WO2006045304A2 - Laser resonator comprising an internal beam divider - Google Patents

Laser resonator comprising an internal beam divider Download PDF

Info

Publication number
WO2006045304A2
WO2006045304A2 PCT/DE2005/001959 DE2005001959W WO2006045304A2 WO 2006045304 A2 WO2006045304 A2 WO 2006045304A2 DE 2005001959 W DE2005001959 W DE 2005001959W WO 2006045304 A2 WO2006045304 A2 WO 2006045304A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser source
source according
beam splitter
gain
feedback
Prior art date
Application number
PCT/DE2005/001959
Other languages
German (de)
French (fr)
Other versions
WO2006045304A3 (en
Inventor
Volker Raab
Original Assignee
Volker Raab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volker Raab filed Critical Volker Raab
Priority to AT05810669T priority Critical patent/ATE436107T1/en
Priority to EP05810669A priority patent/EP1810381B1/en
Priority to DE502005007672T priority patent/DE502005007672D1/en
Publication of WO2006045304A2 publication Critical patent/WO2006045304A2/en
Publication of WO2006045304A3 publication Critical patent/WO2006045304A3/en
Priority to US11/789,720 priority patent/US7609744B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0811Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0818Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • H01S3/0823Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1089Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4056Edge-emitting structures emitting light in more than one direction

Definitions

  • Each laser consists of a laser-active region, called “gain” in English, and “profit” in German, in which externally applied energy is converted into coherent radiation by means of stimulated emission, necessitating a laser resonator
  • the resonator determines via its geometry and its feedback properties the physical properties of the laser light, namely, in particular, the spatial profile, the wavelengths, which are returned to the gain range and for which it contains at least one feedback element, typically a partially transmissive mirror Bandwidth and polarization
  • the values obtainable depend on the gain material and the resonators and are usually reciprocal and correlated with the achievable output power Ind losses and unusable emissions are detrimental to overall quality.
  • semiconductor lasers are very small and inexpensive, can directly convert electrical energy into light, have high efficiency, and can be mass-produced using established semiconductor production technology techniques.
  • the resonator is integrated with it by the fact that reflective layers are applied to the end surfaces and / or refractive index gratings are epitaxially introduced. At present, however, their maximum output power or the achievable power density is still too low for many highly interesting applications. This is due to the fact that the light generation happens in volumes that are significantly smaller than 1 mm 3 , and therefore would cause the resulting power densities increase to destruction of the component. The way out, to increase the volume, quickly reaches its limits, since then decreases the mode selectivity of the resonator and therefore the beam quality deteriorates.
  • the external resonators for high-power diode lasers use a certain emission direction of the radiation emitted by the gain material substantially for the feedback and an angular range substantially for the decoupling.
  • the proportion of emitted radiation in the feedback direction is not adjustable and is therefore usually higher or lower than necessary for optimal operation. If the radiation emitted in the direction of the feedback element is too high, ie above the threshold for saturation behavior, output power is lost in the useful light. If the radiation is too low, the laser parameters such as beam quality and side-mode suppression suffer, and the proportion of incoherently emitted light, the so-called ASE (amplified spontaneous emission), also increases. In any case, the energy flows in the gain material are distributed very asymmetrically between the feedback and feedback load. The problem therefore is to find arrangements which, if possible, have the different emission directions with selectable divider ratios, eg. uniformly and symmetrically, treat and allow by externally selectable optical elements an adjustable feedback level.
  • the solution to the problem is to introduce one or more beam splitters between the gain material and the feedback element, which can simultaneously supply portions of the feedback light with different directions of emission of the gain material. Because these beam splitters have selectable divider ratios, the proportionate power in the different emission directions can be set. Since there is at least one selectable feedback element that serves multiple emission directions, the optimal overall feedback is also selectable.
  • a basic representation of the mode of operation of the laser resonator is shown in block diagram in FIG. 1, in the image section (a) the light path from the gain area 1 to the feedback element 9 and in the image section (b) the return path.
  • the gain material is characterized only by its ability to respond to feedback with stimulated emission. It may be arrangements with and without their own resonators. Thus, no distinction is made here between externally resonant (sometimes seeding) arrangements, sometimes referred to as regenerative amplifiers, and those arrangements in which the resonators become complete only by the externally added feedback. If a distinction is made at all in the following, then in the first case “lasers” are used and in the second case "half-open lasers" to make clear that they are still unilaterally lacking in feedback.
  • a laser-active gain region 1 has at least one surface 16 through which a total of at least two different beams 4 can be coupled in and out. It is irrelevant for the function whether the two beams are two "real" beams, or whether they are two angular ranges of a single broad beam, especially as in many real situations a distinction is hardly possible.
  • the central element of the laser resonator according to the invention is the beam splitter 7, which mixes two input signals A and B into two output signals C and D in image part (a) and divides a single feedback signal 8 in channel C into two feedback channels A and B in image part (b) , With suitable input signals A and B, the beam splitter can be chosen so that one of the two output channels, preferably D, carries no power.
  • the total power emitted from the gain material 1 into two channels 4 is contained in a single beam 8.
  • a return and decoupling of the useful light 10 can be realized via an element 9, preferably a partially reflective mirror or grating. Due to the symmetry of optical beam splitters, the function of the channels A / B and C / D is reversed in image part (b) for the feedback light, so that the light incident on C is distributed to A and B according to the divider ratio and returns to the gain range 1 where it contributes to stimulated emission.
  • the coefficients acA, aDA, ac ⁇ and a DA are the elements of a unitary matrix that contains the absolute values SQRT (R) and SQRT (IR) and appropriate phases to account for energy conservation.
  • both beams 4 remain equally intense and without relative phase difference.
  • the useful light is advantageously coupled via the feedback element 9.
  • the Auskoppelgrad can then be chosen freely in principle. This behavior is essentially retained even if the reflectivity does not deviate very much from 50%. This results in a weak additional beam 14, which can be used for diagnostic purposes, for example.
  • the feedback element 9 will then be made as highly reflective as possible and decouple the light in the channel 14 as useful light.
  • optical elements such as lenses, mirrors, prisms and the like for collimation, imaging, beam guidance, etc. are needed, which are not shown here for the sake of clarity and in particular for the transverse properties of light (beam waists, divergences, stability , etc.).
  • the asymmetry can be eliminated, which arises because typically only one highly reflective feedback element is used on the one side and the decoupling takes place on the other side.
  • a two-sided extraction increases the average field strength over the length of the gain material and thereby improves the efficiency and spectral properties.
  • Figure 2 shows two different simple embodiments.
  • picture part (a) an arrangement is shown, which is suitable eg for Hocb amongs semiconductor laser.
  • a beam is deflected by a deflection mirror 12. These two beams hit from both sides on a beam splitter 7, here a partially reflecting mirror.
  • the angles of incidence are chosen so that the reflected beam of the one and the transmitted beam of the other are as good as possible above each other and thus together form the beam 8.
  • the useful light may consist of the beam 10 and / or the beam 14 and / or be obtained at additional points by means of additional decoupling elements.
  • image part (b) a possible arrangement for solid-state lasers is indicated, in which the two beams emerging from the facets 16 are advantageously conducted to the beam splitter 7, in each case by mirrors 12, which are advantageously curved.
  • the optical paths from the gain region to the beam splitter are the same length, or at least the beam parameters (in particular beam diameter, Rayleigh length, divergence, beam quality) are identical for both. This improves the quality with which the rays can interfere. Otherwise, the beam parameters of the two outgoing beams from the beam splitter are different, which should be considered in the application.
  • FIG. 3 An arrangement in which the divider ratio is easily adjustable is shown in Figure 3, in image part (a) the principle, in image part (b) a possible embodiment.
  • the beam splitter 17 is assumed to be a polarization-dependent beam splitter.
  • Divider ratios and feedback levels can be controlled by the relative rotation of the delay elements 13 and 18 with respect to the orientation of the beam splitter.
  • Figure 4 shows two preferred arrangements for semiconductor lasers.
  • the active medium 1 emits two beams 4, which are combined at a beam splitter 7 into a single beam 8.
  • Feedback and decoupling takes place in image part (a) via an element 26 and in image part (b) via an element 9, so that the useful light 10 and 14 is available.
  • the feedback is realized by means of a grid in Littrow arrangement, so that a decoupling over the zeroth diffraction order can be done.
  • collimators 5, antireflection coatings 3 and 11 and deflecting mirrors 12 are added.
  • the grating is mounted so that its wavelength selectivity occurs along the fast-axis (direction of high divergence, perpendicular to the plane of epitaxy), since then the combination of grating and fast-axis collimator 5 acts as a strong frequency filter.
  • the antireflective property 11 is achieved by satisfying the Brewster condition.
  • image part (b) the arrangement is supplemented by a collimation lens 19, which collimates and deflects the rays along the so-called slow-axis (direction of lower divergence, parallel to the epitaxial plane).
  • all mirrors 7, 9 and 12 were monolithically integrated into an element 20, which is advantageously antireflectively provided with layers 3.
  • Figure 5 shows the use of a prism adapted to the emission angles of the gain range.
  • the difference between image part (a) and (b) is that in (a) coupled out by the feedback element 9 and in (b) via the beam splitter 7 becomes.
  • This can be achieved by suitable choice of the reflectivities of the two mirrors according to the considerations given above.
  • the remainder of the beam path is the same in both cases: the light 4 emerging in two directions from the gain material 1 provided with mirror 2 and antireflection layer 3 is advantageously collimated by means of a lens 5, eg an FAC (fast axis collimator).
  • Condition for the correct function is the vertical impact of the light on the feedback element 9.
  • the angle between the beam splitter surface 7 and element 9 determines depending on the refractive index of the prism, the deflection angle under which moves directly to the gain range extending beam 21, and the angles of the beams 22 and 23.
  • the angle of the beam 24 can then be influenced within certain limits and adjusted to the angle between the two beams 4 predetermined by the gain range. If one wants the passage through surface 25 to occur under Brewster's condition in order to save the antireflection coating 11, this results in an additional condition at the angle between 7 and 9, whereby the prism is uniquely determined.
  • This configuration can be adjusted within a certain angular range between the beams 4. For other angular ranges, other prisms with more or less total internal reflection should be chosen.
  • An advantage of all variants of this arrangement is its simplicity and cost-producible. These are based on the fact that apart from the semiconductor as the gain material 1, only a collimating lens 5 and a prism 6 with two applied (partial) VerLiteept 7 and 9 are necessary, if one uses the concepts of the unstable resonator. Otherwise, if necessary, a further lens for the Kollimtion along the slow direction is necessary. All the arrangements mentioned are particularly advantageous in combination or expansion of the unstable resonators of DE 101 61 076. Since, as a strip array, shaped high-performance wide-area lasers inherently have two preferred directions for their emission, the proposed arrangements are appropriate. Since it is also known that unstable resonators work well there, the remaining problems, namely the uncontrollable power components in the two emission directions, can be solved by these new arrangements.
  • the invention can be used for any laser materials. Particularly advantageous is, apart from semiconductors, everything that naturally or due to the pumping conditions has a plurality of emission directions or a divergence more than doubly diffraction-limited.
  • optically pumped gain media when the pump light consists of a plurality of coherent and interfering sub-beams.
  • the gain ranges may be lasers or "semi-open" lasers.
  • the resonators presented here can lead to a lasing action of the active region.
  • Polarization-influencing element preferably birefringent phase plate with ⁇ / 2 delay
  • Input channels A and B of a beam splitter 7 meet.
  • One of its output channels C emits Typically, either a partial beam 10 or a partial beam 14 is coupled out as useful light.
  • the light 8 coming from the feedback element in channel C is split between the channels A and B.
  • the active medium 1 emits two beams 4, which are combined at a beam splitter 7 into a single beam 8. Feedback and decoupling is done via an element 26 or 9, so that the useful light 10 is available.
  • collimators 5, antireflective coatings 3 and 11 and a JO deflecting mirror 12 are added.
  • the antireflective property 3 and / or 11 is achieved by fulfilling the Brewster condition, (b) supplementation by collimation element 19 and monolithic integration of mirrors 7, 9 and 12.
  • LiFaIl (a) is the mirror 9 of the output coupler for the useful light 10, in case (b) the mirror 7 for the useful light 14th

