WO2006056670A2 - Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite - Google Patents
Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite Download PDFInfo
- Publication number
- WO2006056670A2 WO2006056670A2 PCT/FR2005/002740 FR2005002740W WO2006056670A2 WO 2006056670 A2 WO2006056670 A2 WO 2006056670A2 FR 2005002740 W FR2005002740 W FR 2005002740W WO 2006056670 A2 WO2006056670 A2 WO 2006056670A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- mpa
- equal
- sheet
- resistance
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
Definitions
- the present invention relates to the manufacture of hot-rolled and cold-rolled sheets of austenitic iron-carbon-manganese steels having very high mechanical characteristics, and in particular a combination of very advantageous mechanical strength and elongation at break with excellent homogeneity. mechanical properties.
- the mode of deformation of the austenitic steels depends only on the stacking fault energy or "EDE", a physical quantity which depends only on the composition and the temperature:
- EDE stacking fault energy
- the mechanical twinning makes it possible to obtain a great capacity of hardening: by preventing the propagation of the dislocations, the twins participate in the increase of the limit of flow.
- EDE increases especially with the carbon and manganese content.
- Fe-0.6% C-22% Mn austenitic steels that can deform by twinning are thus known: Depending on the grain size, these steel compositions lead to tensile strength values ranging from about 900 to 1150 MPa. in combination with a breaking strain of 50 to 80%. There is, however, an unresolved need for hot-rolled or cold-rolled steel sheet with a strength significantly greater than 1150 MPa, also having a good deformation capacity, without the addition of expensive alloys. It is sought to have steel sheets having a very homogeneous behavior during subsequent mechanical stresses.
- the object of the invention is therefore to provide a hot-rolled or cold-rolled steel sheet or product of economical manufacture having a strength greater than or equal to 1200 or even 1400 MPa in combination with an elongation such as the product P: resistance (MPa) x elongation at rupture (%) is greater than 60000 or 50000 MPa% respectively at the strength level mentioned above, a great homogeneity of mechanical properties during deformation or subsequent mechanical stresses and a structure free from martensite at any point during or after the deformation cold from this sheet or this product.
- the subject of the invention is a hot-rolled sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, whose product P (resistance (MPa) x elongation at break (%)) is greater than 65000 MPa%, the nominal chemical composition of which, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements selected from: Cr ⁇ 1%, Mo ⁇ 1, 50%, Ni ⁇ 1%, Cu ⁇ 5% , Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation, the recrystallized surface fraction of the steel being equal to 100%, the surface fraction of precipitated carbides of the steel being equal to 0%, the average grain size of the steel being
- the subject of the invention is also a cold-rolled annealed sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, of which the product P (resistance (MPa) x elongation at break (%)) is greater at 65000 MPa%, the nominal chemical composition of which, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and.
- P resistance (MPa) x elongation at break
- the invention also relates to a cold rolled annealed sheet of austenitic steel, whose resistance is greater than 1250 MPa, whose product P (resistance (MPa) x elongation at break (%)) is greater than 65000 MPa% characterized in that the average grain size of the steel is less than 3 microns.
- the local carbon content CL of the steel, and the local manganese content M ⁇ L, expressed by weight, at any point of the austenitic steel sheet are such that:% Mn L + 9.7 % C L ⁇ 21, 66
- the nominal silicon content of the steel is less than or equal to 0.6%
- the nominal nitrogen content of the steel is less than or equal to 0.050%.
- the nominal aluminum content of the steel is less than or equal to 0.030%.
- the nominal phosphorus content of the steel is less than or equal to 0.040%
- the invention also relates to a method for manufacturing a hot-rolled sheet of austenitic iron-carbon-manganese steel whose resistance is greater than 1200 MPa, whose product P ((resistance (MPa) x elongation at break ( %)) is greater than 65000 MPa%, according to which a steel is produced whose nominal composition comprises, the contents being expressed by weight: 0.85% ⁇ C ⁇ 1.05%, 16% ⁇ Mn ⁇ 19%, Si ⁇ 2%, Al ⁇ 0.050%, S ⁇ 0.030%, P ⁇ 0.050%, N ⁇ 0.1%, and optionally, one or more elements selected from: Cr ⁇ 1%, Mo ⁇ 1, 50%, Ni ⁇ 1%, Cu ⁇ 5%, Ti ⁇ 0.50%, Nb ⁇ 0.50%, V ⁇ 0.50%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration the semi-finished product of the steel composition is heated to a temperature of between 1100 and 1300 ° C.
- the semi-finished product is rolled up. at a higher end-of-lamination temperature If at least 900 ° C., a waiting time is observed if necessary so that the recrystallized surface fraction of the steel is equal to 100%, the sheet is cooled at a speed greater than or equal to 20 ° C./sec. - the sheet is coiled at a temperature below or equal to 400 0 C.
