WO2006046646A1 - 燃料改質器収納用容器および燃料改質装置 - Google Patents

燃料改質器収納用容器および燃料改質装置 Download PDF

Info

Publication number
WO2006046646A1
WO2006046646A1 PCT/JP2005/019790 JP2005019790W WO2006046646A1 WO 2006046646 A1 WO2006046646 A1 WO 2006046646A1 JP 2005019790 W JP2005019790 W JP 2005019790W WO 2006046646 A1 WO2006046646 A1 WO 2006046646A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel reformer
fuel
gas adsorbent
gas
lid
Prior art date
Application number
PCT/JP2005/019790
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Basho
Toshihiro Hashimoto
Masaaki Miyahara
Ryuji Mori
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004312161A external-priority patent/JP4948759B2/ja
Priority claimed from JP2004312162A external-priority patent/JP2006124208A/ja
Priority claimed from JP2004371319A external-priority patent/JP5046484B2/ja
Priority claimed from JP2004375036A external-priority patent/JP4889217B2/ja
Priority claimed from JP2004375035A external-priority patent/JP2006182573A/ja
Priority claimed from JP2005017865A external-priority patent/JP2006206352A/ja
Priority claimed from JP2005021183A external-priority patent/JP2006206388A/ja
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US11/718,189 priority Critical patent/US8182559B2/en
Priority to EP05799233A priority patent/EP1826175A4/en
Publication of WO2006046646A1 publication Critical patent/WO2006046646A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00905Separation
    • B01J2219/00921Separation by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel reformer storage container and a fuel reformer for constituting a fuel reformer using a fuel reformer that generates hydrogen gas from various fuel cartridges in a fuel cell system, for example. It is about.
  • fuel cell systems have been reduced in size and are being considered for use as power sources for portable devices such as mobile phones, PDAs (Personal Digital Assistants), notebook computers, digital video cameras, and digital still cameras.
  • portable devices such as mobile phones, PDAs (Personal Digital Assistants), notebook computers, digital video cameras, and digital still cameras.
  • a fuel cell is a hydrocarbon gas such as methane or natural gas (CNG)! / ⁇ is fueled with an alcohol such as methanol or ethanol, and a fuel reformer using a fuel reformer. After reforming to other gases, power is generated by supplying this hydrogen gas to a power generation device called a power generation cell.
  • CNG natural gas
  • the fuel reforming by the fuel reformer here means a process of generating hydrogen gas by a catalytic reaction.
  • a small amount of produced gas (mainly CO 2) other than hydrogen is usually discharged into the atmosphere.
  • this steam reforming reaction is an endothermic reaction, it is heated with an external force heater or the like. It is necessary to maintain the reaction temperature. Therefore, in order to reform the fuel in the fuel reformer, for example, methanol is used as the fuel in order to prevent the steam reforming activity of the catalyst from being lowered and to maintain a high hydrogen gas concentration. If it is, a temperature of about 200 to 500 ° C is required, and if methane gas is used, a high temperature of about 300 to 800 ° C is required.
  • a reforming temperature of about 400 to 600 ° C. is required.
  • a cogeneration power generation system represented by a household fuel cell system
  • the system itself is large, so that the outer wall of the fuel reformer storage container is doubled to form a vacuum container,
  • a heat insulating material is filled between the inner and outer walls having a double structure, thereby preventing the heat inside the fuel reformer from being conducted to the outside and lowering the temperature of the fuel reformer. Therefore, when the fuel reformer is accommodated in the fuel reformer storage container, the fuel reformer may be directly joined and fixed to the inner wall of the double structure of the fuel reformer storage container. Is possible.
  • fuel cell systems for portable devices are required to be reduced in size and height to be housed in portable devices.
  • the conventional structure of the outer wall of the container for housing the fuel reformer is adopted for the fuel cell system for portable devices because the entire fuel cell system is complicated and enlarged. I can't. Therefore, in the case of a fuel cell system for portable equipment, when the fuel reformer storage container composed of a base body having a recess and a lid is evacuated to reform the fuel in the fuel reformer. It has been proposed to provide a fuel cell system that cuts off heat generated in the outside and reduces power generation loss.
  • the fuel reformer In order to use such a fuel cell system stably and safely for a long time, the fuel reformer is housed in a fuel reformer housing container and the vacuum inside the fuel reformer housing container is sealed. It is necessary to keep it not only immediately but also for a long time thereafter. However, after sealing the inside of the fuel reformer storage container with the lid, the inner surface of the fuel reformer storage container and the fuel reformer The gas adsorbed on the surface of each part in the fuel reformer storage container, such as the surface of itself, is stored in the fuel reformer storage container with the influence of temperature during fuel reforming and the passage of time. There is a possibility that it will be released as a gas.
  • the fuel reforming reaction is an endothermic reaction such as the steam reforming reaction of the chemical reaction formula (1)
  • the fuel reformer in order to reform the fuel with the fuel reformer, the fuel reformer is heated with a heater or the like. It is necessary to maintain the reaction temperature at a constant temperature, but the temperature of the fuel reformer decreases as the heat generated by the fuel reformer force is conducted to the fuel reformer storage container as described above. It becomes easy to do.
  • the present invention has been completed in view of the above-mentioned problems in the prior art.
  • the purpose of the present invention is to reduce power generation loss, which can maintain a satisfactory degree of vacuum in the fuel reformer storage container. It is an object of the present invention to provide a fuel reformer storage container and a fuel reformer with a reduced number of fuel reformers.
  • the present invention provides a substrate having a recess in which a fuel reformer that generates a reformed gas containing hydrogen gas from a fuel tank is housed, and the inside of the recess to discharge the reformed gas from the fuel reformer.
  • a discharge pipe that communicates with the outside, a supply pipe that communicates the inside and outside of the recess to supply the fuel to the fuel reformer, and a lid that is joined so as to close the recess of the base
  • a fuel reformer storage container comprising: a gas adsorbing material that is stored in the recess and adsorbs gas in the recess.
  • the gas adsorbent is in proximity to or in contact with the fuel reformer between the fuel reformer and the inner surface defining the recess or between the fuel reformer and the lid.
  • the It is characterized by being placed!
  • the present invention is characterized in that a distance between the gas adsorbent and the discharge pipe is set smaller than a distance between the gas adsorbent and the supply pipe.
  • the present invention further includes a lead terminal attached to the base so as to be led out from the inside of the recess, and the gas adsorbent is separated from the base within the recess. It is characterized by being fixed to.
  • the gas adsorbent is formed by depositing metal powder on the surface of a metal plate, and a lead terminal for energizing the gas adsorbent is provided so as to communicate the inside of the recess with the outside. And a high resistance portion having a smaller cross-sectional area in the direction perpendicular to the energization direction than that of other portions is formed in a part of the energization portion of the metal plate.
  • the present invention is characterized in that the high resistance portion is formed by providing a notch in the energization portion of the metal plate.
  • the present invention is characterized in that the gas adsorbent is disposed to face the fuel reformer, and the notch is disposed to face the fuel reformer.
  • the present invention is characterized in that a groove for exhausting the gas in the recess is formed in at least one of a joint portion of the base body to the lid body and a joint portion of the lid body to the base body. To do.
  • At least one of a joint portion between the base body and the lid body and a joint portion between the lid body and the base body is projected over the entire circumference, and a part of the projecting portion is cut out.
  • a groove is formed.
  • the present invention is characterized in that the gas adsorbent is disposed along an inner surface of the groove side that defines the recess.
  • the present invention is characterized in that the lid and the base are made of a metal material having a thermal conductivity of 120 W / mK or less.
  • the present invention is a fuel reformer comprising the fuel reformer storage container of the present invention and a fuel reformer stored in the recess.
  • the present invention is characterized in that the gas adsorbent is provided on the surface of the fuel reformer.
  • the gas adsorbent and the fuel reformer are joined via a metal plate. It is characterized by.
  • the present invention is characterized in that the gas adsorbent is disposed in a heat generating portion of the fuel reformer.
  • the present invention is characterized in that the internal pressure of the recess is 10 2 Pa or less.
  • the present invention is characterized in that the lid body and the base body are joined by displacement of a process method, a seam welder method, an electron beam method, or a laser beam method.
  • FIG. 1 is a cross-sectional view showing a fuel reformer according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a fuel reformer according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a fuel reformer according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a fuel reformer according to a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a fuel reformer according to a fifth embodiment of the present invention.
  • FIG. 6 is a perspective transparent view of the fuel reformer of FIG.
  • FIG. 7 is a perspective transparent view of the fuel reformer of FIG.
  • FIG. 8 is a perspective view of a substrate in the fuel reformer of FIG.
  • FIG. 9 is a cross-sectional view showing a fuel reformer according to a sixth embodiment of the present invention.
  • FIG. 10 is a top perspective view of the fuel reformer of FIG. 9 excluding a part of the lid.
  • FIG. 11 is a perspective perspective view of the lower surface side of the fuel reformer of FIG.
  • FIG. 12 is an enlarged plan view showing a portion of the gas adsorbent in the fuel reformer of FIG. 9.
  • FIG. 13 shows a part of the lid that shows the fuel reformer of the seventh embodiment of the present invention. It is the perspective view of the upper surface side except.
  • FIG. 14 is an enlarged plan view showing a portion of the gas adsorbent in the fuel reformer of FIG.
  • FIG. 15 is a cross-sectional view showing a fuel reformer according to an eighth embodiment of the present invention.
  • Fig. 16 shows the connection between the supply pipe or discharge pipe and the base in the fuel reformer of Fig. 15. It is a principal part expanded sectional view.
  • FIG. 17 is an enlarged cross-sectional view of a main part of a joint portion between a supply pipe or a discharge pipe and a base body in a fuel reformer according to a ninth embodiment of the present invention.
  • FIG. 18 is an enlarged cross-sectional view of a main part of a joint portion between a supply pipe or a discharge pipe and a base body in a fuel reformer according to a tenth embodiment of the present invention.
  • a fuel reformer storage container and a fuel reformer using the same according to an embodiment of the present invention will be described in detail below.
  • FIG. 1 is a cross-sectional view showing a fuel reformer 20 according to a first embodiment of the present invention.
  • the fuel reformer 20 includes a base 1, an external lead terminal 2 as a wiring for supplying power to the fuel reformer, a lid 4, a supply pipe 5a as a supply path for supplying fuel, and a reformer. It includes a discharge pipe 5b as a discharge path for discharging the quality gas, an insulating sealing material 8, a fuel reformer 9, a gas adsorbent 10, and a lead terminal 12 to which the gas adsorbent 10 is fixed.
  • the insulating sealing material 8 seals and fixes the external lead terminal 2 and the lead terminal 12 in the through hole of the base 1 while insulating them.
  • the base body 1, the lid body 4, the supply pipe 5a and the discharge pipe 5b constitute a fuel reformer storage container 11 for storing the fuel reformer 9.
  • the fuel reformer 9 and the gas adsorbent 10 are housed in the fuel reformer housing container 11, and the concave portion of the base body 1 is hermetically sealed with the lid 4 to form the fuel reformer 20.
  • Both the base body 1 and the lid body 4 in the present invention serve as containers for housing the fuel reformer 9.
  • the base 1 and the lid 4 are made of, for example, stainless steel, Fe-Ni-Co alloy, Fe-based alloy such as Fe-Ni alloy, or metal material such as oxygen-free copper, aluminum oxide (A1
  • Glass ceramics applicable to the substrate 1 and the lid 4 are composed of a glass component and a filler component.
  • the glass component for example, SiO—B O A1
  • SiO—B O —A1 O—MO system (where M represents Ca, Sr, Mg, Ba or Zn)
  • SiO-Al -— ⁇ ⁇ — ⁇ ⁇ ⁇ system (where ⁇ 1 and ⁇ 2 are the same or different and Ca , Sr ⁇ Mg ⁇ Ba or Zn), SiO —BO —Al O —MO— MSO system (however, M 1
  • filler components include Al 2 O, SiO, ZrO and alkaline earth metal oxides.
  • the base body 1 and the lid body 4 are made of, for example, a dense acid-aluminum-aluminum sintered body having a relative density of 95% or more, it is manufactured as follows. For example, first, a sintering aid such as rare earth oxide powder or aluminum oxide powder is added to and mixed with aluminum oxide powder to prepare a raw material powder of an aluminum oxide sintered body. Next, an organic binder and a dispersion medium are added to the raw material powder, mixed and pasted, and the best is obtained by a doctor blade method, or an organic binder is added to the raw material powder, and press forming, rolling forming, etc. A green sheet having a predetermined thickness is produced.
  • a sintering aid such as rare earth oxide powder or aluminum oxide powder is added to and mixed with aluminum oxide powder to prepare a raw material powder of an aluminum oxide sintered body.
  • an organic binder and a dispersion medium are added to the raw material powder, mixed and pasted, and the best is obtained by a doctor blade method, or an organic
  • the laminated body is fired at a firing maximum temperature of 1200 to 1500 ° C., for example, in a non-oxidizing atmosphere.
  • the target ceramic substrate 1 and lid 4 are obtained.
  • the base 1 and the lid 4 may be molded by a powder molding press method.
  • the base 1 and the lid 4 are made of a metal material, they are formed into a predetermined shape by a cutting method, a pressing method, a MIM (Metal Injection Mold) method, or the like.
  • the base 1 and the lid 4 are made of a metal material, the surface thereof is subjected to a covering coating process such as a Au or Ni plating process or a resin coating such as polyimide to prevent corrosion. It is hoped that for example, in the case of Au plating, the thickness is preferably about 0.1 to 5 / ⁇ ⁇ .
  • the base body 1 and the lid body 4 as described above should be thin in order to allow the fuel reformer storage container 11 to be reduced in size and height, but the bending strength is mechanical strength.
  • the strength is preferably over 200MPa!
  • the external lead terminal 2 and the lead terminal 12 are preferably made of a metal having the same or similar thermal expansion coefficient as that of the base 1 and the lid 4, for example, Fe—Ni alloy, Fe—Ni—Co alloy. Although it is also powerful, it can prevent the occurrence of thermal strain against temperature changes during practical use. In addition, good sealability between the external lead terminal 2 and the base 1 and between the lead terminal 12 and the base 1 is obtained, and the bonding property is excellent. And weldability can be secured.
  • the insulating sealing material 8 can also be made of a glass material such as borosilicate glass, alkali glass or lead glass as a main component, or a ceramic material such as oxyaluminum.
  • the base 1 and the external lead terminal 2 and the base 1 and the lead terminal 12 are electrically insulated by the insulating sealing material 8 through the through-hole formed in 1, and the external lead terminal 2 and the lead terminal 1 2 Is sealed and fixed.
  • the through-holes through which the external lead terminal 2 and the lead terminal 12 are formed in the base 1 can be electrically connected when the base 1 and the external lead terminal 2 and the base 1 and the lead terminal 12 are in contact with each other.
  • the insulating sealing material 8 when the insulating sealing material 8 also has a ceramic material force such as acid aluminum, the insulating sealing material also has a cylindrical ceramic material force, for example, in the through hole of the base body 1 with the external lead terminal 2 and the lead terminal 12. 8 through Au-Ge for connection between insulating sealing material 8 and substrate 1, connection between insulating sealing material 8 and external lead terminal 2, and connection between insulating sealing material 8 and lead terminal 12 Alternatively, it can be performed with a brazing material such as Ag—Cu.
  • the electrode 7 on the fuel reformer 9 and the external lead terminal 2 are electrically connected via the bonding wire 3. Further, by sealing the recess of the base body 1 using the lid 4, a fuel reformer is formed in which the fuel reformer 9 accommodated in the recess of the fuel reformer storage container 11 is hermetically sealed.
  • the fuel reformer 9 housed in the fuel reformer housing container 11 of the present invention is a device for reforming fuel, and a fine flow in which a catalyst for reforming fuel is supported. Has a path or gap.
  • the shape of the fuel reformer 9 varies, for example, as a micro chemical device, Applying manufacturing technology, etc., for example, by forming narrow grooves on a substrate of an inorganic material such as silicon, quartz, glass, metal, ceramics, etc. by a cutting method, an etching method, a blasting method, etc., a liquid flow
  • a glass plate, a cover made of metal, etc. is used in close contact with the surface by anodic bonding, brazing, welding, etc. Things.
  • it is a tube made of inorganic material such as quartz, glass, metal, ceramic, etc., and a catalyst for reforming fuel is carried on the inner surface.
  • the fuel reformer 9 has a temperature control mechanism, for example, a thin film heater (not shown) or a thick film heater having a resistance layer and the like (not shown)
  • the electrode 7 is formed on the surface as a terminal for supplying power to the heater.
  • Such a heater is disposed in or near the gap in the flow path where the catalyst in the fuel reformer 9 is supported and performs fuel reforming. As a result, the heat generated from the heater can be efficiently used for the fuel reforming reaction.
  • the lid 4 is attached to the base body 1 with its recesses covered by joining with a metal brazing material such as Au alloy, Ag alloy, A1 alloy or glass material, or by a seam weld method.
  • a metal brazing material such as Au alloy, Ag alloy, A1 alloy or glass material, or by a seam weld method.
  • Au-Sn brazing material is formed in a frame shape by punching using a die or the like by previously welding Au-Sn brazing material to the lid 4. After the material is placed between the base body 1 and the lid body 4, there is a sealing furnace! / ⁇ is connected to the base body 1 with a seam welder, so that the fuel reformer storage container 11 The fuel reformer 9 can be sealed inside.
  • the electrode 7 on the fuel reformer 9 is electrically connected to the external lead terminal 2 provided on the base 1 through the bonding wire 3.
  • the heater formed on the surface or inside of the fuel reformer 9 can be heated through the electrode 7. as a result
  • the reaction temperature can be maintained in the fuel reformer 9, and the fuel reforming reaction can be stabilized.
  • the supply pipe 5a and the discharge pipe 5b are a supply path for the raw material or the fuel gas fluid and a discharge path for the reformed gas containing hydrogen, respectively.
  • the supply pipe 5a and the discharge pipe 5b are made of, for example, a metal material such as Fe-Ni alloy, Fe-Ni-Co alloy, stainless steel, AlO-based sintered body, 3A1
  • Ceramic material such as ceramic sintered body, highly heat-resistant resin material such as polyimide, or glass.
  • Such materials include Fe alloys, ceramics, and glass.
  • the gas adsorbent 10 that adsorbs the gas in the recess is preferably stored in the recess.
  • the gas adsorbent 10 that adsorbs the gas in the recess is preferably stored in the recess.
  • the gas adsorbent 10 evacuates by utilizing the gas adsorption action of chemically active metal powder.
  • the gas adsorbent 10 has a thickness of about 10 to 500 111 ⁇ —0: A metal plate composed mainly of Zr, Fe, V, etc. on one or both sides of a metal plate made of, etc., with a thickness of 10 m to lmm. It is made to carry.
  • the surface of the metal powder of the gas adsorbing material 10 is usually covered with an acid film, so that the gas adsorbing action does not appear as it is.
  • the metal powder of the gas adsorbent 10 is heated, and the surface oxide film is diffused into the adsorbent and a new active surface appears on the surface, which activates (activates) the gas adsorption action.
  • the gas adsorbent 10 is attached to the lead terminal 12 by spot welding or the like, and is fixed to the fuel reformer storage container 11 in a state of being separated from the base 1 and the lid 4.
  • the gas adsorbing material 10 is in a state where the force of the base 1 and the lid 4 is also lifted, and the heat of the gas adsorbing material 10 can be effectively prevented from conducting to the base 1 and the lid 4.
  • a vacuum furnace It may be carried out by sealing with a brazing material or by a seam weld method in a vacuum chamber.
  • the activation conditions of the gas adsorbent 10 vary depending on the type of metal powder used, but an active state can be obtained by heating the gas adsorbent 10 to about 350 to 900 ° C.
  • the location where the gas adsorbent 10 is disposed is particularly the temperature formed in the fuel reformer 9 so that the gas adsorbent 10 absorbs the radiant heat from the fuel reformer 9 and is easily activated. It is desirable to arrange in the vicinity of an adjustment mechanism, for example, a heater part that also has a resistance layer isotropic force.
  • the gas adsorbent 10 is formed between the fuel reformer 9 and the inner surface defining the recess of the base 1 in order to reduce heat transfer due to radiation from the fuel reformer 9 to the base 1 and the lid 4. It is desirable that the fuel reformer 9 and the lid 4 be disposed close to or in contact with the fuel reformer 9. As a result, the gas adsorbent 10 is kept activated by the heat from the fuel reformer 9 and can maintain a high gas adsorption capacity. It is possible to more effectively suppress the high-temperature surface 11 on the surface.
  • the distance between the gas adsorbent 10 and the fuel reformer 9 is that the gas adsorbent 10 and the base 1
  • the distance between the gas adsorbent 10 and the fuel reformer 9 is smaller than the distance between the inner surface defining the A state where the distance is smaller than the distance between them.
  • the force with which the gas adsorbent 10 is in contact with the fuel reformer 9 or the distance between the gas adsorbent 10 and the fuel reformer 9 is 5 mm or less.