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

The invention relates to a simple and compact laser resonator which operates, in a symmetrisiered manner, a gain element, preferably a semi-conductor laser having at least two emission directions. As a result, high output powers and/or improved beam quality and/or improved spectral properties are obtained. The laser resonator is very compact and, in the ideal place, consists of only three elements: the laser active medium (1), a cylindrical collimation lens (5) and a prisma (6) which is adapted to the angle between both of the beams (4) which is coated (see figure) by a beam divider (7) and a reinjection element (9). The gain medium (1) advantageously comprises a reinjection element (2) and an antireflection layer (3). Brewster conditions can be met such that the antireflection layers (11) are not required. The reflectivities of the elements (7) and (9) determine the relative power parts in the beams (10) and (14). When the beam divider has 50 % reflectivity, both of the reinjection branches (4) support the same power and the beam (14) generally disappears. If the separator has another reflectivity, which happens frequently (14), it can be advantageous in surpressing the beam (10) by a high reflectivity of the element (9), as represented in the part (b) of the image. According to a particulary advantageous arrangement of the invention, the gain is made of a high-power diode laser which is embodied as strip array and/or the laser resonator is embodied as an unstable resonator along the direction which is parallel to the epitaxy planes. In alternative modes of embodiment, the reinjection element (9) can also be selective on wave length, for example in the form of a grating, a dielectric filter, a holographic element or volume-Bragg grating.

