while changing the uplink time slot.
[0017] また、前記受信器は、前記スーパーフレームの中で許容される送信時間と、一つの 上り Z下りタイムスロットに要する時間と、 1つのフレームにおける前記上りタイムスロッ トの数とから、一つのスーパーフレームの中で許容される各火災感知器力 受信器 への送信回数の上限を求め、前記返信要求メッセージと共に、前記上限以下の送信 回数を全ての前記火災感知器に対して送信し、前記返信要求メッセージを受信した 各火災感知器は、一つのスーパーフレーム内で、前記送信回数に到達するまで、自 器に割り当てられた上りタイムスロットで、前記応答メッセージを前記受信器に対して 送信してもよい。この場合、免許が不要な周波数を使用する場合に設けられる送信 時間の制限を満たしながら、繰り返し応答メッセージを返信することで、確実に定期 通信を行うことができる。 [0018] 上記の場合、前記受信器は、受信した無線信号の信号強度を検出する検出手段 を備え、前記受信器は、信号強度が相対的に高い無線信号を送信した火災感知器 に対する前記送信回数を相対的に少なくし、信号強度が相対的に低い無線信号を 送信した火災感知器に対する前記送信回数を、前記上限以内で相対的に多くする のが好ましい。この場合、確実に定期通信を行いながら、無駄なトラフィックを削減す ることがでさる。 [0017] Further, the receiver determines one transmission time from the transmission time allowed in the superframe, the time required for one uplink Z downlink time slot, and the number of uplink time slots in one frame. Obtain the upper limit of the number of transmissions to each fire detector power receiver allowed in the superframe, and transmit the number of transmissions below the upper limit to all the fire detectors together with the reply request message. Each fire detector that has received the reply request message transmits the response message to the receiver in an uplink time slot assigned to the fire detector until the number of transmissions is reached within one superframe. May be. In this case, regular communication can be reliably performed by returning a response message repeatedly while satisfying the transmission time limit set when using a frequency that does not require a license. [0018] In the above case, the receiver includes detection means for detecting the signal strength of the received radio signal, and the receiver transmits the radio sensor having a relatively high signal strength to the fire detector. It is preferable that the number of transmissions to the fire detector that has transmitted a radio signal with a relatively low signal strength and a relatively low signal strength is relatively increased within the upper limit. In this case, it is possible to reduce unnecessary traffic while reliably performing regular communication.
[0019] 火災が発生した場合、前記各火災感知器は、前記感知手段が火災を感知すると、 自器に割り当てられた次の上りタイムスロットで、火災感知情報を前記受信器に対し て送信するのが好ましい。この場合、火災感知情報が、他の火災感知器から送信さ れる応答メッセージや火災感知情報などの無線信号と衝突することがなぐ確実に受 信器へ火災を知らせることができる。  [0019] When a fire occurs, each fire detector transmits fire detection information to the receiver in the next upstream time slot assigned to the fire detector when the sensing means detects the fire. Is preferred. In this case, it is possible to reliably notify the receiver of the fire without causing the fire detection information to collide with wireless signals such as response messages and fire detection information transmitted from other fire detectors.
[0020] 上記の場合、好ましくは、前記受信器は、前記火災感知情報を受信すると次の下り タイムスロットで前記火災感知情報を送信した火災感知器に対して確認メッセージを 送信し、前記火災感知情報を送信した火災感知器は、前記確認メッセージを受信す るまで、自器に割り当てられた上りタイムスロットで、前記火災感知情報を前記受信器 に対して送信する。この場合、ノイズや妨害波などの影響で、受信器が火災感知情 報を正常に受信できな力つた場合でも、確実に火災感知情報を受信器に伝達するこ とがでさる。  [0020] In the above case, preferably, when the receiver receives the fire detection information, the receiver transmits a confirmation message to the fire detector that has transmitted the fire detection information in the next downlink time slot, and the fire detection information is transmitted. The fire detector that transmitted the information transmits the fire detection information to the receiver in an uplink time slot assigned to the fire detector until the confirmation message is received. In this case, even if the receiver cannot properly receive the fire detection information due to the influence of noise or jamming waves, the fire detection information can be reliably transmitted to the receiver.
[0021] 好ましくは、前記各火災感知器は固有のアドレスを有し、前記固有のアドレスの下 位アドレスは、自器に割り当てられた上りタイムスロットの位置に対応する。この場合、 火災感知器の固有のアドレスと別個に上りタイムスロットの位置を各火災感知器に記 憶させる必要がない。  [0021] Preferably, each of the fire detectors has a unique address, and the lower address of the unique address corresponds to the position of the upstream time slot assigned to the fire detector. In this case, it is not necessary for each fire detector to store the upstream time slot position separately from the unique address of the fire detector.
[0022] 上記の場合、前記各火災感知器は、前記受信器に無線信号を送信する際に、送 信元の火災感知器を示す情報として、前記固有のアドレス力 前記下位アドレスを除 いた上位アドレスを送信する。つまり、受信器は、上りタイムスロットの位置カゝら火災感 知器の下位アドレスがわ力るので、各火災感知器は、固有のアドレスから下位アドレ スを除いた上位アドレスのみを送信すれば良ぐ送信時間が短縮でき、ひいては消 費電力を低減できる。 [0023] 好ましくは、前記各火災感知器は、前記同期信号を含むタイムスロットを受信し終え てから、次のスーパーフレームで前記同期信号を含むタイムスロットを受信し始めるま での時間を計測するタイマーを有し、前記タイマーで計測した時間と、実際に前記同 期信号を含むタイムスロットを受信したタイミングとの誤差を求め、その誤差を用いて 、それ以降の前記タイマーの計測時間を修正する。この場合、受信器と各火災感知 器の動作クロックの誤差を修正することができ、確実に受信器と各火災感知器とが同 期をとることができる。 [0022] In the above case, each of the fire detectors, when transmitting a radio signal to the receiver, serves as information indicating the fire detector of the transmission source, and the higher address excluding the lower address. Send address. In other words, since the receiver is aware of the lower address of the fire detector as well as the position of the upstream time slot, each fire detector needs to transmit only the upper address excluding the lower address from the unique address. Good transmission time can be shortened, and as a result, power consumption can be reduced. [0023] Preferably, each of the fire detectors measures a time from when reception of the time slot including the synchronization signal is completed until reception of the time slot including the synchronization signal is started in the next superframe. An error is calculated between the time measured by the timer and the timing of actually receiving the time slot including the synchronization signal, and the subsequent measurement time of the timer is corrected using the error. . In this case, the error of the operation clock of the receiver and each fire detector can be corrected, and the receiver and each fire detector can be surely synchronized.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の実施形態に係る火災報知システムのブロック図である。 FIG. 1 is a block diagram of a fire alarm system according to an embodiment of the present invention.
[図 2]図 1の火災報知システムの各火災感知器のブロック図である。  FIG. 2 is a block diagram of each fire detector of the fire alarm system of FIG.
[図 3]図 1の火災報知システムの受信器のブロック図である。  FIG. 3 is a block diagram of a receiver of the fire alarm system in FIG. 1.
[図 4]図 1の火災報知システムで用いられるデータフォーマットを説明する図である。  FIG. 4 is a diagram for explaining a data format used in the fire alarm system of FIG.
[図 5]図 1の火災報知システムで用いられるスーパーフレームの構成を説明する図で ある。  FIG. 5 is a diagram for explaining a configuration of a super frame used in the fire alarm system of FIG. 1.
[図 6]図 1の火災報知システムの火災感知器の動作を説明するフローチャートである  FIG. 6 is a flowchart for explaining the operation of the fire detector of the fire alarm system of FIG.
[図 7]図 1の火災報知システムの火災感知器に使用されるタイマーを説明する図であ る。 FIG. 7 is a diagram illustrating a timer used for the fire detector of the fire alarm system in FIG. 1.
[図 8]図 1の火災報知システムの動作を説明する図である。  FIG. 8 is a diagram for explaining the operation of the fire alarm system of FIG. 1.
[図 9]図 1の火災報知システムの火災感知器の動作を説明するフローチャートである  FIG. 9 is a flowchart for explaining the operation of the fire detector of the fire alarm system of FIG.
[図 10]図 1の火災報知システムの動作を説明する図である。 FIG. 10 is a diagram for explaining the operation of the fire alarm system of FIG. 1.
[図 11]図 1の火災報知システムの別の動作を説明する図である。  FIG. 11 is a diagram for explaining another operation of the fire alarm system of FIG. 1.
[図 12]図 1の火災報知システムの別の動作を説明するフローチャートである。  FIG. 12 is a flowchart for explaining another operation of the fire alarm system of FIG.
[図 13]図 1の火災報知システムの別の動作を説明するフローチャートである。  FIG. 13 is a flowchart for explaining another operation of the fire alarm system in FIG. 1.
[図 14]図 1の火災報知システムの別の動作を説明する図である。  FIG. 14 is a diagram for explaining another operation of the fire alarm system of FIG. 1.
[図 15]図 1の火災報知システムの別の動作を説明する図である。  FIG. 15 is a diagram for explaining another operation of the fire alarm system of FIG. 1.
発明を実施するための最良の形態 [0025] 以下、本発明を添付の図面を参照しながら詳細に説明する。図 1は、本発明の実 施形態に係る火災報知システムの構成図を示す。この火災報知システムは、 1台の 受信器 1と、 6台の火災感知器 10〜: LOとから構成されている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 shows a configuration diagram of a fire alarm system according to an embodiment of the present invention. This fire alarm system consists of one receiver 1 and six fire detectors 10 ~: LO.
1 6  1 6
[0026] 各火災感知器 10〜10は、例えば施設の天井に設置されるものであって、図 2に  [0026] The fire detectors 10 to 10 are installed, for example, on the ceiling of the facility.
1 6  1 6
示すように、火災に伴って発生する温度変化や煙を検出することで火災を感知する 感知部 11と、後述するデータフォーマットを規定の周波数の搬送波に変復調し受信 器 1との間で無線信号を送受信する無線送受信部 12と、電池を電源として各部へ電 源を供給する電池電源部 14と、電池電源部 14と無線送受信部 12との間を開閉する スィッチ 16と、無線送受信部 12およびスィッチ 16を制御する制御部 13と、無線信号 を送受信するためのアンテナ 15とを備える。制御部 13はマイコンと EEPROMなどの 不揮発性メモリから主になり、不揮発性メモリに各種の処理を実行するためのプログ ラムが格納されている。無線送受信部 12は、感知部 11が火災を感知した時に受信 器 1に対して無線信号を送信すると共に自器の動作状態を所定の時間間隔で受信 器 1に知らせる定期通信を受信器との間で行う。なお、各火災感知器 10には後述す る固有のアドレスが製造時若しくは施工時に付与され、制御部 13の不揮発性メモリ に格納されている。  As shown in the figure, a radio signal is sent between the sensing unit 11 that senses a fire by detecting temperature changes and smoke generated by the fire, and a receiver 1 that modulates and demodulates the data format described below to a carrier wave of a specified frequency. Wireless transmission / reception unit 12 for transmitting and receiving, battery power supply unit 14 for supplying power to each unit using a battery, switch 16 for opening / closing between battery power supply unit 14 and wireless transmission / reception unit 12, wireless transmission / reception unit 12 and A control unit 13 for controlling the switch 16 and an antenna 15 for transmitting and receiving radio signals are provided. The control unit 13 is mainly composed of a microcomputer and a nonvolatile memory such as an EEPROM, and a program for executing various processes is stored in the nonvolatile memory. The wireless transmission / reception unit 12 transmits a wireless signal to the receiver 1 when the detection unit 11 detects a fire, and performs periodic communication with the receiver to notify the receiver 1 of the operation state of the device at predetermined time intervals. Between. Each fire detector 10 is given a unique address, which will be described later, at the time of manufacture or construction, and is stored in the nonvolatile memory of the control unit 13.