  • the gas adsorbent 10 when the fuel reformer 9 has a substantially square shape, it is desirable that the gas adsorbent 10 be arranged so as to face the main surface of the fuel reformer 9. As a result, the main surface force of the fuel reformer 9 where more heat is released The heat conducted to the base 1 and the lid 4 can be cut off more effectively by the gas adsorbent 10, and the temperature of the gas adsorbent 10 can be increased more satisfactorily.
  • the gas adsorbent 10 is disposed so as to be opposed to and parallel to the one plane.
  • the gas adsorbent 10 can be opposed to many parts of the tubular fuel reformer 9, and the heat conducted to the base 1 and the lid 4 can be made more effective by the gas adsorbent 10.
  • the high temperature of the gas adsorbent 10 can be improved.
  • the distance between the gas adsorbent 10 and the discharge pipe 5b is set smaller than the distance between the gas adsorbent 10 and the supply pipe 5a. Good to be there.
  • the reformed gas immediately after being reformed by the fuel reformer 9 is at a high temperature, and the heat of the exhaust pipe 5b that has become high temperature by the high temperature reformed gas is used to activate the gas adsorbent 10.
  • the electric power for heating the gas adsorbent 10 can be further reduced, and the vacuum state inside the power loss fuel reformer storage container 11 can be kept better.
  • the lead terminal 12 for fixing the gas adsorbent 10 is inserted into the base 1 and attached, but the lead terminal 12 may be inserted into the lid 4 for attachment.
  • FIG. 2 is a cross-sectional view showing a fuel reformer 20A according to the second embodiment of the present invention.
  • portions corresponding to the configuration of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel reformer 20A includes a base, an external lead terminal 2, a lid 4, a supply pipe 5a, a discharge pipe 5b, an insulating sealing material 8, a fuel reformer 9 having an electrode 7, a gas It includes an adsorbent 10 and lead terminals 12a.
  • the base body 1, the lid body 4, the supply pipe 5a and the discharge pipe 5b constitute a fuel reformer housing container 11 for housing the fuel reformer 9.
  • the fuel reformer 9 and the gas adsorbing material 10 are stored in the fuel reformer storage container 11, and the recess of the base body 1 is hermetically sealed with the lid 4 to form the fuel reformer 20A.
  • the lead terminal 12a is provided through a through hole formed in a side wall different from the side wall through which the external lead terminal 2 penetrates among four side walls having an inner surface defining the recess of the base body 1, The same configuration as the lead terminal 12 of the above-described embodiment.
  • the gas adsorbent 10 is placed and fixed directly on the inner surface that defines the recess of the base 1, the main surface of the lid 4 on the base 1 side, and the surface of the fuel reformer 9. Or, as shown in FIG. 2, the inner surface that defines the recess of the base body 1, the main surface of the cover body 4 on the base body 1 side, or the surface of the fuel reformer 9 through a pedestal 13 that also has ceramic, metal, grease, etc. It may be mounted and fixed. Further, the gas adsorbent 10 may be fixed only to the lead terminal 12 so as to be separated from the base body 1, the lid body 4, or the fuel reformer 9.
  • the gas adsorbent 10 evacuates by utilizing the gas adsorption action of chemically active metal powder.
  • the gas adsorbent 10 has a thickness of about 10 to 500 111 ⁇ —0: A metal plate composed mainly of Zr, Fe, V, etc. on one or both sides of a metal plate made of, etc., with a thickness of 10 m to lmm. It is made to carry.
  • the outer shape is preferably the same as that of the fuel reformer 9 so that the radiant heat from the fuel reformer 9 can be absorbed.
  • the gas adsorbent 10 has a lead terminal 12a attached by spot welding or the like.
  • a vacuum furnace For example, sealing with brazing material or seam welding in a vacuum chamber may be used.
  • the gas adsorbent 10 is heated by being energized from the lead terminal 12a and activated.
  • heating the gas adsorbent at a temperature of 350 to 900 ° C can obtain an activation state close to 100%.
  • This activation means that the gas adsorbent 10 removes the oxide film formed on the surface during the manufacturing process, and a new gas adsorbing surface appears and exists in the surrounding CO, N, and H.
  • the gas adsorbent 10 is disposed so as to be opposed to the high temperature portion of the fuel reformer 9 in order to absorb the radiant heat from the fuel reformer 9 and to be easily activated.
  • the temperature adjusting mechanism formed in the fuel reformer 9 is disposed in the vicinity of a heater portion such as a resistance layer.
  • the gas adsorbent 10 is placed on the main surface of the lid 4 on the base 1 side, but this is the inner surface defining the recess of the base 1 or the fuel reformer 9. Placed on the surface of May be. Further, it may be arranged in a gap between the fuel reformer 9 and the bottom plate of the concave portion of the base 1 or a gap between the fuel reformer 9 and the side surface of the concave portion of the base 1.
  • FIG. 3 is a cross-sectional view showing a fuel reformer 20B according to a third embodiment of the present invention.
  • portions corresponding to the configuration of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel reformer 20B includes a base 1, an external lead terminal 2, a lid 4, a supply pipe 5a, a discharge pipe 5b, an insulating sealing material 8, and a fuel reformer 9 having an electrode 7.
  • the base body 1, the lid body 4, the supply pipe 5a and the discharge pipe 5b constitute a fuel reformer storage container 11 for storing the fuel reformer 9.
  • the fuel reformer 9 and the gas adsorbent 10 are stored in the fuel reformer storage container 11, and the recess of the base 1 is hermetically sealed with the lid 4 to form the fuel reformer 20B.
  • the gas adsorbent 10 is provided on the surface of the fuel reformer 9.
  • the gas adsorbent 10 is made of a chemically active metal powder or the like mainly composed of Zr, Fe, V, etc., and performs evacuation using the gas adsorption action. Provided on the surface.
  • the fuel reformer 9 By providing the fuel reformer 9 on the surface in this way, heat transfer due to radiation from the fuel reformer 9 to the base body 1 and the lid body 4 is reduced, and the activity of the gas adsorbent 10 is reformed. It can be sustained by the heat from the vessel 9 and can maintain a higher gas adsorption capacity, and at the same time, the high-temperature suppression of the surface of the fuel reformer 11 can be more effectively suppressed.
  • the electrode 7 on the fuel reformer 9 is electrically connected to the external lead terminal 2 via the bonding wire 3 or directly connected to the electrode 7 and the external lead terminal 2. Further, by sealing the concave portion of the base body 1 using the lid 4, a fuel reformer 20 B is formed in which the fuel reformer 9 accommodated in the concave portion of the base body 1 is hermetically sealed.
  • the lid 4 is attached to the base body 1 so as to cover the concave portion thereof by joining or resistance welding with a metal brazing material or glass material such as Au alloy, Ag alloy, A1 alloy or the like. Accordingly, the fuel is reformed in the fuel reformer 11.
  • the fuel reformer 11 is entirely heated or heated by the heat of the fuel reformer 9.
  • an activation state close to 100% can be obtained by heating the gas adsorbent at a temperature of 350 to 900 ° C.
  • the gas adsorbent 10 is formed on the fuel reformer 9 through a metal plate or a metal layer made of a force, preferably Ni—Cr or the like, provided on the surface of the fuel reformer 9. It is better to join it. This is because the bonding strength between the gas adsorbent 10 and the fuel reformer 9 is reinforced through the metal plate or the metal layer, and the heat released from the fuel reformer 9 is given to the metal plate or the metal layer. This is because the heat can activate the gas adsorbent 10 evenly, reduce the electric power for heating the gas adsorbent 10, and improve the power generation efficiency of the fuel cell system. Further, the gas adsorbent 10 can be activated by making the metal plate or the metal layer have a high resistance such as Ni—Cr, and by causing a current to flow through the metal plate or the metal layer to generate heat.
  • a metal plate or a metal layer made of a force, preferably Ni—Cr or the like
  • the metal powder having a thickness of about 10 to 500 m is supported on one side or both sides with a thickness of 10 m to lmm.
  • the outer shape of the metal plate is preferably the same as that of the fuel reformer 9 so that the radiant heat from the fuel reformer 9 can be absorbed.
  • the gas adsorbent 10 is attached by spot welding or the like.
  • the gas adsorbent 10 is also disposed so as to be opposed to the high temperature portion of the fuel reformer 9 in order to absorb the radiant heat from the fuel reformer 9 and to be easily activated. It is good.
  • the gas adsorbent 10 is disposed in the heat generating portion of the fuel reformer 9.
  • the gas adsorbent 10 makes the heat conducted from the heat generating part such as the thin film heater or pressure film heater formed in the fuel reformer 9 where more heat is released to the base 1 or lid 4 more effective.
  • the gas adsorbent 10 can be heated at a higher temperature.
  • the gas adsorbent 10 is placed on the surface of the base 1.
  • this may be placed on the inner surface of the recess of the substrate 1 or the surface of the fuel reformer 9. Further, it may be arranged in a gap between the fuel reformer 9 and the bottom plate of the recess of the base 1 or a gap between the fuel reformer 9 and the side surface of the recess of the base 1.
  • FIG. 4 is a sectional view showing a fuel reformer 20C according to the fourth embodiment of the present invention.
  • portions corresponding to the configuration of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel reformer 20C includes a base 1, an external lead terminal 2, a lid 4, a supply pipe 5a, a discharge pipe 5b, an insulating sealing material 8, and a fuel reformer 9 having an electrode 7.
  • a gas adsorbent 10 and a lead terminal 12 are included.
  • the base body 1, the lid body 4, the supply pipe 5a and the discharge pipe 5b constitute a fuel reformer storage container 11 for storing the fuel reformer 9.
  • the fuel reformer 9 and the gas adsorbent 10 are stored in the fuel reformer storage container 11, and the recess of the base 1 is hermetically sealed with the lid 4 to form the fuel reformer 20C.
  • the fuel reformer 20C of the present embodiment is similar to the configuration of the fuel reformer 20 of the first embodiment, and it should be noted that the internal pressure of the recess is made 10 2 Pa or less.
  • the fuel reformer 20C of the present embodiment is also different from the fuel reformer 20 of the first embodiment in that the lead terminal 12 is provided on the base body 1 without the insulating sealing material 8. .
  • the internal pressure of the recess is set to 10 2 Pa or less.
  • the internal pressure of the recess exceeds 10 2 Pa, heat is easily transferred to the base 1 and the lid 4 by the radiation of heat from the fuel reformer 9, and the self-activation of the gas adsorbent 10 occurs and gas adsorption occurs immediately.
  • the activity of the material 10 tends to decrease in a short time.
  • the base 1 and the lid 4 are joined by a welding method such as a projection method, a seam welder method, an electron beam method, or a laser beam method.
  • a welding method such as a projection method, a seam welder method, an electron beam method, or a laser beam method.
  • the bonding of the base 1 and the lid 4 by the welding method will cause the adsorption characteristics of the gas adsorbent 10 to deteriorate. To prevent this, it should be done under a low pressure of 10 2 Pa or less.
  • the gas adsorbent 10 may self-activate due to the heat of reaction when adsorbing the surrounding gas, and the activation may progress, leading to deterioration of the adsorption characteristics. is there.
  • the joint between the base body 1 and the lid 4 and the periphery thereof are oxidized during welding, and outgas may be released from that part as a result of the temperature during fuel reforming and over time.
  • the electrode 7 on the fuel reformer 9 is electrically connected to the external lead terminal 2 provided on the substrate 1 through the bonding wire 3.
  • the heater formed on the surface or inside of the fuel reformer 9 can be heated through the electrode 7.
  • the reaction temperature can be maintained in the fuel reformer 9, and the fuel reforming reaction can be stabilized.
  • the gas adsorbent 10 is heated by heating the metal material by transmitting electric energy from an external power source to the metal material inside the gas adsorbent through the lead terminal.
  • the irradiation is performed by irradiating the gas adsorbent 10 with light rays such as infrared rays or laser light through a window provided on the substrate 1 and directly converting the energy of the light rays into heat energy with the gas adsorbent 10.
  • the gas adsorbent 10 may be mounted on the fuel reformer 9 which may be mounted directly on the inner surface defining the concave portion of the substrate 1 or via a pedestal or the like. Also, as shown in Fig. 4, electrical energy from an external power source is transmitted through the lead terminal connected to the lead terminal, this electrical energy is transmitted to the metal plate of the gas adsorbent 10, and converted into thermal energy by this metal plate. Thus, the gas adsorbent 10 may be supplementarily heated.
  • the gas adsorbent 10 is joined to the lead terminal 12, but it may be an insulating base such as ceramic.
  • FIG. 5 is a sectional view showing a fuel reformer 20D according to the fifth embodiment of the present invention.
  • FIG. 6 is a perspective view showing the upper force of the fuel reformer 20D of FIG.
  • Figure 7 shows the fuel reforming of Figure 5. It is the perspective view which also looked at the lower side force of the apparatus.
  • FIG. 8 is a perspective view of the base 1A of the fuel reformer 20D of FIG.
  • portions corresponding to the configuration of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel reformer 20D includes a base body 1A, an external lead terminal 2, a lid 4A, a supply pipe 5a, an exhaust pipe 5b, an insulating sealing material 8, and a fuel reformer 9 having an electrode 7.
  • the gas adsorbent 10 and the lead terminal 12 are included.
  • the base body 1A, the lid 4A, the supply pipe 5a and the discharge pipe 5b constitute a fuel reformer storage container 11 for storing the fuel reformer 9.
  • the fuel reformer 9 is housed in this fuel reformer housing container and hermetically sealed with the lid 4A and the base body 1A, thereby forming the fuel reformer 2OD.
  • Both the base 1A and the lid 4A in the present invention have a role as a container for storing the fuel reformer 9. They are made of, for example, stainless steel, Fe-Ni-Co alloys, Fe-based alloys such as Fe-Ni alloys, metal materials such as oxygen-free copper, inorganic materials, organic materials, or composites thereof. ing.
  • the recess formed in the base 1A may be formed directly by bonding the frame to the base 1A, or the recess may be formed directly in the base 1A.
  • a groove 15 for exhausting the gas in the recess is formed in at least one of the joint portion of the base body 1A of the present invention with the lid body 4A and the joint portion of the lid body 4A with the base body 1A.
  • the gas inside the fuel reformer storage container 11 formed from the base 1A and the lid 4A can be sufficiently discharged from the exhaust groove 15 when sealed in a reduced pressure state.
  • heat can be effectively insulated, and heat conduction from the fuel reformer 9 to the outer surfaces of the base 1A and the lid 4A can be greatly reduced. For this reason, it is possible to effectively prevent the temperature of the outer surface of the fuel reformer storage container 11 from rising.
  • the force shown in the example in which the groove 15 is formed on the contact surface of the base body 1A with the lid body 4A is not limited to this, but the groove 15 is formed on the contact surface of the cover body 4A with the base body 1A. May be formed.
  • the joint portion of the base 1A with the lid 4A is projected over the entire circumference, and this projecting portion (the projecting portion is generally referred to as a projection.
  • the projected part is also called a projection.
  • An example in which a groove 15 is formed by cutting out a part of 14 is shown.
  • Such base 1A and lid 4A are formed in a predetermined shape by a cutting method, a pressing method, a MIM (Metal Injection Mold) method, or the like.
  • the width of the groove 15 of the projection 14 formed on at least one of the base body 1A and the lid body 4A is preferably 0.05 mm to 5 mm.
  • the surfaces thereof be subjected to a coating treatment such as a Au or Ni adhesion treatment or a resin coating such as polyimide.
  • a coating treatment such as a Au or Ni adhesion treatment or a resin coating such as polyimide.
  • the thickness is preferably about 0.1 to 5 / ⁇ ⁇ .
  • the base body 1A and the lid body 4 ⁇ as described above should be thin in order to reduce the size and height of the fuel reformer 11, but the bending strength, which is mechanical strength, is 200. It is preferable that it is more than MPa.
  • the lid 4A and the base 1A are preferably made of a metal material having a thermal conductivity of 120 W / mK or less.
  • a metal material having a thermal conductivity of 120 W / mK or less As a result, heat from the fuel reformer 9 is prevented from being transmitted to the lid 4A and the base 1A, and it is possible to more effectively prevent the temperature of the lid 4A and the base 1A from rising. Become. Therefore, it is possible to more effectively prevent other parts inside the fuel reformer storage container 11 and other parts outside the fuel reformer storage container 11 from being damaged, and stabilize the fuel cell system for a long time. And can be used safely.
  • Such thermal conductivity Examples of the metal material having 120 WZmK or less include stainless steel, Fe—Ni—Co alloy, Fe—Ni alloy, and the like.
  • a fuel reformer 20D is formed in which the fuel reformer 9 accommodated in the chamber is hermetically sealed.
  • the base body 1A and the lid body 4A are joined by welding or the like, and at the time of this welding, the inner surface defining the groove 15 is melted to close the groove 15.
  • a welding method such as resistance welding or welding by laser irradiation, or a brazing method can be used.
  • welding is performed while exhausting the gas inside through the groove 15, and when the welding finally reaches the vicinity of the groove 15, the inner surface defining the groove 15 is melted by the welding. Block groove 15.
  • a brazing material is applied to a portion other than the groove 15, and the brazing material wets and spreads between the base body 1 A and the lid body 4 A. Close the groove 15 by spreading.
  • a brazing material may be applied to the inner surface that defines the groove 15, but in this case, a sufficient passage for exhausting the gas inside the groove 15 is provided so that the groove 15 is not blocked at the time of joining. It is necessary to secure it.
  • the groove 15 is finally closed by the welding method and the brazing method, so that the exhaust in the fuel reformer storage container 11 can be performed satisfactorily by the groove 15.
  • the base body 1A and the lid body 4A are joined by welding, and the inner surface defining the groove 15 is melted when the base body 1A and the lid body 4A are joined to close the groove 15.
  • heat can be generated only at the joint between the lid 4A and the base 1A, so that the lid 4A and the base 1A can be joined.
  • the fuel reformer 9 has an external lead provided on the substrate 1A by the electrode 7 on the fuel reformer 9. 2 terminals are electrically connected. As a result, the heater formed on or inside the fuel reformer 9 can be heated through the electrode 7. As a result, the reaction temperature can be maintained in the fuel reformer 9, and the fuel reforming reaction can be stabilized.
  • the gas adsorbent 10 is disposed along the inner surface on the groove 15 side that defines the recess.
  • the groove 15 is used for exhaust when joining the base body 1A and the lid 4A, and the gas adsorbing material 10 is provided in a portion defining the groove 15 where gas is likely to adhere when the groove 15 is finally closed.
  • the gas adhering to the portion defining the groove 15 can be immediately and efficiently adsorbed by the gas adsorbent 10.
  • the efficiency of gas adsorption can be made extremely high by suppressing the vicious circle in which the gas adhering to the portion defining the groove 15 is diffused into the fuel reformer storage container and re-deposited on other parts. it can.
  • the internal pressure inside the fuel reformer storage container 11, that is, the internal pressure of the recess is 10 2. Being Pa or less! /, You should be! / ...
  • the base 1A and the lid 4A are joined by a resistance welding method.
  • this welding method only the joint between the base 1A and the lid 4A and the vicinity thereof are heated. Therefore, it is possible to suppress the gas adsorbent 10 from being heated, and the gas adsorbent 10 is not activated when the fuel reformer storage container 11 is sealed.
  • the base 1A and the lid 4A are joined under an atmospheric pressure of 10 2 Pa or less.
  • the degree of vacuum in the fuel reformer storage container 11 can be increased. Therefore, it is effective that heat is transferred from the fuel reformer 9 to the base 1A and the lid 4A. Can be prevented.
  • the gas adsorbent 10 When the gas adsorbent 10 is stored in the fuel reformer storage container, the gas adsorbent 10 self-activates due to the reaction heat generated when adsorbing the surrounding gas, the activation proceeds, and the adsorption characteristics It is possible to effectively prevent deterioration. In addition, when lowering the internal pressure in the fuel reformer storage container and increasing the degree of vacuum, it is possible to effectively prevent the gas adsorbent 10 from approaching the limit of the allowable amount of gas adsorption and It can be maintained well.
  • the outgas discharged into the fuel reformer storage container after the fuel reformer storage container is hermetically sealed is the inner surface of the fuel reformer storage container or the surface of the fuel reformer itself. Gas adsorbed on the surface of each component in the fuel reformer storage container, or the joint between the base 1A and the lid 4A and the surrounding area during welding are oxidized, and the partial force is also the temperature during fuel reforming. It is a gas released over time and with the passage of time!
  • the supply pipe 5a and the discharge pipe 5b may pass through the base body 1A or may pass through the lid body 4A. Alternatively, the inside of the recess and the outside may be communicated with each other so as to be sandwiched between the bonding interface between the base 1A and the lid 4A.
  • the gas adsorbent 10 is joined to the lead terminal 12, but may be fixed to an insulating base such as ceramic.
  • FIG. 9 is a cross-sectional view showing a fuel reformer 20E according to the sixth embodiment of the present invention.
  • FIG. 10 is a top perspective view of the fuel reformer 20E of FIG.
  • FIG. 11 is a perspective perspective view of the lower surface side of the fuel reformer 20E of FIG.
  • FIG. 12 is an enlarged plan view showing a portion of the gas adsorbent 10 in the fuel reformer 20E of FIG.
  • FIG. 13 is a perspective view showing the fuel reformer 20F according to the seventh embodiment of the present invention on the upper surface side excluding a part of the lid 4.
  • FIG. 14 is an enlarged plan view showing a portion of the gas adsorbent 10 in the fuel reformer 20F of FIG.
  • the fuel reformer 20E includes a base 1, an external lead terminal 2, a lid 4, a supply pipe 5a, a discharge pipe 5b, an insulating sealing material 8, and a fuel reformer 9 having an electrode 7. Includes a gas adsorbent 10 and a lead terminal 12b.
  • the base body 1, the lid body 4, the supply pipe 5a and the discharge pipe 5b constitute a fuel reformer storage container 11 for storing the fuel reformer 9.