Description

Beschreibung der ErfindungDescription of the invention
Titeltitle
Laserresonator mit internem StrahlteilerLaser resonator with internal beam splitter
Internationale Patent Klassifikation (Vorschlag) H01S05/14, H01S05/10, H01S05/0687, H01S05/065, H01S03/08International Patent Classification (Proposal) H01S05 / 14, H01S05 / 10, H01S05 / 0687, H01S05 / 065, H01S03 / 08
Technischer Hintergrund und Stand der TechnikTechnical background and state of the art
Jeder Laser besteht aus einem laseraktiven Bereich, englisch als "gain" und deutsch als „Gewinn" bezeichnet, in dem von aussen zugeführte Energie mittels stimulierter Emission in kohärente Strahlung umgewandelt wird. Dazu ist ein Laserresonator notwendig, der dafür sorgt, dass jeweils ein Teil der entstehenden Strahlung wieder in den Gainbereich zurück geleitet wird und wofür er mindestens ein Rückkoppelelement enthält, typischer weise einen teildurchlässigen Spiegel. Dieser Resonator bestimmt über seine Geometrie und seine Rückkoppeleigenschaften die physikalischen Eigenschaften des Laserlichts, nämlich vor allem das räumliche Profil, die Wellenlängen, die Bandbreite und die Polarisation. Die dabei erzielbaren Werte hängen unter anderem vom Gainmaterial und den Resonatoren ab und sind meist reziprok untereinander und mit der erzielbaren Ausgangsleistung korreliert. Verbesserungen einzelner Parameter fuhren also in der Regel zu Verschlechterungen bei anderen. Generell sind Verluste und nicht nutzbare Emissionen schädlich für die Gesamtqualität. Von besonderer praktischer Bedeutung sind Halbleiterlaser, da sie sehr klein und preiswert sind, direkt elektrische Energie in Licht umwandeln, einen hohen Wirkungsgrad besitzen und mit etablierten Techniken der Halbleiter-Produktionstechnologie in großen Stückzahlen hergestellt werden können. Der Resonator ist dabei gleich mit integriert, indem reflektive Schichten auf die Endflächen aufgebracht werden und/oder Brechungsindex-Gitter epitaktisch eingebracht sind. Gegenwärtig ist ihre maximale Ausgangsleistung beziehungsweise die erzielbare Leistungsdichte allerdings noch zu gering für viele hochinteressante Anwendungen. Das beruht darauf, dass die Lichterzeugung in Volumina geschieht, die deutlich kleiner als 1 mm3 sind, und deshalb die auftretenden Leistungsdichten bei Erhöhung zu Zerstörung des Bauteils führen würden. Der Ausweg, die Volumina zu vergrößern, stößt schnell an Grenzen, da dann die Modenselektivität des Resonators abnimmt und sich deshalb die Strahlqualität verschlechtert. Auch Ansätze, die Selektivität zu erhöhen, indem das Gainmaterial substrukturiert wird (DE 43 38 606, DE 36 11 167), hilft nur wenig. Deshalb wird seit längerem der Weg beschriften, besonders bei Halbleiterlasern die Funktion von Gain und Resonator zu trennen, also ein Halbleiter-Gainmaterial in einem externen Resonator zu betreiben, was die erzielbaren Leistungsdichten deutlich erhöht. (DE 101 61 076, WO 02/21651, WO 02/082593, WO 98/56087, US 4426707, Opt. Lett. 27(3) pp.167-169). All diesen Veröffentlichungen ist gemein, dass die Emission des Halbleiters in zwei Winkelbereiche aufgeteilt wird, deren einer der Rückkopplung dient und deren anderer der Auskopplung.Each laser consists of a laser-active region, called "gain" in English, and "profit" in German, in which externally applied energy is converted into coherent radiation by means of stimulated emission, necessitating a laser resonator The resonator determines via its geometry and its feedback properties the physical properties of the laser light, namely, in particular, the spatial profile, the wavelengths, which are returned to the gain range and for which it contains at least one feedback element, typically a partially transmissive mirror Bandwidth and polarization The values obtainable depend on the gain material and the resonators and are usually reciprocal and correlated with the achievable output power Ind losses and unusable emissions are detrimental to overall quality. Of particular practical importance are semiconductor lasers because they are very small and inexpensive, can directly convert electrical energy into light, have high efficiency, and can be mass-produced using established semiconductor production technology techniques. The resonator is integrated with it by the fact that reflective layers are applied to the end surfaces and / or refractive index gratings are epitaxially introduced. At present, however, their maximum output power or the achievable power density is still too low for many highly interesting applications. This is due to the fact that the light generation happens in volumes that are significantly smaller than 1 mm 3 , and therefore would cause the resulting power densities increase to destruction of the component. The way out, to increase the volume, quickly reaches its limits, since then decreases the mode selectivity of the resonator and therefore the beam quality deteriorates. Even approaches to increase the selectivity by the Gainmaterial is substrukturiert (DE 43 38 606, DE 36 11 167), helps little. Therefore, for some time the way will be marked, especially in semiconductor lasers to separate the function of gain and resonator, so to operate a semiconductor gain material in an external resonator, which significantly increases the achievable power densities. (DE 101 61 076, WO 02/21651, WO 02/082593, WO 98/56087, US 4426707, Opt. Lett. 27 (3) pp.167-169). All these publications have in common that the emission of the semiconductor is divided into two angular ranges, one of which is used for the feedback and the other of the coupling.
Problemstellungproblem
Die externen Resonatoren für Hochleistungs-Diodenlaser gemäß dem Stand der Technik nutzen eine bestimmte Emissionsrichtung der vom Gainmaterial emittierten Strahlung im wesentlichen für die Rückkopplung und einen änderen Winkelbereich im wesentlichen für die Auskopplung. Der Anteil der emittierten Strahlung in die Rückkoppelrichtung ist nicht einstellbar und ist deshalb in der Regel höher oder niedriger als für optimalen Betrieb notwendig. Wenn die in Richtung des Rückkopplungselements emittierte Strahlung zu hoch ist, also oberhalb der Schwelle für Sättigungsverhalten liegt, geht Ausgangsleistung im Nutzlicht verloren. Ist die Strahlung zu niedrig, leiden die Laserparameter wie Strahlqualität und Seitenmodenunterdrückung, ausserdem steigt der Anteil inkohärent emittierten Lichts, die sogenannte ASE (amplified spontaneous emission). In jedem Fall sind die Energieflüsse im Gainmaterial sehr asymmetrisch zwischen Aus- und Rückkoppelast verteilt. Das Problem besteht also darin, Anordnungen zu finden, die die unterschiedlichen Emissionsrichtungen möglichst mit wählbaren Teilerverhältnissen, also z.B. gleichmäßig und symmetrisch, behandeln und durch extern wählbare optische Elemente einen einstellbaren Rückkoppelgrad ermöglichen.The external resonators for high-power diode lasers according to the prior art use a certain emission direction of the radiation emitted by the gain material substantially for the feedback and an angular range substantially for the decoupling. The proportion of emitted radiation in the feedback direction is not adjustable and is therefore usually higher or lower than necessary for optimal operation. If the radiation emitted in the direction of the feedback element is too high, ie above the threshold for saturation behavior, output power is lost in the useful light. If the radiation is too low, the laser parameters such as beam quality and side-mode suppression suffer, and the proportion of incoherently emitted light, the so-called ASE (amplified spontaneous emission), also increases. In any case, the energy flows in the gain material are distributed very asymmetrically between the feedback and feedback load. The problem therefore is to find arrangements which, if possible, have the different emission directions with selectable divider ratios, eg. uniformly and symmetrically, treat and allow by externally selectable optical elements an adjustable feedback level.
Prinzipielle Lösung Die Lösung des Problems besteht darin, zwischen dem Gainmaterial und dem Rückkopplungselement einen oder mehrere Strahlteiler einzubringen, die unterschiedliche Emissionsrichtungen des Gainmaterials gleichzeitig mit Anteilen des Rückkoppellichts versorgen können. Dadurch dass diese Strahlteiler wählbare Teilerverhältnisse besitzen, lässt sich die anteilige Leistung in den verschiedenen Emissionsrichtungen einstellen. Da es mindestens ein frei wählbares Rückkoppelelement gibt, das mehrere Emissionsrichtungen bedient, ist die optimale Gesamt-Rückkopplung ebenfalls wählbar. Detailierte Beschreibung der ErfindungPrinciple Solution The solution to the problem is to introduce one or more beam splitters between the gain material and the feedback element, which can simultaneously supply portions of the feedback light with different directions of emission of the gain material. Because these beam splitters have selectable divider ratios, the proportionate power in the different emission directions can be set. Since there is at least one selectable feedback element that serves multiple emission directions, the optimal overall feedback is also selectable. Detailed description of the invention
Eine prinzipielle Darstellung der Funktionsweise des Laserresonators ist in Abbildung 1 als Blockdiagramm dargestellt, in Bildteil (a) der Lichtweg vom Gainbereich 1 zum Rückkoppelelement 9 und in Bildteil (b) der Rückweg. Das Gainmaterial ist dabei lediglich durch seine Fähigkeit charakterisiert, mit stimulierter Emission auf Rückkopplung zu reagieren. Es kann sich um Anordnungen mit und ohne eigene Resonatoren handeln. Somit wird hier keine Unterscheidung getroffen zwischen extern zu Resonanz gezwungenen (engl. : "seeding") Anordnungen, die manchmal auch als regenerativer Verstärker bezeichnet werden, und solchen Anordnungen, bei denen die Resonatoren erst durch die extern hinzugefügte Rückkopplung vollständig werden. Wenn im Folgenden überhaupt eine Unterscheidung gemacht wird, so wird im ersten Fall von „Lasern" geredet und im zweiten von „halboffenen Lasern", um deutlich zu machen, dass ihnen noch einseitig eine Rückkopplung fehlt. Ein laseraktiver Gainbereich 1 besitzt mindestens eine Fläche 16, durch die insgesamt mindestens zwei verschiedene Strahlen 4 ein- und auskoppeln können. Für die Funktion ist dabei unwesentlich, ob die beiden Strahlen zwei "wirkliche" Strahlen sind, oder ob es sich um zwei Winkelbereiche eines einzelnen breiten Strahls handelt, zumal in vielen realen Situationen eine Unterscheidung kaum möglich ist. Zentrales Element des Laserresonators gemäß der Erfindung ist der Strahlteiler 7, der in Bildteil (a) zwei Eingangssignale A und B in zwei Ausgangssignale C und D mischt und in Bildteil (b) ein einzelnes Rückkoppelsignal 8 in Kanal C auf zwei Rückkoppelkanäle A und B aufteilt. Bei geeigneten Eingangssignalen A und B kann der Strahlteiler so gewählt werden, dass einer der beiden Ausgangskanäle, vorzugsweise D, keine Leistung trägt. In diesem Fall ist die gesamte Leistung, die vom Gainmaterial 1 in zwei Kanäle 4 emittiert wird, in einem einzigen Strahl 8 enthalten. Eine Rück- und