[0027] 一方、受信器 1は、例えば建物の管理室などに設置されるものであって、図 1およ び図 3に示すように、後述するデータフォーマットを規定の周波数の搬送波に変復調 し各火災感知器 10〜10との間で無線信号を送受信する無線送受信部 2と、各種  On the other hand, the receiver 1 is installed in a management room of a building, for example, and modulates and demodulates a data format to be described later to a carrier wave of a prescribed frequency as shown in FIGS. Wireless transmitter / receiver 2 that transmits / receives wireless signals to / from each fire detector 10 to 10
1 6  1 6
の設定を行うための操作スィッチ 3a、火災警報や種々の表示を行うための液晶ディ スプレイ 3b並びに警報音や警報メッセージ等を鳴動するスピーカ 3cを含む報知部 3 と、無線送受信部 2や報知部 3の制御を行う制御部 4と、商用電源力 各部に電源を 供給する電源部 5と、無線信号を送受信するためのアンテナ 6とを備える。制御部 4 はマイコンと EEPROMなどの不揮発性メモリとから主になり、不揮発性メモリに各種 の処理を実行するためのプログラムが格納されている。なお、受信器 1にも火災感知 器 10と異なる固有のアドレスが製造時若しくは施工時に付与され、制御部 4の不揮 発性メモリに格納されて 、る。  Operation switch 3a for setting the alarm, liquid crystal display 3b for performing a fire alarm and various displays, and a notification unit 3 including a speaker 3c for sounding an alarm sound, an alarm message, etc. 3 includes a control unit 4 that performs control 3, a power supply unit 5 that supplies power to each unit of commercial power, and an antenna 6 that transmits and receives radio signals. The control unit 4 mainly consists of a microcomputer and a nonvolatile memory such as an EEPROM, and programs for executing various processes are stored in the nonvolatile memory. A unique address different from that of the fire detector 10 is assigned to the receiver 1 at the time of manufacture or construction, and is stored in the non-volatile memory of the control unit 4.
[0028] 受信器 1と各火災感知器 10〜10とは、免許が不要な周波数を利用して無線通信 を行う。そのため、日本では小電力セキュリティや特定小電力無線規格、米国では F CC Regulations Part 15 Subpart C、欧州では Short Range Device規格に準拠した無 線特性を満足しなければならな 、。 [0028] The receiver 1 and each of the fire detectors 10 to 10 wirelessly communicate using a frequency that does not require a license. I do. For this reason, it must satisfy radio characteristics in accordance with low-power security and specific low-power wireless standards in Japan, FCC Regulations Part 15 Subpart C in the US, and Short Range Device standards in Europe.
[0029] 受信器 1と各火災感知器 10〜: L0との間で授受されるデータのデータフォーマット [0029] Data format of data exchanged between receiver 1 and each fire detector 10 ~: L0
1 6  1 6
を図 4に示す。このデータフォーマットは、 1と 0が交番する 32ビットのプリアンブル PR (ビット同期パターン)と、規定のビット列からなる 16ビットのユニークワード UW (フレ ーム同期パターン)と、火災報知システムに割り当てられる 32ビットの固有のシステム ID (SysID)と、各火災感知器 10に割り当てられた 8ビットの固有の感知器 ID (Node ID)と、 16ビットのメッセージ Msgと、 16ビットの誤り検出符号 CRCとで構成される。 すなわち、各火災感知器の固有アドレスは、システム ID+感知器 IDであり、受信器 1 の固有アドレスはシステム IDである。  Figure 4 shows. This data format is a 32-bit preamble PR (bit synchronization pattern) in which 1 and 0 alternate, a 16-bit unique word UW (frame synchronization pattern) consisting of a specified bit string, and a fire alarm system. 32 A unique system ID (SysID) of bits, an 8-bit unique sensor ID (Node ID) assigned to each fire sensor 10, a 16-bit message Msg, and a 16-bit error detection code CRC Composed. That is, the unique address of each fire sensor is the system ID + sensor ID, and the unique address of receiver 1 is the system ID.
[0030] 受信器 1が特定の火災感知器を指定してメッセージを送信する場合は、データフォ 一マットの感知器 ID (NodelD)にその火災感知器 10の感知器 IDを指定し、全ての 火災感知器 10に対してメッセージを同報送信する場合は、データフォーマットの感 知器 IDに「0 (ゼロ)」を指定して送信する。また各火災感知器が受信器 1に対して返 信する場合、自器の感知器 IDをデータフォーマットの感知器 IDに設定して送信する 。無線信号を受信した各火災感知器あるいは受信器 1は、無線送受信部 12, 2で受 信信号を増幅し且つデータフォーマットを復調して制御部 13, 4に出力する。制御部 13, 4は、無線送受信部 12, 2で復調されたデータをマイコンのデジタル入力ポート でサンプリングし、プリアンブル PRの受信中にビットタイミングを抽出し、次に連続す る 16ビット分の受信ビットを規定のユニークワードと一致するまで 1ビットずつシフトす ることでユニークワードを検出する。次に、制御部 13, 4は、受信したシステム IDと感 知器 IDを不揮発性メモリに格納されて 、る固有アドレスと照合し、これらが一致し且 つビット誤りが検出されな力つた場合にメッセージ Msgを受理して、予めプログラムさ れた処理を行う。 [0030] When receiver 1 designates a specific fire sensor and sends a message, the sensor ID of that fire sensor 10 is designated as the sensor ID (NodelD) of the data format, and all When broadcasting a message to fire detector 10, specify “0 (zero)” for the sensor ID in the data format. Also, when each fire sensor returns to Receiver 1, set its own sensor ID to the sensor ID of the data format and send it. Each fire detector or receiver 1 that has received the radio signal amplifies the received signal at the radio transmission / reception units 12, 2, demodulates the data format, and outputs it to the control units 13, 4. The control units 13 and 4 sample the data demodulated by the radio transmission / reception units 12 and 2 at the digital input port of the microcomputer, extract the bit timing during reception of the preamble PR, and then receive the next 16 bits of reception. A unique word is detected by shifting the bits one bit at a time until they match the specified unique word. Next, the control units 13 and 4 compare the received system ID and sensor ID with the unique addresses stored in the non-volatile memory, and if they match and no bit error is detected. The message Msg is received and the preprogrammed process is performed.
[0031] メッセージ Msgとしては、受信器 1が火災感知器 10に対して定期通信を要求する 返信要求メッセージや、返信要求メッセージに対する応答メッセージ、火災の発生を 受信器 1に知らせる火災感知情報などがある。 [0032] 受信器 1は、メッセージ Msgに同期信号を挿入し、同期信号を含むメッセージ Msg を火災感知器 10に対して送信することができる。同期信号を受信した火災感知器 10 は、同期信号を受信した時点を基準に、自器に割り当てられてた上りタイムスロットが 開始するタイミングや、次のスーパーフレームでその同期信号を含むタイムスロットを 受信し始めるまでの時間を決定する。 [0031] The message Msg includes a reply request message in which the receiver 1 requests periodic communication to the fire detector 10, a response message to the reply request message, fire detection information to inform the receiver 1 of the occurrence of a fire, and the like. is there. [0032] The receiver 1 can insert a synchronization signal into the message Msg and transmit the message Msg including the synchronization signal to the fire detector 10. The fire detector 10 that has received the synchronization signal uses the timing at which the synchronization signal is received as a reference, the timing at which the upstream time slot assigned to itself starts, and the time slot that includes the synchronization signal in the next superframe. Determine the time to start receiving.
[0033] 本実施形態においては、受信器 1と各火災感知器 10〜10との間の無線通信を時  [0033] In this embodiment, wireless communication between the receiver 1 and each of the fire detectors 10 to 10 is sometimes performed.
1 6  1 6
分割多重アクセス (TDMA)方式で行っている。図 5に、本実施形態の無線通信に使 用されるスーパーフレームの構成を示す。このスーパーフレーム SFは、 30個のフレ ーム F1〜F30から構成され、各フレームは、 1つの下り方向(受信器側→火災感知 器側)のタイムスロット Bと、 99個の上り方向(火災感知器側→受信器側)の上りタイム スロット D1〜D99とから構成されている。各タイムスロット B, D1〜D99の所要時間 は 0. 1秒であり、各フレームの所要時間は 10秒であり、スーパーフレームの周期は 3 00秒である。各タイムスロット B, D1〜D99の内訳は、上述した図 4のデータフォーマ ットが 50ミリ秒、受信器 1や火災感知器 10の無線送受信部 2, 12が起動して安定し た搬送波周波数で送信するための起動時間が 20ミリ秒、ガードタイムが前後 15ミリ 秒である。ガードタイムは火災感知器 10と受信器 1の動作クロック周波数 (制御部 13 , 4を構成するマイコンの動作クロック周波数)の誤差に起因するタイミングの差を吸 収するための空き時間である。  It is performed by the division multiple access (TDMA) method. FIG. 5 shows the configuration of the superframe used for the wireless communication of this embodiment. This super frame SF is composed of 30 frames F1 to F30. Each frame has one time slot B in the downstream direction (receiver side → fire detector side) and 99 upstream directions (fire). It consists of upstream time slots D1 to D99 on the sensor side → receiver side). The time required for each time slot B, D1 to D99 is 0.1 second, the time required for each frame is 10 seconds, and the period of the superframe is 300 seconds. The breakdown of each time slot B, D1 to D99 is that the data format shown in Fig. 4 is 50 milliseconds, and the radio transceivers 2 and 12 of the receiver 1 and fire detector 10 are activated to stabilize the carrier frequency. The start-up time for transmitting with is 20 milliseconds and the guard time is around 15 milliseconds. The guard time is a free time for absorbing a timing difference caused by an error in the operation clock frequency of the fire detector 10 and the receiver 1 (the operation clock frequency of the microcomputer configuring the control units 13 and 4).
[0034] 各火災感知器 10〜10は、互いに異なる上りタイムスロット D1〜D99の何れかに [0034] Each fire detector 10 to 10 is connected to any one of the different upstream time slots D1 to D99.
1 6  1 6
割り当てられて無線信号を送信する。従って、定期通信の頻度が高くても、各火災感 知器の送信の衝突を確実に回避することができる。  Assigned to transmit radio signals. Therefore, even if the frequency of regular communication is high, it is possible to reliably avoid the transmission collision of each fire detector.
[0035] 各火災感知器 10〜10を上りタイムスロット D1〜D99に割り当る方法としては、例  [0035] As an example of how to assign each fire detector 10 to 10 to upstream time slots D1 to D99,
1 6  1 6
えば、各火災感知器 10〜10に設けたディップスィッチで割当てを設定したり、製造  For example, the assignment can be set by the dip switch provided for each fire detector 10 ~ 10.
1 6  1 6
工程にお 、て制御部 13の不揮発性メモリにスロット番号を格納してぉ 、たり、ある!/ヽ は、設置時に無線通信を用いて受信器 1から順番に各火災感知器 10を割り当て、制 御部 13の不揮発性メモリに格納するなどの方法などがある。本実施形態では、各火 災感知器の固有のアドレスのうちの、感知器 ID (下位アドレス)とスロット番号とを、一 対一で対応させている。すなわち、各火災感知器の制御部 13は、不揮発性メモリ〖こ 格納された固有のアドレスの下位アドレスから、自器の上りスロット番号を決定する。 この場合、固有のアドレスとは別にスロット番号を記憶させたり、スロット番号を別途設 定する手間が省ける。 In the process, the slot number is stored in the non-volatile memory of the controller 13, or there is! / ヽ assigns each fire detector 10 in order from the receiver 1 using wireless communication at the time of installation. There are methods such as storing in the non-volatile memory of the control unit 13. In this embodiment, among the unique addresses of each fire detector, the sensor ID (lower address) is associated with the slot number on a one-to-one basis. In other words, the control unit 13 of each fire detector has a non-volatile memory function. From the lower address of the stored unique address, the own uplink slot number is determined. In this case, it is possible to save the trouble of storing the slot number separately from the unique address and setting the slot number separately.