  • the fuel reformer 9 and the gas adsorbent 10 are housed in the fuel reformer housing container 11 and the concave portion of the base body 1 is hermetically sealed with the lid 4 to form the fuel reformer 20E.
  • the lead terminal 12b passes through a through hole formed in a side wall different from the side wall through which the external lead terminal 2 penetrates among the four side walls having an inner surface that defines the recess of the base body 1, and the insulating sealing material is provided on the base body 1 Except for the point provided via 8, it is configured in the same manner as the lead terminal 12 of the above-described embodiment.
  • the gas adsorbent 10 is for increasing the degree of vacuum by utilizing the gas adsorption action of chemically active metal powder.
  • the gas adsorbent 10 is made of, for example, 10 ⁇ m of metal powder containing Zr, Fe, V, etc. as the main component on one or both sides of a strip-like metal plate with a thickness of about 10 to 500 / ⁇ ⁇ . It is supported at a thickness of m to lmm.
  • the gas adsorbent 10 is attached to the lead terminal 12b fixed to the base 1 or the lid 4 by spot welding or the like so that the inside of the recess of the base 1 communicates with the outside.
  • the lead terminal 12b is for energizing the metal plate of the gas adsorbent 10.
  • the lead particles 12b and the metal particles deposited on the surface of the metal plate can be heated and activated by resistance heating of the metal plate caused by energization.
  • the gas adsorbent 10 can be energized by connecting a lead terminal 12b to each of both ends of the gas adsorbent 10 and applying a voltage between the lead terminals 12b connected to both ends. .
  • the gas adsorbent 10 of the present invention forms a high resistance portion 16 having a smaller cross-sectional area in the direction perpendicular to the energizing direction than a portion of the energized portion of the metal plate constituting the gas adsorbent 10. is doing.
  • the current-carrying portion of the metal plate refers to a portion through which a current that is input and output by the lead terminal 12b electrically connected to pass the current through the metal plate flows.
  • the current input lead terminal 12b in the metal plate And the lead terminal 12b for current output.
  • the gas adsorbent 10 can be efficiently activated by the high resistance portion 16, even if the gas adsorbent 10 is reduced, it is sufficient to maintain a good vacuum inside the fuel reformer storage container 11. Can maintain a good gas adsorption function. Therefore, the space for storing the gas adsorbent 10 can be reduced, and the fuel reformer storage container 11 can be reduced in size and height, and the fuel reformer storage container 11 can be used. This makes it possible to reduce the size and height of fuel cell system devices for portable devices.
  • the high resistance portion 16 is formed so that the cross-sectional area in the direction orthogonal to the energization direction of the metal plate is smaller than that of other portions, and the metal plate is provided with a notch 16a that intersects the energization direction.
  • the metal plate is formed by various methods such as reducing the thickness of the metal plate.
  • the high resistance portion 16 is preferably formed by providing a notch 16a as shown in FIG.
  • the notch 16a It is possible to suppress the occurrence of stress at the connection between the gas adsorbent 10 and the lead terminal 12b. As a result, it is possible to effectively prevent the connection portion between the lead terminal 12b and the gas adsorbent 10 from being damaged or the gas adsorbent 10 from being lost from the lead terminal 12b.
  • the shape of the notch 16a provided on the metal plate of the gas adsorbent 10 can be various, such as a V shape, a square shape, or a round shape, and the notch 16a is formed in one place as shown in FIGS. 10 and 12.
  • the fuel reformer 2 OF of the seventh embodiment of the present invention shown in FIGS. 13 and 14 may be formed at a plurality of locations.
  • the gas adsorbent 10 is provided at equal intervals in the center or the entire length so that heat generated from the notch 16a due to energization is uniformly transmitted to the entire gas adsorbent 10.
  • the gas adsorbent 10 having the notch 16a is formed by punching a metal plate made of Ni-Cr or the like carrying metal powder mainly containing Zr, Fe, V, etc. into a predetermined shape by press working. Or a method such as cutting with a laser or the like. It is formed by supporting a metal powder mainly composed of Zr, Fe, V, etc. later on a metal plate having Ni-Cr isotropic force, which is cast into a predetermined shape by the method described above.
  • the gas adsorbent 10 is arranged so as to face the fuel reformer 9, and the notch 16 a is made to face the fuel reformer 9.
  • the notch 16a having a particularly large heat generation of the gas adsorbent 10 is brought close to the fuel reformer 9, so that the heat of the gas adsorbent 10 is radiated to the fuel reformer 9 and the fuel reformer 9 It is possible to contribute to the high temperature of the fuel, and to reduce the power supplied to maintain the temperature of the fuel reformer 9 at a high temperature. As a result, the power generation efficiency of the fuel cell system using the fuel reformer storage container 11 can be further improved.
  • the inside of the fuel reformer storage container 11 should be evacuated as much as possible! /.
  • a sealing force by attaching a lid 4 to the fuel reformer storage container 11 in a vacuum furnace or There is a method of welding the lid 4 to the fuel reformer storage container 11 in the vacuum chamber by the seam weld method.
  • the gas adsorbent 10 is heated by being energized from the lead terminal 12 and activated.
  • an activation state close to 100% can be obtained by heating the gas adsorbent 10 at a temperature of 350 to 900 ° C.
  • gas adsorbent 10 may be fixed to only the lead terminal 12b and arranged so as to be separated from the base 1, the lid 4 or the fuel reformer 9.
  • the shape of the metal plate of the gas adsorbent 10 is shown as an example of a plate shape as shown in FIGS. 10 and 13, but is not limited thereto, and has a bent portion that can be a columnar shape. It may be anything. Further, the notch 16a may be formed in a groove shape on the metal plate.
  • FIG. 15 is a sectional view showing a fuel reformer 20G according to the eighth embodiment of the present invention.
  • portions corresponding to the configuration of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel reformer 20G includes a base 1, an external lead terminal 2, a lid 4, a supply pipe 5a, a discharge pipe 5b, an insulating sealing material 8, and a fuel reformer 9 having an electrode 7. Including.
  • a fuel reformer housing container 11 for housing the fuel reformer 9 is constituted by the base body 1, the lid body 4, the supply pipe 5a, and the discharge pipe 5b.
  • the fuel reformer 9 is stored in the fuel reformer storage container 11 and the base body 1 is covered with the lid 4.
  • the fuel reformer 20G is formed by hermetically sealing the recesses of the fuel cell.
  • FIG. 16 is an enlarged cross-sectional view of the main part of the joint between the supply pipe 5a or the discharge pipe 5b and the base 1 in the fuel reformer 20G of FIG. 15 and FIG. 16, as an example of the embodiment of the supply pipe 5a or the discharge pipe 5b, an example in which a flange 6 is provided on the outside is shown.
  • a gap 17 is provided between the outside of the supply pipe 5a or the discharge pipe 5b and the through hole of the base 1.
  • the supply pipe 5a or the discharge pipe 5b is joined so as to have a gap 17 between the through hole formed in the base body 1 or the lid body 4.
  • a gap 17 is formed when the supply pipe 5 a or the discharge pipe 5 b has the flange 6, and the flange 6 is formed in the through hole of the base body 1 or the lid 4.
  • a gap 17 can be formed between the outer surface of the supply pipe 5a or the discharge pipe 5b and the inner surface of the through hole.
  • FIG. 17 is an enlarged cross-sectional view of the main part of the joint between the supply pipe 5a or the discharge pipe 5b and the base 1 in the fuel reformer 20H of the ninth embodiment of the present invention. Further, as shown in FIG. 17, only a part of the outer surface of the supply pipe 5a or the discharge pipe 5b is joined to the inner surface of the through hole of the base body 1 or the lid body 4 via a brazing material or a sealing material 18.
  • the gap 17 may be formed by the following.
  • FIG. 18 is an enlarged cross-sectional view of a main part of a joint portion between the supply pipe 5a or the discharge pipe 5b and the base body 1 in the fuel reformer 201 according to the tenth embodiment of the present invention. Further, as shown in FIG.
  • a gap 17 is formed by providing a step in the through hole of the base body 1 or the lid 4 and joining the supply pipe 5a or the discharge pipe 5b to the step by brazing or welding. May be. Further, as shown in FIG. 17, the width of the gap 17 between the outer surface of the supply pipe 5a or the discharge pipe 5b and the inner surface of the through hole of the base body 1 or the lid body 4 should be 0.01 mm or more. In addition, when only a part of the outer surface of the supply pipe 5a or the discharge pipe 5b is joined to the inner surface of the through hole of the base body 1 or the lid body 4 via the brazing material 13, it is more preferable that the thickness is 0.01 to 0.3 mm. It is good to do.
  • the supply pipe 5a or the discharge pipe 5b may come into contact with the inner surface of the through-hole when the supply pipe 5a or the discharge pipe 5b is inserted into the base body 1 or the lid 4.
  • the space 17 between the tube 5a or the discharge tube 5b and the through-hole may be filled with a brazing material such as Au—Sn or Ag—Cu due to capillary phenomenon, making it difficult to secure the space 17.
  • a brazing material such as Au—Sn or Ag—Cu due to capillary phenomenon, making it difficult to secure the space 17.
  • the heat from the fuel reformer 9 is transferred from the supply pipe 5a or the discharge pipe 5b to the base body 1, whereby the temperature of the outer wall surface of the fuel reformer storage container 11 rises and other heat in the portable device is increased. Parts destroyed It becomes easy to be done.
  • the thickness is 0.3 mm or more, it is difficult to braze the supply pipe 5a or the discharge pipe 5b to the inner surface of the through hole of the base 1 or the lid 4.
  • the width of the gap 17 between the inner surface and the inner surface is preferably 0.01 mm or more, more preferably 0.01 to 5 mm. If the length is less than 01 mm, the supply pipe 5a or the discharge pipe 5b may come into contact with the inner surface of the through-hole when the supply pipe 5a or the discharge pipe 5b is inserted into the base body 1 or the lid 4.
  • the space 17 between the tube 5a or the discharge tube 5b and the through-hole may be filled with a brazing material such as Au—Sn or Ag—Cu by a capillary phenomenon, making it difficult to secure the space 17.
  • a brazing material such as Au—Sn or Ag—Cu by a capillary phenomenon, making it difficult to secure the space 17.
  • the heat from the fuel reformer 9 is transferred from the supply pipe 5a or the discharge pipe 5b to the base 1, so that the temperature of the outer wall surface of the fuel reformer storage container 11 rises. Other parts are easily destroyed.
  • the heel part 6 tends to be large and deformation of the heel part 6 tends to occur.
  • the fuel reformer storage container 11 itself tends to be large, which is an obstacle to downsizing and low profile.
  • the outer diameter of the flange part 6 is smaller than the diameter of the through hole of the base body 1 or the lid body 4 into which the supply pipe 5a or the discharge pipe 5b is inserted. Therefore, it is preferable to increase it by 1 mm or more. Further, the thickness of the flange portion 6 is preferably 0.1 mm or more in order to prevent deformation. Further, in order to join to the base body 1 by a welding method, it is preferable to provide projections (projections) over the entire circumference of the flange portion 6 of the supply pipe 5a or the discharge pipe 5b.
  • the flange 6 is directly joined to the supply pipe 5a or the discharge pipe 5b, but the cross section through which the supply pipe 5a or the discharge pipe 5b communicates has a circular shape. May be joined to the base body 1 or the lid body 4 using a polygonal cylindrical member provided with a flange 6.
  • the fuel reformer storage container includes a base body having a recess in which a fuel reformer that generates reformed gas including hydrogen gas as well as a fuel is stored, and a fuel reformer power generator.
  • a discharge pipe that communicates between the inside and the outside of the recess, a supply pipe that communicates the inside and outside of the recess to supply fuel to the fuel reformer, and a recess of the base are closed.
  • a gas adsorbent that is accommodated in the recess and adsorbs the gas in the recess.
  • the inner surface of the fuel reformer storage container and the surface of each component in the fuel reformer storage container such as the surface of the fuel reformer itself are sealed. Even if the adsorbed gas is discharged as an outgas inside the fuel reformer storage container with the influence of temperature during fuel reforming or with the passage of time, this gas is better absorbed by the gas adsorbent. Can be adsorbed. For this reason, the vacuum state inside the fuel reformer storage container can be maintained for a long period of time not only immediately after the fuel reformer is stored and sealed in the fuel reformer storage container.
  • the gas adsorbing material is disposed between the fuel reformer and the inner surface of the recess or between the fuel reformer and the lid so as to be close to or in contact with the fuel reformer. Therefore, the temperature of the gas adsorbent can be increased by the heat released from the fuel reformer and the gas adsorbent can be activated, the power for heating the gas adsorbent can be reduced, and the fuel cell system Power generation efficiency can be improved.
  • the gas adsorbent can absorb the heat conducted from the fuel reformer to the base and the lid, and the temperature of the outer wall surface of the fuel reformer storage container can be effectively suppressed from rising. It becomes. As a result, it is possible to effectively prevent other components in the portable device from being destroyed, and the fuel cell system can be used stably and safely over a long period of time.
  • the distance between the gas adsorbent and the discharge pipe is set to be smaller than the distance between the gas adsorbent and the supply pipe.
  • the heat of the exhaust pipe heated to the high temperature by the high-temperature reformed gas immediately after being reformed by the fuel reformer can be used to activate the gas adsorbent, and as a result, the gas adsorbent is heated.
  • the electric power of the power generation loss fuel reformer storage container can be better maintained and the vacuum state can be kept better.
  • the storage container for the fuel reformer further includes a lead terminal attached to the base so as to be led out from the inside of the recess, and the gas adsorbent is separated from the base. It is fixed to the lead terminal. Therefore, it is possible to effectively prevent the heat of the gas adsorbent from being conducted to the base and to reduce the temperature of the gas adsorbent, so that the temperature of the gas adsorbent can be maintained at a high temperature and power for heating the gas adsorbent. And the power generation efficiency of the fuel cell system can be improved.
  • the gas adsorbent is formed by depositing metal powder on the surface of the metal plate, and the lead terminal for energizing the gas adsorbent is communicated between the inside of the recess and the outside. It is provided as follows. A high resistance portion having a smaller cross-sectional area in the direction orthogonal to the energizing direction than that of the other portion is formed in the energizing portion of the metal plate constituting the gas adsorbent. Accordingly, the resistance can be increased locally in the high resistance portion, and the metal powder deposited on the surface can be activated very efficiently by generating heat efficiently in the high resistance portion, and the gas adsorbent can be activated. It is possible to reduce the applied current value for dripping. As a result, the power for heating the gas adsorbent can be reduced, and the power generation efficiency of the fuel cell system using the fuel reformer storage container can be improved.
  • the gas adsorbent can be efficiently activated by the high resistance section, the gas adsorbent function is sufficient to maintain a good vacuum inside the fuel reformer storage container even if the gas adsorbent is reduced. Can be maintained. As a result, the space for storing the gas adsorbent can be reduced, the fuel reformer storage container can be reduced in size and height, and the portable device using the fuel reformer storage container can be reduced. This makes it possible to reduce the size and height of fuel cell system equipment.
  • the high resistance portion is formed by providing a notch in the energization portion of the metal plate. Therefore, the activation by energization from the lead terminal connected to the gas adsorbent Even when the gas adsorbent is deformed due to the effect of heat of conversion, the deformation can be mitigated by the notch, and the occurrence of stress at the connecting portion between the gas adsorbent and the lead terminal can be suppressed. As a result, it is possible to effectively prevent the connection portion between the lead terminal and the gas adsorbing material from being damaged or the gas adsorbing material from losing the lead terminal force.
  • the gas adsorbent is disposed so as to face the fuel reformer, and the notch is opposed to the fuel reformer. Therefore, by bringing the notch of the gas adsorbent having a particularly large heat generation closer to the fuel reformer, the heat of the gas adsorbent can be radiated to the fuel reformer and contribute to the high temperature of the fuel reformer. In addition, the power supplied to maintain the temperature of the fuel reformer at a high temperature can be reduced. As a result, the power generation efficiency of the fuel cell system using the fuel reformer storage container can be further improved.
  • the groove for exhausting the gas in the recess is formed in at least one of the joint portion of the base body to the lid body and the joint portion of the lid body to the base body. Therefore, when the lid and the base are joined in a reduced pressure state, the gas inside the fuel reformer storage container can be sufficiently discharged from the groove, and the fuel reformer storage container interior can be raised. It is possible to evacuate to vacuum. In addition, even if the base body or lid body is distorted by the heat applied when the lid body and the base body are distorted and stress is generated, the stress can be absorbed by appropriately deforming the groove, and sealing failure due to stress can occur. Can be effectively prevented.
  • At least one of the joint portion of the base body with the lid body and the joint portion of the lid body with the base body is projected over the entire circumference, and a part of the projected portion is cut out.
  • the groove is formed. Therefore, when heat is generated only at the joint between the lid and the base body by welding to join the lid and the base body, the heat can be concentrated on the protruding portion, and the joining efficiency can be improved. At the same time, heat is transferred to the base or lid to damage other parts in the fuel reformer storage container or other parts outside the fuel reformer storage container, or to the fuel reformer. It is possible to effectively prevent the storage container from being distorted and causing poor sealing.
  • the gas adsorbent is disposed along the inner surface of the concave portion on the groove side. Therefore, the groove is used for exhaust when joining the base body and the lid, and the groove is closed when this groove is finally closed. If the gas adsorbent is brought close to the groove, the gas adhering to the groove can be immediately and efficiently adsorbed by the gas adsorbent. That is, the efficiency of gas adsorption can be made extremely high by suppressing the vicious circle in which the gas adhering to the groove is diffused into the fuel reformer storage container and reattached to other parts.
  • the lid and the substrate are made of a metal material having a thermal conductivity of 120 W / mK or less. Accordingly, it is possible to further effectively prevent the temperature of the lid body surface and the substrate surface from rising by suppressing the heat generated by the fuel reformer from being transmitted to the lid body and the substrate body. This can more effectively prevent damage to other parts inside the fuel reformer storage container and other parts outside the fuel reformer storage container. It can be used stably and safely.
  • the fuel cell since the fuel reformer storage container of the present invention and the fuel reformer stored in the recess are provided, the fuel cell is stable and safe for a long time and has high efficiency. A pond system can be achieved.
  • the gas adsorbent is provided on the surface of the fuel reformer, even after the gas adsorbent is activated by the heat of the fuel reformer, the gas adsorbent is utilized by utilizing the heat of the fuel reformer. Can be maintained at a high temperature. Therefore, when using a gas adsorbent that has a high temperature dependence of the gas adsorption efficiency at high temperatures compared to the use at normal temperature, the gas adsorption efficiency must be very high. As a result, the vacuum state inside the fuel reformer can be maintained for a long time not only immediately after the fuel reformer is housed and sealed in the fuel reformer.
  • the gas adsorbent and the fuel reformer are joined via the metal plate. Therefore, it is possible to reinforce the bonding strength between the gas adsorbent and the fuel reformer, and to apply heat to the metal plate that is also released from the fuel reformer force, and to activate the gas adsorbent evenly by the heat. In addition, the electric power for heating the gas adsorbent can be reduced, and the power generation efficiency of the fuel cell system can be improved.
  • the gas adsorbent is disposed in the heat generating portion of the fuel reformer.
  • the power of the heat generating part can directly heat the gas adsorbent, which can further reduce the power required to heat the gas adsorbent and improve the vacuum state inside the power generation loss fuel reformer. Can keep in good shape.
  • the internal pressure of the recess is set to 10 2 Pa or less. Therefore, it is possible to effectively prevent heat from being transmitted to the base body and the lid body by the radiation of heat from the fuel reformer. In addition, by increasing the degree of vacuum around the gas adsorbent and reducing the activity of the gas adsorbent, the gas adsorbent self-activates with a little heat when the base and lid are joined. It is possible to effectively prevent the adsorption characteristic from approaching saturation.
  • the lid and the substrate are joined by any one of the projection method, the seam welder method, the electron beam method, and the laser beam method. Therefore, only the joint between the base and the lid and the vicinity thereof are heated, and heat is transferred from the joint between the base and the lid through the lid to the gas adsorbent so that the gas adsorbent is activated. Can be more effectively suppressed. As a result, it is possible to more effectively prevent the gas adsorbing material from adsorbing the surrounding gas when the lid is attached and the adsorption characteristics of the gas adsorbing material to approach saturation, resulting in a decrease in the activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の目的は、燃料改質器収納用容器内の真空度を良好に維持することが可能な、発電損失の少ない燃料改質器収納用容器および燃料改質装置を提供することである。燃料改質器収納用容器11は、燃料から水素ガスを含む改質ガスを発生させる燃料改質器9が収納される凹部を有した基体1と、燃料改質器9からの改質ガスを排出すべく凹部内と外部とを連通する排出管5bと、燃料改質器9に燃料を供給すべく凹部内と外部とを連通する供給管5aと、凹部内に収納されて凹部内のガスを吸着するガス吸着材10とを具備してなる。