- the invention also relates to a method of " manufacturing a hot-rolled sheet of austenitic steel whose resistance is greater than 1400 MPa, whose product P ((resistance (MPa) x elongation at break (%)) is greater than 50000 MPa%, characterized in that a cold deformation with an equivalent deformation ratio greater than or equal to 13% and less than or equal to 17 is applied to the hot-rolled sheet, cooled after winding and unrolled;
- the invention also relates to a method for manufacturing a cold-rolled annealed sheet of austenitic iron-carbon-manganese steel, whose resistance is greater than 1250 MPa, the product P (resistance (MPa) x elongation at rupture (%)) is greater than 60000 MPa%, characterized in that a hot-rolled sheet obtained by the above process is supplied with, at least one cycle is carried out, each cycle consisting in cold-rolling the sheet in one or more successive passes and then perform a recrystallization annea
- the invention also relates to a method for manufacturing a cold-rolled annealed sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, the product P (resistance (MPa) x elongation at break (%)) is greater than 50000 MPa%, characterized in that, after the final recrystallization annealing, a cold deformation with an equivalent strain rate greater than or equal to 6%, and less than or equal to 17% is carried out.
- the invention also relates to a method of manufacturing a cold-rolled sheet made of austenitic iron-carbon-manganese steel whose resistance is greater than 1400 MPa, the product P (resistance (MPa) x elongation at break ( %)) is greater than 50000 MPa%, characterized in that one supplies a cold rolled sheet and annealed according to the invention, and that a cold deformation of this sheet is carried out with a higher equivalent strain rate or equal to 6%, and less than or equal to 17%.
- the invention also relates to a method of manufacturing an austenitic steel sheet, characterized in that the conditions for casting or reheating said semi-finished product, such as the casting temperature of said semi-finished product, the mixing of the metal liquid by electromagnetic forces, the reheating conditions leading to a homogenization of carbon and manganese by diffusion, are chosen so that, at any point of the sheet, the local carbon content CL and the local manganese content Mn ⁇ _, expressed by weight, are such that:% Mn L + 9.7% CL ⁇ 21, 66
- the casting of the semi-finished product is carried out in the form of casting slabs or thin strips between contra-rotating steel rolls.
- the invention also relates to the use of an austenitic steel sheet for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
- the invention also relates to the use of an austenitic steel sheet manufactured by means of a method described above, for the manufacture of reinforcing or structural elements or external parts, in the automotive field.
- FIG. 1 presents the theoretical variation of the stacking fault energy at room temperature (300 K 0) depending on the carbon content and manganese.
- carbon plays a very important role in the formation of the microstructure and the mechanical properties obtained:
- a nominal content in carbon greater than 0.85% makes it possible to obtain a stable austenitic structure.
- a nominal carbon content of greater than 1.05% it becomes difficult to avoid a precipitation of carbides which occurs during certain thermal cycles of industrial manufacture, in particular during winding cooling, and which degrades the ductility and tenacity.
- increasing the carbon content decreases the weldability.
- Manganese is also an indispensable element for increasing the strength, increasing the stacking fault energy and stabilizing the austenitic phase. If its nominal content is less than 16%, there is, as will be seen below, a risk of martensitic phase formation which decreases very noticeably the ability to deform. Moreover, when the nominal manganese content is greater than 19%, the mode of deformation by twinning is less favored compared to the sliding mode of perfect dislocations. In addition, for cost reasons, it is not desirable for the manganese content to be high.
- Aluminum is a particularly effective element for the deoxidation of steel. Like carbon, it increases the stacking fault energy. However, its excessive presence in steels with a high manganese content has a disadvantage. In fact, manganese increases the solubility of nitrogen in liquid iron, and if too much aluminum is present in the steel, nitrogen combining with aluminum precipitates in the form of aluminum nitrides hindering the migration of grain boundaries during hot processing and significantly increases the risk of crack appearances.
- a nominal Al content less than or equal to 0.050% avoids precipitation of AlN.
- the nominal nitrogen content must be less than or equal to 0.1% in order to avoid this precipitation and the formation of volume defects during solidification. This risk is particularly reduced when the nominal aluminum content is less than 0.030% and when the nominal nitrogen content is less than 0.050%.
- Silicon is also an effective element for deoxidizing steel as well as for hardening in the solid phase. However, beyond a nominal content of 2%, it decreases the elongation and tends to form undesirable oxides during certain assembly processes and must therefore be kept below this limit. This phenomenon is greatly reduced when the nominal silicon content is less than 0.6%.
- Sulfur and phosphorus are impurities that weaken the grain boundaries. Their respective nominal content must be less than or equal to 0.030 and 0.050% in order to maintain sufficient hot ductility. When the nominal phosphorus content is less than 0.040%, the risk of brittleness is particularly low.
- Chromium can be used as an option to increase the strength of the steel by hardening in solid solution. However, since chromium decreases the stacking fault energy, its nominal content must be lower or equal to 1%. Nickel increases the stacking fault energy and contributes to a high breaking elongation. However, it is also desirable, for cost reasons, to limit the nominal nickel content to a maximum content of less than or equal to 1%. Molybdenum can also be used for similar reasons, this element further delaying the precipitation of carbides. It is desirable for questions of efficiency and cost, to limit its nominal content to 1, 5%, and preferably to 0.4%.
- addition of copper to a nominal content of less than or equal to 5% is a means of hardening the steel by precipitation of metallic copper.
- copper is responsible for the appearance of surface defects hot sheet.
- Titanium, niobium and vanadium are also optionally operable elements for precipitation hardening of carbonitrides.
- the nominal Nb or V or Ti content is greater than 0.50%, excessive precipitation of carbonitrides may cause a reduction in ductility and drawability, which should be avoided.