Auskopplung des Nutzlichts 10 ist über ein Element 9, vorzugsweise ein teilreflektiver Spiegel oder Gitter, zu realisieren. Aufgrund der Symmetrie optischer Strahlteiler kehrt sich in Bildteil (b) für das Rückkoppellicht die Funktion der Kanäle A/B und C/D um, so dass das über C einfallende Licht entsprechend dem Teilerverhältnis auf A und B verteilt wird und zum Gainbereich 1 zurück kehrt, wo es zur stimulierten Emission beiträgt. Beim Strahlteiler 7 handelt es sich vorteilhaft um ein teilreflektierendes Element (z.B. Spiegel, Gitter, Polarisations-Strahlteiler, diffraktive Optik, holographisches Element, etc.) der Reflektivität R und Transmission T=I-R. Wenn dieser von einem Strahl A der Feldstärke EA beschienen wird, entstehen zwei Teilstrahlen C und D mit den Feldstärken Ec = acA*EA und ED = aDA*EA. Entsprechend entstehen aus einem Teilstrahl B der Feldstärke EB zwei Teilstrahlen C und D mit Ec = acB*Eß und ED = aDA*EA. Die Koeffizienten acA, aDA, acβ und aDA sind dabei die Elemente einer unitären Matrix, die die Absolutbeträge SQRT(R) und SQRT(I-R) und geeignete Phasen besitzen, um die Energieerhaltung zu berücksichtigen. Die jeweils beiden Strahlen Ec = OCA*EA und Ec = acB*EB bzw. ED = aDA*EA und ED = aoA*EA müssen miteinander interferieren, wodurch sich konstruktive oder destruktive Effekte ergeben, so dass sich die relativen Leistungsanteile ändern. Besonders interessant sind einige Spezialfalle und darunter insbesondere der mit gleichen Intensitäten und Phasenlagen in beiden Strahlen 4 und einem Teilerverhältnis von R=T=50%, also Koeffizienten acA- HDA= SCB = -aDA = 1/SQRT(2). Dann ist tatsächlich erfüllt, dass keine Leistung im Strahl D auftritt. Auch das Licht, das vom Element 9 zurück kehrt, wird wieder in zwei gleiche intensive Rückkoppelstrahlen A und B aufgeteilt. Wenn das Gainelement 1 symmetrisch ist, bleiben beide Strahlen 4 gleich intensiv und ohne relative Phasendifferenz. In diesem Fall wird das Nutzlicht vorteilhafter weise über das Rückkoppelelement 9 ausgekoppelt. Der Auskoppelgrad kann dann im Prinzip frei gewählt werden. Dieses Verhalten bleibt im wesentlichen auch dann erhalten, wenn die Reflektivität nicht sehr stark von 50% abweicht. Dann ergibt sich ein schwacher Zusatzstrahl 14, der sich z.B. für diagnostische Zwecke einsetzen lässt.A basic representation of the mode of operation of the laser resonator is shown in block diagram in FIG. 1, in the image section (a) the light path from the gain area 1 to the feedback element 9 and in the image section (b) the return path. The gain material is characterized only by its ability to respond to feedback with stimulated emission. It may be arrangements with and without their own resonators. Thus, no distinction is made here between externally resonant (sometimes seeding) arrangements, sometimes referred to as regenerative amplifiers, and those arrangements in which the resonators become complete only by the externally added feedback. If a distinction is made at all in the following, then in the first case "lasers" are used and in the second case "half-open lasers" to make clear that they are still unilaterally lacking in feedback. A laser-active gain region 1 has at least one surface 16 through which a total of at least two different beams 4 can be coupled in and out. It is irrelevant for the function whether the two beams are two "real" beams, or whether they are two angular ranges of a single broad beam, especially as in many real situations a distinction is hardly possible. The central element of the laser resonator according to the invention is the beam splitter 7, which mixes two input signals A and B into two output signals C and D in image part (a) and divides a single feedback signal 8 in channel C into two feedback channels A and B in image part (b) , With suitable input signals A and B, the beam splitter can be chosen so that one of the two output channels, preferably D, carries no power. In this case, the total power emitted from the gain material 1 into two channels 4 is contained in a single beam 8. A return and decoupling of the useful light 10 can be realized via an element 9, preferably a partially reflective mirror or grating. Due to the symmetry of optical beam splitters, the function of the channels A / B and C / D is reversed in image part (b) for the feedback light, so that the light incident on C is distributed to A and B according to the divider ratio and returns to the gain range 1 where it contributes to stimulated emission. The beam splitter 7 is advantageously a partially reflecting element (eg mirror, grating, polarization beam splitter, diffractive optics, holographic element, etc.) of the reflectivity R and transmission T = IR. If this is illuminated by a beam A of the field strength E A , two partial beams C and D with the field strengths Ec = acA * E A and ED = aDA * E A are produced . Accordingly, a partial beam B of the field strength E B produces two partial beams C and D with Ec = acB * Ess and E D = aDA * E A. The coefficients acA, aDA, acβ and a DA are the elements of a unitary matrix that contains the absolute values SQRT (R) and SQRT (IR) and appropriate phases to account for energy conservation. The two beams E c = O C A * EA and Ec = acB * E B and E D = aDA * E A and ED = aoA * EA must interfere with each other, resulting in constructive or destructive effects, so that the change relative performance shares. Of particular interest are some special cases, and in particular those with equal intensities and phase angles in both beams 4 and a divider ratio of R = T = 50%, ie coefficients acA-HDA = SCB = -aDA = 1 / SQRT (2). Then it is actually true that no power in the beam D occurs. Also, the light returning from element 9 is again split into two equal intense feedback beams A and B. If the gain element 1 is symmetrical, both beams 4 remain equally intense and without relative phase difference. In this case, the useful light is advantageously coupled via the feedback element 9. The Auskoppelgrad can then be chosen freely in principle. This behavior is essentially retained even if the reflectivity does not deviate very much from 50%. This results in a weak additional beam 14, which can be used for diagnostic purposes, for example.
Wenn die Reflektivität des Strahlteilers deutlich von 50% abweicht, tritt eine Asymmetrie in den Rückkoppelintensitäten auf. Wird diese durch das Gainelement zwischen den beiden Strahlen ausgetauscht, so ergibt sich ein relativer Leistungsanteil von 2*R*T im resultierenden Rückkopplungslicht 8 und ein Anteil von (T-R)2 im Strahl 14. Vorteilhafter weise wird man dann das Rückkoppelelement 9 möglichst hochreflektiv machen und das Licht im Kanal 14 als Nutzlicht auskoppeln.If the reflectivity of the beam splitter deviates significantly from 50%, an asymmetry occurs in the feedback intensities. If this is replaced by the gain element between the two beams, the result is a relative power component of 2 * R * T in the resulting feedback light 8 and a proportion of (TR) 2 in the beam 14. Advantageously, the feedback element 9 will then be made as highly reflective as possible and decouple the light in the channel 14 as useful light.
In typischen realen Anordnungen werden zudem noch optische Elemente wie Linsen, Spiegel, Prismen und dergleichen zur Kollimation, Abbildung, Strahlführung etc. benötigt, die hier der Übersichtlichkeit wegen nicht dargestellt sind und die insbesondere für die transversalen Eigenschaften des Lichts (Strahltaillen, Divergenzen, Stabilität, etc.) sorgen.In typical real arrangements also optical elements such as lenses, mirrors, prisms and the like for collimation, imaging, beam guidance, etc. are needed, which are not shown here for the sake of clarity and in particular for the transverse properties of light (beam waists, divergences, stability , etc.).
Erzielte VorteileAchieved benefits
Durch Lösung der genannten Probleme lässt sich eine Kombination aus insgesamt verbesserter Ausgangsleistung und räumlicher und/oder spektraler Strahlqualität erzielen. Diese Vorteile lassen sich erreichen, ohne dass die Resonatoren nennenswert komplizierter werden. So werden Anordnungen vorgestellt, die weiterhin mit lediglich drei optischen Komponenten (Laserchip, Kollimationslmse, Rückkoppelprisma) auskommen. Insbesondere die Symmetrisierung der Emissionsrichtungen ist vorteilhaft, wenn wegen hoher Verstärkung des Gainmediums auch hohe Auskoppelgrade realisiert sind. Anderenfalls erhöhen sich der Anteil verstärkter spontaner Emission (ASE: "amplified spontaneous emission) und die Gefahr, dass unerwünschte Lasermoden anschwingen. In den vorgeschlagenen Anordnungen findet vorzugsweise kein direkter Austausch von Strahlung zwischen den verschiedenen Emissionsrichtungen statt, sondern nur indirekter Austausch nach Passage des Strahlteilers und des Rückkoppelelements, das vorteilhaft auch als Auskoppelelement ausgeführt ist. Dadurch wird vermieden, dass eine Lasermode anschwingt, die nur deshalb das höchste Gain besitzt, weil sie keine Auskopplungsverluste erleidet.By solving the problems mentioned, a combination of overall improved output power and spatial and / or spectral beam quality can be achieved. These advantages can be achieved without the resonators becoming significantly more complicated. Thus arrangements are presented, which continue to manage with only three optical components (laser chip, Kollimationslmse, feedback prism). In particular, the symmetrization of the emission directions is advantageous if high Auskoppelgrade be realized because of high gain of the gain medium. Otherwise, the proportion of amplified spontaneous emission (ASE) and the risk of unwanted laser modes rising. In the proposed arrangements preferably no direct exchange of radiation between the different emission directions takes place, but only indirect exchange after passage of the beam splitter and the feedback element, which is advantageously designed as a decoupling element. This avoids that a laser mode starts up, which has the highest gain only because it suffers no output losses.
Insbesondere bei Halbleiterlasern und dort speziell bei solchen mit substrukturiertem Gainbereich (DE 43 38 606, DE 36 11 167) sind solche Anordnungen vorteilhaft, da diese bekanntermaßen mehrere bevorzugte Emissionsrichtungen besitzen. Auch bei optisch gepumpten Lasern sind diese Anordnungen vorteilhaft, da eine Pumpanordnung aus mehreren kohärenten Strahlen zu Interferenzmustern, also periodischen Modulationen, des Gains fuhrt. Dadurch ergeben sich ganz natürlich mehrere, ebenfalls durch Interferenz-Bedingungen bestimmte, Emissionsrichtungen des entstehenden Laserlichts, die dann gemäß der vorgeschlagenen Anordnungen behandelt werden können. So lässt sich durch eine Kombination aus Pumpanordnung und Laserresonator eine deutlich verbesserte Modenkontrolle erreichen.In particular, in semiconductor lasers and there especially in those with substrukturiertem gain range (DE 43 38 606, DE 36 11 167) such arrangements are advantageous because they are known to have several preferred emission directions. These arrangements are also advantageous in the case of optically pumped lasers, since a pump arrangement of several coherent beams leads to interference patterns, that is to say periodic modulations, of the gain. As a result, several emission directions of the resulting laser light, which are likewise determined by interference conditions, naturally arise, which can then be treated in accordance with the proposed arrangements. Thus, a combination of pumping arrangement and laser resonator can achieve a significantly improved mode control.