Description

燃料改質器収納用容器および燃料改質装置
技術分野
[0001] 本発明は、例えば燃料電池システムにおいて各種燃料カゝら水素ガスを発生させる 燃料改質器を用いた燃料改質装置を構成するための燃料改質器収納用容器および 燃料改質装置に関するものである。
背景技術
[0002] 近年、電気エネルギーを効率的に、かつクリーンに生産する次世代の電源システム として燃料電池システムが脚光を浴びており、既に自動車巿場および家庭用燃料電 池発電システムに代表されるコージェネレーション発電システム巿場においては、低 コストを目指した実用化のためのフィールドテストが盛んに行われている。
さらに最近では、燃料電池システムの小型化を図り、携帯電話、 PDA (Personal Di gital Assistants)、ノートパソコン、デジタルビデオカメラまたはデジタルスチルカメラ 等の携帯機器の電源として使用することが検討されている。
一般に燃料電池は、例えばメタンまたは天然ガス (CNG)等の炭化水素ガスある!/ヽ はメタノールまたはエタノール等のアルコール類を燃料とし、燃料改質器を用いた燃 料改質装置で水素ガスおよびその他のガスに改質した後、この水素ガスを発電セル と呼ばれる発電装置に供給することによって発電が行われる。
ここでの燃料改質器による燃料の改質とは、触媒反応によって水素ガスを発生させ るプロセスをいう。
例えば、燃料としてメタノールを用いる場合において、燃料を改質させる反応はいく つかあり、例えば次の化学反応式(1)に示すような水蒸気改質反応 (式(1)中では、 メタノールに水蒸気を結合させることによって、水素と二酸ィ匕炭素とに改質する反応) によって、水素ガス (H )を生成するプロセスをいう。なお、この改質反応によって生
2
成される水素以外の微量の生成ガス(主に CO )は、通常は大気中に排出される。
2
CH OH+H O → 3H +CO · '· (1)
3 2 2 2
このような水蒸気改質反応は吸熱反応であることから、外部力 ヒーター等で加熱し て反応温度を維持する必要がある。従って、燃料改質器内で燃料を改質させるには 、触媒の水蒸気改質活性が低下するのを防止するとともに、生成される水素ガス濃 度を高く維持するため、例えば燃料としてメタノールを用いた場合には約 200〜500 °Cの温度が、またメタンガスを用いた場合には 300〜800°C程度の高い温度が必要 になる。
また、例えば次の化学反応式(2)に示すような部分酸化改質反応では、 400〜60 0°C程度の改質温度が必要になる。
CH OH+ 1/20 + 2N → 2H +CO + 2N - -- (2)
3 2 2 2 2 2
そこで家庭用燃料電池システムに代表されるコージェネレーション発電システムで は、このシステム自体が大型であることから、燃料改質器収納用容器の外壁を 2重構 造にして真空容器を構成したり、あるいは 2重構造にした内外壁間に断熱材を充填 することによって、燃料改質器の内部の熱が外部へ伝導して燃料改質器の温度が低 下するのを防止している。そのため、燃料改質器を燃料改質器収納用容器に収容す る際は、燃料改質器を燃料改質器収納用容器の 2重構造の内壁に直接接合して載 置固定することが可能である。
関連技術として、特開 2003— 2602号公報がある。
近年、携帯機器用の燃料電池システムでは、携帯機器内に収納するために小型化 、低背化することが求められている。しかしながら、従来のように燃料改質器収納用容 器の外壁を 2重構造にすることは、燃料電池システム全体が複雑ィ匕して大型化する ため携帯機器用の燃料電池システムには採用することができない。そこで、携帯機器 用の燃料電池システムについては凹部を有する基体と蓋体とから成る燃料改質器収 納用容器内部を真空状態にすることによって、燃料改質器内で燃料を改質する際に 発生する熱の外部への伝導を遮断し、発電損失の少な!ヽ燃料電池システムを提供 することが提案されている。
このような燃料電池システムを長期に安定かつ安全に使用するためには、燃料改 質器収納用容器内部の真空状態を、燃料改質器収納用容器に燃料改質器を収納 し封止した直後だけでなくその後も長期に保つ必要がある。しかし、蓋体で燃料改質 器収納用容器内を封止した後に、燃料改質器収納用容器の内面および燃料改質器 自体の表面など燃料改質器収納用容器内の各部品表面に吸着しているガスが、燃 料改質時の温度の影響および時間の経過に伴 、燃料改質器収納用容器内部にァ ゥトガスとして放出される可能性がある。
その場合、燃料改質器収納用容器内部の真空度が低下することから、燃料改質器 内で燃料を改質する際に発生する熱の外部への伝導量が増加することになり、その 結果その熱によって燃料改質器収納用容器が高温となり、携帯機器内の他の部品 を破壊するという恐れがあった。
また、燃料改質反応が化学反応式 (1)の水蒸気改質反応のような吸熱反応の場合 では、燃料改質器で燃料を改質するためには、燃料改質器をヒーター等で加熱する ことによって反応温度を一定温度に維持する必要があるが、上記のように燃料改質 器力 発生する熱が燃料改質器収納用容器に伝導することによって、燃料改質器の 温度は低下しやすくなる。
そこで反応温度を維持するためには、ヒーターの発熱量を増加させる必要があるが 、ヒーターの発熱量を増加させると、燃料電池の発電セルで発電した総電気容量に 占めるヒーター加熱に使用する電気容量が増えることになり、その結果、燃料電池シ ステム全体の発電損失が増加するという問題点があった。
発明の開示
本発明は上記従来の技術における問題点に鑑みて完成されたものであり、その目 的は、燃料改質器収納用容器内の真空度を良好に維持することが可能な、発電損 失の少ない燃料改質器収納用容器および燃料改質装置を提供することである。 本発明は、燃料カゝら水素ガスを含む改質ガスを発生させる燃料改質器が収納され る凹部を有する基体と、前記燃料改質器からの前記改質ガスを排出すべく前記凹部 内と外部とを連通する排出管と、前記燃料改質器に前記燃料を供給すべく前記凹部 内と外部とを連通する供給管と、前記基体の前記凹部を塞ぐように接合される蓋体と 、前記凹部内に収納されて凹部内のガスを吸着するガス吸着材とを具備してなること を特徴とする燃料改質器収納用容器である。
本発明は、前記ガス吸着材が、前記燃料改質器と前記凹部を規定する内面との間 あるいは前記燃料改質器と前記蓋体との間に、該燃料改質器と近接または接触して 配置されて!ゝることを特徴とする。
本発明は、前記ガス吸着材と前記排出管との間の距離が、前記ガス吸着材と前記 供給管との間の距離に比し小さく設定されていることを特徴とする。
本発明は、前記凹部内から外部に導出されるようにして前記基体に取着されたリー ド端子をさらに含み、前記ガス吸着材は前記凹部内で前記基体と離間した状態で前 記リード端子に固定されていることを特徴とする。
本発明は、前記ガス吸着材は、金属板の表面に金属粉末を被着して成るとともに、 該ガス吸着材を通電するためのリード端子は前記凹部内と外部とを連通するように設 けられており、前記金属板の通電部の一部に、通電方向に直交する方向の断面積 が他の部位よりも小さい高抵抗部が形成されることを特徴とする。
本発明は、前記高抵抗部は、前記金属板の通電部に切り欠きを設けることによって 形成されることを特徴とする。
本発明は、前記ガス吸着材は前記燃料改質器に対向するように配置され、前記切 り欠きは前記燃料改質器に対向するように配置されることを特徴とする。
本発明は、前記基体の前記蓋体との接合部および前記蓋体の前記基体との接合 部の少なくとも一方に、前記凹部内の気体を排気するための溝が形成されることを特 徴とする。
本発明は、前記基体の前記蓋体との接合部および前記蓋体の前記基体との接合 部の少なくとも一方が全周にわたって突出させられ、該突出した部位の一部を切り欠 くことによって前記溝が形成されることを特徴とする。
本発明は、前記ガス吸着材は、前記凹部を規定する、前記溝側の内面に沿って配 置されることを特徴とする。
本発明は、前記蓋体および前記基体が、熱伝導率が 120W/mK以下の金属材料 からなることを特徴とする。
本発明は、上記本発明の燃料改質器収納用容器と、前記凹部内に収納される燃 料改質器とを具備することを特徴とする燃料改質装置である。
本発明は、前記ガス吸着材は前記燃料改質器表面に設けられることを特徴とする。 本発明は、前記ガス吸着材と前記燃料改質器とは、金属板を介して接合されること を特徴とする。
本発明は、前記燃料改質器の発熱部に、前記ガス吸着材が配置されることを特徴 とする。
本発明は、前記凹部の内圧は、 102Pa以下とされることを特徴とする。
本発明は、前記蓋体と前記基体とは、プロジヱクシヨン法、シームウェルダー法、電 子ビーム法、レーザービーム法の 、ずれかで接合されることを特徴とする。
図面の簡単な説明
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。
図 1は、本発明の第 1の実施形態の燃料改質装置を示す断面図である。
図 2は、本発明の第 2の実施形態の燃料改質装置を示す断面図である。
図 3は、本発明の第 3の実施形態の燃料改質装置を示す断面図である。
図 4は、本発明の第 4の実施形態の燃料改質装置を示す断面図である。
図 5は、本発明の第 5の実施形態の燃料改質装置を示す断面図である。
図 6は、図 5の燃料改質装置を上側力 見た場合の斜視透過図である。
図 7は、図 5の燃料改質装置を下側力 見た場合の斜視透過図である。
図 8は、図 5の燃料改質装置における基体の斜視図である。
図 9は、本発明の第 6の実施形態の燃料改質装置を示す断面図である。
図 10は、図 9の燃料改質装置の蓋体の一部を除いた上面側の斜視図である。 図 11は、図 8の燃料改質装置の下面側の斜視透視図である。
図 12は、図 9の燃料改質装置におけるガス吸着材の部分を示す拡大平面図である 図 13は、本発明の第 7の実施形態の燃料改質装置を示す、蓋体の一部を除いた 上面側の斜視図である。
図 14は、図 13の燃料改質装置におけるガス吸着材の部分を示す拡大平面図であ る。
図 15は、本発明の第 8の実施形態の燃料改質装置を示す断面図である。
図 16は、図 15の燃料改質装置における供給管または排出管と基体との接合部の 要部拡大断面図である。
図 17は、本発明の第 9の実施形態の燃料改質装置における供給管または排出管 と基体との接合部の要部拡大断面図である。
図 18は、本発明の第 10の実施形態の燃料改質装置における供給管または排出 管と基体との接合部の要部拡大断面図である。
発明を実施するための最良の形態
以下図面を参考にして本発明の好適な実施例を詳細に説明する。
本発明の実施形態の燃料改質器収納用容器およびそれを用いた燃料改質装置を 以下に詳細に説明する。
図 1は、本発明の第 1の実施形態の燃料改質装置 20を示す断面図である。燃料改 質装置 20は、基体 1と、燃料改質器に電力を供給するための配線としての外部リード 端子 2と、蓋体 4と、燃料を供給する供給路としての供給管 5aと、改質ガスを排出する 排出路としての排出管 5bと、絶縁封止材 8と、燃料改質器 9と、ガス吸着材 10と、ガ ス吸着材 10が固定されるリード端子 12とを含む。絶縁封止材 8は、基体 1の貫通孔 に外部リード端子 2およびリード端子 12を絶縁しつつ封止固定する。基体 1、蓋体 4、 供給管 5aおよび排出管 5bで燃料改質器 9を収納する燃料改質器収納用容器 11が 構成される。この燃料改質器収納用容器 11に燃料改質器9およびガス吸着材 10を 収納し、蓋体 4で基体 1の凹部を気密に封止することにより燃料改質装置 20となる。 本発明における基体 1および蓋体 4は、ともに燃料改質器 9を収納する容器として の役割を有する。基体 1および蓋体 4は、例えば、ステンレス鋼、 Fe— Ni— Co合金、 Fe— Ni合金等の Fe系合金、または無酸素銅等の金属材料、酸ィ匕アルミニウム (A1
2
O )質焼結体、ムライト (3A1 O - 2SiO )質焼結体、炭化珪素 (SiC)質焼結体、窒
3 2 3 2
化アルミニウム (A1N)質焼結体、窒化珪素(Si N )質焼結体、ガラスセラミックス等の
3 4
セラミック材料、ポリイミド等の高耐熱の榭脂材料等で形成されて 、る。
なお、基体 1および蓋体 4に適用可能なガラスセラミックスは、ガラス成分とフィラー 成分とから成る。そのガラス成分としては、例えば SiO— B O A1
2 2 3系、 SiO— B O - 2 2 3
O系、 SiO— B O -A1 O—MO系(但し、 Mは Ca、 Sr、 Mg、 Baまたは Znを示
2 3 2 2 3 2 3
す)、 SiO -Al Ο—Μ Ο— λ^Ο系(但し、 Μ1および Μ2は同一または異なって Ca 、 Srゝ Mgゝ Baまたは Znを示す)、 SiO —B O —Al O —M O— MSO系(但し、 M1
2 2 3 2 3
および M2は前記と同じである)、 SiO — B O — M3 O系(但し、 M3は Li、 Naまたは
2 2 3 2
Kを示す)、 SiO — B O — Al O — M3 O系(但し、 M3は前記と同じである)、 Pb系
2 2 3 2 3 2
ガラス、 Bi系ガラス等が挙げられる。
また、フィラー成分としては、例えば Al O、 SiO、 ZrOとアルカリ土類金属酸ィ匕物
2 3 2 2
との複合酸化物、 TiOとアルカリ土類金属酸化物との複合酸化物、 Al Oおよび Si
2 2 3
Oカゝら選ばれる少なくとも 1種を含む複合酸ィ匕物(例えばスピネル、ムライト、コージェ
2
ライト)等が挙げられる。
一方、基体 1および蓋体 4が、例えば相対密度が 95%以上の緻密質の酸ィ匕アルミ -ゥム質焼結体で形成されている場合は、以下のようにして作製される。例えば、ま ず酸化アルミニウム粉末に希土類酸化物粉末または酸化アルミニウム粉末等の焼結 助剤を添加、混合して、酸化アルミニウム質焼結体の原料粉末を調製する。次いで、 この原料粉末に有機バインダおよび分散媒を添加、混合してペーストイ匕し、このべ一 ストをドクターブレード法によって、あるいは原料粉末に有機バインダをカ卩え、プレス 成形、圧延成形等によって、所定の厚みのグリーンシートを作製する。その後、所定 枚数のシート状成形体を位置合わせして積層圧着した後、この積層体を、例えば非 酸化性雰囲気中、焼成最高温度が 1200〜1500°Cの温度で焼成する。このようにし て、目的とするセラミック製の基体 1および蓋体 4を得る。なお、基体 1および蓋体 4の 成形は粉末成形プレス法であっても良 ヽ。
他方、基体 1および蓋体 4が金属材料から成る場合は、切削法、プレス法、 MIM ( Metal Injection Mold)法等によって所定の形状に形成される。
また、基体 1および蓋体 4が金属材料から成る場合には、腐食を防止するためにそ の表面は、例えば Au、 Niのめつき処理、またはポリイミド等の樹脂コーティング等の 被覆コーティング処理が行われることが望まし 、。例えば Auめっき処理の場合であ れば、その厚さは 0. 1〜5 /ζ πι程度であることが望ましい。
以上のような基体 1および蓋体 4は、燃料改質器収納用容器 11の小型化および低 背化を可能とするためには厚さを薄くすべきであるが、機械的強度である曲げ強度 は 200MPa以上であることが好まし!/、。 次に、外部リード端子 2およびリード端子 12は、基体 1および蓋体 4の熱膨張係数と 同一または近似した金属が用いられるのがよぐ例えば、 Fe— Ni合金、 Fe-Ni-C o合金力もなるものが、実用時の温度変化に対して熱歪の発生を防止できる。その上 、外部リード端子 2と基体 1と、およびリード端子 12と基体 1との良好な封着性が得ら れるとともに、ボンディング性に優れ、実装時に必要な強度と良好なはんだ付性およ び溶接性を確保できる。
また、絶縁封止材 8は、例えば、硼珪酸ガラス、アルカリガラス、鉛を主成分とする絶 縁ガラス等のガラス材料または酸ィ匕アルミニウム等のセラミック材料等力も成り、基体
1に形成された貫通穴でこの絶縁封止材 8によって基体 1と外部リード端子 2と、およ び基体 1とリード端子 12とが電気的に絶縁されて外部リード端子 2およびリード端子 1 2が封止固定されている。基体 1に形成された外部リード端子 2およびリード端子 12 が挿通される貫通孔は、基体 1と外部リード端子 2と、および基体 1とリード端子 12と が接触して電気的に導通することがない大きさが必要であり、具体的には外部リード 端子 2およびリード端子 12から基体 1までの間隔が 0. 1mm以上確保できる内径が 必要である。
なお、絶縁封止材 8が、酸ィ匕アルミニウム等のセラミック材料力もなる場合、外部リー ド端子 2およびリード端子 12を基体 1の貫通孔に例えば筒状のセラミック材料力も成 る絶縁封止材 8を介して挿入し、絶縁封止材 8と基体 1との接続、絶縁封止材 8と外部 リード端子 2との接続、および絶縁封止材 8とリード端子 12との接続を Au—Geまたは Ag— Cu等のロウ材によって行うことができる。
燃料改質器 9上の電極 7と外部リード端子 2とをボンディングワイヤ 3を介して電気的 に接続する。さらに蓋体 4を用いて基体 1の凹部を封止することによって、燃料改質 器収納用容器 11の凹部内に収容した燃料改質器 9を気密に封止した燃料改質装置 が形成される。
本発明の燃料改質器収納用容器 11に収納される燃料改質器 9は、燃料を改質す るための装置であり、その内部に燃料を改質するための触媒が担持された微細流路 あるいは空隙を有する。
燃料改質器 9の形状は様々であり、例えば微小ケミカルデバイスとして、半導体製 造技術等を適用して、例えば、シリコン等の半導体、石英、ガラス、金属、セラミックス 等の無機材料の基材に、切削法、エッチング法、ブラスト法等によって細い溝を形成 することによって液体流路が作製され、操作中の液体の蒸発防止等を目的として、ガ ラス板、金属等のカバーを陽極接合、ロウ付け、溶接等によって表面に密着させて使 用される、例えば略四角形状のものが挙げられる。また、石英、ガラス、金属、セラミツ タス等の無機材料力 成る管状であり、その内面に燃料を改質するための触媒が担 持されたものも挙げられる。