- the implementation of the manufacturing method according to the invention is as follows: A steel is produced whose composition has been explained above. This development can be followed by casting in ingots, or continuously in the form of slabs of thickness of the order of 200 mm.
- These cast semi-finished products are first brought to a temperature of between 1100 and 1300 ° C. This is intended to achieve at all points the temperature ranges favorable to the high deformations which the steel will undergo during rolling. However, the temperature must not be higher than 1300 0 C, otherwise it will be too close to the solidus temperature that could be reached in possible areas segregated in manganese and / or carbon, and cause a beginning of local passage through a liquid state that would be harmful for hot shaping.
- the hot rolling step of these semi-finished products starting between 1300 and 1100 0 C can be done directly after casting so that a reheating step intermediate is not necessary in this case.
- the conditions for the preparation of semi-finished products have a direct influence on the possible segregation of carbon and manganese, this point will be detailed later.
- the semi-finished product is hot-rolled, for example to obtain a hot-rolled strip thickness of a few millimeters.
- the low aluminum content of the steel according to the invention makes it possible to avoid excessive precipitation of AlN which would adversely affect the hot deformability during rolling.
- the end-of-rolling temperature must be greater than or equal to 900 ° C. The inventors have demonstrated that the ductility properties of the sheets obtained were reduced when the recrystallized surface fraction steel was less than 100%.
- the inventors have set evidence that particularly high strength and elongation properties are obtained when the average austenitic grain size is less than or equal to 10 microns. Under these conditions, the breaking strength of the hot plates thus obtained is greater than 1200 MPa and the product P (resistance x elongation at break) is greater than 65000 MPa%.
- the sheet manufactured can be qualified as "hot-rolled sheet" insofar as the rate of cold deformation is very small in comparison with the usual rates of achieved during rolling. cold before annealing for the manufacture of thin sheets, and insofar as the thickness of the sheet thus manufactured is located in the usual range of thicknesses of hot-rolled sheet.
- the equivalent cold deformation ratio is greater than 17%, the elongation reduction becomes such that the parameter P (resistance R x elongation at break A) can not reach 50000 MPa%.
- the sheet retains a good elongation capacity since the product P of the sheet thus obtained is greater than or equal to 50000 MPa%.
- the inventors have also demonstrated that the structure must be completely recrystallized after annealing in order to achieve the desired properties. Simultaneously, when the average grain size is less than 5 microns, the resistance exceeds 1200 MPa, and the product P is greater than 65000 MPa%. When the average grain size obtained after annealing is less than 3 microns, the resistance exceeds 1250 MPa, the product P being always greater than 65000 MPa.
- the inventors have also discovered a method for manufacturing cold-rolled steel sheets annealed with resistance greater than 1250 MPa and product P greater than 60000 MPa%, this being achieved by supplying hot-rolled sheets according to the method described above. above, and then performing at least one cycle, each cycle consisting of the following steps:
- the average size of austenitic grain before the last cold rolling cycle undergoing a recrystallization annealing being less than 15 microns.
- the inventors have demonstrated that such properties could be obtained by supplying a cold-rolled sheet having the characteristics according to the invention described above, or by supplying a cold-rolled sheet obtained according to the process according to the invention described herein. -above.
- the inventors have discovered that the application of a cold deformation to such a sheet with an equivalent deformation ratio greater than or equal to 6%, and less than or equal to 17%, makes it possible to achieve a resistance greater than 1400 MPa and a product P greater than 50000 MPa%.
- the equivalent cold deformation rate is greater than 17%, the elongation reduction becomes such that the parameter P can not reach 50000 MPa%.
- FIG. 1 presents, in a carbon-manganese diagram (and iron complement), the computed curves of stacking failure iso-energy whose values range from 5 to 30 mJ / m 2 .
- the deformation mode is theoretically identical for any Fe-C-Mn alloy having the same EDE.
- This diagram also shows the field of appearance of martensite.
- the inventors have demonstrated that, in order to assess the mechanical behavior, it is necessary to consider not only the nominal chemical composition of the alloy, for example its nominal or average content. in carbon and manganese, but also its local content. Indeed, it is known that, during the development of steel, the solidification causes a more or less marked segregation of certain elements. This is because the solubility of an element within the solid phase is different from that in the liquid phase. This will often lead to the formation of solid seeds whose solute content is lower than the nominal composition, the last phase of solidification involving a liquid phase residual enriched solute. This primary solidification structure can assume different morphologies (for example dendritic or equiaxial) and be more or less marked.
- an analysis of the local elemental content indicates a fluctuation around a value corresponding to the average or nominal content of this element.
- local content is meant here the measured content by means of a device such as an electronic probe.
- a linear or surface scan by means of such a device makes it possible to appreciate the variation of the local content.
- the inventors have demonstrated co-segregation of carbon and manganese, the locally enriched (or depleted) carbon zones also correspond to the enriched (respectively impoverished) zones in manganese.
- this mode of preferred deformation may not be present absolutely in all the steel sheet and some particular areas may possibly exhibit a behavior mechanical different from that expected for a steel sheet of nominal composition, in particular a reduced ability to deformation by twinning within certain grains. More generally, it is conceivable that, under very specific conditions depending for example on the deformation or stress temperature, of the grain size, the local carbon and manganese content can be reduced to the point of locally provoking an induced martensitic transformation. by deformation. The inventors have sought the particular conditions to obtain very high mechanical characteristics simultaneously with a great homogeneity of these characteristics within a steel sheet.
- the inventors have demonstrated that it was absolutely necessary to avoid the formation of martensite during deformation operations or use of the sheets under penalty of heterogeneity of mechanical characteristics on the parts.
- the inventors have determined that this condition is satisfied when, at all points of the sheets, the local carbon and manganese contents of the sheet are such that:% M ⁇ L + 9.7% CL ⁇ 21, 66.
- the characteristics of the nominal chemical composition defined by According to the invention and to those defined by the local contents of carbon and manganese austenitic steel sheets having not only very high mechanical properties but also a very low dispersion of these characteristics are produced.
- a half-product of the steel I according to the invention was heated to a temperature of 1180 ° C. and hot rolled to a temperature greater than 900 ° C. to reach a thickness of 3 mm. It was stirred for 2 seconds after lamination for complete recrystallization, followed by cooling at a rate above 20 ° C / sec, followed by winding at room temperature. 5
- the reference steels have been heated to a temperature greater than
- the recrystallized surface fraction is 100% for all the steels, the fraction of precipitated carbides is 0%, the mean grain size is between 9 and 10 microns.
- the steel according to the invention makes it possible to obtain an increased strength of approximately 200 MPa with a very comparable elongation.
- stamped cups were made on which the microstructure was examined by X-ray diffraction.
- appearance of martensite as soon as the deformation rate exceeds 17%, the total stamping operation leading to rupture.
- An analysis indicates that the characteristic:% M ⁇ L + 9.7% CL ⁇ 21, 66 is not fulfilled at all points ( Figure 1).
- hot rolled steel sheets according to the invention and steel R1 were then cold-rolled and then annealed so as to obtain a totally recrystallized structure.
- Mean austenite grain size, strength, elongation at break were shown in the table below.
- the steel sheet produced according to the invention whose average grain size is 4 microns, thus offers a particularly advantageous resistance-elongation combination and a significant increase in the resistance relative to the reference steel.
- these characteristics are obtained with a very great homogeneity on the product, no trace of martensite is present after deformation.
- Equibiaxial expansion tests on a 75 mm diameter hemispherical punch made on a cold-rolled and annealed sheet 1, 6 mm thick according to the invention reveal a maximum drawing limit of 33 mm, which highlights a excellent deformation ability. Folding tests carried out on this same sheet also show that the critical deformation before appearance of cracks is greater than 50%.
- hot-rolled or cold-rolled steels according to the invention will be used with advantage for applications where a capacity is sought. significant deformation and very high strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/720,018 US7794552B2 (en) | 2004-11-24 | 2005-11-04 | Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity |
EP05814950.1A EP1819461B1 (fr) | 2004-11-24 | 2005-11-04 | Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité. |
CA2587858A CA2587858C (fr) | 2004-11-24 | 2005-11-04 | Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite |
KR1020117031699A KR101275895B1 (ko) | 2004-11-24 | 2005-11-04 | 강도 및 연신율 특성이 매우 크고 균질성이 우수한 오스테나이트계 철/탄소/망간 강판을 제조하는 방법 |
JP2007542029A JP5142101B2 (ja) | 2004-11-24 | 2005-11-04 | 非常に高い強度と伸び特性および優れた均質性を有するオーステナイト系鉄/カーボン/マンガン鋼シートの製造方法 |
CN2005800426319A CN101090982B (zh) | 2004-11-24 | 2005-11-04 | 生产具有非常高强度和伸长性能以及良好均匀性的铁-碳-锰奥氏体钢板的方法 |
BRPI0517890-8A BRPI0517890B1 (pt) | 2004-11-24 | 2005-11-04 | Chapa de aço austenítico de Ferro/Carbono/Manganês, seu processo de fabricação e seu uso |
PL05814950T PL1819461T3 (pl) | 2004-11-24 | 2005-11-04 | Sposób wytwarzania blach ze stali austenitycznych żelazo-węgiel-mangan o bardzo wysokich właściwościach wytrzymałościowych i doskonałej jednorodności |
ES05814950T ES2791675T3 (es) | 2004-11-24 | 2005-11-04 | Procedimiento de fabricación de chapas de acero austenítico de hierro-carbono-manganeso de muy altas características de resistencia y excelente homogeneidad |
MX2007006240A MX2007006240A (es) | 2004-11-24 | 2005-11-04 | Metodo de produccion de laminas de acero austenitico de hierro/carbono/manganeso que tienen muy buenas caracteristicas de resistencia y alargamiento y una excelente homogeneidad. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0412477A FR2878257B1 (fr) | 2004-11-24 | 2004-11-24 | Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite |
FR0412477 | 2004-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2006056670A2 true WO2006056670A2 (fr) | 2006-06-01 |
WO2006056670A3 WO2006056670A3 (fr) | 2007-07-05 |
Family
ID=34978651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2005/002740 WO2006056670A2 (fr) | 2004-11-24 | 2005-11-04 | Procede de fabrication de toles d'acier austenitique, fer-carbone-manganese a tres hautes caracteristiques de resistance et d'allongement, et excellente homogeneite |
Country Status (16)
Country | Link |
---|---|
US (1) | US7794552B2 (fr) |
EP (1) | EP1819461B1 (fr) |
JP (2) | JP5142101B2 (fr) |
KR (3) | KR101275895B1 (fr) |
CN (1) | CN101090982B (fr) |
BR (1) | BRPI0517890B1 (fr) |
CA (1) | CA2587858C (fr) |
ES (1) | ES2791675T3 (fr) |
FR (1) | FR2878257B1 (fr) |
HU (1) | HUE050022T2 (fr) |
MX (1) | MX2007006240A (fr) |
PL (1) | PL1819461T3 (fr) |
RU (1) | RU2366727C2 (fr) |
UA (1) | UA90873C2 (fr) |
WO (1) | WO2006056670A2 (fr) |
ZA (1) | ZA200703890B (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1878811A1 (fr) * | 2006-07-11 | 2008-01-16 | ARCELOR France | Procede de fabrication d'une tole d'acier austenitique fer-carbone-manganese ayant une excellente resistance a la fissuration differee, et tole ainsi produit |
EP1979500A1 (fr) * | 2005-12-26 | 2008-10-15 | Posco | Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci |
WO2012052689A1 (fr) | 2010-10-21 | 2012-04-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | Tôle d'acier laminée à chaud ou à froid, son procédé de fabrication et son utilisation dans l'industrie automobile |
RU2544321C2 (ru) * | 2009-11-05 | 2015-03-20 | Зальцгиттер Флахшталь Гмбх | Способ нанесения покрытия на стальные полосы и стальная полоса с покрытием (варианты) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2009069762A1 (ja) * | 2007-11-30 | 2011-04-21 | 日本ピストンリング株式会社 | ピストンリング用鋼材およびピストンリング |
DE102008005605A1 (de) * | 2008-01-22 | 2009-07-23 | Thyssenkrupp Steel Ag | Verfahren zum Beschichten eines 6 - 30 Gew. % Mn enthaltenden warm- oder kaltgewalzten Stahlflachprodukts mit einer metallischen Schutzschicht |
JP5338257B2 (ja) * | 2008-10-30 | 2013-11-13 | Jfeスチール株式会社 | 延性に優れた高降伏比超高張力鋼板およびその製造方法 |
DE102008056844A1 (de) * | 2008-11-12 | 2010-06-02 | Voestalpine Stahl Gmbh | Manganstahlband und Verfahren zur Herstellung desselben |
KR101090822B1 (ko) * | 2009-04-14 | 2011-12-08 | 기아자동차주식회사 | 고강도 트윕 강판 및 그 제조방법 |
JP5437482B2 (ja) * | 2009-04-28 | 2014-03-12 | ヒュンダイ スチール カンパニー | 高強度及び高軟性を有する高マンガン窒素含有鋼板及びその製造方法 |
US8182963B2 (en) * | 2009-07-10 | 2012-05-22 | GM Global Technology Operations LLC | Low-cost manganese-stabilized austenitic stainless steel alloys, bipolar plates comprising the alloys, and fuel cell systems comprising the bipolar plates |
IT1403129B1 (it) * | 2010-12-07 | 2013-10-04 | Ct Sviluppo Materiali Spa | Procedimento per la produzione di acciaio ad alto manganese con resistenza meccanica e formabilità elevate, ed acciaio così ottenibile. |
DE102011000089A1 (de) * | 2011-01-11 | 2012-07-12 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines warmgewalzten Stahlflachprodukts |
EP2799571B1 (fr) * | 2011-12-27 | 2021-04-07 | Posco | Acier austénitique présentant une usinabilité et une résistance aux températures cryogéniques améliorées dans des zones affectées par la température de soudage, et procédé de production correspondant |
JP5879448B2 (ja) * | 2011-12-28 | 2016-03-08 | ポスコ | 溶接熱影響部の靱性に優れた耐磨耗オーステナイト系鋼材及びその製造方法 |
CN104204262B (zh) * | 2011-12-28 | 2018-02-02 | Posco公司 | 具有优异的机械加工性及延展性的耐磨奥氏体钢及其生产方法 |
KR101449111B1 (ko) * | 2012-08-09 | 2014-10-08 | 주식회사 포스코 | 강도와 연성이 우수한 강선재 및 그 제조방법 |
JP6140836B2 (ja) * | 2012-12-26 | 2017-05-31 | ポスコPosco | 溶接熱影響部の靭性に優れた高強度オーステナイト系鋼材及びその製造方法 |
JP6055343B2 (ja) * | 2013-03-13 | 2016-12-27 | 株式会社神戸製鋼所 | 低温曲げ加工性に優れた非磁性鋼およびその製造方法 |
US20140261918A1 (en) * | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
JP6185865B2 (ja) * | 2013-03-21 | 2017-08-23 | 株式会社神戸製鋼所 | 低温曲げ加工性に優れた非磁性鋼およびその製造方法 |
JP6154768B2 (ja) * | 2013-03-21 | 2017-06-28 | 株式会社神戸製鋼所 | 低温曲げ加工性に優れた非磁性鋼 |
CN103484777B (zh) * | 2013-08-29 | 2015-06-03 | 日月重工股份有限公司 | 奥氏体锰钢及其制备方法 |
KR101543916B1 (ko) * | 2013-12-25 | 2015-08-11 | 주식회사 포스코 | 표면 가공 품질이 우수한 저온용강 및 그 제조 방법 |
KR101714922B1 (ko) * | 2015-12-18 | 2017-03-10 | 주식회사 포스코 | 인성 및 내부품질이 우수한 내마모 강재 및 그 제조방법 |
KR101889187B1 (ko) * | 2015-12-23 | 2018-08-16 | 주식회사 포스코 | 열간 가공성이 우수한 비자성 강재 및 그 제조방법 |
KR101747034B1 (ko) * | 2016-04-28 | 2017-06-14 | 주식회사 포스코 | 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법 |
WO2017203313A1 (fr) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Procédé de fabrication d'une tôle d'acier de remploi à matrice austénitique |
WO2017203311A1 (fr) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Tôle d'acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule |
WO2017203315A1 (fr) | 2016-05-24 | 2017-11-30 | Arcelormittal | Tôle mince en acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule |
WO2017203312A1 (fr) * | 2016-05-24 | 2017-11-30 | Arcelormittal | Tôle d'acier laminée à froid et recuite, son procédé de production et utilisation d'un tel acier pour produire des pièces de véhicule |
JP6682661B2 (ja) | 2016-05-24 | 2020-04-15 | アルセロールミタル | オーステナイト型マトリックスを有するtwip鋼板の製造方法 |
KR101940874B1 (ko) | 2016-12-22 | 2019-01-21 | 주식회사 포스코 | 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법 |
KR101920973B1 (ko) * | 2016-12-23 | 2018-11-21 | 주식회사 포스코 | 표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법 |
KR101917473B1 (ko) * | 2016-12-23 | 2018-11-09 | 주식회사 포스코 | 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법 |
WO2018220412A1 (fr) | 2017-06-01 | 2018-12-06 | Arcelormittal | Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede |
KR102020381B1 (ko) * | 2017-12-22 | 2019-09-10 | 주식회사 포스코 | 내마모성이 우수한 강재 및 그 제조방법 |
KR102020386B1 (ko) * | 2017-12-24 | 2019-09-10 | 주식회사 포스코 | 고 강도 오스테나이트계 고 망간 강재 및 그 제조방법 |
CN109487047B (zh) * | 2018-12-21 | 2020-08-11 | 昆明理工大学 | 一种提高合金化高锰钢铸件性能的方法 |
CN112342352B (zh) * | 2020-10-22 | 2022-07-01 | 西安工程大学 | 一种耐腐蚀的高锰奥氏体钢板及其制备方法 |
WO2023233186A1 (fr) * | 2022-06-02 | 2023-12-07 | Arcelormittal | Acier laminé à chaud à haute teneur en manganèse et son procédé de production |
CN117551937B (zh) * | 2023-11-17 | 2024-07-19 | 齐鲁工业大学(山东省科学院) | 一种高强塑积Fe-Mn-Al-Nb系中锰钢及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2068283A6 (en) * | 1970-09-30 | 1971-08-20 | Abex Corp | Austenitic manganese steel for welding steel joints |
JPH0313525A (ja) * | 1989-06-10 | 1991-01-22 | Kobe Steel Ltd | 耐SR脆化特性が優れ、且つ高強度、高靭性を有する高Mn非磁性鋼の製造方法 |
JPH04143218A (ja) * | 1990-10-05 | 1992-05-18 | Kobe Steel Ltd | 局部変形能に優れた高Mn非磁性鋼の製造方法 |
JPH04247851A (ja) * | 1991-01-22 | 1992-09-03 | Kobe Steel Ltd | 高Mnオーステナイト鋼 |
US5431753A (en) * | 1991-12-30 | 1995-07-11 | Pohang Iron & Steel Co. Ltd. | Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability |
EP1067203A1 (fr) * | 1999-07-07 | 2001-01-10 | Usinor | "Procédé de fabrication de bandes en alliage fer-carbonne-manganese, et bandes ainsi produites" |
FR2829775A1 (fr) * | 2001-09-20 | 2003-03-21 | Usinor | Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2378994A (en) * | 1942-07-22 | 1945-06-26 | Electro Metallurg Co | Cold rolled manganese steels |
JPS58126956A (ja) * | 1982-01-22 | 1983-07-28 | Nippon Steel Corp | プレス加工性の優れた高強度薄鋼板 |
JPS6058781B2 (ja) * | 1982-02-12 | 1985-12-21 | 株式会社クボタ | 連続鋳造電磁撓拌ロ−ル用非磁性合金 |
JPH04259325A (ja) * | 1991-02-13 | 1992-09-14 | Sumitomo Metal Ind Ltd | 加工性に優れた高強度熱延鋼板の製造方法 |
JP4247851B2 (ja) | 1999-01-12 | 2009-04-02 | 石川島運搬機械株式会社 | クライミングクレーンの使用方法 |
JP4143218B2 (ja) | 1999-04-23 | 2008-09-03 | 株式会社日本触媒 | 薄膜式蒸発装置における重合防止方法および薄膜式蒸発装置 |
DE10060948C2 (de) * | 2000-12-06 | 2003-07-31 | Thyssenkrupp Stahl Ag | Verfahren zum Erzeugen eines Warmbandes aus einem einen hohen Mangan-Gehalt aufweisenden Stahl |
KR100742823B1 (ko) * | 2005-12-26 | 2007-07-25 | 주식회사 포스코 | 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법 |
KR100851158B1 (ko) * | 2006-12-27 | 2008-08-08 | 주식회사 포스코 | 충돌특성이 우수한 고망간형 고강도 강판 및 그 제조방법 |
-
2004
- 2004-11-24 FR FR0412477A patent/FR2878257B1/fr active Active
-
2005
- 2005-11-04 ES ES05814950T patent/ES2791675T3/es active Active
- 2005-11-04 KR KR1020117031699A patent/KR101275895B1/ko active IP Right Grant
- 2005-11-04 WO PCT/FR2005/002740 patent/WO2006056670A2/fr active Application Filing
- 2005-11-04 CN CN2005800426319A patent/CN101090982B/zh active Active
- 2005-11-04 US US11/720,018 patent/US7794552B2/en active Active
- 2005-11-04 JP JP2007542029A patent/JP5142101B2/ja active Active
- 2005-11-04 HU HUE05814950A patent/HUE050022T2/hu unknown
- 2005-11-04 RU RU2007123594/02A patent/RU2366727C2/ru active
- 2005-11-04 EP EP05814950.1A patent/EP1819461B1/fr active Active
- 2005-11-04 UA UAA200707030A patent/UA90873C2/ru unknown
- 2005-11-04 BR BRPI0517890-8A patent/BRPI0517890B1/pt active IP Right Grant
- 2005-11-04 CA CA2587858A patent/CA2587858C/fr active Active
- 2005-11-04 KR KR1020107012508A patent/KR20100084570A/ko active Search and Examination
- 2005-11-04 KR KR1020077014265A patent/KR20070091300A/ko active Search and Examination
- 2005-11-04 PL PL05814950T patent/PL1819461T3/pl unknown
- 2005-11-04 MX MX2007006240A patent/MX2007006240A/es active IP Right Grant
-
2007
- 2007-05-14 ZA ZA200700380A patent/ZA200703890B/xx unknown
-
2011
- 2011-10-28 JP JP2011251070A patent/JP2012072499A/ja not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2068283A6 (en) * | 1970-09-30 | 1971-08-20 | Abex Corp | Austenitic manganese steel for welding steel joints |
JPH0313525A (ja) * | 1989-06-10 | 1991-01-22 | Kobe Steel Ltd | 耐SR脆化特性が優れ、且つ高強度、高靭性を有する高Mn非磁性鋼の製造方法 |
JPH04143218A (ja) * | 1990-10-05 | 1992-05-18 | Kobe Steel Ltd | 局部変形能に優れた高Mn非磁性鋼の製造方法 |
JPH04247851A (ja) * | 1991-01-22 | 1992-09-03 | Kobe Steel Ltd | 高Mnオーステナイト鋼 |
US5431753A (en) * | 1991-12-30 | 1995-07-11 | Pohang Iron & Steel Co. Ltd. | Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability |
EP1067203A1 (fr) * | 1999-07-07 | 2001-01-10 | Usinor | "Procédé de fabrication de bandes en alliage fer-carbonne-manganese, et bandes ainsi produites" |
FR2829775A1 (fr) * | 2001-09-20 | 2003-03-21 | Usinor | Procede de fabrication de tubes roules et soudes comportant une etape finale d'etirage ou d'hydroformage et tube soude ainsi obtenu |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 015, no. 132 (C-0819), 29 mars 1991 (1991-03-29) -& JP 03 013525 A (KOBE STEEL LTD), 22 janvier 1991 (1991-01-22) * |
PATENT ABSTRACTS OF JAPAN vol. 016, no. 419 (C-0981), 3 septembre 1992 (1992-09-03) -& JP 04 143218 A (KOBE STEEL LTD), 18 mai 1992 (1992-05-18) * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 025 (C-1017), 18 janvier 1993 (1993-01-18) -& JP 04 247851 A (KOBE STEEL LTD), 3 septembre 1992 (1992-09-03) * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1979500A1 (fr) * | 2005-12-26 | 2008-10-15 | Posco | Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci |
US8999085B2 (en) | 2005-12-26 | 2015-04-07 | Posco | High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips |
EP1979500A4 (fr) * | 2005-12-26 | 2010-02-17 | Posco | Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci |
US10006099B2 (en) | 2006-07-11 | 2018-06-26 | Arcelormittal | Process for manufacturing iron-carbon-maganese austenitic steel sheet with excellent resistance to delayed cracking |
WO2008007192A3 (fr) * | 2006-07-11 | 2008-03-20 | Arcelor France | Procédé de fabrication d'une feuille d'acier austénitique fer-carbone-manganèse dotée d'une excellente résistance à la fissuration différée, et feuille ainsi produite |
KR101105178B1 (ko) * | 2006-07-11 | 2012-01-12 | 티센크루프 스틸 유럽 악티엔게젤샤프트 | 지연 균열에 대해 우수한 내성을 갖는 철-탄소-망간 오스테나이트계 강 시트의 제조 공정, 및 이에 의해 제조되는 시트 |
AU2007273982B2 (en) * | 2006-07-11 | 2012-03-29 | Thyssenkrupp Steel Europe Ag | Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced |
WO2008007192A2 (fr) * | 2006-07-11 | 2008-01-17 | Arcelormittal France | Procédé de fabrication d'une feuille d'acier austénitique fer-carbone-manganèse dotée d'une excellente résistance à la fissuration différée, et feuille ainsi produite |
US9200355B2 (en) | 2006-07-11 | 2015-12-01 | Arcelormittal France | Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced |
EP1878811A1 (fr) * | 2006-07-11 | 2008-01-16 | ARCELOR France | Procede de fabrication d'une tole d'acier austenitique fer-carbone-manganese ayant une excellente resistance a la fissuration differee, et tole ainsi produit |
US10131964B2 (en) | 2006-07-11 | 2018-11-20 | Arcelormittal France | Iron-carbon-manganese austenitic steel sheet |
EP3587611A1 (fr) * | 2006-07-11 | 2020-01-01 | ArcelorMittal | Procédé de fabrication d'une feuille d'acier austénitique de fer-carbone-manganèse dotée d'une excellente résistance au craquage retardé et feuille ainsi produite |