[0036] 次に、本実施形態の火災報知システムの動作について説明する。まず、定期通信 の動作について説明する。定期通信では、受信器 1が各火災感知器に対して返信 要求メッセージを送信し、返信要求メッセージを受信した各火災感知器 10〜: LOは  [0036] Next, the operation of the fire alarm system of the present embodiment will be described. First, the operation of regular communication will be described. In regular communication, receiver 1 sends a reply request message to each fire detector, and each fire detector 10 ~: LO that received the reply request message
1 6 1 6
、受信器 1に対して応答メッセージを送信する。応答メッセージの内容は、火災感知 器における異常 (例えば、電池電圧がしきい値以下まで低下した、あるいは感知部 1 1で動作不良が発生したなど。)の有無である。もし応答メッセージの中に異常ありの 内容があれば、受信器 1は、その応答メッセージを返信した火災感知器 10の感知器 I Dを報知部 3に表示するなどして、システム管理者に異常の発生を知らせる。 , Send a response message to receiver 1. The content of the response message is the presence or absence of an abnormality in the fire detector (for example, the battery voltage has dropped below a threshold value or a malfunction has occurred in the sensing unit 11). If there is an error in the response message, the receiver 1 displays the detector ID of the fire detector 10 that returned the response message on the notification unit 3, etc. Inform about the occurrence.
[0037] まず、受信器 1の電源がオンされると、受信器 1の制御部 4はスーパーフレーム SF の先頭のフレーム F1の下りタイムスロット Bにおいて、データフォーマットの感知器 ID を「0」に設定し、メッセージ Msgとして、同期信号を含む返信要求メッセージを全て の火災感知器 10に向けて送信する。  [0037] First, when the power of the receiver 1 is turned on, the control unit 4 of the receiver 1 sets the sensor ID of the data format to "0" in the downstream time slot B of the first frame F1 of the superframe SF. Set and send a reply request message including a synchronization signal to all fire detectors 10 as message Msg.
[0038] 一方、火災感知器 10では、図 6に示すように、電源オン直後に制御部 13がスイツ チ 16を閉じて無線送受信部 12に電源を供給し、同期信号を含む返信要求メッセ一 ジを受信するまで、受信を続ける(図 6のステップ SI, S2)。  On the other hand, in the fire detector 10, as shown in FIG. 6, immediately after the power is turned on, the control unit 13 closes the switch 16 to supply power to the wireless transmission / reception unit 12, and a response request message including a synchronization signal is sent. Until it is received (steps SI and S2 in Fig. 6).
[0039] 各火災感知器 10は、同期信号を含む返信要求メッセージを受信すると、制御部 13 によりスィッチ 16を開き無線送受信部 12への電源供給を停止し、受信を停止する( 図 6のステップ S3)。そして、各火災感知器 10は、制御部 13のマイコンに内蔵された 第 1タイマー、第 2タイマー、第 3タイマーを同時に起動する(図 6のステップ S4)。  When each fire detector 10 receives the reply request message including the synchronization signal, the control unit 13 opens the switch 16 to stop the power supply to the wireless transmission / reception unit 12 and stop the reception (step of FIG. 6). S3). Each fire detector 10 simultaneously activates the first timer, the second timer, and the third timer built in the microcomputer of the control unit 13 (step S4 in FIG. 6).
[0040] 図 7に示すように、第 1タイマーは、スーパーフレーム SFの先頭のフレーム F1で同 期信号を含む下りタイムスロット Bを受信し終えてから、次のスーパーフレームで同期 信号を含む下りタイムスロット Bを受信し始めるまでの時間を計測する。すなわち、第 1タイマーによって、各火災感知器は、次のスーパーフレームにおける下りタイムス口 ット Bの開始タイミングを決定することができる。本実施形態では、スーパーフレーム S Fの周期が 300秒、下りタイムスロットが 0. 1秒のため、第 1タイマーは、 300— 0. 1 = 299. 9秒をカウントする。 [0040] As shown in FIG. 7, the first timer receives the downlink time slot B including the synchronization signal in the first frame F1 of the super frame SF, and then receives the downlink including the synchronization signal in the next super frame. Measure the time until reception of time slot B begins. In other words, the first timer allows each fire detector to determine the start timing of the downlink time slot B in the next superframe. In the present embodiment, since the period of the super frame SF is 300 seconds and the downlink time slot is 0.1 second, the first timer is 300—0.1 = 299. Counts 9 seconds.
[0041] 第 2タイマーは、スーパーフレーム SFの最初のフレーム F1の下りタイムスロット Bが 終了した時点力も各火災感知器 10に個別に割り当てられた上りタイムスロット Di(i= 1〜99)の開始時点までの時間をカウントする。すなわち、第 2タイマーによって、各 火災感知器は、フレーム F1にお 、て自器に割り当てられた上りタイムスロット Diの開 始タイミングを決定することができる。本実施形態では、上りタイムスロットの所要時間 が 0. 1秒のため、第 2タイマーは、 0. 1 X { (上りタイムスロット Diの番号)一 1 }をカウ ントする。 [0041] The second timer starts the upstream time slot Di (i = 1 to 99) in which the power at the time when the downstream time slot B of the first frame F1 of the superframe SF ends is also individually assigned to each fire detector 10. Count time to time. That is, the second timer allows each fire detector to determine the start timing of the upstream time slot Di assigned to itself in frame F1. In this embodiment, since the time required for the uplink time slot is 0.1 second, the second timer counts 0.1 X {(number of uplink time slot Di) 1 1}.
[0042] 第 3タイマーは、下りタイムスロット Bを受信してから次のフレームで下りタイムスロット Bを受信するまでの時間をカウントする。本実施形態では各フレームの所要時間は 1 0秒で、下りタイムスロット Bの所要時間が 0. 1秒のため、第 3タイマーは、 10— 0. 1 = 9. 9秒をカウントする。  [0042] The third timer counts the time from reception of downlink time slot B to reception of downlink time slot B in the next frame. In this embodiment, the time required for each frame is 10 seconds, and the time required for the downlink time slot B is 0.1 seconds. Therefore, the third timer counts 10−0.1 = 9.9 seconds.
[0043] 各火災感知器 10の制御部 13は、第 2タイマーのカウントが終了した時点で (すなわ ち、自器に割り当てられた上りタイムスロット Diで)、応答メッセージを無線送受信部 1 2から送信し、送信終了後、各火災感知器は、マイコンに内蔵された第 4タイマーを 起動する(図 6のステップ S5, S6)。  [0043] The control unit 13 of each fire detector 10 sends a response message to the wireless transmission / reception unit 1 2 when the count of the second timer ends (that is, in the upstream time slot Di allocated to the own device). After the transmission, each fire detector starts the 4th timer built in the microcomputer (Steps S5 and S6 in Fig. 6).
[0044] 第 4タイマーは、自器に割り当てられた上りタイムスロット Diの終了時点から、次のフ レームにおいて自器に割り当てられた上りタイムスロット Diの開始時点までをカウント する。すなわち、第 4タイマーによって、各火災感知器は、次のフレームにおいて自 器に割り当てられた上りタイムスロット Diの開始タイミングを決定することができる。本 実施形態では、第 4タイマーは、上りタイムスロット Diの終了時点から、 10-0. 1 = 9 . 9秒をカウントする。  [0044] The fourth timer counts from the end time of the uplink time slot Di assigned to the own device to the start time of the uplink time slot Di assigned to the own device in the next frame. In other words, the fourth timer allows each fire detector to determine the start timing of the upstream time slot Di assigned to itself in the next frame. In the present embodiment, the fourth timer counts 10−0.1.9.9 from the end time of the upstream time slot Di.
[0045] その後、各火災感知器は、第 3タイマーが終了し次のフレームの下りタイムスロット B で受信器 1からのメッセージ Msgが送られてくるまで待機する(図 6のステップ S7)。  [0045] After that, each fire detector waits until the third timer ends and the message Msg from the receiver 1 is sent in the downlink time slot B of the next frame (step S7 in FIG. 6).
[0046] 一方、受信器 1の制御部 4は、第 3タイマーが起動している間、すなわち上りタイムス ロット D1〜D99で、各火災感知器 10から返信される応答メッセージを受信する。全 ての火災感知器からの応答メッセージが受信できた場合、制御部 4は、 2番目のフレ ーム F2の下りタイムスロット Bで、メッセージ Msgとして受信が正常にできたことを知ら せる受信完了メッセージを、全ての火災感知器 10に対して同報送信する。 On the other hand, the control unit 4 of the receiver 1 receives a response message returned from each fire detector 10 while the third timer is activated, that is, in the upstream time slots D1 to D99. When response messages from all the fire detectors have been received, the control unit 4 knows that the reception was successful as the message Msg in the downstream time slot B of the second frame F2. A reception completion message is broadcast to all fire detectors 10.
[0047] 各火災感知器 10は、第 3タイマーが終了すると、制御部 13がスィッチ 16を再び閉 じて無線送受信部 12を動作させ、受信器 1からの下りタイムスロット Bを受信する。受 信後、第 3タイマーを再び起動する(図 6のステップ S8)。 In each fire detector 10, when the third timer expires, the control unit 13 closes the switch 16 again to operate the wireless transmission / reception unit 12 and receives the downlink time slot B from the receiver 1. After receiving, the third timer is started again (step S8 in Fig. 6).
[0048] このとき、受信した下りタイムスロット Bのメッセージ Msg力 受信完了メッセージであ れば(図 6のステップ S9)、火災感知器 10の制御部 13は、第 1タイマーが終了するま でスィッチ 16を開いて無線送受信部 12の動作を停止し(図 6のステップ S10)、そし て、第 1タイマーが終了して次のスーパーフレーム SFが開始されたら、再びスィッチ 1 6を閉じて下りタイムスロット Bを受信し(図 6のステップ S11)、上述のステップ S4から の動作を繰り返す。 [0048] At this time, if the received message in the downstream time slot B is an Msg force reception completion message (step S9 in FIG. 6), the control unit 13 of the fire detector 10 switches until the first timer is completed. 16 is opened to stop the operation of the radio transmission / reception unit 12 (step S10 in FIG. 6), and when the first timer ends and the next superframe SF starts, the switch 16 is closed again and the downlink time Slot B is received (step S11 in Fig. 6), and the operations from step S4 above are repeated.
[0049] ところで、火災感知器が正常であってもノイズや妨害波などの影響により受信器 1で 火災感知器からの応答メッセージが正常に受信できない場合がある。この場合、受 信器 1は、図 4のデータフォーマットの感知器 IDに、受信できな力つた火災感知器の I Dを指定し、次のフレーム F2の下りタイムスロット Bで、受信完了メッセージの代わりに 、再度、その火災感知器宛てに返信要求メッセージを送信する。例えば、図 8に示す ように、受信器 1が火災感知器 10力もの応答メッセージを受信できな力つたとすると  [0049] By the way, even if the fire detector is normal, the receiver 1 may not be able to normally receive the response message from the fire detector due to the influence of noise, interference waves, and the like. In this case, receiver 1 designates the ID of the fire detector that cannot be received as the sensor ID of the data format in FIG. 4 and substitutes for the reception completion message in downstream time slot B of the next frame F2. Again, a reply request message is sent to the fire detector. For example, as shown in Fig. 8, if receiver 1 is unable to receive a response message of 10 fire detectors,
3  Three
、受信器 1は、感知器 IDに火災感知器 10の IDを指定して、フレーム F2の下りタイム  Receiver 1 specifies the ID of fire detector 10 as the detector ID, and the downstream time of frame F2
3  Three
スロット Bで再度返信要求メッセージを送信する。なお、図 8において、 "T"は送信状 態を示し、 "R"は受信状態を示す。  Send a reply request message again in slot B. In FIG. 8, “T” indicates a transmission state, and “R” indicates a reception state.
[0050] 各火災感知器は、図 6のステップ S8で、次のフレーム F2の下りタイムスロット Bを受 信するが、火災感知器 10以外の火災感知器は、送られてきたデータフォーマットの [0050] In step S8 of FIG. 6, each fire detector receives the downstream time slot B of the next frame F2, but the fire detectors other than fire detector 10 have the data format sent.
3  Three
感知器 IDが自器の IDと一致しないことから、そのデータを破棄し(図 6のステップ S9 , S12)、第 3タイマーの終了までスィッチ 16を開いて無線送受信部 12を停止し、受 信完了メッセージを受信するまで、ステップ S7, S8, S9, S12を繰り返す。  Since the sensor ID does not match the ID of its own device, the data is discarded (steps S9 and S12 in Fig. 6), switch 16 is opened until the end of the third timer, wireless transmitter / receiver 12 is stopped, and reception is completed. Steps S7, S8, S9 and S12 are repeated until a completion message is received.
[0051] これに対して、火災感知器 10の制御部 13は、 2番目のフレーム F2の下りタイムス [0051] On the other hand, the control unit 13 of the fire detector 10 performs the downstream time of the second frame F2.