燃料の改質反応が水蒸気改質反応のような吸熱反応の場合、燃料改質器 9内に は、温度調節機構、例えば、抵抗層等力も成る薄膜ヒーター (不図示)や厚膜ヒータ 一 (不図示)を形成し、表面にはこのヒーターへ電力を供給する端子として電極 7が形 成される。この温度調節機構によって、燃料改質条件に相当する 200〜800°C程度 の温度条件に調整することで、供給管 5aが接続された燃料供給口カゝら供給される燃 料を水蒸気と反応させて、燃料排出口に接続された排出管 5bカゝら水素ガスを発生さ せる改質反応を良好に促進することができる。
このようなヒーターは、燃料改質器 9における触媒が担持され燃料改質をおこなう流 路内ゃ空隙内、あるいはその近傍に配置される。これによつて、ヒーターから発生す る熱を効率的に燃料改質反応に用いることができる。
この燃料改質器 9は、蓋体 4が Au合金、 Ag合金、 A1合金等の金属ロウ材ゃガラス 材による接合やシームウエルド法等によって基体 1にその凹部を覆って取着されるこ とによって、燃料改質器収納用容器 11内に収納される。
例えば、 Au—Snロウ材によって接合する場合は、蓋体 4に予め Au—Snロウ材を 溶着させておくか、あるいは金型等を用いて打ち抜き加工等で枠状に形成した Au— Sn口ゥ材を基体 1と蓋体 4との間に載置した後、封止炉ある!/ヽはシームウェルダーで 蓋体 4を基体 1に接合することによって、燃料改質器収納用容器 11の内部に燃料改 質器 9を封止することができる。
また、燃料改質器 9は、燃料改質器 9上の電極 7がボンディングワイヤ 3を介して基 体 1に設けた外部リード端子 2に電気的に接続される。これによつて、電極 7を通じて 燃料改質器 9の表面や内部に形成されたヒーターを加熱することができる。その結果 、燃料改質器 9において反応温度の維持が可能となり燃料の改質反応を安定させる ことができる。
供給管 5aおよび排出管 5bは、それぞれ原料または燃料ガス流体の供給路および 水素を含有する改質ガスの排出路である。供給管 5aおよび排出管 5bは、例えば、 F e— Ni合金、 Fe— Ni— Co合金、ステンレス鋼等の金属材料、 Al O質焼結体、 3A1
2 3 2
O - 2SiO質焼結体、 SiC質焼結体、 A1N質焼結体、 Si N質焼結体、ガラスセラミツ
3 2 3 4
ク焼結体等のセラミック材料、ポリイミド等の高耐熱の榭脂材料、または、ガラスで形 成されている。
好ましくは、改質ガスに含まれる水素によって脆ィ匕しにくいものであるのがよい。こ のような材料としては、 Fe合金、セラミックス、ガラスが挙げられる。
本発明の燃料改質器収納用容器は、凹部内のガスを吸着するガス吸着材 10を凹 部内に収納するのがよい。これによつて、蓋体 4で封止した後に、燃料改質器収納用 容器の内側または燃料改質器 9自体の表面など燃料改質器収納用容器内部の各部 品表面に吸着して 、るガスが、燃料改質時の温度の影響や時間の経過に伴 、燃料 改質装置 11内部にアウトガスとして放出されたとしても、このガスをガス吸着材 10に よって良好に吸着させることができるため、燃料改質装置 11内部の真空状態を、燃 料改質装置 11内に燃料改質器 9を収納し封止した直後だけでなくその後も長期に 保つことができる。
ガス吸着材 10は、化学的に活性な金属粉による気体の吸着作用を利用して真空 排気を行うものである。ガス吸着材 10は、 10〜500 111程度の厚みを持っ^—0: 等から成る金属板の片面あるいは両面に Zr、 Fe、 V等を主成分とする金属粉を 10 m〜 lmmの厚みで担持させ作製される。
なお、ガス吸着材 10の金属粉の表面は、通常酸ィ匕膜で覆われているためそのまま ではガス吸着作用は現さない。ガス吸着材 10の金属粉は加熱処理を行い、表面の 酸ィ匕膜が吸着材内部へ拡散し表面に新しい活性面が現れることによってガス吸着作 用が発動 (活性化)する。
よって、ガス吸着材 10は、リード端子 12にスポット溶接法等によって取り付けられ、 燃料改質器収納用容器内 11に基体 1および蓋体 4と離間した状態で固定させる。す なわち、ガス吸着材 10は、基体 1および蓋体 4力も浮いた状態となっており、ガス吸 着材 10の熱が基体 1および蓋体 4に伝導するのを有効に防止できる。
燃料改質器収納用容器 11内の断熱性を得るためには、燃料改質器収納用容器 1 1内を真空にすることが必要となり、燃料改質器 9を封止する際、真空炉でのロウ材に よる封止または真空チャンバ一内でのシームウエルド法などで行うと良い。
その後、リード端子 12を通じて通電させ、ガス吸着材 10の金属板を加熱することに よってガス吸着材 10の金属粉の活性ィ匕を行う。
ガス吸着材 10の活性条件は、使用する金属粉の種類によって異なるが、ガス吸着 材 10を 350〜900°C程度の加熱を行うことによって、活性状態が得られる。
また、ガス吸着材 10が配置される場所は、ガス吸着材 10が燃料改質器 9からの輻 射熱を吸収し、活性されやすくするために、特に燃料改質器 9に形成された温度調 節機構、例えば、抵抗層等力も成るヒーター部の近傍に配置されることが望ましい。 また好ましくは、ガス吸着材 10は、燃料改質器 9から基体 1および蓋体 4への輻射 による伝熱を低減するために、燃料改質器 9と基体 1の凹部を規定する内面との間、 あるいは燃料改質器 9と蓋体 4との間に燃料改質器 9と近接してまたは接触して配置 されることが望ましい。これによつて、ガス吸着材 10は、燃料改質器 9からの熱によつ て活性化が持続され、高いガス吸着能力を維持することが可能となると同時に、燃料 改質器収納用容器 11の表面の高温ィ匕の抑制をより有効に行うことができる。
ここでガス吸着材 10が燃料改質器 9と近接して配置されると ヽうのは、ガス吸着材 1 0と燃料改質器 9との間の距離が、ガス吸着材 10と基体 1を規定する内面との間の距 離よりも小さい状態、またはガス吸着材 10と燃料改質器 9との間の距離が、ガス吸着 材 10と蓋体 4の基体 1側の主面との間の距離よりも小さい状態で配置されている状態 をいう。より好ましくは、ガス吸着材 10が燃料改質器 9に接触している力、またはガス 吸着材 10と燃料改質器 9との間の距離が 5mm以下であるのがよい。これによつて、 燃料改質器 9からの熱がガス吸着材 10の高温ィ匕に効率よく寄与できる。
ガス吸着材 10の配置例として、燃料改質器 9が略四角形状の場合、ガス吸着材 10 は燃料改質器 9の主面と相対畤するように配置されることが望ま 、。これによつて、 熱がより多く放出される燃料改質器 9の主面力 基体 1および蓋体 4に伝導される熱 をガス吸着材 10でより有効に遮断できるとともに、ガス吸着材 10の高温化もより良好 に行うことができる。
また、燃料改質器 9がー平面上で屈曲した管状の場合、ガス吸着材 10は上記一平 面に平行に相対畤するように配置されることが望ましい。これによつて、ガス吸着材 1 0を管状の燃料改質器 9の多くの部位と相対畤することができ、基体 1および蓋体 4に 伝導される熱をガス吸着材 10でより有効に遮断できるとともに、ガス吸着材 10の高温 ィ匕もより良好に行うことができる。
また、本発明の燃料改質器収納用容器 11は、ガス吸着材 10と排出管 5bとの間の 距離が、ガス吸着材 10と供給管 5aとの間の距離に比し小さく設定されているのがよ い。これによつて、燃料改質器 9で改質された直後の改質ガスは高温であり、この高 温の改質ガスによって高温となった排出管 5bの持つ熱をガス吸着材 10の活性化に 利用でき、その結果、ガス吸着材 10を加熱するための電力をより低減できるとともに 発電損燃料改質器収納用容器 11内部の真空状態をより良好に保つことができる。 なお、図 1に示した例においては、ガス吸着材 10を固定するリード端子 12を基体 1 に挿入させて取り付けているが、リード端子 12を蓋体 4に挿入させて取り付けても良 い。
図 2は、本発明の第 2の実施形態の燃料改質装置 20Aを示す断面図である。本実 施形態において、上述の実施形態の構成に対応する部分には同一の参照符を付し 、説明を省略する。
燃料改質装置 20Aは、基体と、外部リード端子 2と、蓋体 4と、供給管 5aと、排出管 5bと、絶縁封止材 8と、電極 7を有する燃料改質器 9と、ガス吸着材 10と、リード端子 12aとを含む。基体 1、蓋体 4、供給管 5aおよび排出管 5bで燃料改質器 9を収納する 燃料改質器収納用容器 11が構成される。この燃料改質器収納用容器 11に燃料改 質器 9およびガス吸着材 10を収納し、蓋体 4で基体 1の凹部を気密に封止することに より燃料改質装置 20Aとなる。リード端子 12aは、基体 1の凹部を規定する内面を有 する 4つの側壁のうち、外部リード端子 2が貫通する側壁とは異なる側壁に形成され る貫通穴を介して設けられる点を除いて、上述の実施形態のリード端子 12と同様に 構成される。 本実施形態において、ガス吸着材 10は、基体 1の凹部を規定する内面、蓋体 4の 基体 1側の主面、燃料改質器 9の表面に直接、載置固定される。または図 2のように、 基体 1の凹部を規定する内面、蓋体 4の基体 1側の主面、または燃料改質器 9の表面 にセラミックスや金属、榭脂等力も成る台座 13を介して載置固定されてもよい。また、 ガス吸着材 10は、リード端子 12のみに固定して基体 1、蓋体 4、または燃料改質器 9 と離間させるように配置してもよ 、。
ガス吸着材 10は、化学的に活性な金属粉による気体の吸着作用を利用して真空 排気を行うものである。ガス吸着材 10は、 10〜500 111程度の厚みを持っ^—0: 等から成る金属板の片面あるいは両面に Zr、 Fe、 V等を主成分とする金属粉を 10 m〜 lmmの厚みで担持させ作製される。外形は燃料改質器 9からの輻射熱を吸収 できるよう燃料改質器 9と同寸法とすることが好ましい。また、ガス吸着材 10は、リード 端子 12aがスポット溶接等によって取り付けられる。
燃料改質器収納用容器 11内の断熱性を得るためには、燃料改質器収納用容器 1 1内を真空にすることが必要となり、燃料改質器 9を封止する際、真空炉でのロウ材に よる封止や真空チャンバ一内でのシームウエルド法などで行えば良い。
その後に、前記ガス吸着材 10を、リード端子 12aから通電させることによって加熱さ せ活性化を行う。活性条件としては、ガス吸着材を 350〜900°Cの温度で加熱を行う ことによって、 100%に近い活性状態が得られる。
この活性化とは、ガス吸着材 10が製造プロセスに於いて、表面に形成された酸ィ匕 膜を除去する事により、新しいガス吸着面が現れ周囲に存在する COや N、Hと言
2 2 つたガス類を吸着させる機能を持たせることを言う。活性化する温度と時間は、使用 する金属粉の種類によって異なる。
好ましくは、ガス吸着材 10が燃料改質器 9からの輻射熱を吸収し、活性されやすく するために、燃料改質器 9の高温部と相対畤するように配置されるのがよい。特に燃 料改質器 9に形成された温度調節機構、例えば、抵抗層等カゝら成るヒーター部の近 傍に配置されることが望まし 、。
なお、図 2に示した例においては、ガス吸着材 10を蓋体 4の基体 1側の主面に載置 しているが、これを基体 1の凹部を規定する内面または燃料改質器 9の表面に載置し ても良い。また、燃料改質器 9と基体 1の凹部の底板との隙間や、燃料改質器 9と基 体 1の凹部の側面との隙間に配置されても良い。
図 3は、本発明の第 3の実施形態の燃料改質装置 20Bを示す断面図である。本実 施形態において、上述の実施形態の構成に対応する部分には同一の参照符を付し 、説明を省略する。
燃料改質装置 20Bは、基体 1と、外部リード端子 2と、蓋体 4と、供給管 5aと、排出 管 5bと、絶縁封止材 8と、電極 7を有する燃料改質器 9と、ガス吸着材 10とを含む。 基体 1、蓋体 4、供給管 5aおよび排出管 5bで燃料改質器 9を収納する燃料改質器収 納用容器 11が構成される。この燃料改質器収納用容器 11に燃料改質器 9およびガ ス吸着材 10を収納し、蓋体 4で基体 1の凹部を気密に封止することにより燃料改質装 置 20Bとなる。本実施形態において、注目すべきは、ガス吸着材 10が燃料改質器 9 の表面に設けられて 、ることである。
ガス吸着材 10は、 Zr、 Fe、 V等を主成分とする化学的に活性な金属粉等から成り、 気体の吸着作用を利用して真空排気を行うものであり、燃料改質器 9の表面に設け られる。このように燃料改質器 9の表面に設けることによって、燃料改質器 9から基体 1や蓋体 4への輻射による伝熱を低減して、ガス吸着材 10の活性ィ匕を燃料改質器 9 からの熱により持続でき、さらに高いガス吸着能力を維持することが可能となると同時 に、燃料改質装置 11の表面の高温ィ匕の抑制をより有効に行うことができる。
また、燃料改質器 9上の電極 7は、外部リード端子 2とボンディングワイヤ 3を介して 電気的に接続されるか、電極 7と外部リード端子 2を直接電気的に接続する。さらに 蓋体 4を用いて基体 1の凹部を封止することによって、基体 1の凹部内に収容した燃 料改質器 9を気密に封止した燃料改質装置 20Bが形成される。
この燃料改質器 9は、蓋体 4が Au合金、 Ag合金、 A1合金等の金属ロウ材またはガ ラス材による接合あるいは抵抗溶接等によって基体 1にその凹部を覆って取着される こと〖こよって、燃料改質装置 11内に収納される。
燃料改質器収納用容器 11内の断熱性を得るために、燃料改質器収納用容器 11 内を真空にすることが必要となる。この真空状態を作るために、燃料改質器 9を封止 する際に、真空炉でのロウ材による封止や真空チャンバ一内でのシームウエルド法、 電子ビーム溶接、プロジヱクシヨン溶接等で行うか、事前に不活性雰囲気中でのシー ムウエルド法、プロジェクシヨン溶接等で封止した後、燃料改質器収納用容器 11に形 成した真空引き用パイプ (不図示)から真空引きを行い、真空引き用パイプを潰して 圧着するなどの方法で燃料改質器収納用容器 11内を真空にするのが良 、。
その後に、ガス吸着材 10を活性化させるために燃料改質装置 11を全体的に加熱 するか、燃料改質器 9の熱により加熱を行う。活性条件としては、ガス吸着材を 350〜 900°Cの温度で加熱を行うことによって、 100%に近い活性状態が得られる。
また、上述のようにガス吸着材 10は、燃料改質器 9の表面に設けられている力 好 ましくは Ni—Cr等カゝら成る金属板または金属層を介して燃料改質器 9に接合するの がよい。なぜなら、金属板または金属層を介することによりガス吸着材 10と燃料改質 器 9との接合強度を補強するとともに、燃料改質器 9から放出される熱を金属板また は金属層に与え、その熱によってガス吸着材 10をまんべんなく活性ィ匕することができ 、ガス吸着材 10を加熱するための電力を低減でき、燃料電池システムの発電効率を 向上できるからである。また、金属板または金属層を Ni— Cr等の高抵抗なものとし、 これに電流を流すことによって金属板または金属層を発熱させてガス吸着材 10を活 '性ィ匕することちできる。
さらに好ましくは、 10〜500 m程度の厚みを持つ金属板の片面あるいは両面に 金属粉を 10 m〜lmmの厚みで担持させ作製されるのがよい。そして、金属板の 外形は燃料改質器 9からの輻射熱を吸収できるよう燃料改質器 9と同寸法とすること が好ましい。また、ガス吸着材 10はスポット溶接等により取り付けられる。
また、さら〖こ好ましくは、ガス吸着材 10が燃料改質器 9からの輻射熱を吸収し、活性 されやすくするために、燃料改質器 9の高温部と相対畤するようにも配置されるのが よい。
また、ガス吸着材 10は、燃料改質器 9の発熱部に配置されることが望ましい。これ により、熱がより多く放出される燃料改質器 9に形成された薄膜ヒーターや圧膜ヒータ 一等の発熱部から基体 1や蓋体 4に伝導される熱をガス吸着材 10でより有効に遮断 できるとともに、ガス吸着材 10の高温化もより良好に行うことができる。
なお、図 3に示した例においては、ガス吸着材 10を基体 1の表面に載置しているが 、これを基体 1の凹部の内面または燃料改質器 9の表面に載置しても良い。また、燃 料改質器 9と基体 1の凹部の底板との隙間、または燃料改質器 9と基体 1の凹部の側 面との隙間に配置されても良い。
図 4は、本発明の第 4の実施形態の燃料改質装置 20Cを示す断面図である。本実 施形態において、上述の実施形態の構成に対応する部分には同一の参照符を付し 、説明を省略する。
燃料改質装置 20Cは、基体 1と、外部リード端子 2と、蓋体 4と、供給管 5aと、排出 管 5bと、絶縁封止材 8と、電極 7を有する燃料改質器 9と、ガス吸着材 10と、リード端 子 12とを含む。基体 1、蓋体 4、供給管 5aおよび排出管 5bで燃料改質器 9を収納す る燃料改質器収納用容器 11が構成される。この燃料改質器収納用容器 11に燃料 改質器 9およびガス吸着材 10を収納し、蓋体 4で基体 1の凹部を気密に封止すること により燃料改質装置 20Cとなる。本実施形態の燃料改質装置 20Cは、第 1の実施形 態の燃料改質装置 20の構成に類似し、注目すべきは、凹部の内圧が 102Pa以下に されている点である。また、本実施形態の燃料改質装置 20Cは、絶縁封止材 8を介さ ずにリード端子 12が基体 1に設けられている点でも、第 1の実施形態の燃料改質装 置 20と異なる。
本発明の燃料改質装置 20Cにおいては、凹部の内圧が 102Pa以下にされている。 これによつて、燃料改質器 9からの熱の放射によって基体 1および蓋体 4に熱が伝わ るのを有効に防止することができる。凹部の内圧が 102Paを超えると、燃料改質器 9 からの熱の放射によって基体 1および蓋体 4に熱が伝わりやすくなるとともに、ガス吸 着材 10の自己活性が起こりやすぐガス吸着材 10が短時間で活性力が低下し易く なる。
好ましくは、基体 1と蓋体 4との接合は、プロジェクシヨン法、シームウェルダー法、電 子ビーム法、レーザービーム法等の溶接法により行われるのがよい。このような溶接 法による基体 1と蓋体 4との接合は、基体 1と蓋体 4との接合部およびその近傍のみが 加熱されることから、ガス吸着材 10が加熱されるのを抑制でき、ガス吸着 10が燃料 改質装置 11の封止時に活性ィ匕されることはな 、。
