WO2006056670A2 - Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite - Google Patents

Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite Download PDF

Info

Publication number
WO2006056670A2
WO2006056670A2 PCT/FR2005/002740 FR2005002740W WO2006056670A2 WO 2006056670 A2 WO2006056670 A2 WO 2006056670A2 FR 2005002740 W FR2005002740 W FR 2005002740W WO 2006056670 A2 WO2006056670 A2 WO 2006056670A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel
mpa
equal
sheet
resistance
Prior art date
Application number
PCT/FR2005/002740
Other languages
German (de)
English (en)
Other versions
WO2006056670A3 (fr
Inventor
Philippe Cugy
Nicolas Guelton
Colin Scott
François Stouvenot
Marie-Christine Theyssier
Original Assignee
Arcelor France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelor France filed Critical Arcelor France
Priority to US11/720,018 priority Critical patent/US7794552B2/en
Priority to EP05814950.1A priority patent/EP1819461B1/fr
Priority to CA2587858A priority patent/CA2587858C/fr
Priority to KR1020117031699A priority patent/KR101275895B1/ko
Priority to JP2007542029A priority patent/JP5142101B2/ja
Priority to CN2005800426319A priority patent/CN101090982B/zh
Priority to BRPI0517890-8A priority patent/BRPI0517890B1/pt
Priority to PL05814950T priority patent/PL1819461T3/pl
Priority to ES05814950T priority patent/ES2791675T3/es
Priority to MX2007006240A priority patent/MX2007006240A/es
Publication of WO2006056670A2 publication Critical patent/WO2006056670A2/fr
Publication of WO2006056670A3 publication Critical patent/WO2006056670A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Definitions

  • the present invention relates to the manufacture of hot-rolled and cold-rolled sheets of austenitic iron-carbon-manganese steels having very high mechanical characteristics, and in particular a combination of very advantageous mechanical strength and elongation at break with excellent homogeneity. mechanical properties.
  • the mode of deformation of the austenitic steels depends only on the stacking fault energy or "EDE", a physical quantity which depends only on the composition and the temperature:
  • EDE stacking fault energy
  • the mechanical twinning makes it possible to obtain a great capacity of hardening: by preventing the propagation of the dislocations, the twins participate in the increase of the limit of flow.
  • EDE increases especially with the carbon and manganese content.
  • Fe-0.6% C-22% Mn austenitic steels that can deform by twinning are thus known: Depending on the grain size, these steel compositions lead to tensile strength values ranging from about 900 to 1150 MPa. in combination with a breaking strain of 50 to 80%. There is, however, an unresolved need for hot-rolled or cold-rolled steel sheet with a strength significantly greater than 1150 MPa, also having a good deformation capacity, without the addition of expensive alloys. It is sought to have steel sheets having a very homogeneous behavior during subsequent mechanical stresses.
  • the object of the invention is therefore to provide a hot-rolled or cold-rolled steel sheet or product of economical manufacture having a strength greater than or equal to 1200 or even 1400 MPa in combination with an elongation such as the product P: resistance (MPa) x elongation at rupture (%) is greater than 60000 or 50000 MPa% respectively at the strength level mentioned above, a great homogeneity of mechanical properties during deformation or subsequent mechanical stresses and a structure free from martensite at any point during or after the deformation cold from this sheet or this product.
  • the subject of the invention is a hot-rolled sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, whose product P (resistance (MPa) x elongation at break (%)) is greater than 65000 MPa%, the nominal chemical composition of which, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements selected from: Cr ⁇ 1%, Mo ⁇ 1, 50%, Ni ⁇ 1%, Cu ⁇ 5% , Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation, the recrystallized surface fraction of the steel being equal to 100%, the surface fraction of precipitated carbides of the steel being equal to 0%, the average grain size of the steel being
  • the subject of the invention is also a cold-rolled annealed sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, of which the product P (resistance (MPa) x elongation at break (%)) is greater at 65000 MPa%, the nominal chemical composition of which, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and.
  • P resistance (MPa) x elongation at break
  • the invention also relates to a cold rolled annealed sheet of austenitic steel, whose resistance is greater than 1250 MPa, whose product P (resistance (MPa) x elongation at break (%)) is greater than 65000 MPa% characterized in that the average grain size of the steel is less than 3 microns.
  • the local carbon content CL of the steel, and the local manganese content M ⁇ L, expressed by weight, at any point of the austenitic steel sheet are such that:% Mn L + 9.7 % C L ⁇ 21, 66
  • the nominal silicon content of the steel is less than or equal to 0.6%
  • the nominal nitrogen content of the steel is less than or equal to 0.050%.
  • the nominal aluminum content of the steel is less than or equal to 0.030%.
  • the nominal phosphorus content of the steel is less than or equal to 0.040%
  • the invention also relates to a method for manufacturing a hot-rolled sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, whose product P ((resistance (MPa) x elongation at break ( %)) is greater than 65000 MPa%, according to which a steel is produced whose nominal composition comprises, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements selected from: Cr ⁇ 1%, Mo ⁇ 1, 50%, Ni ⁇ 1%, Cu ⁇ 5%, Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration the semi-finished product of the steel composition is heated to a temperature of between 1100 and 1300 ° C.
  • the semi-finished product is rolled up. at a higher end-of-lamination temperature If at least 900 ° C., a waiting time is observed if necessary so that the recrystallized surface fraction of the steel is equal to 100%, the sheet is cooled at a speed greater than or equal to 20 ° C./sec. - the sheet is coiled at a temperature below or equal to 400 0 C.
  • the invention also relates to a method of " manufacturing a hot-rolled sheet of austenitic steel whose resistance is greater than 1400 MPa, whose product P ((resistance (MPa) x elongation at break (%)) is greater than 50000 MPa%, characterized in that a cold deformation with an equivalent deformation ratio greater than or equal to 13% and less than or equal to 17 is applied to the hot-rolled sheet, cooled after winding and unrolled;
  • the invention also relates to a method for manufacturing a cold-rolled annealed sheet of austenitic iron-carbon-manganese steel, whose resistance is greater than 1250 MPa, the product P (resistance (MPa) x elongation at rupture (%)) is greater than 60000 MPa%, characterized in that a hot-rolled sheet obtained by the above process is supplied with, at least one cycle is carried out, each cycle consisting in cold-rolling the sheet in one or more successive passes and then perform a recrystallization annea
  • the invention also relates to a method for manufacturing a cold-rolled annealed sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, the product P (resistance (MPa) x elongation at break (%)) is greater than 50000 MPa%, characterized in that, after the final recrystallization annealing, a cold deformation with an equivalent strain rate greater than or equal to 6%, and less than or equal to 17% is carried out.
  • the invention also relates to a method of manufacturing a cold-rolled sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, the product P (resistance (MPa) x elongation at break ( %)) is greater than 50000 MPa%, characterized in that one supplies a cold rolled sheet and annealed according to the invention, and that a cold deformation of this sheet is carried out with a higher equivalent strain rate or equal to 6%, and less than or equal to 17%.
  • the invention also relates to a method of manufacturing an austenitic steel sheet, characterized in that the conditions for casting or reheating said semi-finished product, such as the casting temperature of said semi-finished product, the mixing of the metal liquid by electromagnetic forces, the reheating conditions leading to a homogenization of carbon and manganese by diffusion, are chosen so that, at any point of the sheet, the local carbon content CL and the local manganese content Mn ⁇ _, expressed by weight, are such that:% Mn L + 9.7% CL ⁇ 21, 66
  • the casting of the semi-finished product is carried out in the form of casting slabs or thin strips between contra-rotating steel rolls.
  • the invention also relates to the use of an austenitic steel sheet for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
  • the invention also relates to the use of an austenitic steel sheet manufactured by means of a method described above, for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
  • FIG. 1 presents the theoretical variation of the stacking fault energy at room temperature (300 K 0) depending on the carbon content and manganese.
  • carbon plays a very important role in the formation of the microstructure and the mechanical properties obtained:
  • a nominal content in carbon greater than 0.85% makes it possible to obtain a stable austenitic structure.
  • a nominal carbon content of greater than 1.05% it becomes difficult to avoid a precipitation of carbides which occurs during certain thermal cycles of industrial manufacture, in particular during winding cooling, and which degrades the ductility and tenacity.
  • increasing the carbon content decreases the weldability.
  • Manganese is also an indispensable element for increasing the strength, increasing the stacking fault energy and stabilizing the austenitic phase. If its nominal content is less than 16%, there is, as will be seen below, a risk of martensitic phase formation which decreases very noticeably the ability to deform. Moreover, when the nominal manganese content is greater than 19%, the mode of deformation by twinning is less favored compared to the sliding mode of perfect dislocations. In addition, for cost reasons, it is not desirable for the manganese content to be high.
  • Aluminum is a particularly effective element for the deoxidation of steel. Like carbon, it increases the stacking fault energy. However, its excessive presence in steels with a high manganese content has a disadvantage. In fact, manganese increases the solubility of nitrogen in liquid iron, and if too much aluminum is present in the steel, nitrogen combining with aluminum precipitates in the form of aluminum nitrides hindering the migration of grain boundaries during hot processing and significantly increases the risk of crack appearances.
  • a nominal Al content less than or equal to 0.050% avoids precipitation of AlN.
  • the nominal nitrogen content must be less than or equal to 0.1% in order to avoid this precipitation and the formation of volume defects during solidification. This risk is particularly reduced when the nominal aluminum content is less than 0.030% and when the nominal nitrogen content is less than 0.050%.
  • Silicon is also an effective element for deoxidizing steel as well as for hardening in the solid phase. However, beyond a nominal content of 2%, it decreases the elongation and tends to form undesirable oxides during certain assembly processes and must therefore be kept below this limit. This phenomenon is greatly reduced when the nominal silicon content is less than 0.6%.
  • Sulfur and phosphorus are impurities that weaken the grain boundaries. Their respective nominal content must be less than or equal to 0.030 and 0.050% in order to maintain sufficient hot ductility. When the nominal phosphorus content is less than 0.040%, the risk of brittleness is particularly low.
  • Chromium can be used as an option to increase the strength of the steel by hardening in solid solution. However, since chromium decreases the stacking fault energy, its nominal content must be lower or equal to 1%. Nickel increases the stacking fault energy and contributes to a high breaking elongation. However, it is also desirable, for cost reasons, to limit the nominal nickel content to a maximum content of less than or equal to 1%. Molybdenum can also be used for similar reasons, this element further delaying the precipitation of carbides. It is desirable for questions of efficiency and cost, to limit its nominal content to 1, 5%, and preferably to 0.4%.
  • addition of copper to a nominal content of less than or equal to 5% is a means of hardening the steel by precipitation of metallic copper.
  • copper is responsible for the appearance of surface defects hot sheet.
  • Titanium, niobium and vanadium are also optionally operable elements for precipitation hardening of carbonitrides.
  • the nominal Nb or V or Ti content is greater than 0.50%, excessive precipitation of carbonitrides may cause a reduction in ductility and drawability, which should be avoided.
  • the implementation of the manufacturing method according to the invention is as follows: A steel is produced whose composition has been explained above. This development can be followed by casting in ingots, or continuously in the form of slabs of thickness of the order of 200 mm.
  • These cast semi-finished products are first brought to a temperature of between 1100 and 1300 ° C. This is intended to achieve at all points the temperature ranges favorable to the high deformations which the steel will undergo during rolling. However, the temperature must not be higher than 1300 0 C, otherwise it will be too close to the solidus temperature that could be reached in possible areas segregated in manganese and / or carbon, and cause a beginning of local passage through a liquid state that would be harmful for hot shaping.
  • the hot rolling step of these semi-finished products starting between 1300 and 1100 0 C can be done directly after casting so that a reheating step intermediate is not necessary in this case.
  • the conditions for the preparation of semi-finished products have a direct influence on the possible segregation of carbon and manganese, this point will be detailed later.
  • the semi-finished product is hot-rolled, for example to obtain a hot-rolled strip thickness of a few millimeters.
  • the low aluminum content of the steel according to the invention makes it possible to avoid excessive precipitation of AlN which would adversely affect the hot deformability during rolling.
  • the end-of-rolling temperature must be greater than or equal to 900 ° C. The inventors have demonstrated that the ductility properties of the sheets obtained were reduced when the recrystallized surface fraction steel was less than 100%.
  • the inventors have set evidence that particularly high strength and elongation properties are obtained when the average austenitic grain size is less than or equal to 10 microns. Under these conditions, the breaking strength of the hot plates thus obtained is greater than 1200 MPa and the product P (resistance x elongation at break) is greater than 65000 MPa%.
  • the sheet manufactured can be qualified as "hot-rolled sheet" insofar as the rate of cold deformation is very small in comparison with the usual rates of achieved during rolling. cold before annealing for the manufacture of thin sheets, and insofar as the thickness of the sheet thus manufactured is located in the usual range of thicknesses of hot-rolled sheet.
  • the equivalent cold deformation ratio is greater than 17%, the elongation reduction becomes such that the parameter P (resistance R x elongation at break A) can not reach 50000 MPa%.
  • the sheet retains a good elongation capacity since the product P of the sheet thus obtained is greater than or equal to 50000 MPa%.
  • the inventors have also demonstrated that the structure must be completely recrystallized after annealing in order to achieve the desired properties. Simultaneously, when the average grain size is less than 5 microns, the resistance exceeds 1200 MPa, and the product P is greater than 65000 MPa%. When the average grain size obtained after annealing is less than 3 microns, the resistance exceeds 1250 MPa, the product P being always greater than 65000 MPa.
  • the inventors have also discovered a method for manufacturing cold-rolled steel sheets annealed with resistance greater than 1250 MPa and product P greater than 60000 MPa%, this being achieved by supplying hot-rolled sheets according to the method described above. above, and then performing at least one cycle, each cycle consisting of the following steps:
  • the average size of austenitic grain before the last cold rolling cycle undergoing a recrystallization annealing being less than 15 microns.
  • the inventors have demonstrated that such properties could be obtained by supplying a cold-rolled sheet having the characteristics according to the invention described above, or by supplying a cold-rolled sheet obtained according to the process according to the invention described herein. -above.
  • the inventors have discovered that the application of a cold deformation to such a sheet with an equivalent deformation ratio greater than or equal to 6%, and less than or equal to 17%, makes it possible to achieve a resistance greater than 1400 MPa and a product P greater than 50000 MPa%.
  • the equivalent cold deformation rate is greater than 17%, the elongation reduction becomes such that the parameter P can not reach 50000 MPa%.
  • FIG. 1 presents, in a carbon-manganese diagram (and iron complement), the computed curves of stacking failure iso-energy whose values range from 5 to 30 mJ / m 2 .
  • the deformation mode is theoretically identical for any Fe-C-Mn alloy having the same EDE.
  • This diagram also shows the field of appearance of martensite.
  • the inventors have demonstrated that, in order to assess the mechanical behavior, it is necessary to consider not only the nominal chemical composition of the alloy, for example its nominal or average content. in carbon and manganese, but also its local content. Indeed, it is known that, during the development of steel, the solidification causes a more or less marked segregation of certain elements. This is because the solubility of an element within the solid phase is different from that in the liquid phase. This will often lead to the formation of solid seeds whose solute content is lower than the nominal composition, the last phase of solidification involving a liquid phase residual enriched solute. This primary solidification structure can assume different morphologies (for example dendritic or equiaxial) and be more or less marked.
  • an analysis of the local elemental content indicates a fluctuation around a value corresponding to the average or nominal content of this element.
  • local content is meant here the measured content by means of a device such as an electronic probe.
  • a linear or surface scan by means of such a device makes it possible to appreciate the variation of the local content.
  • the inventors have demonstrated co-segregation of carbon and manganese, the locally enriched (or depleted) carbon zones also correspond to the enriched (respectively impoverished) zones in manganese.
  • this mode of preferred deformation may not be present absolutely in all the steel sheet and some particular areas may possibly exhibit a behavior mechanical different from that expected for a steel sheet of nominal composition, in particular a reduced ability to deformation by twinning within certain grains. More generally, it is conceivable that, under very specific conditions depending for example on the deformation or stress temperature, of the grain size, the local carbon and manganese content can be reduced to the point of locally provoking an induced martensitic transformation. by deformation. The inventors have sought the particular conditions to obtain very high mechanical characteristics simultaneously with a great homogeneity of these characteristics within a steel sheet.
  • the inventors have demonstrated that it was absolutely necessary to avoid the formation of martensite during deformation operations or use of the sheets under penalty of heterogeneity of mechanical characteristics on the parts.
  • the inventors have determined that this condition is satisfied when, at all points of the sheets, the local carbon and manganese contents of the sheet are such that:% M ⁇ L + 9.7% CL ⁇ 21, 66.
  • the characteristics of the nominal chemical composition defined by According to the invention and to those defined by the local contents of carbon and manganese austenitic steel sheets having not only very high mechanical properties but also a very low dispersion of these characteristics are produced.
  • a half-product of the steel I according to the invention was heated to a temperature of 1180 ° C. and hot rolled to a temperature greater than 900 ° C. to reach a thickness of 3 mm. It was stirred for 2 seconds after lamination for complete recrystallization, followed by cooling at a rate above 20 ° C / sec, followed by winding at room temperature. 5
  • the reference steels have been heated to a temperature greater than
  • the recrystallized surface fraction is 100% for all the steels, the fraction of precipitated carbides is 0%, the mean grain size is between 9 and 10 microns.
  • the steel according to the invention makes it possible to obtain an increased strength of approximately 200 MPa with a very comparable elongation.
  • stamped cups were made on which the microstructure was examined by X-ray diffraction.
  • appearance of martensite as soon as the deformation rate exceeds 17%, the total stamping operation leading to rupture.
  • An analysis indicates that the characteristic:% M ⁇ L + 9.7% CL ⁇ 21, 66 is not fulfilled at all points ( Figure 1).
  • hot rolled steel sheets according to the invention and steel R1 were then cold-rolled and then annealed so as to obtain a totally recrystallized structure.
  • Mean austenite grain size, strength, elongation at break were shown in the table below.
  • the steel sheet produced according to the invention whose average grain size is 4 microns, thus offers a particularly advantageous resistance-elongation combination and a significant increase in the resistance relative to the reference steel.
  • these characteristics are obtained with a very great homogeneity on the product, no trace of martensite is present after deformation.
  • Equibiaxial expansion tests on a 75 mm diameter hemispherical punch made on a cold-rolled and annealed sheet 1, 6 mm thick according to the invention reveal a maximum drawing limit of 33 mm, which highlights a excellent deformation ability. Folding tests carried out on this same sheet also show that the critical deformation before appearance of cracks is greater than 50%.
  • hot-rolled or cold-rolled steels according to the invention will be used with advantage for applications where a capacity is sought. significant deformation and very high strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids : 0,85% ≤ C ≤ 1,05%, 16%≤ Mn ≤ 19%, Si ≤2%, Al ≤0,050%, S ≤0,030%, P≤ 0,050%, N ≤0,1 %, et à titre optionnel, un ou plusieurs éléments choisis parmi : Cr ≤1%, Mo ≤ 0,40%, Ni ≤ 1 %, Cu ≤5%, Ti ≤ 0,50%, Nb ≤0,50%, V ≤ 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée dudit acier étant égale à 100%, la fraction surfacique de carbures précipités dudit acier étant égale à 0%, la taille moyenne de grain dudit acier étant inférieure ou égale à 10 microns

Description

PROCEDE DE FABRICATION DE TÔLES D'ACIER AUSTENITIQUE, FER-CARBONE-MANGANESE A TRES HAUTES CARACTERISTIQUES DE RESISTANCE ET D'ALLONGEMENT, ET EXCELLENTE HOMOGENEITE
La présente invention concerne la fabrication de tôles laminées à chaud et à froid d'aciers austénitiques fer-carbone-manganèse présentant de très hautes caractéristiques mécaniques, et notamment une combinaison de résistance mécanique et d'allongement à rupture très avantageuse alliée à une excellente homogénéité de propriétés mécaniques.
Dans le domaine automobile, l'évolution du niveau d'équipement des véhicules rend encore plus nécessaire l'allégement de la structure métallique elle-même. Pour cela, chaque fonction doit être repensée pour améliorer ses performances et diminuer son poids. Différentes familles d'aciers ont été ainsi développées en vue de satisfaire à ces exigences toujours croissantes : par ordre chronologique, on citera par exemple les aciers à haute limite d'élasticité durcis par précipitation fine de niobium, vanadium ou titane, les aciers à structures Dual-Phase (ferrite comportant jusqu'à 25% de martensite), les aciers « TRIP » composés de ferrite, de martensite et d'austénite susceptible de se transformer sous déformation («Transformation Induced Plasticity » ) Pour chaque type de structure, la résistance à la rupture et l'aptitude à la déformation sont des propriétés antagonistes, si bien qu'il n'est généralement pas possible d'obtenir des valeurs très élevées pour l'une
I des propriétés sans réduire drastiquement l'autre. Ainsi, pour les aciers TRIP, il est difficile d'obtenir simultanément une résistance supérieure à 900 MPa et un allongement supérieur à 25%. On citera encore les aciers à structure bainitique ou martensito-bainitique, dont la résistance peut atteindre 1200 MPa sur tôles laminées à chaud, mais où l'allongement n'est que de l'ordre de 10%. Si ces caractéristiques peuvent être satisfaisantes pour certaines applications, elles demeurent néanmoins insuffisantes dans le cas où l'on souhaite un allégement supplémentaire par la combinaison simultanée d'une résistance élevée et d'une grande aptitude pour les opérations ultérieures de déformation et pour l'absorption d'énergie. Dans le cas de tôles laminées à chaud, c'est-à-dire d'épaisseur allant environ de 1 à 10 mm, de telles caractéristiques sont mises à profit pour l'allégement de pièces de liaison au sol, de roues, de pièces de renfort telles que les barres anti-intrusion de portières, ou celles destinées à des véhicules lourds (camions, bus). Pour des tôles laminées à froid (allant environ de 0,2 mm à 6 mm), les applications visent la fabrication de pièces participant à la sécurité et à la durabilité des véhicules automobiles ou encore de pièces extérieures. Pour satisfaire ces exigences simultanées de résistance et de ductilité, on connaît des aciers à structure austénitique, tels que les aciers Fe-C(jusqu'à 1 ,5%)-Mn(15 à 35%) (teneurs exprimées en poids) et contenant éventuellement d'autres éléments tels que le silicium, l'aluminium ou le chrome: A une température donnée, le mode de déformation des aciers austénitiques ne dépend que de l'énergie de défaut d'empilement ou « EDE », grandeur physique qui ne dépend elle-même que de la composition et de la température : Lorsque l'EDE décroît, on passe successivement d'un mode de déformation par glissement des dislocations, puis par maclage, et enfin par transformation martensitique. Parmi ces modes, le maclage mécanique permet d'obtenir une grande capacité d'écrouissage : en faisant obstacle à la propagation des dislocations, les macles participent à l'augmentation de la limite d'écoulement. L'EDE augmente notamment avec la teneur en carbone et en manganèse.
On connaît ainsi des aciers austénitiques Fe-0,6%C-22%Mn susceptibles de se déformer par maclage : Selon la taille de grain, ces cpmpositions d'aciers conduisent à des valeurs de résistance en traction allant de 900 à 1150 MPa environ, en combinaison avec une déformation à rupture allant de 50 à 80%. II existe cependant un besoin non résolu de disposer de tôles d'acier laminées à chaud ou à froid, de résistance significativement supérieure à 1150 MPa, présentant également une bonne capacité de déformation, et ceci sans addition d'alliages coûteux. On cherche à disposer de tôles d'aciers présentant un comportement très homogène lors de sollicitations mécaniques ultérieures.
Le but de-l'invention est donc de disposer-d'une tôle ou d'un produit d'acier laminé à chaud ou à froid, de fabrication économique, présentant une résistance supérieure ou égale à 1200, voire 1400 MPa en combinaison avec un allongement tel que le produit P : résistance (MPa) x allongement à rupture (%) soit supérieur à 60000 ou 50000 MPa% respectivement au niveau de résistance mentionné ci-dessus, une grande homogénéité de propriétés mécaniques lors de déformations ou de sollicitations mécaniques ultérieures et une structure exempte de martensite en tout point pendant ou après la déformation à froid à partir de cette tôle ou de ce produit.
A cet effet, l'invention a pour objet une tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids : 0,85% < C < 1 ,05%, 16%< Mn < 19% ,Si < 2%, Al < 0,050%, S < 0,030%, P≤ 0,050%, N < 0,1 %, et à titre optionnel, un ou plusieurs éléments choisis parmi: Cr < 1%, Mo < 1 ,50%, Ni < 1%, Cu < 5%, Ti < 0,50%, Nb < 0,50%, V < 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée de l'acier étant égale à 100%, la fraction surfacique de carbures précipités de l'acier étant égale à 0%, la taille moyenne de grain de l'acier étant inférieure ou égale à 10 microns.
L'invention a également pour objet une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids : 0,85% < C < 1 ,05%, 16%< Mn < 19%, Si < 2%, Al < 0,050%, S ≤ 0,030%, P< 0,050% , N < 0,1 %, et. à titre optionnel, un ou plusieurs éléments choisis parmi : Cr < 1%, Mo < 1,50%, Ni < 1%, Cu < 5%, Ti < 0,50%, Nb < 0,50%, V < 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée de l'acier étant égale à 100%, la taille moyenne de grain de l'acier étant inférieure à 5 microns. L'invention a également pour objet une tôle laminée à froid et recuite en acier austénitique, dont la résistance est supérieure à 1250 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, caractérisée en ce que la taille moyenne de grain de l'acier est inférieure à 3 microns. Selon une caractéristique préférée, la teneur locale en carbone CL de l'acier, et la teneur locale en manganèse MΠL, exprimées en poids, en tout point de la tôle d'acier austénitique, sont telles que : %MnL + 9,7 %CL≥21 ,66 Préférentiellement, la teneur nominale en silicium de l'acier est inférieure ou égale à 0,6%
Selon un mode préféré, la teneur nominale en azote de l'acier est inférieure ou égale à 0,050%.
Préférentiellement encore, la teneur nominale en aluminium de l'acier est inférieure ou égale à 0,030%. Selon un mode préféré, la teneur nominale en phosphore de l'acier est inférieure ou égale à 0,040%
L'invention a également pour objet un procédé de fabrication d'une tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P((résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, selon lequel on élabore un acier dont la composition nominale comprend, les teneurs étant exprimées en poids :0,85% < C < 1 ,05%, 16%≤ Mn < 19%, Si < 2%, Al < 0,050%, S < 0,030%, P≤ 0,050%, N ≤ 0,1 %, et à titre optionnel, un ou plusieurs éléments choisis parmi :Cr ≤ 1%, Mo < 1 ,50%, Ni < 1%, Cu < 5%, Ti < 0,50%, Nb < 0,50%, V < 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, on procède à la coulée d'un demi-produit à partir de cet acier on porte le demi-produit de la composition d'acier à ,une température comprise entre 1100 et 13000C, - on lamine le demi-produit jusqu'à une température de fin de laminage supérieure ou égale à 9000C on observe si nécessaire un temps d'attente de telle sorte que la fraction surfacique recristallisée de l'acier soit égale à 100%, on refroidit la tôle à une vitesse supérieure ou égale à 20°C/s, - on bobine la tôle à une température inférieure ou égale à 4000C.
L'invention a également pour objet un-procédé de "fabrication d'une tôle laminée à chaud en acier austénitique dont la résistance est supérieure à 1400 MPa, dont le produit P((résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa%, caractérisé en ce qu'on applique, sur la tôle laminée à chaud, refroidie après bobinage et déroulée, une déformation à froid avec un taux de déformation équivalente supérieur ou égal à 13% et inférieur ou égal à 17% L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse, dont la résistance est supérieure à 1250 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 60000 MPa%, caractérisé en ce qu'on approvisionne une tôle laminée à chaud obtenu par le procédé ci- dessus, on effectue au moins un cycle, chaque cycle consistant à laminer à froid la tôle en une ou plusieurs passes successives puis effectuer un recuit de recristallisation, la taille moyenne de grain austénitique avant le dernier cycle de laminage à froid suivi d'un recuit de recristallisation, étant inférieure à 15 microns. L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1400 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa% caractérisé en ce qu'on effectue, après le recuit final de recristallisation, une déformation à froid avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égale à 17%. L'invention a également pour objet un procédé de fabrication d'une tôle laminée à froid en acier austénitique fer-carbone-manganèse dont la j résistance est supérieure à 1400 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa%, caractérisé en ce l'on approvisionne une tôle laminée à froid et recuite selon l'invention, et que l'on effectue une déformation à froid de cette tôle avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égale à 17%. L'invention a également pour objet un procédé de fabrication d'une tôle d'acier austénitique caractérisé en ce que les conditions de coulée ou de réchauffage dudit demi-produit, telles _que_ La température de coulée dudit demi-produit, le brassage du métal liquide par forces électromagnétiques, les conditions de réchauffage conduisant à une homogénéisation du carbone et du manganèse par diffusion, sont choisies pour que, en tout point de la tôle, la teneur locale en carbone CL et la teneur locale en manganèse Mnι_, exprimées en poids, soient telles que : %MnL + 9,7 %CL≥21 ,66 Selon un mode préféré, la coulée du demi-produit est effectuée sous forme de coulée de brames ou de bandes minces entre cylindres d'acier contra- rotatifs.
L'invention a également pour objet l'utilisation d'une tôle d'acier austénitique pour la fabrication d'éléments de renfort ou structuraux ou de pièces extérieures, dans le domaine automobile. L'invention a également pour objet l'utilisation d'une tôle d'acier austénitique fabriquée au moyen d'un procédé décrit ci-dessus, pour la fabrication d'éléments de renfort ou structuraux ou de pièces extérieures, dans le domaine automobile.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence à la figure 1 annexée qui présente la variation théorique de l'énergie de défaut d'empilement à température ambiante (3000K) en fonction de la teneur en carbone et en manganèse.
Après de nombreux essais, les inventeurs ont montré que les différentes exigences rapportées ci-dessus étaient satisfaites en observant les conditions suivantes :
En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure et les propriétés mécaniques obtenues : En combinaison avec une teneur en manganèse allant de 16 à 19% en poids, une teneur nominale en carbone supérieure à 0,85% permet d'obtenir une structure austénitique stable. Cependant, pour une teneur nominale en carbone supérieure à 1 ,05% il devient difficile d'éviter une précipitation de carbures qui intervient au cours de certains cycles thermiques de fabrication industrielle, en particulier lors du refroidissement au bobinage, et qui dégrade la ductilité et la ténacité. De plus, l'augmentation de la teneur en carbone diminue la soudabilité.
Le, manganèse est -également un -élément indispensable pour accroître la résistance, augmenter l'énergie de défaut d'empilement et stabiliser la phase austénitique. Si sa teneur nominale est inférieure à 16%, il existe, comme on le verra plus loin, un risque de formation de phase martensitique qui diminue très notablement l'aptitude à la déformation. Par ailleurs, lorsque la teneur nominale en manganèse est supérieure à 19%, le mode de déformation par maclage est moins favorisé par rapport au mode de glissement de dislocations parfaites. De plus, pour des questions de coût, il n'est pas souhaitable que la teneur en manganèse soit élevée.
L'aluminium est un élément particulièrement efficace pour la désoxydation de l'acier. Comme le carbone, il augmente l'énergie de défaut d'empilement. Cependant, sa présence excessive dans des aciers à forte teneur en manganèse présente un inconvénient. En effet, le manganèse augmente la solubilité de l'azote dans le fer liquide, et si une quantité d'aluminium trop importante est présente dans l'acier, l'azote se combinant avec l'aluminium précipite sous forme de nitrures d'aluminium gênant la migration des joints de grain lors de la transformation à chaud et augmente très notablement le risque d'apparitions de fissures. Une teneur nominale en Al inférieure ou égale à 0,050 % permet d'éviter une précipitation d'AIN. Corrélativement, la teneur nominale en azote doit être inférieure ou égale à 0,1% afin d'éviter cette précipitation et la formation de défauts volumiques lors de la solidification. Ce risque est particulièrement réduit lorsque la teneur nominale en aluminium est inférieure à 0,030% ainsi que lorsque la teneur nominale en azote est inférieure à 0,050%.
Le silicium est également un élément efficace pour désoxyder l'acier ainsi que pour durcir en phase solide. Cependant,, au-delà d'une teneur nominale de 2%, il diminue l'allongement et tend à former des oxydes indésirables lors de certains procédés d'assemblage et doit donc être tenu inférieur à cette limite. Ce phénomène est fortement réduit lorsque la teneur nominale en silicium est inférieure à 0,6%.
Le soufre et le phosphore sont des impuretés fragilisant les joints de grains. Leur teneur respective nominale doit être inférieure ou égale à 0,030 et 0,050% afin de maintenir une ductilité à chaud suffisante. Lorsque la teneur nominale en phosphore est inférieure à 0,040%, le risque de fragilité est particulièrement_réd_uit.
Le chrome peut être utilisé à titre optionnel pour augmenter la résistance de l'acier par durcissement en solution solide. Cependant, le chrome diminuant l'énergie de défaut d'empilement, sa teneur nominale doit être inférieure ou égale à 1%. Le nickel augmente l'énergie de défaut d'empilement et contribue à obtenir un allongement à rupture important. Cependant, il est également souhaitable, pour des questions de coûts, de limiter la teneur nominale en nickel à une teneur maximale inférieure ou égale à 1%. Le molybdène peut également être utilisé pour des raisons similaires, cet élément retardant en outre la précipitation des carbures. Il est souhaitable pour des questions de d'efficacité et de coûts, de limiter sa teneur nominale à 1 ,5%, et préférentiellement à 0,4%. De même, à titre optionnel, une addition de cuivre jusqu'à une teneur nominale inférieure ou égale à 5% est un moyen de durcir l'acier par précipitation de cuivre métallique. Cependant, au-delà de cette teneur, le cuivre est responsable de l'apparition de défauts de surface en tôle à chaud. Le titane, Ie niobium et le vanadium sont également des éléments pouvant être utilisés optionnellement pour obtenir un durcissement par précipitation de carbonitrures. Cependant, lorsque la teneur nominale en Nb ou en V ou en Ti est supérieure à 0,50%, une précipitation excessive de carbonitrures peut provoquer une réduction de la ductilité et de l'emboutissabilité, ce qui doit être évité. La mise en œuvre du procédé de fabrication selon l'invention est la suivante : On élabore un acier dont la composition a été exposée ci-dessus. Cette élaboration peut être suivie d'une coulée en lingots, ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. ,On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur, ou de bandes minces, entre cylindres d'acier contra-rotatifs. Bien entendu, si la présente description illustre l'application de l'invention aux produits plats, celle-ci peut être appliquée de la même façon à la fabrication de produits longs en acier Fe-C-Mn.
Ces demi-produits coulés sont tout d'abord portés à une température comprise entre 1100 et 13000C. Ceci a pour but d'atteindre en tout point les domaines de température favorables aux déformations élevées que va subir l'acier lors du laminage. Cependant, la température ne doit pas être supérieure à 13000C, sous peine d'être trop proche de la température de solidus qui pourrait être atteinte dans d'éventuelles zones ségrégées en manganèse et/ou en carbone, et de provoquer un début de passage local par un état liquide qui serait néfaste pour la mise en forme à chaud. Dans le cas d'une coulée directe de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant entre 1300 et 11000C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.
Les conditions d'élaboration des demi-produits (coulée, réchauffage) ont une influence directe sur la ségrégation éventuelle du carbone et du manganèse, ce point sera détaillé ultérieurement. On lamine à chaud le demi-produit, par exemple pour arriver à une épaisseur de bande laminée à chaud de quelques millimètres. La faible teneur en aluminium de l'acier selon l'invention permet d'éviter une précipitation excessive d'AIN qui nuirait à la déformabilité à chaud lors du laminage. Afin d'éviter tout problème de fissuration par manque de ductilité, la température de fin de laminage doit être supérieure ou égale à 9000C. Les inventeurs ont mis en évidence que les propriétés de ductilité des tôles obtenues étaient réduites lorsque la fraction surfacique recristallisée de l'acier était inférieure à 100%. En conséquence, si les conditions de laminage à chaud n'ont pas conduit à une recristallisation totale de l'austénite, les inventeurs ont mis en évidence qu'il convient d'observer, après la phase de laminage à chaud, un temps d'attente de telle sorte que la fraction surfacique recristallisée soit égale à 100%. Cette phase de maintien isotherme à haute température après laminage provoque ainsi une recristallisation totale. Pour les tôles laminées à chaud, on a également mis en évidence qu'il est nécessaire d'éviter qu'une précipitation de carbures (essentiellement de la cémentite (Fe, Mn^C, et de la perlite) n'intervienne, ce qui se traduit par une détérioration des propriétés mécaniques en particulier par une diminution de la ductilité et une augmentation de la limite d'élasticité. Dans ce but, les inventeurs ont découvert qu'une vitesse de refroidissement après la phase de laminage (ou après l'éventuel temps d'attente nécessaire à la recristallisation) supérieure ou égale à 20°C/s permet d'éviter complètement cette précipitation. Cette phase_de refroidissejnent.est suivie d'un bobinage. On a également mis en évidence que la température de bobinage devait être inférieure à 4000C, également pour éviter la précipitation. Pour des compositions d'aciers selon l'invention, les inventeurs ont mis en évidence que des propriétés particulièrement élevées de résistance et d'allongement à rupture sont obtenues lorsque la taille moyenne de grain austénitique était inférieure ou égale à 10 microns. Dans ces conditions, la résistance à la rupture des tôles à chaud ainsi obtenues est supérieure à 1200 MPa et le produit P (résistance x allongement à rupture) est supérieur à 65000 MPa%.
Il existe des applications où l'on souhaite obtenir des caractéristiques de résistance encore plus élevées sur tôles laminées à chaud, à un niveau supérieur ou égal à 1400 MPa. Les inventeurs ont mis en évidence que l'on obtenait de telles caractéristiques en conférant aux tôles d'aciers laminées à chaud décrites ci-dessus, une déformation à froid avec un taux de déformation équivalente supérieur ou égal à 13%, et inférieur ou égal à 17%. Cette déformation à froid est donc conférée à une tôle refroidie après bobinage, déroulée, et usuellement décapée. Cette déformation d'un taux relativement faible conduit à la fabrication d'un produit avec une anisotropie réduite sans incidence sur la mise en œuvre ultérieure. Ainsi, bien que le procédé comporte une étape de déformation à froid, la tôle fabriquée peut être qualifiée de «tôle laminée à chaud » dans la mesure où le taux de déformation à froid est très minime en comparaison des taux usuels de réalisés lors du laminage à froid avant recuit en vue de la fabrication de tôles minces, et dans la mesure où l'épaisseur de la tôle ainsi fabriquée se trouve située dans la gamme usuelle des épaisseurs de tôles laminées à chaud. Mais, lorsque le taux de déformation à froid équivalente est supérieur à 17%, la réduction d'allongement devient telle que le paramètre P (résistance R x allongement à rupture A) ne peut atteindre 50000MPa%. Dans les conditions de l'invention, en dépit de sa très haute résistance, la tôle conserve une bonne capacité d'allongement puisque le produit P de la tôle ainsi obtenue est supérieur ou égal à 50000 MPa%. Pour des tôles laminées à froid et recuites, les inventeurs ont également mis en évidence que la structure devait être totalement recristallisée après recuit en vue d'atteindre les pLQpriétés recherchées._Simultanément, lorsque la taille- moyenne de grain est inférieure à 5 microns, la résistance excède 1200 MPa, et le produit P est supérieur à 65000 MPa%. Lorsque la taille moyenne de grain obtenue après recuit est inférieure à 3 microns, la résistance excède 1250 MPa, le produit P étant toujours supérieur à 65000MPa%. Les inventeurs ont également découvert un procédé de fabrication de tôles d'acier laminées à froid et recuites de résistance supérieure à 1250MPa et de produit P supérieur à 60000 MPa%, ceci étant réalisé en approvisionnant des tôles laminées à chaud selon le procédé décrit ci-dessus, puis en effectuant au moins un cycle, chaque cycle étant constitué des étapes suivantes :
- Un laminage à froid en une ou plusieurs passes sucessives
- Un recuit de recristallisation,
, la taille moyenne de grain austénitique avant le dernier cycle de laminage à froid subi d'un recuit de recristallisation étant inférieure à 15 microns.
On peut souhaiter obtenir une tôle laminée à froid à résistance encore plus élevée, supérieure à 1400MPa. Les inventeurs ont mis en évidence que de telles propriétés pouvaient être obtenus en approvisionnant une tôle laminée à froid possédant les caractéristiques selon l'invention décrites ci-dessus, ou en approvisionnant une tôle laminée à froid obtenue selon le procédé selon l'invention décrit ci-dessus. Les inventeurs ont découvert que l'application d'une déformation à froid à une telle tôle avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égal à 17%, permet d'atteindre une résistance supérieure à 1400 MPa et un produit P supérieur à 50000 MPa%. Lorsque le taux de déformation à froid équivalente est supérieur à 17%, la réduction d'allongement devient telle que le paramètre P ne peut atteindre 50000MPa%.
On va maintenant détailler le rôle particulièrement important joué par le carbone et Ie manganèse dans le cadre de la présente invention. On se référera pour cela à la figure 1 , qui présente, dans un diagramme carbone- manganèse (et complément en fer) les courbes calculées d'iso-énergie de défaut d'empilement dont les valeurs vont de 5 à 30mJ/m2. A une température de déformation et pour une taille de grain données, le mode de déformation est théoriquement identique pour tout alliage Fe-C-Mn ayant la même EDE. On a également figuré dans ce diagramme le domaine d'apparition de la martensite.
Les inventeurs ont mis en évidence qu'il convient, pour apprécier le comportement mécanique, de considérer non seulement la composition chimique nominale de l'alliage, par exemple sa teneur nominale ou moyenne en carbone et en manganèse, mais également sa teneur locale. On sait en effet que, lors de l'élaboration de l'acier, la solidification provoque une ségrégation plus ou moins marquée de certains éléments. Ceci provient du fait que la solubilité d'un élément au sein de la phase solide est différente de celle dans la phase liquide. On assistera ainsi fréquemment à la formation de germes solides dont la teneur en soluté est inférieure à la composition nominale, la dernière phase de la solidification faisant intervenir une phase liquide résiduelle enrichie en soluté. Cette structure de solidification primaire peut revêtir différentes morphologies (par exemple dendritique ou équiaxe) et être plus ou moins marquée. Même si ces caractéristiques sont modifiées par le laminage et les traitements thermiques ultérieurs, une analyse de la teneur élémentaire locale indique une fluctuation autour d'une valeur correspondant à la teneur moyenne ou nominale de cet élément. Par teneur locale, on entend ici la teneur mesurée au moyen d'un dispositif telle qu'une sonde électronique. Un balayage linéaire ou surfacique au moyen d'un tel dispositif permet d'apprécier la variation de la teneur locale. On a ainsi mesuré la variation de la teneur locale d'un alliage Fe-C-Mn dont la composition nominale est : C=0,23%, Mn=24%, Si=0,203%, N=0,001%. Les inventeurs ont mis en évidence une co-ségrégation du carbone et du manganèse, les zones localement enrichies (ou appauvries) en carbone correspondent également aux zones enrichies (respectivement appauvries) en manganèse. Chaque point mesuré ayant une concentration locale en carbone (CL) et en manganèse (MΠL) a été reporté au sein de la figure 1, l'ensemble formant un segment représentant la variation locale en carbone et en manganèse dans la tôle d'acier, centré sur la teneur nominale (C=0,23%, Mn=24%). Dans ce cas, il apparaît que la variation de la teneur locale en carbone et en manganèse se traduit par une variation de l'énergie de défaut d'empilement, puisque cette valeur va de 7mJ/m2 pour les zones les moins riches en C et en Mn jusqu'à environ 20 mJ/m2 pour les zones les plus riches. On sait par ailleurs que le maclage intervient en tant que mode de déformation privilégié à température ambiante, lorsque l'JΞDE se situe environ vers 15-30mJ/m2. Dans le cas exposé, ce mode de déformation privilégié peut ne pas être présent absolument dans toute la tôle d'acier et certaines zones particulières peuvent présenter éventuellement un comportement mécanique différent de celui attendu pour une tôle d'acier de composition nominale, en particulier une aptitude plus réduite à la déformation par maclage au sein de certains grains. Plus généralement, on conçoit que, dans des conditions très particulières dépendant par exemple de la température de déformation ou de sollicitation, de la taille de grain, la teneur locale en carbone et en manganèse puisse être réduite au point de provoquer localement une transformation martensitique induite par déformation. Les inventeurs ont recherché les conditions particulières pour obtenir des caractéristiques mécaniques très élevées simultanément avec une grande homogénéité de ces caractéristiques au sein d'une tôle d'acier. Comme on l'a exposé ci-dessus, la combinaison de carbone (0,85%-1 ,05%) et de manganèse (16-19%) associée aux autres caractéristiques de l'invention conduit à des valeurs de résistance supérieure à 1200MPa et à un produit (résistance x allongement à rupture) supérieur à 60000, voire 65000 MPa%. On observera à la figure 1 que ces compositions d'acier se trouvent dans un domaine ou l'EDE est de l'ordre de 19-24mJ/m2, c'est à dire favorables à la déformation par maclage. Mais les inventeurs ont également mis en évidence qu'une variation de la teneur locale en carbone ou en manganèse a une influence beaucoup plus réduite que celle évoquée dans l'exemple précédent. En effet, des mesures de variations de teneurs locales (CL, MΠL) effectuées sur différentes compositions d'aciers austénitiques Fe-C-Mn ont révélé, à conditions de fabrication identiques, une corségrégation du carbone et du manganèse très voisine de celle illustrée à la figure 1. Dans ces conditions, une variation des teneurs locales (CL, MΠL) n'a que peu de conséquence vis- à-vis du comportement mécanique, puisque le segment représentant cette co-ségrégation est situé selon une direction sensiblement parallèle aux courbes d'iso-EDE.
De plus, les inventeurs ont mis en évidence qu'il convenait d'éviter absolument la formation de martensite lors des opérations de déformation ou d'utilisation des tôles sous peine d'hétérogénéité de caractéristiques mécaniques sur les pièces. Les inventeurs ont déterminé que cette condition est satisfaite lorsque, en tout point des tôles, les teneurs locales en carbone et en manganèse de la tôle sont telles que : %MΠL + 9,7 %CL≥21 ,66. Ainsi, grâce aux caractéristiques de la composition chimique nominale définies par l'invention et à celles définies par les teneurs locales en carbone et en manganèse, on réalise des tôles d'acier austénitique présentant non seulement des caractéristiques mécaniques très élevées mais aussi une très faible dispersion de ces caractéristiques.
Au moyen de ses connaissances, l'homme du métier adaptera les conditions de fabrication de façon à satisfaire cette relation concernant les teneurs locales, en particulier par le biais des conditions de coulée (température de coulée, brassage du métal liquide par forces électromagnétiques) ou des conditions de réchauffage conduisant à une homogénéisation du carbone et du manganèse par diffusion.
En particulier, on mettra en œuvre avantageusement des procédés de coulée de demi-produit sous forme de brames minces (quelques centimètres d'épaisseur) ou de bandes minces, puisque ces procédés sont généralement associés à une réduction des hétérogénéités de compositions locales. A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.
Exemple :
On a élaboré les aciers de composition nominale suivante (teneurs exprimées en pourcentage pondéral) :
Figure imgf000015_0001
Tableau 1 : Composition nominale des aciers
Après coulée, un demi-produit de l'acier I selon l'invention a été réchauffé à une température de 11800C et laminé à chaud jusqu'à une température supérieure à 9000C pour atteindre une épaisseur de 3 mm. On a pbseryéjjn temps d'attente de 2 s après laminage en vue de la recristallisation complète, puis on a effectué un refroidissement à une vitesse supérieure à 20°C/s, suivi par un bobinage à température ambiante. 5
Les aciers de référence ont été réchauffés à une température supérieure à
115O0C1 laminés jusqu'à une température de fin de laminage supérieure à
94O0C puis bobinés à une température inférieure à 450°C.
La fraction surfacique recristallisée est de 100% pour tous les aciers, la fraction de carbures précipités est égale à 0%, la taille de grain moyenne comprise entre 9 et 10 microns.
Les caractéristiques de traction des tôles laminées à chaud sont les suivantes :
Figure imgf000016_0001
Tableau 2 : Caractéristiques mécaniques de traction des tôles laminées à chaud
Par rapport à un acier de référence R1 , dont les caractéristiques mécaniques sont déjà élevées, l'acier selon l'invention permet d'obtenir une résistance accrue d'environ 200 MPa avec un allongement très comparable. Afin d'évaluer l'homogénéité structurale et mécanique lors d'une déformation, on a réalisé des godets emboutis sur lesquels on a examiné da microstructure par diffraction de rayons X. Dans le cas de l'acier de référence R2, on note l'apparition de martensite dès que le taux de déformation dépasse 17%, l'opération d'emboutissage totale conduisant à la rupture. Une analyse indique que la caractéristique : %MΠL + 9,7 %CL≥21 ,66 n'est pas remplie en tout point (figure 1).
Dans le cas de l'acier de l'invention, on ne met en évidence aucune trace de martensite, une analyse similaire indique que la caractéristique : %MnL + 9,7 %GL≥21 ,66 est satisfaite ~eπ tout point ce qui permet d'évTtër toute apparition de martensite. La tôle d'acier selon l'invention a été ensuite soumise à une légère déformation à froid par laminage avec une déformation équivalente de 14%. La résistance du produit est alors de 1420 MPa, son allongement à rupture de 42%, soit un produit P= 59640 MPa%. Ce produit à caractéristiques mécaniques exceptionnellement élevées offre de grandes possibilités de déformation ultérieure en raison de sa réserve de plasticité et de sa faible anisotropie.
Par ailleurs, après l'étape de bobinage, déroulage et décapage, des tôles laminées à chaud d'acier selon l'invention et de l'acier R1 ont été ensuite laminées à froid puis recuites de façon à obtenir une structure totalement recristallisée. La taille moyenne de grain austénitique, la résistance, l'allongement à rupture ont été indiqués dans le tableau ci-dessous.
Figure imgf000017_0001
Tableau 3 : Caractéristiques mécaniques des tôles laminées à froid et recuites
La tôle d'acier réalisée selon l'invention, dont la taille moyenne de grain est de 4 microns, offre donc une combinaison résistance-allongement particulièrement avantageuse et un accroissement significatif de la résistance par rapport à l'acier de référence. Comme pour les tôles laminées à chaud, ces caractéristiques sont obtenues avec une très grande homogénéité sur le produit, aucune trace de martensite n'est présente après déformation. Des essais d'expansion équibiaxiale sur poinçon hémisphérique de 75mm de diamètre réalisés sur une tôle laminée à froid et recuite de 1 ,6mm d'épaisseur selon l'invention, révèlent une hauteur limite d'emboutissage de 33mm, ce qui met en évidence une excellente aptitude à la déformation. Des essais de pliage réalisés sur cette même tôle montrent également que la déformation critique avant apparition de fissures est supérieure à 50%. La tôle d'acier réalisée selon l'invention a été soumise à une déformation à froid par laminage avec un taux de déformation équivalente de 8% : La résistance du produit est alors de 1420 MPa, son allongement à rupture de 48%, soit un produit P= 68160 MPa%.
Ainsi, en raison de leurs caractéristiques mécaniques particulièrement élevées, de leur comportement mécanique très homogène et de leur stabilité microstructurale, les aciers laminés à chaud ou laminés à froid selon l'invention seront utilisés avec profit pour des applications où l'on recherche une capacité de déformation importante et une très haute résistance. Dans le cas de leur utilisation dans l'industrie automobile, on tirera parti de leurs avantages pour la fabrication de pièces de structure, d'éléments de renfort ou encore de pièces extérieures.

Claims

REVENDICATIONS
1 - Tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P
(résistance (MPa) x allongement à rupture (%)) est supérieur à 65000
MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids :
0,85% < C < 1 ,05% 16%< Mn < 19%
Si < 2%
Al ≤ 0,050%
S ≤ 0,030%
P≤ 0,050% N ≤ 0,1 %, et à titre optionnel, un ou plusieurs éléments choisis parmi
Cr ≤ 1% Mo < 1,50%
Ni < 1% Cu < 5%
Ti < 0,50% Nb < 0,50% V < 0,50%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée dudit acier étant égale à 100%, la fraction surfacique de carbures précipités dudit acier étant égale à 0%, la taille moyenne de grain dudit acier étant inférieure ou égale à 10 microns
2 - Tôle laminée à froid et recuite en acier austénitique -fer-carbone- manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, dont la composition chimique nominale comprend, les teneurs étant exprimées en poids :
0,85% ≤ C ≤ 1 ,05% 16%< Mn < 19%
Si < 2% Al ≤ 0,050%
S < 0,030%
P≤ 0,050%
N ≤ 0,1%, et à titre optionnel, un ou plusieurs éléments choisis parmi : Cr < 1%
Mo < 1 ,50%
Ni < 1%
Cu < 5%
Ti < 0,50% Nb < 0,50%
V < 0,50%, te de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la fraction surfacique recristallisée de l'acier étant égale à 100%, la taille moyenne de grain dudit acier étant inférieure à 5 microns
- Tôle laminée à froid et recuite en acier austénitique selon la revendication 2, dont la résistance est supérieure à 1250 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, caractérisée en ce que la taille moyenne de grain dudit acier est inférieure à 3 microns
- Tôle d'acier austénitique selon l'une quelconque des revendications 1 à 3 caractérisée en ce que, en tout point, la teneur locale dudit acier en carbone CL et la teneur locale en manganèse Mn1., exprimées en..poids,~ sont telles que : %MnL + 9,7 %CL≥21 ,66 - Tôle d'acier selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la teneur nominale en silicium dudit acier est inférieure ou égale à 0,6%
- Tôle d'acier selon l'une quelconque des revendications 1 à 5, caractérisée en ce que la teneur nominale en azote dudit acier est inférieure ou égale à 0,050%
- Tôle d'acier selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la teneur nominale en aluminium dudit acier est inférieure ou égale à 0,030%
- Tôle d'acier selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la teneur nominale en phosphore dudit acier est inférieure ou égale à 0,040%
- Procédé de fabrication d'une tôle laminée à chaud en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1200 MPa, dont le produit P((résistance (MPa) x allongement à rupture (%)) est supérieur à 65000 MPa%, selon lequel on élabore un acier dont la composition nominale comprend, les teneurs étant exprimées en poids :
0,85% < C < 1 ,05%
16%< Mn < 19% Si ≤ 2%
Al < 0,050%
S < 0,030%
P< 0,050%
N ≤ 0,1%, et à titre optionnel, un ou plusieurs éléments choisis parmi
Cr < î%
Mo ≤ 1,50%
Ni < 1% Cu < 5% Ti < 0,50% Nb < 0,50% V < 0,50%,
le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, on procède à la coulée d'un demi-produit à partir de cet acier on porte ledit demi-produit de ladite composition d'acier à une température comprise entre 1100 et 13000C, on lamine ledit demi-produit jusqu'à une température de fin de laminage supérieure ou égale à 9000C on observe si nécessaire un temps d'attente de telle sorte que la fraction surfacique recristallisée de l'acier soit égale à 100%, - on refroidit ladite tôle à une vitesse supérieure ou égale à 20°C/s, on bobine ladite tôle à une température inférieure ou égale à 4000C.
10 - Procédé de fabrication d'une tôle laminée à chaud en acier austénitique selon la revendication 9 dont la résistance est supérieure à 1400 MPa, dont le produit P((résistance (MPa) x allongement à rupture
(%)) est supérieur à 50000 MPa%, caractérisé en ce qu'on applique, sur ladite tôle laminée à chaud, refroidie après bobinage et déroulée, une déformation à froid avec un taux de déformation équiyalente supérieur ou égal à 13% et inférieur ou égal à 17%
11 - Procédé de fabrication d'une tôle laminée à froid et recuite en acier austénitique fer-carbone-manganèse, dont la résistance est supérieure à 1250 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 60000 MPa%, caractérisé en ce que : - on approvisionne une tôle laminée à chaud obtenue par le procédé selon la revendication 9 on effectue au moins un cycle, chaque cycle consistant à :
Laminer à froid ladite tôle en une ou plusieurs passes successives, Effectuer un recuit de recristallisation, la taille moyenne de grain austénitique avant le dernier cycle de laminage à froid suivi d'un recuit de recristallisation, étant inférieure à 15 microns
- Procédé de fabrication d'une tôle laminée à froid en acier austénitique fer-carbone-manganèse selon la revendication 11 , dont la résistance est supérieure à 1400 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa%, caractérisé en ce qu'on effectue, après le recuit final de recristallisation, une déformation à froid avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égale à 17%.
Procédé de fabrication d'une tôle laminée à froid en acier austénitique fer-carbone-manganèse dont la résistance est supérieure à 1400 MPa, dont le produit P (résistance (MPa) x allongement à rupture (%)) est supérieur à 50000 MPa%, caractérisé en ce l'on approvisionne une tôle laminée à froid et recuite selon l'une quelconque des revendications 2 à 8 et que l'on effectue une déformation à froid de ladite tôle avec un taux de déformation équivalente supérieur ou égal à 6%, et inférieur ou égale à 17%.
- Procédé de fabrication d'une tôle d'acier austénitique selon l'une quelconque des revendications 9 à 13 caractérisé en ce que les conditions de coulée ou de réchauffage dudit demi-produit, telles que la température de coulée dudit demi-produit, le brassage du métal liquide par forces électromagnétiques, les conditions de réchauffage conduisant à une homogénéisation du carbone et du manganèse par diffusion, sont choisies pour que, en tout point de ladite tôle, la teneur locale en carbone CL et la teneur locale en manganèse MΠL, exprimées en poids, soient telles que : %Mnι_ + 9,Z_%CL≥21-r66
- Procédé de fabrication selon l'une quelconque des revendications 9 à 14, caractérisé en ce que la coulée dudit demi-produit est effectuée sous forme de coulée de brames ou de bandes minces entre cylindres d'acier contra-rotatifs
- Utilisation d'une tôle d'acier austénitique selon l'une quelconque des revendications 1 à 8, pour la fabrication de pièces de structure, d'éléments de renfort ou encore de pièces extérieures, dans le domaine automobile.
- Utilisation d'une tôle d'acier austénitique fabriquée au moyen d'un procédé selon l'une quelconque des revendications 9 à 15 pour la fabrication de pièces de structure, d'éléments de renfort ou encore de pièces extérieures, dans le domaine automobile.
PCT/FR2005/002740 2004-11-24 2005-11-04 Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite WO2006056670A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US11/720,018 US7794552B2 (en) 2004-11-24 2005-11-04 Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP05814950.1A EP1819461B1 (fr) 2004-11-24 2005-11-04 Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité.
CA2587858A CA2587858C (fr) 2004-11-24 2005-11-04 Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite
KR1020117031699A KR101275895B1 (ko) 2004-11-24 2005-11-04 강도 및 연신율 특성이 매우 크고 균질성이 우수한 오스테나이트계 철/탄소/망간 강판을 제조하는 방법
JP2007542029A JP5142101B2 (ja) 2004-11-24 2005-11-04 非常に高い強度と伸び特性および優れた均質性を有するオーステナイト系鉄/カーボン/マンガン鋼シートの製造方法
CN2005800426319A CN101090982B (zh) 2004-11-24 2005-11-04 生产具有非常高强度和伸长性能以及良好均匀性的铁-碳-锰奥氏体钢板的方法
BRPI0517890-8A BRPI0517890B1 (pt) 2004-11-24 2005-11-04 Chapa de aço austenítico de Ferro/Carbono/Manganês, seu processo de fabricação e seu uso
PL05814950T PL1819461T3 (pl) 2004-11-24 2005-11-04 Sposób wytwarzania blach ze stali austenitycznych żelazo-węgiel-mangan o bardzo wysokich właściwościach wytrzymałościowych i doskonałej jednorodności
ES05814950T ES2791675T3 (es) 2004-11-24 2005-11-04 Procedimiento de fabricación de chapas de acero austenítico de hierro-carbono-manganeso de muy altas características de resistencia y excelente homogeneidad
MX2007006240A MX2007006240A (es) 2004-11-24 2005-11-04 Metodo de produccion de laminas de acero austenitico de hierro/carbono/manganeso que tienen muy buenas caracteristicas de resistencia y alargamiento y una excelente homogeneidad.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0412477A FR2878257B1 (fr) 2004-11-24 2004-11-24 Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite
FR0412477 2004-11-24

Publications (2)

Publication Number Publication Date
WO2006056670A2 true WO2006056670A2 (fr) 2006-06-01
WO2006056670A3 WO2006056670A3 (fr) 2007-07-05

Family

ID=34978651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/002740 WO2006056670A2 (fr) 2004-11-24 2005-11-04 Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite

Country Status (16)

Country Link
US (1) US7794552B2 (fr)
EP (1) EP1819461B1 (fr)
JP (2) JP5142101B2 (fr)
KR (3) KR101275895B1 (fr)
CN (1) CN101090982B (fr)
BR (1) BRPI0517890B1 (fr)
CA (1) CA2587858C (fr)
ES (1) ES2791675T3 (fr)
FR (1) FR2878257B1 (fr)
HU (1) HUE050022T2 (fr)
MX (1) MX2007006240A (fr)
PL (1) PL1819461T3 (fr)
RU (1) RU2366727C2 (fr)
UA (1) UA90873C2 (fr)
WO (1) WO2006056670A2 (fr)
ZA (1) ZA200703890B (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878811A1 (fr) * 2006-07-11 2008-01-16 ARCELOR France Procede de fabrication d'une tole d'acier austenitique fer-carbone-manganese ayant une excellente resistance a la fissuration differee, et tole ainsi produit
EP1979500A1 (fr) * 2005-12-26 2008-10-15 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci
WO2012052689A1 (fr) 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Tôle d'acier laminée à chaud ou à froid, son procédé de fabrication et son utilisation dans l'industrie automobile
RU2544321C2 (ru) * 2009-11-05 2015-03-20 Зальцгиттер Флахшталь Гмбх Способ нанесения покрытия на стальные полосы и стальная полоса с покрытием (варианты)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009069762A1 (ja) * 2007-11-30 2011-04-21 日本ピストンリング株式会社 ピストンリング用鋼材およびピストンリング
DE102008005605A1 (de) * 2008-01-22 2009-07-23 Thyssenkrupp Steel Ag Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht
JP5338257B2 (ja) * 2008-10-30 2013-11-13 Jfeスチール株式会社 延性に優れた高降伏比超高張力鋼板およびその製造方法
DE102008056844A1 (de) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganstahlband und Verfahren zur Herstellung desselben
KR101090822B1 (ko) * 2009-04-14 2011-12-08 기아자동차주식회사 고강도 트윕 강판 및 그 제조방법
JP5437482B2 (ja) * 2009-04-28 2014-03-12 ヒュンダイ スチール カンパニー 高強度及び高軟性を有する高マンガン窒素含有鋼板及びその製造方法
US8182963B2 (en) * 2009-07-10 2012-05-22 GM Global Technology Operations LLC Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates
IT1403129B1 (it) * 2010-12-07 2013-10-04 Ct Sviluppo Materiali Spa Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile.
DE102011000089A1 (de) * 2011-01-11 2012-07-12 Thyssenkrupp Steel Europe Ag Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts
EP2799571B1 (fr) * 2011-12-27 2021-04-07 Posco Acier austénitique présentant une usinabilité et une résistance aux températures cryogéniques améliorées dans des zones affectées par la température de soudage, et procédé de production correspondant
JP5879448B2 (ja) * 2011-12-28 2016-03-08 ポスコ 溶接熱影響部の靱性に優れた耐磨耗オーステナイト系鋼材及びその製造方法
CN104204262B (zh) * 2011-12-28 2018-02-02 Posco公司 具有优异的机械加工性及延展性的耐磨奥氏体钢及其生产方法
KR101449111B1 (ko) * 2012-08-09 2014-10-08 주식회사 포스코 강도와 연성이 우수한 강선재 및 그 제조방법
JP6140836B2 (ja) * 2012-12-26 2017-05-31 ポスコPosco 溶接熱影響部の靭性に優れた高強度オーステナイト系鋼材及びその製造方法
JP6055343B2 (ja) * 2013-03-13 2016-12-27 株式会社神戸製鋼所 低温曲げ加工性に優れた非磁性鋼およびその製造方法
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
JP6185865B2 (ja) * 2013-03-21 2017-08-23 株式会社神戸製鋼所 低温曲げ加工性に優れた非磁性鋼およびその製造方法
JP6154768B2 (ja) * 2013-03-21 2017-06-28 株式会社神戸製鋼所 低温曲げ加工性に優れた非磁性鋼
CN103484777B (zh) * 2013-08-29 2015-06-03 日月重工股份有限公司 奥氏体锰钢及其制备方法
KR101543916B1 (ko) * 2013-12-25 2015-08-11 주식회사 포스코 표면 가공 품질이 우수한 저온용강 및 그 제조 방법
KR101714922B1 (ko) * 2015-12-18 2017-03-10 주식회사 포스코 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법
KR101889187B1 (ko) * 2015-12-23 2018-08-16 주식회사 포스코 열간 가공성이 우수한 비자성 강재 및 그 제조방법
KR101747034B1 (ko) * 2016-04-28 2017-06-14 주식회사 포스코 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2017203313A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Procédé de fabrication d'une tôle d'acier de remploi à matrice austénitique
WO2017203311A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle d'acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
WO2017203315A1 (fr) 2016-05-24 2017-11-30 Arcelormittal Tôle mince en acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
WO2017203312A1 (fr) * 2016-05-24 2017-11-30 Arcelormittal Tôle d'acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule
JP6682661B2 (ja) 2016-05-24 2020-04-15 アルセロールミタル オーステナイト型マトリックスを有するtwip鋼板の製造方法
KR101940874B1 (ko) 2016-12-22 2019-01-21 주식회사 포스코 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법
KR101920973B1 (ko) * 2016-12-23 2018-11-21 주식회사 포스코 표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법
KR101917473B1 (ko) * 2016-12-23 2018-11-09 주식회사 포스코 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법
WO2018220412A1 (fr) 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
KR102020381B1 (ko) * 2017-12-22 2019-09-10 주식회사 포스코 내마모성이 우수한 강재 및 그 제조방법
KR102020386B1 (ko) * 2017-12-24 2019-09-10 주식회사 포스코 고 강도 오스테나이트계 고 망간 강재 및 그 제조방법
CN109487047B (zh) * 2018-12-21 2020-08-11 昆明理工大学 一种提高合金化高锰钢铸件性能的方法
CN112342352B (zh) * 2020-10-22 2022-07-01 西安工程大学 一种耐腐蚀的高锰奥氏体钢板及其制备方法
WO2023233186A1 (fr) * 2022-06-02 2023-12-07 Arcelormittal Acier laminé à chaud à haute teneur en manganèse et son procédé de production
CN117551937B (zh) * 2023-11-17 2024-07-19 齐鲁工业大学(山东省科学院) 一种高强塑积Fe-Mn-Al-Nb系中锰钢及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2068283A6 (en) * 1970-09-30 1971-08-20 Abex Corp Austenitic manganese steel for welding steel joints
JPH0313525A (ja) * 1989-06-10 1991-01-22 Kobe Steel Ltd 耐SR脆化特性が優れ、且つ高強度、高靭性を有する高Mn非磁性鋼の製造方法
JPH04143218A (ja) * 1990-10-05 1992-05-18 Kobe Steel Ltd 局部変形能に優れた高Mn非磁性鋼の製造方法
JPH04247851A (ja) * 1991-01-22 1992-09-03 Kobe Steel Ltd 高Mnオーステナイト鋼
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
EP1067203A1 (fr) * 1999-07-07 2001-01-10 Usinor "Procédé de fabrication de bandes en alliage fer-carbonne-manganese, et bandes ainsi produites"
FR2829775A1 (fr) * 2001-09-20 2003-03-21 Usinor Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2378994A (en) * 1942-07-22 1945-06-26 Electro Metallurg Co Cold rolled manganese steels
JPS58126956A (ja) * 1982-01-22 1983-07-28 Nippon Steel Corp プレス加工性の優れた高強度薄鋼板
JPS6058781B2 (ja) * 1982-02-12 1985-12-21 株式会社クボタ 連続鋳造電磁撓拌ロ−ル用非磁性合金
JPH04259325A (ja) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd 加工性に優れた高強度熱延鋼板の製造方法
JP4247851B2 (ja) 1999-01-12 2009-04-02 石川島運搬機械株式会社 クライミングクレーンの使用方法
JP4143218B2 (ja) 1999-04-23 2008-09-03 株式会社日本触媒 薄膜式蒸発装置における重合防止方法および薄膜式蒸発装置
DE10060948C2 (de) * 2000-12-06 2003-07-31 Thyssenkrupp Stahl Ag Verfahren zum Erzeugen eines Warmbandes aus einem einen hohen Mangan-Gehalt aufweisenden Stahl
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
KR100851158B1 (ko) * 2006-12-27 2008-08-08 주식회사 포스코 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2068283A6 (en) * 1970-09-30 1971-08-20 Abex Corp Austenitic manganese steel for welding steel joints
JPH0313525A (ja) * 1989-06-10 1991-01-22 Kobe Steel Ltd 耐SR脆化特性が優れ、且つ高強度、高靭性を有する高Mn非磁性鋼の製造方法
JPH04143218A (ja) * 1990-10-05 1992-05-18 Kobe Steel Ltd 局部変形能に優れた高Mn非磁性鋼の製造方法
JPH04247851A (ja) * 1991-01-22 1992-09-03 Kobe Steel Ltd 高Mnオーステナイト鋼
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
EP1067203A1 (fr) * 1999-07-07 2001-01-10 Usinor "Procédé de fabrication de bandes en alliage fer-carbonne-manganese, et bandes ainsi produites"
FR2829775A1 (fr) * 2001-09-20 2003-03-21 Usinor Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 132 (C-0819), 29 mars 1991 (1991-03-29) -& JP 03 013525 A (KOBE STEEL LTD), 22 janvier 1991 (1991-01-22) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 419 (C-0981), 3 septembre 1992 (1992-09-03) -& JP 04 143218 A (KOBE STEEL LTD), 18 mai 1992 (1992-05-18) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 025 (C-1017), 18 janvier 1993 (1993-01-18) -& JP 04 247851 A (KOBE STEEL LTD), 3 septembre 1992 (1992-09-03) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1979500A1 (fr) * 2005-12-26 2008-10-15 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci
US8999085B2 (en) 2005-12-26 2015-04-07 Posco High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
EP1979500A4 (fr) * 2005-12-26 2010-02-17 Posco Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci
US10006099B2 (en) 2006-07-11 2018-06-26 Arcelormittal Process for manufacturing iron-carbon-maganese austenitic steel sheet with excellent resistance to delayed cracking
WO2008007192A3 (fr) * 2006-07-11 2008-03-20 Arcelor France Procédé de fabrication d'une feuille d'acier austénitique fer-carbone-manganèse dotée d'une excellente résistance à la fissuration différée, et feuille ainsi produite
KR101105178B1 (ko) * 2006-07-11 2012-01-12 티센크루프 스틸 유럽 악티엔게젤샤프트 지연 균열에 대해 우수한 내성을 갖는 철-탄소-망간 오스테나이트계 강 시트의 제조 공정, 및 이에 의해 제조되는 시트
AU2007273982B2 (en) * 2006-07-11 2012-03-29 Thyssenkrupp Steel Europe Ag Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
WO2008007192A2 (fr) * 2006-07-11 2008-01-17 Arcelormittal France Procédé de fabrication d'une feuille d'acier austénitique fer-carbone-manganèse dotée d'une excellente résistance à la fissuration différée, et feuille ainsi produite
US9200355B2 (en) 2006-07-11 2015-12-01 Arcelormittal France Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
EP1878811A1 (fr) * 2006-07-11 2008-01-16 ARCELOR France Procede de fabrication d'une tole d'acier austenitique fer-carbone-manganese ayant une excellente resistance a la fissuration differee, et tole ainsi produit
US10131964B2 (en) 2006-07-11 2018-11-20 Arcelormittal France Iron-carbon-manganese austenitic steel sheet
EP3587611A1 (fr) * 2006-07-11 2020-01-01 ArcelorMittal Procédé de fabrication d'une feuille d'acier austénitique de fer-carbone-manganèse dotée d'une excellente résistance au craquage retardé et feuille ainsi produite
RU2544321C2 (ru) * 2009-11-05 2015-03-20 Зальцгиттер Флахшталь Гмбх Способ нанесения покрытия на стальные полосы и стальная полоса с покрытием (варианты)
WO2012052689A1 (fr) 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Tôle d'acier laminée à chaud ou à froid, son procédé de fabrication et son utilisation dans l'industrie automobile
WO2012052626A1 (fr) 2010-10-21 2012-04-26 Arcelormittal Investigacion Y Desarrollo, S.L. Tole d'acier laminee a chaud ou a froid, don procede de fabrication et son utilisation dans l'industrie automobile
US11131011B2 (en) 2010-10-21 2021-09-28 Arcelormittal Hot-rolled or cold-rolled steel plate

Also Published As

Publication number Publication date
JP2012072499A (ja) 2012-04-12
BRPI0517890A (pt) 2008-10-21
CN101090982B (zh) 2010-09-08
RU2007123594A (ru) 2008-12-27
ZA200703890B (en) 2008-05-28
KR20070091300A (ko) 2007-09-10
BRPI0517890B1 (pt) 2014-12-23
KR20100084570A (ko) 2010-07-26
FR2878257A1 (fr) 2006-05-26
CA2587858A1 (fr) 2006-06-01
RU2366727C2 (ru) 2009-09-10
HUE050022T2 (hu) 2020-11-30
JP5142101B2 (ja) 2013-02-13
ES2791675T3 (es) 2020-11-05
FR2878257B1 (fr) 2007-01-12
EP1819461A2 (fr) 2007-08-22
JP2008520830A (ja) 2008-06-19
CN101090982A (zh) 2007-12-19
KR101275895B1 (ko) 2013-06-17
CA2587858C (fr) 2011-10-25
US7794552B2 (en) 2010-09-14
UA90873C2 (ru) 2010-06-10
KR20120014070A (ko) 2012-02-15
US20080035248A1 (en) 2008-02-14
MX2007006240A (es) 2007-10-08
WO2006056670A3 (fr) 2007-07-05
PL1819461T3 (pl) 2020-10-05
EP1819461B1 (fr) 2020-04-15

Similar Documents

Publication Publication Date Title
EP1819461B1 (fr) Procede de fabrication de toles d&#39; acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité.
EP1649069B1 (fr) Procede de fabrication de toles d&#39;acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
EP1913169B1 (fr) Procede de fabrication de tôles d&#39;acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites
EP2630269B1 (fr) Tole d&#39;acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l&#39;industrie automobile
CA2686940C (fr) Procede de fabrication de toles d&#39;acier laminees a froid et recuites a tres haute resistance, et toles ainsi produites
EP3084014B1 (fr) Acier à haute résistance et procédé de fabrication
EP2855725B1 (fr) Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
EP2245203B1 (fr) Tôle en acier inoxydable austenitique et procede d&#39;obtention de cette tôle
WO2016198940A2 (fr) Acier à haute résistance et procédé de fabrication
EP2155916A1 (fr) Acier a faible densite presentant une bonne aptitude a l&#39;emboutissage
EP1587963B1 (fr) Acier laminé à chaud à très haute résistance et procédé de fabrication de bandes
FR2833617A1 (fr) Procede de fabrication de toles laminees a froid a tres haute resistance d&#39;aciers dual phase micro-allies
EP2257652B1 (fr) Procede de fabrication de tôles d&#39;acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues
WO2011036352A1 (fr) Acier inoxydable ferritique a hautes caracteristiques d&#39;emboutissabilite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005814950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007/03890

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2587858

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007542029

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/006240

Country of ref document: MX

Ref document number: 2246/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580042631.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077014265

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007123594

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005814950

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11720018

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11720018

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0517890

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020107012508

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020117031699

Country of ref document: KR