3  Three
ロット Bで受信したデータフォーマットの感知器 IDが自器の IDと一致するので返信要 求メッセージを受理し、第 4タイマーが終了した時点、すなわち、 2番目のフレーム F2 における自器の上りタイムスロット D3で応答メッセージを再度送信する(図 6のステツ プ S13, S6)。 Since the sensor ID of the data format received in Lot B matches the ID of its own, the reply request message is accepted, and when the 4th timer expires, that is, the upstream time slot of its own in the second frame F2. Send the response message again with D3 (step in Fig. 6). S13, S6).
[0052] 受信器は、火災感知器 10力 の応答メッセージを正常に受信すると、感知器 IDを  [0052] When the receiver successfully receives a response message of 10 fire detectors,
3  Three
0にして、メッセージ Msgとして受信完了メッセージを全ての火災感知器に対して同 報送信する。しかし、受信器が火災感知器 10力ゝらの応答メッセージを正常に受信で  Set to 0 and a reception completion message is sent as a message Msg to all fire detectors. However, the receiver can successfully receive the response message from the fire detector 10
3  Three
きなければ、再度、火災感知器 10に対して返信要求メッセージを送信し、上記の動  If not, a response request message is sent again to the fire detector 10 and the above operation is performed.
3  Three
作を繰り返す。  Repeat the work.
[0053] なお、応答メッセージを受信できな力つた火災感知器が複数台あった場合、受信器 1は、送信回数の上限以内で、 2番目以降のフレーム F2, F3,…でそれぞれの火災 感知器に対して返信要求メッセージを送信すればよい。  [0053] If there are multiple fire detectors that are unable to receive the response message, receiver 1 detects each fire in the second and subsequent frames F2, F3, ... within the upper limit of the number of transmissions. A reply request message may be transmitted to the device.
[0054] 上述のように、各火災感知器は、第 2, 4タイマーを用いて、同期信号を受信した時 点を基準に自器に割り当てられた上りタイムスロットの開始タイミングを決定している。 このように同期信号を受信して各火災感知器が個々に同期調整を行うことによって、 全ての火災感知器が同期して動作することができる。また、各火災感知器は、第 3タ イマ一を用いて、下りタイムスロット Bを受信する時間帯だけ受信動作を行うので、無 駄な消費電力を削減できる。さらに、定期通信を終えた各火災感知器は、第 1タイマ 一を用いて、次のスーパーフレームの同期信号の受信タイミングまで無線送受信部 1 2の動作を停止するので、さらに無駄な消費電力を削減することができる。また、受信 器 1は、同期信号と同一の下りタイムスロット Bで返信要求メッセージを全ての前記火 災感知器に対して送信するので、火災感知器の台数が増えても、受信器 1から各火 災感知器への送信頻度を増やすことなぐ定期通信を行うことができる。  [0054] As described above, each fire detector uses the second and fourth timers to determine the start timing of the upstream time slot assigned to the fire detector based on the time when the synchronization signal is received. . By receiving the synchronization signal in this way and each fire detector individually performing synchronization adjustment, all the fire detectors can operate in synchronization. In addition, each fire detector uses the third timer to perform the receiving operation only during the time period for receiving downlink time slot B, thus reducing unnecessary power consumption. In addition, each fire detector that has finished regular communication uses the first timer 1 to stop the operation of the wireless transmission / reception unit 12 until the reception timing of the next superframe synchronization signal. Can be reduced. In addition, since the receiver 1 transmits a reply request message to all the fire detectors in the same downlink time slot B as the synchronization signal, each receiver 1 receives each response even if the number of fire detectors increases. Regular communication can be performed without increasing the frequency of transmission to the fire detector.
[0055] 返信要求メッセージに対する応答メッセージが先頭のフレーム F1で全て正常に受 信できた場合、受信器 1は 300秒のスーパーフレーム SFの中で、先頭のフレーム F1 の下りタイムスロット Bで返信要求メッセージを送信すると共に、 2番目のフレーム F2 の下りタイムスロット Bで受信完了メッセージを送信するので、送信時間デューティは 、 0. 1 X 2/300 X 100 = 0. 067%となる。上述のように免許が不要な周波数 を利用して無線通信を行う場合、例えば欧州では、欧州規格案 (Pr_EN54— 25) のみならず、欧州電波法をも満足する必要がある力 欧州電波法における欧州の A1 arm用周波数の送信時間デューティの制限値は、 0. 1%未満であるので、本火災報 知システムは、この制限を満たしている。 [0055] If all response messages for the reply request message are received normally in the first frame F1, receiver 1 requests a reply in the downstream time slot B of the first frame F1 in the superframe SF of 300 seconds. Since the message is transmitted and the reception completion message is transmitted in the downlink time slot B of the second frame F2, the transmission time duty is 0.1 X 2/300 X 100 = 0.067%. As mentioned above, when performing wireless communication using a frequency that does not require a license, for example, in Europe, it is necessary to satisfy not only the European standard draft (Pr_EN54-25) but also the European Radio Law. The limit value of the transmission time duty of the frequency for the A1 arm in Europe is less than 0.1%. The knowledge system meets this limitation.
[0056] また、返信要求メッセージに対する応答メッセージが先頭のフレーム F1で全て正常 に受信できな力つた場合、受信器 1から火災感知器への送信回数の上限 L1は、送 信時間デューティの制限値によって制限される。例えば、上述の欧州電波法に欧州 の Alarm用周波数の送信時間のデューティの制限値は、 0. 1%のため、 1時間当た りの送信時間の上限 L1は、  [0056] If the response message to the reply request message cannot be received normally in the first frame F1, the upper limit L1 of the number of transmissions from the receiver 1 to the fire sensor is the limit value of the transmission time duty. Limited by. For example, according to the European Radio Law mentioned above, the limit value of the duty cycle of the European Alarm frequency is 0.1%, so the upper limit L1 of the transmission time per hour is
Ll = 3600 ( ) X O. 1 (%) = 3. 6秒  Ll = 3600 () X O. 1 (%) = 3.6 seconds
となる。本実施形態の場合、下りタイムスロットの時間 Tは 0. 1秒のため、受信器 1か  It becomes. In the case of this embodiment, the time T of the downlink time slot is 0.1 second.
B  B
ら火災感知器への送信回数の上限は、  The upper limit of the number of transmissions to the fire detector is
3. 6 (秒) ZO. 1 (秒) = 36  3. 6 (seconds) ZO. 1 (seconds) = 36
より、 1時間当たりに 36回となる。 1時間当たりに 36回という制限を守っていれば、 例えば受信器 1が応答メッセージが正常に受信できな力つた場合に、いくつかの連 続するフレームで下りタイムスロット Bをまとめて送信し、処理完了後のフレームでは 下りタイムスロット Bの送信を禁止する、といったことも可能である。送信回数の上限は 、制御部 4の不揮発性メモリなどに記憶させておけばよい。なお、このような 1時間当 たりに 36回という送信回数の上限は、受信器 1と各火災感知器 10〜: LOとの間で成  Therefore, it will be 36 times per hour. If the limit of 36 times per hour is observed, for example, if receiver 1 is unable to receive a response message normally, it will transmit downlink time slot B in several consecutive frames, It is also possible to prohibit transmission of downlink time slot B in the frame after processing is complete. The upper limit of the number of transmissions may be stored in the nonvolatile memory of the control unit 4 or the like. Note that the upper limit of 36 transmissions per hour is between receiver 1 and each fire detector 10-: LO.
1 6 立させればよぐ受信器 1と各火災感知器 10  1 6 Receiving receiver 1 and fire detector 10
1〜10と力もなるひとつのシステムにつ 6  One system with power from 1 to 10 6
V、ての制限事項ではな 、。  V, not a limitation.
[0057] 次に、何れかの火災感知器が火災を感知した場合の動作について説明する。なお 、火災を感知した場合に火災感知器 10の制御部 13が行う以下の処理は、上述の定 期通信の動作に対する割り込み処理となる。  Next, the operation when any of the fire detectors detects a fire will be described. The following processing performed by the control unit 13 of the fire detector 10 when a fire is detected is an interrupt processing for the above-described periodic communication operation.
[0058] 各火災感知器 10は、感知部 11で火災を感知すると、第 2タイマーがカウント中であ る力否かを判断する(図 9のステップ Sl)。第 2タイマーがカウント中であれば、第 2タ イマ一が終了した時点で、すなわちフレーム F1の自器の上りタイムスロット Diで、定 期通信の応答メッセージの代わりに、火災の感知を知らせる火災感知情報をメッセ一 ジ Msgとして受信器 1に送信し、送信後に第 4タイマーを起動する(図 9のステップ S2 , S3)。第 2タイマーのカウントが終了していれば、火災感知器は、第 4タイマーが終 了した時点、すなわち、あるフレームにおいて自器に割り当てられた上りタイムスロット Diで、火災感知情報を受信器 1に送信し、送信後に第 4タイマーを起動する(図 9の ステップ S7, S3)。 [0058] When each fire detector 10 detects a fire with the sensing unit 11, it determines whether or not the second timer is counting (step Sl in FIG. 9). If the second timer is counting, when the second timer ends, that is, in the upstream time slot Di of the frame F1, the fire that informs the detection of fire instead of the periodic communication response message. The sensing information is transmitted as message Msg to receiver 1, and the fourth timer is started after transmission (steps S2 and S3 in FIG. 9). If the count of the second timer has expired, the fire detector will detect when the fourth timer expires, that is, the upstream time slot assigned to itself in a frame. Di sends fire detection information to receiver 1 and starts the fourth timer after transmission (steps S7 and S3 in Fig. 9).
[0059] 火災感知情報を受信した受信器 1は、次の下りタイムスロット Bで、火災感知情報の 送信元である火災感知器宛に、火災感知情報の受信完了メッセージを送信する。そ して、受信器 1の液晶ディスプレイ 3bやスピーカ 3cを用いて、システム管理者に火災 を知らせる。  [0059] In the next downstream time slot B, the receiver 1 that has received the fire detection information transmits a fire detection information reception completion message to the fire detector that is the transmission source of the fire detection information. The system administrator is notified of the fire using the liquid crystal display 3b and speaker 3c of the receiver 1.
[0060] 火災感知情報を送信した火災感知器は、第 3タイマーが終了すると(図 9のステップ S4)、スィッチ 16を閉じて次の下りタイムスロット Bを受信し、受信後、第 3タイマーを 再び起動する(図 9のステップ S5)。下りタイムスロット Bのメッセージ Msgの内容が火 災感知情報の受信完了メッセージであれば、火災感知情報を送信した火災感知器 は、メインルーチン(図 6のフローチャート)に戻る(図 9のステップ S6)。  [0060] When the third timer expires (step S4 in FIG. 9), the fire detector that transmitted the fire detection information closes switch 16 to receive the next downlink time slot B, and after receiving the third timer, Start again (step S5 in FIG. 9). If the content of message Msg in downlink time slot B is a fire detection information reception completion message, the fire detector that sent the fire detection information returns to the main routine (flow chart in FIG. 6) (step S6 in FIG. 9). .
[0061] もし、火災感知情報の受信完了メッセージを受信しなければ、受信器 1が正常に火 災感知情報を受信して 、な 、可能性があるため、第 4タイマーが終了した時点で火 災感知情報を再送信する(図 9のステップ S8, S3)。そして、受信器 1から受信完了メ ッセージを受信するまで、図 9のステップ S3〜S6, S8を繰り返して受信器 1に確実に 火災発生を知らせる。  [0061] If the reception completion message of the fire detection information is not received, the receiver 1 has received the fire detection information normally, and there is a possibility that the fire will be detected when the fourth timer expires. Resend disaster detection information (steps S8 and S3 in FIG. 9). Until the reception completion message is received from receiver 1, steps S3 to S6 and S8 in FIG. 9 are repeated to reliably notify receiver 1 of the occurrence of a fire.