Bei Festkörperlasern kann die Asymmetrie eliminiert werden, die dadurch entsteht, dass typischer weise auf der einen Seite lediglich ein hochreflektives Rückkoppelelement eingesetzt wird und auf der anderen Seite die Auskopplung geschieht. Eine beidseitige Auskopplung erhöht die mittlere Feldstärke über die Länge des Gainmaterials und verbessert dadurch die Effizienz und spektralen Eigenschaften.In solid-state lasers, the asymmetry can be eliminated, which arises because typically only one highly reflective feedback element is used on the one side and the decoupling takes place on the other side. A two-sided extraction increases the average field strength over the length of the gain material and thereby improves the efficiency and spectral properties.
Die entwickelten Anordnungen sind für eine große Zahl unterschiedlicher Laser und Lasertypen anwendbar, unabhängig vom Gainmaterial. Insbesondere sind auch Anordnungen mit mehreren und gegebenenfalls gekoppelten Lasern denkbar.The developed arrangements are applicable to a large number of different laser and laser types, regardless of the gain material. In particular, arrangements with several and optionally coupled lasers are conceivable.
Ausführungsbeispieleembodiments
In Abbildung 2 sind zwei verschiedene einfache Ausführungsbeispiele dargestellt. In Bildteil (a) ist eine Anordnung gezeigt, die sich z.B. für Hocbleistungs-Halbleiterlaser eignet. Der Gainbereich 1, der dabei rückseitig vorteilhaft mit einer reflektiven Schicht 2 als Rückkoppelelement versehen ist, emittiert zwei Strahlen 4 unter verschiedenen Winkeln durch seine Austrittsfläche 16. Ein Strahl wird von einem Umlenkspiegel 12 abgelenkt. Diese beiden Strahlen treffen von beiden Seiten auf einen Strahlteiler 7, hier ein teilreflektierender Spiegel. Dabei sind die Auftreffwinkel so gewählt, dass der reflektierte Strahl des einen und der transmittierte Strahl des anderen möglichst gut übereinander liegen und somit gemeinsam den Strahl 8 bilden. Dieser trifft auf den Rückkoppelspiegel 9, der möglicher weise teildurchlässig ist. Abhängig von allen Komponenten wird möglicher weise ein zusätzlicher Strahl 14 auftreten oder auch nicht. Dem entsprechend kann das Nutzlicht aus dem Strahl 10 und/oder dem Strahl 14 bestehen und/oder an weiteren Stellen mittels zusätzlicher Auskoppelelemente gewonnen werden. In Bildteil (b) ist eine mögliche Anordnung für Festkörperlaser angedeutet, in dem die beiden aus den Facetten 16 austretenden Strahlen vorteilhaft jeweils von Spiegeln 12, die vorteilhaft gekrümmt sind, zum Strahlteiler 7 geleitet werden.Figure 2 shows two different simple embodiments. In picture part (a) an arrangement is shown, which is suitable eg for Hocbleistungs semiconductor laser. The gain region 1, which is advantageously provided on the back with a reflective layer 2 as a feedback element, emits two beams 4 at different angles through its exit surface 16. A beam is deflected by a deflection mirror 12. These two beams hit from both sides on a beam splitter 7, here a partially reflecting mirror. The angles of incidence are chosen so that the reflected beam of the one and the transmitted beam of the other are as good as possible above each other and thus together form the beam 8. This applies to the feedback mirror 9, which is possibly partially permeable. Depending on all components, it may be additional Ray 14 may or may not occur. Accordingly, the useful light may consist of the beam 10 and / or the beam 14 and / or be obtained at additional points by means of additional decoupling elements. In image part (b), a possible arrangement for solid-state lasers is indicated, in which the two beams emerging from the facets 16 are advantageously conducted to the beam splitter 7, in each case by mirrors 12, which are advantageously curved.
Es ist vorteilhaft, wenn die optischen Wege vom Gainbereich zum Strahlteiler gleich lang sind, oder zumindest die Strahlparameter (insbesondere Strahldurchmesser, Rayleigh-Länge, Divergenz, Strahlqualität) für beide identisch sind. Das verbessert die Qualität, mit der die Strahlen interferieren können. Anderenfalls sind die Strahlparameter der beiden vom Strahlteiler abgehenden Strahlen unterschiedlich, was in der Anwendung berücksichtigt werden sollte.It is advantageous if the optical paths from the gain region to the beam splitter are the same length, or at least the beam parameters (in particular beam diameter, Rayleigh length, divergence, beam quality) are identical for both. This improves the quality with which the rays can interfere. Otherwise, the beam parameters of the two outgoing beams from the beam splitter are different, which should be considered in the application.
Eine Anordnung, in der das Teilerverhältnis einfach einstellbar ist, ist in Abbildung 3 dargestellt, in Bildteil (a) das Prinzip, in Bildteil (b) eine mögliche Ausgestaltung. Hier ist der Strahlteiler 17 als polarisationsabhängiger Strahlteiler angenommen. Teilerverhältnisse und Rückkoppelgrad lassen sich durch die relative Rotation der Verzögerungselemente 13 und 18 bezüglich der Orientierung des Strahlteilers steuern.An arrangement in which the divider ratio is easily adjustable is shown in Figure 3, in image part (a) the principle, in image part (b) a possible embodiment. Here, the beam splitter 17 is assumed to be a polarization-dependent beam splitter. Divider ratios and feedback levels can be controlled by the relative rotation of the delay elements 13 and 18 with respect to the orientation of the beam splitter.
Abbildung 4 zeigt zwei bevorzugte Anordnungen für Halbleiterlaser. Das aktive Medium 1 emittiert zwei Strahlen 4, die an einem Strahlteiler 7 zu einem einzigen Strahl 8 vereinigt werden. Rück- und Auskopplung geschieht in Bildteil (a) über ein Element 26 und in Bildteil (b) über ein Element 9, so dass das Nutzlicht 10 und 14 zur Verfügung steht. In Bild (a) ist die Rückkopplung mittels eines Gitters in Littrow-Anordnung realisiert, so dass eine Auskopplung über die nullte Beugungsordnung geschehen kann. Vorteilhaft werden Kollimatoren 5, Antireflex-Beschichtungen 3 und 11 sowie Umlenkspiegel 12 hinzugefügt. Vorzugsweise wird das Gitter so angebracht, dass seine Wellenlängenselektivität längs der fast-axis (Richtung großer Divergenz, senkrecht zur Ebene der Epitaxie) geschieht, da dann die Kombination aus Gitter und Fast-Axis-Kollimator 5 als ein starkes Frequenzfilter wirkt. Vorteilhaft wird die antireflektive Eigenschaft 11 erreicht, indem die Brewster-Bedingung erfüllt wird. In Bildteil (b) ist die Anordnung um eine Kollimationslinse 19, die die Strahlen längs der sogenannten slow-axis (Richtung geringerer Divergenz, parallel zur Ebene der Epitaxie) kollimiert und ablenkt, ergänzt. Ausserdem wurden alle Spiegel 7, 9 und 12 monolithisch in ein Element 20 integriert, das vorteilhaft antireflektiv mit Schichten 3 versehen wird. In Abbildung 5 ist die Verwendung eines an die Emissionswinkel des Gainbereichs angepassten Prismas dargestellt. Der Unterschied zwischen Bildteil (a) und (b) besteht darin, dass in (a) durch das Rückkoppelelement 9 und in (b) über den Strahlteiler 7 ausgekoppelt wird. Dies ist errreichbar durch geeignete Wahl der Reflektivitäten der beiden Spiegel entsprechend der oben angegebenen Überlegungen. Der Rest des Strahlverlaufs ist in beiden Fällen gleich: Das in zwei Richtungen aus dem mit Spiegel 2 und Antireflexschicht 3 versehenen Gainmaterial 1 austretende Licht 4 wird vorteilhaft mittels einer Linse 5, z.B. einem FAC (fast axis collimator) kollimiert. Bedingung an die korrekte Funktion ist das senkrechte Auftreffen des Lichts auf das Rückkoppelelement 9. Der Winkel zwischen Strahlteilerfläche 7 und Element 9 bestimmt dann abhängig vom Brechungsindex des Prismas den Ablenkwinkel unter dem sich der direkt zum Gainbereich verlaufende Strahl 21 bewegt, sowie die Winkel der Strahlen 22 und 23. Durch Variation des Winkels der verbleibenden Prismenseite 25 lässt sich dann der Winkel des Strahls 24 in bestimmten Grenzen beeinflussen und an den vom Gainbereich vorgegebenen Winkel zwischen den beiden Strahlen 4 anpassen. Möchte man, dass der Durchgang durch Fläche 25 unter Brewster- Bedingung geschieht, um die Antireflex-Beschichtung 11 zu sparen, so ergibt sich daraus eine zusätzliche Bedingung an den Winkel zwischen 7 und 9, womit das Prisma eindeutig bestimmt ist. Diese Konfiguration lässt sich innerhalb eines bestimmten Winkelbereichs zwischen den Strahlen 4 anpassen. Für andere Winkelbereiche sind andere Prismen mit mehr oder weniger inneren Totalreflexionen zu wählen. Vorteilhaft an allen Varianten dieser Anordnung ist ihre Einfachheit und die kostengünstige Produzierbarkeit. Diese beruhen auf der Tatsache, dass ausser dem Halbleiter als Gainmaterial 1 lediglich eine Kollimationslinse 5 und ein Prisma 6 mit zwei aufgebrachten (Teil-)Verspiegelungen 7 und 9 notwendig sind, wenn man die Konzepte des instabilen Resonators verwendet. Anderenfalls wird gegebenenfalls noch eine weitere Linse für die Kollimtion längs der slow-Richtung notwendig. Alle genannten Anordnungen sind besonders vorteilhaft in Kombination oder Erweiterung der instabilen Resonatoren von DE 101 61 076. Da als Streifenarray ausgeformte Hochleistungs- Breitstreifenlaser prinzipbedingt zwei Vorzugsrichtungen für ihre Emission besitzen, bieten sich die vorgeschlagenen Anordnungen an. Da ebenso bekannt ist, dass dort instabile Resonatoren gut funktionieren, lassen sich die verbleibenden Probleme, namentlich die nicht kontrollierbaren Leistungsanteile in den beiden Emissionsrichtungen, durch diese neuen Anordnungen lösen.Figure 4 shows two preferred arrangements for semiconductor lasers. The active medium 1 emits two beams 4, which are combined at a beam splitter 7 into a single beam 8. Feedback and decoupling takes place in image part (a) via an element 26 and in image part (b) via an element 9, so that the useful light 10 and 14 is available. In Figure (a), the feedback is realized by means of a grid in Littrow arrangement, so that a decoupling over the zeroth diffraction order can be done. Advantageously, collimators 5, antireflection coatings 3 and 11 and deflecting mirrors 12 are added. Preferably, the grating is mounted so that its wavelength selectivity occurs along the fast-axis (direction of high divergence, perpendicular to the plane of epitaxy), since then the combination of grating and fast-axis collimator 5 acts as a strong frequency filter. Advantageously, the antireflective property 11 is achieved by satisfying the Brewster condition. In image part (b), the arrangement is supplemented by a collimation lens 19, which collimates and deflects the rays along the so-called slow-axis (direction of lower divergence, parallel to the epitaxial plane). In addition, all