また、溶接法による基体 1と蓋体 4との接合は、ガス吸着材 10の吸着特性の劣化を 防止するために 102Pa以下の低圧下で行われるのがよ 、。
102Paを超える圧力下で接合を行うと、ガス吸着材 10が周辺のガスを吸着する際 の反応熱によって自己活性をおこない、活性化が進行し、吸着特性の劣化の引き起 こす恐れがある。
また、燃料改質器収納用容器 11内の内圧を下げ真空度を高める際に、より多くの ガス吸着材 10が必要になり、結果、燃料改質器収納用容器 11内部のガス吸着材設 置許容量を超えてしまう恐れがある。
また、溶接時に基体 1と蓋体 4の接合部及びその周辺が酸化され、その部分から燃 料改質時の温度の影響や時間の経過に伴いアウトガスが放出される可能性がある。 燃料改質器 9は、燃料改質器 9上の電極 7がボンディングワイヤ 3を介して基体 1に 設けた外部リード端子 2に電気的に接続される。これにより、電極 7を通じて燃料改質 器 9の表面や内部に形成されたヒーターを加熱することができる。その結果、燃料改 質器 9において反応温度の維持が可能となり燃料の改質反応を安定させることがで きる。
ガス吸着材 10の加熱は、ガス吸着材内部の金属材に外部電源からの電気工ネル ギーをリード端子で伝送させることによって金属材を発熱させることによって行われた り、また、蓋体 4もしくは基体 1に設けられた窓部を通じて赤外線またはレーザー光等 光線をガス吸着材 10に照射し、光線のエネルギーを直接ガス吸着材 10で熱ェネル ギ一に変換することによって行う。
ガス吸着材 10は基体 1の凹部を規定する内面に直接、あるいは台座などを介して 搭載してもよぐ燃料改質器 9上に搭載してもよい。また、図 4のようにリード端子に接 続して外部電源からの電気エネルギーをリード端子で伝送し、この電気エネルギーを ガス吸着材 10の金属板に伝え、この金属板で熱エネルギーに変換してガス吸着材 1 0の加熱を補助的に行ってもよい。
なお、図 4に示した例においては、ガス吸着材 10はリード端子 12に接合されている が、絶縁性の例えばセラミック等の台座であっても良い。
図 5は、本発明の第 5の実施形態の燃料改質装置 20Dを示す断面図である。図 6 は、図 5の燃料改質装置 20Dの上側力も見た斜視図である。図 7は、図 5の燃料改質 装置の下側力も見た斜視図である。また、図 8は、図 5の燃料改質装置 20Dの基体 1 Aの斜視図である。本実施形態において、上述の実施形態の構成に対応する部分 には同一の参照符を付し、説明を省略する。
燃料改質装置 20Dは、基体 1Aと、外部リード端子 2と、蓋体 4Aと、供給管 5aと、排 出管 5bと、絶縁封止材 8と、電極 7を有する燃料改質器 9と、ガス吸着材 10と、リード 端子 12とを含む。基体 1A、蓋体 4A、供給管 5aおよび排出管 5bで燃料改質器 9を 収納する燃料改質器収納用容器 11が構成される。この燃料改質器収納用容器に燃 料改質器 9を収納し、蓋体 4Aと基体 1Aで気密に封止することにより燃料改質装置 2 ODとなる。
本発明における基体 1 Aおよび蓋体 4Aは、ともに燃料改質器 9を収納する容器とし ての役割を有する。それらは、例えば、ステンレス鋼、 Fe— Ni— Co合金、 Fe— Ni合 金等の Fe系合金または無酸素銅等の金属材料、無機材料、有機材料、あるいはこ れらの複合体で形成されている。なお、基体 1Aに形成されている凹部は基体 1Aに 枠体を接合することにより形成されてもよぐ基体 1Aに直接凹部が形成されていても よい。
本発明の基体 1Aの蓋体 4Aとの接合部および蓋体 4Aの基体 1Aとの接合部の少 なくとも一方に凹部内の気体を排気するための溝 15が形成されている。これによつて 、減圧状態での封止時に排気用の溝 15から基体 1Aと蓋体 4Aから形成される燃料 改質器収納用容器 11の内部にあるガスを十分に排出することが可能であり、燃料改 質器収納用容器内部を高真空に排気することが可能である。これによつて、熱を効 果的に断熱することができ、燃料改質器 9から基体 1Aおよび蓋体 4Aの外面への熱 伝導を大幅に低減できる。このため、燃料改質器収納用容器 11の外表面の温度が 上昇するのを有効に抑制することが可能となる。その結果、携帯機器内の他の部品 が破壊されるのを有効に防止できる。なお、図 8の例では、基体 1Aの蓋体 4Aとの接 合面に溝 15を形成した例を示している力 これに限らず、蓋体 4Aの基体 1Aとの接 合面に溝 15を形成してもよい。
さらに図 8の例では、基体 1Aの蓋体 4Aとの接合部を全周にわたって突出させ、こ の突出した部位 (突出した部位のことを一般にプロジェクシヨンともいう。以下、この突 出した部位をプロジェクシヨンともいう) 14の一部を切り欠くことによって溝 15を形成し た例を示している。これによつて、溶接によって蓋体 4Aと基体 1Aとの接合部のみに 熱を生じさせて蓋体 4Aと基体 1Aとを接合する際、熱をプロジェクシヨン 14に集中さ せることができ、接合効率を高めることができる。これとともに熱が基体 1 Aまたは蓋体 4Aに伝達して、燃料改質器収納用容器 11内の他の部品または燃料改質器収納用 容器 11の外側の他の部品に損傷を与えたり、燃料改質器収納用容器 11が歪んで 封止不良が生じたりするのを有効に抑制できる。
このような基体 1Aおよび蓋体 4Aは、切削法、プレス法、 MIM (Metal Injection M old)法等により所定の形状に形成される。
基体 1Aおよび蓋体 4Aの少なくとも一方に形成されたプロジェクシヨン 14の溝 15の 幅は、 0. 05mm乃至 5mmであるのがよい。これによつて、減圧状態での封止におい て、燃料改質器収納用容器 11内部の排気を行いかつ気密封止が可能となる。その 結果、燃料改質器 9から基体 1 Aおよび蓋体 4Aに伝わる熱をより効果的に低減する ことができ、燃料改質器 9の温度低下を抑制して発電損失をより低減することができる とともに燃料改質器収納用容器 11の高温ィ匕の抑制をより有効に行うことができる。 また、基体 1Aおよび蓋体 4Aの腐食を防止するためにその表面は、例えば Au、 Ni のめつき処理や、ポリイミド等の樹脂コーティング等の被覆コーティング処理が行われ ることが望ましい。例えば Auめっき処理の場合であれば、その厚さは 0. 1〜5 /ζ πι程 度であることが望ましい。
以上のような基体 1Aおよび蓋体 4Αは、燃料改質装置 11の小型化および低背化 を可能とするためには厚さを薄くすべきであるが、機械的強度である曲げ強度は 200 MPa以上であることが好まし 、。
また、蓋体 4Aおよび基体 1 Aは、熱伝導率が 120W/mK以下の金属材料からなる のがよい。これにより、燃料改質器 9からの熱が蓋体 4Aおよび基体 1Aに伝わるのを 抑制して、蓋体 4A表面および基体 1A表面の温度が上昇するのをさらに有効に防止 することが可能となる。よって、燃料改質器収納用容器 11内の他の部品や燃料改質 器収納用容器 11の外側の他の部品に損傷を与えるのをさらに有効に防止でき、燃 料電池システムを長期に安定かつ安全に使用することができる。このような熱伝導率 が 120WZmK以下の金属材料としては、例えば、ステンレス鋼、 Fe— Ni— Co合金 、 Fe— Ni合金等が挙げられる。
燃料改質器 9上の電極 7と外部リード端子 2とを電気的に接続し、蓋体 4Aと基体 1 Aとを接合するとともに溝 15を塞ぐことによって、燃料改質器収納用容器 11内部に 収容した燃料改質器 9を気密に封止した燃料改質装置 20Dが形成される。本発明の 燃料改質装置 20Dは、基体 1Aと蓋体 4Aとを溶接などによって接合しており、この溶 接の際、溝 15を規定する内面を溶融して溝 15を塞いでいる。これによつて、減圧状 態において蓋体 4Aと基体 1Aとを接合する際、溝 15から燃料改質器収納用容器の 内部にあるガスを十分に排出することが可能であり、燃料改質器収納用容器内部を 高真空に排気することが可能である。これとともに、蓋体 4Aと基体 1Aとの接合の際 に加える熱によって基体 1Aまたは蓋体 4Aが歪んで応力が生じたとしても、溝 15を 規定する部分を適度に変形させることによって応力を吸収させることができ、応力に よる封止不良を有効に防止することができる。
基体 1Aと蓋体 4Aとの接合は抵抗溶接またはレーザ照射による溶接などの溶接法 、ろう付け法などを用いることができる。溶接法の場合、溝 15を介して内部のガスを排 出しながら溶接を行っていき、溶接が最終的に溝 15付近に達した時にその溶接によ つて溝 15を規定する内面を溶融させて溝 15を塞ぐ。
また、ろう付け法の場合、溝 15以外の部位にろう材を塗布しておき、ろう材が基体 1 Aと蓋体 4Aとの間にぬれ広がった後に、最後にろう材が溝 15に濡れ広がるようにし て溝 15を塞ぐ。あるいは、溝 15を規定する内面にもろう材を塗布しておいてもよいが 、この場合、接合時に溝 15が塞がれないよう、溝 15の内側のガスを排気するための 通路を十分確保しておく必要がある。
このように溶接法およびろう付け法にぉ 、て、溝 15が最後に塞がれるようにしておく ことで、溝 15によって燃料改質器収納用容器 11内の排気を良好に行うことができる 好ましくは、基体 1Aと蓋体 4Aとを溶接により接合し、溝 15を規定する内面を基体 1 Aと蓋体 4Aとの接合の際に溶融して溝 15を塞ぐのがよい。これによつて、蓋体 4Aと 基体 1Aとの接合部のみに熱を生じさせて蓋体 4Aと基体 1Aとを接合することができ 、熱が基体 1Aまたは蓋体 4Aに伝達して、燃料改質装置 20D内の他の部品または 燃料改質装置 20Dの外側の他の部品に損傷を与えたり、燃料改質器収納用容器 1 1が歪んで封止不良が生じたりするのを有効に抑制できる。
また、蓋体 4Aと基体 1Aとの接合を溝 15で排気を行いながら溝 15以外の部位を先 に溶接し、最後に溝 15を塞ぐことによって、接合中に溝 15が埋まって排気の効率が 低下するのを抑制し、燃料改質器収納用容器 11内の真空度を高くすることができる 燃料改質器 9は、燃料改質器 9上の電極 7が基体 1Aに設けた外部リード端子 2〖こ 電気的に接続される。これによつて、電極 7を通じて燃料改質器 9の表面や内部に形 成されたヒーターを加熱することができる。その結果、燃料改質器 9において反応温 度の維持が可能となり燃料の改質反応を安定させることができる。
好ましくは、ガス吸着材 10を凹部を規定する、溝 15側の内面に沿って配置するの がよい。これによつて、基体 1Aと蓋体 4Aとの接合時に溝 15を排気用として用い、最 後にこの溝 15を塞ぐ際に気体が被着しやすいこの溝 15を規定する部分にガス吸着 材 10を近づけることによって、溝 15を規定する部分に被着した気体を即座にガス吸 着材 10で効率よく吸着させることができる。つまり、溝 15を規定する部分に被着した 気体が燃料改質器収納用容器内に放散して他の部位に再被着するという悪循環を 抑制してガス吸着の効率をきわめて高くすることができる。
本発明の燃料改質装置 20Dにおいては、本発明の第 4の実施形態の燃料改質装 置 20Cと同様に、燃料改質器収納用容器 11内部の内圧、すなわち凹部の内圧が 1 02Pa以下にされて!/、るのがよ!/、。
好ましくは、基体 1 Aと蓋体 4Aとの接合は、抵抗溶接法によって行われるのがよい。 この溶接法による基体 1Aと蓋体 4Aとの接合は、基体 1Aと蓋体 4Aの接合部及びそ の近傍のみが加熱される。したがって、ガス吸着材 10が加熱されるのを抑制でき、ガ ス吸着 10が燃料改質器収納用容器 11の封止時に活性ィ匕されることはない。
また、 102Pa以下の気圧下で基体 1Aと蓋体 4Aとの接合が行われるのがよい。 102 Pa以下の気圧下で接合を行うと、燃料改質器収納用容器 11内の真空度を高めるこ とができる。よって、燃料改質器 9から基体 1Aおよび蓋体 4Aに熱が伝わるのを有効 に防止できる。
また、燃料改質器収納用容器内にガス吸着材 10を収納する場合、ガス吸着材 10 が周辺のガスを吸着する際の反応熱により自己活性をおこない、活性化が進行し、 吸着特性が劣化するのを有効に防止できる。また、燃料改質器収納用容器内の内 圧を下げ真空度を高める際に、ガス吸着材 10のガス吸着許容量の限界に近づくこと を有効に防止し、ガス吸着材 10の吸着機能を良好に維持できる。
なお、燃料改質器収納用容器を気密封止した後に燃料改質器収納用容器内に放 出されるアウトガスとは、燃料改質器収納用容器の内面もしくは燃料改質器自体の表 面など燃料改質器収納用容器内の各部品表面に吸着して ヽるガス、または溶接時 に基体 1Aと蓋体 4Aとの接合部およびその周辺が酸化されてその部分力も燃料改 質時の温度の影響および時間の経過に伴!、放出されるガスのことである。このように 燃料改質器収納用容器を 102Pa以下の気圧下で封止し、その後ガス吸着材 10でこ のアウトガスを吸着することによって、燃料改質器収納用容器 11内の真空度をより高 めることができる。
なお、供給管 5aおよび排出管 5bは、基体 1Aを貫通していてもよく蓋体 4Aを貫通 していてもよい。あるいは、基体 1Aと蓋体 4Aとの接合界面に挟み込むようにして凹 部内と外部とを連通してもよい。
なお、図 5に示した例においては、ガス吸着材 10はリード端子 12に接合されている が、絶縁性の例えばセラミック等の台座に固定しても良い。
図 9は、本発明の第 6の実施形態の燃料改質装置 20Eを示す断面図である。図 10 は、図 9の燃料改質装置 20Eの蓋体 4の一部を除いた上面側の斜視図である。図 11 は、図 9の燃料改質装置 20Eの下面側の斜視透視図である。図 12は、図 9の燃料改 質装置 20Eにおけるガス吸着材 10の部分を示す拡大平面図である。図 13は、本発 明の第 7の実施形態の燃料改質装置 20Fを示す、蓋体 4の一部を除 、た上面側の 斜視図である。図 14は、図 13の燃料改質装置 20Fにおけるガス吸着材 10の部分を 示す拡大平面図である。
本実施形態において、上述の実施形態の構成に対応する部分には同一の参照符を 付し、説明を省略する。 燃料改質装置 20Eは、基体 1と、外部リード端子 2と、蓋体 4と、供給管 5aと、排出 管 5bと、絶縁封止材 8と、電極 7を有する燃料改質器 9と、ガス吸着材 10と、リード端 子 12bとを含む。基体 1、蓋体 4、供給管 5aおよび排出管 5bで燃料改質器 9を収納 する燃料改質器収納用容器 11が構成される。この燃料改質器収納用容器 11に燃 料改質器 9およびガス吸着材 10を収納し、蓋体 4で基体 1の凹部を気密に封止する ことにより燃料改質装置 20Eとなる。リード端子 12bは、基体 1の凹部を規定する内面 を有する 4つの側壁のうち、外部リード端子 2が貫通する側壁とは異なる側壁に形成 される貫通穴を通り、かつ基体 1に絶縁封止材 8を介して設けられる点を除いて、上 述の実施形態のリード端子 12と同様に構成される。
ガス吸着材 10は、化学的に活性な金属粉による気体の吸着作用を利用して真空 度を高めるためものである。ガス吸着材 10は、例えば 10〜500 /ζ πι程度の厚みを持 つ帯状の Ni— Cr等力も成る金属板の片面あるいは両面に Zr、 Fe、 V等を主成分と する金属粉を 10 μ m〜 lmmの厚みで担持させたものである。このガス吸着材 10は 、基体 1の凹部内と外部とを連通するように、基体 1または蓋体 4に固定されたリード 端子 12bにスポット溶接等により取り付けられる。
このリード端子 12bはガス吸着材 10の金属板を通電するためのものである。リード 端子 12b、通電によって生じる金属板の抵抗発熱によって金属板表面に被着された 金属粒子を加熱し、活性化させることができる。例えば、ガス吸着材 10の両端部のそ れぞれにリード端子 12bを接続し、両端部に接続されたリード端子 12b間に電圧を印 加することによってガス吸着材 10を通電することができる。
そして、本発明のガス吸着材 10は、ガス吸着材 10を構成する金属板の通電部の 一部に通電方向に直交する方向の断面積が他の部位よりも小さい高抵抗部 16を形 成している。ここで、金属板の通電部とは、金属板を通電するために電気的に接続さ れたリード端子 12bによって入出力される電流が流れる部位を示し、金属板における 電流入力用のリード端子 12bと電流出力用のリード端子 12bとの間の部位のことであ る。
この構成によって、金属板に局所的に抵抗の高い部分を形成し、この抵抗の高い 部分で効率よく発熱させて表面に被着した金属粉末を非常に効率よく活性化させる ことができ、ガス吸着材 10を活性ィ匕するための印加電流値を低減することができる。 その結果、ガス吸着材 10を加熱するための電力を低減でき、燃料改質器収納用容 器 11を用いた燃料電池システムの発電効率を向上できる。
また、高抵抗部 16により効率よくガス吸着材 10を活性ィ匕できるので、ガス吸着材 1 0を小さくしても燃料改質器収納用容器 11内部の真空状態を良好に維持するのに 十分なガス吸着機能を維持できる。よって、ガス吸着材 10を収納するためのスぺー スを小さくすることができ、燃料改質器収納用容器 11の小型化および低背化、さらに その燃料改質器収納用容器 11を用いた携帯機器用の燃料電池システム機器の小 型化および低背化が可能となる。
高抵抗部 16は、金属板の通電方向に直交する方向の断面積を他の部位よりも小さ くなるように形成されて ヽればよぐ金属板に通電方向に交わる切り欠き 16aを設けた り、金属板の厚みを薄くしたりする等の種々の方法によって形成される。
また、高抵抗部 16は、金属板の通電部に図 12に示すような切り欠き 16aを設けるこ とによって形成するのがよい。これによつて、ガス吸着材 10に接続されたリード端子 1 2bからの通電による活性ィ匕熱の影響でガス吸着材 10が変形を起こした場合にも、切 り欠き 16aによってその変形を緩和でき、ガス吸着材 10とリード端子 12bとの接続部 に応力が生じるのを抑制することができる。その結果、リード端子 12bとガス吸着材 1 0との接続部が破損したり、ガス吸着材 10がリード端子 12bから欠落したりするのを有 効に防止することができる。
ガス吸着材 10の金属板に設けられる切り欠き 16aの形状は V字型、角型、または丸 型など様々であり、切り欠き 16aは図 10および図 12に示ように一箇所に形成されて いてもよぐ図 13および図 14に示される本発明の第 7の実施形態の燃料改質装置 2 OFのように、複数箇所に形成されていても良い。このとき、好ましくは通電による切り 欠き 16aからの発熱がガス吸着材 10全体に均一に伝達するようガス吸着材 10の中 央部もしくは全長の等間隔となる場所に設けることがよい。
切り欠き 16aを有するガス吸着材 10は、例えば、 Zr、 Fe、 V等を主成分とする金属 粉を担持させた Ni— Cr等カゝら成る金属板を所定の形状にプレス加工によって打ち 抜く方法、またはレーザーなどによる切断などの方法を用いて成形されたり、先に上 記の方法によって所定の形状にカ卩ェされた Ni—Cr等力も成る金属板に Zr、 Fe、 V 等を主成分とする金属粉を後に担持させることによって成形される。
好ましくは、ガス吸着材 10を燃料改質器 9に対向するように配置し、切り欠き 16aを 燃料改質器 9に対向させるのがよい。これによつて、ガス吸着材 10の特に発熱の大き い切り欠き 16aを燃料改質器 9に近づけることによって、ガス吸着材 10の熱を燃料改 質器 9へ放射させて燃料改質器 9の高温ィ匕に寄与させることができ、燃料改質器 9の 温度を高温に維持するために供給する電力を低減することができる。その結果、燃 料改質器収納用容器 11を用いた燃料電池システムの発電効率をより向上できる。 また、燃料改質器収納用容器 11内の断熱性を得るために、燃料改質器収納用容 器 11内をできるだけ真空にするのがよ!/、。燃料改質器収納用容器 11内を真空にす る方法としては、例えば、真空炉内において燃料改質器収納用容器 11に蓋体 4を口 ゥ付けすることによって封止する力、または、真空チャンバ一内において燃料改質器 収納用容器 11に蓋体 4をシームウエルド法などで溶接する等の方法がある。
その後に、前記ガス吸着材 10を、リード端子 12から通電させることによって加熱さ せ活性化を行う。活性条件としては、ガス吸着材 10を 350〜900°Cの温度で加熱を 行うことにより、 100%に近い活性状態が得られる。
また、ガス吸着材 10は、リード端子 12bのみに固定して基体 1、蓋体 4、または燃料 改質器 9と離間させるように配置してもよ 、。
また、本例ではガス吸着材 10の金属板の形状として、図 10および図 13に示される ように板状の例を示したが、それに限られず、柱状のものでもよぐ屈曲部を有したも のでもよい。さらに、切り欠き 16aを金属板に溝状に形成してもよい。
図 15は、本発明の第 8の実施形態の燃料改質装置 20Gを示す断面図である。本 実施形態において、上述の実施形態の構成に対応する部分には同一の参照符を付 し、説明を省略する。
燃料改質装置 20Gは、基体 1と、外部リード端子 2と、蓋体 4と、供給管 5aと、排出 管 5bと、絶縁封止材 8と、電極 7を有する燃料改質器 9とを含む。基体 1、蓋体 4、供 給管 5aおよび排出管 5bで燃料改質器 9を収納する燃料改質器収納用容器 11が構 成される。この燃料改質器収納用容器 11に燃料改質器 9を収納し、蓋体 4で基体 1 の凹部を気密に封止することにより燃料改質装置 20Gとなる。
図 16は、図 15のの燃料改質装置 20Gにおける供給管 5aまたは排出管 5bと基体 1 との接合部の要部拡大断面図である。図 15および図 16においては、供給管 5aまた は排出管 5bの実施の形態の一例として、外側に鍔部 6を設けたものを示す。供給管 5aまたは排出管 5bの外側と基体 1の貫通孔間には、空隙 17が設けられる。
供給管 5aまたは排出管 5bは、基体 1または蓋体 4に形成した貫通孔との間に空隙 17を有するように接合される。このような空隙 17は、例えば、図 15および図 16に示 すように、供給管 5aまたは排出管 5bが鍔部 6を有する場合は、鍔部 6を基体 1または 蓋体 4の貫通孔の縁部に接合することによって、供給管 5aまたは排出管 5bの外面と 貫通孔の内面との間に空隙 17を形成できる。
図 17は、本発明の第 9の実施形態の燃料改質装置 20Hにおける供給管 5aまたは 排出管 5bと基体 1との接合部の要部拡大断面図である。また、図 17に示されるように 、供給管 5aまたは排出管 5bの外面の一部のみを基体 1または蓋体 4の貫通孔の内 面にロウ材または封止材 18を介して接合することによって空隙 17を形成してもよい。 図 18は、本発明の第 10の実施形態の燃料改質装置 201における供給管 5aまたは 排出管 5bと基体 1との接合部の要部拡大断面図である。さらに、図 18に示されるよう に、基体 1または蓋体 4の貫通孔に段差を設け、この段差に供給管 5aまたは排出管 5bをロウ付けや溶接などによって接合することによって空隙 17を形成しても良い。 また、供給管 5aまたは排出管 5bの外面と、基体 1または蓋体 4の貫通孔の内面との 間の空隙 17の幅は、 0. 01mm以上とするのがよぐ図 17に示されるように、供給管 5 aまたは排出管 5bの外面の一部のみを基体 1または蓋体 4の貫通孔の内面にロウ材 13を介して接合する場合、より好ましくは 0. 01-0. 3mmとするのがよい。 0. 01m m未満であった場合、供給管 5aまたは排出管 5bを基体 1または蓋体 4に挿入した際 、供給管 5aまたは排出管 5bが貫通孔の内面に接触する恐れがあり、また供給管 5a または排出管 5bと貫通孔との間の空隙 17に Au—Snや Ag— Cu等のロウ材が毛細 管現象によって充填され空隙 17の確保が困難となる恐れがある。その結果、燃料改 質器 9からの熱が供給管 5aまたは排出管 5bから基体 1へ伝達することによって燃料 改質器収納用容器 11の外壁表面の温度が上昇し、携帯機器内の他の部品が破壊 されやすくなる。一方、 0. 3mm以上となった場合、供給管 5aまたは排出管 5bを基 体 1または蓋体 4の貫通孔内面にロウ付けするのが困難になる。
また、図 15および図 16に示されるような供給管 5aまたは排出管 5bの外面に鍔部 6 を有する場合は、供給管 5aまたは排出管 5bの外面と、基体 1または蓋体 4の貫通孔 の内面との間の空隙 17の幅は、 0. 01mm以上とするのがよぐより好ましくは 0. 01 〜5mmとするのがよい。 0. 01mm未満であった場合、供給管 5aまたは排出管 5bを 基体 1または蓋体 4に挿入した際、供給管 5aまたは排出管 5bが貫通孔の内面に接 触する恐れがあり、また供給管 5aまたは排出管 5bと貫通孔との間の空隙 17に Au— Snや Ag— Cu等のロウ材が毛細管現象によって充填され空隙 17の確保が困難とな る恐れがある。その結果、燃料改質器 9からの熱が供給管 5aまたは排出管 5bから基 体 1へ伝達することにより燃料改質器収納用容器 11の外壁表面の温度が上昇し、携 帯機器内の他の部品が破壊されやすくなる。一方、 5mm以上となった場合、鍔部 6 が大きくなる傾向となり、鍔部 6の変形などが発生しやすくなる傾向がある。また、燃 料改質器収納用容器 11自身も大きくなる傾向となり、小型化、低背化の障害となる。 また、鍔部 6の外径は供給管 5aまたは排出管 5bが挿入される基体 1または蓋体 4 の貫通孔の直径に対し、ロウ付けまたは溶接などの作業上、また鍔部 6の変形防止 のために lmm以上大きくすることが好ましい。また、鍔部 6の厚みは変形防止のため に 0. lmm以上とすることが好ましい。また、溶接法によって基体 1と接合するには、 供給管 5aまたは排出管 5bの鍔部 6に全周にわたって突起 (プロジェクシヨン)を設け ることが好ましい。
なお、図 15および図 16に示した例においては、鍔部 6は供給管 5aまたは排出管 5 bに直接接合されているが、供給管 5aまたは排出管 5bが連通する断面が円形状ま たは多角形状の筒状部材に鍔部 6を設けたものを用いて基体 1または蓋体 4と接合さ せても良い。
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。
産業上の利用可能性
本発明によれば、燃料改質器収納用容器は、燃料カゝら水素ガスを含む改質ガスを 発生させる燃料改質器が収納される凹部を有した基体と、燃料改質器力ゝらの改質ガ スを排出すべく凹部内と外部とを連通する排出管と、燃料改質器に燃料を供給すベ く凹部内と外部とを連通する供給管と、基体の凹部を塞ぐように接合される蓋体と、凹 部内に収納されて凹部内のガスを吸着するガス吸着材とを具備してなる。したがって 、蓋体で燃料改質器収納用容器内を封止した後に、燃料改質器収納用容器の内面 および燃料改質器自体の表面など燃料改質器収納用容器内の各部品表面に吸着 して 、るガスが、燃料改質時の温度の影響や時間の経過に伴!、燃料改質器収納用 容器内部にアウトガスとして放出されたとしても、このガスをガス吸着材によって良好 に吸着させることができる。このため、燃料改質器収納用容器内部の真空状態を、燃 料改質器収納用容器に燃料改質器を収納し封止した直後だけでなくその後も長期 に保つことができる。
また本発明によれば、ガス吸着材が燃料改質器と凹部の内面との間あるいは燃料 改質器と蓋体との間に燃料改質器と近接または接触して配置されている。したがって 、燃料改質器カゝら放出される熱でガス吸着材の温度を上げガス吸着材を活性ィ匕する ことができ、ガス吸着材を加熱するための電力を低減でき、燃料電池システムの発電 効率を向上できる。
さらに、ガス吸着材が燃料改質器から基体および蓋体へ伝導する熱を吸熱すること ができ、燃料改質器収納用容器の外壁表面の温度が上昇するのを有効に抑制する ことが可能となる。これによつて、携帯機器内の他の部品を破壊するのを有効に防止 でき、燃料電池システムを長期に安定かつ安全に使用することができる。
その結果、燃料改質反応が化学反応式 (1)の水蒸気改質反応のような吸熱反応の 場合において、燃料改質器内で燃料を改質する際に発生する熱の外部への伝導量 が増加することがない。したがって、燃料改質器の温度が低下せず、その結果ヒータ 一の発熱量を増力 tlさせる必要がなくなり、燃料電池システム全体の発電損失が増加 しない。このようにして、高効率な燃料電池システムを達成することができる。 また本発明によれば、ガス吸着材と排出管との間の距離が、ガス吸着材と供給管と の間の距離に比し小さく設定されている。したがって、燃料改質器で改質された直後 の高温の改質ガスによって高温となった排出管の持つ熱をガス吸着材の活性化に利 用でき、その結果、ガス吸着材を加熱するための電力をより低減できるとともに発電 損燃料改質器収納用容器内部の真空状態をより良好に保つことができる。
また本発明によれば、燃料改質器用収納用容器は凹部内から外部に導出されるよ うにして基体に取着されたリード端子をさらに含み、ガス吸着材が基体と離間した状 態でリード端子に固定されている。したがって、ガス吸着材の熱が基体に伝導してガ ス吸着材の温度が低下するのを有効に防止してガス吸着材の温度を高温に維持で き、ガス吸着材を加熱するための電力を低減でき、燃料電池システムの発電効率を 向上できる。
また本発明によれば、ガス吸着材は、金属板の表面に金属粉末を被着して成るとと もに、このガス吸着材を通電するためのリード端子を凹部内と外部とを連通するように 設けられている。ガス吸着材を構成する金属板の通電部に通電方向に直交する方 向の断面積が他の部位よりも小さい高抵抗部を形成している。したがって、高抵抗部 において局所的に抵抗を高くし、この抵抗の高い部分で効率よく発熱させて表面に 被着した金属粉末を非常に効率よく活性化させることができ、ガス吸着材を活性ィ匕す るための印加電流値を低減することができる。その結果、ガス吸着材を加熱するため の電力を低減でき、燃料改質器収納用容器を用いた燃料電池システムの発電効率 を向上できる。
また、高抵抗部により効率よくガス吸着材を活性ィ匕できるので、ガス吸着材を小さく しても燃料改質器収納用容器内部の真空状態を良好に維持するのに十分なガス吸 着機能を維持できる。これによつて、ガス吸着材を収納するためのスペースを小さく することができ、燃料改質器収納用容器の小型化および低背化、さらにその燃料改 質器収納用容器を用いた携帯機器用の燃料電池システム機器の小型化および低背 化が可能となる。
また本発明によれば、高抵抗部を金属板の通電部に切り欠きを設けることにより形 成している。したがって、ガス吸着材に接続されたリード端子からの通電による活性 化熱の影響でガス吸着材が変形を起こした場合にも、切り欠きによりその変形を緩和 でき、ガス吸着材とリード端子との接続部に応力が生じるのを抑制することができる。 その結果、リード端子とガス吸着材との接続部が破損したり、ガス吸着材がリード端子 力 欠落したりするのを有効に防止することができる。
また本発明によれば、ガス吸着材を燃料改質器に対向するように配置し、切り欠き を燃料改質器に対向させている。したがって、ガス吸着材の特に発熱の大きい切り欠 きを燃料改質器に近づけることにより、ガス吸着材の熱を燃料改質器へ放射させて 燃料改質器の高温ィ匕に寄与させることができ、燃料改質器の温度を高温に維持する ために供給する電力を低減することができる。その結果、燃料改質器収納用容器を 用いた燃料電池システムの発電効率をより向上できる。
また本発明によれば、前記基体の前記蓋体との接合部および前記蓋体の前記基 体との接合部の少なくとも一方に前記凹部内の気体を排気するための溝を形成して いる。したがって、減圧状態において蓋体と基体とを接合する際、溝から燃料改質器 収納用容器の内部にあるガスを十分に排出することが可能であり、燃料改質器収納 用容器内部を高真空に排気することが可能である。また、蓋体と基体との接合の際に 加える熱によって基体または蓋体が歪んで応力が生じたとしても、溝部を適度に変形 させることによって応力を吸収させることができ、応力による封止不良を有効に防止 することができる。
また本発明によれば、基体の蓋体との接合部および蓋体の基体との接合部の少な くとも一方を全周にわたって突出させ、この突出した部位の一部を切り欠くことによつ て溝を形成している。したがって、溶接によって蓋体と基体との接合部のみに熱を生 じさせて蓋体と基体とを接合する際、熱を突出部に集中させることができ、接合効率 を高めることができる。これとともに熱が基体または蓋体に伝達して、燃料改質器収 納用容器内の他の部品や燃料改質器収納用容器の外側の他の部品に損傷を与え たり、燃料改質器収納用容器が歪んで封止不良が生じたりするのを有効に抑制でき る。
また本発明によれば、ガス吸着材を凹部の溝側の内面に沿って配置している。した がって、基体と蓋体との接合時に溝を排気用として用い、最後にこの溝を塞ぐ際に気 体が被着しやす 、この溝部にガス吸着材を近づけることによって、溝部に被着した気 体を即座にガス吸着材で効率よく吸着させることができる。つまり、溝部に被着した気 体が燃料改質器収納用容器内に放散して他の部位に再被着するという悪循環を抑 制してガス吸着の効率をきわめて高くすることができる。
また本発明によれば、蓋体および基体が熱伝導率が 120W/mK以下の金属材料 力らなる。したがって、燃料改質器力もの熱が蓋体および基体に伝わるのを抑制して 、蓋体表面および基体表面の温度が上昇するのをさらに有効に防止することが可能 となる。これによつて、燃料改質器収納用容器内の他の部品および燃料改質器収納 用容器の外側の他の部品に損傷を与えるのをさらに有効に防止でき、燃料電池シス テムを長期に安定かつ安全に使用することができる。
また本発明によれば、上記本発明の燃料改質器収納用容器と、凹部内に収納され る燃料改質器とを具備するので、長期に安定かつ安全であり、また高効率な燃料電 池システムを達成することができる。
また発明によれば、ガス吸着材は燃料改質器表面に設けられるので、ガス吸着材 を燃料改質器の熱によって活性化した後も、燃料改質器の熱を利用してガス吸着材 を高温に維持できる。したがって、常温での使用と比較して、高温におけるガス吸着 効率の高 ヽ温度依存性を有するガス吸着材を使用する場合にお ヽては、ガス吸着 効率が非常に高い状態で使用することが可能となり、その結果、燃料改質装置内部 の真空状態を、燃料改質装置に燃料改質器を収納し封止した直後だけでなくその後 も長期に保つことができる。
また本発明によれば、ガス吸着材と燃料改質器とを金属板を介して接合して!/、る。 したがって、ガス吸着材と燃料改質器との接合強度を補強するとともに、燃料改質器 力も放出される熱を金属板に与え、その熱によりガス吸着材をまんべんなく活性ィ匕す ることができ、ガス吸着材を加熱するための電力を低減でき、燃料電池システムの発 電効率を向上できる。
また本発明によれば、燃料改質器の発熱部にガス吸着材を配置している。したがつ て、発熱部力 直接ガス吸着材を加熱できるため、ガス吸着材を加熱するために必 要な電力をさらに低減できるとともに発電損燃料改質装置内部の真空状態をより良 好に保つことができる。
また本発明によれば、凹部の内圧を 102Pa以下としている。したがって、燃料改質 器からの熱の放射によって基体および蓋体に熱が伝わるのを有効に防止することが できる。またガス吸着材の周囲の真空度を高めてガス吸着材の活性力を下げた状態 とすることにより、基体と蓋体との接合時のわずかな熱でガス吸着材の自己活性が生 じて吸着特性が飽和に近づくのを有効に防止できる。
また本発明によれば、蓋体と基体とをプロジェクシヨン法、シームウェルダー法、電 子ビーム法、レーザービーム法のいずれかで接合している。したがって、基体と蓋体 との接合部およびその近傍のみが加熱されるだけであり、基体と蓋体との接合部から 蓋体を伝って熱がガス吸着材に伝わりガス吸着材が活性ィヒするのをより有効に抑制 できる。これによつて、蓋体を取着時にガス吸着材が周囲のガスを吸着してガス吸着 材の吸着特性が飽和に近づき活性力が低下するのをより有効に防止できる。

Claims

請求の範囲
[1] 燃料カゝら水素ガスを含む改質ガスを発生させる燃料改質器が収納される凹部を有 する基体と、
前記燃料改質器力ゝらの前記改質ガスを排出すべく前記凹部内と外部とを連通する 排出管と、
前記燃料改質器に前記燃料を供給すべく前記凹部内と外部とを連通する供給管と 前記基体の前記凹部を塞ぐように接合される蓋体と、
前記凹部内に収納されて凹部内のガスを吸着するガス吸着材とを具備してなること を特徴とする燃料改質器収納用容器。
[2] 前記ガス吸着材が、前記燃料改質器と前記凹部を規定する内面との間あるいは前 記燃料改質器と前記蓋体との間に、該燃料改質器と近接または接触して配置されて いることを特徴とする請求項 1記載の燃料改質器収納用容器。
[3] 前記ガス吸着材と前記排出管との間の距離が、前記ガス吸着材と前記供給管との 間の距離に比し小さく設定されていることを特徴とする請求項 1記載の燃料改質器収 納用容器。
[4] 前記凹部内から外部に導出されるようにして前記基体に取着されたリード端子をさ らに含み、前記ガス吸着材は前記凹部内で前記基体と離間した状態で前記リード端 子に固定されていることを特徴とする請求項 1記載の燃料改質器収納用容器。
[5] 前記ガス吸着材は、金属板の表面に金属粉末を被着して成るとともに、該ガス吸着 材を通電するためにリード端子が前記凹部内と外部とを連通するように設けられてお り、前記金属板の通電部の一部に、通電方向に直交する方向の断面積が他の部位 よりも小さい高抵抗部が形成されることを特徴とする請求項 1記載の燃料改質器収納 用谷器。
[6] 前記高抵抗部は、前記金属板の通電部に切り欠きを設けることによって形成される ことを特徴とする請求項 5記載の燃料改質器収納用容器。
[7] 前記ガス吸着材は前記燃料改質器に対向するように配置され、前記切り欠きは前 記燃料改質器に対向するように配置されることを特徴とする請求項 6記載の燃料改 質器収納用容器。
[8] 前記基体の前記蓋体との接合部および前記蓋体の前記基体との接合部の少なくと も一方に、前記凹部内の気体を排気するための溝が形成されることを特徴とする請 求項 1記載の燃料改質器収納用容器。
[9] 前記基体の前記蓋体との接合部および前記蓋体の前記基体との接合部の少なくと も一方が全周にわたって突出させられ、該突出した部位の一部を切り欠くことによつ て前記溝が形成されることを特徴とする請求項 8記載の燃料改質器収納用容器。
[10] 前記ガス吸着材は、前記凹部を規定する、前記溝側の内面に沿って配置されるこ とを特徴とする請求項 8記載の燃料改質器収納用容器。
[11] 前記蓋体および前記基体が、熱伝導率が 120W/mK以下の金属材料からなること を特徴とする請求項 1記載の燃料改質器収納用容器。
[12] 請求項 1記載の燃料改質器収納用容器と、前記凹部内に収納される燃料改質器と を具備することを特徴とする燃料改質装置。
[13] 前記ガス吸着材は前記燃料改質器表面に設けられることを特徴とする請求項 12記 載の燃料改質装置。
[14] 前記ガス吸着材と前記燃料改質器とは、金属板を介して接合されることを特徴とす る請求項 13記載の燃料改質装置。
[15] 前記燃料改質器の発熱部に、前記ガス吸着材が配置されることを特徴とする請求 項 13記載の燃料改質装置。
[16] 前記凹部の内圧は、 102Pa以下とされることを特徴とする請求項 12記載の燃料改 質装置。
[17] 前記蓋体と前記基体とは、プロジェクシヨン法、シームウェルダー法、電子ビーム法 、レーザービーム法の 、ずれかで接合されることを特徴とする請求項 12記載の燃料 改質器収納用容器。
PCT/JP2005/019790 2004-10-27 2005-10-27 燃料改質器収納用容器および燃料改質装置 WO2006046646A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/718,189 US8182559B2 (en) 2004-10-27 2005-10-27 Fuel reformer housing container and fuel reforming apparatus
EP05799233A EP1826175A4 (en) 2004-10-27 2005-10-27 CONTAINER FOR CONTAINING A FUEL REFORMER AND FUEL REFORMING APPARATUS

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2004-312161 2004-10-27
JP2004-312162 2004-10-27
JP2004312161A JP4948759B2 (ja) 2004-10-27 2004-10-27 燃料改質器収納用容器および燃料改質装置
JP2004312162A JP2006124208A (ja) 2004-10-27 2004-10-27 燃料改質器収納用容器および燃料改質装置
JP2004371319A JP5046484B2 (ja) 2004-12-22 2004-12-22 燃料改質器収納用容器および燃料改質装置
JP2004-371319 2004-12-22
JP2004-375035 2004-12-24
JP2004375036A JP4889217B2 (ja) 2004-12-24 2004-12-24 燃料改質装置の製造方法
JP2004-375036 2004-12-24
JP2004375035A JP2006182573A (ja) 2004-12-24 2004-12-24 燃料改質装置
JP2005-017865 2005-01-26
JP2005017865A JP2006206352A (ja) 2005-01-26 2005-01-26 燃料改質器収納用容器および燃料改質装置
JP2005021183A JP2006206388A (ja) 2005-01-28 2005-01-28 燃料改質器収納用容器および燃料改質装置ならびに燃料改質装置の製造方法
JP2005-021183 2005-01-28

Publications (1)

Publication Number Publication Date
WO2006046646A1 true WO2006046646A1 (ja) 2006-05-04

Family

ID=36227888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019790 WO2006046646A1 (ja) 2004-10-27 2005-10-27 燃料改質器収納用容器および燃料改質装置

Country Status (3)

Country Link
US (1) US8182559B2 (ja)
EP (1) EP1826175A4 (ja)
WO (1) WO2006046646A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143542A (ja) * 2004-11-22 2006-06-08 Kyocera Corp 燃料改質器収納用容器および燃料改質装置
JP2006155953A (ja) * 2004-11-25 2006-06-15 Kyocera Corp 燃料改質器収納用容器および燃料改質装置ならびに燃料改質システム
JP2006176379A (ja) * 2004-12-24 2006-07-06 Kyocera Corp 燃料改質器収納用容器および燃料改質装置
EP2062851A1 (en) * 2006-08-30 2009-05-27 Kyocera Corporation Reaction device, fuel battery system, and electronic device
EP2072461A1 (en) * 2006-08-30 2009-06-24 Kyocera Corporation Reaction device, fuel battery system, and electronic device
EP2072460A1 (en) * 2006-08-30 2009-06-24 Kyocera Corporation Reaction device, fuel cell system, and electronic apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884618B (zh) * 2010-09-28 2015-07-22 京瓷株式会社 元件收纳用容器及使用其的电子装置
CN102956662B (zh) * 2012-11-22 2015-01-28 烟台睿创微纳技术有限公司 一种红外焦平面探测器芯片真空密封封装结构及封装方法
EP3051582B1 (en) * 2013-09-27 2020-01-22 Kyocera Corporation Lid body, package, and electronic apparatus
WO2020044321A1 (en) * 2018-08-31 2020-03-05 Ecole Polytechnique Federale De Lausanne (Epfl) Fuel cell system for portable applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749266A (ja) * 1993-08-06 1995-02-21 Fujitsu Ltd 赤外線検知器
JP2001304495A (ja) * 2000-04-20 2001-10-31 Benkan Corp 水素貯蔵装置
JP2004091218A (ja) * 2002-08-29 2004-03-25 Casio Comput Co Ltd 改質装置、改質装置の製造方法及び発電システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359599U (ja) 1989-10-16 1991-06-12
JP3725271B2 (ja) 1996-12-20 2005-12-07 徳厚 小島 配管設備の接続構造
JP4463410B2 (ja) 2000-10-26 2010-05-19 積水化学工業株式会社 配管取出部材
JP4689065B2 (ja) * 2001-03-26 2011-05-25 カルソニックカンセイ株式会社 管体の仮固定構造
JP2003002602A (ja) 2001-06-14 2003-01-08 Mitsubishi Heavy Ind Ltd 燃料改質装置
US7077643B2 (en) * 2001-11-07 2006-07-18 Battelle Memorial Institute Microcombustors, microreformers, and methods for combusting and for reforming fluids
US7169367B2 (en) * 2002-04-05 2007-01-30 Casio Computer Co., Ltd. Chemical reaction apparatus and power supply system
JP4423847B2 (ja) * 2002-10-25 2010-03-03 カシオ計算機株式会社 小型化学反応装置
US6921971B2 (en) * 2003-01-15 2005-07-26 Kyocera Corporation Heat releasing member, package for accommodating semiconductor element and semiconductor device
JP3872442B2 (ja) 2003-03-27 2007-01-24 京セラ株式会社 材料変換器収納用容器および材料変換装置
JP4157405B2 (ja) 2003-03-27 2008-10-01 京セラ株式会社 燃料改質器収納用容器
US20050132648A1 (en) * 2003-11-27 2005-06-23 Kyocera Corporation Fuel reformer housing container and fuel reforming apparatus
DE102005006133B4 (de) * 2004-02-10 2009-01-15 Kyocera Corp. Brennstoffreformer-Unterbringungsbehälter und Brennstoffreformiervorrichtung
JP5207961B2 (ja) * 2006-02-27 2013-06-12 京セラ株式会社 反応装置、反応装置の組立方法
JP4155314B2 (ja) * 2006-06-26 2008-09-24 カシオ計算機株式会社 反応装置、その反応装置を用いた発電装置、及び、電子機器
EP2062851A4 (en) * 2006-08-30 2011-11-02 Kyocera Corp Reaction device, fuel cell system and electronic device
US20100086813A1 (en) * 2006-08-30 2010-04-08 Kyocera Corporation Reaction Apparatus, Fuel Cell System and Electronic Device
JP2010251702A (ja) * 2009-03-27 2010-11-04 Kyocera Corp 電子部品、パッケージおよび赤外線センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749266A (ja) * 1993-08-06 1995-02-21 Fujitsu Ltd 赤外線検知器
JP2001304495A (ja) * 2000-04-20 2001-10-31 Benkan Corp 水素貯蔵装置
JP2004091218A (ja) * 2002-08-29 2004-03-25 Casio Comput Co Ltd 改質装置、改質装置の製造方法及び発電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1826175A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143542A (ja) * 2004-11-22 2006-06-08 Kyocera Corp 燃料改質器収納用容器および燃料改質装置
JP2006155953A (ja) * 2004-11-25 2006-06-15 Kyocera Corp 燃料改質器収納用容器および燃料改質装置ならびに燃料改質システム
JP2006176379A (ja) * 2004-12-24 2006-07-06 Kyocera Corp 燃料改質器収納用容器および燃料改質装置
EP2062851A1 (en) * 2006-08-30 2009-05-27 Kyocera Corporation Reaction device, fuel battery system, and electronic device
EP2072461A1 (en) * 2006-08-30 2009-06-24 Kyocera Corporation Reaction device, fuel battery system, and electronic device
EP2072460A1 (en) * 2006-08-30 2009-06-24 Kyocera Corporation Reaction device, fuel cell system, and electronic apparatus
EP2072460A4 (en) * 2006-08-30 2011-10-26 Kyocera Corp REACTION DEVICE, FUEL CELL SYSTEM, AND ELECTRONIC APPARATUS
EP2072461A4 (en) * 2006-08-30 2011-11-02 Kyocera Corp Reaction device, fuel cell system and electronic device
EP2062851A4 (en) * 2006-08-30 2011-11-02 Kyocera Corp Reaction device, fuel cell system and electronic device
US8382865B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device
US8382866B2 (en) 2006-08-30 2013-02-26 Kyocera Corporation Reaction apparatus, fuel cell system and electronic device

Also Published As

Publication number Publication date
EP1826175A4 (en) 2010-12-01
US20090229181A1 (en) 2009-09-17
EP1826175A1 (en) 2007-08-29
US8182559B2 (en) 2012-05-22

Similar Documents

Publication Publication Date Title
WO2006046646A1 (ja) 燃料改質器収納用容器および燃料改質装置
JP4471634B2 (ja) 燃料改質器収納用容器
JP4812288B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4889217B2 (ja) 燃料改質装置の製造方法
JP4903380B2 (ja) 燃料改質器収納用容器および燃料改質装置ならびに燃料改質システム
JP5046484B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4471635B2 (ja) 燃料改質器収納用容器
JP4948759B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4628090B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4794182B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4863632B2 (ja) 燃料改質器および燃料改質装置
JP4493357B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4423098B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4628069B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP2006232618A (ja) 燃料改質器収納用容器および燃料改質装置
JP4493361B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP2006206366A (ja) 燃料改質器収納用容器および燃料改質装置
JP2006206352A (ja) 燃料改質器収納用容器および燃料改質装置
JP4471690B2 (ja) 燃料改質装置
JP4458889B2 (ja) 燃料改質器収納用容器および燃料改質装置
JP4854421B2 (ja) 反応装置および反応装置の製造方法
JP2006182573A (ja) 燃料改質装置
JP2005225686A (ja) 燃料改質器収納用容器および燃料改質装置
JP2006124208A (ja) 燃料改質器収納用容器および燃料改質装置
JP2005187233A (ja) 燃料改質器収納用容器および燃料改質装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005799233

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005799233

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11718189

Country of ref document: US