[0062] 具体的に説明すると、例えば図 10に示すように、 2台の火災感知器 10 , 10力 先  [0062] Specifically, for example, as shown in Fig. 10, two fire detectors 10 and 10 force ahead
2 3 頭のフレーム F1内で、火災感知器 10の上りタイムスロット D2の経過後で、かつ火災  2 3 Within the frame F1, fire detector 10 after the upstream time slot D2, and fire
2  2
感知器 10の上りタイムスロット D3の経過前に、火災を感知したとする。火災感知器 1  Suppose a fire is detected before the uptime slot D3 of sensor 10. Fire detector 1
3  Three
0は、火災を感知した時点で第 2タイマーが既に終了しているので、第 4タイマーの 0 means that the second timer has already expired when a fire is detected.
2 2
終了を待って、次のフレーム F2の上りタイムスロット D2で火災感知情報を受信器 1に 送信する。火災感知器 10は、火災を感知した時点で第 2タイマーがまだ終了してい  Wait for completion and send fire detection information to receiver 1 in upstream time slot D2 of the next frame F2. Fire sensor 10 has a second timer that has expired when a fire is detected.
3  Three
ないので、第 2タイマー終了後に、フレーム F1の上りタイムスロット D3で火災感知情 報を受信器 1に送信する。  Therefore, after the second timer expires, fire detection information is sent to receiver 1 in upstream time slot D3 of frame F1.
[0063] 受信器 1は 2番目のフレーム F2の下りタイムスロット Bで火災感知器 10に対して火 [0063] Receiver 1 fires fire detector 10 in downstream time slot B of second frame F2.
3 災感知情報の受信完了メッセージを送信する。火災感知器 10は、 2番目のフレーム  3 Send a disaster detection information reception completion message. Fire detector 10 is the second frame
3  Three
F2の下りタイムスロット Bで火災感知情報の受信完了メッセージを受信すると、メイン ルーチンへと戻る。火災感知情報の受信完了メッセージを受信しなければ、第 4タイ マー終了後に、再度火災感知情報を送信する。 When a reception completion message for fire detection information is received in time slot B of F2, return to the main routine. If no fire detection information reception completion message is received, After the end of the merging, send fire detection information again.
[0064] また、受信器 1は、 3番目のフレーム F3の下りタイムスロット Bで火災感知器 10に対  [0064] The receiver 1 is connected to the fire detector 10 in the downstream time slot B of the third frame F3.
2 して火災感知情報の受信完了メッセージを送信する。火災感知器 10は、 3番目のフ  2 Send a fire detection information reception completion message. Fire detector 10 is the third
2  2
レーム F3の下りタイムスロット Bで火災感知情報の受信完了メッセージを受信すると、 メインルーチンへと戻る。火災感知情報の受信完了メッセージを受信しなければ、第 4タイマー終了後に、再度火災感知情報を送信する。  When a fire detection information reception completion message is received in downstream time slot B of frame F3, the process returns to the main routine. If the fire detection information reception completion message is not received, the fire detection information is transmitted again after the fourth timer expires.
[0065] 以後、火災感知情報の受信完了メッセージを受信するまで、火災感知器 10 , 10 Thereafter, until the fire detection information reception completion message is received, the fire detectors 10 and 10
3 2 は火災感知情報を連続送信する。ただし、スーパーフレーム SF内の送信回数の上 限は、送信時間デューティが制限値を超えないように設定される。  3 2 transmits fire detection information continuously. However, the upper limit of the number of transmissions in the superframe SF is set so that the transmission time duty does not exceed the limit value.
[0066] 上述のように、火災を感知した火災感知器 10は、遅くとも火災を感知した時点のフ レーム Fkの次のフレーム Fk+ 1で火災感知情報を受信器 1に送信するので、火災を 感知してから、フレームの所要時間である 10秒以内に火災感知情報を受信器 1に送 信することができる。欧州の EN規格 (EN54— 25)では、検出から 10秒以内に送信 することと規定されているので、本実施形態の火災報知システムは、この規格を満た している。 [0066] As described above, the fire detector 10 that has detected the fire transmits the fire detection information to the receiver 1 in the frame Fk + 1 after the frame Fk at the time of detecting the fire at the latest. Then, the fire detection information can be sent to the receiver 1 within 10 seconds, which is the required time of the frame. The European EN standard (EN54-25) stipulates that transmission should be made within 10 seconds after detection, so the fire alarm system of this embodiment satisfies this standard.
[0067] なお、本実施形態では、受信器 1が各火災感知器 10 力もの応答メッセージ  [0067] In this embodiment, the receiver 1 has a response message of 10 fire detectors.
1〜10  1-10
6  6
を正常に受信できず、再度、返信要求メッセージを送信した場合、その返信要求メッ セージを受信した火災感知器は、再度、同じ上りタイムスロットで、応答メッセージを 送信していた(図 8参照)が、返信要求メッセージを再度受信した火災感知器は、複 数の任意の上りタイムスロットで、応答メッセージを送信してもよ 、。  When a response request message is sent again, the fire detector that received the response request message sent a response message again in the same uplink time slot (see Figure 8). However, a fire detector that has received a reply request message again may send a response message in multiple arbitrary upstream timeslots.
[0068] 例えば、図 11に示すように、フレーム F1で上りタイムスロット D3に割り当てられた火 災感知器 10力もの応答メッセージを受信器 1が正常に受信できな力つた場合、火災 [0068] For example, as shown in FIG. 11, if the receiver 1 is unable to receive a response message as many as 10 fire detectors assigned to the upstream time slot D3 in the frame F1, the fire is detected.
3  Three
感知器 10は、次のフレーム F2において、 2つの上りタイムスロット D3, D4で応答メッ  In the next frame F2, the sensor 10 sends a response message in two upstream time slots D3 and D4.
3  Three
セージを送信する。このように、複数の上り方向のタイムスロットで応答メッセージを送 信することで、より確実に応答メッセージを受信器 1に伝達することができる。複数の タイムスロットは、制御部 13が発生した乱数に基づいて決めてもよいし、番号の早い 上り複数の上りタイムスロットを用いても良 、。  Send a sage. In this way, the response message can be transmitted to the receiver 1 more reliably by transmitting the response message in a plurality of uplink time slots. The plurality of time slots may be determined based on a random number generated by the control unit 13, or a plurality of uplink time slots having an earlier number may be used.
[0069] この場合の、定期通信時の動作について、図 12のフローチャートを用いて説明す る。なお、図 12のステップ S1〜S11は、実施形態 1の図 6と同様のため、説明を省略 する。 [0069] The operation during regular communication in this case will be described with reference to the flowchart of FIG. The Note that steps S1 to S11 in FIG. 12 are the same as those in FIG.
[0070] 受信器 1が正常に応答メッセージを受信せず、再度、返信要求メッセージを送信し た場合、各火災感知器は送られてきたデータフォーマットの感知器 IDが自器の IDと 一致するかをチェックし、一致しなければそのデータを破棄し(図 12のステップ S 12) 、受信完了メッセージを受信するまで、ステップ S7, S8, S9, S 12を繰り返す。送ら れてきたデータフォーマットの感知器 IDと自器の IDとが一致した火災感知器は、返 信要求メッセージを受理し、乱数等により複数の上りタイムスロットの番号を決定する 。そして、決定された上りタイムスロットの開始時間に合わせて複数のタイマーをセット し、タイマー終了時に無線送受信部 12を動作させて、応答メッセージを再度送信す る(図 12のステップ S 13)。  [0070] When the receiver 1 does not receive the response message normally and sends a reply request message again, each fire detector has the sensor ID of the sent data format matched with its own ID. If they do not match, the data is discarded (step S12 in FIG. 12), and steps S7, S8, S9, and S12 are repeated until a reception completion message is received. The fire detector whose sensor ID matches the ID of the received data format receives the return request message and determines the number of multiple upstream time slots using random numbers. Then, a plurality of timers are set according to the determined start time of the uplink time slot, and when the timer ends, the wireless transmission / reception unit 12 is operated to transmit the response message again (step S13 in FIG. 12).
[0071] なお、図 12は、定期通信時の動作を示すフローチャートであった力 受信器 1が火 災感知情報を正常に受信できな力つた場合も、各火災感知器は、図 13のステップ S 8に示すように、次のフレームの中の複数の任意の上りタイムスロットで、火災感知情 報を再送するのが好ましい。なお、図 13のステップ S1〜S7は、図 9のステップ Sl〜 S7と同様のため、説明を省略する。  [0071] FIG. 12 is a flowchart showing the operation at the time of regular communication. Even when the power receiver 1 is unable to receive the fire detection information normally, each fire detector will not perform the steps shown in FIG. As shown in S8, it is preferable to retransmit the fire detection information in a plurality of arbitrary upstream time slots in the next frame. Note that steps S1 to S7 in FIG. 13 are the same as steps Sl to S7 in FIG.
[0072] 複数の任意の上りタイムスロットを使用する代わりに、受信器 1が、メッセージを受信 できた 1乃至複数の上りタイムスロットを指定して、再度返信要求メッセージを送信し、 この返信要求メッセージを受信した火災感知器は、指定されたタイムスロットで応答メ ッセージを再度受信器 1に返信してもよ 、。  [0072] Instead of using a plurality of arbitrary uplink time slots, the receiver 1 designates one or more uplink time slots in which the message can be received and transmits a reply request message again. This reply request message The fire detector that received the message may send a response message back to the receiver 1 again at the specified time slot.
[0073] 例えば、図 14に示すように、フレーム F1で上りタイムスロット D2に割り当てられた火 災感知器 10力もの応答メッセージを受信器 1が正常に受信できな力つた場合、受信  [0073] For example, as shown in FIG. 14, when the receiver 1 has received a response message as many as 10 fire detectors assigned to the upstream time slot D2 in the frame F1, the receiver 1 cannot receive normally.
2  2
器 1は、フレーム F1で正常に応答メッセージを受信できた上りタイムスロットの中から 、 1乃至複数の上りタイムスロット、例えば 2つの上りタイムスロット Dl, D3を選択し、 選択した上りタイムスロット Dl, D3を指定して、火災感知器 10宛てに再度、返信要  The device 1 selects one or more uplink time slots, for example, two uplink time slots Dl and D3 from the uplink time slots that have successfully received the response message in the frame F1, and selects the selected uplink time slot Dl, Specify D3 and send a reply again to Fire Detector 10.
2  2
求メッセージを送信する。火災感知器 10は、 2番目のタイムスロット F2において、指  Send a solicitation message. Fire detector 10 is the finger in second time slot F2.
2  2
令された上りタイムスロット Dl, D3で応答メッセージを再度返信する。  The response message is returned again in the specified upstream time slots Dl and D3.
[0074] このように受信実績のある上りタイムスロットを用いて応答メッセージを返信すること で、より確実に応答メッセージを受信器 1に伝達することができる。 [0074] In this way, a response message is returned using an uplink time slot with a record of reception. Thus, the response message can be transmitted to the receiver 1 more reliably.
[0075] なお、受信器 1が上りタイムスロット Diを選択する際に、受信実績のある複数の上り タイムスロット Diのうちで最も番号の早い上りタイムスロットを選択すれば、より短時間 で応答メッセージを受信器 1が受信することができる。また、選択する上りタイムスロッ ト Diの数は、送信時間デューティの制限を超えない範囲であれば、 3つ以上でもよい [0075] When the receiver 1 selects the uplink time slot Di, if the uplink time slot with the earliest number is selected from a plurality of uplink time slots Di that have been received, the response message can be transmitted in a shorter time. Can be received by the receiver 1. The number of uplink time slots Di to be selected may be three or more as long as it does not exceed the limit of the transmission time duty.
[0076] 或いは、受信器 1は、フレーム毎に異なるタイムスロットを指定して、再度返信要求メ ッセージを送信してもよい。例えば、図 15に示すように、フレーム F1で上りタイムス口 ット D2に割り当てられた火災感知器 10力もの応答メッセージを受信器 1が正常に受 Alternatively, the receiver 1 may specify a different time slot for each frame and transmit a reply request message again. For example, as shown in Fig. 15, the receiver 1 normally receives a response message of 10 fire detectors assigned to the upstream time slot D2 in the frame F1.
2  2
信できな力つた場合、受信器 1は、次のフレーム F2では、タイムスロット D1を指定して 、再度返信要求メッセージを送信し、さらに次のフレーム F3では、タイムスロット D1と 異なるタイムスロット D3を指定して、再度返信要求メッセージを送信する。火災感知 器 10は、指定された上りタイムスロットで応答メッセージを返信する。  If the receiver 1 fails, the receiver 1 designates the time slot D1 in the next frame F2 and transmits a reply request message again. In the next frame F3, the receiver 1 sets a time slot D3 different from the time slot D1. Specify and send the reply request message again. The fire detector 10 returns a response message in the designated upstream time slot.