mirrors 7, 9 and 12 were monolithically integrated into an element 20, which is advantageously antireflectively provided with layers 3. Figure 5 shows the use of a prism adapted to the emission angles of the gain range. The difference between image part (a) and (b) is that in (a) coupled out by the feedback element 9 and in (b) via the beam splitter 7 becomes. This can be achieved by suitable choice of the reflectivities of the two mirrors according to the considerations given above. The remainder of the beam path is the same in both cases: the light 4 emerging in two directions from the gain material 1 provided with mirror 2 and antireflection layer 3 is advantageously collimated by means of a lens 5, eg an FAC (fast axis collimator). Condition for the correct function is the vertical impact of the light on the feedback element 9. The angle between the beam splitter surface 7 and element 9 then determines depending on the refractive index of the prism, the deflection angle under which moves directly to the gain range extending beam 21, and the angles of the beams 22 and 23. By varying the angle of the remaining prism side 25, the angle of the beam 24 can then be influenced within certain limits and adjusted to the angle between the two beams 4 predetermined by the gain range. If one wants the passage through surface 25 to occur under Brewster's condition in order to save the antireflection coating 11, this results in an additional condition at the angle between 7 and 9, whereby the prism is uniquely determined. This configuration can be adjusted within a certain angular range between the beams 4. For other angular ranges, other prisms with more or less total internal reflection should be chosen. An advantage of all variants of this arrangement is its simplicity and cost-producible. These are based on the fact that apart from the semiconductor as the gain material 1, only a collimating lens 5 and a prism 6 with two applied (partial) Verspiegelungen 7 and 9 are necessary, if one uses the concepts of the unstable resonator. Otherwise, if necessary, a further lens for the Kollimtion along the slow direction is necessary. All the arrangements mentioned are particularly advantageous in combination or expansion of the unstable resonators of DE 101 61 076. Since, as a strip array, shaped high-performance wide-area lasers inherently have two preferred directions for their emission, the proposed arrangements are appropriate. Since it is also known that unstable resonators work well there, the remaining problems, namely the uncontrollable power components in the two emission directions, can be solved by these new arrangements.
Weitere Ausgestaltung der ErfindungFurther embodiment of the invention
Die Erfindung lässt sich für beliebige Lasermaterialien einsetzen. Besonders vorteilhaft ist außer Halbleitern alles, was natürlicher weise oder aufgrund der Pumpbedingungen mehrere Emissionsrichtungen oder eine mehr als zweifach beugungsbegrenzte Divergenz besitzt. Dazu gehören insbesondere optisch gepumpte Gainmedien, wenn das Pumplicht aus mehreren kohärenten und interferierenden Teilstrahlen besteht.The invention can be used for any laser materials. Particularly advantageous is, apart from semiconductors, everything that naturally or due to the pumping conditions has a plurality of emission directions or a divergence more than doubly diffraction-limited. To in particular, include optically pumped gain media when the pump light consists of a plurality of coherent and interfering sub-beams.
Die meisten der vorgeschlagenen Anordnungen eignen sich auch für Arrays einzelner Laser. Meist sind dafür nicht einmal einzelne Resonatoren vonnöten, sondern der externe Resonator kann so gestaltet werden, dass alle einzelnen Emitter in einem einzigen gemeinsamen Resonator arbeiten.Most of the proposed arrangements are also suitable for arrays of individual lasers. In most cases not even single resonators are needed, but the external resonator can be designed so that all individual emitters work in a single common resonator.
Es soll an dieser Stelle nochmals ausdrücklich darauf hingewiesen werden, dass es sich bei den Gainbereichen um Laser oder um "halboffene" Laser handeln darf. Es spielt also für die Anordnungen nur eine untergeordnete Rolle, ob es auch ohne die hier vorgestellten Resonatoren zu einer Lasertätigkeit des aktiven Bereichs kommen kann oder nicht. At this point it should again be expressly pointed out that the gain ranges may be lasers or "semi-open" lasers. Thus, it plays only a minor role for the arrangements whether or not the resonators presented here can lead to a lasing action of the active region.
Kurzbeschreibung der AbbildungenBrief description of the pictures
Bezeichnungen in Abbildungen:Designations in pictures:
(1) Gainmaterial(1) gain material
(2) Rückkoppelelement (3) Antireflex-Beschichtung(2) Feedback element (3) Antireflection coating
(4) Strahlen, die vom Gainbereich in mindestens zwei verschiedene Richtungen emittiert werden(4) rays emitted from the gain region in at least two different directions
(5) Kollimator-Optik(5) collimator optics
(6) Optik, die die strahlvereinigende Optik aufnimmt (7) Strahlteiler(6) Optics that receive the beam combining optics (7) Beam splitters
(8) Vereinigte Strahlen(8) United Rays
(9) Rückkoppelelement(9) Feedback element
(10) Ausgekoppeltes Licht(10) decoupled light
(11) Antireflex-Beschichtung, vorzugsweise durch Brewster-Bedingung (12) Umlenkspiegel(11) Antireflection coating, preferably by Brewster condition (12) deflection mirror
(13) Polarisations-beeinflussendes Element, vorzugsweise doppelbrechende Phasenplatte mit λ/2-Verzögerung(13) Polarization-influencing element, preferably birefringent phase plate with λ / 2 delay
(14) Zusätzlich ausgekoppeltes Licht(14) Additional decoupled light
(15) Umlenkspiegel durch Totalreflexion (16) Ein- und Austrittsfläche des Gainmaterials(15) Deflection mirror by total reflection (16) Entry and exit surface of the gain material
(17) Polarisationsabhängiger Strahlteiler(17) Polarization-dependent beam splitter
(18) Phasenplatte, vorzugsweise mit λ/4-Verzögerung(18) Phase plate, preferably with λ / 4 delay
(19) Linse(19) lens
(20) Monolithisches Strahlteiler- und -umlenkelement (21) Strahl(20) Monolithic beam splitter and deflector (21) Beam
(22) Strahl(22) ray
(23) Strahl(23) ray
(24) Strahl(24) beam
(25) Seite des Prismas (26) Rückkoppelelement, vorzugsweise ein Gitter in Littrow-Anordnung(25) side of the prism (26) feedback element, preferably a grid in Littrow arrangement
Abbildung I.¬ Prinzip der Erfindung, (a) Ein Gainbereich 1 emittiert mindestens zwei Strahlen 4, die auf dieFigure I. ¬ principle of the invention, (a) A gain range 1 emits at least two beams 4, which on the
Eingangskanäle A und B eines Strahlteilers 7 treffen. Einer seiner Ausgangskanäle C emittiert Licht 8 zu einem Rückkoppelelement 2. Typischerweise wird entweder ein Teilstrahl 10 oder ein Teilstrahl 14 als Nutzlicht ausgekoppelt, (b) Das vom Rückkoppelelement kommende Licht 8 in Kanal C wird auf die Kanäle A und B aufgeteilt.Input channels A and B of a beam splitter 7 meet. One of its output channels C emits Typically, either a partial beam 10 or a partial beam 14 is coupled out as useful light. (B) The light 8 coming from the feedback element in channel C is split between the channels A and B.
Abbildung 2:Figure 2:
5 Einfache Ausführung der Erfindung. Die beiden Strahlen 4, die vom Gainbereich 1 durch die Fläche 16 treten, werden am Strahlteiler 7 zu zwei Strahlen 8 und 14 rekombiniert. Der eine trifft auf ein Rückkoppelelement 9. Nutzlicht besteht aus den Strahlen 10 und 14. (a) Prinzip und einfachste Ausführung, (b) Variante vorteilhaft für Festkörperlaser, insbesondere bei gekrümmten Spiegeln 12 und/oder 9.5 Simple embodiment of the invention. The two beams 4, which pass from the gain region 1 through the surface 16, are recombined at the beam splitter 7 into two beams 8 and 14. The one applies to a feedback element 9. Nutzlicht consists of the beams 10 and 14. (a) principle and simplest embodiment, (b) variant advantageous for solid-state laser, in particular in curved mirrors 12 and / or 9.
o Abbildung 3:o Figure 3:
In einer Anordnung, in der der Strahlteiler 17 polarisations-abhängig wirkt, lassen sich Rückkoppel- und Auskoppelgrad durch die relative Orientierung von Phasenplatten 13 und 18 bezüglich der Vorzugsrichtung des Strahlteilers 17 einfach variieren und dadurch die Intensitäten der Strahlen 10 und 14 beeinflussen.In an arrangement in which the beam splitter 17 is polarization-dependent, feedback and decoupling can be easily varied by the relative orientation of phase plates 13 and 18 with respect to the preferred direction of the beam splitter 17 and thereby affect the intensities of the beams 10 and 14.
L5 Abbildung 4:L5 Figure 4:
Bevorzugte Ausformungen für Halbleiterlaser, (a) Das aktive Medium 1 emittiert zwei Strahlen 4, die an einem Strahlteiler 7 zu einem einzigen Strahl 8 vereinigt werden. Rück- und Auskopplung geschieht über ein Element 26 oder 9, so dass das Nutzlicht 10 zur Verfügung steht. Vorteilhaft werden Kollimatoren 5, Antireflex-Beschichtungen 3 und 11 sowie ein JO Umlenkspiegel 12 hinzugefügt. Vorteilhaft wird die antireflektive Eigenschaft 3 und/oder 11 erreicht, indem die Brewster-Bedingung erfüllt wird, (b) Ergänzung um Kollimationselement 19 sowie monolithische Integration der Spiegel 7, 9 und 12.Preferred Embodiments for Semiconductor Lasers, (a) The active medium 1 emits two beams 4, which are combined at a beam splitter 7 into a single beam 8. Feedback and decoupling is done via an element 26 or 9, so that the useful light 10 is available. Advantageously, collimators 5, antireflective coatings 3 and 11 and a JO deflecting mirror 12 are added. Advantageously, the antireflective property 3 and / or 11 is achieved by fulfilling the Brewster condition, (b) supplementation by collimation element 19 and monolithic integration of mirrors 7, 9 and 12.
Abbildung 5:Figure 5:
Bevorzugte, weil besonders einfache, Ausformungen für Halbleiterlaser bestehen darin, ein 15 bezüglich seiner Winkel und Brechungsindexes speziell angepasstes Prisma mit total- oder teilreflektierenden Beschichtungen 7, 9 und 11 zu versehen, so dass das Auftreffen der Strahlung auf die Teilfläche 9 senkrecht geschieht. LiFaIl (a) ist der Spiegel 9 der Auskoppler für das Nutzlicht 10, in Fall (b) der Spiegel 7 für das Nutzlicht 14.Preferred, because particularly simple, embodiments for semiconductor lasers are to provide a 15 with respect to its angle and refractive index specially adapted prism with total or partially reflecting coatings 7, 9 and 11, so that the impingement of the radiation on the face 9 is perpendicular. LiFaIl (a) is the mirror 9 of the output coupler for the useful light 10, in case (b) the mirror 7 for the useful light 14th
Abbildung 6:Figure 6:
JO (a) Ausformung aus Abbildung 5 mit wahlweiser Nutzung des Lichts 14 oder 9. (b)Alternative Variante mit einem Prisma, das einen inneren Strahlteiler besitzt. JO (a) Shaping of Figure 5 with optional use of light 14 or 9. (b) Alternative variant with a prism having an internal beam splitter.

Claims

Ansprüche claims
1.) Laserquelle bestehend aus:1.) Laser source consisting of:
(a.) mindestens einem Gainbereich, der mindestens zwei unterschiedliche Richtungen besitzt, i. längs derer er Strahlung emittieren kann ii. und längs derer er auf eingestrahltes Licht mit stimulierter Emission reagiert, (b.) mindestens einem Rückkopplungselement, (c.) mindestens einem Strahlteiler, i. der zwei Eingangskanäle besitzt, die optisch mit unterschiedlichen Emissionsrichtungen des Gainbereichs verbunden sind, ii. der zwei Ausgangskanäle besitzt, von denen der erste mit einem der(a.) at least one gain region having at least two different directions, i. along which it can emit radiation ii. and along which it responds to irradiated light with stimulated emission, (b.) at least one feedback element, (c.) at least one beam splitter, i. having two input channels optically connected to different emission directions of the gain region, ii. has two output channels, of which the first with one of
Rückkopplungselemente verbunden ist iii.und dessen zweiter beliebig optisch verbunden oder offen ist.Is connected to the feedback elements iii.und the second is optically connected or open as desired.
2.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass der Gainbereich aus einem der folgenden Materialien besteht: (a.) einem Halbleiter, i. in Ridge-, DFB-, DBR-, Taper-, Breitstreifen-, Streifenarray- oder2.) Laser source according to claim 1, characterized in that the gain range consists of one of the following materials: (a.) A semiconductor, i. in Ridge, DFB, DBR, Taper, Widestrip, Strip Array or
Vertikalemitter-Geometrie, ii. mit oder ohne rückseitiger reflektiver Beschichtung, iii. mit oder ohne frontseitiger antireflektiver Beschichtung,Vertical emitter geometry, ii. with or without reflective coating on the back, iii. with or without front antireflective coating,
(b.) einem Festkörperlasermaterial in Stab-, Balken- oder Scheibengeometrie, (c.) einem Polymer, (d.) einer Flüssigkeit, (e.) einem Gas. (b.) a solid-state laser material in rod, beam or disk geometry, (c.) a polymer, (d.) a liquid, (e.) a gas.
3.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass sich mehrere Emissionsrichtungen dadurch ergeben, dass ein physikalischer Parameter im Pump- oder Gainbereich periodisch moduliert ist.3.) Laser source according to claim 1, characterized in that several emission directions result from the fact that a physical parameter in the pump or gain range is periodically modulated.
4.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass das Rückkoppelelement eine der folgenden Anordnungen oder eine Kombination daraus ist: (a.) ein total- oder teilreflektiver Spiegel,4.) Laser source according to claim 1, characterized in that the feedback element is one of the following arrangements or a combination thereof: (a.) A totally or partially reflective mirror,
(b.) ein Gitter,(b.) a grid,
(c.) ein holographisches oder diffraktives optisches Element, (d.) ein phasenkonjugierendes Element,(c.) a holographic or diffractive optical element, (d.) a phase-conjugate element,
(e.) eine wellenlängenselektive optische Anordnung aus Gittern, Linsen, Prismen, Etalons und dergleichen bestehend,(e.) a wavelength-selective optical arrangement consisting of gratings, lenses, prisms, etalons and the like,
5.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass das Rückkoppelelement strahlformend wirkt aufgrund einer oder mehrerer der folgenden Eigenschaften: (a.) es ist gekrümmt,5.) A laser source according to claim 1, characterized in that the feedback element is beam-forming due to one or more of the following properties: (a.) It is curved,
(b.) es ist auf eine Linse aufgebracht oder mit Linsen und/oder Spiegeln kombiniert, (c.) es ist mikrostrukturiert und/oder besitzt gekrümmte Gitterlinien,(b.) it is applied to a lens or combined with lenses and / or mirrors (c.) it is microstructured and / or has curved grid lines,
(d.) es handelt sich um ein diffraktives oder holographisches Element (e.) oder es besitzt variierenden Brechungsindex (GRIN).(d.) it is a diffractive or holographic element (e.) or it has varying refractive index (GRIN).
6.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass der Strahlteiler eine der folgenden Anordnungen oder eine Kombination daraus ist: (a.) ein teildurchlässiger Spiegel,6.) A laser source according to claim 1, characterized in that the beam splitter is one of the following arrangements or a combination thereof: (a.) A partially transmissive mirror,
(b.) ein polarizationsabhängiger Strahlteiler,(b.) a polarization-dependent beam splitter,
(c.) eine Schichtstruktur aus dielektrischen Schichten,(c.) a layered structure of dielectric layers,
(f.) ein holographisches oder diffraktives optisches Element, (d.) eine Anordnung, bei der eine Totalreflexion durch ein zweites Medium in der(f.) a holographic or diffractive optical element, (d.) an arrangement in which a total reflection by a second medium in the
Nähe teilweise unterdrückt wird (engl: "frustrated total internal reflection"). Closeness is partially suppressed ("frustrated total internal reflection").
7.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass die Teilerverhältnisse von Strahlteiler und Rückkoppelelement einer der folgenden Kombinationen entsprechen: (a.) der Strahlteiler besitzt näherungsweise 50% Teilerverhältnis, das7.) Laser source according to claim 1, characterized in that the divider ratios of the beam splitter and the feedback element correspond to one of the following combinations: (a.) The beam splitter has approximately 50% divider ratio, the
Rückkoppelelement besitzt beliebige Reflektivität, (b.) der Strahlteiler besitzt ein Teilerverhältnis ungleich 50% und dasFeedback element has any reflectivity, (b.) The beam splitter has a divider ratio not equal to 50% and the
Rückkoppelelement besitzt sehr hohe Reflektivität bis zu 100%. Feedback element has very high reflectivity up to 100%.
8.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass (a.) die optischen Wege der zwei Emissionsrichtungen vom Gainmedium bis zum8.) Laser source according to claim 1, characterized in that (a.) The optical paths of the two emission directions from the gain medium to the
Strahlteiler gleich lang sind (b.) und/oder die Strahlparameter beider Strahlen am Strahlteiler möglichst ähnlich sind.Beam splitters are the same length (b.) And / or the beam parameters of both beams are as similar as possible to the beam splitter.
9.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass der Resonator zwischen Gainbereich und Rückkoppelelement ein oder mehrere der folgenden optischen Elemente enthält9.) Laser source according to claim 1, characterized in that the resonator between Gainbereich and feedback element contains one or more of the following optical elements
(a.) Kollimationslinsen, die sphärisch, asphärisch oder zylindrisch sind, (b.) Phasenplatten, (c.) Teleskope, (d.) optische Elemente wie Prismen, Spiegel, Gitter, Linsen, freie Propagationen, etc.(a.) collimating lenses that are spherical, aspherical or cylindrical, (b.) phase plates, (c.) telescopes, (d.) optical elements such as prisms, mirrors, gratings, lenses, free propagations, etc.
10.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass10.) Laser source according to claim 1, characterized in that
(a.) das Gainmedium ein Breitstreifen- oder Streifenarray- Halbleiter ist, (b.) und der Resonator in mindestens einer Richtung instabil ist.(a.) the gain medium is a wide stripe or strip array semiconductor, (b.) and the resonator is unstable in at least one direction.
11.) Laserquelle gemäß Anspruch 1, gekennzeichnet dadurch, dass mehrere Funktionen des Resonators (z.B. der Strahlteiler und/oder das Rückkoppelelement und/oder Abschnitte der Strahlführung und -umlenkung) monolithisch ausgeformt sind.11.) Laser source according to claim 1, characterized in that several functions of the resonator (for example the beam splitter and / or the feedback element and / or sections of the beam guidance and deflection) are monolithically shaped.
12.) Laserquelle gemäß Anspruch 11, gekennzeichnet dadurch, dass die Oberflächen des monolithischen Elements12.) Laser source according to claim 11, characterized in that the surfaces of the monolithic element
(a.) mit geeigneten reflektierenden Schichten bedeckt sind, die die benötigten Teilerverhältnisse liefern und/oder unter Brewster- Winkel bestrahlt werden(a.) Are covered with suitable reflective layers that provide the required divider ratios and / or are irradiated at Brewster angle
(b.) und/oder geeignet gegen die Strahlrichtung des einfallenden Lichts geneigt sind, um als Strahlumlenker zu wirken.(b.) and / or are suitably inclined against the beam direction of the incident light to act as a beam deflector.
13.) Laserquelle gemäß Anspruch 11 und/oder 12, gekennzeichnet dadurch, dass es sich bei dem monolithischen Element um ein Prisma handelt, (a.) dessen eine Seite als Rückkoppelelement wirkt,13.) laser source according to claim 11 and / or 12, characterized in that it is the monolithic element is a prism, (a.) One side of which acts as a feedback element,
(b.) dessen zweite Seite als Strahlteiler wirkt, (c.) dessen dritte Seite als Strahlumlenker wirkt.(b.) whose second side acts as a beam splitter (c.) whose third side acts as a beam deflector.
14.) Laserquelle gemäß Anspruch 12, gekennzeichnet dadurch, dass es sich bei dem monolithischen Element um ein Prisma handelt, (a.) das zwei Seiten besitzt, die von jeweils einer Emission des Gainbereichs unter dem selben Winkel getroffen werden, (b.) das im Inneren einen Strahlteiler besitzt, der von beiden Emissionen des14.) A laser source according to claim 12, characterized in that said monolithic element is a prism (a.) Having two sides struck by each emission of said gain region at the same angle (b.) which has inside a beam splitter, of both emissions of the
Gainbereichs im selben Bereich und unter dem selben Winkel getroffen wird, (c.) das so geformt ist, dass der vereinigte Strahl aus den beiden Emissionen senkrecht auf eine dritte Fläche auftrifft und diese Fläche als Rückkoppelelement wirkt.Gainbereich is made in the same area and at the same angle, (c.) Which is shaped so that the combined beam from the two emissions impinges perpendicular to a third surface and this surface acts as a feedback element.
15.) Laserquelle, bestehend aus mehreren Einzelquellen gemäß der vorigen Ansprüche mit Überlagerung der einzelnen Strahlen in kohärenter oder inkohärenter Weise oder als spektrales Multiplexing. 15) laser source, consisting of several individual sources according to the preceding claims with superimposition of the individual beams in a coherent or incoherent manner or as spectral multiplexing.
PCT/DE2005/001959 2004-10-29 2005-10-28 Laser resonator comprising an internal beam divider WO2006045304A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT05810669T ATE436107T1 (en) 2004-10-29 2005-10-28 LASER RESONATOR WITH INTERNAL BEAM SPLITTER
EP05810669A EP1810381B1 (en) 2004-10-29 2005-10-28 Laser resonator comprising an internal beam divider
DE502005007672T DE502005007672D1 (en) 2004-10-29 2005-10-28 LASER RESONATOR WITH INTERNAL RADIATOR
US11/789,720 US7609744B2 (en) 2004-10-29 2007-04-25 Laser resonator comprising an internal beam splitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004053136A DE102004053136B4 (en) 2004-10-29 2004-10-29 Laser resonator with internal beam splitter
DE102004053136.6 2004-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/789,720 Continuation-In-Part US7609744B2 (en) 2004-10-29 2007-04-25 Laser resonator comprising an internal beam splitter

Publications (2)

Publication Number Publication Date
WO2006045304A2 true WO2006045304A2 (en) 2006-05-04
WO2006045304A3 WO2006045304A3 (en) 2006-07-27

Family

ID=36201601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001959 WO2006045304A2 (en) 2004-10-29 2005-10-28 Laser resonator comprising an internal beam divider

Country Status (5)

Country Link
US (1) US7609744B2 (en)
EP (1) EP1810381B1 (en)
AT (1) ATE436107T1 (en)
DE (2) DE102004053136B4 (en)
WO (1) WO2006045304A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340151B2 (en) * 2010-12-13 2012-12-25 Ut-Battelle, Llc V-shaped resonators for addition of broad-area laser diode arrays
CN102681197A (en) * 2012-05-21 2012-09-19 北京国科世纪激光技术有限公司 Spatial filter and laser amplification device adopting same
EP2999064A1 (en) * 2014-09-19 2016-03-23 DirectPhotonics Industries GmbH Diode laser
US10090639B2 (en) * 2016-01-21 2018-10-02 Luminit Llc Laser diode enhancement device
CN109217092B (en) * 2017-12-13 2020-07-17 中国航空制造技术研究院 Design method and device of two-dimensional volume holographic grating laser
CN112490837B (en) * 2020-12-14 2024-04-02 中国科学院合肥物质科学研究院 Four-way coherent combining laser

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426707A (en) * 1981-11-09 1984-01-17 Mcdonnell Douglas Corporation Single mode cavity laser
US4831631A (en) * 1986-09-29 1989-05-16 Siemens Aktiengesellschaft Laser transmitter comprising a semiconductor laser and an external resonator
US4873697A (en) * 1986-09-29 1989-10-10 Siemens Aktiengesellschaft Narrowband laser transmitter having an external resonator from which the output power can be taken
US5046184A (en) * 1990-04-05 1991-09-03 University Of California Method and apparatus for passive mode locking high power lasers
DE4228541C1 (en) * 1992-08-27 1994-01-13 Deutsche Aerospace Laser diode pumped solid-state ring laser - uses laser crystals with anti-reflective input and output surfaces and highly reflective reflection surfaces
WO1998056087A1 (en) * 1997-06-06 1998-12-10 Torsana A/S Laser systems using phase conjugate feedback
WO2002021651A1 (en) * 2000-09-05 2002-03-14 Esko-Graphics A/S Laser system with external optical feedback and use of such system in the graphical industry
WO2002082593A2 (en) * 2001-04-09 2002-10-17 Torsana Laser Technologies A/S Laser apparatus
DE10161076A1 (en) * 2001-12-12 2003-09-11 Univ Potsdam Method and device for generating light of good beam quality from semiconductor laser chips
WO2003084006A2 (en) * 2002-04-03 2003-10-09 Esko-Graphics A/S Laser system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743485A (en) * 1980-08-13 1982-03-11 Agency Of Ind Science & Technol Semiconductor ring laser device
US5142542A (en) * 1991-01-07 1992-08-25 Amoco Corporation Signal-resonant intracavity optical frequency mixing
JP3512051B2 (en) * 1996-06-06 2004-03-29 ソニー株式会社 Laser light generator
US6005878A (en) * 1997-02-19 1999-12-21 Academia Sinica Efficient frequency conversion apparatus for use with multimode solid-state lasers
US6414973B1 (en) * 1999-08-31 2002-07-02 Ruey-Jen Hwu High-power blue and green light laser generation from high powered diode lasers
GB0024533D0 (en) * 2000-10-06 2000-11-22 Geola Uab A laser system
DE60214441T2 (en) * 2002-06-05 2006-12-21 Agilent Technologies Deutschland Gmbh WAVELENGTH TUNING RING RESONATOR

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426707A (en) * 1981-11-09 1984-01-17 Mcdonnell Douglas Corporation Single mode cavity laser
US4831631A (en) * 1986-09-29 1989-05-16 Siemens Aktiengesellschaft Laser transmitter comprising a semiconductor laser and an external resonator
US4873697A (en) * 1986-09-29 1989-10-10 Siemens Aktiengesellschaft Narrowband laser transmitter having an external resonator from which the output power can be taken
US5046184A (en) * 1990-04-05 1991-09-03 University Of California Method and apparatus for passive mode locking high power lasers
DE4228541C1 (en) * 1992-08-27 1994-01-13 Deutsche Aerospace Laser diode pumped solid-state ring laser - uses laser crystals with anti-reflective input and output surfaces and highly reflective reflection surfaces
WO1998056087A1 (en) * 1997-06-06 1998-12-10 Torsana A/S Laser systems using phase conjugate feedback
WO2002021651A1 (en) * 2000-09-05 2002-03-14 Esko-Graphics A/S Laser system with external optical feedback and use of such system in the graphical industry
WO2002082593A2 (en) * 2001-04-09 2002-10-17 Torsana Laser Technologies A/S Laser apparatus
DE10161076A1 (en) * 2001-12-12 2003-09-11 Univ Potsdam Method and device for generating light of good beam quality from semiconductor laser chips
WO2003084006A2 (en) * 2002-04-03 2003-10-09 Esko-Graphics A/S Laser system

Also Published As

Publication number Publication date
US7609744B2 (en) 2009-10-27
EP1810381B1 (en) 2009-07-08
DE502005007672D1 (en) 2009-08-20
US20080165821A1 (en) 2008-07-10
DE102004053136A1 (en) 2006-05-11
DE102004053136B4 (en) 2008-04-03
EP1810381A2 (en) 2007-07-25
ATE436107T1 (en) 2009-07-15
WO2006045304A3 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
DE69324869T2 (en) Multiple laser system with a narrow bandwidth
DE69710520T2 (en) Semiconductor laser module and optical fiber amplifier
DE60220541T2 (en) EXTERNAL RESONATOR WITH RETRO REFLECTING DEVICE, ESPECIALLY FOR TUNING LASERS
EP0829120B1 (en) Tuneable, adjustment-stable laser light source with a spectral filtered output
DE102008052475A1 (en) A polarization
DE112011100812T5 (en) System and method for wavelength beam combination
US7065107B2 (en) Spectral beam combination of broad-stripe laser diodes
DE112015006769T5 (en) Semiconductor laser device
DE102004053137A1 (en) Multispectral laser with multiple gain elements
DE68921172T2 (en) Optically pumped lasers.
DE102012207339B4 (en) Pumping radiation arrangement and method for pumping a laser-active medium
DE112015005587T5 (en) OPTICAL CROSS-COUPLING DEHUMIDIFICATION SYSTEMS FOR WAVELENGTH BEAM COMBINING LASER SYSTEMS
WO2004021525A2 (en) Semiconductor laser device
DE2456913A1 (en) DYE LASER
DE60014074T2 (en) DIODE LASER PUMPED SOLID STATE LASER
DE19927054A1 (en) Solid state laser
EP1810381B1 (en) Laser resonator comprising an internal beam divider
DE4008225C2 (en) Laser diode pumped solid state laser
EP0923798B1 (en) Diode laser pumped multimode waveguide laser, particularly fiber laser
DE112020000301T5 (en) SYSTEMS AND METHODS FOR ALIGNING WAVELENGTH BEAM COMBINING RESONATORS
DE102011085614B4 (en) Laser system with resonator
DE102008036254A1 (en) Semiconductor laser
DE10161076A1 (en) Method and device for generating light of good beam quality from semiconductor laser chips
DE4239654C1 (en) Laser diode pumped microcrystal solid-state laser - has very thin laser crystal coupled to laser diode stage with reflecting surfaces to form resonator chamber
DE102012222544A1 (en) Laser system i.e. titanium-sapphire laser, for delivering laser light, has splitter surface is aligned such that backreflected portion is divided into beams, and amplifier medium arranged in one of beams against reflected portion of path

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005810669

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005810669

Country of ref document: EP