RU2544321C2 (ru) * | 2009-11-05 | 2015-03-20 | Зальцгиттер Флахшталь Гмбх | Способ нанесения покрытия на стальные полосы и стальная полоса с покрытием (варианты) |
WO2012052689A1 (fr) | 2010-10-21 | 2012-04-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | Tôle d'acier laminée à chaud ou à froid, son procédé de fabrication et son utilisation dans l'industrie automobile |
WO2012052626A1 (fr) | 2010-10-21 | 2012-04-26 | Arcelormittal Investigacion Y Desarrollo, S.L. | Tole d'acier laminee a chaud ou a froid, don procede de fabrication et son utilisation dans l'industrie automobile |
US11131011B2 (en) | 2010-10-21 | 2021-09-28 | Arcelormittal | Hot-rolled or cold-rolled steel plate |
Also Published As
Publication number | Publication date |
---|---|
JP2012072499A (ja) | 2012-04-12 |
BRPI0517890A (pt) | 2008-10-21 |
CN101090982B (zh) | 2010-09-08 |
RU2007123594A (ru) | 2008-12-27 |
ZA200703890B (en) | 2008-05-28 |
KR20070091300A (ko) | 2007-09-10 |
BRPI0517890B1 (pt) | 2014-12-23 |
KR20100084570A (ko) | 2010-07-26 |
FR2878257A1 (fr) | 2006-05-26 |
CA2587858A1 (fr) | 2006-06-01 |
RU2366727C2 (ru) | 2009-09-10 |
HUE050022T2 (hu) | 2020-11-30 |
JP5142101B2 (ja) | 2013-02-13 |
ES2791675T3 (es) | 2020-11-05 |
FR2878257B1 (fr) | 2007-01-12 |
EP1819461A2 (fr) | 2007-08-22 |
JP2008520830A (ja) | 2008-06-19 |
CN101090982A (zh) | 2007-12-19 |
KR101275895B1 (ko) | 2013-06-17 |
CA2587858C (fr) | 2011-10-25 |
US7794552B2 (en) | 2010-09-14 |
UA90873C2 (ru) | 2010-06-10 |
KR20120014070A (ko) | 2012-02-15 |
US20080035248A1 (en) | 2008-02-14 |
MX2007006240A (es) | 2007-10-08 |
WO2006056670A3 (fr) | 2007-07-05 |
PL1819461T3 (pl) | 2020-10-05 |
EP1819461B1 (fr) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1819461B1 (fr) | Procede de fabrication de toles d' acier austenitique , fer-carbone-manganese a tres hautes caracteristiques de resistance et excellente homogénéité. | |
EP1649069B1 (fr) | Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites | |
EP1913169B1 (fr) | Procede de fabrication de tôles d'acier presentant une haute resistance et une excellente ductilite, et tôles ainsi produites | |
EP2630269B1 (fr) | Tole d'acier laminee a chaud ou a froid, son procede de fabrication et son utilisation dans l'industrie automobile | |
CA2686940C (fr) | Procede de fabrication de toles d'acier laminees a froid et recuites a tres haute resistance, et toles ainsi produites | |
EP3084014B1 (fr) | Acier à haute résistance et procédé de fabrication | |
EP2855725B1 (fr) | Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation | |
EP2245203B1 (fr) | Tôle en acier inoxydable austenitique et procede d'obtention de cette tôle | |
WO2016198940A2 (fr) | Acier à haute résistance et procédé de fabrication | |
EP2155916A1 (fr) | Acier a faible densite presentant une bonne aptitude a l'emboutissage | |
EP1587963B1 (fr) | Acier laminé à chaud à très haute résistance et procédé de fabrication de bandes | |
FR2833617A1 (fr) | Procede de fabrication de toles laminees a froid a tres haute resistance d'aciers dual phase micro-allies | |
EP2257652B1 (fr) | Procede de fabrication de tôles d'acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues | |
WO2011036352A1 (fr) | Acier inoxydable ferritique a hautes caracteristiques d'emboutissabilite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005814950 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007/03890 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2587858 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007542029 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/006240 Country of ref document: MX Ref document number: 2246/CHENP/2007 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580042631.9 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077014265 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2007123594 Country of ref document: RU Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005814950 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11720018 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 11720018 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0517890 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: KR Ref document number: 1020107012508 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020117031699 Country of ref document: KR |