2  2
[0077] フレーム毎に上りタイムスロットを変えて応答メッセージを送信することで、フレーム Fの所要時間に近い周期的なノイズが存在する場合でも、確実に応答メッセージを 受信器 1に伝達することができる。  [0077] By transmitting the response message by changing the uplink time slot for each frame, even when there is periodic noise close to the required time of frame F, the response message can be reliably transmitted to the receiver 1. it can.
[0078] また、本実施形態では、受信器 1からの返信要求メッセージに対して、各火災感知 器が 1回応答メッセージを送信し、個別に返信要求メッセージを送信された火災感知 器のみが、複数回、返信要求メッセージを送信していたが、応答メッセージをより確 実に受信器 1に送信するために、各火災感知器は、送信時間デューティの制限値の 範囲内で、複数回、応答メッセージを送信してもよい。すなわち、受信器 1は、一つの スーパーフレーム SFの中で許容される送信時間と、一つの上り Z下りタイムスロット に要する時間と、 1つのフレームにおける上りタイムスロットの数とから、一つのスーパ 一フレームの中で許容される各火災感知器カゝら受信器 1への送信回数の上限を求 め、返信要求メッセージと共に、上記上限以下の送信回数を全ての火災感知器に対 して送信し、各火災感知器は、一つのスーパーフレーム内で、送信回数に到達する まで、自器に割り当てられた上りタイムスロットで、応答メッセージを受信器 1に対して 送信してちょい。 [0079] すなわち、スーパーフレーム SFの時間を T 、上りタイムスロットの時間を Τ、送信 [0078] Further, in this embodiment, in response to the reply request message from the receiver 1, each fire sensor transmits a response message once, and only the fire sensor to which the reply request message is individually transmitted, Although the reply request message was sent multiple times, each fire detector responded several times within the limit of the transmission time duty in order to send the response message to the receiver 1 more reliably. May be sent. That is, the receiver 1 uses one superframe based on the transmission time allowed in one superframe SF, the time required for one uplink Z downlink time slot, and the number of uplink time slots in one frame. Obtain the upper limit of the number of transmissions allowed to each fire detector in the frame, and send the number of transmissions below the upper limit to all fire detectors together with the reply request message. Each fire detector should send a response message to receiver 1 in the uplink time slot assigned to itself until it reaches the number of transmissions within one superframe. [0079] That is, the time of superframe SF is T, the time of uplink time slot is
SF D  SF D
時間デューティの制限値を %とすると、送信時間デューティの制限値に起因する各 火災感知器の 1つのスーパーフレーム SF内での送信回数の上限 L2は、  If the time duty limit value is%, the upper limit L2 of the number of transmissions in one superframe SF of each fire detector due to the transmission time duty limit value is
L2= (T X Z/100) /Ύ  L2 = (T X Z / 100) / Ύ
SF D  SF D
となる。一方、 1つのフレームにおける上りタイムスロットの数を i個、下りタイムスロット の時間を T、上りタイムスロットの時間を Tとすると、一つのフレーム Fの時間幅 Tは  It becomes. On the other hand, if the number of uplink time slots in one frame is i, the time of downlink time slots is T, and the time of uplink time slots is T, the time width T of one frame F is
B D F  B D F
T =T + (T X i) T = T + (T X i)
F B D  F B D
となる。各火災感知器の上りタイムスロット Diの割当は、一つのフレーム毎に 1つずつ であるから、各火災感知器の 1つのスーパーフレーム SF内での送信回数は、スーパ 一フレーム SFに含まれるフレーム Fの最大繰り返し回数 y ( =T ÷T )以下でなけれ  It becomes. Since each fire detector has an uplink time slot Di assigned to each frame, the number of transmissions within one superframe SF of each fire detector is the number of frames included in the superframe SF. Must be less than the maximum number of repetitions of F y (= T ÷ T)
SF F  SF F
ばならない。従って、一つのスーパーフレームの中で許容される各火災感知器から 受信器 1への送信回数の上限は、 y≤L2ならば y、 L2く yならば L2となる。  I must. Therefore, the upper limit of the number of transmissions from each fire detector to receiver 1 allowed in one superframe is y if y≤L2, and L2 if y is L2.
[0080] 例えば、本実施形態では、 T = 300秒、 Z = 0. 1%、 T =T =0. 1秒、上りタイム [0080] For example, in this embodiment, T = 300 seconds, Z = 0.1%, T = T = 0.1 second, uplink time
SF B D  SF B D
スロットの数 = 99個であるので、 L2 = 3回、 y= 30回となり、一つのスーパーフレーム の中で許容される各火災感知器カゝら受信器 1への送信回数の上限値は 3回(=L2) となる。  Since the number of slots = 99, L2 = 3 times, y = 30 times, and the upper limit of the number of transmissions to the receiver 1 that is allowed in each super-frame is 3 Times (= L2).
[0081] 上限が 3回の場合、受信器 1は、 3回以内の送信回数、例えば 2回を指定して、返 信要求メッセージを全ての火災感知器に対して送信し、各火災感知器は、一つのス 一パーフレーム内で、 2回、応答メッセージを受信器 1に送信する。この場合、受信器 1が応答メッセージを受信する可能性を高めることができる。  [0081] When the upper limit is three times, the receiver 1 designates the number of transmissions within three times, for example, two times, and sends a response request message to all the fire detectors. Sends a response message to receiver 1 twice in one superframe. In this case, the possibility that the receiver 1 receives the response message can be increased.
[0082] なお、上述の上限値を求める処理は、施工時に施工業者が表示操作部 3の操作ス イッチ 3aを操作してスーパーフレーム SFの時間幅 T や、送信時間デューティの制  [0082] The above-described process for obtaining the upper limit value is performed by a contractor operating the operation switch 3a of the display / operation unit 3 during construction to control the time width T of the super frame SF and the transmission time duty.
SF  SCIENCE FICTION
限値∑%などの条件を入力することにより、受信器 1の制御部 4で実行される。  This is executed by the control unit 4 of the receiver 1 by inputting a condition such as a limit value ∑%.
[0083] 上記の場合、好ましくは、受信器 1は、受信した無線信号の信号強度を検出するセ ンサ (検出手段。図示せず。)を備え、信号強度が相対的に高い無線信号を送信した 火災感知器に対しては、前記送信回数を相対的に少なくし、信号強度が相対的に低 い無線信号を送信した火災感知器に対しては、前記送信回数を、前記上限以内で 相対的に多くする。例えば、火災感知器 10の信号強度が相対的に高い場合、火災 [0083] In the above case, preferably, the receiver 1 includes a sensor (detection means; not shown) that detects the signal strength of the received radio signal, and transmits a radio signal having a relatively high signal strength. For fire detectors, the number of transmissions is relatively low, and for fire detectors that have transmitted wireless signals with relatively low signal strength, the number of transmissions is within the upper limit. Increase relatively. For example, if the signal strength of fire detector 10 is relatively high,
1  1
感知器 10に対しては、 1回のみ応答メッセージを送信するように指示し、火災感知  Instruct the sensor 10 to send a response message only once, fire detection
1  1
器 10の信号強度が相対的に低い場合、火災感知器 10に対しては、上限の 3回、 If the signal strength of the fire detector 10 is relatively low,
2 2 twenty two
応答メッセージを送信するように指示する。この場合、信号強度の低い無線信号は正 常に受信できる可能性が低いので、送信回数を多くすることで正常に受信できる可 能性を高めることができ、信号強度の高い無線信号は正常に受信できる可能性が高 Vヽので、送信回数を減らすことで無駄なトラフィックを削減することができる。  Instructs to send a response message. In this case, since it is unlikely that radio signals with low signal strength can be received normally, the possibility of normal reception can be increased by increasing the number of transmissions, and radio signals with high signal strength can be received normally. Since there is a high possibility of being able to do V ヽ, useless traffic can be reduced by reducing the number of transmissions.
[0084] なお、本実施形態では、各火災感知器カゝら受信器 1にデータを送信する際に、図 4 に示したデータフォーマットを用い、感知器 IDに自器の感知器 IDを指定して送信し ていた。し力しながら、本実施形態のように、各火災感知器の固有のアドレスの下位 アドレス (感知器 ID)とスロット番号とを一対一で対応させている場合、受信器 1は、タ ィムスロット番号力 発信元の火災感知器の感知器 IDを識別することができる。従つ て、各火災感知器は、固有のアドレスから下位アドレスである感知器 IDを除いた上位 アドレス (すなわち、システム ID (SysID) )のみを送信するのが好ましぐその場合、 送信時間が短縮でき、ひ 、ては消費電力を低減できる。  In this embodiment, when transmitting data to the receiver 1 of each fire detector, the data format shown in FIG. 4 is used and the sensor ID of the own device is designated as the sensor ID. And sent. However, when the lower address (sensor ID) of the unique address of each fire detector is associated with the slot number on a one-to-one basis as in this embodiment, the receiver 1 is the time slot number. Force Can identify the detector ID of the source fire detector. Therefore, it is preferable for each fire detector to transmit only the upper address (that is, the system ID (SysID)) excluding the sensor ID which is the lower address from the unique address. The power consumption can be reduced.
[0085] また、本実施形態では、第 1タイマーによって次のスーパーフレーム SFで同期信号 を含むタイムスロットを受信し始めるタイミングを推定していた。し力しながら、制御部 1 3を構成するマイコンの動作クロックと、受信器 1の制御部 4を構成するマイコンの動 作クロックとの間の誤差によって第 1タイマーがカウントする時間に誤差が生じる可能 性がある。本実施形態では、図 5に示すように、各上り、下りタイムスロット B, Diの前 後に 15ミリ秒のガードタイムを設けている。しかし、ガードタイムが 15ミリ秒の場合、 1 5ミリ秒 ÷ 299. 9秒 = 50ppmの相対誤差しか許容できない。つまり、火災感知器 10 と受信器 1の制御部 13, 4を構成するマイコンに許容される絶対誤差は ± 25ppmで あり、例えマイコンのクロックを水晶発振子を用いて作成する場合であっても、上記絶 対誤差を満足させるためには相当のコストアップとなってしまう。  In the present embodiment, the timing at which reception of a time slot including a synchronization signal is started in the next superframe SF by the first timer is estimated. However, an error occurs in the time counted by the first timer due to an error between the operation clock of the microcomputer configuring the control unit 1 3 and the operation clock of the microcomputer configuring the control unit 4 of the receiver 1. there is a possibility. In the present embodiment, as shown in FIG. 5, a guard time of 15 milliseconds is provided before and after each upstream and downstream time slot B, Di. However, if the guard time is 15 milliseconds, only a relative error of 15 milliseconds ÷ 299.9 seconds = 50 ppm is acceptable. In other words, the absolute error allowed for the microcomputer that constitutes the control units 13 and 4 of the fire detector 10 and the receiver 1 is ± 25 ppm, even if the clock of the microcomputer is created using a crystal oscillator. In order to satisfy the absolute error, the cost is considerably increased.
[0086] そこで、火災感知器 10の制御部 13において、第 1タイマーで計測した前記同期信 号を含むタイムスロットを受信し終えてから、次のスーパーフレームで前記同期信号 を含むタイムスロットを受信し始めるまでの時間と、実際に同期信号を含むタイムス口 ットを受信したタイミングとの誤差を求め、その誤差を用いて、それ以降の前記タイマ 一の計測時間を修正するのが好ましい。この場合、マイコンの動作クロックの許容誤 差を緩和でき、コストダウンが図れる。 [0086] Therefore, after receiving the time slot including the synchronization signal measured by the first timer, the control unit 13 of the fire detector 10 receives the time slot including the synchronization signal in the next superframe. Time and start time, including the actual synchronization signal It is preferable to obtain an error from the timing at which the timer was received and to correct the subsequent measurement time of the timer using the error. In this case, the allowable error in the operation clock of the microcomputer can be alleviated and the cost can be reduced.
[0087] 本実施形態では、同期信号は、スーパーフレーム SFの最初のフレームのメッセ一 ジ Msgのみに挿入されて!、たが、最初のフレーム以外のメッセージ Msgに挿入され ていてもよい。  In this embodiment, the synchronization signal is inserted only in the message Msg of the first frame of the super frame SF !, but may be inserted in the message Msg other than the first frame.
[0088] また、本実施形態の報知部 3は、液晶ディスプレイ 3bやスピーカ 3cで構成されて ヽ たが、複数の受信器 1を有線で中央監視盤に接続しておき、受信器 1が火災感知情 報を受信すると、報知部 3が中央監視盤に火災感知情報を送信し、中央監視盤にお いて必要な対処 (例えば、火災警報の発報や消防署への通報など)を行うようにして も構わない。  [0088] Further, the notification unit 3 of the present embodiment is configured by the liquid crystal display 3b and the speaker 3c. However, a plurality of receivers 1 are connected to the central monitoring panel by wire, and the receivers 1 are fired. When the detection information is received, the notification unit 3 transmits the fire detection information to the central monitoring panel, and the central monitoring panel performs necessary actions (for example, issuing a fire alarm or reporting to the fire department). It doesn't matter.
[0089] 上記のように、本発明の技術的思想に反することなしに、広範に異なる実施形態を 構成することができることは明白なので、この発明は、請求の範囲において限定した 以外は、その特定の実施形態に制約されるものではない。  [0089] As described above, it is obvious that a wide variety of different embodiments can be configured without violating the technical idea of the present invention. Therefore, the present invention is not limited to that except as limited in the claims. It is not limited to the embodiment.
[0090] 特に、スーパーフレームを構成するフレームの時間長やタイムスロットの時間長は、 上記数値に限るものではなぐ火災感知器の使用台数や他の諸要因を踏まえて、そ の火災無線報知システムに応じて勿論適宜設計変更すべきである。  [0090] In particular, the time length of the frames constituting the superframe and the time length of the time slot are not limited to the above values, and the fire radio alarm system is based on the number of fire detectors used and other factors. Of course, the design should be changed accordingly.

Claims

請求の範囲 The scope of the claims
[1] 複数の火災感知器と受信器とを備えた火災報知システムであって、  [1] A fire alarm system comprising a plurality of fire detectors and receivers,
前記各火災感知器は、火災を感知する感知手段と、前記受信器との間で無線 信号を送受信する無線送受信手段とを備え、前記無線送受信手段は、前記感知手 段が火災を感知した時に前記受信器に対して無線信号を送信すると共に各火災感 知器の動作状態を所定の時間間隔で受信器に知らせる定期通信を受信器との間で 行う;  Each of the fire detectors includes a sensing means for detecting a fire and a wireless transmission / reception means for transmitting / receiving a wireless signal to / from the receiver. The wireless transmission / reception means is configured to detect when a fire is detected by the sensing means. Periodic communication is performed with the receiver that transmits a radio signal to the receiver and informs the receiver of the operation state of each fire detector at predetermined time intervals;
前記受信器は、前記各火災感知器との間で無線信号を送受信する無線送受 信手段と、受信した無線信号に火災感知情報が含まれていると、火災を外部に報知 する報知手段とを備える;  The receiver includes wireless transmission / reception means for transmitting / receiving a wireless signal to / from each of the fire detectors, and notification means for notifying a fire to the outside when the received wireless signal includes fire detection information. Prepare;
特徴とするところは、  The feature is
前記各火災感知器と前記受信器とは、受信器側カゝら火災感知器側への 1つの 下りタイムスロットと、火災感知器側カゝら受信器側への複数の上りタイムスロットとから 構成されるフレームが複数集まって構成されたスーパーフレームを用いて無線通信 を行い、各火災感知器は、互いに異なる前記上りタイムスロットの何れかに割り当てら れて無線信号を送信する。  Each of the fire detectors and the receiver includes a downstream time slot from the receiver side to the fire detector side, and a plurality of upstream time slots from the fire detector side to the receiver side. Wireless communication is performed using a super frame configured by a plurality of configured frames, and each fire detector transmits a wireless signal assigned to one of the upstream time slots different from each other.
[2] 請求項 1に記載の火災報知システムにお 、て、  [2] In the fire alarm system according to claim 1,
前記受信器は、前記スーパーフレームに含まれる最初のフレームの中の下りタイムス ロットで全ての前記火災感知器に対して同期信号を送信し、  The receiver transmits a synchronization signal to all the fire detectors in a downstream time slot in the first frame included in the superframe,
各火災感知器は、前記同期信号を受信した時点を基準に、自器に割り当てられた上 りタイムスロットの開始タイミングを決定する。  Each fire detector determines the start timing of the upper time slot assigned to the fire detector based on the time when the synchronization signal is received.
[3] 請求項 2に記載の火災報知システムにおいて、  [3] In the fire alarm system according to claim 2,
前記受信器は、前記同期信号と同一の下りタイムスロットで前記定期通信を要求する 返信要求メッセージを全ての前記火災感知器に対して送信し、  The receiver transmits a reply request message for requesting the periodic communication in the same downlink time slot as the synchronization signal to all the fire detectors,
前記返信要求メッセージを受信した各火災感知器は、自器に割り当てられた上りタイ ムスロットで、自器の動作状態を知らせる応答メッセージを前記受信器に対して送信 する。  Each fire detector that has received the reply request message transmits a response message to the receiver in an uplink time slot assigned to the fire detector informing the operational state of the fire detector.
[4] 請求項 3に記載の火災報知システムにおいて、 前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信できな力つた 場合、次のフレームの下りタイムスロットで、受信できなかった上りタイムスロットに割り 当てられた火災感知器に対して前記返信要求メッセージを再送し、 [4] In the fire alarm system according to claim 3, If the receiver is unable to receive the response message in any upstream time slot, the fire detector assigned to the upstream time slot that could not be received in the downstream time slot of the next frame. Resend the reply request message;
前記返信要求メッセージを受信した火災感知器は、自器に割り当てられた次の上りタ ィムスロットで、再度、前記応答メッセージを前記受信器に対して送信する。  The fire detector that has received the reply request message transmits the response message to the receiver again in the next uplink time slot assigned to the fire detector.
[5] 請求項 3に記載の火災報知システムにおいて、  [5] In the fire alarm system according to claim 3,
前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信できな力つた 場合、次のフレームの下りタイムスロットで、受信できなかった上りタイムスロットに割り 当てられた火災感知器に対して前記返信要求メッセージを再送し、  If the receiver is unable to receive the response message in any upstream time slot, the fire detector assigned to the upstream time slot that could not be received in the downstream time slot of the next frame. Resend the reply request message;
前記返信要求メッセージを受信した火災感知器は、複数の任意の上りタイムスロット で、再度、前記応答メッセージを前記受信器に対して送信する。  The fire detector that has received the reply request message transmits the response message to the receiver again in a plurality of arbitrary upstream time slots.
[6] 請求項 3に記載の火災報知システムにおいて、  [6] In the fire alarm system according to claim 3,
前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信できな力つた 場合、次のフレームの下りタイムスロットで、受信できなかった上りタイムスロットに割り 当てられた火災感知器に対して、応答メッセージを受信できた 1乃至複数の上りタイ ムスロットを指定して、前記返信要求メッセージを再送し、  If the receiver is unable to receive the response message in any upstream time slot, the fire detector assigned to the upstream time slot that could not be received in the downstream time slot of the next frame. The response request message is retransmitted by designating one or more uplink time slots that can receive the response message,
前記返信要求メッセージを受信した火災感知器は、指定された前記上りタイムスロッ トで、再度、前記応答メッセージを前記受信器に対して送信する。  The fire detector that has received the reply request message transmits the response message to the receiver again at the designated upstream time slot.
[7] 請求項 3に記載の火災報知システムにおいて、 [7] In the fire alarm system according to claim 3,
前記受信器は、何れかの上りタイムスロットで前記応答メッセージを受信できな力つた 場合、フレーム毎に異なる上りタイムスロットを指定して、前記返信要求メッセージを 再送し、  When the receiver is unable to receive the response message in any uplink time slot, the receiver designates a different uplink time slot for each frame, retransmits the reply request message,
前記返信要求メッセージを受信した火災感知器は、指定された前記上りタイムスロッ トで、再度、前記応答メッセージを前記受信器に対して送信する。  The fire detector that has received the reply request message transmits the response message to the receiver again at the designated upstream time slot.
[8] 請求項 3に記載の火災報知システムにおいて、 [8] In the fire alarm system according to claim 3,
前記受信器は、一つの前記スーパーフレームの中で許容される送信時間と、一つの 上り Z下りタイムスロットに要する時間と、 1つのフレームにおける前記上りタイムスロッ トの数とから、一つのスーパーフレームの中で許容される各火災感知器力 受信器 への送信回数の上限を求め、前記返信要求メッセージと共に、前記上限以下の送信 回数を全ての前記火災感知器に対して送信し、 The receiver determines the transmission time of one superframe from the transmission time allowed in one superframe, the time required for one uplink Z downlink time slot, and the number of uplink time slots in one frame. Each fire detector power allowed in receiver The upper limit of the number of transmissions is sent to the reply request message and the number of transmissions equal to or lower than the upper limit is transmitted to all the fire detectors.
前記返信要求メッセージを受信した各火災感知器は、一つのスーパーフレーム内で 、前記送信回数に到達するまで、自器に割り当てられた上りタイムスロットで、前記応 答メッセージを前記受信器に対して送信する。  Each fire detector that has received the reply request message transmits the reply message to the receiver in an uplink time slot assigned to the fire detector until the number of transmissions is reached within one superframe. Send.
[9] 請求項 8に記載の火災報知システムにおいて、  [9] In the fire alarm system according to claim 8,
前記受信器は、受信した無線信号の信号強度を検出する検出手段を備え、 前記受信器は、信号強度が相対的に高い無線信号を送信した火災感知器に対する 前記送信回数を相対的に少なくし、信号強度が相対的に低い無線信号を送信した 火災感知器に対する前記送信回数を、前記上限以内で相対的に多くする。  The receiver includes detection means for detecting a signal strength of a received radio signal, and the receiver relatively reduces the number of transmissions to a fire detector that has transmitted a radio signal having a relatively high signal strength. The number of transmissions to a fire detector that has transmitted a wireless signal having a relatively low signal strength is relatively increased within the upper limit.
[10] 請求項 1に記載の火災報知システムにお!/ヽて、  [10] In the fire alarm system according to claim 1!
前記各火災感知器は、前記感知手段が火災を感知すると、自器に割り当てられた次 の上りタイムスロットで、火災感知情報を前記受信器に対して送信する。  When each of the fire detectors detects a fire, the fire detection information is transmitted to the receiver in the next upstream time slot assigned to the fire detector.
[11] 請求項 10に記載の火災報知システムにおいて、  [11] In the fire alarm system according to claim 10,
前記受信器は、前記火災感知情報を受信すると次の下りタイムスロットで前記火災感 知情報を送信した火災感知器に対して確認メッセージを送信し、  When the receiver receives the fire detection information, it transmits a confirmation message to the fire detector that has transmitted the fire detection information in the next downlink time slot,
前記火災感知情報を送信した火災感知器は、前記確認メッセージを受信するまで、 自器に割り当てられた上りタイムスロットで、前記火災感知情報を前記受信器に対し て送信する。  The fire detector that has transmitted the fire detection information transmits the fire detection information to the receiver in an uplink time slot assigned to the fire detector until receiving the confirmation message.
[12] 請求項 1に記載の火災報知システムにお!/ヽて、  [12] In the fire alarm system according to claim 1!
前記各火災感知器は固有のアドレスを有し、前記固有のアドレスの下位アドレスは、 自器に割り当てられた上りタイムスロットの位置に対応する。  Each fire detector has a unique address, and the lower address of the unique address corresponds to the position of the upstream time slot assigned to the fire detector.
[13] 請求項 12に記載の火災報知システムにおいて、 [13] In the fire alarm system according to claim 12,
前記各火災感知器は、前記受信器に無線信号を送信する際に、送信元の火災感知 器を示す情報として、前記固有のアドレス力 前記下位アドレスを除 、た上位アドレ スを送信する。  When transmitting a radio signal to the receiver, each of the fire detectors transmits an upper address excluding the inherent address power and the lower address as information indicating the fire detector of the transmission source.
[14] 請求項 2に記載の火災報知システムにおいて、 [14] In the fire alarm system according to claim 2,
前記各火災感知器は、前記同期信号を含むタイムスロットを受信し終えてから、次の スーパーフレームで前記同期信号を含むタイムスロットを受信し始めるまでの時間を 計測するタイマーを有し、 Each of the fire detectors receives a time slot including the synchronization signal, and then A timer for measuring the time until the reception of the time slot including the synchronization signal in the superframe starts,
前記各火災感知器は、前記タイマーで計測した時間と、実際に前記同期信号を含む タイムスロットを受信したタイミングとの誤差を求め、その誤差を用いて、それ以降の 前記タイマーの計測時間を修正する。 Each of the fire detectors calculates an error between the time measured by the timer and the timing of actually receiving the time slot including the synchronization signal, and uses the error to correct the subsequent timer measurement time. To do.
PCT/JP2005/016505 2005-06-08 2005-09-08 Fire alarm system WO2006131998A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05782278A EP1855260B1 (en) 2005-06-08 2005-09-08 Fire alarm system
DK05782278.5T DK1855260T3 (en) 2005-06-08 2005-09-08 Fire Alarm System
DE602005023219T DE602005023219D1 (en) 2005-06-08 2005-09-08 FIRE ALARM SYSTEM
AT05782278T ATE479174T1 (en) 2005-06-08 2005-09-08 FIRE ALARM SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005168719A JP4396584B2 (en) 2005-06-08 2005-06-08 Fire alarm system
JP2005-168719 2005-06-08

Publications (1)

Publication Number Publication Date
WO2006131998A1 true WO2006131998A1 (en) 2006-12-14

Family

ID=37498209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016505 WO2006131998A1 (en) 2005-06-08 2005-09-08 Fire alarm system

Country Status (6)

Country Link
EP (1) EP1855260B1 (en)
JP (1) JP4396584B2 (en)
AT (1) ATE479174T1 (en)
DE (1) DE602005023219D1 (en)
DK (1) DK1855260T3 (en)
WO (1) WO2006131998A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515111A (en) * 2007-01-17 2010-05-06 パナソニック電工株式会社 Wireless communication system
JP2011244464A (en) * 2011-06-27 2011-12-01 Panasonic Electric Works Co Ltd Radio communications system
JP2014204424A (en) * 2013-04-10 2014-10-27 パナソニック株式会社 Radio communication system
JP2014204422A (en) * 2013-04-10 2014-10-27 パナソニック株式会社 Radio communication system
JP2017037433A (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Slave unit of automatic fire alarm system, automatic fire alarm system, and master unit of automatic fire alarm system
CN113077615A (en) * 2021-03-22 2021-07-06 杭州海康威视数字技术股份有限公司 Alarm information processing method and device and electronic equipment

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956076B2 (en) * 2006-07-18 2012-06-20 パナソニック株式会社 Fire alarm system
EP1901256B1 (en) * 2006-09-18 2012-08-29 Siemens Aktiengesellschaft Method for radio transmission in a radio cell of a hazard warning system
WO2008088079A1 (en) * 2007-01-17 2008-07-24 Panasonic Electric Works Co., Ltd. Wireless fire alarm system
JP5027517B2 (en) * 2007-01-17 2012-09-19 パナソニック株式会社 Wireless transmission system
WO2008155823A1 (en) 2007-06-19 2008-12-24 Panasonic Corporation Mobile terminal device, wireless communication unit, wireless communication system, and wireless communication method
JP4944804B2 (en) * 2008-01-11 2012-06-06 パナソニック株式会社 Fire alarm system
JP5091747B2 (en) * 2008-04-04 2012-12-05 パナソニック株式会社 Fire alarm system
JP5123028B2 (en) * 2008-04-04 2013-01-16 パナソニック株式会社 Fire alarm system
JP5015846B2 (en) * 2008-04-04 2012-08-29 パナソニック株式会社 Fire alarm system
JP5149684B2 (en) * 2008-04-22 2013-02-20 パナソニック株式会社 Fire alarm system
JP5022292B2 (en) * 2008-04-22 2012-09-12 パナソニック株式会社 Fire alarm system
JP5015855B2 (en) * 2008-04-24 2012-08-29 パナソニック株式会社 Fire alarm system
JP5075014B2 (en) * 2008-05-27 2012-11-14 パナソニック株式会社 Fire alarm system
US8289161B2 (en) * 2008-05-30 2012-10-16 Honeywell International Inc. Inexpensive mass market alarm system with alarm monitoring and reporting
JP5222123B2 (en) * 2008-12-19 2013-06-26 パナソニック株式会社 Fire alarm system
JP2010134623A (en) * 2008-12-03 2010-06-17 Nohmi Bosai Ltd Alarm system
JP5391056B2 (en) * 2009-01-19 2014-01-15 パナソニック株式会社 Wireless communication system
JP5314589B2 (en) * 2009-02-23 2013-10-16 パナソニック株式会社 Wireless communication system
JP5322705B2 (en) * 2009-03-09 2013-10-23 能美防災株式会社 Alarm system
JP5342305B2 (en) * 2009-03-31 2013-11-13 パナソニック株式会社 Fire alarm system
JP4525852B2 (en) * 2009-11-02 2010-08-18 パナソニック電工株式会社 Fire alarm system
JP5091956B2 (en) * 2010-01-15 2012-12-05 パナソニック株式会社 Fire alarm system
EP2672774B1 (en) * 2011-02-02 2017-04-26 Panasonic Intellectual Property Management Co., Ltd. Wireless communication system
JP5705013B2 (en) * 2011-04-28 2015-04-22 能美防災株式会社 Fire alarm system
JP5705012B2 (en) * 2011-04-28 2015-04-22 能美防災株式会社 Fire alarm system
JP5942148B2 (en) * 2012-09-12 2016-06-29 パナソニックIpマネジメント株式会社 Wireless communication system
JP5391321B2 (en) * 2012-09-14 2014-01-15 パナソニック株式会社 Fire alarm system
JP2014204423A (en) * 2013-04-10 2014-10-27 パナソニック株式会社 Radio communication system
JP2015038681A (en) * 2013-08-19 2015-02-26 ホーチキ株式会社 Radio disaster prevention system
JP2016134791A (en) * 2015-01-20 2016-07-25 パナソニックIpマネジメント株式会社 Load control device, communication device and load control system
JP6709982B2 (en) 2016-07-19 2020-06-17 パナソニックIpマネジメント株式会社 Communication system, communication device
FR3063594B1 (en) * 2017-03-06 2019-03-22 Peugeot Citroen Automobiles Sa DEVICE AND METHOD FOR SELECTIVE SIGNAL COMMUNICATION
JP6868826B2 (en) 2017-09-01 2021-05-12 パナソニックIpマネジメント株式会社 Communication devices, sub-communication systems, and communication systems
FR3080727B1 (en) * 2018-04-26 2021-04-23 Finsecur WIRELESS COMMUNICATION PROCESS BETWEEN AT LEAST ONE ENERGY AUTONOMOUS RISK DETECTION TERMINAL AND A COMMUNICATING BODY
WO2019207261A1 (en) 2018-04-26 2019-10-31 Finsecur Method for wireless communication between at least one energy-autonomous risk detection terminal and a communicating unit
FR3080725B1 (en) * 2018-04-26 2022-12-16 Finsecur WIRELESS COMMUNICATION METHOD BETWEEN AT LEAST ONE ENERGETICALLY AUTONOMOUS RISK DETECTION TERMINAL AND A COMMUNICATING ORGAN
JP7378055B2 (en) 2019-07-02 2023-11-13 パナソニックIpマネジメント株式会社 Communication device, sub-communication system, communication system, communication method, and program
JP2022181117A (en) 2021-05-25 2022-12-07 パナソニックIpマネジメント株式会社 Alarm system and alarm device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261374A (en) * 1996-03-25 1997-10-03 Matsushita Electric Works Ltd Multiple dwelling house centralized monitoring system
JPH11234299A (en) * 1998-02-09 1999-08-27 Victor Co Of Japan Ltd Communication equipment
JPH11259771A (en) * 1998-03-11 1999-09-24 Atsumi Electric Co Ltd Wireless sensor, wireless controller, and wireless guard system using them
JP2002544635A (en) * 1999-05-13 2002-12-24 ハネウェル・インコーポレーテッド Wireless control network with scheduled time slots
US6624750B1 (en) 1998-10-06 2003-09-23 Interlogix, Inc. Wireless home fire and security alarm system
JP2005085131A (en) 2003-09-10 2005-03-31 Toshiba Corp Wireless security system, detector thereof, and control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2872057B2 (en) * 1994-11-24 1999-03-17 日本電気株式会社 Radio selective call receiver
DE10337093A1 (en) * 2003-08-12 2005-03-17 Siemens Gebäudesicherheit GmbH & Co. oHG Method for radio transmission in a hazard detection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09261374A (en) * 1996-03-25 1997-10-03 Matsushita Electric Works Ltd Multiple dwelling house centralized monitoring system
JPH11234299A (en) * 1998-02-09 1999-08-27 Victor Co Of Japan Ltd Communication equipment
JPH11259771A (en) * 1998-03-11 1999-09-24 Atsumi Electric Co Ltd Wireless sensor, wireless controller, and wireless guard system using them
US6624750B1 (en) 1998-10-06 2003-09-23 Interlogix, Inc. Wireless home fire and security alarm system
JP2002544635A (en) * 1999-05-13 2002-12-24 ハネウェル・インコーポレーテッド Wireless control network with scheduled time slots
JP2005085131A (en) 2003-09-10 2005-03-31 Toshiba Corp Wireless security system, detector thereof, and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010515111A (en) * 2007-01-17 2010-05-06 パナソニック電工株式会社 Wireless communication system
JP2011244464A (en) * 2011-06-27 2011-12-01 Panasonic Electric Works Co Ltd Radio communications system
JP2014204424A (en) * 2013-04-10 2014-10-27 パナソニック株式会社 Radio communication system
JP2014204422A (en) * 2013-04-10 2014-10-27 パナソニック株式会社 Radio communication system
JP2017037433A (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Slave unit of automatic fire alarm system, automatic fire alarm system, and master unit of automatic fire alarm system
WO2017026098A1 (en) * 2015-08-07 2017-02-16 パナソニックIpマネジメント株式会社 Automatic fire alarm system child machine, automatic fire alarm system, and automatic fire alarm system parent machine
CN113077615A (en) * 2021-03-22 2021-07-06 杭州海康威视数字技术股份有限公司 Alarm information processing method and device and electronic equipment

Also Published As

Publication number Publication date
DE602005023219D1 (en) 2010-10-07
JP2006343983A (en) 2006-12-21
EP1855260A1 (en) 2007-11-14
JP4396584B2 (en) 2010-01-13
EP1855260A4 (en) 2008-11-26
DK1855260T3 (en) 2010-10-04
ATE479174T1 (en) 2010-09-15
EP1855260B1 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
WO2006131998A1 (en) Fire alarm system
EP1770923B1 (en) Method for initializing a wireless network
JP5513737B2 (en) Fire alarm system
JP4931112B2 (en) Fire alarm system
JP4475341B2 (en) Fire alarm system
JP2009230406A5 (en)
JP4507990B2 (en) Fire alarm system
JP4501786B2 (en) Fire alarm system
JP5134424B2 (en) Fire alarm system
JP5016264B2 (en) Wireless fire alarm system
JP4501787B2 (en) Fire alarm system
JP4965917B2 (en) Fire alarm system
JP5507979B2 (en) Wireless communication system
JP4965918B2 (en) Fire alarm system
JP5302877B2 (en) Wireless communication system
EP4073773B1 (en) Security monitoring system
JP4956076B2 (en) Fire alarm system
JP5091956B2 (en) Fire alarm system
JP5308326B2 (en) Wireless communication system
JP4925268B2 (en) Fire detection system
JP5541975B2 (en) Wireless communication system
JP3908043B2 (en) Wireless transmitter
JP5369060B2 (en) Fire alarm system
JP5492022B2 (en) Wireless communication system
JP5600761B2 (en) Wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005782278

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005782278

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE