WO2005124833A1 - 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法 - Google Patents

露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法 Download PDF

Info

Publication number
WO2005124833A1
WO2005124833A1 PCT/JP2005/011305 JP2005011305W WO2005124833A1 WO 2005124833 A1 WO2005124833 A1 WO 2005124833A1 JP 2005011305 W JP2005011305 W JP 2005011305W WO 2005124833 A1 WO2005124833 A1 WO 2005124833A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
light
substrate
exposure apparatus
exposure
Prior art date
Application number
PCT/JP2005/011305
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Kenichi Shiraishi
Soichi Owa
Shigeru Hirukawa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/630,110 priority Critical patent/US20090225286A1/en
Priority to EP05753447A priority patent/EP1783822A4/en
Priority to KR1020117031057A priority patent/KR101245070B1/ko
Priority to KR1020067026825A priority patent/KR101228244B1/ko
Priority to KR1020127028839A priority patent/KR101342303B1/ko
Priority to EP18184420.0A priority patent/EP3462241A1/en
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to EP17175178.7A priority patent/EP3255652B1/en
Publication of WO2005124833A1 publication Critical patent/WO2005124833A1/ja
Priority to US11/822,964 priority patent/US8698998B2/en
Priority to US12/155,742 priority patent/US20080252865A1/en
Priority to US12/453,269 priority patent/US8810767B2/en
Priority to US12/656,456 priority patent/US20100134772A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Definitions

  • the present invention relates to an exposure apparatus that exposes a substrate through a liquid, a method for cleaning a predetermined member included in the exposure apparatus, a maintenance method for the exposure apparatus, a maintenance device, and a device manufacturing method.
  • Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and sequentially moves the mask stage and the substrate stage to project a pattern of the mask through a projection optical system. Transfer to the substrate.
  • further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns.
  • the resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases. Therefore, the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the mainstream exposure wavelength is 248 nm of KrF excimer laser, and 193 nm of short wavelength ArF excimer laser is being put to practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution and the depth of focus ⁇ are respectively expressed by the following equations.
  • is the exposure wavelength
  • is the numerical aperture of the projection optical system
  • k is the process coefficient
  • a liquid immersion method disclosed in International Publication No. 99Z49504 has been proposed.
  • the space between the lower surface of the projection optical system and the surface of the substrate is filled with a liquid such as water or an organic solvent to form an immersion area, and the wavelength of the exposure light in the liquid is changed to lZn (n Is used to improve the resolution by using the refractive index of the liquid, which is usually about 1.2 to 1.6), and to increase the depth of focus by about n times.
  • the present invention has been made in view of such circumstances, and provides an exposure apparatus capable of preventing performance degradation even when a liquid immersion method is applied, and a device manufacturing method using the exposure apparatus.
  • the purpose is to do.
  • an object of the present invention is to provide an exposure apparatus capable of preventing performance degradation due to contamination of a member that comes into contact with a liquid in an immersion area, and a device manufacturing method using the exposure apparatus.
  • a further object of the present invention is to provide a method for easily cleaning a member that comes into contact with a liquid in an immersion area.
  • the present invention employs the following configuration corresponding to Figs. 1 to 17 shown in the embodiment.
  • the parenthesized code attached to each element is This is merely an example, and does not limit each element.
  • an exposure apparatus for exposing a substrate (P) via a liquid (LQ), wherein an immersion area (AR2) of the liquid (LQ) is provided on an image plane side.
  • an exposure apparatus including a light cleaning apparatus (80) for irradiating a predetermined irradiation light (Lu) having an effect is provided.
  • a member that comes into contact with a liquid for forming a liquid immersion area is irradiated with irradiation light having a light cleaning effect using a light cleaning device to perform light cleaning. This makes it possible to remove contaminants from the member.
  • an exposure apparatus for exposing a substrate (P) via a liquid (LQ), wherein an optical path space on an image plane side is filled with the liquid (LQ).
  • System (PL) a nozzle member (70) for filling the optical path space with liquid (LQ), and at least a part of the nozzle member (70) for removing contaminants attached to the nozzle member (70).
  • An exposure apparatus (EXS, EX) provided with a vibrating mechanism for vibrating light is provided.
  • contaminants attached to the nozzle member can be removed by vibrating the nozzle member with the vibration mechanism.
  • a device manufacturing method using the exposure apparatus (EXS, EX) of the above aspect there is provided a device manufacturing method using the exposure apparatus (EXS, EX) of the above aspect.
  • a maintenance method for an exposure apparatus wherein the exposure apparatus fills an optical path space of exposure light with a liquid (LQ), and the substrate (P)
  • the fourth aspect of the present invention by irradiating the member in contact with the liquid with irradiation light having a light cleaning effect to perform light cleaning, it is possible to remove contaminants from the member. . Therefore, performance degradation of the exposure apparatus can be prevented.
  • a maintenance device including a light emitting unit (901) for generating a predetermined irradiation light (Lu) having a light cleaning effect is provided.
  • a member that comes into contact with the liquid is irradiated with irradiation light having a light cleaning effect by using a maintenance device to perform light cleaning, thereby contaminating the member.
  • the quality can be eliminated. Therefore, performance degradation of the exposure apparatus can be prevented.
  • a method for cleaning a member constituting an exposure apparatus for exposing a substrate wherein the exposure apparatus includes at least a liquid immersion area formed on a substrate (P).
  • a member cleaning method is provided, wherein the member is in contact with a liquid forming a region, and the cleaning method includes irradiating the member with predetermined irradiation light (Lu, EL).
  • the member that comes into contact with the liquid forming the liquid immersion area of the liquid immersion exposure apparatus is irradiated with the predetermined irradiation light and light-cleaned, thereby contaminating the member. Can be easily removed, and the influence of contaminants and impurities on immersion exposure can be reduced. If the cleaning method of the present invention can be carried out without removing the power member of the exposure apparatus, the maintenance is easy and the influence on the throughput of the exposure apparatus is small.
  • an exposure method for exposing a substrate wherein the substrate is exposed to light (2, 31, 70, 300, 400, 500, 600, etc.) by the washing method of the present invention.
  • an exposure method including light washing the substrate, and exposing the substrate (P) via a liquid (LQ).
  • a device comprising: exposing a substrate by the exposure method of the present invention (204); developing the exposed substrate; and processing the developed substrate (205). Manufacturing methods are also provided.
  • FIG. 1 is a schematic configuration diagram showing an exposure apparatus according to a first embodiment.
  • FIG. 2 is an enlarged view of a main part of FIG. 1.
  • FIG. 3 is a plan view of a substrate stage.
  • FIG. 4 is a diagram showing an example of the operation of the exposure apparatus according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram showing an exposure apparatus according to a second embodiment.
  • FIG. 6 is a schematic configuration diagram showing an exposure apparatus according to a third embodiment.
  • FIG. 7 is a schematic configuration diagram showing an exposure apparatus according to a fourth embodiment.
  • FIG. 8 is a schematic configuration diagram showing an exposure apparatus according to a fifth embodiment.
  • FIG. 9 is a schematic configuration diagram showing an exposure apparatus according to a sixth embodiment.
  • FIG. 10 is a schematic configuration diagram showing an exposure apparatus according to a seventh embodiment.
  • FIG. 11 is a schematic configuration diagram showing an exposure apparatus according to an eighth embodiment.
  • FIG. 12 is a diagram showing a maintenance device according to a ninth embodiment.
  • FIG. 13 is a diagram showing a maintenance device according to a tenth embodiment.
  • FIG. 14 (A) and (B) are diagrams showing a maintenance device according to an eleventh embodiment.
  • FIG. 15 is a diagram showing a maintenance device according to a twelfth embodiment.
  • FIG. 16 is a diagram showing a maintenance device according to a thirteenth embodiment.
  • FIG. 17 is a flowchart showing an example of a semiconductor device manufacturing process. Explanation of symbols
  • Exposure device main body EXS-Exposure device
  • KC Air-conditioning system
  • LQ Liquid
  • Lu Irradiation light (ultraviolet light)
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of the exposure apparatus of the present invention
  • FIG. 2 is an enlarged view of a main part of FIG.
  • the exposure apparatus EXS includes a main body chamber CH1 installed on a floor F in a clean room, and a machine room C H2 arranged adjacent to the main body chamber CH1.
  • the exposure room 100 provided inside the main body chamber CH1 is air-conditioned by an air-conditioning system KC, and the environment (cleanness, temperature, pressure, etc.) inside the exposure room 100 is kept almost constant.
  • the exposure chamber 100 is filled with clean air.
  • the exposure chamber 100 houses an exposure apparatus main body EX.
  • the exposure chamber 100 is connected to an outlet 114 of a gas flow path provided inside the machine chamber CH2 via an air supply flow path 101 and a connection section 102 provided inside the main body channel CH1.
  • the exposure apparatus main body EX accommodated in the exposure chamber 100 includes a mask stage MST supporting a mask M, a substrate stage PST supporting a substrate P, and a mask M supported by the mask stage MST.
  • An illumination optical system IL that illuminates with the exposure light EL
  • a projection optical system PL that projects and exposes the pattern image of the mask M illuminated with the exposure light EL onto the substrate P supported on the substrate stage PST, and has a light cleaning effect.
  • the overall operation of the exposure system EXS exposure system body EX
  • the overall operation of the exposure system EXS is totally controlled by the control unit CONT.
  • the “light cleaning effect” means that the member is purified by irradiating the member with a predetermined light, and the member is provided with a predetermined wavelength, particularly, ultraviolet light or the like. Irradiation with light such as vacuum ultraviolet light having a shorter wavelength causes attachment (adsorption) or formation on the surface of the member, thereby removing, decomposing or denaturing impurities or contaminants such as organic substances and carbon.
  • the surface of the member is purified, and oxygen in the gas in the vicinity of the member absorbs a predetermined wavelength, in particular, ultraviolet light or vacuum ultraviolet light having a shorter wavelength, and becomes an excited state. Chemical changes to increased ozone etc. removes, decomposes or denatures impurities or contaminants such as organic substances and carbon on the surface of the member. This includes cleaning the surface. It is considered that impurities and contaminants on the surface of the member are introduced by force such as a photoresist, a liquid applied to the substrate P, a surrounding gas, and an operator.
  • the exposure apparatus EXS further includes, at a position adjacent to the exposure chamber 100, a substrate transport system 150 for loading and unloading the substrate P with respect to the substrate stage PST.
  • the substrate transfer system 150 is housed in a substrate transfer system housing chamber (not shown).
  • a mask transfer system housing chamber for housing a mask transfer system for loading and unloading the mask M with respect to the mask stage MST is provided.
  • the substrate transfer system housing room and the mask transfer system housing room are provided on the opposite side of the exposure room 100 from the machine room CH2.
  • the interior environment of each of the substrate transfer system storage chamber and the mask transfer system storage chamber is maintained substantially constant by the air conditioning system KC.
  • the exposure apparatus EXS (exposure apparatus main body EX) of the present embodiment employs an immersion method to which the immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially widen the depth of focus.
  • the exposure apparatus includes a liquid supply mechanism 10 for supplying the liquid LQ onto the substrate P, and a liquid recovery mechanism 20 for recovering the liquid LQ on the substrate P.
  • pure water is used for the liquid LQ.
  • the exposure apparatus EXS at least partially transfers the pattern image of the mask M onto the substrate P by using the liquid LQ supplied from the liquid supply mechanism 10 on the substrate P including the projection area AR1 of the projection optical system PL. Next, an immersion area AR2 larger than the projection area AR1 and smaller than the substrate P is locally formed.
  • the exposure apparatus EXS defines an optical path space on the image plane side of the projection optical system PL between the optical element 2 at the image plane side tip of the projection optical system PL and the surface (exposure plane) of the substrate P.
  • the exposure light EL By irradiating the exposure light EL in a state filled with the liquid LQ, the pattern image of the mask M is projected onto the substrate P via the liquid LQ and the projection optical system PL between the projection optical system PL and the substrate P.
  • the substrate P is exposed.
  • the pattern formed on the mask M is synchronized with the mask M and the substrate P in directions different from each other (reverse direction) in the scanning direction (predetermined direction).
  • a scanning exposure apparatus that exposes P a so-called scanning stepper
  • the synchronous movement direction (scanning direction, predetermined direction) between the mask M and the substrate P in the horizontal plane is defined as the X axis direction, and the X axis direction in the horizontal plane.
  • the direction perpendicular to the direction is the Y-axis direction (non-scanning direction), and the direction perpendicular to the X-axis and the ⁇ -axis direction and coincident with the optical axis ⁇ of the projection optical system PL is the ⁇ ⁇ ⁇ -axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are defined as 0X, 0Y, and 0Z directions, respectively.
  • the “substrate” includes a semiconductor wafer coated with a resist
  • the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
  • the illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL.
  • the illumination light source IL is an optical light source for uniformizing the illuminance of the light beam emitted from the exposure light source. It has an integrator, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape.
  • a predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution.
  • Exposure light EL that is emitted is, for example, a bright line (g-line, h-line, i-line) that also emits a mercury lamp power, or a deep ultraviolet light (DUV light) such as a KrF excimer laser light (wavelength 248 nm). And vacuum ultraviolet light (VUV) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm).
  • a bright line g-line, h-line, i-line
  • DUV light deep ultraviolet light
  • ArF excimer laser light wavelength 193 nm
  • F laser light wavelength 157 nm
  • ArF excimer laser light is used.
  • the liquid LQ in the present embodiment is pure water, and can be transmitted even when the exposure light EL is ArF excimer laser light. Pure water is also capable of transmitting bright ultraviolet rays (g-line, h-line, i-line) and far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength: 248 nm).
  • the mask stage MST is movable while holding the mask M, is two-dimensionally movable in a plane perpendicular to the optical axis AX of the projection optical system PL, ie, in the XY plane, and is small in the ⁇ Z direction. It is rotatable.
  • the mask stage MST is driven by a mask stage driving device MSTD such as a linear motor.
  • the mask stage drive MSTD is controlled by the controller CONT.
  • a moving mirror 50 that moves together with the mask stage MST is provided on the mask stage MST.
  • a laser interferometer 51 is provided at a position facing the movable mirror 50.
  • the position and the rotation angle of the mask M on the mask stage MST in the two-dimensional direction are measured in real time by the laser interferometer 51, and the measurement result is output to the control device CONT.
  • the controller CONT drives the mask stage driving device MSTD based on the measurement result of the laser interferometer 51 to thereby control the mask supported by the mask stage MST. Perform M positioning.
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification 13, and includes a plurality of optical elements (lenses) 2 provided at the front end of the substrate P. These optical elements are supported by a lens barrel PK.
  • the projection optical system PL is a reduction system whose projection magnification j8 is, for example, 1Z4, 1/5, or 1Z8. Note that the projection optical system PL may be either a unity magnification system or an enlargement system.
  • the projection optical system PL may be any one of a reflection system not including a refraction element, a refraction system not including a reflection element, and a refraction / reflection system including a refraction element and a reflection element.
  • the optical element 2 at the tip of the projection optical system PL of the present embodiment is provided so as to be detachable (replaceable) from the lens barrel PK. The optical element 2 at the tip is exposed from the lens barrel PK, and the liquid LQ in the liquid immersion area AR2 comes into contact with the optical element 2. This prevents corrosion of the lens barrel PK, which also has metallic strength.
  • the substrate stage PST includes a Z tilt stage 52 that holds the substrate P via the substrate holder PH, and an XY stage 53 that supports the Z tilt stage 52.
  • the substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor.
  • the substrate stage drive PSTD is controlled by the controller CONT.
  • the Z tilt stage 52 can move the substrate P held by the substrate holder PH in the Z-axis direction and in the X, ⁇ Y directions (tilt directions).
  • the XY stage 53 is held by the substrate holder PH, and can move the substrate P in the XY direction (a direction substantially parallel to the image plane of the projection optical system PL) and the ⁇ Z direction via the Z tilt stage 52. It is. It goes without saying that the Z tilt stage and the XY stage may be provided integrally.
  • a recess 32 is provided on the substrate stage PST, and the substrate holder PH is disposed in the recess 32.
  • the upper surface 31 of the substrate stage PST (Z tilt stage 52) other than the concave portion 32 has a flat surface (flat portion) which is almost the same height (level) as the surface of the substrate P held by the substrate holder PH. ).
  • the upper surface of the movable mirror 55 is also substantially the same height (level) as the upper surface 31 of the substrate stage PST. Since the upper surface 31 is provided substantially flush with the surface of the substrate P around the substrate P, the liquid LQ is held on the image plane side of the projection optical system PL even when the edge area of the substrate P is subjected to immersion exposure.
  • Immersion area AR2 can be formed well Wear. Further, a gap of about 0.1 to 2 mm is formed between the edge portion of the substrate P and the flat surface (upper surface) 31 provided around the substrate P. The gap is formed by the surface tension of the liquid LQ. The upper surface 31 can hold the liquid LQ below the projection optical system PL even when exposing the vicinity of the periphery of the substrate P where the liquid LQ hardly flows.
  • the upper surface 31 of the substrate stage PST is subjected to a liquid repelling treatment and has liquid repellency.
  • the liquid-repellent treatment of the upper surface 31 is performed by applying a liquid-repellent material such as a fluorine resin material such as polytetrafluoroethylene (Teflon (registered trademark)) or an acrylic resin material, or by applying the liquid-repellent material.
  • a liquid-repellent material such as a fluorine resin material such as polytetrafluoroethylene (Teflon (registered trademark)) or an acrylic resin material, or by applying the liquid-repellent material.
  • a process of attaching a strong thin film may be used.
  • the member itself forming the upper surface 31 of the substrate stage PST may be formed of a liquid-repellent member such as a fluorine resin.
  • the upper surface 31 is irradiated with ultraviolet light (UV light) from the optical cleaning device 80.
  • UV light ultraviolet light
  • the liquid repellency of the upper surface 31 is reduced.
  • a film material is used without significantly impairing the quality.
  • a movable mirror 55 that moves with respect to the projection optical system PL together with the substrate stage PST is provided on the substrate stage PST (Z tilt stage 52).
  • a laser interferometer 56 is provided at a position facing the movable mirror 55. The position and the rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 56, and the measurement result is output to the control device CONT. Based on the measurement result of the laser interferometer 56, the controller CONT drives the XY stage 53 via the substrate stage driving device PSTD in the two-dimensional coordinate system defined by the laser interferometer 56, thereby controlling the substrate stage. Performs positioning of the substrate P supported by the PST in the X-axis direction and the Y-axis direction.
  • the exposure apparatus EXS exposure apparatus main body EX
  • the focus / leveling detection system 60 has a projection unit 60A and a light reception unit 60B, and projects the detection light La from the projection unit 60A obliquely to the surface of the substrate P (exposure surface) via the liquid LQ.
  • the surface position of the substrate P surface Detect information By receiving the reflected light from the substrate P via the liquid LQ at the light receiving section 60B, the surface position of the substrate P surface Detect information.
  • the control device CONT controls the operation of the focus leveling detection system 60, and, based on the light reception result of the light receiving unit 60B, the position (in the Z-axis direction) of the surface of the substrate P with respect to a predetermined reference plane (image plane). Focus position). Further, the focus leveling detection system 60 can also obtain the attitude of the substrate P in the tilt direction by obtaining each focus position at each of a plurality of points on the surface of the substrate P. As the configuration of the focus and reppelling detection system 60, for example, the configuration disclosed in JP-A-8-37149 can be used. The focus leveling detection system 60 may detect the surface position of the substrate P without using the liquid LQ.
  • the control device CONT drives the Z tilt stage 52 of the substrate stage PST via the substrate stage driving device PSTD to thereby control the position (focus position) of the substrate P held by the Z tilt stage 52 in the Z axis direction. ), And ⁇ Control the position in the X and ⁇ Y directions. That is, the Z tilt stage 52 operates based on a command from the controller CONT based on the detection result of the focus leveling detection system 60, and controls the focus position (Z position) and the tilt angle of the substrate P. To adjust the surface (exposure surface) of the substrate P to the image surface formed via the projection optical system PL and the liquid LQ.
  • a substrate alignment system for detecting an alignment mark on the substrate P or a reference mark on a reference member (measurement member) provided on the Z tilt stage 52, which will be described later. 350 are provided.
  • the substrate alignment system 350 of the present embodiment for example, as disclosed in Japanese Patent Application Laid-Open No. 4-65603, the substrate stage PST is stopped and the mark is irradiated with illumination light such as white light from a halogen lamp on the mark.
  • an FIA (field 'image' alignment) method is adopted in which an image of the obtained mark is picked up within a predetermined field of view by an image pickup device, and the position of the mark is measured by image processing.
  • the mask stage MST, the projection optical system PL, and the substrate stage PST are supported by the main body column 1.
  • the main body column 1 is supported via a plurality of vibration isolating units 3 above a base plate BP installed on the bottom surface of the main body chamber CH1.
  • the main body column 1 includes a main column 4 supported by the vibration isolation unit 3 and a support column 5 provided on the main column 4.
  • the projection optical system PL is held on the upper surface 4A of the main column 4 via a holding member PF.
  • Support column 5 has a low illumination optical system IL. At least part of it is supported by downward force.
  • the mask stage MST is provided so as to be two-dimensionally movable on a mask stage base (not shown) supported by the main column 4.
  • the substrate stage! ⁇ ( ⁇ stage 53) is constituted by the bottom surface of the main column 4 and provided so as to be two-dimensionally movable on a substrate stage base 57.
  • a mask alignment system 360 for detecting a reference mark on a reference member described later provided on the Z tilt stage 52 via the mask M and the projection optical system PL is provided. Is provided.
  • a mask alignment system 360 of the present embodiment for example, as disclosed in Japanese Patent Laid-Open No. 7-176468, a mark is irradiated with light, and image data of the mark captured by a CCD camera or the like is subjected to image processing.
  • the VRA (Visual Reticle Alignment) method of detecting the mark position is adopted!
  • an air-conditioning system KC that houses the exposure apparatus main body EX and air-conditions the exposure chamber 100 will be described with reference to FIG.
  • the air-conditioning system KC includes filter units 103, 105, 118, 121 disposed at a plurality of predetermined positions in a circulation flow path including the inside of the main body chamber CH1 and the inside of the machine room CH2, and a temperature control device. It has 110, 111 and 116.
  • the air-conditioning system KC maintains the environment (cleanliness, temperature, pressure, etc.) of the exposure chamber 100 in a desired state by circulating gas through the filter unit and the temperature controller.
  • an outside air intake (OA port) 108 in which the filter unit 109 is arranged is formed.
  • the inside of the main chamber CH1 is maintained at a positive pressure with respect to the outside.
  • the internal force of the main chamber CH1 also leaks gas to the outside.
  • the OA port 108 is provided to take in the leaked gas from the outside.
  • a chemical for removing chemical contaminants in the gas by diamond adsorption and physical adsorption At one end of the air supply passage 101 provided at the inside of the main body chamber CH1 (the end on the machine chamber CH2 side), a chemical for removing chemical contaminants in the gas by diamond adsorption and physical adsorption.
  • a filter unit 103 including a filter and the like is provided.
  • One end of the air supply passage 101 is connected to an outlet 114 of a gas passage provided inside the machine chamber CH2 via a connection portion 102.
  • the other end of the air supply channel 101 is connected to an opening (air supply port) 104 provided in the upper part of the exposure chamber 100.
  • the air supply port 104 is provided with gas in the gas flowing into the exposure chamber 100.
  • the air conditioning system KC supplies gas from the air supply port 104 in a direction lateral to the upper space of the exposure chamber 100, in this embodiment, in the X direction.
  • An exhaust section (return section) 106 is provided at the bottom of the exposure chamber 100.
  • the return section 106 is connected to an opening 107A formed in the floor of the machine room CH2 via an exhaust passage (return duct) 107.
  • the gas inside the exposure chamber 100 is exhausted from the exhaust unit 106 and sent to the machine room CH2.
  • the OA port 108 provided at a predetermined position in the machine room CH2 is provided with a filter unit 109 having a chemical filter or the like.
  • a cooling device (temperature control device) 110 is provided in the gas flow path inside the machine room CH2.
  • a heating device (temperature control device) 111 is arranged at a predetermined distance.
  • An air supply fan 112 is provided near the outlet 114 of the machine room CH2 provided above the heating device 111.
  • a drain pan 122 is arranged below the cooling device 110. The gas whose temperature has been adjusted by the temperature controllers 110 and 111 is supplied to the main chamber CH1 via the outlet 114.
  • a branch 113 into which a part of the gas (for example, about 1Z5) that has passed through the cooling device 110 from below to above flows is connected.
  • An extendable bellows-like member 113a is provided at one end of the branch passage 113, and one end of the branch passage 113 and the inside of the machine room CH2 are connected via the bellows-like member 113a.
  • an opening (air supply port) 115 provided at the other end of the branch path 113 is arranged near the substrate stage PST. As shown in FIG. 1, most of the branch path 113 is provided inside the exposure chamber 100.
  • a heating device 116 is provided inside the branch 113.
  • an air supply fan 117 is provided in the branch passage 113 near the air supply port 115.
  • the air supply port 115 is provided on a side wall on the X side of the main column 4.
  • the air supply port 115 is provided with a filter unit 118 having a chemical filter, an UL PA filter, and the like.
  • the gas whose temperature has been adjusted by the temperature control devices 110 and 116 passes through an air supply port 115 to a space (air conditioning space) 125 near the substrate stage PST, which includes a part of the projection optical system PL, inside the exposure chamber 100. Supplied. Less than In the following description, a space including a part of the projection optical system PL and the substrate stage PST and surrounded by the main column 4 will be described as an air-conditioned space 125.
  • the air-conditioning system KC is supplied with gas from the air supply port 115 in a direction transverse to the space (air-conditioned space) 125 near the substrate stage PST including a part of the projection optical system PL, that is, in the + X direction in the present embodiment.
  • the air-conditioning system KC is set substantially in the + X direction.
  • an exhaust port 120 which is one end of an exhaust flow path (return dart) 119 is arranged on the side wall on the + X side of the main column 4, and the air supply port 115 and the exhaust port 120 face each other.
  • the other end of the return duct 119 is connected to an opening 119A formed in the floor of the machine room CH2.
  • the openings 107A and 119A formed in the floor of the machine room CH2 are provided with a filter unit 121 having a chemical filter and the like.
  • the gas in the air-conditioned space 125 in the inside of the exposure room 100 is exhausted from the exhaust port 120 and sent to the machine room CH2.
  • the liquid supply mechanism 10 is for supplying a predetermined liquid LQ to the image plane side of the projection optical system PL, and includes a liquid supply unit 11 capable of sending out the liquid LQ and a liquid supply unit 11. And a supply pipe 13 for connecting one end.
  • the liquid supply unit 11 includes a tank for accommodating the liquid LQ, a pressure pump, a filter unit for removing foreign substances and bubbles contained in the liquid LQ, and the like.
  • the liquid supply operation of the liquid supply unit 11 is controlled by the control device CONT.
  • the liquid supply mechanism 10 supplies the liquid LQ onto the substrate P.
  • the liquid recovery mechanism 20 is for recovering the liquid LQ on the image plane side of the projection optical system PL, and includes a liquid recovery unit 21 capable of recovering the liquid LQ and one end of the liquid recovery unit 21. And a collection pipe 23 for connecting the same.
  • the liquid recovery unit 21 includes, for example, a vacuum system (suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, a tank that stores the recovered liquid LQ, and the like.
  • a vacuum system suction device
  • the vacuum system, gas-liquid separator, tank, etc. is not installed in the exposure equipment EXS, but the equipment of the factory where the exposure equipment EXS is installed You may use.
  • the liquid recovery operation of the liquid recovery unit 21 is controlled by the controller CONT.
  • the liquid recovery mechanism 20 recovers a predetermined amount of the liquid LQ on the substrate P supplied from the liquid supply mechanism 10.
  • a nozzle member 70 is disposed near the optical element 2 that is in contact with the liquid LQ.
  • the nozzle member 70 is used to fill the optical path space through which the exposure light EL on the image plane side of the projection optical system PL passes with the liquid LQ, and is located above the substrate P (substrate stage PST) and the side of the optical element 2 It is an annular member provided so as to surround.
  • a gap is provided between the nozzle member 70 and the optical element 2, and the nozzle member 70 is supported by a predetermined support mechanism so as to be separated from the optical element 2 by vibration.
  • the liquid LQ is configured so as not to enter the gap and to prevent air bubbles from entering the liquid LQ from the gap.
  • the nozzle member 70 is made of, for example, stainless steel, titanium, or the like.
  • the nozzle member 70 is provided above the substrate P (substrate stage PST), and has a supply port 12 arranged so as to face the surface of the substrate P.
  • the nozzle member 70 has two supply ports 12A and 12B.
  • the supply ports 12A and 12B are provided on the lower surface 70A of the nozzle member 70.
  • a supply channel through which the liquid LQ supplied onto the substrate P flows is formed inside the nozzle member 70.
  • One end of the supply flow path of the nozzle member 70 is connected to the other end of the supply pipe 13, and the other end of the supply flow path is connected to each of the supply ports 12A and 12B.
  • the other end of the supply channel formed inside the nozzle member 70 branches off from the middle so as to be connectable to each of the plurality (two) of supply ports 12A and 12B.
  • the nozzle member 70 is provided above the substrate P (substrate stage PST), and has a collection port 22 arranged to face the surface of the substrate P.
  • the recovery roller 22 is formed in an annular shape on the lower surface 70A of the nozzle member 70 so as to surround the optical element 2 (projection area AR1) of the projection optical system PL and the supply port 12.
  • a recovery flow channel through which the liquid LQ recovered through the recovery port 22 flows is formed inside the nozzle member 70.
  • One end of the recovery flow path of the nozzle member 70 is connected to the other end of the recovery pipe 23, and the other end of the recovery flow path is connected to the recovery port 22.
  • the recovery flow path formed inside the material 70 includes an annular flow path corresponding to the recovery port 22 and a manifold flow path for collecting the liquid LQ flowing through the annular flow path.
  • the nozzle member 70 constitutes a part of each of the liquid supply mechanism 10 and the liquid recovery mechanism 20.
  • the supply ports 12A and 12B constituting the liquid supply mechanism 10 are provided at respective positions on both sides in the X-axis direction across the projection area AR1 of the projection optical system PL, and the collection ports 22 constituting the liquid collection mechanism 20 are provided.
  • the projection area AR1 of the projection optical system PL in the present embodiment is set to have a rectangular shape in plan view with the Y-axis direction as the long direction and the X-axis direction as the short direction.
  • the operation of the liquid supply unit 11 is controlled by the control device CONT.
  • the control device CONT can control the amount of liquid supplied by the liquid supply unit 11 per unit time.
  • the controller CONT sends out the liquid LQ from the liquid supply unit 11 and supplies the liquid LQ above the substrate P via the supply pipe 13 and the supply flow path formed inside the nozzle member 70.
  • the liquid LQ is supplied onto the substrate P from the supply ports 12A and 12B provided in the apparatus.
  • the liquid LQ is supplied from both sides of the projection area AR1 via the supply ports 12A and 12B.
  • the liquid recovery operation of the liquid recovery unit 21 is controlled by the controller CONT.
  • the control device CONT can control the amount of liquid collected by the liquid recovery unit 21 per unit time.
  • the liquid LQ on the substrate P recovered from the recovery port 22 provided above the substrate P is recovered by the liquid recovery unit 21 via a recovery flow path formed inside the nozzle member 70 and a recovery pipe 23. .
  • the configuration (position, shape, number, etc. of the supply port and the recovery port) of the nozzle member 70 is not limited to the above, and the liquid immersion area AR2 can be maintained so that the liquid LQ in the optical path of the exposure light EL is filled. Any configuration can be used.
  • the supply ports 12A and 12B may be arranged on both sides in the Y-axis direction with respect to the projection area A R1 of the projection optical system PL, or the nozzle member 70 may be constituted by a plurality of members. ⁇ .
  • the lower surface (liquid contact surface) 2A of the optical element 2 of the projection optical system PL and the lower surface (liquid contact surface) 70A of the nozzle member 70 have lyophilicity (hydrophilicity).
  • the optical element 2 is formed of fluorite having a high affinity for pure water.
  • the optical element 2 may have high affinity with water! It may be formed of quartz.
  • the liquid contact surface 70A of the liquid member 70 may be subjected to a hydrophilic (lyophilic) treatment to further increase the affinity with the liquid LQ.
  • the lyophilic treatment includes lyophilic substances such as MgF, Al O, and SiO.
  • a process of providing a liquid material on the liquid contact surface is exemplified.
  • the liquid LQ in the present embodiment is highly polar water
  • a thin film made of a substance having a polar and large molecular structure such as alcohol may be used as the lyophilic treatment (hydrophilization treatment).
  • the liquid immersion area AR2 of the liquid LQ is formed by utilizing the surface tension of the liquid LQ and the lower surface 2A of the optical element 2. It can be favorably formed between the lower surface 70A of the nozzle member 70 and the upper surface of the substrate P and the upper surface of the substrate P or Z or the substrate stage PST.
  • the lower surface 2A of the optical element 2 and the lower surface of the nozzle member 70 are arranged such that the nozzle member 70 is disposed so that the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 are substantially flush.
  • the distance between the lower surface 70A of the nozzle member 70 and the upper surface of the substrate P and the upper surface of the substrate P or Z or the upper surface of the substrate stage PST is smaller than the distance between the lower surface 2A of the optical element 2 and the upper surface of the substrate P and the upper surface of the substrate P or Z or the upper surface of the substrate stage PST.
  • the nozzle member 70 may be arranged so as to be small.
  • optical cleaning device 80 will be described with reference to FIG.
  • the light cleaning device 80 emits irradiation light Lu having a light cleaning effect.
  • the optical cleaning device 80 includes a light source 82 and a housing 81 that holds the light source 82. In the present embodiment, the optical cleaning device 80 emits ultraviolet light (UV light) downward.
  • the light source 82 includes a Xe excimer laser (wavelength 172 nm) and a KrCl excimer laser (wavelength 2
  • the light cleaning device 80 is provided inside the air-conditioned space 125 containing the optical element 2, the nozzle member 70, and the substrate stage PST at the distal end of the projection optical system PL, in a position parallel to the projection optical system PL. ing .
  • the light cleaning device 80 is located on the + X side of the ceiling surface 4B of the main column 4 with respect to the projection optical system PL (the optical path of the exposure light EL) inside the air-conditioned space 125. It is mounted at a distance.
  • the gas supplied from the air supply port 115 flows in the + X direction.
  • the optical cleaning device 80 has a configuration provided on the downstream side of the flow of gas (air) formed by the air conditioning system KC with respect to the projection optical system PL.
  • a substrate transport system 150 for loading (loading) and unloading (unloading) the substrate P with respect to the substrate stage PST is disposed outside the + X side of the air-conditioned space 125.
  • the controller CONT moves the substrate stage PST to the + X side of the air-conditioned space 125 when loading and unloading the substrate P with respect to the substrate stage PST. Position).
  • the optical cleaning device 80 is provided above the load / unload position, and the substrate stage PST is configured to be movable directly below the optical cleaning device 80.
  • detectors 84 (84A, 84B) for detecting gas components in the air-conditioned space 125 are provided.
  • the detector 84 is constituted by an oximeter capable of detecting the oxygen concentration of the air-conditioned space 125.
  • the detectors 84A and 84B are provided at a plurality of predetermined positions in the air-conditioned space 125, respectively.
  • the detector 84A is mounted on the ceiling surface 4B of the main column 4 at a position aligned with the optical cleaning device 80.
  • the detector 84B is provided near the optical path of the ultraviolet light Lu emitted from the optical cleaning device 80.
  • FIG. 3 is a plan view of the Z tilt stage 52 of the substrate stage PST as viewed from above. Note that, in FIG. 3, the substrate P is virtually illustrated by a broken line.
  • a movable mirror 55 is arranged at two mutually perpendicular edges of a Z-tilt stage 52 having a rectangular shape in a plan view. Further, a concave portion 32 is formed substantially at the center of the Z tilt stage 52, and a substrate holder PH for holding the substrate P is disposed in the concave portion 32.
  • the substrate holder PH includes a substantially annular peripheral wall portion 33, and a plurality of pin-shaped support portions 34 that are arranged inside the peripheral wall portion 33 and hold (support) the substrate P. .
  • Each of the pin-shaped support portions 34 holds the substrate P by bringing its upper surface 34A into contact with the back surface of the substrate P.
  • the support portion 34 is shown relatively large in force. Actually, a very small number of pin-shaped support portions are formed inside the peripheral wall portion 33.
  • the peripheral wall portion 33 is disposed around the support portion 34, and the support portion 34 is uniformly disposed inside the peripheral wall portion 33. As described above, a predetermined gap is formed between the side surface of the substrate P held by the substrate holder PH and the upper surface 31 of the Z tilt stage 52. In the figure, the upper end surface of the peripheral wall portion 33 has a relatively wide width. Has a width of only about 0.1 to 2 mm.
  • a plurality of suction ports 41 are provided on the upper surface of the substrate holder PH other than the support portion 34.
  • the suction port 41 is connected via a flow path to a vacuum system (not shown) including a vacuum pump provided outside the substrate stage PST.
  • the controller CONT drives the vacuum system, and forms a gas (air) inside the space 38 formed between the substrate holder PH including the peripheral wall portion 33 and the support portion 34 and the substrate P supported by the support portion 34.
  • the substrate holder PH in the present embodiment includes a so-called pin chuck mechanism.
  • a reference member (measurement member) 300 as an optical measurement unit is disposed at a predetermined position outside the substrate P above the substrate stage PST.
  • the reference member 300 is provided with a reference mark PFM detected by the substrate alignment system 350 and a reference mark MFM detected by the mask alignment system 360 in a predetermined positional relationship.
  • the upper surface of the reference member 300 is substantially flat, and is provided at substantially the same height (level) as the surface of the substrate P held by the substrate stage PST and the upper surface 31 of the substrate stage PST.
  • the upper surface of the reference member 300 can also serve as a reference surface of the focus' leveling detection system 60.
  • an illuminance non-uniformity sensor 400 as disclosed in, for example, JP-A-57-117238, for example,
  • Various optical measurement units such as a reflection member (measurement member) (not shown) as disclosed in 183522 are provided.
  • each optical measurement unit is substantially flush with the upper surface 31 of the substrate stage PST, and is covered with a light-transmissive liquid-repellent material.
  • a light-transmissive liquid-repellent material In this embodiment, pure water is used as the liquid LQ, and the upper surface of each optical measurement unit is covered with a water-repellent CYTOP (registered trademark, manufactured by Asahi Glass Co., Ltd.).
  • the liquid-repellent material on the upper surface of each optical measurement unit is formed by the exposure light EL or the ultraviolet light from the light cleaning device 80.
  • each optical measurement unit may be formed integrally with upper surface 31 of substrate stage PST, or may be formed on a member different from the member forming upper surface 31 of substrate stage PST. Good. Further, it is not necessary to provide all of the reference member 300 and the sensors 400, 500, and 600 on the substrate stage PST, and at least one of them may be omitted.
  • the control device CONT controls the supply and recovery of the liquid LQ by the liquid supply mechanism 10 and the liquid recovery mechanism 20 while supporting the substrate P on the substrate stage PST.
  • Line ⁇ , the liquid immersion area AR2 of the liquid LQ is formed on the image plane side of the projection optical system PL.
  • the control device CONT performs various measurement operations using the optical measurement units 300, 400, 500, and 600 before performing the exposure processing on the substrate P, and performs alignment processing on the substrate P based on the measurement results.
  • the imaging characteristic adjustment (calibration) processing of the projection optical system PL is performed.
  • the control device CONT moves the substrate stage PST in the XY direction to move the substrate stage PST relative to the liquid immersion area AR2 of the liquid LQ.
  • the liquid immersion area AR2 of the liquid LQ is arranged on the optical measurement unit 400, and the measurement operation via the liquid LQ is performed in that state.
  • the substrate stage PST is relatively moved with respect to the liquid immersion area AR2 of the liquid LQ. Then, the measurement operation via the liquid LQ is performed in a state where the liquid immersion area AR2 of the liquid LQ is arranged on the optical measurement units 300, 500, and 600.
  • the control device CONT controls the liquid recovery mechanism 20 to supply the liquid LQ on the substrate P by the liquid recovery mechanism 20 in parallel with the supply of the liquid LQ onto the substrate P.
  • the substrate stage PST that supports the substrate P is moved in the X-axis direction (scanning direction) while forming the liquid immersion area AR2 locally, smaller than the substrate P and larger than the projection area AR1. Meanwhile, the pattern image of the mask M is projected and exposed on the substrate P via the liquid LQ between the projection optical system PL and the substrate P and the projection optical system PL.
  • the exposure apparatus EX moves the mask M and the substrate P in the X-axis direction (scanning direction).
  • the pattern image of the mask M is projected and exposed on the substrate P while moving, and during scanning exposure, a part of the pattern image of the mask M is projected via the liquid LQ in the liquid immersion area AR2 and the projection optical system PL.
  • the substrate P is projected in the area AR1, and the substrate P is moved in the + X direction (or -X direction) with respect to the projection area AR1 in synchronization with the movement of the mask M in the -X direction (or + X direction) at the speed V.
  • the speed ⁇ ′ ⁇ is the projection magnification).
  • a plurality of shot areas are set on the substrate ⁇ , and after the exposure of one shot area is completed, the next shot area is moved to the scanning start position by the stepping movement of the substrate ⁇ . Scanning exposure processing is sequentially performed on each shot area while moving the substrate by the AND'scan method. Note that, depending on the structure of the projection optical system PL, each of the shot areas is exposed by moving the mask M and the substrate P in the same direction (for example, the + X direction).
  • the liquid immersion area AR2 When exposing a shot area set in the central area of the substrate P, the liquid immersion area AR2 is arranged on the substrate P. On the other hand, when exposing a shot area set in the edge area of the substrate P, the liquid immersion area AR2 is arranged so as to straddle each of the substrate P and the upper surface 31 of the substrate stage PST.
  • the control device CONT After the completion of the liquid immersion exposure of the substrate P, the control device CONT stops the liquid supply by the liquid supply mechanism 10 and then uses the liquid recovery mechanism 20 to turn on the substrate P and the upper surface 31 of the substrate stage PST. "Pama light meter willow” ⁇ ⁇ 300, 400, 500, 600 [Remaining! / Puru liquid Collect LQ. Next, the controller CONT unloads (unloads) the substrate ⁇ after the exposure processing and loads (unloads) the unexposed substrate ⁇ that has not been exposed yet into the substrate stage PST. As shown in FIG.
  • the substrate stage PST is moved to the + ⁇ side with respect to the projection optical system PL, and is placed on the + X side of the air-conditioned space 125, that is, at a position near the substrate transfer system 150 (load / unload position). .
  • the light cleaning device 80 is provided above the load / unload position.
  • the control device CONT controls the substrate stage PST before loading the unexposed substrate P onto the substrate stage PST.
  • the substrate stage PST is moved and placed immediately below the optical cleaning device 80 in a state where the substrate P does not exist. In this state, the control device CONT drives the light cleaning device 80, and emits the ultraviolet light Lu downward from the light cleaning device 80. Injected from light cleaning device 80 The ultraviolet light Lu is applied to the substrate stage PST.
  • the optical cleaning device 80 irradiates ultraviolet light Lu for a predetermined time to the upper surface 31 of the substrate stage PST, the optical measuring units 300, 400, 500, 600 provided on the upper surface 31 of the substrate stage PST, and the substrate holder PH. .
  • the optical cleaning device 80 may irradiate the upper surface of the movable mirror 55 with ultraviolet light Lu.
  • the liquid immersion area AR2 of the liquid LQ is a force that moves on the upper surface 31 of the substrate stage PST including the surface of the substrate P and the optical measurement units 300, 400, 500, and 600.
  • impurities organic substances
  • the light meter willow provided on the substrate stage PST ” ⁇ 300, 400, 500, 600, etc.
  • impurities (organic substances) floating in the air may adhere to the upper surface 31 of the substrate stage PST or the optical measurement units 300, 400, 500, 600, and the like.
  • the organic matter adhered on the upper surface 31 of the substrate stage PST, the optical measurement units 300, 400, 500, and 600, and the substrate holder PH are exposed to the ultraviolet light under an atmosphere having an enhanced oxidizing power. Removed by Lu. In this manner, the upper surface 31 of the substrate stage PST, the upper surfaces of the optical measurement units 300, 400, 500, and 600 and the substrate holder PH are optically cleaned, and the formation of the adhesion trace of the liquid LQ can be suppressed.
  • the liquid LQ on the substrate stage PST may not be able to be completely collected, and the liquid LQ may remain on the substrate stage PST. If the remaining liquid LQ is left unattended, the liquid LQ dries and then remains on the upper surface 31 of the substrate stage PST or the upper surfaces of the optical measurement units 300, 400, 500, and 600 (so-called water mark). ) Is formed May be Further, when the liquid LQ enters the back surface side of the substrate P and adheres to the substrate holder PH, a trace of adhesion (water mark) of the liquid LQ may be formed on the substrate holder PH.
  • the optical cleaning device 80 irradiates the upper surface 31 of the substrate stage PST, the upper surfaces of the optical measurement units 300, 400, 500, and 600, and the substrate holder PH with ultraviolet light. Also, removal of adhesion marks (watermarks) by the light cleaning effect can be expected.
  • the control device CONT loads the unexposed substrate P onto the optically cleaned substrate stage PST. If impurities (organic substances) are attached to the substrate holder PH or traces of adhesion (water marks) are formed, they act as foreign substances, and the substrate holder PH cannot suction and hold the substrate P properly. Alternatively, the flatness (flatness) of the held substrate P is degraded, and a problem arises in that good exposure accuracy and measurement accuracy cannot be obtained. In the present embodiment, before holding the unexposed substrate P with the substrate holder PH, the substrate holder PH is optically cleaned, so that the above-mentioned inconvenience can be prevented.
  • the optical measurement is performed before performing the measurement processing.
  • the optical measurement is performed before performing the measurement processing.
  • the contact angle of the upper surface 31 of the substrate stage PST with the liquid LQ changes, the pressure of the liquid LQ in the immersion area LQ changes, and accordingly, the substrate P, the substrate stage PST, and the optical system of the projection optical system PL change.
  • the force of the liquid LQ on element 2 also changes.
  • the board P and Inconveniences such as deformation of the substrate stage PST supporting the substrate P and fluctuation of the position of the optical element 2 may occur, and exposure accuracy and measurement accuracy may be degraded.
  • the upper surface 31 of the substrate stage PST is optically cleaned to prevent a change in the contact angle of the upper surface 31 with the liquid LQ, thereby preventing the above-described inconvenience. Can be.
  • the adhesion mark (water mark) formed on the substrate stage PST or the like acts as a foreign substance
  • the foreign substance floats in the air, for example, and adheres to the substrate P, and the exposure process is performed in that state. If performed, a pattern defect on the substrate P is caused.
  • the optical cleaning device 80 irradiates the ultraviolet light Lu so that the adhesion mark (water mark) is not formed on the substrate stage PST, so that the formation of the adhesion mark (water mark) is suppressed.
  • the optical cleaning device 80 is provided at a position aligned with the projection optical system PL. With such an arrangement, the substrate stage PST can be immediately moved immediately below the optical cleaning device 80 when the exposure processing is not performed, and the time required for the optical cleaning processing can be shortened. it can.
  • the light cleaning device 80 (light source 82) is a heat source, if it is too close to the projection optical system PL, the imaging characteristics of the projection optical system PL may fluctuate, and the exposure accuracy and the projection optical system PL may be changed. Degrades measurement accuracy via PL. In addition, foreign matter (impurities) scattered in the air due to the light cleaning of the light cleaning device 80 may affect exposure accuracy and measurement accuracy. Therefore, it is desirable that the optical cleaning device 80 be provided at a position separated by a predetermined distance from the projection optical system PL (the optical path of the exposure light EL).
  • the optical cleaning device 80 is provided on the downstream side of the flow of gas (air) formed by the air conditioning system with respect to the projection optical system PL. Therefore, it is possible to effectively prevent the heat generated by the optical cleaning device 80 from being transmitted to the projection optical system PL (the optical path of the exposure light EL). In addition, even if foreign matter (impurities) decomposed by light cleaning by the light cleaning device 80 scatters in the air, the foreign matter (impurities) does not flow to the projection optical system PL side. It can be exhausted from the vent 120.
  • the installation position of the optical cleaning device 80 in consideration of the direction of the flow of the gas formed by the air conditioning system KC, the exposure accuracy and measurement accuracy due to the optical cleaning device 80 can be improved. Deterioration can be prevented.
  • Irradiation light Lu emitted from the optical cleaning device 80 may be ArF excimer laser light (wavelength 193 nm) or F laser light (wavelength 157 ⁇ ) as long as it is irradiation light having a light cleaning effect.
  • VUV light vacuum ultraviolet light
  • a mercury lamp, a deuterium lamp, or the like can be used. In this case, the cost of the light cleaning device 80 can be reduced.
  • the control device CONT detects the oxygen concentration in the air-conditioned space 125 including the optical path of the ultraviolet light Lu using the detector 84 (84A, 84B), and when performing light cleaning, the detection result of the detector 84 is used.
  • the oxygen concentration in the space including at least the optical path of the ultraviolet light Lu in the air-conditioned space 125 may be adjusted based on the above. For example, if the oxygen concentration detected by the detector 84 is lower than the desired concentration, the controller CONT adds oxygen to the gas supplied to the air-conditioned space 125 from the air supply port 115 of the air-conditioning system KC. By doing so, the oxygen concentration in the air-conditioned space 125 can be increased.
  • the control device CONT causes the gas supplied from the air supply port 115 of the air conditioning system KC to the air-conditioned space 125 to be a gas such as nitrogen.
  • the control device CONT causes the gas supplied from the air supply port 115 of the air conditioning system KC to the air-conditioned space 125 to be a gas such as nitrogen.
  • the oxygen concentration in the conditioned space 125 can be lowered.
  • the gas in the air-conditioned space 125 is recovered from the exhaust port 120.
  • FIG. 5 is a schematic configuration diagram showing a second embodiment of the present invention.
  • the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, The description is simplified or omitted.
  • the light cleaning device 80 (light source 82) is a heat source, it may be arranged outside the air-conditioned space 125 as shown in FIG. By doing so, it is possible to more effectively prevent the heat generated in the optical cleaning device 80 from being transmitted to the projection optical system PL (the optical path of the exposure light EL).
  • the light cleaning device 80 is provided on the upper surface 4A of the main column 4, and is disposed outside the air-conditioned space 125.
  • a transmission window 83 through which ultraviolet light Lu can pass is provided on a part of the upper wall of the main column 4, and the light cleaning device 80 is provided on the transmission window 83.
  • the transmission window 83 is made of a material that absorbs less ultraviolet light Lu, such as quartz glass, fluorite, or magnesium.
  • the light cleaning device 80 emits ultraviolet light Lu downward. After passing through the transmission window 83, the ultraviolet light Lu emitted from the optical cleaning device 80 is irradiated onto the substrate stage PST disposed immediately below the optical cleaning device 80 and the transmission window 83.
  • the design of the gas flow in the air-conditioned space 125 formed by the air-conditioning system KC is reduced.
  • the degree of freedom can be expanded.
  • FIG. 6 is a diagram showing a third embodiment.
  • a light cleaning device 80 is disposed outside the air-conditioned space 125, and emits ultraviolet light Lu, and a substrate 82 disposed inside the air-conditioned space 125 to emit the ultraviolet light Lu emitted from the light source 82.
  • An optical system 86 for guiding the stage PST is provided.
  • the optical system 86 is provided on a part of the side wall on the + X side of the main column 4 and is capable of transmitting ultraviolet light Lu and the transmission window 83 disposed inside the air-conditioned space 125 and the ultraviolet light passing through the transmission window 83.
  • a reflection mirror 85 for bending the optical path of Lu is provided.
  • the transmission window 83 is made of a material that absorbs only a small amount of ultraviolet light Lu, such as quartz glass, fluorite, or magnesium fluoride, as described above.
  • the light source 82 is housed in the housing 81, and is arranged near the transmission window 83 outside the + X side of the main column 4.
  • the ultraviolet light Lu emitted from the light source 82 passes through the transmission window 83, is reflected by the reflection mirror 85, and is irradiated on the substrate stage PST.
  • the reflection mirror 85 may be convex or concave. By making the reflection mirror 85 convex, a large area of the substrate stage PST can be made ultraviolet Irradiation can be performed at once with light Lu.
  • the ultraviolet light Lu emitted from the light source 82 can be condensed by the reflecting mirror 85 and then radiated to the substrate stage PST. Further, by providing the reflecting mirror 85 so as to be movable (swingable) and moving the reflecting mirror 85, the ultraviolet light Lu reflected by the reflecting mirror 85 can be applied to a desired position of the substrate stage PST.
  • an optical element such as a lens or prism for deflecting or condensing the ultraviolet light Lu may be used.
  • the light source 82 serving as a heat source is disposed outside the air-conditioned space 125, the heat generated by the light source 82 of the light cleaning device 80 is generated by the projection optical system PL. (Light path of the exposure light EL) can be further effectively prevented.
  • the light source 82 of the optical cleaning device 80 is arranged outside the air-conditioned space 125, so that the flow of air in the air-conditioned space 125 formed by the air-conditioning system KC.
  • the degree of freedom for the design can be expanded.
  • two air supply ports 115 (115A, 115B) for supplying gas to the air-conditioned space 125 are provided, and provided on the upper wall of the main column 4.
  • the air supply ports 115A and 115B are provided with filter units 118 (118A and 118B), respectively.
  • the air-conditioning system KC supplies gas from the air supply ports 118A and 118B to the air-conditioned space 125 in the vertical direction, in the present embodiment, in the Z-direction. Further, exhaust ports 120 (120A, 120B) for exhausting the gas in the air-conditioned space 125 are provided below the side walls of the + X side and the X side of the main column 4! /.
  • the substrate stage PST is moved from a position below the projection optical system PL to a predetermined position in the X direction, and the ultraviolet light is moved at a predetermined position.
  • Light Lu was applied to the substrate stage PST.
  • the present invention is not limited to this, and while maintaining the substrate stage PST at a position below the projection optical system PL, the ultraviolet light Lu is emitted from the projection optical system PL using a reflecting mirror or other optical members as shown in FIG. It may be guided to the substrate stage PST located below. Further, in the example shown in FIGS.
  • the detector 84 when the oxygen concentration in the air conditioning space 125 is maintained in a state where light cleaning can be performed by the air conditioning system KC, the detector 84 is turned off. By omitting, it is not necessary to actively adjust the oxygen concentration based on the detection result of the detector 84. Yes.
  • the optical cleaning device 80 includes a gas supply system 87 that supplies a predetermined gas to the vicinity of the irradiation area of the substrate stage PST where the ultraviolet light Lu is irradiated, and a suction and collection of the gas. And a gas recovery system 88 to be used.
  • the supply port 87A of the gas supply system 87 and the recovery port 88A of the gas recovery system 88 are provided near the substrate stage PST, and are arranged to face each other with the substrate stage PST interposed therebetween.
  • the control device CONT detects the oxygen concentration in the air-conditioned space 125 including the optical path of the ultraviolet light Lu using the detector 84 (84A, 84B), and when performing light cleaning, the detection result of the detector 84 is used. Based on this, the gas component (oxygen concentration) supplied from the gas supply system 87 is adjusted. For example, when the oxygen concentration detected by the detector 84 is lower than the desired concentration, the control device CONT adds oxygen to the gas supplied from the gas supply system 87 to the irradiation area. The oxygen concentration in the vicinity of the irradiation region can be increased.
  • the controller CONT adds an inert gas such as nitrogen to the gas supplied from the gas supply system 87 to the irradiation region, thereby controlling the vicinity of the irradiation region. Oxygen concentration can be reduced.
  • the recovery port 88A of the gas recovery system 88 is provided in the vicinity of the irradiation area of the ultraviolet light Lu. Foreign substances can be collected by suction. For example, when the substrate stage PST is optically cleaned, the organic matter adhering to the substrate stage PST may vaporize and float, but the vaporized organic matter is quickly recovered by the gas recovery system 88, and air conditioning is performed. The cleanliness of the space 125 can be maintained.
  • the gas supply system 87 can also supply an oxidizing gas (light cleaning promoting gas) such as ozone gas.
  • an oxidizing gas such as ozone gas.
  • the optical cleaning device 80 shown in FIG. 8 irradiates the optical element 2 closest to the image plane and the nozzle member 70 of the plurality of optical elements constituting the projection optical system PL with ultraviolet light Lu to perform optical cleaning.
  • the optical element 2 and the nozzle member 70 are members that come into contact with the liquid LQ in the liquid immersion area AR2, and the optical cleaning device 80 makes contact with the liquid LQ in the liquid immersion area AR2 of the optical element 2 and the nozzle member 70. Irradiate at least UV light Lu on the liquid contact surfaces 2A and 70A to be used.
  • the optical cleaning device 80 is provided at a predetermined position in the substrate stage PST other than the substrate holder PH, the reference member, and the optical measurement unit.
  • the light source 82 of the light cleaning device 80 is provided inside a concave portion 59 provided at a predetermined position of the substrate stage PST, and the opening of the concave portion 59 is closed by a transmission window 83 capable of transmitting ultraviolet light Lu. ing.
  • the light source 82 of the light cleaning device 80 emits the ultraviolet light Lu upward.
  • the ultraviolet light Lu emitted from the light source 82 passes through the transmission window 83, and then passes through the optical element 2 and the nozzle member 70. Is irradiated.
  • a detection device 90 for detecting contamination of the lower surface 2 A of the optical element 2 and the lower surface 70 A of the nozzle member 70 is provided.
  • the detection device 90 can detect impurities (organic substances) attached to the lower surfaces 2A and 70A.
  • the impurities mentioned here are, as described above, adhesion traces of the liquid LQ (watermarks) and foreign substances generated from the photosensitive agent (photoresist) on the substrate P (fragments of the photosensitive agent and deposition of electrolyte contained in the photosensitive agent).
  • the case of detecting contamination (foreign matter) on the lower surface 2A of the optical element 2 will be described. However, the same procedure can be used to detect the contamination (foreign matter) of the lower surface 70A of the nozzle member 70. Noh.
  • the detection device 90 is provided on the substrate stage PST (Z stage 52), and is inclined with respect to the lower surface 2A of the optical element 2 of the projection optical system PL (or the lower surface 70A of the nozzle member 70).
  • a second light receiving unit 94 for receiving the branched light The light emitting section 91, the first light receiving section 92 and the like constituting the detecting device 90 are provided on the substrate stage PST at positions other than the substrate holder PH, the reference member, and the optical measurement section. Then, the light reception results of the first and second light receiving units 92 and 94 are output to the control device CONT.
  • the controller CONT obtains the light reflectance of the lower surface 2A of the optical element 2 based on the light reception results of the first and second light receiving units 92 and 94, and stores the obtained light reflectance and the light reflectance in advance. A predetermined reflectance is compared, and based on the result of the comparison, contamination (contamination degree) of the lower surface 2A of the optical element 2 is detected (measured). In other words, if a foreign substance is attached to the optical element 2, scattered light is generated due to the foreign substance, the reflectance changes, and the amount of light received by the first light receiving unit 92 changes.
  • the control device CONT controls the lower surface 2A of the optical element 2 measured at the time of completion of this device and after Z or the previous optical cleaning, assuming that the lower surface 2A of the optical element 2 is not contaminated so as to affect the optical characteristics.
  • the light reflectance is stored in advance as a predetermined reflectance.
  • the controller CONT moves the substrate stage PST. Then, the detection device 90 is arranged below the projection optical system PL.
  • the detection light transmitted through the branch mirror 93 out of the detection light irradiates the lower surface 2A of the optical element 2 and is reflected by the lower surface 2A. Is received by the first light receiving section 92.
  • the detection light (branch light) branched by the branch mirror 93 is received by the second light receiving unit 94 without reaching the lower surface 2A of the optical element 2. Then, the light reception results of both light receiving sections 92 and 94 are output to the control device CONT.
  • the control device CONT calculates the light reflectance of the lower surface 2A of the optical element 2 based on the light receiving result of the first light receiving portion 92 and the light receiving result of the second light receiving portion 94, and the obtained light reflectance is the predetermined reflectance. Find the force that exceeds the allowable value for the rate. That is, if the obtained light reflectance is less than the allowable value with respect to the predetermined reflectance, the controller CONT determines that the lower surface 2A of the optical element 2 is not contaminated. On the other hand, if the obtained light reflectance is equal to or larger than the predetermined reflectance, the controller CONT determines that the lower surface 2A of the optical element 2 is contaminated.
  • the control device CONT controls the operation of the optical cleaning device 80 based on the detection result of the detection device 90. Specifically, when it is determined based on the detection result of the detection device 90 that the lower surface 2A of the optical element 2 is not contaminated, the control device CONT does not perform the light cleaning process by the light cleaning device 80, and Continue operation. By doing so, unnecessary light cleaning processing is not performed, so that throughput (operating rate of the exposure apparatus) can be improved. On the other hand, when the control device CONT determines that the lower surface 2A of the optical element 2 is contaminated based on the detection result of the detection device 90, the control device CONT performs light cleaning processing by the light cleaning device 80.
  • the lower surface 2A of the optical element 2 of the projection optical system PL is contaminated and traces of liquid adhesion are formed, the irradiation amount and the illuminance distribution of the exposure light and measurement light passing through the projection optical system PL change. For example, the exposure accuracy and the measurement accuracy may be degraded.
  • the lower surface 2A of the optical element 2 is optically cleaned using the optical cleaning device 80, so that the exposure processing and the measurement processing are performed using the contaminated optical element 2. Inconvenience can be prevented.
  • the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 are subjected to optical cleaning processing using the optical cleaning device 80, so that the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 have lyophilicity (liquid (The contact angle of LQ is 20 degrees or less), and the liquid L between the optical element 2 and the nozzle member 70 and the substrate stage PST (substrate P). Q can be kept good. Also, since contaminants (foreign matter) attached to the supply port 12 and the recovery port 22 of the nozzle member 70 can be removed, the supply and recovery of the liquid to the optical path space on the image plane side of the optical element 2 can be stably performed. As a result, the liquid immersion area AR2 of the liquid LQ can be favorably maintained.
  • the optical cleaning device 80 when the optical cleaning device 80 is used to optically clean the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70, the lower surface 2A of the optical element 2 and the lower surface of the nozzle member 70 are cleaned.
  • the space between 70A and the optical cleaning device 80 may be filled with the liquid LQ.
  • the liquid LQ can be used between the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 and the optical cleaning device 80 without performing the supply operation of the liquid supply device 10 and the recovery operation of the liquid recovery device 20.
  • the impurities (contaminants) removed from the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 by performing the light cleaning while performing the liquid supply operation and the recovery operation. Can be recovered together with the liquid LQ.
  • a mask alignment system 360 can be used as the detection device 90 in order to detect contamination of the lower surface 2A of the optical element 2.
  • the contamination state of the lower surface 2A of the optical element 2 may be determined from the change in the transmittance of the exposure light of the projection optical system PL using the optical measurement unit arranged on the substrate stage PST.
  • an observation system (such as a camera) is placed below the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70, and the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 are used by using the observation system. It may be determined whether or not to perform light cleaning. Further, in the fifth embodiment described with reference to FIG.
  • the light cleaning device 80 after detecting the contamination state of the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 using the detection device 90, the light cleaning device 80 Although the cleaning process is performed, the optical cleaning process can be performed, for example, every predetermined time or every time a predetermined number of substrates are processed, without the detection device 90. In the fifth embodiment, only one of the power of optically cleaning both the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 may be performed.
  • the exposure apparatus EXS exposure apparatus main body EX
  • the exposure apparatus EXS has a configuration in which one substrate stage PST is provided. 135400 It is also applicable to an exposure apparatus having two stages as disclosed in the publication.
  • the exposure apparatus body EX shown in FIG. 9 has a substrate holder PH for holding the substrate P, and is provided at a position parallel to the substrate stage PST1 and a substrate stage PST1 movable while holding the substrate P. It has the above-mentioned light meter S'J ⁇ 300, 400, 500, 600, and a meter Yanagi stage PST2.
  • the substrate stage PST1 is provided with a reference member (measurement member) and an optical measurement unit.
  • the measurement stage PST2 is a stage dedicated to measurement and does not hold the substrate P.
  • the substrate stage PST1 and the measurement stage PST2 each have a stage driving device including a linear motor and the like, and can move two-dimensionally independently of each other in the XY plane. The positions of the substrate stage PST1 and the measurement stage PST2 in the XY direction are measured by a laser interferometer.
  • measurement stage PST2 is arranged below projection optical system PL, and liquid immersion area AR2 of liquid LQ is formed on measurement stage PST2. Then, measurement processing using the optical measurement units 300, 400, 500, and 600 is performed via the liquid LQ in the liquid immersion area AR2. During the measurement processing using the measurement stage PST2, the unexposed substrate P is loaded on the substrate stage PST1.
  • the controller CONT moves the liquid immersion area AR2 of the liquid LQ formed on the measurement stage PST2 to support the substrate P! / Move on T1.
  • the control device CONT determines that the liquid LQ does not leak from between the measurement stage PST2 and the substrate stage PST1, for example.
  • the measurement stage PST2 and the substrate stage PST1 are moved together with respect to the liquid immersion area AR2 formed on the image plane side of the projection optical system PL.
  • the control device CONT performs alignment processing of the substrate P and the projection optical system PL based on the measurement results measured using the measurement stage PST2.
  • the substrate P on the substrate stage PST1 is subjected to immersion exposure.
  • the liquid immersion area AR2 of the liquid LQ is formed on both the substrate stage PST1 and the measurement stage PST2.
  • impurities organic substances
  • adhesion marks water marks
  • the optical cleaning of the substrate stage PST1 and the measurement stage PST2 can be performed using the optical cleaning device 80 as described in the embodiment.
  • the control unit CONT can perform optical cleaning by irradiating each of the substrate stage PST1 and the measurement stage PST2 with ultraviolet light Lu using the optical cleaning device 80 at predetermined time intervals (every predetermined number of processing substrates). it can.
  • control device CONT detects the contamination of the substrate stage PST1 and the measurement stage PST2 using the detection device 90, and controls the operation of the optical cleaning device 80 based on the detection result. Further, the measurement stage PST2 can be optically cleaned using the optical cleaning device 80 during the exposure of the substrate P on the substrate stage PST1. Alternatively, the optical cleaning of the substrate stage PST1 may be performed while the measurement operation is being performed in the measurement stage PST2.
  • the optical cleaning device 80 as described in the fifth embodiment is provided on the measurement stage PST2, and the optical element 2
  • the lower surfaces 2A and Z of the nozzle member 70 or the lower surface 70A of the nozzle member 70 can be optically cleaned.
  • at least a part of a detection system for detecting the contamination state of the lower surfaces 2A and Z of the optical element 2 or the lower surface 70A of the nozzle member 70 may be provided on the measurement stage.
  • the present invention provides a thin stage exposure apparatus including a plurality of substrate stages disclosed in Japanese Patent Application Laid-Open Nos. 10-163099, 10-214783, and 2000-505958. Also applicable to In the case of the twin-stage type exposure apparatus as described above, the optical cleaning apparatus 80 as shown in the fifth embodiment or the like may be provided on one of the substrate stages, or may be provided on both of them. Is also good. In such a twin-stage exposure apparatus, optical cleaning of another substrate stage can be performed while the substrate on one substrate stage is being exposed or the alignment operation is being performed. .
  • the optical cleaning device 80 is fixed to the substrate stage PST and the measurement stage PST2. It can be configured to be detachable from the substrate stage PST or measurement stage PST2. In this case, during the maintenance of the exposure apparatus EX performed at a predetermined timing, the operator detaches and attaches the optical cleaning device 80 to the substrate stage PST and the measurement stage PST2.
  • the optical cleaning device 80 may be installed in the exposure apparatus EX using a predetermined transport mechanism or tool arranged in the exposure apparatus EX! ⁇ .
  • the optical cleaning device 80 provided on a movable body (substrate stage PST or measurement stage PST2) movable on the image plane side of the projection optical system PL includes the lower surface 2A of the optical element 2 and the nozzle member 70.
  • the optical cleaning device 80 is provided on the substrate stage PST.
  • the XY direction is provided below the projection optical system PL (on the image plane side).
  • a movable body that can move two-dimensionally may be arranged, and the optical cleaning device 80 may be arranged on the movable body.
  • the measurement stage PST2 as in the sixth embodiment can be used as such a movable body.
  • a supply mechanism for the liquid LQ is provided apart from the mechanism for forming the liquid immersion area AR2 in the vicinity of the optical cleaning device 80.
  • the recovery mechanism is arranged to optically clean the upper surface 31 of the substrate stage PST, the irradiation region of the ultraviolet light Lu on the upper surface 31 is irradiated in parallel with the operation of irradiating the ultraviolet light Lu by the light cleaning device 80.
  • Supply and recovery operations of the liquid LQ may be performed. By doing so, the foreign matter generated from the upper surface 31 of the substrate stage PST can be collected together with the liquid LQ.
  • the substrate is used as the irradiation light for light cleaning.
  • Exposure light EL for exposing P may be used.
  • the substrate stage PST is disposed immediately below the projection optical system PL without the substrate P on the substrate stage PST to be optically cleaned, and the substrate stage PST is projected onto the substrate stage PST. What is necessary is just to irradiate the exposure light EL (irradiation light) with the illumination optical system IL through the shadow optical system PL.
  • Exposure light EL irradiation light
  • the optical element 2 that is in contact with the liquid LQ in the liquid immersion area AR2 can be optically cleaned. Also in this case, for example, when the upper surface of the substrate stage PST or the upper surface of the optical measurement section 300, 400, 500, or 600 is optically washed, the liquid supply mechanism 10 and the liquid recovery mechanism 20 are used together. You can do it.
  • the diameter of the luminous flux of the ultraviolet light Lu emitted from the optical cleaning device 80 is relatively large, and the substrate stage PST (or measurement stage) The entire area of the substrate can be irradiated collectively, but the diameter of the luminous flux of the ultraviolet light Lu emitted from the optical cleaning device 80 is reduced, and the substrate is moved while at least one of the luminous flux and the substrate stage PST is relatively moved.
  • the whole area of the stage PST or a part of a predetermined area may be irradiated with ultraviolet light Lu. This makes it possible to reduce the size of the optical cleaning device 80 and to save space.
  • the optical cleaning device 80 does not require the optical cleaning of the upper surface 31 of the substrate stage PST (or the measurement stage), the upper surfaces of the optical measurement units 300, 400, 500, and 600 and the upper surface of the substrate holder PH each time.
  • the irradiation time of the ultraviolet light Lu may be different.
  • a specific region on the substrate stage PST, such as the upper surface of the optical measurement unit 400 may be irradiated with ultraviolet light Lu in a focused manner (for a long time).
  • the diameter of the luminous flux of the ultraviolet light Lu emitted from the optical cleaning device 80 is reduced, and at least one of the luminous flux and the substrate stage PST on which the optical cleaning device 80 is mounted is relatively moved.
  • the ultraviolet light Lu may be applied to the entire area of the optical element 2 and the nozzle member 70 or a predetermined part of the area while moving the optical element 2.
  • the control device CONT moves the substrate stage PST to a position immediately below the optical cleaning device 80 in a state where there is no substrate P on the substrate stage PST.
  • the optical cleaning device 80 starts the irradiation of the ultraviolet light Lu with the movement of the substrate stage PST under the control of the control device CONT.
  • the control unit CONT uses the optical cleaning device 80.
  • the exposure operation may be returned again.
  • the time interval is too long or the number of substrates to be processed is too large, the probability of formation of a mark (water mark) of the liquid LQ on the substrate stage PST increases.
  • the time interval (the number of substrates to be processed) for irradiating ultraviolet light Lu by the optical cleaning device 80 should be determined as appropriate so that the adhesion mark (water mark) of the liquid LQ is not formed.
  • the light source that emits the irradiation light Lu for performing the optical cleaning process partially overlaps the above description, but includes an Ar excimer lamp (having a wavelength of 126).
  • ArF excimer lamp (wavelength 193 nm), ArF excimer laser (wavelength 193 nm), KrCl excimer lamp (wavelength 222 nm), KrCl excimer laser (wavelength 222 nm), KrF excimer lamp (wavelength 248 nm), KrF excimer laser (wavelength 248 nm), XeCl Excimer lamps (wavelength 308 nm), XeCl excimer lasers (wavelength 308 nm), low-pressure mercury lamps (emitting light of wavelengths 185 nm and 254 nm simultaneously), deuterium lamps (light having a wide wavelength range from vacuum ultraviolet to visible), etc. Can be used.
  • the irradiation light Lu may be continuously irradiated, or may be irradiated intermittently as pulsed light. Further, the power and irradiation time of the irradiation light Lu can be appropriately adjusted according to the degree of contamination, the object of light cleaning, and the like. Further, it is also possible to use a plurality of light sources or use a wavelength tunable laser to irradiate light having a plurality of wavelengths to a member in contact with a liquid.
  • the exposure apparatus EXS exposure apparatus main body EX
  • the exposure apparatus EXS exposure apparatus main body EX
  • the exposure apparatus EXS exposure apparatus main body EX
  • the exposure apparatus EXS exposure apparatus main body EX
  • the reflection member 700 is provided as an optical member on the image plane side of the projection optical system PL.
  • the reflecting member 700 is made of, for example, glass, and the upper surface is a reflecting surface capable of reflecting light.
  • the reflection member 700 is mounted on the measurement stage PST2 that can move on the image plane side of the projection optical system PL.
  • the control device CONT drives the measurement stage PST2, and irradiates the exposure light EL onto the reflection member 700 via the projection optical system PL in a state where the reflection member 700 is arranged below the projection optical system PL.
  • the reflecting member 700 irradiated with the exposure light EL from the projection optical system PL reflects the exposure light EL to generate light having the same wavelength as the exposure light EL.
  • the reflected light having the same wavelength as the exposure light EL generated from the reflecting member 700 is applied to the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 that come into contact with the liquid LQ in the liquid immersion area AR2.
  • ArF excimer laser light having a light cleaning effect is used as the exposure light EL.
  • a porous member (or mesh member) 22P is disposed in the recovery port 22 formed in the lower surface 70A of the nozzle member 70.
  • the porous member 22P constitutes a part of the lower surface 70A, and the reflected light generated from the reflecting member 700 is also applied to the porous member 22P.
  • the reflecting member 700 functioning as a part of the optical cleaning device is disposed on the image plane side of the projection optical system PL, and the exposure light EL having the optical cleaning effect is transmitted through the reflecting member 700 to the lower surface of the optical element 2.
  • the optical element 2 and the nozzle member 70 By irradiating the lower surface 70A of the nozzle member 70 including the 2A and the porous member 22P, the optical element 2 and the nozzle member 70 (the porous member 22P) can be optically cleaned. Thereby, the lyophilicity of the lower surface 2A of the optical element 2 and the lower surface 7OA of the nozzle member 70 can be maintained (enhanced).
  • the optical member 700 disposed on the image plane side of the projection optical system PL is not limited to a reflecting member that reflects the irradiated light (exposure light EL), but may be a scattering surface that scatters the irradiated light.
  • the scattering member may be provided.
  • the scattering member as the optical member 700 the exposure light EL applied to the scattering member is scattered and reaches the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70.
  • a relatively large area of the lower surface 70A of the nozzle member 70 can be irradiated with irradiation light having the same wavelength as the exposure light EL having a light cleaning action.
  • a diffractive member having a diffractive surface for diffracting the irradiated light may be used as the optical member 700.
  • the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 are relatively wide.
  • the region can be irradiated with irradiation light having the same wavelength as the exposure light EL having a light cleaning action.
  • the measurement stage PST2 When irradiating the optical member (reflection member, diffraction member, scattering member) 700 disposed on the measurement stage PST2 with the exposure light EL, the measurement stage PST2 is not moved in the XY direction. However, the optical member 700 may be irradiated with the exposure light EL. Alternatively, the direction of the irradiation light (exposure light) from the optical member 700 may be changed by making the optical member 700 movable. By doing so, it is possible to irradiate the irradiation light (exposure light) onto the relatively wide and area of the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70, and to perform good light cleaning.
  • the optical member 700 reflection member, diffraction member, scattering member
  • the lower surface 70A (including the porous member 22P) of the nozzle member 70 may be covered with a material 701 having a photocatalytic action.
  • a material 701 having a photocatalytic action is titanium oxide.
  • the lower surface 70A of the nozzle member 70 coated with titanium oxide 701 the lower surface 70A of the nozzle member 70 is irradiated with light having the same wavelength as the exposure light EL having a light cleaning action, thereby removing organic substances and the like.
  • the contaminants are oxidatively decomposed by the photocatalytic reaction, and thus can be more effectively washed with light.
  • the photocatalytic reaction improves the lyophilicity of the lower surface 70A of the nozzle member 70, it is expected that the liquid immersion area AR2 can be favorably formed under the nozzle member 70A.
  • the control device CONT uses the liquid supply mechanism 10 and the liquid recovery mechanism 20 to set a position between the projection optical system PL and the optical member 700.
  • the optical member 700 may be irradiated with the exposure light EL via the projection optical system PL and the liquid LQ while the substrate P is filled with the same liquid LQ as the liquid used for immersion exposure.
  • Light having the same wavelength as the exposure light EL generated from the optical member 700 is applied to the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 via the liquid LQ in the liquid immersion area AR2.
  • the liquid LQ used when the substrate P is subjected to immersion exposure is degassed before being supplied to the image plane side of the projection optical system PL for the purpose of preventing bubbles from being generated in the immersion area AR2.
  • the liquid supply mechanism 10 includes a deaerator for reducing dissolved oxygen (dissolved gas) in the liquid LQ, and is provided before the supply to the image plane side of the projection optical system PL. After degassing the liquid LQ, the degassed liquid LQ is supplied to the image plane side of the projection optical system PL.
  • contaminants organic substances
  • light cleaning effect contaminants (organic substances) can be decomposed by irradiation with light having a light cleaning effect.
  • the control device when the optical member 700 is irradiated with the exposure light EL in a state where the liquid LQ is filled between the projection optical system PL and the optical member 700, and the optical element 2 and the nozzle member 70 are optically cleaned, the control device is used.
  • the CONT may be configured so that the oxygen concentration of the liquid LQ supplied to the image plane side of the projection optical system PL is higher than the oxygen concentration of the liquid LQ when the substrate P is exposed. That is, when performing optical cleaning, the control device CONT supplies, for example, the liquid LQ that is not subjected to degassing processing to the image plane side of the projection optical system PL.
  • the control device CONT when the optical member 700 is irradiated with exposure light EL in a state where the liquid LQ is filled between the projection optical system PL and the optical member 700, and the optical element 2 and the nozzle member 70 are optically cleaned, the control device CONT Alternatively, another liquid, such as hydrogen peroxide, which is different from the liquid (pure water) used for exposing the substrate P, may be supplied to the image plane side of the projection optical system PL.
  • another liquid such as hydrogen peroxide, which is different from the liquid (pure water) used for exposing the substrate P
  • the position of the optical member (reflection member, diffraction member, scattering member) 700 is not limited to the measurement stage PST2, but may be, for example, the upper surface of the substrate stage PST1.
  • P may be arranged in an area other than the area where P is arranged.
  • the substrate stage PST1 and the measurement stage PST2 may be disposed on the image plane side of the projection optical system PL and supported by a member other than the substrate stage PST1 and the measurement stage PST2.
  • the optical member 700 can be detachably attached to the substrate stage PST or the measurement stage PST2.
  • a dummy substrate having at least one of a reflection surface, a diffraction surface, and a scattering surface may be arranged on the substrate holder of the substrate stage PST, and the exposure light EL may be applied to the dummy substrate.
  • the dummy substrate can be easily mounted on the substrate stage PST (substrate holder PH) using the substrate transfer system 150.
  • the optical member 700 is arranged on the substrate stage PST, or when a dummy substrate having a diffraction surface or the like is mounted on the substrate stage PST, it is needless to say that the present invention can be applied to the twin-stage type exposure apparatus described above. Nor.
  • a part of the substrate alignment system 350 and a part of the focus leveling detection system 60 arranged near the liquid immersion area AR2 are optically cleaned with light having a light cleaning action from the optical member 700. You may make it process. By doing so, impurities and liquid droplets adhere to a part of the substrate alignment system 350 and a part of the focus leveling detection system 60, thereby producing a liquid. Deterioration of measurement accuracy can be prevented.
  • the lower surface 70A of the nozzle member 70 is coated with a lyophilic (hydrophilic) material having a photocatalytic action such as titanium oxide (titanium dioxide),
  • a lyophilic (hydrophilic) material having a photocatalytic action such as titanium oxide (titanium dioxide)
  • titanium oxide titanium dioxide
  • the nozzle member 70 itself or a part thereof (a part that comes into contact with the liquid) may be formed of a material having a photocatalytic action.
  • the lower surface 2 A of the optical element 2 may be coated with a material having a photocatalytic effect, such as titanium oxide, and may be washed with light from the optical member 700. By doing so, contamination of the lower surface 2A of the optical element 2 can be more reliably prevented.
  • a material having a photocatalytic effect such as titanium oxide
  • the lower surface 70A of the nozzle member 70 and the lower surface 2A of the optical element 2 are coated with a material such as titanium oxide. May be.
  • At least a part of the upper surface of the substrate stage PST1 and the upper surface of the measurement stage PST2 are formed of a photocatalytic material such as titanium oxide as necessary. Is also good. Also in this case, the contamination of the upper surface of the substrate stage PST and the measurement stage PST2 can be prevented by using the optical cleaning device 80 as in the first to fourth embodiments and the sixth embodiment.
  • members that come into contact with the liquid LQ such as the nozzle member 70 and the stage (PST1, PST2), may be formed of a material containing titanium or zinc oxide. Since titanium and zinc oxide have a passivation film having a photocatalytic action formed on the surface, by performing a light cleaning treatment similarly to the titanium oxide coating, contaminants (organic substances) on the surface can be removed. Can be removed
  • the exposure apparatus EXS exposure apparatus main body EX
  • the exposure apparatus EXS includes a vibration mechanism 800 that vibrates the nozzle member 70.
  • the vibration mechanism 800 is configured by an ultrasonic vibrator, and is attached to a predetermined position of the nozzle member 70.
  • the ultrasonic oscillator 800 is attached to the side surface of the nozzle member 70.
  • Examples of the ultrasonic vibrator include a piezo element and an electromagnetic vibrator.
  • the ultrasonic vibrator 800 has a porous member 22P. This is for removing contaminants adhering to the side surface 70A of the nozzle member 70 including the nozzle member 70.
  • the adhering contaminants are shaken off, and the nozzle member 70 is cleaned. . Further, by vibrating the nozzle member 70 using the ultrasonic vibrator 800, contaminants adhering to the supply flow path formed in the vicinity of the supply port 12 or inside the nozzle member 70 connected to the supply port 12 are formed. It is also possible to remove contaminants adhering to the recovery flow passage formed in the vicinity of the recovery port 22, the porous member 22P disposed in the recovery port 22, and the nozzle member 70 connected to the recovery port 22. You can also.
  • the cleaning operation using the ultrasonic vibrator 800 can be performed when the substrate P is replaced or between lots.
  • the control device CONT uses the liquid supply mechanism 10 and the liquid recovery mechanism 20 to control the projection optical system PL and the substrate stage.
  • An optical path space between the upper surface 31 of the PST and the substrate 31 may be filled with the same liquid LQ as the liquid used for immersion exposure of the substrate P. By doing so, the contaminants removed (separated) from the nozzle member 70 can be collected together with the liquid LQ.
  • the liquid filling the optical path space between the projection optical system PL and the upper surface 31 of the substrate stage PST is liquid immersion exposure of the substrate P.
  • alcohol or hydrogen peroxide may be used, which is different from the liquid (pure water) used for the cleaning.
  • the cleaning operation using the ultrasonic vibrator 800 and the cleaning operation using the optical cleaning device 80 of the fifth embodiment and the optical member 700 of the seventh embodiment are used together.
  • the gas supply system 87 and the gas recovery system 88 described in the fourth embodiment are provided, and the optical element 2 and the In the nozzle member 70, the space (atmosphere) near the irradiation region of the ultraviolet light Lu is set to an environment suitable for light cleaning.
  • the detection device 90 as in the fifth embodiment is provided, and the upper surface 31 of the substrate stage PST and the light Measuring unit 300, 400, 500, 600, substrate Honoreda PH, etc., so that it can detect contamination.
  • the control device CONT determines whether or not the substrate stage PST is contaminated based on the detection result of the detection device 90, and can control the operation of the optical cleaning device 80. Also this In this case, a substrate alignment system 350 or a mask alignment system 360 is used as the detection device 90.
  • the projection optical system PL in the above-described first to eighth embodiments has a configuration in which the optical path space on the lower surface 2A side of the optical element 2 is filled with the liquid LQ.
  • a projection optical system that also fills the optical path space on the mask M side of the optical element 2 with a liquid may be employed.
  • the optical member (optical element 2) at the end of the projection optical system PL is used.
  • the lower surface of the optical member on the mask M side of the terminal optical member may be subjected to light cleaning treatment.
  • the maintenance of the exposure apparatus is performed at predetermined intervals of a predetermined period.
  • a treatment of irradiating light with the above-mentioned light cleaning effect and performing light cleaning may be added.
  • a maintenance device 900 includes a light emitting unit 901 that generates a predetermined irradiation light Lu having a light cleaning effect on a member that comes into contact with a liquid LQ in an exposure apparatus EXS.
  • the light emitting unit 901 has a light source.
  • the same light source Xe excimer laser, KrCl excimer laser, XeC
  • the maintenance device 900 of the present embodiment includes a support mechanism 902 that movably supports the light emitting unit 901.
  • the support mechanism 902 is capable of moving the light emitting unit 901 between the inside and the outside of the exposure apparatus EX, supporting the light emitting unit 901, a stage 904 movably supporting the support table 903, and a stage.
  • a connecting member 906 for connecting the 904 and the carriage 905 is provided.
  • the stage 904 has a driving mechanism such as an actuator, and a support 903 supporting the light emitting unit 901 is movable on the stage 904 in the X-axis direction and the Y-axis direction.
  • the stage 904 may be capable of moving the support table 903 in the Z-axis direction.
  • An opening 120 C through which the light emitting unit 901 can enter and exit the air-conditioned space 125 is formed in a part of the main column 4 of the exposure apparatus EXS.
  • the maintenance device 900 can move the light-emitting unit 901 to the inside of the air-conditioned space 125 of the exposure apparatus EXS via the opening 120C.
  • a light cleaning process using the maintenance device 900 is performed.
  • the operator's force maintenance device 900 is transported to the vicinity of the opening 120C of the exposure apparatus EXS. Since the maintenance device 900 includes the cart 905, the operator can easily transport the maintenance device 900. Then, together with the stage 904 supported by the distal end of the connecting member 906 and the support 903 on the stage 904, the light emitting unit 901 is moved into the air-conditioned space 125 via the opening 120C. Then, the light emitting unit 901 is arranged at a position below the projection optical system PL and the nozzle member 70.
  • the substrate stage PST has been retracted to a predetermined retracted position other than the position below the projection optical system PL.
  • the maintenance device 900 drives the stage 904 to position the light emitting unit 901 supported by the support base 903 with respect to the lower surface 2A of the optical element 2 of the projection optical system PL.
  • the light emitting surface of the light emitting unit 901 faces upward, and faces the lower surface 2A of the optical element 2.
  • the maintenance device 900 emits the irradiation light Lu from the light emitting unit 901.
  • the lower surface 2A of the optical element 2 is optically cleaned by being irradiated with the irradiation light Lu.
  • the maintenance device 900 can position the light emitting unit 901 with respect to the lower surface 70A of the nozzle member 70 by driving the stage 904, and in this state, emits the irradiation light Lu from the light emitting unit 901. Accordingly, the lower surface 70A of the nozzle member 70 can be optically cleaned well. As described above, also in the maintenance method and the maintenance apparatus of the present embodiment, since only the members to be cleaned can be optically cleaned in the exposure apparatus without removing the members to be cleaned from the exposure apparatus, the members can be cleaned. Maintenance can be completed in a shorter time than in the case of removing the exposure device.
  • the lower surface 2A of the optical element 2 of the projection optical system PL and the lower surface 70A of the nozzle member 70 must be lyophilic (hydrophilic).
  • lyophilic hydrophilic
  • the maintenance device 900 also drives the stage 904 to move the light-emitting unit 901 so that other members such as the substrate alignment system 350 and the focus / leveling detection system 60 are also optically cleaned. be able to.
  • the maintenance device 900 optically cleans the upper surface 31 of the substrate stage PST and the optical measuring units 300, 400, 500, and 600 on the substrate stage PST with the light emitting surface of the light emitting unit 901 facing downward.
  • the maintenance device 900 can emit the irradiation light Lu with the light-emitting surface of the light-emitting unit 901 facing upward, and guide the irradiation light Lu emitted from the light-emitting unit 901 to the substrate stage PST using a reflection member. . That is, when the maintenance device 900 has a reflection member, the irradiation light Lu emitted from the light emitting unit 901 can be guided in a predetermined direction.
  • the light cleaning process is performed while the space between the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 and the light emitting surface of the light emitting unit 901 are filled with the liquid LQ.
  • a maintenance device 900A shown in FIG. 13 includes a light emitting unit 901 and a support member 908 having a support surface 908A that supports the light emitting unit 901.
  • the support member 908 includes a connection portion 909 that can be connected to the nozzle member 70.
  • a connected portion 70S that is connected to the connection portion 909 of the support member 908 is provided.
  • the light emitting unit 901 is provided on the support surface 908A so as to be movable in each of the X-axis direction and the Y-axis direction.
  • the support member 908 supporting the light emitting unit 901 and the nozzle member 70 are connected by an operator.
  • the substrate stage PST has been retracted to a predetermined retracted position other than the position below the projection optical system PL.
  • the lower surface 2A of the optical element 2, the lower surface 70A of the nozzle member 70, and the light emitting portion 901 By emitting irradiation light Lu from the light emitting unit 901 in a state where the light emitting surface is opposed to the light emitting surface, the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70A are irradiated with the irradiation light Lu and optically cleaned.
  • the irradiation light Lu is emitted in a state where the light emitting unit 901 is positioned at a desired position with respect to each of the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70A. Can be irradiated.
  • the light cleaning process is performed while the space between the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 and the light emitting surface of the light emitting unit 901 are filled with the liquid LQ.
  • the force described for the maintenance of the exposure apparatus provided with one substrate stage PST is an exposure device provided with the measurement stage and the substrate stage as described above.
  • the maintenance equipment of the ninth and tenth embodiments can be applied to an apparatus or an exposure apparatus having a plurality of substrate stages.
  • the exposure apparatus EXS shown in FIG. 14 includes a substrate stage PST1 and a measurement stage PST2 that can move on the image plane side of the projection optical system PL, as in the embodiments of FIGS. 9 and 10.
  • the maintenance device 900B shown in FIG. 14 includes a light emitting unit 901 and a support member 912 that supports the light emitting unit 901.
  • the support member 912 includes a connection portion 913 that can be connected to the measurement stage PST2.
  • the measurement stage PST2 is provided with a connected part 914 that is connected to the connection part 913 of the support member 912. When the connection part 913 and the connected part 914 are connected, the support member 912 and the measurement stage PST2 are connected. Connect.
  • a support member 912 supporting the light emitting unit 901 and a measurement stage PST2 are used by the operator. Are connected via the connection unit 913. Then, as shown in FIG. 14 (B), the measurement stage PST2 is moved, and the light emitting unit 901 is arranged below the projection optical system PL, and the lower surface 2A of the optical element 2 and the lower surface of the nozzle member 70 are moved. The 70A and the light emitting surface of the light emitting unit 901 face each other.
  • the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70A are irradiated with the irradiation light Lu and optically cleaned. Also, departure Since the light unit 901 is movable along with the movement of the measurement stage PST2, irradiation is performed with the light emitting unit 901 positioned at a desired position with respect to each of the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70A. Light Lu can be irradiated.
  • the maintenance device 900B may be connected not only to the measurement stage PST2 but also to the substrate stage PST1. By providing a connection portion that can be connected to the substrate stage PST1 on the support member 912 of the maintenance device 900B, the maintenance device 900B can be connected to the substrate stage PST1.
  • the optical cleaning process may be performed while filling the space between the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 and the light emitting surface of the light emitting unit 901 with the liquid LQ. .
  • a maintenance device 900C shown in FIG. 15 includes a light emitting unit 901 and a support member 915 that supports the light emitting unit 901.
  • the support member 915 includes a connection portion 916 that can be connected to a stage base (base member) 57 that movably supports the substrate stage PST1 and the measurement stage PST2.
  • the stage base 57 is provided with a connected portion 917 that is connected to the connection portion 916 of the support member 915.
  • the upper surface of the stage base 57 and the surface of the maintenance device 900C (light emitting unit 901) connected to the stage base 57 are substantially flush.
  • the substrate stage PST1 and the measurement stage PST2 can move on the surface of the maintenance device 900C (light emitting unit 901), and the substrate stage PST1 on the stage base 57 by providing the maintenance device 900C on the stage base 57.
  • the movement range of the measurement stage PST2 is not restricted.
  • the irradiation light Lu is emitted from the light emitting unit 901 on the support member 915 connected to the stage base 57 via the connection unit 916, so that the lower surface 2A of the optical element 2 of the projection optical system PL and the nozzle member 70 are emitted.
  • the lower surface 70A can be optically cleaned.
  • maintenance device 900C can also be resident on base member 57. Also, the maintenance device 900C (light emitting unit 901) is The maintenance device 900 (light emitting unit 901) can be moved up and down, and the optical cleaning process can be performed by bringing the maintenance device 900 (light emitting unit 901) close to the optical element 2 and the nozzle member 70.
  • the maintenance equipment of the exposure apparatus including the substrate stage PST1 and the measurement stage PST2 will be described.
  • the maintenance equipment of the eleventh and twelfth embodiments can be used for an exposure apparatus having only a substrate stage.
  • FIG. 16 shows an example of the substrate stage PST.
  • the substrate stage PST is guided by the X guide member 920 to move in the X axis direction, and is moved by the X linear motor 921 in the X axis direction.
  • the X linear motor 921 includes a mover 921M provided on the substrate stage PST and a stator 921C provided on the X guide member 920.
  • the substrate stage PST has a frame member 930 provided so as to surround the X guide member 920, and has a lower surface 934 for supporting the substrate stage PST in a non-contact manner with respect to the upper surface of the stage base 57.
  • An air bearing 935 is provided.
  • the substrate stage PST including the frame member 930 is supported in a non-contact manner with respect to the stage base 57 by the air bearing 935, and the gap between the frame member 930 and the X guide member 920 in the Z-axis direction is maintained.
  • An air bearing 935 is provided on the inner surface of the frame member 930, and the air bearing 935 maintains a gap in the Y-axis direction between the inner surface of the frame member 930 and the X guide member 920.
  • the X guide member 920 is guided to move in the Y axis direction by a guide portion 923B at the upper end of a substantially L-shaped support member 923 in side view provided on both sides in the X axis direction of the stage base 57.
  • the guide portions 923B (support members 923) are provided at positions corresponding to both ends of the X guide member 920, respectively, and each of the both end portions of the X guide member 920 has a cover corresponding to the guide portion 923B.
  • a guide section 924 is provided. An air bearing is interposed between the guide portion 923B and the guided portion 924, and the guided portion 924 is supported in non-contact with the guide portion 923B.
  • the X guide member 920 is provided so as to be movable in the Y axis direction by a Y linear motor 922.
  • Substrate stage PST drives Y linear motor 922 Thereby, it is possible to move in the Y-axis direction together with the X guide member 920.
  • the linear motor 922 includes a mover 922 ⁇ provided at each of both ends in the longitudinal direction of the X guide member 920, and an air bearing on the flat portion 923 ⁇ of the support member 923 so as to correspond to the mover 922 ⁇ . It is provided with a non-contact supported stator 922C.
  • the light emitting unit 901 constituting the maintenance device 900D is supported on a support member 919 connected to the guide unit 923 #.
  • the support member 919 has a connection portion 918 that can be connected to each of the guide portions 923 # provided on both sides of the stage base 57 in the X-axis direction.
  • the substrate stage PST retracts to a predetermined retract position other than the position below the projection optical system PL.
  • the support member 919 of the maintenance device 900D is supported by the guide portion 923B.
  • the support member 919 is supported by the guide portion 923B so that the light-emitting portion 901 is arranged at a position below the projection optical system PL.
  • the light emitting unit 901 emits the irradiation light Lu, so that the lower surface 2A of the optical element 2 of the projection optical system PL and the lower surface 70A of the nozzle member 70 can be optically cleaned.
  • the light emitting unit 901 of the maintenance device 900D is installed on the X guide member 920, and the light emitting unit 901 and the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70 are installed on the X guide member 920. Then, the irradiation light Lu is emitted from the light emitting unit 901 to irradiate the lower surface 2A of the optical element 2 and the lower surface 70A of the nozzle member 70.
  • the maintenance of the exposure apparatus including one substrate stage PST is described.
  • the maintenance device of the present embodiment can also be applied to an exposure apparatus provided with.
  • the maintenance equipment is provided for the force exposure apparatus EXS connected to the nozzle member, the stage, and the base member.
  • the connection position (attachment position) for connection may be, for example, the main column 4 (see FIG. 1 or the like).
  • the irradiation light Lu emitted from the light emitting unit 901 is reflected by the reflecting member, and the reflected light is provided by the optical element 2 and the nozzle member 70. , May irradiate the stage!
  • the light source is incorporated in the light emitting unit 901.
  • the light source is provided at a position distant from the light emitting unit 901 (for example, outside the exposure apparatus EXS), and the light source is provided.
  • the irradiation light Lu which has also been emitted, may be transmitted to the light emitting unit 901 via an optical fiber or the like.
  • pure water was used as the liquid LQ in the present embodiment.
  • Pure water has the advantage that it can be easily obtained in large quantities at a semiconductor manufacturing plant or the like, and that there is no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like.
  • pure water has no adverse effect on the environment and has an extremely low impurity content, so it is expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end of the projection optical system PL. it can.
  • the exposure apparatus may have an ultrapure water production unit.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.44, and the ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL.
  • the wavelength is shortened to lZn, that is, about 134 nm, and a high resolution is obtained.
  • the depth of focus is about n times that of air, that is, about 1.44 times If it is sufficient to secure the same depth of focus as when used in the air, the numerical aperture of the projection optical system PL can be increased further. The degree improves.
  • the numerical aperture NA of the projection optical system may be 0.9 to 1.3.
  • the numerical aperture NA of the projection optical system is increased as described above, it has been conventionally used as the exposure light! /, Since the randomly polarized light may degrade the imaging performance due to the polarization effect, It is desirable to use polarized illumination.
  • linearly polarized illumination is performed according to the longitudinal direction of the line pattern of the line 'and' space pattern of the mask (reticle). From the pattern of the mask (reticle), the S-polarized component (TE-polarized component), It is preferable that a large amount of diffracted light of the polarization direction component along the longitudinal direction of the line pattern is emitted.
  • the space between the projection optical system PL and the resist applied to the surface of the substrate P is filled with air (gas).
  • the transmittance of the diffracted light of the S-polarized component (TE-polarized component), which contributes to the improvement of contrast, on the resist surface is higher than that of the case where the numerical aperture NA of the projection optical system is 1.0. Higher imaging performance can be obtained even in the case of exceeding. Further, it is more effective to appropriately combine a phase shift mask such as an oblique incidence illumination method (particularly a dipole illumination method) adapted to the longitudinal direction of a line pattern as disclosed in Japanese Patent Application Laid-Open No. 6-188169.
  • a fine line and space pattern (for example, a line 'and' space of about 25 to 50 nm) is used.
  • the mask M acts as a polarizer due to the wave guide effect, and the P polarization component which lowers the contrast
  • the mask with random polarized light is preferable because the diffracted light of the S polarized light component (TE polarized light component) is emitted more than the diffracted light of the TM polarized light component. Even if M is illuminated, high resolution performance can be obtained even when the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3.
  • the P polarization component (TM polarization component)
  • the S-polarized component (TE-polarized component)
  • the diffracted light of the S-polarized component (TE-polarized component) is emitted more by the mask M than the diffracted light of the P-polarized component (TM-polarized component).
  • NA of the projection optical system PL is as large as 0.9 to 1.3, high resolution performance can be obtained.
  • the optical axis is centered. It is also effective to use a combination of the polarized illumination method and the oblique incidence illumination method, in which the light is linearly polarized in the tangential (circumferential) direction of the circle.
  • a plurality of line patterns extending in different directions which are formed only by a line pattern in which a mask (reticle) pattern extends in one predetermined direction, are mixed, as disclosed in JP-A-6-53120.
  • the optical element 2 is attached to the tip of the projection optical system PL, and the lens is used to adjust the optical characteristics of the projection optical system PL, for example, aberrations (spherical aberration, coma, etc.). be able to.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL.
  • a plane-parallel plate that can transmit the exposure light EL may be used.
  • the liquid LQ may be arranged on both the mask M side and the substrate P side of the plane-parallel plate.
  • NA of the projection optical system PL is 1 or more, a liquid is also required on the mask M side of the parallel plane plate.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover glass that also has a plane-parallel plate force is attached to the surface of the substrate P. It may be configured to fill the liquid LQ in the closed state.
  • the exposure apparatus to which the above-described liquid immersion method is applied has a configuration in which the optical path space on the emission side of the optical element 2 of the projection optical system PL is filled with liquid (pure water) to expose the substrate P.
  • the optical path space on the incident side of the optical element 2 of the projection optical system PL may be filled with liquid (pure water).
  • the member that comes into contact with the liquid in the optical path space on the incident side of the optical element 2 may be subjected to the light cleaning treatment as described above. Further, it may be used for sterilizing the liquid on the incident side of the optical element 2 using the irradiation light Lu required for the light cleaning treatment.
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not pass through water. So
  • liquid LQ for example, perfluoropolyether (PFPE) or
  • the part in contact with the liquid LQ has a small polarity, for example, containing fluorine! ⁇ ⁇ Lyophilization treatment is performed by forming a thin film using a substance with a molecular structure.
  • other liquid LQs that are transparent to the exposure optical system EL and have a refractive index as high as possible and are stable to the photo resist coated on the surface of the substrate P (for example, Cedar) Oil) can also be used.
  • the surface treatment is performed according to the polarity of the liquid LQ used.
  • various fluids having a desired refractive index for example, a supercritical fluid or a gas having a high refractive index can be used.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but may be a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or a mask or a mask used in an exposure apparatus.
  • a reticle master synthetic quartz, silicon wafer, etc. is applied.
  • the exposure apparatus EX includes a step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by synchronously moving the mask M and the substrate P. While the M and the substrate P are stationary, the pattern of the mask M is exposed at a time, and the substrate P is sequentially moved step by step.
  • the exposure apparatus having the projection optical system PL has been exemplified.
  • the present invention is applicable to an exposure apparatus having no projection optical system PL. Can be applied.
  • the present invention is also applied to an exposure apparatus (lithography system) that forms a line 'and' space pattern on a wafer W by forming interference fringes on the wafer W.
  • a force using a light-transmitting mask in which a predetermined light-shielding pattern (or a phase pattern ′) is formed on a light-transmitting substrate.
  • a predetermined light-shielding pattern or a phase pattern ′
  • a reduced image of the first pattern is projected with the first pattern and the substrate P almost stationary, and a projection optical system (for example, a refraction type that does not include a reflective element at a 1Z8 reduction magnification).
  • the present invention can also be applied to an exposure apparatus that uses a projection optical system to perform simultaneous exposure on a substrate P. In this case, after that, while the second pattern and the substrate P are almost stationary, the reduced image of the second pattern is partially exposed on the substrate P at one time using the projection optical system so as to partially overlap the first pattern.
  • the present invention can also be applied to a stitch type batch exposure apparatus.
  • a stitch type exposure apparatus at least two patterns are partially overlapped and transferred on the substrate P, and the step “and” stitch type exposure apparatus in which the substrate P is sequentially moved can be applied.
  • an exposure apparatus that locally fills the space between the projection optical system PL and the substrate P with a liquid is employed, but the entire surface of the substrate to be exposed is covered with the liquid.
  • the present invention is also applicable to a liquid immersion exposure apparatus.
  • the structure and exposure operation of an immersion exposure apparatus in which the entire surface of a substrate to be exposed is covered with a liquid are described in, for example, JP-A-6-124873, JP-A-10-303114, and US Pat. No. 5,825,043. Etc., and to the extent permitted by the laws of the country designated or selected in this international application, the contents of this document will be incorporated by reference and incorporated herein by reference.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, or the like. It can be widely applied to an image pickup device (CCD), an exposure apparatus for manufacturing a reticle or a mask, and the like.
  • CCD image pickup device
  • each of the stages PST and MST may be of a type that moves along a guide or a guideless type that does not include a swing guide.
  • US Pat. Nos. 5,623,853 and 5,528,118 disclosed, each permitted by the laws of the country specified or selected in this international application] To the extent possible, the contents of these documents are incorporated and incorporated as part of the text.
  • each stage PST, MST is such that a magnet cut in which magnets are arranged two-dimensionally and an armature unit in which coils are arranged two-dimensionally face each other, and each stage PST, MST is driven by electromagnetic force. May be used.
  • one of the magnet unit and the armature unit should be connected to the stages PST and MST, and the other of the magnet unit and the armature unit should be provided on the moving surface side of the stages PST and MST!
  • the reaction force generated by the movement of the substrate stage PST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to the projection optical system PL.
  • the method of dealing with this reaction force is disclosed in detail, for example, in US Pat. No. 5,528,118 (JP-A-8-166475), and is permitted by the laws of the country designated or selected in this international application. To the extent possible, the contents of this document are incorporated and incorporated herein as part of the text.
  • the reaction force generated by the movement of mask stage MST may be mechanically released to the floor (ground) using a frame member so as not to be transmitted to projection optical system PL.
  • the method of dealing with this reaction force is disclosed in detail, for example, in US Pat. No. 5,874,820 (Japanese Patent Application Laid-Open No. 8-330224), and is based on the laws of the country designated or selected in this international application. To the extent permitted, the disclosure of this document is incorporated herein by reference.
  • the exposure apparatus EX of the embodiment of the present application is capable of performing various mechanical subsystems including each component listed in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical For, adjustments are made to achieve electrical accuracy.
  • the power of various subsystems The assembly process of the exposure system involves the mechanical connection of various subsystems and the wiring connection of electrical circuits. Connection, piping connection of a pneumatic circuit, etc. are included. Needless to say, there is an assembling process for each subsystem before the assembling process into the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature, cleanliness, etc. are controlled.
  • a micro device such as a semiconductor device includes a step 201 for designing the function and performance of the micro device, a step 202 for manufacturing a mask (reticle) based on the design step, and a Step 203 of manufacturing a substrate as a base material, exposure processing step 204 of exposing a mask pattern to the substrate using the exposure apparatus EX of the above-described embodiment, and device assembling steps (processing steps such as a dicing step, a bonding step, and a package step). 205), inspection step 206, etc.
  • the exposure processing step includes the above-described optical cleaning process and the developing process of the exposed substrate.
  • the exposure apparatus it is possible to prevent the exposure apparatus from deteriorating.

Landscapes

  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 露光装置EXSは、投影光学系PLの像面側に液体LQの液浸領域AR2を形成し、投影光学系PLと液浸領域AR2の液体LQとを介して基板Pを露光する。露光装置EXSが有する光洗浄装置80は、液浸領域AR2を形成するための液体LQに接触する基板ステージPSTの上面31などに光洗浄効果を有する所定の照射光Luを照射する。液浸領域の液体に接触する部材の汚染に起因する露光精度及び計測精度の劣化を防止できる。

Description

露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メン テナンス機器、並びにデバイス製造方法
技術分野
[0001] 本発明は、液体を介して基板を露光する露光装置、露光装置を構成する所定部材 の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造 方法に関する。
背景技術
[0002] 半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の 基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソ グラフイエ程で使用される露光装置は、マスクを支持するマスクステージと基板を支 持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながら マスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイス ノターンのより一層の高集積ィ匕に対応するために投影光学系の更なる高解像度化 が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影 光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長 は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の 露光波長は KrFエキシマレーザの 248nmである力 更に短波長の ArFエキシマレ 一ザの 193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦 点深度 (DOF)も重要となる。解像度 及び焦点深度 δはそれぞれ以下の式で表 される。
[0003] R=k · λ /ΝΑ … (1)
δ = ±k - λ /ΝΑ2
2 … (2)
ここで、 λは露光波長、 ΝΑは投影光学系の開口数、 k プロセス係数である。
1、 kは
2
(1)式、(2)式より、解像度 Rを高めるために、露光波長えを短くして、開口数 NAを 大きくすると、焦点深度 δが狭くなることが分力る。
[0004] 焦点深度 δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させる ことが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで 、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば、国際 公開第 99Z49504号公報に開示されている液浸法が提案されている。この液浸法 は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸 領域を形成し、液体中での露光光の波長が空気中の lZn (nは液体の屈折率で通 常 1. 2〜1. 6程度)になることを利用して解像度を向上するとともに、焦点深度を約 n 倍に拡大するというものである。
[0005] ところで、基板上に液体の液浸領域を形成したとき、その液浸領域の液体中に、例 えば基板上力 発生した不純物が混入する可能性がある。不純物を含んだ液体の 液浸領域が基板ステージ上を移動すると、基板ステージ上面 (基板ステージ上に設 けられた計測部上面を含む)が汚染される可能性がある。また、不純物によって基板 ステージ上面が汚染されると、基板ステージ上面の液体との接触角が変化する可能 '性がある。
[0006] また、基板ステージ上面のみならず、液浸領域の液体に接触する投影光学系や液 浸領域を形成するノズル部材などの各種部材も汚染される可能性がある。
発明の開示
発明が解決しょうとする課題
[0007] 本発明はこのような事情に鑑みてなされたものであって、液浸法を適用する場合に も、その性能劣化を防止できる露光装置、及びその露光装置を用いるデバイス製造 方法を提供することを目的とする。特に、液浸領域の液体に接触する部材の汚染に 起因する性能劣化を防止できる露光装置、及びその露光装置を用いるデバイス製造 方法を提供することを目的とする。また、液浸法を用いる露光装置の性能劣化を防止 できるメンテナンス方法、及びメンテナンス機器を提供することを目的とする。本発明 のさらなる目的は、液浸領域の液体に接触する部材を、簡易に洗浄する方法を提供 することにある。
課題を解決するための手段及び発明の効果
[0008] 上記の課題を解決するため、本発明は実施の形態に示す図 1〜図 17に対応付け した以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の 例示に過ぎず、各要素を限定するものではない。
[0009] 本発明の第 1の態様に従えば、液体 (LQ)を介して基板 (P)を露光する露光装置 であって、像面側に液体 (LQ)の液浸領域 (AR2)を形成する投影光学系(PL)と、 液浸領域 (AR2)を形成するための液体 (LQ)に接触する部材(2、 31、 70、 300、 4 00、 500、 600など)に、光洗浄効果を有する所定の照射光 (Lu)を照射する光洗浄 装置 (80)を備えた露光装置 (EXS、 EX)が提供される。
[0010] 本発明の第 1の態様によれば、液浸領域を形成するための液体に接触する部材に 対して光洗浄装置を使って光洗浄効果を有する照射光を照射して光洗浄することで 、その部材の汚染物質を除去することができる。
[0011] 本発明の第 2の態様に従えば、液体 (LQ)を介して基板 (P)を露光する露光装置 であって、像面側の光路空間が液体 (LQ)で満たされる投影光学系 (PL)と、光路空 間を液体 (LQ)で満たすためのノズル部材(70)と、ノズル部材 (70)に付着した汚染 物を除去するために、ノズル部材 (70)の少なくとも一部を振動させる振動機構とを備 えた露光装置 (EXS、 EX)が提供される。
[0012] 本発明の第 2の態様によれば、ノズル部材を振動機構で振動させることで、ノズル 部材に付着した汚染物を除去することができる。
[0013] 本発明の第 3の態様に従えば、上記態様の露光装置 (EXS、 EX)を用いるデバイ ス製造方法が提供される。
[0014] 本発明の第 3の態様によれば、高い露光精度及び計測精度を得ることができるの で、所望の性能を有するデバイスを製造することができる。
[0015] 本発明の第 4の態様に従えば、露光装置のメンテナンス方法であって、前記露光 装置が露光光の光路空間を液体 (LQ)で満たして、前記液体を介して基板 (P)に露 光光を照射して前記基板を露光する液浸露光装置 (EXS、 EX)であり、前記露光装 置内で前記液体に接触する部材(2、 31、 70、 300、 400、 500、 600など)に、光洗 浄効果を有する所定の照射光 (Lu、 EL)を照射することを含むメンテナンス方法が提 供される。
[0016] 本発明の第 4の態様によれば、液体に接触する部材に対して光洗浄効果を有する 照射光を照射して光洗浄することで、その部材の汚染物質を除去することができる。 したがって、露光装置の性能劣化を防止することができる。
[0017] 本発明の第 5の態様に従えば、基板 (P)を露光する露光装置のメンテナンス機器 であって、前記露光装置が、露光光の光路空間を液体 (LQ)で満たして前記液体を 介して基板に露光光を照射して前記基板を露光する液浸露光装置 (EXS、 EX)であ り、前記露光装置内で前記液体に接触する部材(2、 31、 70、 300、 400、 500、 60 0など)に、光洗浄効果を有する所定の照射光 (Lu)を発生する発光部(901)を備え たメンテナンス機器 (900)が提供される。
[0018] 本発明の第 5の態様によれば、メンテナンス機器を使って、液体に接触する部材に 対して光洗浄効果を有する照射光を照射して光洗浄することで、その部材の汚染物 質を除去することができる。したがって、露光装置の性能劣化を防止することができる
[0019] 本発明の第 6の態様に従えば、基板を露光するための露光装置を構成する部材の 洗浄方法であって、前記露光装置が少なくとも基板 (P)上に形成される液浸領域 (A R2)の液体 (LQ)を介して基板を露光する液浸露光装置 (EXS、 EX)であり、 前記部材(2、 31、 70、 300、 400、 500、 600など)が前記液浸領域を形成する液 体に接触する部材であり、前記洗浄方法が、前記部材に所定の照射光 (Lu, EL)を 照射することを含む露光装置を構成する部材の洗浄方法が提供される。
[0020] 本発明の第 6の態様によれば、液浸露光装置の液浸領域を形成する液体に接触 する部材に、所定の照射光を照射して光洗浄することでその部材の汚染物質を容易 に除去し、液浸露光における汚染物質や不純物の影響を低減することができる。な お、本発明の洗浄方法は露光装置力 部材を取り外すことなく実施できる場合には、 メンテナンスが容易であり、露光装置のスループットに与える影響は少ない。
[0021] 本発明の第 7の態様によれば、基板を露光する露光方法であって、本発明の前記 洗净方法により咅材(2、 31、 70、 300、 400、 500、 600など)を光洗净すること、前 記基板 (P)を液体 (LQ)を介して露光することを含む露光方法が提供される。本発明 の第 8の態様によれば、本発明の露光方法により基板を露光すること(204)と、露光 した基板を現像することと、現像した基板を加工すること(205)を含むデバイスの製 造方法もまた提供される。 図面の簡単な説明
[0022] [図 1]図 1は、第 1の実施形態に係る露光装置を示す概略構成図である。
[図 2]図 2は、図 1の要部拡大図である。
[図 3]図 3は、基板ステージの平面図である。
[図 4]図 4は、第 1の実施形態に係る露光装置の動作の一例を示す図である。
[図 5]図 5は、第 2の実施形態に係る露光装置を示す概略構成図である。
[図 6]図 6は、第 3の実施形態に係る露光装置を示す概略構成図である。
[図 7]図 7は、第 4の実施形態に係る露光装置を示す概略構成図である。
[図 8]図 8は、第 5の実施形態に係る露光装置を示す概略構成図である。
[図 9]図 9は、第 6の実施形態に係る露光装置を示す概略構成図である。
[図 10]図 10は、第 7の実施形態に係る露光装置を示す概略構成図である。
[図 11]図 11は、第 8の実施形態に係る露光装置を示す概略構成図である。
[図 12]図 12は、第 9の実施形態に係るメンテナンス機器を示す図である。
[図 13]図 13は、第 10の実施形態に係るメンテナンス機器を示す図である。
[図 14]図 14 (A)及び (B)は、第 11の実施形態に係るメンテナンス機器を示す図であ る。
[図 15]図 15は、第 12の実施形態に係るメンテナンス機器を示す図である。
[図 16]図 16は、第 13の実施形態に係るメンテナンス機器を示す図である。
[図 17]図 17は、半導体デバイスの製造工程の一例を示すフローチャート図である。 符号の説明
[0023] 2…光学素子、 12· ··供給口、 22· ··回収口、 31· ··上面、 57…ステージベース(ベー ス部材)、 70…ノズル部材、 80· ··光洗浄装置、 82· ··光源、 84 (84A、 84B)…検出 器、 86…光学系、 87…気体供給系、 88…気体回収系、 90…検出装置、 125· ··空 調空間、 300…基準部材 (計測部材)、 400、 500、 600…光計測部、 700…光学部 材、 800· ··振動機構、 900· ··メンテナンス機器、 901· ··発光部、 AR1…投影領域、 A R2…液浸領域、 CONT…制御装置、 EL…露光光、 EX…露光装置本体、 EXS - 露光装置、 KC…空調系、 LQ…液体、 Lu…照射光 (紫外光)、 P…基板、 PH…基板 ホルダ、 PL…投影光学系、 PST(PSTl)…基板ステージ、 PST2…計測ステージ 発明を実施するための最良の形態
[0024] 以下、本発明の露光装置の実施形態について図面を参照しながら説明するが、本 発明はこれに限定されない。
[0025] <第 1の実施形態 >
図 1は本発明の露光装置の第 1の実施形態を示す概略構成図、図 2は図 1の要部 拡大図である。図 1において、露光装置 EXSは、クリーンルーム内の床面 F上に設置 された本体チャンバ CH1と、この本体チャンバ CH1に隣接して配置された機械室 C H2とを備えている。本体チャンバ CH1の内部に設けられた露光室 100は、空調系 K Cによって空調されており、その内部の環境 (清浄度、温度、圧力等)をほぼ一定に 維持されている。本実施形態においては、露光室 100は清浄な空気で満たされる。 露光室 100には、露光装置本体 EXが収容されている。露光室 100は、本体チャン ノ CH1内部に設けられた給気流路 101及び接続部 102を介して、機械室 CH2の内 部に設けられた気体流路の出口 114に接続されている。
[0026] 露光室 100に収容されている露光装置本体 EXは、マスク Mを支持するマスクステ ージ MSTと、基板 Pを支持する基板ステージ PSTと、マスクステージ MSTに支持さ れているマスク Mを露光光 ELで照明する照明光学系 ILと、露光光 ELで照明された マスク Mのパターン像を基板ステージ PSTに支持されている基板 Pに投影露光する 投影光学系 PLと、光洗浄効果を有する所定の照射光 Luを射出する光洗浄装置 80 とを備えている。本実施形態においては、光洗浄装置 80は紫外光 (UV光)を射出す る。露光装置 EXS (露光装置本体 EX)全体の動作は、制御装置 CONTによってを 統括制御される。なお、「光洗浄効果」とは、部材に、所定の光が照射されることによ つて、その部材が浄化されることを意味し、その部材に、所定の波長、特には紫外光 またはそれより短波長の真空紫外光などの光が照射されることで、部材の表面に付 着 (吸着)または生成して 、る有機物質や炭素などの不純物または汚染物が除去、 分解または変性されて部材表面が浄化されることや、その部材近傍の気体中の酸素 が所定の波長、特には紫外光またはそれより短波長の真空紫外光などを吸収して励 起状態となり、酸ィ匕カを増したオゾンなどに化学変化することによって、部材の表面 の有機物質や炭素などの不純物または汚染物が除去、分解または変性されて部材 表面が浄ィ匕されることが含まれる。なお、部材表面の不純物や汚染物は、基板 Pに塗 布されるフォトレジスト、液体や、周囲の気体、オペレータなど力 導入されると考えら れる。
[0027] また、露光装置 EXSは、露光室 100に隣接する位置に、基板ステージ PSTに対し て基板 Pを搬入及び搬出する基板搬送系 150を備えて 、る。基板搬送系 150は不 図示の基板搬送系収容室に収容されている。同様に、不図示ではあるが、露光室 1 00に隣接する位置には、マスクステージ MSTに対してマスク Mを搬入及び搬出する マスク搬送系を収容するマスク搬送系収容室が設けられている。これら基板搬送系 収容室及びマスク搬送系収容室は、露光室 100に対して機械室 CH2とは反対側に 設けられている。基板搬送系収容室及びマスク搬送系収容室のそれぞれは、露光室 100同様、空調系 KCによってその内部の環境をほぼ一定に維持されている。
[0028] 本実施形態の露光装置 EXS (露光装置本体 EX)は、露光波長を実質的に短くして 解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液 浸露光装置であって、基板 P上に液体 LQを供給する液体供給機構 10と、基板 P上 の液体 LQを回収する液体回収機構 20とを備えている。本実施形態において、液体 LQには純水が用いられる。露光装置 EXSは、少なくともマスク Mのパターン像を基 板 P上に転写している間、液体供給機構 10から供給した液体 LQにより投影光学系 P Lの投影領域 AR1を含む基板 P上の少なくとも一部に、投影領域 AR1よりも大きく且 つ基板 Pよりも小さい液浸領域 AR2を局所的に形成する。具体的には、露光装置 E XSは、投影光学系 PLの像面側先端の光学素子 2と基板 Pの表面 (露光面)との間、 すなわち投影光学系 PLの像面側の光路空間を液体 LQで満たした状態で露光光 E Lを照射し、この投影光学系 PLと基板 Pとの間の液体 LQ及び投影光学系 PLを介し てマスク Mのパターン像を基板 P上に投影することによって、基板 Pを露光する。
[0029] ここで、本実施形態では、露光装置 EXSとしてマスク Mと基板 Pとを走査方向(所定 方向)における互いに異なる向き(逆方向)に同期移動しつつマスク Mに形成された パターンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツパ)を使用す る場合を例にして説明する。以下の説明において、水平面内においてマスク Mと基 板 Pとの同期移動方向(走査方向、所定方向)を X軸方向、水平面内において X軸方 向と直交する方向を Y軸方向(非走査方向)、 X軸及び Υ軸方向に垂直で投影光学 系 PLの光軸 ΑΧと一致する方向を Ζ軸方向とする。また、 X軸、 Y軸、及び Z軸まわり の回転 (傾斜)方向をそれぞれ、 0 X、 0 Y、及び 0 Z方向とする。なお、ここでいう「 基板」は半導体ウェハ上にレジストを塗布したものを含み、「マスク」は基板上に縮小 投影されるデバイスパターンを形成されたレチクルを含む。
[0030] 照明光学系 ILは、マスクステージ MSTに支持されているマスク Mを露光光 ELで照 明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化す るオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集光 するコンデンサレンズ、リレーレンズ系、露光光 ELによるマスク M上の照明領域をスリ ット状に設定する可変視野絞り等を有している。マスク M上の所定の照明領域は照 明光学系 ILにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射 出される露光光 ELとしては、例えば水銀ランプ力も射出される輝線 (g線、 h線、 i線) 及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)や、 ArFエキシ マレーザ光(波長 193nm)及び Fレーザ光(波長 157nm)等の真空紫外光 (VUV
2
光)などが用いられる。本実施形態では、 ArFエキシマレーザ光が用いられる。上述 したように、本実施形態における液体 LQは純水であって、露光光 ELが ArFエキシ マレーザ光であっても透過可能である。また、純水は輝線 (g線、 h線、 i線)及び KrF エキシマレーザ光 (波長 248nm)等の遠紫外光 (DUV光)も透過可能である。
[0031] マスクステージ MSTは、マスク Mを保持して移動可能であって、投影光学系 PLの 光軸 AXに垂直な平面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微 小回転可能である。マスクステージ MSTはリニアモータ等のマスクステージ駆動装 置 MSTDにより駆動される。マスクステージ駆動装置 MSTDは制御装置 CONTに より制御される。マスクステージ MST上には、マスクステージ MSTと共に移動する移 動鏡 50が設けられている。また、移動鏡 50に対向する位置にはレーザ干渉計 51が 設けられている。マスクステージ MST上のマスク Mの 2次元方向の位置、及び回転 角はレーザ干渉計 51によりリアルタイムで計測され、計測結果は制御装置 CONTに 出力される。制御装置 CONTはレーザ干渉計 51の計測結果に基づ 、てマスクステ ージ駆動装置 MSTDを駆動することでマスクステージ MSTに支持されているマスク Mの位置決めを行う。
[0032] 投影光学系 PLは、マスク Mのパターンを所定の投影倍率 13で基板 Pに投影露光 するものであって、基板 P側の先端部に設けられた光学素子 (レンズ) 2を含む複数の 光学素子で構成されており、これら光学素子は鏡筒 PKで支持されている。本実施形 態において、投影光学系 PLは、投影倍率 j8が例えば 1Z4、 1/5,あるいは 1Z8の 縮小系である。なお、投影光学系 PLは等倍系及び拡大系のいずれでもよい。また、 投影光学系 PLは、屈折素子を含まない反射系、反射素子を含まない屈折系、屈折 素子と反射素子とを含む屈折反射系のいずれであってもよい。また、本実施形態の 投影光学系 PLの先端の光学素子 2は鏡筒 PKに対して着脱 (交換)可能に設けられ ている。また、先端の光学素子 2は鏡筒 PKより露出しており、液浸領域 AR2の液体 L Qは光学素子 2に接触する。これにより、金属力もなる鏡筒 PKの腐蝕等が防止され ている。
[0033] 基板ステージ PSTは、基板 Pを基板ホルダ PHを介して保持する Zチルトステージ 5 2と、 Zチルトステージ 52を支持する XYステージ 53とを備えている。基板ステージ PS Tはリニアモータ等の基板ステージ駆動装置 PSTDにより駆動される。基板ステージ 駆動装置 PSTDは制御装置 CONTにより制御される。 Zチルトステージ 52は基板ホ ルダ PHに保持されている基板 Pを Z軸方向、及び Θ X、 θ Y方向(傾斜方向)に移動 可能である。 XYステージ 53は基板ホルダ PHに保持されて 、る基板 Pを Zチルトステ ージ 52を介して XY方向(投影光学系 PLの像面と実質的に平行な方向)、及び θ Z 方向に移動可能である。なお、 Zチルトステージと XYステージとを一体的に設けてよ いことは言うまでもない。
[0034] 基板ステージ PST上には凹部 32が設けられており、基板ホルダ PHは凹部 32に配 置されている。そして、基板ステージ PST(Zチルトステージ 52)のうち凹部 32以外の 上面 31は、基板ホルダ PHに保持された基板 Pの表面とほぼ同じ高さ(面一)になる ような平坦面(平坦部)となっている。また、移動鏡 55の上面も、基板ステージ PSTの 上面 31とほぼ同じ高さ(面一)となっている。基板 Pの周囲に基板 P表面とほぼ面一 の上面 31を設けたので、基板 Pのエッジ領域を液浸露光するときにおいても、投影 光学系 PLの像面側に液体 LQを保持して液浸領域 AR2を良好に形成することがで きる。また、基板 Pのエッジ部とその基板 Pの周囲に設けられた平坦面(上面) 31との 間には 0. l〜2mm程度のギャップが形成される力 液体 LQの表面張力によりその ギャップに液体 LQが流れ込むことはほとんどなぐ基板 Pの周縁近傍を露光する場 合にも、上面 31により投影光学系 PLの下に液体 LQを保持することができる。
[0035] 基板ステージ PSTの上面 31は撥液ィ匕処理されて撥液性を有している。上面 31の 撥液化処理としては、例えばポリ四フッ化工チレン (テフロン (登録商標) )等のフッ素 系榭脂材料あるいはアクリル系榭脂材料等の撥液性材料を塗布、あるいは前記撥液 性材料力もなる薄膜を貼付する処理が挙げられる。基板ステージ PSTの上面 31を形 成する部材そのものをフッ素系榭脂などの撥液性部材で形成してもよ 、。上面 31を 撥液性にすることで、液浸露光中にぉ 、ては基板ステージ PST外側への液体 LQの 流出を防止でき、液浸露光後においては、上面 31に残留した液体 LQを良好に回収 (除去)することができる。
[0036] 本実施形態においては、後述するように、この上面 31には光洗浄装置 80より紫外 光 (UV光)が照射されるが、紫外光を照射されても、上面 31の撥液性が大きく損な われな 、膜材料が使用されている。
[0037] 基板ステージ PST(Zチルトステージ 52)上には、基板ステージ PSTとともに投影光 学系 PLに対して移動する移動鏡 55が設けられている。また、移動鏡 55に対向する 位置にはレーザ干渉計 56が設けられている。基板ステージ PST上の基板 Pの 2次元 方向の位置、及び回転角はレーザ干渉計 56によりリアルタイムで計測され、計測結 果は制御装置 CONTに出力される。制御装置 CONTはレーザ干渉計 56の計測結 果に基づ 、て、レーザ干渉計 56で規定される 2次元座標系内で基板ステージ駆動 装置 PSTDを介して XYステージ 53を駆動することで基板ステージ PSTに支持され て ヽる基板 Pの X軸方向及び Y軸方向における位置決めを行う。
[0038] 図 2に示すように、露光装置 EXS (露光装置本体 EX)は、基板 P表面の面位置情 報を検出するフォーカス ·レべリング検出系 60を有して 、る。フォーカス ·レベリング検 出系 60は、投射部 60Aと受光部 60Bとを有し、投射部 60Aから液体 LQを介して基 板 P表面 (露光面)に斜め方向から検出光 Laを投射するとともに、その基板 Pからの 反射光を液体 LQを介して受光部 60Bで受光することによって、基板 P表面の面位置 情報を検出する。制御装置 CONTは、フォーカス'レべリング検出系 60の動作を制 御するとともに、受光部 60Bの受光結果に基づいて、所定基準面 (像面)に対する基 板 P表面の Z軸方向における位置 (フォーカス位置)を検出する。また、基板 P表面に おける複数の各点での各フォーカス位置を求めることにより、フォーカス'レベリング 検出系 60は基板 Pの傾斜方向の姿勢を求めることもできる。なお、フォーカス'レペリ ング検出系 60の構成としては、例えば特開平 8— 37149号公報に開示されているも のを用いることができる。なお、フォーカス'レべリング検出系 60は、液体 LQを介さず に基板 Pの表面位置を検出するものであってもよい。
[0039] 制御装置 CONTは、基板ステージ駆動装置 PSTDを介して基板ステージ PSTの Z チルトステージ 52を駆動することにより、 Zチルトステージ 52に保持されている基板 P の Z軸方向における位置(フォーカス位置)、及び Θ X、 Θ Y方向における位置を制御 する。すなわち、 Zチルトステージ 52は、フォーカス'レべリング検出系 60の検出結果 に基づく制御装置 CONTからの指令に基づ ヽて動作し、基板 Pのフォーカス位置 (Z 位置)及び傾斜角を制御して基板 Pの表面 (露光面)を投影光学系 PL及び液体 LQ を介して形成される像面に合わせ込む。
[0040] 投影光学系 PLの先端近傍には、基板 P上のァライメントマークあるいは Zチルトステ ージ 52上に設けられた後述する基準部材 (計測部材)上の基準マークを検出する基 板ァライメント系 350が設けられている。本実施形態の基板ァライメント系 350では、 例えば特開平 4— 65603号公報に開示されているような、基板ステージ PSTを静止 させてマーク上にハロゲンランプからの白色光等の照明光を照射して、得られたマー クの画像を撮像素子により所定の撮像視野内で撮像し、画像処理によってマークの 位置を計測する FIA (フィールド 'イメージ'ァライメント)方式が採用されて 、る。
[0041] 図 1に戻って、マスクステージ MST、投影光学系 PL、及び基板ステージ PSTは、 本体コラム 1に支持されている。本体コラム 1は、本体チャンバ CH1の底面上に設置 されたベースプレート BPの上方に複数の防振ユニット 3を介して支持されて!、る。本 体コラム 1は、防振ユニット 3によって支持されたメインコラム 4と、メインコラム 4の上に 設けられたサポートコラム 5とを備えている。投影光学系 PLは、メインコラム 4の上面 4 Aに保持部材 PFを介して保持されている。サポートコラム 5は、照明光学系 ILの少な くとも一部を下方力 支持して 、る。
[0042] マスクステージ MSTは、メインコラム 4に支持された不図示のマスクステージベース 上を 2次元移動可能に設けられている。また、基板ステージ!^丁( ¥ステージ53)は 、メインコラム 4の底面によって構成されて 、る基板ステージベース 57上を 2次元移 動可能に設けられている。
[0043] また、マスクステージ MSTの近傍には、マスク Mと投影光学系 PLとを介して Zチル トステージ 52上に設けられた後述する基準部材上の基準マークを検出するマスクァ ライメント系 360が設けられている。本実施形態のマスクァライメント系 360では、例え ば特開平 7— 176468号公報に開示されているような、マークに対して光を照射し、 CCDカメラ等で撮像したマークの画像データを画像処理してマーク位置を検出する VRA (ビジュアル ·レチクル ·ァライメント)方式が採用されて!、る。
[0044] 次に、露光装置本体 EXを収容して 、る露光室 100を空調する空調系 KCにつ 、て 、図 1を参照しながら説明する。
[0045] 空調系 KCは、本体チャンバ CH1の内部と機械室 CH2の内部とを含む循環流路 の複数の所定位置のそれぞれ配置されたフィルタユニット 103、 105、 118、 121、及 び温調装置 110、 111、 116を備えている。空調系 KCは、前記フィルタユニット及び 温調装置等を介して気体を循環することで、露光室 100の環境 (清浄度、温度、圧力 等)を所望状態に維持する。また、機械室 CH2の所定位置には、フィルタユニット 10 9を配置された外気取り入れ口(OA口) 108が形成されている。清浄度を維持するた めに、本体チャンバ CH1の内部、特に露光室 100の内部は外部に対して陽圧に維 持されている。そのため、本体チャンバ CH1の内部力も外部に対して気体が漏洩す る。 OA口 108は、前記漏洩分の気体を外部から取り入れるために設けられている。
[0046] 本体チャンバ CH1の内部に設けられた給気流路 101の一端部 (機械室 CH2側の 端部)には、気体中の化学汚染物質をィ匕学吸着及び物理吸着にて除去するケミカル フィルタ等を備えたフィルタユニット 103が設けられている。給気流路 101の一端部は 、接続部 102を介して機械室 CH2の内部に設けられた気体流路の出口 114に接続 されている。一方、給気流路 101の他端部は、露光室 100の上部に設けられた開口 (給気口) 104に接続されている。給気口 104には、露光室 100に流入する気体中の パーティクルを除去するパーティクルフィルタである ULP Aフィルタ(ultra low penetra tion air-filter)等を備えたフィルタユニット 105が設けられている。空調系 KCは、給 気口 104より露光室 100の上部空間に対して横方向、本実施形態では X方向に 気体を供給する。
[0047] 露光室 100の底部には排気部(リターン部) 106が設けられている。リターン部 106 は、排気流路(リターンダクト) 107を介して、機械室 CH2の床面に形成された開口 1 07Aに接続されている。露光室 100の内部の気体は、排気部 106より排気され、機 械室 CH2に送られる。
[0048] 機械室 CH2の所定位置に設けられた OA口 108には、ケミカルフィルタ等を備えた フィルタユニット 109が設けられている。機械室 CH2内部の気体流路中には、冷却 装置 (温調装置) 110が設けられている。冷却装置 110の上方には、加熱装置 (温調 装置) 111が所定距離だけ離れて配置されている。加熱装置 111の上方に設けられ た機械室 CH2の出口 114近傍には、給気用ファン 112が設けられている。また、冷 却装置 110の下方には、ドレインパン 122が配置されている。温調装置 110、 111で 温度調整された気体は、出口 114を介して本体チャンバ CH1に供給される。
[0049] 機械室 CH2の内部において加熱装置 111の下方には、冷却装置 110を下方から 上方に通過した気体の一部(例えば約 1Z5)が流れ込む分岐路 113の一端部が接 続されている。分岐路 113の一端部には伸縮可能な蛇腹状部材 113aが設けられて おり、分岐路 113の一端部と機械室 CH2の内部とは蛇腹状部材 113aを介して接続 されている。一方、分岐路 113の他端部に設けられた開口(給気口) 115は、基板ス テージ PST近傍に配置されている。図 1に示すように、分岐路 113の大部分は、露光 室 100内部に設けられている。
[0050] 分岐路 113の内部には加熱装置 116が設けられている。また、分岐路 113のうち給 気口 115の近傍には、給気用ファン 117が設けられている。給気口 115は、メインコ ラム 4の— X側の側壁に設けられている。給気口 115には、ケミカルフィルタ及び UL PAフィルタ等を備えたフィルタユニット 118が設けられている。温調装置 110、 116 で温度調整された気体は、給気口 115を介して、露光室 100の内部うち、投影光学 系 PLの一部を含む基板ステージ PST近傍の空間(空調空間) 125に供給される。以 下の説明では、投影光学系 PLの一部及び基板ステージ PSTを含み、メインコラム 4 で囲まれた空間を、空調空間 125として説明する。
[0051] 空調系 KCは、給気口 115より、投影光学系 PLの一部を含む基板ステージ PST近 傍の空間 (空調空間) 125に対して横方向、本実施形態では +X方向に気体を供給 し、その空調空間 125を空調する。すなわち、空調空間 125においては、空調系 KC によって形成される気体の流れは、ほぼ +X方向に設定されて 、る。
[0052] 一方、基板ステージ PSTに対して給気口 115と反対側には、排気流路(リターンダ タト) 119の一端部である排気口 120が配置されている。排気口 120は、メインコラム 4の +X側の側壁に設けられており、給気口 115と排気口 120とは対向している。一 方、リターンダクト 119の他端部は、機械室 CH2の床面に形成された開口 119Aに 接続されている。機械室 CH2の床面に形成された開口 107A、 119Aには、ケミカル フィルタ等を備えたフィルタユニット 121が設けられて 、る。露光室 100の内部のうち 空調空間 125の気体は、排気口 120より排気され、機械室 CH2に送られる。
[0053] 次に、図 1及び図 2を参照しながら液体供給機構 10及び液体回収機構 20につい て説明する。
[0054] 液体供給機構 10は、所定の液体 LQを投影光学系 PLの像面側に供給するための ものであって、液体 LQを送出可能な液体供給部 11と、液体供給部 11にその一端部 を接続する供給管 13とを備えている。液体供給部 11は、液体 LQを収容するタンク、 加圧ポンプ、及び液体 LQ中に含まれる異物や気泡を取り除くフィルタユニット等を備 えている。液体供給部 11の液体供給動作は制御装置 CONTにより制御される。基 板 P上に液浸領域 AR2を形成する際、液体供給機構 10は液体 LQを基板 P上に供 給する。
[0055] 液体回収機構 20は、投影光学系 PLの像面側の液体 LQを回収するためのもので あって、液体 LQを回収可能な液体回収部 21と、液体回収部 21にその一端部を接 続する回収管 23とを備えている。液体回収部 21は例えば真空ポンプ等の真空系( 吸引装置)、回収された液体 LQと気体とを分離する気液分離器、及び回収した液体 LQを収容するタンク等を備えている。なお真空系、気液分離器、タンクなどの少なく とも一部を、露光装置 EXSに設けずに、露光装置 EXSが配置される工場の設備など を用いるようにしてもょ 、。液体回収部 21の液体回収動作は制御装置 CONTにより 制御される。基板 P上に液浸領域 AR2を形成するために、液体回収機構 20は液体 供給機構 10より供給された基板 P上の液体 LQを所定量回収する。
[0056] 投影光学系 PLを構成する複数の光学素子のうち、液体 LQに接する光学素子 2の 近傍にはノズル部材 70が配置されている。ノズル部材 70は、投影光学系 PLの像面 側の露光光 ELが通過する光路空間を液体 LQで満たすためのものであって、基板 P (基板ステージ PST)の上方において、光学素子 2の側面を囲むように設けられた環 状部材である。ノズル部材 70と光学素子 2との間には隙間が設けられており、ノズル 部材 70は光学素子 2に対して振動的に分離されるように所定の支持機構で支持され ている。また、その隙間に液体 LQが浸入しないように、且つその隙間から液体 LQ中 に気泡が混入しないように構成されている。ノズル部材 70は、例えばステンレス鋼、 チタンなどによって形成されている。
[0057] ノズル部材 70は、基板 P (基板ステージ PST)の上方に設けられ、その基板 P表面 に対向するように配置された供給口 12を備えている。本実施形態において、ノズル 部材 70は 2つの供給口 12A、 12Bを有している。供給口 12A、 12Bはノズル部材 70 の下面 70Aに設けられて!/、る。
[0058] ノズル部材 70の内部には、基板 P上に供給される液体 LQが流れる供給流路が形 成されて!/、る。ノズル部材 70の供給流路の一端部は供給管 13の他端部に接続され 、供給流路の他端部は供給口 12A、 12Bのそれぞれに接続されている。ここで、ノズ ル部材 70の内部に形成された供給流路の他端部は、複数(2つ)の供給口 12A、 12 Bのそれぞれに接続可能なように途中から分岐して 、る。
[0059] また、ノズル部材 70は、基板 P (基板ステージ PST)の上方に設けられ、その基板 P 表面に対向するように配置された回収口 22を備えている。本実施形態において、回 収ロ 22は、ノズル部材 70の下面 70Aにおいて、投影光学系 PLの光学素子 2 (投影 領域 AR1)及び供給口 12を囲むように環状に形成されて!、る。
[0060] また、ノズル部材 70の内部には、回収口 22を介して回収された液体 LQが流れる 回収流路が形成されている。ノズル部材 70の回収流路の一端部は回収管 23の他端 部に接続され、回収流路の他端部は回収口 22に接続されている。ここで、ノズル部 材 70の内部に形成された回収流路は、回収口 22に応じた環状流路と、その環状流 路を流れた液体 LQを集合するマ-ホールド流路とを備えている。
[0061] 本実施形態にぉ ヽて、ノズル部材 70は、液体供給機構 10及び液体回収機構 20 それぞれの一部を構成している。液体供給機構 10を構成する供給口 12A、 12Bは、 投影光学系 PLの投影領域 AR1を挟んだ X軸方向両側のそれぞれの位置に設けら れており、液体回収機構 20を構成する回収口 22は、投影光学系 PLの投影領域 AR 1に対して液体供給機構 10の液体供給口 12A、 12Bの外側に設けられて 、る。なお 本実施形態における投影光学系 PLの投影領域 AR1は、 Y軸方向を長手方向とし、 X軸方向を短手方向とした平面視矩形状に設定されている。
[0062] 液体供給部 11の動作は制御装置 CONTにより制御される。制御装置 CONTは液 体供給部 11による単位時間あたりの液体供給量を制御可能である。基板 P上に液体 LQを供給する際、制御装置 CONTは、液体供給部 11より液体 LQを送出し、供給 管 13及びノズル部材 70内部に形成された供給流路を介して、基板 Pの上方に設け られている供給口 12A、 12Bより基板 P上に液体 LQを供給する。液体 LQは、供給 口 12A、 12Bを介して、投影領域 AR1の両側から供給される。
[0063] 液体回収部 21の液体回収動作は制御装置 CONTにより制御される。制御装置 C ONTは液体回収部 21による単位時間あたりの液体回収量を制御可能である。基板 Pの上方に設けられた回収口 22から回収された基板 P上の液体 LQは、ノズル部材 7 0内部に形成された回収流路、及び回収管 23を介して液体回収部 21に回収される 。なお、ノズル部材 70の構成 (供給口、回収口の位置、形状、数など)は、上述のも のに限られず、露光光 ELの光路の液体 LQで満たすように液浸領域 AR2を維持で きる構成であればよい。例えば、供給口 12A、 12Bは、投影光学系 PLの投影領域 A R1に対して Y軸方向両側にそれぞれ配置してもよ 、し、ノズル部材 70を複数の部材 で構成するようにしてもょ ヽ。
[0064] 投影光学系 PLの光学素子 2の下面 (液体接触面) 2A、及びノズル部材 70の下面( 液体接触面) 70Aは親液性 (親水性)を有している。本実施形態においては、光学素 子 2は、純水との親和性が高い蛍石で形成されている。なお光学素子 2は、水との親 和性が高!ヽ石英で形成されて!ヽてもよ ヽ。また光学素子 2の液体接触面 2A及びノズ ル部材 70の液体接触面 70Aに親水化 (親液化)処理を施して、液体 LQとの親和性 をより高めるようにしてもよい。親液化処理としては、 MgF、 Al O、 SiOなどの親液
2 2 3 2 性材料を前記液体接触面に設ける処理が挙げられる。あるいは、本実施形態におけ る液体 LQは極性の大きい水であるため、親液化処理 (親水化処理)として、例えばァ ルコールなど極性の大き 、分子構造の物質で薄膜を設けるようにしてもよ 、。光学素 子 2の下面 2Aやノズル部材 70の下面 70Aを親液性にすることで、液体 LQの表面張 力を利用して、液体 LQの液浸領域 AR2を、光学素子 2の下面 2A及びノズル部材 7 0の下面 70Aと、基板 Pの上面及び Z又は基板ステージ PSTの上面との間で良好に 形成することができる。なお、本実施形態においては、光学素子 2の下面 2Aとノズル 部材 70の下面 70Aはほぼ面一となるようにノズル部材 70が配置されている力 光学 素子 2の下面 2Aとノズル部材 70の下面 70Aとに段差があってもよい。例えば、ノズ ル部材 70の下面 70Aと基板 Pの上面及び Z又は基板ステージ PSTの上面との距離 力 光学素子 2の下面 2Aと基板 Pの上面及び Z又は基板ステージ PSTの上面との 距離よりも小さくなるように、ノズル部材 70を配置してもよい。
[0065] 次に、図 2を参照しながら光洗浄装置 80について説明する。
[0066] 光洗浄装置 80は、光洗浄効果を有する照射光 Luを射出するものである。光洗浄 装置 80は、光源 82と、その光源 82を保持する筐体 81とを備えている。本実施形態 においては、光洗浄装置 80は、紫外光 (UV光)を下方に向けて射出するものである 。光源 82としては、 Xeエキシマレーザ(波長 172nm)、 KrClエキシマレーザ(波長 2
2
22nm)、 XeClエキシマレーザ(波長 308nm)などが使用できる。光洗浄装置 80は、 投影光学系 PLの先端部の光学素子 2、ノズル部材 70、及び基板ステージ PSTを収 容した空調空間 125の内側であって、投影光学系 PLと並んだ位置に設けられている 。具体的には、光洗浄装置 80は、空調空間 125の内側であって、メインコラム 4の天 井面 4Bのうち、投影光学系 PL (露光光 ELの光路)に対して +X側に所定距離離れ た位置に取り付けられている。ここで、上述したように、空調空間 125においては、給 気口 115から供給された気体は +X方向に流れる。したがって、光洗浄装置 80は、 投影光学系 PLに対して空調系 KCによって形成される気体 (空気)の流れの下流側 に設けられた構成となって 、る。 [0067] 本実施形態においては、空調空間 125の +X側の外側に、基板ステージ PSTに対 して基板 Pを搬入 (ロード)及び搬出(アンロード)する基板搬送系 150が配置されて いる。制御装置 CONTは、基板ステージ PSTに対して基板 Pをロード'アンロードす るとき、基板ステージ PSTを空調空間 125の +X側に移動し、基板搬送系 150の近 傍位置(ロード'アンロード位置)に配置する。光洗浄装置 80はそのロード'アンロード 位置の上方に設けられており、基板ステージ PSTは、光洗浄装置 80の直下に移動 可能な構成となっている。
[0068] また、空調空間 125の内側には、その空調空間 125の気体成分を検出する検出器 84 (84A、 84B)が設けられている。本実施形態においては、検出器 84は、空調空 間 125の酸素濃度を検出可能な酸素濃度計によって構成されている。検出器 84は 一つでもよいが、本実施形態においては、空調空間 125の複数の所定位置のそれ ぞれに検出器 84A、 84Bが設けられている。具体的には、検出器 84Aは、メインコラ ム 4の天井面 4Bのうち、光洗浄装置 80に並ぶ位置に取り付けられている。検出器 84 Bは、光洗浄装置 80より射出される紫外光 Luの光路近傍に設けられて 、る。
[0069] 図 3は基板ステージ PSTの Zチルトステージ 52を上方から見た平面図である。なお 図 3においては、基板 Pは破線で仮想的に図示されている。平面視矩形状の Zチルト ステージ 52の互いに垂直な 2つの縁部に移動鏡 55が配置されている。また、 Zチルト ステージ 52のほぼ中央部に凹部 32が形成されており、この凹部 32に基板 Pを保持 する基板ホルダ PHが配置されて 、る。
[0070] 基板ホルダ PHは、略円環状の周壁部 33と、この周壁部 33の内側に配置され、基 板 Pを保持 (支持)する複数のピン状の支持部 34とを備えて 、る。ピン状の支持部 34 のそれぞれは、その上面 34Aを基板 Pの裏面に接触させて基板 Pを保持する。なお 、図においては、支持部 34は比較的大きく示されている力 実際には非常に小さな ピン状の支持部が周壁部 33の内側に多数形成されている。
[0071] 周壁部 33は支持部 34の周囲に配置されており、支持部 34は周壁部 33の内側に おいて一様に配置されている。上述したように、基板ホルダ PHに保持されている基 板 Pの側面と Zチルトステージ 52の上面 31との間には所定のギャップが形成されて いる。なお図においては、周壁部 33の上端面は比較的広い幅を有している力 実際 には 0. 1〜 2mm程度の幅しか有していない。
[0072] 基板ホルダ PHの支持部 34以外の上面には、吸引口 41が複数設けられている。吸 引口 41は、基板ステージ PST外部に設けられた真空ポンプを含む不図示の真空系 に流路を介して接続されている。制御装置 CONTは、真空系を駆動し、周壁部 33及 び支持部 34を含む基板ホルダ PHと支持部 34に支持された基板 Pとの間に形成さ れた空間 38内部のガス(空気)を吸引口 41より吸引してこの空間 38を負圧にするこ とで、支持部 34に基板 Pを吸着保持する。すなわち、本実施形態における基板ホル ダ PHは、所謂ピンチャック機構を備えている。
[0073] また、基板ステージ PST上にぉ 、て、基板 Pの外側の所定位置には、光計測部とし て基準部材 (計測部材) 300が配置されている。基準部材 300には、基板ァライメント 系 350により検出される基準マーク PFMと、マスクァライメント系 360により検出され る基準マーク MFMとが所定の位置関係で設けられて 、る。基準部材 300の上面は ほぼ平坦面となっており、基板ステージ PSTに保持された基板 P表面、及び基板ステ ージ PSTの上面 31とほぼ同じ高さ(面一)に設けられている。基準部材 300の上面 は、フォーカス'レべリング検出系 60の基準面としての役割も果たすことができる。
[0074] また、基板ステージ PST上のうち、基板 Pの外側の所定位置には、光計測部として 例えば特開昭 57— 117238号公報に開示されているような照度ムラセンサ 400、例 えば特開 2002— 14005号公報に開示されているような空間像計測センサ 500、及 び例えば特開平 11— 16816号公報に開示されているような照射量センサ(照度セン サ) 600、特開昭 62— 183522に開示されているような不図示の反射部材 (計測部 材)など、各種光計測部が設けられている。
[0075] また、各光計測部の上面は、基板ステージ PSTの上面 31とほぼ面一で、光透過性 の撥液材料で被覆されている。本実施形態においては、液体 LQとして純水を使用し ており、各光計測部の上面は撥水性のサイトップ (旭硝子社製、登録商標)で被覆さ れている。
[0076] また、各光計測部の上面の撥液材料は、露光光 ELや光洗浄装置 80からの紫外光
(UV光)が照射されても、その撥液性が損なわれにくいものを用いているが、撥液性 が劣化した場合や、不純物が付着して汚染された場合には、各光計測部の上面を形 成する部材を交換するようにしてもょ ヽ。
[0077] なお、各光計測部の上面は、基板ステージ PSTの上面 31と一体的に形成してもよ いし、基板ステージ PSTの上面 31を形成する部材とは別の部材に形成してもよい。 また、基板ステージ PST上に基準部材 300,センサ 400, 500、 600のすベてを設け る必要はなぐそれらの少なくとも一つを省略してもよい。
[0078] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターン像を基板 P に露光する方法にっ 、て説明する。
[0079] 基板 Pの露光処理を行うために、まず、制御装置 CONTは、基板ステージ PST上 に基板 Pを支持した状態で、液体供給機構 10及び液体回収機構 20による液体 LQ の供給及び回収を行!ヽ、投影光学系 PLの像面側に液体 LQの液浸領域 AR2を形 成する。
[0080] 制御装置 CONTは、基板 Pの露光処理を行う前に、光計測部 300、 400、 500、 6 00を使った各種計測動作を行い、その計測結果に基づいて、基板 Pのァライメント処 理ゃ、投影光学系 PLの結像特性調整 (キャリブレーション)処理を行う。例えば光計 測部 400を使った計測動作を行う場合には、制御装置 CONTは、基板ステージ PS Tを XY方向に移動することで液体 LQの液浸領域 AR2に対して基板ステージ PST を相対的に移動し、光計測部 400上に液体 LQの液浸領域 AR2を配置し、その状態 で液体 LQを介した計測動作を行う。同様に、光計測部 300を使った計測動作や、光 計測部 500、 600を使った計測動作を行う際にも、液体 LQの液浸領域 AR2に対し て基板ステージ PSTを相対的に移動し、光計測部 300、 500、 600上に液体 LQの 液浸領域 AR2を配置した状態で液体 LQを介した計測動作を行う。
[0081] 上記ァライメント処理及びキャリブレーション処理を行った後、制御装置 CONTは、 液体供給機構 10による基板 P上に対する液体 LQの供給と並行して、液体回収機構 20による基板 P上の液体 LQの回収を行い、基板 Pよりも小さく且つ投影領域 AR1よ りも大き ヽ液浸領域 AR2を局所的に形成しつつ、基板 Pを支持する基板ステージ PS Tを X軸方向(走査方向)に移動しながら、マスク Mのパターン像を投影光学系 PLと 基板 Pとの間の液体 LQ及び投影光学系 PLを介して基板 P上に投影露光する。
[0082] 本実施形態における露光装置 EXは、マスク Mと基板 Pとを X軸方向(走査方向)に 移動しながらマスク Mのパターン像を基板 Pに投影露光するものであって、走査露光 時には、液浸領域 AR2の液体 LQ及び投影光学系 PLを介してマスク Mの一部のパ ターン像が投影領域 AR1内に投影され、マスク Mがー X方向(又は +X方向)に速度 Vで移動するのに同期して、基板 Pが投影領域 AR1に対して +X方向(又は—X方 向)に速度 β 'Υ βは投影倍率)で移動する。基板 Ρ上には複数のショット領域が設 定されており、 1つのショット領域への露光終了後に、基板 Ρのステッピング移動によ つて次のショット領域が走査開始位置に移動し、以下、ステップ'アンド'スキャン方式 で基板 Ρを移動しながら各ショット領域に対する走査露光処理が順次行われる。なお 、投影光学系 PLの構造によっては、マスク Mと基板 Pとを同一の方向(例えば、 +X 方向)へ移動して各ショット領域が露光される。
[0083] 基板 Pの中央領域に設定されたショット領域を露光するときは、液浸領域 AR2は基 板 P上に配置される。一方、基板 Pのエッジ領域に設定されたショット領域を露光する ときは、液浸領域 AR2は、基板 Pと基板ステージ PSTの上面 31とのそれぞれに跨る ように配置される。
[0084] 基板 Pの液浸露光終了後、制御装置 CONTは、液体供給機構 10による液体供給 を停止した後、液体回収機構 20を使って、基板 P上や基板ステージ PSTの上面 31 、ある ヽ ίま光計柳』咅^ 300、 400、 500、 600上【こ残留して!/ヽる液体 LQを回収する。 次いで、制御装置 CONTは、露光処理を終えた基板 Ρを搬出(アンロード)するととも に、未だ露光されて ヽな 、未露光基板 Ρを基板ステージ PSTに搬入 (ロード)するた めに、図 4に示すように、基板ステージ PSTを投影光学系 PLに対して +Χ側に移動 し、空調空間 125の +X側、すなわち基板搬送系 150の近傍位置(ロード'アンロード 位置)に配置する。上述したように、そのロード'アンロード位置の上方には光洗浄装 置 80が設けられている。
[0085] 制御装置 CONTは、基板搬送系 150によって露光処理を終えた基板 Pを基板ステ ージ PSTからアンロードした後、未露光基板 Pを基板ステージ PSTにロードする前に 、基板ステージ PST上に基板 Pが無い状態で、基板ステージ PSTを移動して光洗浄 装置 80の直下に配置する。その状態で、制御装置 CONTは光洗浄装置 80を駆動 し、光洗浄装置 80より紫外光 Luを下方に向けて射出する。光洗浄装置 80より射出さ れた紫外光 Luは基板ステージ PSTに対して照射される。光洗浄装置 80は、基板ス テージ PSTの上面 31、基板ステージ PSTの上面 31に設けられている光計測部 300 、 400、 500、 600、及び基板ホルダ PHに紫外光 Luを所定時間だけ照射する。なお 、光洗浄装置 80は、移動鏡 55の上面に紫外光 Luを照射してもよい。
[0086] 紫外光 Luが照射されることにより、基板ステージ PST上面の不純物 (有機物)を気 ィ匕(除去)することができる。また、基板ステージ PST上面近傍では、空気中の酸素が 紫外光 Luを吸収して励起状態となり、酸ィ匕カを増したオゾンなどに化学変化し、基 板ステージ PST上面に付着した不純物 (有機物)が酸化分解される。
[0087] 液浸領域 AR2の液体 LQ中には、例えば基板 P上に塗布された感光剤カゝら発生し た不純物(異物)が混入する可能性がある。なお、感光剤から発生する不純物とは、 感光剤の破片や感光剤に含まれる電解質の析出物等を含む。上記感光剤は有機物 を含んで、ヽるため、液浸領域 AR2の液体 LQ中に有機物を含む不純物が混入する 可能性がある。上述したように、液体 LQの液浸領域 AR2は、基板 P表面、光計測部 300、 400、 500、 600を含む基板ステージ PSTの上面 31上を移動する力 液浸領 域 AR2が基板ステージ PST上を相対的に移動することにより、基板ステージ PSTの 上面 31、基板ステージ PST上に設けられた光計柳』咅 300、 400、 500、 600等に不 純物 (有機物)が付着する可能性がある。また、空中を浮遊している不純物 (有機物) 力 基板ステージ PSTの上面 31や、光計測部 300、 400、 500、 600等に付着する 可能性もある。
[0088] 本実施形態においては、基板ステージ PSTの上面 31、光計測部 300、 400、 500 、 600、基板ホルダ PH上に付着した有機物は、酸化力の強化された雰囲気下で、 前記紫外光 Luにより除去される。このようにして、上記基板ステージ PSTの上面 31、 光計測部 300、 400、 500、 600の上面、及び基板ホルダ PHが光洗浄され、液体 L Qの付着跡の形成も抑制できる。
[0089] また、基板 Pの液浸露光終了後、基板ステージ PST上の液体 LQを回収しきれずに 、基板ステージ PST上に液体 LQが残留する可能性もある。残留した液体 LQを放置 しておくと、液体 LQが乾燥した後、基板ステージ PSTの上面 31や、光計測部 300、 400、 500、 600の上面等に、液体 LQの付着跡(所謂ウォーターマーク)が形成され る可能性がある。また、液体 LQが基板 Pの裏面側に入り込んで基板ホルダ PHに付 着すると、その基板ホルダ PHにも液体 LQの付着跡(ウォーターマーク)が形成され る可能性がある。また、基板 Pの液浸露光終了後に、基板ステージ PST上の液体 LQ が回収しきれたとしても、不純物 (有機物)を基板ステージ PST上に付着させた状態 で長時間放置しておくと、付着跡 (ウォーターマーク)が形成される可能性がある。
[0090] 本実施形態においては、光洗浄装置 80によって、上記基板ステージ PSTの上面 3 1、光計測部 300、 400、 500、 600の上面、及び基板ホルダ PHに紫外光を照射す ることで、光洗浄効果による付着跡 (ウォーターマーク)の除去も期待できる。
[0091] 基板ステージ PSTの光洗浄処理を終えた後、制御装置 CONTは、その光洗浄さ れた基板ステージ PSTに未露光基板 Pをロードする。基板ホルダ PHに不純物(有機 物)が付着していたり、付着跡 (ウォーターマーク)が形成されていると、それらが異物 として作用し、基板ホルダ PHで基板 Pを良好に吸着保持できなくなったり、あるいは 保持した基板 Pの平坦度 (フラットネス)が劣化し、良好な露光精度及び計測精度を 得られない不都合が生じる。本実施形態においては、未露光の基板 Pを基板ホルダ PHで保持する前に、その基板ホルダ PHを光洗浄することで、上記不都合の発生を 防止することができる。
[0092] また、基板 Pを露光する前に、上述したように、光計測部 300、 400、 500、 600を 使った計測処理を行う場合には、その計測処理を行う前に、それら光計測部 300、 4 00、 500、 600を光洗浄することで、付着した不純物(有機物)や付着跡(ウォーター マーク)に起因する計測精度の劣化を防止することができる。
[0093] また、上述したように、基板 Pのエッジ領域を液浸露光するときは、液浸領域 AR2の 一部が基板ステージ PSTの上面 31に配置される力 液浸露光を行う前に、基板ステ ージ PSTの上面 31を光洗浄することで、付着した不純物 (有機物)や付着跡 (ウォー ターマーク)に起因する基板ステージ PSTの上面 31の液体 LQとの接触角の変化や 、光計測部 300、 400、 500、 600の上面の液体 LQとの接触角の変化を防止するこ とができる。例えば、基板ステージ PSTの上面 31の液体 LQとの接触角が変化すると 、液浸領域 LQの液体 LQの圧力が変化し、それに伴って、基板 Pや基板ステージ PS T、投影光学系 PLの光学素子 2に及ぼす液体 LQの力も変化する。すると、基板 Pや その基板 Pを支持する基板ステージ PSTが変形したり、光学素子 2の位置が変動す る等の不都合が生じ、露光精度及び計測精度が劣化する可能性がある。また、基板 Pなどに及ぼす液体 LQの力が変化すると、液浸領域 AR2の液体 LQが基板 Pの外 側に流出したり、液浸領域 AR2中に気泡が発生したり、上面 31と基板 Pのエッジ部と の隙間に液体 LQが入り込むなどの不都合が発生し易くなる。本実施形態において は、液浸露光を行う前に、基板ステージ PSTの上面 31を光洗浄することで、上面 31 の液体 LQとの接触角の変化を防止し、上記不都合の発生を防止することができる。
[0094] また、基板ステージ PST上などに形成された付着跡(ウォーターマーク)は異物とし て作用するため、その異物が例えば空中を浮遊して基板 P上に付着し、その状態で 露光処理が行われると、基板 P上のパターン欠陥を招く。本実施形態においては、光 洗浄装置 80は、付着跡(ウォーターマーク)が基板ステージ PST上に形成されないよ うに、紫外光 Luを照射しているので、付着跡 (ウォーターマーク)の形成を抑制し、上 記パターン欠陥などの不都合の発生を防止することができる。
[0095] 本実施形態においては、光洗浄装置 80は投影光学系 PLに並んだ位置に設けら れている。このような配置にすることにより、露光処理をしていないときは、基板ステー ジ PSTを直ちに光洗浄装置 80の直下に移動することができ、光洗浄処理時間の短 縮ィ匕を図ることができる。
[0096] ところで、光洗浄装置 80 (光源 82)は発熱源となるため、投影光学系 PLに近づけ すぎると、投影光学系 PLの結像特性の変動などを引き起こし、露光精度及び投影光 学系 PLを介した計測精度を劣化させる。また、光洗浄装置 80の光洗浄によって空 中に飛散した異物 (不純物)が露光精度や計測精度に影響を及ぼすおそれもある。 したがって、光洗浄装置 80は、投影光学系 PL (露光光 ELの光路)から所定距離だ け離れた位置に設けることが望ましい。
[0097] 本実施形態においては、光洗浄装置 80は、投影光学系 PLに対して空調系 じに よって形成される気体 (空気)の流れの下流側に設けられた構成となって 、る。したが つて、光洗浄装置 80で発生した熱が、投影光学系 PL (露光光 ELの光路)に伝わる ことを効果的に防止することができる。また、光洗浄装置 80による光洗浄によって分 解された異物 (不純物)が空中に飛散しても、投影光学系 PL側へ流れることなぐ排 気口 120から排出することができる。
[0098] このように、空調系 KCによって形成される気体の流れの方向を考慮して、光洗浄 装置 80の設置位置を設定することで、光洗浄装置 80に起因する露光精度及び計測 精度の劣化を防止することができる。
[0099] なお、光洗浄装置 80から射出する照射光 Luとしては、光洗浄効果を有する照射光 であれば、例えば ArFエキシマレーザ光(波長 193nm)及び Fレーザ光(波長 157η
2
m)等の真空紫外光 (VUV光)などでもよい。あるいは、水銀ランプ、重水素ランプな どを用いることもでき、この場合には光洗浄装置 80の低コストィ匕を図ることができる。
[0100] ところで、上述したように、光洗浄は、酸素による紫外光 Luの吸収に基づいて、紫 外光 Luの照射領域近傍の雰囲気の酸化力を強化し、不純物 (有機物)を酸化分解 し、その除去を促進させる構成であるが、紫外光 Luの照射領域近傍の雰囲気中の 酸素は必ずしも必要ではない。一方で、酸素は、紫外光 Luに対する吸光物質として 作用するため、前記雰囲気中の酸素濃度が高すぎると、紫外光 Luは十分な光強度 で照射されない。したがって、照射する紫外光 Luの波長などに応じて、前記雰囲気 中の酸素濃度を最適に設定することが望ましい。
[0101] そこで、制御装置 CONTは、紫外光 Luの光路を含む空調空間 125の酸素濃度を 検出器 84 (84A、 84B)を使って検出し、光洗浄するときは、検出器 84の検出結果 に基づいて、空調空間 125のうち、少なくとも紫外光 Luの光路を含む空間の酸素濃 度を調整するとよい。例えば、検出器 84で検出した酸素濃度が、所望濃度に対して 低い場合には、制御装置 CONTは、空調系 KCの給気口 115より空調空間 125に対 して供給する気体に酸素を追加することで、空調空間 125の酸素濃度を高くすること ができる。一方、検出器 84で検出した酸素濃度が、所望濃度に対して高い場合には 、制御装置 CONTは、空調系 KCの給気口 115より空調空間 125に対して供給する 気体に窒素などの不活性ガスを追加することで、空調空間 125の酸素濃度を低くす ることができる。空調空間 125の気体は、排気口 120より回収される。
[0102] <第 2の実施形態 >
図 5は本発明の第 2の実施形態を示す概略構成図である。ここで、以下の説明にお いて、上述した実施形態と同一又は同等の構成部分については同一の符号を付し、 その説明を簡略若しくは省略する。
[0103] 上述したように、光洗浄装置 80 (光源 82)は発熱源となるため、図 5に示すように、 空調空間 125の外側に配置するようにしてもよい。こうすることにより、光洗浄装置 80 で発生した熱が、投影光学系 PL (露光光 ELの光路)に伝わることを更に効果的に防 止することができる。図 5において、光洗浄装置 80はメインコラム 4の上面 4Aに設け られており、空調空間 125よりも外側に配置されている。メインコラム 4の上壁の一部 には、紫外光 Luを透過可能な透過窓 83が設けられており、光洗浄装置 80は透過窓 83の上に設けられている。透過窓 83は、例えば石英ガラスや蛍石、あるいはフツイ匕 マグネシウムなど、紫外光 Luに対して吸収の少ない材料で構成されている。光洗浄 装置 80は下方に向けて紫外光 Luを射出する。光洗浄装置 80より射出された紫外光 Luは、透過窓 83を通過した後、光洗浄装置 80及び透過窓 83の直下に配置されて いる基板ステージ PST上に照射される。
[0104] また、図 5に示す実施形態においては、光洗浄装置 80を空調空間 125の外側に配 置しているため、空調系 KCによって形成される空調空間 125における気体の流れ 方の設計に対する自由度を広げることができる。
[0105] <第 3の実施形態 >
図 6は第 3の実施形態を示す図である。図 6において、光洗浄装置 80は、空調空間 125の外側に配置され、紫外光 Luを射出する光源 82と、光源 82から射出された紫 外光 Luを空調空間 125の内部に配置された基板ステージ PST上に導く光学系 86と を備えている。光学系 86は、メインコラム 4の +X側の側壁の一部に設けられ、紫外 光 Luを透過可能な透過窓 83と、空調空間 125の内側に配置され、透過窓 83を通過 した紫外光 Luの光路を折り曲げる反射ミラー 85とを備えている。透過窓 83は、上述 同様、例えば石英ガラスや蛍石、あるいはフッ化マグネシウムなど、紫外光 Luに対し て吸収の少な ヽ材料で構成されて 、る。光源 82はハウジング 81に収容された状態 で、メインコラム 4の +X側の外側において、透過窓 83の近くに配置されている。光源 82から射出された紫外光 Luは、透過窓 83を通過した後、反射ミラー 85で反射し、基 板ステージ PSTに照射される。なお、反射ミラー 85は、凸面であっても凹面であって もよい。反射ミラー 85を凸面にすることにより、基板ステージ PSTの広い領域を紫外 光 Luで一括して照射することができる。一方、反射ミラー 85を凹面にすることにより、 光源 82から射出された紫外光 Luを反射ミラー 85で集光した後、基板ステージ PST に照射することができる。また、反射ミラー 85を移動可能 (揺動可能)に設け、その反 射ミラー 85を動かすことで、反射ミラー 85で反射した紫外光 Luを基板ステージ PST の所望位置に照射することができる。なお、反射ミラー 85に代えてあるいは反射ミラ 一 85に加えて、紫外光 Luを偏向または集光させるレンズやプリズムなどの光学素子 を用いても良い。
[0106] 図 6に示した実施形態においても、発熱源となる光源 82は、空調空間 125の外側 に配置されているので、光洗浄装置 80の光源 82で発生した熱が、投影光学系 PL ( 露光光 ELの光路)に伝わることを更に効果的に防止することができる。
[0107] また、図 6に示す実施形態においても、光洗浄装置 80の光源 82を空調空間 125の 外側に配置しているため、空調系 KCによって形成される空調空間 125における気 体の流れ方の設計に対する自由度を広げることができる。例えば、図 6に示す実施 形態においては、空調空間 125に対して気体を供給する給気口 115 (115A、 115B )は 2つ設けられており、メインコラム 4の上壁に設けられている。なお、上述した実施 形態同様、給気口 115A、 115Bのそれぞれにはフィルタユニット 118 (118A、 118 B)が設けられている。本実施形態においては、空調系 KCは、給気口 118A、 118B より空調空間 125に対して縦方向、本実施形態では Z方向に気体を供給する。ま た、メインコラム 4の +X側及び X側それぞれの側壁の下部には、空調空間 125の 気体を排気する排気口 120 ( 120A、 120B)が設けられて!/、る。
[0108] なお、図 4〜6に示した例 (第 1〜第 3実施形態)では基板ステージ PSTを投影光学 系 PLの下方の位置から X方向に所定位置まで移動させ、所定位置にて紫外光 Luを 基板ステージ PSTに照射していた。しかし、これに限らず、基板ステージ PSTを投影 光学系 PLの下方の位置に維持したまま、図 6に示したような反射鏡やその他の光学 部材を用いて紫外光 Luを投影光学系 PLの下方に位置する基板ステージ PSTに導 いても良い。また、図 4〜6に示した例 (第 1〜第 3実施形態)空調系 KCによって、空 調空間 125内の酸素濃度が光洗浄可能な状態に維持される場合には、検出器 84を 省略して、検出器 84の検出結果に基づく酸素濃度の調整を積極的に行わなくてもよ い。
[0109] ここで、図 2などを参照して説明した第 1の実施形態においては、空調空間 125に おける気体の流れは横方向なので、その気体の流れる距離が長くなり、上流部と下 流部とで温度差が生じる可能性が高くなる。したがって、レーザ干渉計 56の計測ビ ームの照射方向に関して温度分布が生じることとなり、計測ビームの光路が変動する 可能性が高くなり、その結果、レーザ干渉計 56による基板ステージ PSTの位置計測 精度が低下するおそれもある。一方、図 6に示した第 3の実施形態においては、空調 空間 125における気体の流れの方向が縦方向なので、その気体の流れる距離を短く することができ、上流部と下流部とで温度差が生じる不都合を抑えることができる。ま た、気体の流れの方向はレーザ干渉計 56の計測ビームの照射方向とほぼ直交する ため、計測ビームの照射方向に関して温度分布が生じる不都合を抑えることができる 。したがって、レーザ干渉計 56による基板ステージ PSTの位置計測精度を維持する ことができる。
[0110] <第 4の実施形態 >
次に、第 4の実施形態について図 7を参照しながら説明する。上述した第 1〜第 3の 実施形態のように、空調空間 125全体の酸素濃度を空調系 KCを使って調整する構 成では、空調空間 125全体を所望の酸素濃度に置換するまでに時間が力かる可能 性がある。そこで、図 7に示すように、光洗浄装置 80は、基板ステージ PSTのうち紫 外光 Luが照射される照射領域近傍に対して所定の気体を供給する気体供給系 87と 、気体を吸引回収する気体回収系 88とを備えた構成とするとよい。気体供給系 87の 供給口 87A及び気体回収系 88の回収口 88Aは、基板ステージ PSTの近傍に設け られ、基板ステージ PSTを挟んで互いに対向するように配置されて 、る。
[0111] 制御装置 CONTは、紫外光 Luの光路を含む空調空間 125の酸素濃度を検出器 8 4 (84A、 84B)を使って検出し、光洗浄するときは、検出器 84の検出結果に基づい て、気体供給系 87より供給する気体成分 (酸素濃度)を調整する。例えば、検出器 8 4で検出した酸素濃度が、所望濃度に対して低い場合には、制御装置 CONTは、気 体供給系 87より前記照射領域に対して供給する気体に酸素を追加することで、前記 照射領域近傍の酸素濃度を高くすることができる。一方、検出器 84で検出した酸素 濃度が、所望濃度に対して高い場合には、制御装置 CONTは、気体供給系 87より 前記照射領域に対して供給する気体に窒素などの不活性ガスを追加することで、前 記照射領域近傍の酸素濃度を低くすることができる。
[0112] このような構成とすることにより、光洗浄対象領域 (紫外光 Luの照射領域)近傍の比 較的小さ 、空間のみを光洗浄に適した環境に迅速に設定することができ、光洗浄処 理時間を短くすることができる。また、図 7に示した実施形態においては、紫外光 Lu の照射領域近傍に気体回収系 88の回収口 88Aが設けられているので、基板ステー ジ PST上など力も異物が発生した場合でも、その異物を吸引回収することができる。 例えば、基板ステージ PSTを光洗浄したとき、その基板ステージ PSTに付着している 有機物が気化して浮遊する場合があるが、その気化した有機物を気体回収系 88で 迅速に回収することで、空調空間 125の清浄度を維持することができる。また、気体 供給系 87は、オゾンガスのような酸ィ匕促進ガス (光洗浄促進ガス)を供給することも可 能である。こうすることにより、光洗浄対象領域 (紫外光 Luの照射領域)近傍の空間( 雰囲気)をオゾンガスで満たすことができ、酸化力の強化された雰囲気下で、基板ス テージ PST上に付着した不純物 (有機物)を紫外光 Luにより酸化分解して光洗浄す ることがでさる。
[0113] <第 5の実施形態 >
次に、第 5の実施形態について図 8を参照しながら説明する。図 8に示す光洗浄装 置 80は、投影光学系 PLを構成する複数の光学素子のうち最も像面に近い光学素子 2、及びノズル部材 70に紫外光 Luを照射し、光洗浄する。光学素子 2及びノズル部 材 70は、液浸領域 AR2の液体 LQに接触する部材であって、光洗浄装置 80は、光 学素子 2及びノズル部材 70のうち液浸領域 AR2の液体 LQに接触する液体接触面 2 A、 70Aに少なくとも紫外光 Luを照射する。光洗浄装置 80は、基板ステージ PSTの うち、基板ホルダ PH、基準部材、光計測部以外の所定位置に設けられている。光洗 浄装置 80の光源 82は基板ステージ PSTの所定位置に設けられた凹部 59の内側に 設けられており、その凹部 59の開口は、紫外光 Luを透過可能な透過窓 83で塞がれ ている。光洗浄装置 80の光源 82は、上方に向けて紫外光 Luを射出する。光源 82か ら射出された紫外光 Luは、透過窓 83を通過した後、光学素子 2及びノズル部材 70 を照射する。
[0114] また、図 8においては、光学素子 2の下面 2A及びノズル部材 70の下面 70Aの汚染 を検出する検出装置 90が設けられている。検出装置 90は、下面 2A、 70Aに付着し ている不純物(有機物)を検出可能である。また、ここでいう不純物は、上述同様、液 体 LQの付着跡(ウォーターマーク)や、基板 Pの感光剤(フォトレジスト)から発生した 異物 (感光剤の破片や感光剤に含まれる電解質の析出物等)を含む。なお、以下の 説明では、光学素子 2の下面 2Aの汚染 (異物)を検出する場合について説明するが 、ノズル部材 70の下面 70Aの汚染 (異物)を検出する場合も、同様の手順で検出可 能である。
[0115] 図 8において、検出装置 90は、基板ステージ PST(Zステージ 52)上に設けられ、 投影光学系 PLの光学素子 2の下面 2A (又はノズル部材 70の下面 70A)に対して斜 め下方から所定の検出光を照射する発光部 91と、光学素子 2の下面 2Aと発光部 91 とを結ぶ光路上に配置された分岐ミラー 93と、基板ステージ PST上に設けられ、発 光部 91からの照射に基づく光学素子 2の下面 2Aからの反射光を受光するための第 1受光部 92と、基板ステージ PSTの上方位置に配置され、発光部 91からの照射に 基づく分岐ミラー 93からの分岐光を受光するための第 2受光部 94とを備えている。 検出装置 90を構成する発光部 91及び第 1受光部 92等は、基板ステージ PST上のう ち基板ホルダ PHや基準部材、光計測部以外の位置に設けられている。そして、第 1 、第 2受光部 92、 94の受光結果は、制御装置 CONTへ出力される。制御装置 CON Tは、第 1、第 2受光部 92、 94の受光結果に基づいて、光学素子 2の下面 2Aの光反 射率を求め、その求めた光反射率と、予め記憶している所定反射率とを比較し、その 比較した結果に基づ!/、て、光学素子 2の下面 2Aの汚染 (汚染度)を検出 (測定)する 。つまり、光学素子 2に異物が付着していれば、この異物に起因して散乱光が生じて 反射率が変化し、第 1受光部 92で受光される受光量が変化する。制御装置 CONT は、光学素子 2の下面 2Aが光学特性に影響を与えるほど汚染されていないと想定さ れる本装置完成時及び Zまたは前回の光洗浄後に測定された光学素子 2の下面 2 Aの光反射率を所定反射率として予め記憶して 、る。
[0116] 光学素子 2の汚染を検出するとき、制御装置 CONTは、基板ステージ PSTを移動 して検出装置 90を投影光学系 PLの下に配置する。そして、発光部 91から所定の検 出光が照射されると、その検出光のうち分岐ミラー 93を透過した検出光は光学素子 2 の下面 2Aを照射した後この下面 2Aで反射し、その反射光は第 1受光部 92により受 光される。一方、分岐ミラー 93により分岐された検出光 (分岐光)は光学素子 2の下 面 2Aに至ることなく第 2受光部 94により受光される。そして、両受光部 92、 94の受光 結果が制御装置 CONTに出力される。制御装置 CONTは、第 1受光部 92の受光結 果と第 2受光部 94の受光結果とに基づいて光学素子 2の下面 2Aの光反射率を求め 、その求めた光反射率が上記所定反射率に対して許容値以上である力否力を求め る。すなわち、求めた光反射率が上記所定反射率に対して許容値未満である場合、 制御装置 CONTは、光学素子 2の下面 2Aは汚染されていないと判断する。一方、 求めた光反射率が上記所定反射率に対して許容値以上である場合、制御装置 CO NTは、光学素子 2の下面 2Aは汚染されて ヽると判断する。
制御装置 CONTは、検出装置 90の検出結果に基づいて、光洗浄装置 80の動作 を制御する。具体的には、検出装置 90の検出結果に基づいて、光学素子 2の下面 2 Aが汚染されていないと判断した場合、制御装置 CONTは、光洗浄装置 80による光 洗浄処理を行わず、露光動作を継続する。こうすることにより、不必要な光洗浄処理 を行うことが無くなるので、スループット(露光装置の稼働率)を向上することができる 。一方、検出装置 90の検出結果に基づいて、光学素子 2の下面 2Aが汚染されてい ると判断した場合、制御装置 CONTは、光洗浄装置 80による光洗浄処理を行う。投 影光学系 PLの光学素子 2の下面 2Aが汚染され、液体の付着跡などが形成されてし まうと、投影光学系 PLを通過する露光光や計測光の照射量や照度分布が変化する などして、露光精度や計測精度が劣化する可能性がある。本実施形態においては、 光洗浄装置 80を使って光学素子 2の下面 2Aを光洗浄処理して 、るので、汚染され た状態の光学素子 2を使って露光処理や計測処理を行ってしまうといった不都合の 発生を防止することができる。また、光学素子 2の下面 2A及びノズル部材 70の下面 70Aを光洗浄装置 80を用いて光洗浄処理を行うことで、光学素子 2の下面 2A及び ノズル部材 70の下面 70Aの親液性 (液体 LQの接触角が 20度以下)を維持すること ができ、光学素子 2及びノズル部材 70と、基板ステージ PST (基板 P)との間で液体 L Qを良好に保持し続けることができる。また、ノズル部材 70の供給口 12、回収口 22 に付着した汚染物 (異物)も除去することができるので、光学素子 2の像面側の光路 空間への液体の供給及び回収が安定的に行われ、液体 LQの液浸領域 AR2を良好 に維持することができる。
[0118] なお、本実施形態において、光洗浄装置 80を使って光学素子 2の下面 2Aゃノズ ル部材 70の下面 70Aを光洗浄するときに、光学素子 2の下面 2Aやノズル部材 70の 下面 70Aと光洗浄装置 80との間を液体 LQで満たしてもよい。この場合、液体供給 装置 10の供給動作と液体回収装置 20の回収動作を行わなくても、光学素子 2の下 面 2Aやノズル部材 70の下面 70Aと光洗浄装置 80との間を液体 LQで満たし続ける ことも可能であるが、液体の供給動作と回収動作を実行しながら光洗浄することによ つて、光学素子 2の下面 2A及びノズル部材 70の下面 70Aから除去された不純物( 汚染物)を液体 LQと一緒に回収することができる。
[0119] なお、光学素子 2の下面 2Aの汚染を検出するために、検出装置 90として、マスク ァライメント系 360を用いることもできる。また、基板ステージ PST上に配置されている 光計測部を使って、投影光学系 PLの露光光の透過率変化から光学素子 2の下面 2 Aの汚染状態を判断するようにしてもよい。あるいは、光学素子 2の下面 2Aやノズル 部材 70の下面 70Aの下方に観察系(カメラなど)を対向させて、その観察系を使って 、光学素子 2の下面 2Aおよびノズル部材 70の下面 70Aの光洗浄を実行するか否か を判断するようにしてもよい。また、図 8を用いて説明した第 5実施形態においては、 検出装置 90を使って光学素子 2の下面 2Aやノズル部材 70の下面 70Aの汚染状態 を確認してから、光洗浄装置 80による光洗浄処理を行うようにしているが、検出装置 90を省いて、例えば、所定時間毎、あるいは所定枚数の基板処理毎に光洗浄処理 を行うこともできる。また、第 5実施形態においては、光学素子 2の下面 2Aおよびノズ ル部材 70の下面 70Aの両方を光洗浄している力 どちらか一方を行うだけでもよい。
[0120] <第 6の実施形態 >
次に、第 6の実施形態について図 9を参照しながら説明する。上述した第 1〜第 5の 各実施形態においては、露光装置 EXS (露光装置本体 EX)は、 1つの基板ステージ PSTを備えた構成である力 本発明の光洗浄装置 80は、特開平 11— 135400号公 報に開示されているような、 2つのステージを備えた露光装置にも適用可能である。
[0121] 図 9に示す露光装置本体 EXは、基板 Pを保持する基板ホルダ PHを有し、基板 Pを 保持した状態で移動可能な基板ステージ PST1と、基板ステージ PST1に並ぶ位置 に設けられ、上述した光計 S'J咅 300、 400、 500、 600を備えた計柳』ステージ PST2 とを備えている。本実施形態においては、基板ステージ PST1には基準部材 (計測部 材)及び光計測部は設けられて 、な 、。計測ステージ PST2は計測専用のステージ であって基板 Pを保持しない。基板ステージ PST1及び計測ステージ PST2は、リニ ァモータ等を含むステージ駆動装置をそれぞれ有しており、 XY平面内で互いに独 立して 2次元移動可能となっている。また、基板ステージ PST1及び計測ステージ PS T2の XY方向の位置は、レーザ干渉計によって計測される。
[0122] 各種計測処理を行う場合には、計測ステージ PST2が投影光学系 PLの下に配置 され、その計測ステージ PST2上に液体 LQの液浸領域 AR2が形成される。そして、 その液浸領域 AR2の液体 LQを介して、光計測部 300、 400、 500、 600を使った計 測処理が行われる。計測ステージ PST2を使った計測処理を行っている間、基板ス テージ PST1には未露光基板 Pがロードされる。
[0123] そして、上記計測処理を終えた後、制御装置 CONTは、計測ステージ PST2上に 形成されて 、る液体 LQの液浸領域 AR2を、基板 Pを支持して!/、る基板ステージ PS T1上に移動する。液浸領域 AR2を計測ステージ PST2から基板ステージ PST1上 に移動する場合には、制御装置 CONTは、例えば計測ステージ PST2と基板ステー ジ PST1との間から液体 LQが漏出しな 、程度に互 、を近接させた状態で、投影光 学系 PLの像面側に形成されている液浸領域 AR2に対して計測ステージ PST2と基 板ステージ PST1とを一緒に移動する。そして、基板ステージ PST1上に液浸領域 A R2を移動した後、制御装置 CONTは、上記計測ステージ PST2を使って計測した計 測結果に基づいて、基板 Pのァライメント処理や、投影光学系 PLの結像特性調整( キャリブレーション)処理を行った後、基板ステージ PST1上の基板 Pを液浸露光する
[0124] このように、図 9に示す実施形態においては、基板ステージ PST1上及び計測ステ ージ PST2上の双方に液体 LQの液浸領域 AR2が形成されるため、それら基板ステ ージ PST1の上面及び計測ステージ PST2の上面のそれぞれに、不純物(有機物) が付着したり、液体 LQの付着跡 (ウォーターマーク)が形成される可能性があるが、 第 1〜第 4の実施形態で説明したような光洗浄装置 80を用いて、基板ステージ PST 1や計測ステージ PST2の光洗浄を行うことができる。例えば、制御装置 CONTは、 所定時間間隔毎 (所定処理基板枚数毎)に、光洗浄装置 80を使って、基板ステージ PST1及び計測ステージ PST2それぞれに紫外光 Luを照射して光洗浄を行うことが できる。あるいは、制御装置 CONTは、上記検出装置 90を使って、基板ステージ PS T1及び計測ステージ PST2の汚染を検出し、その検出結果に基づいて、光洗浄装 置 80の動作を制御する。また、基板ステージ PST1上の基板 Pの露光中に、計測ス テージ PST2を光洗浄装置 80を使って光洗浄することもできる。あるいは、計測ステ ージ PST2で計測動作を実行している間に、基板ステージ PST1の光洗浄を行って もよい。また、上述のような基板ステージ PST1と計測ステージ PST2とを備えた露光 装置の場合には、第 5の実施形態に示したような光洗浄装置 80を計測ステージ PST 2に設けて、光学素子 2の下面 2A及び Z又はノズル部材 70の下面 70Aを光洗浄す ることができる。この場合、光学素子 2の下面 2A及び Z又はノズル部材 70の下面 70 Aの汚染状態を検出する検出系の少なくとも一部を計測ステージに設けてもよい。
[0125] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2000— 505958号公報などに開示されている複数の基板ステージを備えるッインス テージ型の露光装置にも適用できる。上述のようなツインステージ型の露光装置の場 合には、第 5の実施形態などに示したような光洗浄装置 80をどちらか一方の基板ス テージに設けてもよいし、両方に設けてもよい。このようなツインステージ型の露光装 置においては、一方の基板ステージ上の基板が露光されている間または位置合わせ 動作が行われている間に、別の基板ステージの光洗浄を行うことができる。
[0126] また、上述の第 5の実施形態及び第 6実施形態においては、光洗浄装置 80が基板 ステージ PSTや計測ステージ PST2に固定される構成となつて 、るが、光洗浄装置 8 0を基板ステージ PSTや計測ステージ PST2に脱着可能な構成とすることもできる。 この場合には、所定のタイミングで行われる露光装置 EXのメンテナンスのときに、ォ ペレータが基板ステージ PSTや計測ステージ PST2への光洗浄装置 80の脱着を行 うようにしてもよ!、し、露光装置 EX内に配置された所定の搬送機構や工具を用いて 光洗浄装置 80を露光装置 EX内に設置するようにしてもよ!ヽ。
[0127] なお、投影光学系 PLの像面側で移動可能な可動体 (基板ステージ PSTや計測ス テージ PST2)に設けられた光洗浄装置 80は、光学素子 2の下面 2Aやノズル部材 7 0の下面 70Aを光洗浄するものである力 空調空間 125内で浮遊している不純物や 液滴が、通常ならば液体 LQと接することがない部材、例えば液浸領域 AR2の近傍 に配置された基板ァライメント系 350の一部(対物レンズなど)やフォーカス'レベリン グ検出系 60の一部に付着する可能性がある場合には、その光洗浄装置 80を使って 、液浸領域 AR2の近傍に配置された部材を光洗浄処理するようにしてもょ ヽ。
[0128] なお、上述した第 5の実施形態においては、光洗浄装置 80を基板ステージ PSTに 設けているが、基板ステージ PSTとは別に、投影光学系 PLの下 (像面側)で XY方向 に 2次元的に移動可能な可動体を配置して、その可動体に光洗浄装置 80を配置す るようにしてもよい。そして、そのような可動体として、上述したように、第 6の実施形態 のような計測ステージ PST2を用いることができる。
[0129] なお、上述した第 1〜第 4の実施形態や第 6の実施形態において、光洗浄装置 80 の近傍に液浸領域 AR2を形成するための機構とは別に、液体 LQの供給機構と回収 機構とを配置して、例えば基板ステージ PSTの上面 31を光洗浄するとき、光洗浄装 置 80による紫外光 Luの照射動作と並行して、上面 31の紫外光 Luの照射領域に対 する液体 LQの供給及び回収動作を行ってもよい。こうすること〖こよっても、基板ステ ージ PSTの上面 31から発生した異物を、液体 LQとともに回収することができる。
[0130] なお、上述した第 1〜第 6の実施形態においては、露光光 ELとして、光洗浄効果を 有する ArFエキシマレーザ光が使用されているため、光洗浄するための照射光とし て、基板 Pを露光するための露光光 ELを用いてもよい。基板ステージ PSTを光洗浄 する場合には、光洗浄対象である基板ステージ PST上に基板 Pが無い状態で、その 基板ステージ PSTを投影光学系 PLの直下に配置し、基板ステージ PSTに対して投 影光学系 PLを介して照明光学系 IL力もの露光光 EL (照射光)を照射すればよい。 また、計測ステージを備えた露光装置において、計測ステージを光洗浄する場合に は、計測ステージを投影光学系 PLの直下に配置し、計測ステージに対して投影光 学系 PLを介して露光光 EL (照射光)を照射すればよい。また、投影光学系 PLに露 光光 ELを通過させることにより、液浸領域 AR2の液体 LQに接触する光学素子 2も 光洗浄することができる。この場合も、例えば基板ステージ PSTの上面や光計測部 3 00、 400、 500、 600の上面を光洗净して!/、るときに、液体供給機構 10と液体回収 機構 20とを併用するようにしてもょ ヽ。
[0131] なお、上述した第 1〜第 4、第 6の実施形態においては、光洗浄装置 80から射出さ れる紫外光 Luの光束の径は比較的大きぐ基板ステージ PST (あるいは計測ステー ジ)の全域を一括して照射可能であるが、光洗浄装置 80から射出される紫外光 Luの 光束の径を小さくし、その光束及び基板ステージ PSTのうち少なくとも一方を相対的 に移動しながら、基板ステージ PSTの全域あるいは予め定められた一部の領域に紫 外光 Luを照射するようにしてもよい。こうすることにより光洗浄装置 80を小型化でき、 省スペース化を実現できる。また、光洗浄装置 80は、基板ステージ PST (あるいは計 測ステージ;)の上面 31、光計測部 300、 400、 500、 600の上面、基板ホルダ PHの 上面の全てを毎回光洗浄しなくてもよぐまた紫外光 Luの照射時間もそれぞれ異な つていてもよい。例えば光計測部 400の上面など、基板ステージ PST上の特定領域 に対して紫外光 Luを重点的に (長い時間)照射するようにしてもよい。また、第 5の実 施形態などにおいても、光洗浄装置 80から射出される紫外光 Luの光束の径を小さく し、その光束及び光洗浄装置 80を搭載した基板ステージ PSTのうち少なくとも一方 を相対的に移動しながら、光学素子 2やノズル部材 70の全域あるいは予め定められ た一部の領域に紫外光 Luを照射するようにしてもょ 、。
[0132] なお、上述した第 1〜第 4、第 6の実施形態において、基板ステージ PSTより露光 処理を終えた基板 Pをアンロードした後、未露光基板 Pをロードする前に (すなわち、 基板交換時に)、基板ステージ PSTを光洗浄装置 80を使って光洗浄処理する構成 であるが、予め定められた所定時間間隔毎、あるいは所定処理基板枚数毎に、光洗 浄処理を行う構成であってもよい。その場合、制御装置 CONTは、基板ステージ PS T上に基板 Pが無 、状態で、基板ステージ PSTを光洗浄装置 80の直下まで移動す る。光洗浄装置 80は、制御装置 CONTの制御の下、基板ステージ PSTの移動ととも に紫外光 Luの照射を開始する。そして、制御装置 CONTは、光洗浄装置 80を使つ て基板ステージ PSTに対して所定時間だけ紫外光 Luを照射した後、再び露光動作 に戻ればよい。また、上記時間間隔が長すぎたり、上記処理基板枚数が多すぎると、 基板ステージ PST上などに液体 LQの付着跡(ウォーターマーク)が形成される確率 が高くなるため、基板ステージ PST上などに液体 LQの付着跡(ウォーターマーク)が 形成されないように、光洗浄装置 80による紫外光 Luを照射する時間間隔 (処理基板 枚数)を適宜決定すればょ ヽ。
[0133] なお、上述の第 1〜第 6の実施形態において、光洗浄処理を行うための照射光 Lu を発する光源としては、上述の記載と一部重複するが、 Arエキシマランプ (波長 126
2
nm)、 Arエキシマレーザ(波長 126nm)、 Krエキシマランプ(波長 146nm)、 Kr
2 2 2 エキシマレーザ(波長 146nm)、 Fダイマランプ(波長 157nm)、 Fダイマレーザ(波
2 2
長 157nm)、Xeエキシマランプ(波長 172nm)、 Xeエキシマレーザ(波長 172nm)
2 2
、 ArFエキシマランプ(波長 193nm)、 ArFエキシマレーザ(波長 193nm)、 KrClェ キシマランプ(波長 222nm)、 KrClエキシマレーザ(波長 222nm)、 KrFエキシマラ ンプ(波長 248nm)、 KrFエキシマレーザ(波長 248nm)、 XeClエキシマランプ(波 長 308nm)、 XeClエキシマレーザ(波長 308nm)、低圧水銀ランプ(波長 185nmと 254nmとの光を同時に発光)、重水素ランプ (真空紫外〜可視まで広域な波長を有 する光)などを使用することができる。それらの光源を用いて、照射光 Luを連続照射 してもよく、パルス光として断続的に照射してもよい。また、照射光 Luのパワーや照射 時間は、汚染度や光洗浄の対象などに応じて適宜調整することができる。また、複数 の光源を用いたり、波長可変レーザーを用いて複数の波長の光を液体と接触する部 材に照射することもできる。
[0134] <第 7の実施形態 >
次に、第 7の実施形態について図 10を参照しながら説明する。図 10に示す露光装 置 EXS (露光装置本体 EX)は、図 7を用いて説明した第 6の実施形態同様、 2つのス テージを備えたものである。図 10において、投影光学系 PLの像面側には、光学部 材として反射部材 700が設けられて 、る。反射部材 700は例えばガラスによって形成 されており、その上面は光を反射可能な反射面となっている。本実施形態において は、反射部材 700は、投影光学系 PLの像面側で移動可能な計測ステージ PST2上 に配置されている。制御装置 CONTは、計測ステージ PST2を駆動して、投影光学 系 PLの下に反射部材 700を配置した状態で、投影光学系 PLを介して露光光 ELを 反射部材 700上に照射する。投影光学系 PLからの露光光 ELを照射された反射部 材 700は、露光光 ELを反射することで、その露光光 ELと同一波長の光を発生する。 反射部材 700から発生した露光光 ELと同一波長の反射光は、液浸領域 AR2の液 体 LQに接触する光学素子 2の下面 2Aやノズル部材 70の下面 70Aに照射される。 本実施形態においても、露光光 ELとして、光洗浄効果を有する ArFエキシマレーザ 光が使用されている。なお本実施形態においては、ノズル部材 70の下面 70Aに形 成された回収口 22には多孔部材 (又はメッシュ部材) 22Pが配置されいる。この多孔 部材 22Pは下面 70Aの一部を構成しており、反射部材 700から発生した反射光は、 この多孔部材 22Pにも照射される。このように、光洗浄装置の一部として機能する反 射部材 700を投影光学系 PLの像面側に配置し、光洗浄効果を有する露光光 ELを 反射部材 700を介して光学素子 2の下面 2Aや、多孔部材 22Pを含むノズル部材 70 の下面 70Aに照射することで、これら光学素子 2やノズル部材 70 (多孔部材 22P)を 光洗浄することができる。それにより、光学素子 2の下面 2Aやノズル部材 70の下面 7 OAの親液性を維持する(高める)ことができる。
[0135] なお、投影光学系 PLの像面側に配置する光学部材 700としては、照射された光( 露光光 EL)を反射する反射部材に限られず、照射された光を散乱する散乱面を有 する散乱部材であってもよい。光学部材 700として、散乱部材を用いることによって、 散乱部材に照射された露光光 ELは、散乱して光学素子 2の下面 2Aやノズル部材 7 0の下面 70Aに達するため、光学素子 2の下面 2Aやノズル部材 70の下面 70Aの比 較的広い領域に、光洗浄作用を有する露光光 ELと同一波長の照射光を照射するこ とができる。更には、光学部材 700として、照射された光を回折する回折面を有する 回折部材を用いてもよぐその場合においても、光学素子 2の下面 2Aやノズル部材 7 0の下面 70Aの比較的広い領域に、光洗浄作用を有する露光光 ELと同一波長の照 射光を照射することができる。
[0136] なお、計測ステージ PST2上に配置された光学部材 (反射部材、回折部材、散乱 部材) 700に露光光 ELを照射する場合、計測ステージ PST2を XY方向に移動しな がら、この光学部材 700に露光光 ELを照射するようにしてもよい。あるいは、光学部 材 700を可動にして、光学部材 700からの照射光 (露光光)の方向を変化させてもよ い。こうすることにより、光学素子 2の下面 2Aやノズル部材 70の下面 70Aの比較的 広 、領域に照射光 (露光光)を照射して良好に光洗浄することができる。
[0137] また、ノズル部材 70の下面 70A (多孔部材 22Pを含む)に、光触媒作用を有する材 料 701を被覆しておいてもよい。そのような材料としては酸ィ匕チタンが挙げられる。ノ ズル部材 70の下面 70Aに酸化チタン 701を被覆した状態で、そのノズル部材 70の 下面 70Aに、光洗浄作用を有する露光光 ELと同一波長の光を照射することで、有 機物などの汚染物は光触媒反応によって酸化分解されるので、より効果的に光洗浄 することができる。また、光触媒反応により、ノズル部材 70の下面 70Aの親液性が向 上されるため、ノズル部材 70Aの下に液浸領域 AR2を良好に形成できると ヽぅ効果 ち期待でさる。
[0138] また、図 10に示すように、光洗浄中においては、制御装置 CONTは、液体供給機 構 10及び液体回収機構 20を使って、投影光学系 PLと光学部材 700との間に、基板 Pを液浸露光するときに用いる液体と同じ液体 LQを満たした状態で、投影光学系 PL 及び液体 LQを介して露光光 ELを光学部材 700に照射するようにしてもよい。光学 部材 700から発生した露光光 ELと同一波長の光は、液浸領域 AR2の液体 LQを介 して光学素子 2の下面 2Aやノズル部材 70の下面 70Aに照射される。液体供給機構 10及び液体回収機構 20を使って液体 LQの供給及び回収を行いながら光洗浄する ことで、光洗浄したことによって光学素子 2やノズル部材 70から発生した異物を、液 体 LQとともに回収することができる。
[0139] ところで、基板 Pを液浸露光するときに用いる液体 LQは、液浸領域 AR2における 気泡発生の防止等を目的として、投影光学系 PLの像面側に供給される前に脱気処 理されている。すなわち、液体供給機構 10 (液体供給部 11)は、液体 LQ中の溶存 酸素 (溶存気体)を低減するための脱気装置を備えており、投影光学系 PLの像面側 に供給する前の液体 LQに対して脱気処理を行った後に、その脱気処理した液体 L Qを投影光学系 PLの像面側に供給している。一方で、光洗浄は、光洗浄効果を有 する光を照射することによって汚染物 (有機物)を酸ィ匕分解することができるため、光 洗浄するときにお 、ては、液体 LQ中に所定濃度の酸素が存在 (溶存)して 、ることが 望ましい。したがって、投影光学系 PLと光学部材 700との間に液体 LQを満たした状 態で、光学部材 700に露光光 ELを照射して、光学素子 2やノズル部材 70を光洗浄 するときには、制御装置 CONTは、投影光学系 PLの像面側に供給する液体 LQの 酸素濃度を、基板 Pを露光するときの液体 LQの酸素濃度よりも多くするようにしてもよ い。すなわち、光洗浄するときには、制御装置 CONTは、例えば脱気処理を施さな い液体 LQを投影光学系 PLの像面側に供給する。あるいは、投影光学系 PLと光学 部材 700との間に液体 LQを満たした状態で、光学部材 700に露光光 ELを照射して 、光学素子 2やノズル部材 70を光洗浄するときには、制御装置 CONTは、基板 Pの 露光に用いる液体 (純水)とは別の、例えば過酸化水素水を、投影光学系 PLの像面 側に供給するようにしてもょ 、。
[0140] なお本実施形態にお!、て、光学部材 (反射部材、回折部材、散乱部材) 700の設 置位置としては、計測ステージ PST2に限られず、例えば基板ステージ PST1の上面 のうち、基板 Pが配置される以外の領域に配置してもよい。更には、基板ステージ PS T1及び計測ステージ PST2とは別の、投影光学系 PLの像面側に配置されて 、る部 材で支持するようにしてもよい。また、光学部材 700を、基板ステージ PSTや計測ス テージ PST2に脱着可能とすることもできる。あるいは、基板ステージ PSTの基板ホ ルダに、反射面、回折面、及び散乱面のうち少なくともいずれか 1つを有するダミー 基板を配置し、そのダミー基板に露光光 ELを照射するようにしてもよい。ダミー基板 を用いる場合には、基板搬送系 150を使ってダミー基板を基板ステージ PST (基板 ホルダ PH)に容易に搭載することができる。なお、基板ステージ PSTに光学部材 70 0を配置したり、回折面などを有するダミー基板を基板ステージ PSTに搭載する場合 には、上述したようなツインステージ型の露光装置にも適用できることはいうまでもな い。
[0141] また、光学部材 700からの光洗浄作用を有する光で、液浸領域 AR2の近くに配置 された基板ァライメント系 350の一部やフォーカス'レべリング検出系 60の一部を光 洗浄処理するようにしてもよい。こうすること〖こよって、基板ァライメント系 350の一部 やフォーカス'レべリング検出系 60の一部に不純物や液滴が付着することによって生 じる計測精度の劣化を防止することができる。
[0142] なお、第 7の実施形態においては、ノズル部材 70の下面 70Aを酸ィ匕チタン(二酸 化チタン)などの光触媒作用を有する親液性 (親水性)の材料で被膜して 、るが、ノ ズル部材 70そのものまたはその一部 (液体と接触する部分)を光触媒作用を有する 材料で形成するようにしてもょ ヽ。
[0143] また、光学素子 2の下面 2Aを光触媒作用を有する酸ィ匕チタンなどの材料で被膜し て、光学部材 700からの光により光洗浄を行ってもよい。このようにすることで、光学 素子 2の下面 2Aの汚染をより確実に防止することができる。
[0144] また、上述の第 5の実施形態などで説明した光洗浄装置 80を用いる場合にも、ノズ ル部材 70の下面 70Aや光学素子 2の下面 2Aを酸ィ匕チタンなどの材料で被膜しても よい。
[0145] また、基板ステージ PST1の上面や計測ステージ PST2の上面(光計測部の上面を 含む)の少なくとも一部を、必要に応じて酸化チタンなどの光触媒作用を有する材料 で形成するようにしてもよい。この場合も、第 1〜第 4の実施形態及び第 6の実施形態 のように、光洗浄装置 80を用いることによって、基板ステージ PSTや計測ステージ P ST2の上面の汚染を防止することができる。
[0146] また、ノズル部材 70やステージ (PST1、 PST2)など、液体 LQに接触する部材を チタンや二酸ィ匕亜鉛を含む材料で形成してもよい。チタンや二酸ィ匕亜鉛は、光触媒 作用を有する不動態膜が表面に形成されるため、酸ィ匕チタンコーティングと同様に、 光洗浄処理を行うことによって、その表面の汚染物 (有機物)を除去することができる
[0147] <第 8の実施形態 >
次に、第 8の実施形態について図 11を参照しながら説明する。図 11に示す露光装 置 EXS (露光装置本体 EX)は、ノズル部材 70を振動させる振動機構 800を備えてい る。本実施形態においては、振動機構 800は、超音波振動子によって構成されてお り、ノズル部材 70の所定位置に取り付けられている。図 11に示す例では、超音波振 動子 800は、ノズル部材 70の側面に取り付けられている。超音波振動子としては、ピ ェゾ素子や電磁式の振動子が挙げられる。超音波振動子 800は、多孔部材 22Pを 含むノズル部材 70の 70Aや、側面に付着した汚染物を除去するためのものであって 、ノズル部材 70を振動させることで、付着している汚染物を振るい落とし、このノズル 部材 70を洗浄する。更に、超音波振動子 800を使ってノズル部材 70を振動させるこ とにより、供給口 12近傍や、その供給口 12に接続するノズル部材 70内部に形成さ れた供給流路に付着した汚染物を除去することもできるし、回収口 22近傍や、回収 口 22に配置された多孔部材 22P、その回収口 22に接続するノズル部材 70内部に 形成された回収流路に付着した汚染物を除去することもできる。なお、超音波振動子 800を使った洗浄作業は、基板 Pの交換時やロット間で行うことができる。
[0148] また、超音波振動子 800を使ってノズル部材 70を振動させている状態においては 、制御装置 CONTは、液体供給機構 10及び液体回収機構 20を使って、投影光学 系 PLと基板ステージ PSTの上面 31との間の光路空間に、基板 Pを液浸露光すると きに用いる液体と同じ液体 LQを満たすようにしてもよい。こうすることにより、ノズル部 材 70より除去 (分離)された汚染物を、液体 LQととも〖こ回収することができる。なお、 超音波振動子 800を使ってノズル部材 70を振動させているときに、投影光学系 PLと 基板ステージ PSTの上面 31との間の光路空間に満たす液体としては、基板 Pを液浸 露光するときに用いる液体 (純水)とは別の、例えばアルコールや過酸化水素水を用 いるようにしてもよい。また、超音波振動子 800を使った洗浄作業と、第 5の実施形態 の光洗浄装置 80や第 7の実施形態の光学部材 700を使った洗浄作業とを併用して ちょい。
[0149] なお、上述した第 1〜第 3、第 5〜第 8の実施形態において、第 4の実施形態で説 明したような気体供給系 87及び気体回収系 88を設け、光学素子 2及びノズル部材 7 0のうち、紫外光 Luの照射領域近傍の空間 (雰囲気)を、光洗浄に適した環境に設 定するようにしてちょい。
[0150] また、上述した第 1〜第 4、第 6〜第 8の実施形態において、第 5の実施形態のよう な検出装置 90を設け、その検出装置 90で基板ステージ PSTの上面 31、光計測部 3 00、 400、 500、 600、基板ホノレダ PHなどの?亏染を検出するよう【こしてもよ!ヽ。 ff¾御 装置 CONTは、その検出装置 90の検出結果に基づいて、基板ステージ PSTが汚 染している力否かを判断し、光洗浄装置 80の動作を制御することができる。また、こ の場合、検出装置 90として、基板ァライメント系 350やマスクァライメント系 360を用 いることちでさる。
[0151] また、上述の第 1〜第 8の実施形態における投影光学系 PLは、光学素子 2の下面 2A側の光路空間を液体 LQで満たす構成になっているが、国際公開第 2004Z019 128号パンフレットに開示されているように、光学素子 2のマスク M側の光路空間も液 体で満たす投影光学系を採用することもできる。この場合、照明光学系 ILからの露光 光 ELや、第 5の実施形態や第 7の実施形態で説明した光洗浄装置 80を用いて、投 影光学系 PLの終端の光学部材 (光学素子 2)の上面側、及び終端の光学部材のマ スク M側の光学部材の下面を光洗浄処理するようにしてもょ 、。
[0152] なお、上述した第 1〜第 8の実施形態においては、洗浄作業を基板交換時などに 行うように説明したが、予め定められた所定期間間隔毎に露光装置のメンテナンスを 行う場合においては、そのメンテナンスの項目の一つとして、上記光洗浄効果を有す る照射光を照射して光洗浄する処理を加えてもょ ヽ。
[0153] <第 9の実施形態 >
次に、第 9の実施形態について図 12を参照しながら説明する。本実施形態におい ては、露光装置 EXSの光洗浄処理は、露光装置 EXSとは別に設けられたメンテナン ス機器 900によって行われる。図 12において、メンテナンス機器 900は、露光装置 E XS内で液体 LQに接触する部材に対して、光洗浄効果を有する所定の照射光 Luを 発生する発光部 901を備えている。発光部 901は光源を有しており、その光源として は、上述の実施形態と同様の光源(Xeエキシマレーザ、 KrClエキシマレーザ、 XeC
2
1エキシマレーザなど)を用いることができる。また、本実施形態のメンテナンス機器 90 0は、発光部 901を移動可能に支持する支持機構 902を備えている。支持機構 902 は、露光装置 EX内部と外部との間で発光部 901を移動可能であって、発光部 901 を支持する支持台 903と、支持台 903を移動可能に支持するステージ 904と、ステー ジ 904と台車 905とを連結する連結部材 906とを備えて 、る。ステージ 904はァクチ ユエータ等の駆動機構を有しており、発光部 901を支持した支持台 903は、ステージ 904上で X軸方向及び Y軸方向に移動可能である。なお、ステージ 904は、支持台 9 03を Z軸方向に移動可能であってもよ 、。 [0154] 露光装置 EXSのメインコラム 4の一部には、空調空間 125に対して発光部 901を出 し入れ可能な開口部 120Cが形成されている。メンテナンス機器 900は、開口部 120 Cを介して、露光装置 EXSのうち空調空間 125の内部に対して発光部 901を移動可 能である。
[0155] 本実施形態においては、露光装置 EXSのメンテナンス時に、メンテナンス機器 900 を使った光洗浄処理が行われる。メンテナンス機器 900を使って光洗浄処理を行う 場合には、例えば作業者力 メンテナンス機器 900を露光装置 EXSの開口部 120C 近傍に搬送する。メンテナンス機器 900は台車 905を有しているので、作業者はメン テナンス機器 900を容易に搬送可能である。そして、連結部材 906の先端部に支持 されているステージ 904及びそのステージ 904上の支持台 903力 発光部 901ととも に開口部 120Cを介して空調空間 125の内部に移動される。そして、発光部 901は 投影光学系 PL及びノズル部材 70の下方の位置に配置される。このとき、基板ステー ジ PSTは、投影光学系 PLの下方の位置以外の所定の退避位置に退避している。そ して、メンテナンス機器 900は、ステージ 904を駆動して、支持台 903に支持されて V、る発光部 901を投影光学系 PLの光学素子 2の下面 2Aに対して位置決めする。発 光部 901の発光面は上方を向いており、光学素子 2の下面 2Aと対向する。この状態 で、メンテナンス機器 900は、発光部 901より照射光 Luを射出する。光学素子 2の下 面 2Aは照射光 Luを照射されることにより光洗浄される。また、メンテナンス機器 900 は、ステージ 904を駆動することにより、発光部 901をノズル部材 70の下面 70Aに対 して位置決めすることができ、その状態で発光部 901より照射光 Luを射出することに より、ノズル部材 70の下面 70Aを良好に光洗浄することができる。このように本実施 形態のメンテナンス方法及びメンテナンス機器においても、露光装置内で、洗浄す べき部材を露光装置から取り外すことなぐ露光装置内でかかる部材だけを光洗浄 することが可能であるので、部材を露光装置力 取り外す場合に比べて短時間でメン テナンスを完了することができる。上述のように、液浸領域 AR2を良好に形成するた めには、投影光学系 PLの光学素子 2の下面 2A、及びノズル部材 70の下面 70Aは 親液性 (親水性)であることが好ましぐ照射光 (紫外光) Luを照射することで、光学素 子 2の下面 2A、及びノズル部材 70の下面 70Aに親液性を付与することもできる。 [0156] またメンテナンス機器 900は、ステージ 904を駆動して、発光部 901を移動すること により、基板ァライメント系 350やフォーカス'レべリング検出系 60等の他の部材も良 好に光洗浄することができる。
[0157] またメンテナンス機器 900は、発光部 901の発光面を下方に向けて、基板ステージ PSTの上面 31や、基板ステージ PST上の各光計測部 300、 400、 500、 600を光洗 浄することができる。あるいは、メンテナンス機器 900は、発光部 901の発光面を上方 に向けた状態で照射光 Luを射出し、反射部材を使って発光部 901から射出した照 射光 Luを基板ステージ PSTに導くこともできる。すなわち、メンテナンス機器 900が 反射部材を有する構成とすることで、発光部 901から射出された照射光 Luを所定方 向に導くことができる。
[0158] なお、本実施形態においても、光学素子 2の下面 2Aやノズル部材 70の下面 70A と発光部 901の発光面との間を液体 LQで満たしながら光洗浄処理を行うようにして ちょい。
[0159] <第 10の実施形態 >
次に、第 10の実施形態について図 13を参照しながら説明する。図 13に示すメンテ ナンス機器 900Aは、発光部 901と、発光部 901を支持する支持面 908Aを有する 支持部材 908とを備えている。支持部材 908は、ノズル部材 70と接続可能な接続部 909を備えている。ノズル部材 70の側面には、支持部材 908の接続部 909と接続す る被接続部 70Sが設けられており、接続部 909と被接続部 70Sとが接続することで、 支持部材 908とノズル部材 70とが接続する。そして、ノズル部材 70と支持部材 908と を接続部 909を介して接続することにより、支持部材 908の支持面 908A上の発光 部 901と、投影光学系 PLの光学素子 2の下面 2A及びノズル部材 70の下面 70Aと が対向するようになっている。また、本実施形態においては、発光部 901は、支持面 908A上で X軸方向及び Y軸方向のそれぞれに移動可能に設けられている。
[0160] メンテナンス機器 900Aを使って光洗浄処理を行う場合には、例えば作業者によつ て、発光部 901を支持した支持部材 908とノズル部材 70とが接続される。このとき、 基板ステージ PSTは投影光学系 PLの下方の位置以外の所定の退避位置に退避し ている。そして、光学素子 2の下面 2A及びノズル部材 70の下面 70Aと発光部 901の 発光面とを対向させた状態で、発光部 901から照射光 Luを射出することにより、光学 素子 2の下面 2A及びノズル部材 70Aの下面 70Aは照射光 Luに照射されて光洗浄 される。また、発光部 901は支持面 908Aで移動可能であるため、発光部 901を光学 素子 2の下面 2A及びノズル部材 70Aの下面 70Aのそれぞれに対して所望の位置に 位置決めした状態で照射光 Luを照射することができる。
[0161] なお、本実施形態においても、光学素子 2の下面 2Aやノズル部材 70の下面 70A と発光部 901の発光面との間を液体 LQで満たしながら光洗浄処理を行うようにして ちょい。
[0162] また、上述の第 9及び第 10の実施形態においては、 1つの基板ステージ PSTを備 えた露光装置のメンテナンスについて述べている力 上述のような計測ステージと基 板ステージとを備えた露光装置や、複数の基板ステージを備えた露光装置にも、第 9 及び第 10の実施形態のメンテナンス機器を適用することができる。
[0163] く第 11の実施形態 >
次に、第 11の実施形態について図 14を参照しながら説明する。図 14に示す露光 装置 EXSは、図 9や図 10の実施形態同様、投影光学系 PLの像面側で移動可能な 基板ステージ PST1及び計測ステージ PST2を備えている。また、図 14に示すメンテ ナンス機器 900Bは、発光部 901と、発光部 901を支持する支持部材 912とを備えて いる。支持部材 912は、計測ステージ PST2と接続可能な接続部 913を備えている。 計測ステージ PST2には、支持部材 912の接続部 913と接続する被接続部 914が設 けられており、接続部 913と被接続部 914とが接続することで、支持部材 912と計測 ステージ PST2とが接続する。
[0164] メンテナンス機器 900Bを使って光洗浄処理を行う場合には、例えば作業者によつ て、図 14 (A)に示すように、発光部 901を支持した支持部材 912と計測ステージ PS T2とが接続部 913を介して接続される。そして、図 14 (B)に示すように、計測ステー ジ PST2を移動して、発光部 901を投影光学系 PLの下方の位置に配置し、光学素 子 2の下面 2A及びノズル部材 70の下面 70Aと発光部 901の発光面とを対向させる 。その状態で、発光部 901から照射光 Luを射出することにより、光学素子 2の下面 2 A及びノズル部材 70Aの下面 70Aは照射光 Luに照射されて光洗浄される。また、発 光部 901は計測ステージ PST2の移動に伴って移動可能であるため、発光部 901を 光学素子 2の下面 2A及びノズル部材 70Aの下面 70Aのそれぞれに対して所望の 位置に位置決めした状態で、照射光 Luを照射することができる。
[0165] なお、メンテナンス機器 900Bは、計測ステージ PST2に限らず、基板ステージ PST 1に接続されてもょ ヽ。メンテナンス機器 900Bの支持部材 912に基板ステージ PST 1と接続可能な接続部を設けることで、メンテナンス機器 900Bと基板ステージ PST1 とを接続することがでさる。
[0166] また、本実施形態においても、光学素子 2の下面 2Aやノズル部材 70の下面 70Aと 発光部 901の発光面との間を液体 LQで満たしながら光洗浄処理を行うようにしても よい。
[0167] <第 12の実施形態 >
次に、第 12の実施形態について図 15を参照しながら説明する。図 15に示すメンテ ナンス機器 900Cは、発光部 901と、発光部 901を支持する支持部材 915とを備えて いる。支持部材 915は、基板ステージ PST1及び計測ステージ PST2を移動可能に 支持するステージベース (ベース部材) 57と接続可能な接続部 916を備えている。ス テージベース 57には、支持部材 915の接続部 916と接続する被接続部 917が設け られており、接続部 916と被接続部 917とが接続することで、支持部材 915とステー ジベース 57とが接続する。本実施形態においては、ステージベース 57の上面と、そ のステージベース 57に接続されたメンテナンス機器 900C (発光部 901)の表面とは ほぼ面一となつている。これにより、基板ステージ PST1及び計測ステージ PST2がメ ンテナンス機器 900C (発光部 901)の表面上を移動可能であり、メンテナンス機器 9 00Cをステージベース 57に設けることによるステージベース 57上の基板ステージ PS T1及び計測ステージ PST2の移動範囲を拘束することはない。そして、ステージべ ース 57に接続部 916を介して接続された支持部材 915上の発光部 901から照射光 Luを射出することにより、投影光学系 PLの光学素子 2の下面 2Aやノズル部材 70の 下面 70Aを光洗浄することができる。
[0168] なお、本実施形態においては、メンテナンス機器 900Cは、ベース部材 57に常駐さ せることもできる。また、メンテナンス機器 900C (発光部 901)をベース部材 57に対し て上下動可能に配置しておき、メンテナンス機器 900 (発光部 901)を光学素子 2や ノズル部材 70に近接させて光洗浄処理を行うこともできる。
[0169] なお、上述の第 11及び第 12の実施形態においては、基板ステージ PST1と計測ス テージ PST2とを備えた露光装置のメンテナンス機器にっ 、て述べて 、るが、一つ 又は複数の基板ステージのみを備えた露光装置に、第 11及び第 12の実施形態のメ ンテナンス機器を用いることもできる。
[0170] <第 13の実施形態 >
次に、第 13の実施形態について図 16を参照しながら説明する。図 16には基板ス テージ PSTの一例が示されている。図 16において、基板ステージ PSTは、 Xガイド 部材 920により X軸方向への移動を案内され、 Xリニアモータ 921により X軸方向に移 動する。 Xリニアモータ 921は、基板ステージ PSTに設けられた可動子 921Mと Xガ イド部材 920に設けられた固定子 921Cとによって構成されている。基板ステージ PS Tは、 Xガイド部材 920を囲むように設けられた枠部材 930を有しており、その下面 93 4に、ステージベース 57の上面に対して基板ステージ PSTを非接触支持するための エアベアリング 935が設けられている。エアベアリング 935によって、枠部材 930を含 む基板ステージ PSTがステージベース 57に対して非接触支持され、枠部材 930と X ガイド部材 920との Z軸方向に関するギャップが維持されている。また、枠部材 930の 内側面にはエアベアリング 935が設けられており、このエアベアリング 935によって、 枠部材 930の内側面と Xガイド部材 920との Y軸方向に関するギャップが維持されて いる。
[0171] Xガイド部材 920は、ステージベース 57の X軸方向両側のそれぞれに設けられた 側面視略 L字状の支持部材 923の上端部のガイド部 923Bにより Y軸方向への移動 を案内される。ガイド部 923B (支持部材 923)は、 Xガイド部材 920の両端部のそれ ぞれに対応する位置に設けられており、 Xガイド部材 920の両端部のそれぞれには、 ガイド部 923Bに対応する被ガイド部 924が設けられて 、る。ガイド部 923Bと被ガイ ド部 924との間にはエアベアリングが介在しており、被ガイド部 924はガイド部 923B に対して非接触支持されている。 Xガイド部材 920は、 Yリニアモータ 922により Y軸 方向に移動可能に設けられている。基板ステージ PSTは、 Yリニアモータ 922の駆動 により、 Xガイド部材 920と一緒に Y軸方向へ移動可能である。 Υリニアモータ 922は 、 Xガイド部材 920の長手方向両端部のそれぞれに設けられた可動子 922Μと、この 可動子 922Μに対応するように、支持部材 923の平面部 923Α上にエアベアリング を介して非接触支持されて 、る固定子 922Cとを備えて 、る。 Υリニアモータ 922の 可動子 922Μが固定子 922Cに対して駆動することで、 Xガイド部材 920が基板ステ ージ PSTと一緒に Υ軸方向に移動する。また、 Υリニアモータ 922、 922のそれぞれ の駆動を調整することで Xガイド部材 920は θ Ζ方向にも回転移動可能となっている 。したがって、この Υリニアモータ 922、 922により基板ステージ PSTが Xガイド部材 9 20とほぼ一体的に Υ軸方向及び θ Ζ方向に移動可能となっている。
[0172] 図 16の実施形態において、メンテナンス機器 900Dを構成する発光部 901は、ガイ ド部 923Βに接続された支持部材 919上に支持されている。支持部材 919は、ステー ジベース 57の X軸方向両側に設けられたガイド部 923Βのそれぞれに接続可能な接 続部 918を有している。メンテナンス時においては、基板ステージ PSTは、投影光学 系 PLの下方の位置以外の所定の退避位置に退避する。そして、メンテナンス機器 9 00Dの支持部材 919がガイド部 923Bに支持される。このとき、発光部 901が投影光 学系 PLの下方の位置に配置されるように、支持部材 919がガイド部 923Bに支持さ れる。この状態で、発光部 901が照射光 Luを射出することにより、投影光学系 PLの 光学素子 2の下面 2Aやノズル部材 70の下面 70Aを光洗浄することができる。
[0173] なお、メンテナンス機器 900Dの発光部 901を Xガイド部材 920上に設置し、 Xガイ ド部材 920上に設置された発光部 901と光学素子 2の下面 2A及びノズル部材 70の 下面 70Aとを対向させ、その発光部 901から照射光 Luを射出して、光学素子 2の下 面 2Aやノズル部材 70の下面 70Aに照射するようにしてもょ 、。
[0174] また本実施形態においては、 1つの基板ステージ PSTを備えた露光装置のメンテ ナンスについて述べているが、上述のような計測ステージと基板ステージとを備えた 露光装置や、複数の基板ステージを備えた露光装置にも本実施形態のメンテナンス 機器を適用することができる。
[0175] なお、上述の第 10〜第 13の実施形態おいては、メンテナンス機器を、ノズル部材、 ステージ、ベース部材に接続している力 露光装置 EXSに対してメンテナンス機器を 接続する接続位置 (取り付け位置)としては、例えばメインコラム 4 (図 1など参照)であ つてもよい。
[0176] なお、上述の第 10〜第 13の実施形態のメンテナンス機器においても、発光部 901 から射出した照射光 Luを反射部材で反射し、その反射光を光学素子 2やノズル部材 70、ある 、はステージに照射するようにしてもよ!、。
[0177] また、第 9〜第 13の実施形態においても、第 7の実施形態で述べたように、光洗浄 を行う部材の表面に光触媒作用を有する膜が形成されていることが望ましい。
[0178] なお上述のメンテナンス機器においては、発光部 901に光源が内蔵されたものとし て説明したが、光源を発光部 901とは離れた位置 (例えば露光装置 EXSの外部)に 設け、その光源力も射出された照射光 Luを光ファイバ等で発光部 901まで伝送する ようにしてもよい。なお、上述の各実施形態においては、ステージの基準部材、光計 測部、光学素子 2の下面 2A、ノズル部材 70の下面 70Aなどを光洗浄している力 こ れらのすベてを光洗浄する必要はなぐ必要に応じて、これらの少なくとも一部に光 洗浄を行うようにすればょ ヽ。
[0179] また、上述の実施形態においては、露光装置 EXSに搭載された部材を光洗浄する 場合について説明したが、液体 LQに接触する部材を、露光装置 EXSに組み込む前 や、露光装置 EXSから取り外したときに光洗浄することも効果的である。
[0180] 上述したように、本実施形態における液体 LQは純水を用いた。純水は、半導体製 造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや光学素子( レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がな いとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光学系 PL の先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場 等力 供給される純水の純度が低い場合には、露光装置が超純水製造器を持つよう にしてもよい。
[0181] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4程度と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm) を用いた場合、基板 P上では lZn、すなわち約 134nm程度に短波長化されて高い 解像度が得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍 程度に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できれ ばよい場合には、投影光学系 PLの開口数をより増カロさせることができ、この点でも解 像度が向上する。
[0182] なお、上述したように液浸法を用いた場合には、投影光学系の開口数 NAが 0. 9 〜1. 3になることもある。このように投影光学系の開口数 NAが大きくなる場合には、 従来から露光光として用いられて!/、るランダム偏光光では偏光効果によって結像性 能が悪ィ匕することもあるので、偏光照明を用いるのが望ましい。その場合、マスク (レ チクル)のライン 'アンド'スペースパターンのラインパターンの長手方向に合わせた 直線偏光照明を行い、マスク(レチクル)のパターンからは、 S偏光成分 (TE偏光成 分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射 出されるようにするとよい。投影光学系 PLと基板 P表面に塗布されたレジストとの間が 液体で満たされて ヽる場合、投影光学系 PLと基板 P表面に塗布されたレジストとの 間が空気 (気体)で満たされている場合に比べて、コントラストの向上に寄与する S偏 光成分 (TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光 学系の開口数 NAが 1. 0を越えるような場合でも高い結像性能を得ることができる。 また、位相シフトマスクゃ特開平 6— 188169号公報に開示されているようなラインパ ターンの長手方向に合わせた斜入射照明法 (特にダイポール照明法)等を適宜組み 合わせると更に効果的である。
[0183] また、例えば ArFエキシマレーザを露光光とし、 1Z4程度の縮小倍率の投影光学 系 PLを使って、微細なライン ·アンド'スペースパターン(例えば 25〜50nm程度のラ イン 'アンド'スペース)を基板 P上に露光するような場合、マスク Mの構造 (例えばパ ターンの微細度やクロムの厚み)によっては、 Wave guide効果によりマスク Mが偏 光板として作用し、コントラストを低下させる P偏光成分 (TM偏光成分)の回折光より S偏光成分 (TE偏光成分)の回折光が多くマスク M力 射出されるようになるので、 上述の直線偏光照明を用いることが望ましいが、ランダム偏光光でマスク Mを照明し ても、投影光学系 PLの開口数 NAが 0. 9〜1. 3のように大きい場合でも高い解像性 能を得ることができる。また、マスク M上の極微細なライン 'アンド'スペースパターン を基板 P上に露光するような場合、 Wire Grid効果により P偏光成分 (TM偏光成分 )が S偏光成分 (TE偏光成分)よりも大きくなる可能性もあるが、例えば ArFエキシマ レーザを露光光とし、 1Z4程度の縮小倍率の投影光学系 PLを使って、 25nmより大 きいライン 'アンド'スペースパターンを基板 P上に露光するような場合には、 S偏光成 分 (TE偏光成分)の回折光が P偏光成分 (TM偏光成分)の回折光よりも多くマスク M力 射出されるので、投影光学系 PLの開口数 NAが 0. 9〜1. 3のように大きい場 合でも高 ヽ解像性能を得ることができる。
[0184] 更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S 偏光照明)だけでなぐ特開平 6— 53120号公報に開示されているように、光軸を中 心とした円の接線 (周)方向に直線偏光する偏光照明法と斜入射照明法との組み合 わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラ インパターンだけでなぐ複数の異なる方向に延びるラインパターンが混在する場合 には、同じく特開平 6— 53120号公報に開示されているように、光軸を中心とした円 の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投 影光学系の開口数 NAが大きい場合でも高い結像性能を得ることができる。
[0185] 本実施形態では、投影光学系 PLの先端に光学素子 2が取り付けられており、この レンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の調 整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子としては、 投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露 光光 ELを透過可能な平行平面板であってもよい。この場合、平行平面板のマスク M 側及び基板 P側の両方に液体 LQを配置するようにしてもよい。特に、投影光学系 PL の開口数 NAが 1以上となる場合には、平行平面板のマスク M側にも液体が必要とな る。
[0186] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0187] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。 [0188] また、上述の液浸法を適用した露光装置は、投影光学系 PLの光学素子 2の射出 側の光路空間を液体 (純水)で満たして基板 Pを露光する構成になっているが、国際 公開第 2004Z019128号に開示されているように、投影光学系 PLの光学素子 2の 入射側の光路空間も液体 (純水)で満たすようにしてもよい。この場合、光学素子 2の 入射側の光路空間の液体に接触する部材を、上述したように光洗浄処理するように してもよい。また、光洗浄処理要の照射光 Luを使って光学素子 2の入射側の液体の 殺菌に用いてもよい。
[0189] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよ 、、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や
2
フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分 には、例えばフッ素を含む極性の小さ!ヽ分子構造の物質で薄膜を形成することで親 液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があ つてできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されているフオトレ ジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表 面処理は用いる液体 LQの極性に応じて行われる。また、液体 LQの純水の代わりに 、所望の屈折率を有する種々の流体、例えば、超臨界流体や高屈折率の気体を用 いることも可能である。
[0190] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。
[0191] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ にも適用することができる。上述の実施形態においては投影光学系 PLを備えた 露光装置について例示してきたが、投影光学系 PLを持たない露光装置にも本発明 を適用することができる。国際公開第 2001Z035168号パンフレットに開示されてい るように、干渉縞をウェハ W上に形成することによって、ウェハ W上にライン 'アンド' スペースパターンを形成する露光装置(リソグラフィシステム)にも本発明を適用する ことができる。上述の実施形態においては、光透過性の基板上に所定の遮光パター ン (又は位相パターン '減光パターン)を形成した光透過型マスク(レチクル)を用いた 力 このレチクルに代えて、例えば米国特許第 6, 778, 257号公報に開示されてい るように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パタ ーン、ある 、は発光パターンを形成する電子マスクを用いても良 、。
[0192] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。
[0193] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間を局所的に液体 で満たす露光装置を採用して ヽるが、露光対象の基板の表面全体が液体で覆われ る液浸露光装置にも本発明を適用可能である。露光対象の基板の表面全体が液体 で覆われる液浸露光装置の構造及び露光動作は、例えば特開平 6— 124873号公 報、特開平 10— 303114号公報、米国特許第 5, 825, 043号などに詳細に記載さ れており、本国際出願で指定または選択された国の法令で許容される限りにおいて 、この文献の記載内容を援用して本文の記載の一部とする。
[0194] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを 製造するための露光装置などにも広く適用できる。
[0195] 基板ステージ PSTやマスクステージ MSTにリニアモータを用いる場合は、エアベア リングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮 上型のどちらを用いてもよい。また、各ステージ PST、 MSTは、ガイドに沿って移動 するタイプでもよぐガイドを設けないガイドレスタイプであってもよい。ステージにリニ ァモータを用 \ヽた f列 ίま、米国特許 5, 623, 853及び 5, 528, 118【こ開示されており 、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて 、これらの文献の記載内容を援用して本文の記載の一部とする。
[0196] 各ステージ PST、 MSTの駆動機構としては、二次元に磁石を配置した磁石ュ-ッ トと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージ PST、 MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子 ユニットとのいずれか一方をステージ PST、 MSTに接続し、磁石ユニットと電機子ュ ニットとの他方をステージ PST、 MSTの移動面側に設ければよ!、。
[0197] 基板ステージ PSTの移動により発生する反力は、投影光学系 PLに伝わらないよう に、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方 法は、例えば、米国特許 5, 528, 118 (特開平 8— 166475号公報)に詳細に開示さ れており、本国際出願で指定または選択された国の法令で許容される限りにおいて 、この文献の記載内容を援用して本文の記載の一部とする。
[0198] マスクステージ MSTの移動により発生する反力は、投影光学系 PLに伝わらないよ うに、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。この反力の処理方 法は、例えば、米国特許第 5, 874, 820 (特開平 8— 330224号公報)に詳細に開 示されており、本国際出願で指定または選択された国の法令で許容される限りにお いて、この文献の開示を援用して本文の記載の一部とする。
[0199] 以上のように、本願実施形態の露光装置 EXは、本願の請求の範囲に挙げられた 各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的 精度を保つように、組み立てることで製造される。これら各種精度を確保するために、 この組み立ての前後には、各種光学系については光学的精度を達成するための調 整、各種機械系については機械的精度を達成するための調整、各種電気系につい ては電気的精度を達成するための調整が行われる。各種サブシステム力 露光装置 への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接 続、気圧回路の配管接続等が含まれる。この各種サブシステム力 露光装置への組 み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない 。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ 、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およ びクリーン度等が管理されたクリーンルームで行うことが望ましい。
[0200] 半導体デバイス等のマイクロデバイスは、図 17に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する露光処理ステップ 204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージェ 程などの加工工程を含む) 205、検査ステップ 206等を経て製造される。なお、露光 処理ステップには、前述の光洗浄プロセスや露光した基板の現像プロセスを含む。 産業上の利用可能性
[0201] 本発明によれば、露光装置の劣化を防止することができる。特に、液浸領域を形成 するための液体に接触する部材の汚染に起因する露光装置の性能劣化を防止する ことができる。

Claims

請求の範囲
[1] 液体を介して基板を露光する露光装置であって、
像面側に前記液体の液浸領域を形成する投影光学系と、
前記液浸領域を形成するための液体に接触する部材に、光洗浄効果を有する所 定の照射光を照射する光洗浄装置を備えた露光装置。
[2] 前記像面側で移動可能なステージを備え、前記光洗浄装置は、前記ステージ上面 に前記照射光を照射する請求項 1に記載の露光装置。
[3] 前記ステージは、前記基板を保持する基板ホルダを有し、前記光洗浄装置は、前 記基板ホルダに前記照射光を照射する請求項 2に記載の露光装置。
[4] 前記ステージは前記基板を保持可能であって、前記光洗浄装置は、前記ステージ 上に前記基板が無い状態で、前記照射光を照射する請求項 2に記載の露光装置。
[5] 前記光洗浄装置は、前記ステージ上に設けられた光計測部に前記照射光を照射 する請求項 2に記載の露光装置。
[6] 前記光洗浄装置は、前記投影光学系を構成する複数の光学素子のうち最も像面 に近い光学素子に前記照射光を照射する請求項 1に記載の露光装置。
[7] 前記投影光学系の像面近傍に配置され、前記液体を供給する供給口及び前記液 体を収する回収口のうち少なくともいずれか一方を有するノズル部材を有し、前記光 洗浄装置は、前記ノズル部材に前記照射光を照射する請求項 1に記載の露光装置
[8] 前記部材のうち前記照射光が照射される照射領域近傍に対して気体を供給する気 体供給系と、前記気体を回収する気体回収系とを備えた請求項 1に記載の露光装置
[9] 前記照射光の光路を含む空間の気体成分を検出する検出器を備え、前記気体供 給系は、前記検出器の検出結果に基づいて、供給する気体成分を調整する請求項 8に記載の露光装置。
[10] 前記投影光学系の少なくとも一部を収容し、空調系によって空調される空調空間を 有し、前記光洗浄装置は、前記投影光学系に対して前記空調系によって形成される 気体の流れの下流側に設けられて!/、る請求項 1に記載の露光装置。
[11] 前記光洗浄装置は、前記空調空間の外側に配置され、前記照射光を射出する光 源と、前記光源から射出された前記照射光を前記空調空間内部に配置された部材 に導く光学系とを備えた請求項 10に記載の露光装置。
[12] 前記部材の汚染を検出する検出装置と、前記検出装置の検出結果に基づいて、 前記光洗浄装置の動作を制御する制御装置とを備えた請求項 1に記載の露光装置
[13] 前記光洗浄装置は、前記部材に付着した有機物を除去する請求項 1に記載の露 光装置。
[14] 前記光洗浄装置は、前記部材上の液体が乾燥した後に、その付着跡が前記部材 上に形成されな!、ように、前記所定の照射光を照射する請求項 1に記載の露光装置
[15] 前記光洗浄装置は、前記部材に照射光を照射することによって、前記部材の液体 接触面の親液性を高める請求項 1に記載の露光装置。
[16] 前記液体は純水であって、前記光洗浄装置は、前記部材上にウォーターマークが 形成されな!、ように、前記所定の照射光を照射する請求項 1に記載の露光装置。
[17] 前記照射光として、前記基板を露光するための露光光を用いる請求項 1に記載の 露光装置。
[18] 前記光洗浄装置は、前記投影光学系の像面側に配置され、前記投影光学系から の露光光の照射によって前記露光光と同一波長の光を、前記照射光として発生する 光学部材を含む請求項 17に記載の露光装置。
[19] 前記光学部材は反射部材を含み、前記照射光は、前記露光光の照射によって前 記反射部材から発生する反射光を含む請求項 18に記載の露光装置。
[20] 前記光学部材は回折部材を含み、前記照射光は、前記露光光の照射によって前 記回折部材から発生する回折光を含む請求項 18に記載の露光装置。
[21] 前記光学部材は散乱部材を含み、前記照射光は、前記露光光の照射によって前 記散乱部材から発生する散乱光を含む請求項 18に記載の露光装置。
[22] 前記光学部材は、前記投影光学系の像面側で移動可能な可動部材に配置されて いる請求項 18に記載の露光装置。
[23] 前記液体に接触する部材は、光触媒作用を有する材料で被覆されている請求項 1 に記載の露光装置。
[24] 前記材料は、酸化チタンを含む請求項 23に記載の露光装置。
[25] 前記液体に接触する部材の少なくとも一部が、光触媒作用をもたらす材料力も形 成されて!/、る請求項 1に記載の露光装置。
[26] 前記光触媒作用をもたらす材料はチタンを含む請求項 25に記載の露光装置。
[27] 前記光洗浄装置は、前記投影光学系と前記光学部材との間に液体を満たした状 態で、前記液体に接触する部材に、前記照射光を照射する請求項 1に記載の露光 装置。
[28] 前記投影光学系と前記光学部材との間の液体は酸素を含む請求項 27に記載の露 光装置。
[29] 前記投影光学系と前記光学部材との間の液体は前記基板の露光に用いられる液 体である請求項 27に記載の露光装置。
[30] 液体を介して基板を露光する露光装置であって、
像面側の光路空間が液体で満たされる投影光学系と、
前記光路空間を液体で満たすためのノズル部材と、
前記ノズル部材に付着した汚染物を除去するために、前記ノズル部材の少なくとも 一部を振動させる振動機構とを備えた露光装置。
[31] 前記振動機構は、前記光路空間を液体で満たした状態で前記ノズル部材の少なく とも一部を振動させる請求項 30に記載の露光装置。
[32] 前記振動機構によって前記ノズル部材を振動させるときに、前記光路空間に供給さ れた液体は、前記基板の露光に用いられる液体である請求項 31に記載の露光装置
[33] 前記振動機構は、超音波振動子を含む請求項 30に記載の露光装置。
[34] 請求項 1または 30に記載の露光装置を用いるデバイス製造方法。
[35] 前記液体に接触する部材の少なくとも一部が、光触媒作用をもたらす材料力も形 成されている請求項 18に記載の露光装置。
[36] 前記光洗浄装置は、前記投影光学系と前記光学部材との間に液体を満たした状 態で、前記液体に接触する部材に、前記照射光を照射する請求項 18に記載の露光 装置。
[37] 前記光洗浄装置は、前記部材に照射光を照射することによって、前記部材の液体 接触面の親液性を高める請求項 36に記載の露光装置。
[38] 露光装置のメンテナンス方法であって、
前記露光装置が露光光の光路空間を液体で満たして、前記液体を介して基板に 露光光を照射して前記基板を露光する液浸露光装置であり、
前記露光装置内で前記液体に接触する部材に、光洗浄効果を有する所定の照射 光を照射することを含むメンテナンス方法。
[39] 前記液体に接触する部材は、前記液体を供給する供給口及び前記液体を回収す る回収口のうち少なくとも一方を有するノズル部材を含む請求項 38に記載のメンテナ ンス方法。
[40] 前記液体に接触する部材は、光触媒作用を有する膜が表面に形成されている請 求項 38に記載のメンテナンス方法。
[41] 前記液体に接触する部材はチタンを含む請求項 40に記載のメンテナンス方法。
[42] 前記液体に接触する部材に照射光を照射することによって、前記液体に接触する 部材に付着した有機物を除去する請求項 38に記載のメンテナンス方法。
[43] 前記液体に接触する部材に照射光を照射することによって、前記液体に接触する 部材の液体接触面の親液性を高める請求項 38に記載のメンテナンス方法。
[44] 前記液体に接触する部材は、前記液体を供給する供給口及び前記液体を回収す る回収口のうち少なくとも一方を有するノズル部材を含む請求項 43記載のメンテナン ス方法。
[45] 前記露光装置は、前記液体と光学部材とを介して前記基板に露光光を照射する露 光装置であって、
前記液体と接触する部材は、前記光学部材を含む請求項 44記載のメンテナンス方 法。
[46] 前記液体と接触する部材を液体と接触させた状態で、前記液体と接触する部材に 前記照射光を照射する請求項 38記載のメンテナンス方法。
[47] 前記露光装置内に所定の光学素子を持ち込み、
前記光学素子に前記露光光を照射し、前記光学素子からの光を、前記光洗浄効 果を有する照射光として、前記液体と接触する部材に照射する請求項 38記載のメン テナンス方法。
[48] 前記露光装置は投影光学系を備え、前記投影光学系の像面側の光路空間を液体 で満たして、前記投影光学系と前記液体とを介して前記基板に露光光を照射して前 記基板を露光する請求項 38〜43のいずれか一項記載のメンテナンス方法。
[49] 基板を露光する露光装置のメンテナンス機器であって、
前記露光装置が、露光光の光路空間を液体で満たして前記液体を介して基板に 露光光を照射して前記基板を露光する液浸露光装置であり、
前記露光装置内で前記液体に接触する部材に、光洗浄効果を有する所定の照射 光を発生する発光部を備えたメンテナンス機器。
[50] 前記露光装置内の物体と接続可能な接続部を備えた請求項 49に記載のメンテナ ンス機器。
[51] さらに投影光学系を備え、前記接続部は、前記露光装置のうち、前記投影光学系 の像面側で移動可能なステージと接続可能である請求項 50に記載のメンテナンス 機器。
[52] さらに投影光学系を備え、前記接続部は、前記露光装置のうち、前記投影光学系 の像面側で移動可能なステージを支持するベース部材と接続可能である請求項 50 に記載のメンテナンス機器。
[53] 前記接続部は、前記露光装置のうち、前記光路空間を満たすための液体を供給す る供給口及び液体を回収する回収口のうち少なくともいずれか一方を有するノズル 部材と接続可能である請求項 50に記載のメンテナンス機器。
[54] 前記発光部を移動可能に支持する支持機構を有する請求項 49に記載のメンテナ ンス機器。
[55] 前記支持機構は、露光装置内部と外部との間で発光部を移動する請求項 54に記 載のメンテナンス機器。
[56] 前記液体に接触する部材は、前記液体を供給する供給口及び前記液体を回収す る回収口のうち少なくとも一方を有するノズル部材を含む請求項 49に記載のメンテナ ンス機器。
[57] 前記液体に接触する部材は、光触媒作用を有する膜が表面に形成されている請 求項 49に記載のメンテナンス機器。
[58] 前記液体に接触する部材はチタンを含む請求項 57に記載のメンテナンス機器。
[59] 前記液体に接触する部材に照射光を照射することによって、前記液体に接触する 部材に付着した有機物を除去する請求項 49に記載のメンテナンス機器。
[60] 前記液体に接触する部材に照射光を照射することによって、前記液体に接触する 部材の液体接触面の親液性を高める請求項 49に記載のメンテナンス機器。
[61] 前記露光光を前記発光部に照射することによって、前記発光部から発生する光を 前記光洗浄効果を有する照射光として前記液体と接触する部材に照射する請求項 4
9に記載のメンテナス機器。
[62] 前記発光部は光学面を含み、
前記露光光を前記光学面に照射することによって、前記光学面から発生する光を前 記光洗浄効果を有する照射光として前記液体と接触する部材に照射する請求項 61 に記載のメンテナス機器。
[63] 前記露光装置は、前記基板を保持する基板ステージを有し、
前記光学面が、前記基板ステージに搭載される請求項 62に記載のメンテナンス機
[64] 前記露光装置は、投影光学系を備え、前記投影光学系と前記液体とを介して前記 基板に露光光を照射して前記基板を露光する請求項 49、 50、 53〜63のいずれか 一項記載のメンテナンス機器。
[65] 基板を露光するための露光装置を構成する部材の洗浄方法であって、
前記露光装置が少なくとも基板上に形成される液浸領域の液体を介して基板を露 光する液浸露光装置であり、
前記部材が前記液浸領域を形成する液体に接触する部材であり、
前記洗浄方法が、前記部材に所定の光を照射することを含む露光装置を構成する 部材の洗浄方法。
[66] 露光装置から該部材を取り外すことなぐ前記所定の光として紫外光を前記部材に 照射する請求項 65に記載の洗浄方法。
[67] 前記露光装置が複数の光学素子を備える投影光学系を有し、前記部材が投影光 学系の像面側の端部の光学素子である請求項 65に記載の洗浄方法。
[68] 前記所定の光を、光学素子により前記部材に照射する請求項 65に記載の洗浄方 法。
[69] さらに、前記部材の汚染状態をチェックすることを含み、前記汚染状態に基づ 、て 前記所定の光の照射を制御する請求項 65に記載の洗浄方法。
[70] 前記制御は、前記所定の光を前記部材に照射するか否かも含む請求項 69記載の 洗浄方法。
[71] 前記露光装置が液体を供給及び Z又は回収するためのノズル部材を有し、前記所 定の光が照射される部材が該ノズル部材である請求項 65に記載の洗浄方法。
[72] 前記露光装置にお!、て、前記ノズル部材は、前記基板と対向するように配置され、 前記ノズル部材と前記基板との間に前記液体を保持可能である請求項 71記載の 洗浄方法。
[73] 前記ノズル部材の液体と接する面は、親水性である請求項 71に記載の洗浄方法。
[74] 前記ノズル部材の液体と接する面が、光触媒作用をもたらす材料から形成されて 、 る請求項 71に記載の洗浄方法。
[75] 前記露光装置が光学部材を備え、前記所定の光が露光光であり、該露光光を光学 部材によりノズル部材に向けて照射する請求項 71に記載の洗浄方法。
[76] 前記ノズル部材と前記光学部材との間に前記液体を存在させつつ、露光光を液体 を介して前記光学部材に照射する請求項 75に記載の洗浄方法。
[77] さらに、前記液体中の酸素濃度を調整する請求項 76に記載の洗浄方法。
[78] 酸化促進雰囲気下で、前記所定の光を部材に照射する請求項 65に記載の洗浄方 法。
[79] 基板を露光する露光方法であって、
請求項 65に記載の洗浄方法により前記部材を光洗浄すること、
前記基板を液体を介して露光することを含む露光方法。
[80] 前記基板を液体を介して露光する前または露光した後に、前記部材を光洗浄する 請求項 79に記載の露光方法。
[81] さらに、前記液体を供給及び回収することを含み、液体の供給及び回収を行 ヽな がら前記部材を光洗浄する請求項 79に記載の露光方法。
[82] 請求項 79に記載の露光方法により基板を露光することと、
露光した基板を現像することと、
現像した基板を加工することを含むデバイスの製造方法。
PCT/JP2005/011305 2004-06-21 2005-06-21 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法 WO2005124833A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP05753447A EP1783822A4 (en) 2004-06-21 2005-06-21 EXPOSURE DEVICE, EXPOSURE DEVICE ELEMENT CLEANING METHOD, EXPOSURE DEVICE MAINTENANCE METHOD, MAINTENANCE DEVICE, AND DEVICE MANUFACTURING METHOD
KR1020117031057A KR101245070B1 (ko) 2004-06-21 2005-06-21 노광 장치 및 그 부재의 세정 방법, 노광 장치의 메인터넌스 방법, 메인터넌스 기기, 그리고 디바이스 제조 방법
KR1020067026825A KR101228244B1 (ko) 2004-06-21 2005-06-21 노광 장치 및 그 부재의 세정 방법, 노광 장치의메인터넌스 방법, 메인터넌스 기기, 그리고 디바이스 제조방법
KR1020127028839A KR101342303B1 (ko) 2004-06-21 2005-06-21 노광 장치 및 그 부재의 세정 방법, 노광 장치의 메인터넌스 방법, 메인터넌스 기기, 그리고 디바이스 제조 방법
EP18184420.0A EP3462241A1 (en) 2004-06-21 2005-06-21 Exposure apparatus, exposure method and method for producing a device
US11/630,110 US20090225286A1 (en) 2004-06-21 2005-06-21 Exposure apparatus, method for cleaning member thereof , maintenance method for exposure apparatus, maintenance device, and method for producing device
EP17175178.7A EP3255652B1 (en) 2004-06-21 2005-06-21 Exposure apparatus, exposure method and device manufacturing method
US11/822,964 US8698998B2 (en) 2004-06-21 2007-07-11 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US12/155,742 US20080252865A1 (en) 2004-06-21 2008-06-09 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US12/453,269 US8810767B2 (en) 2004-06-21 2009-05-05 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US12/656,456 US20100134772A1 (en) 2004-06-21 2010-01-29 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004182343 2004-06-21
JP2004-182343 2004-06-21
JP2004-237343 2004-08-17
JP2004237343 2004-08-17
JP2004-327787 2004-11-11
JP2004327787 2004-11-11

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/630,110 A-371-Of-International US20090225286A1 (en) 2004-06-21 2005-06-21 Exposure apparatus, method for cleaning member thereof , maintenance method for exposure apparatus, maintenance device, and method for producing device
US11/822,964 Division US8698998B2 (en) 2004-06-21 2007-07-11 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US12/155,742 Division US20080252865A1 (en) 2004-06-21 2008-06-09 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US12/656,456 Division US20100134772A1 (en) 2004-06-21 2010-01-29 Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device

Publications (1)

Publication Number Publication Date
WO2005124833A1 true WO2005124833A1 (ja) 2005-12-29

Family

ID=35509987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011305 WO2005124833A1 (ja) 2004-06-21 2005-06-21 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法

Country Status (6)

Country Link
US (3) US20090225286A1 (ja)
EP (5) EP3190605B1 (ja)
JP (3) JP5353856B2 (ja)
KR (3) KR101245070B1 (ja)
HK (1) HK1243226B (ja)
WO (1) WO2005124833A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062065A1 (ja) * 2004-12-06 2006-06-15 Nikon Corporation メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
WO2006118108A1 (ja) * 2005-04-27 2006-11-09 Nikon Corporation 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
WO2007135990A1 (ja) * 2006-05-18 2007-11-29 Nikon Corporation 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法
WO2007136089A1 (ja) * 2006-05-23 2007-11-29 Nikon Corporation メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
JP2007318129A (ja) * 2006-05-22 2007-12-06 Asml Netherlands Bv リソグラフィ装置およびリソグラフィ装置洗浄方法
JP2008047847A (ja) * 2005-04-27 2008-02-28 Nikon Corp 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
EP1901338A1 (en) * 2005-06-30 2008-03-19 Nikon Corporation Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
JP2010067967A (ja) * 2008-09-10 2010-03-25 Asml Netherlands Bv リソグラフィ装置、リソグラフィ装置用の物品を製造する方法及びデバイス製造方法
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8189168B2 (en) 2007-05-28 2012-05-29 Nikon Corporation Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method
US8542341B2 (en) 2005-01-12 2013-09-24 Asml Netherlands B.V. Exposure apparatus
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US8823918B2 (en) * 2008-04-24 2014-09-02 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
JP2014160263A (ja) * 2008-10-15 2014-09-04 Nikon Corp 露光装置及びその組立て方法、並びにデバイス製造方法
US9019466B2 (en) * 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124833A1 (ja) * 2004-06-21 2005-12-29 Nikon Corporation 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
KR101337007B1 (ko) 2004-08-03 2013-12-06 가부시키가이샤 니콘 노광 장치, 노광 방법 및 디바이스 제조 방법
KR20070100865A (ko) * 2004-12-06 2007-10-12 가부시키가이샤 니콘 기판 처리 방법, 노광 방법, 노광 장치 및 디바이스 제조방법
JP5239337B2 (ja) 2005-04-28 2013-07-17 株式会社ニコン 露光方法及び露光装置、並びにデバイス製造方法
US7861537B2 (en) * 2005-06-08 2011-01-04 Jeffery Givens Device and method of providing portable electrical, hydraulic and air pressure utilities for on-site tool applications
KR20080031376A (ko) * 2005-07-11 2008-04-08 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
JP2007173695A (ja) * 2005-12-26 2007-07-05 Sokudo:Kk 基板処理方法、基板処理システムおよび基板処理装置
WO2008089990A2 (en) * 2007-01-26 2008-07-31 Carl Zeiss Smt Ag Method for operating an immersion lithography apparatus
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8654305B2 (en) * 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
NL1036571A1 (nl) * 2008-03-07 2009-09-08 Asml Netherlands Bv Lithographic Apparatus and Methods.
JP2010147471A (ja) 2008-12-18 2010-07-01 Asml Netherlands Bv リソグラフィ装置及び少なくとも2つのターゲット部分を照射する方法
KR20170113709A (ko) * 2009-11-09 2017-10-12 가부시키가이샤 니콘 노광 장치, 노광 방법, 노광 장치의 메인터넌스 방법, 노광 장치의 조정 방법, 및 디바이스 제조 방법
NL2005610A (en) 2009-12-02 2011-06-06 Asml Netherlands Bv Lithographic apparatus and surface cleaning method.
US20120113513A1 (en) * 2010-10-22 2012-05-10 The Regents Of The University Of Colorado, A Body Corporate Self-cleaning of optical surfaces in low-pressure reactive gas environments in advanced optical systems
TW201229673A (en) * 2011-01-03 2012-07-16 Inotera Memories Inc Immersion exposure apparatus and method of utilizing thereof
CN102179029B (zh) * 2011-03-21 2012-08-08 北京交通大学 光催化降解抗生素及其它新兴污染物的实验装置
CN103987664B (zh) 2011-12-06 2017-03-08 德尔塔阀门公司 龙头中的臭氧分配
WO2014054689A1 (ja) * 2012-10-02 2014-04-10 株式会社ニコン 移動体装置、露光装置、及びデバイス製造方法
KR102071873B1 (ko) * 2012-12-27 2020-02-03 삼성디스플레이 주식회사 용매 제거장치 및 이를 포함하는 포토리소그래피 장치
KR101433509B1 (ko) * 2013-02-07 2014-08-22 (주)오로스 테크놀로지 다크 필드 조명 장치
JP5783472B2 (ja) * 2013-06-10 2015-09-24 ウシオ電機株式会社 アッシング装置
JP6278833B2 (ja) * 2014-05-21 2018-02-14 キヤノン株式会社 リソグラフィ装置、および物品の製造方法
US10549001B2 (en) * 2015-07-08 2020-02-04 Clean Light Laboratories Llc System and device for sanitizing personal use items
CN108463437B (zh) 2015-12-21 2022-07-08 德尔塔阀门公司 包括消毒装置的流体输送系统
CN110622290B (zh) 2017-02-06 2023-11-07 平面半导体公司 亚纳米级基板清洁机构
JP6786730B2 (ja) * 2017-02-06 2020-11-18 プレイナー・セミコンダクター・インコーポレイテッド サブナノメートルレベルの光ベースの基板洗浄機構
TWI770115B (zh) 2017-02-06 2022-07-11 新加坡商平面半導體公司 加工汙水之去除
KR102111722B1 (ko) * 2017-03-17 2020-05-15 어플라이드 머티어리얼스, 인코포레이티드 기판의 진공 프로세싱을 위한 장치, 기판의 진공 프로세싱을 위한 시스템, 및 진공 챔버 내에서의 기판 캐리어 및 마스크 캐리어의 이송을 위한 방법
DE102017213121A1 (de) * 2017-07-31 2019-01-31 Carl Zeiss Smt Gmbh Optisches System für die Mikrolithographie
JP7200510B2 (ja) * 2018-06-12 2023-01-10 ウシオ電機株式会社 配向方法及び光配向装置
CN112189157B (zh) 2018-06-12 2022-07-19 优志旺电机株式会社 真空紫外光偏振元件、真空紫外光偏振装置、真空紫外光偏振方法及取向方法
JP7252322B2 (ja) * 2018-09-24 2023-04-04 エーエスエムエル ネザーランズ ビー.ブイ. プロセスツール及び検査方法
CN114503034A (zh) * 2019-10-01 2022-05-13 Asml荷兰有限公司 清洁装置、光刻设备、去除水或其它污染物的方法、和器件制造方法
KR102316238B1 (ko) * 2020-02-26 2021-10-22 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10303114A (ja) 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000058436A (ja) * 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
US6307620B1 (en) 1999-04-27 2001-10-23 Canon Kabushiki Kaisha Substrate holding apparatus, substrate transfer system, exposure apparatus, coating apparatus, method for making a device, and method for cleaning a substrate holding section
US20030011763A1 (en) 1997-11-21 2003-01-16 Nikon Corporation Projection exposure apparatus and method
EP1329773A2 (en) 2002-01-18 2003-07-23 ASML Netherlands B.V. Lithographic apparatus, apparatus cleaning method, and device manufacturing method
WO2004019128A2 (en) * 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
EP1420299A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
WO2004051717A1 (ja) * 2002-12-03 2004-06-17 Nikon Corporation 照明光学装置、露光装置および露光方法
JP2005072404A (ja) * 2003-08-27 2005-03-17 Sony Corp 露光装置および半導体装置の製造方法
JP2005079222A (ja) * 2003-08-29 2005-03-24 Nikon Corp 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57117238A (en) 1981-01-14 1982-07-21 Nippon Kogaku Kk <Nikon> Exposing and baking device for manufacturing integrated circuit with illuminometer
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
DD221563A1 (de) * 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
JPS6197918A (ja) * 1984-10-19 1986-05-16 Hitachi Ltd X線露光装置
JPH0782981B2 (ja) 1986-02-07 1995-09-06 株式会社ニコン 投影露光方法及び装置
JP2897355B2 (ja) 1990-07-05 1999-05-31 株式会社ニコン アライメント方法,露光装置,並びに位置検出方法及び装置
JP3246615B2 (ja) 1992-07-27 2002-01-15 株式会社ニコン 照明光学装置、露光装置、及び露光方法
JPH06188169A (ja) 1992-08-24 1994-07-08 Canon Inc 結像方法及び該方法を用いる露光装置及び該方法を用いるデバイス製造方法
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP3412704B2 (ja) 1993-02-26 2003-06-03 株式会社ニコン 投影露光方法及び装置、並びに露光装置
US5874820A (en) 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5528118A (en) 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
JP3555230B2 (ja) 1994-05-18 2004-08-18 株式会社ニコン 投影露光装置
US5623853A (en) 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08313705A (ja) * 1995-05-22 1996-11-29 Seiko Epson Corp 防曇性物品及びその製造方法
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
US6268904B1 (en) * 1997-04-23 2001-07-31 Nikon Corporation Optical exposure apparatus and photo-cleaning method
JPH1116816A (ja) 1997-06-25 1999-01-22 Nikon Corp 投影露光装置、該装置を用いた露光方法、及び該装置を用いた回路デバイスの製造方法
JPH1152102A (ja) * 1997-08-05 1999-02-26 Nikon Corp エキシマレーザー用光学部材、その仮保護方法及び投影露光装置
JP3445120B2 (ja) * 1997-09-30 2003-09-08 キヤノン株式会社 露光装置及びデバイスの製造方法
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
JPH11283903A (ja) * 1998-03-30 1999-10-15 Nikon Corp 投影光学系検査装置及び同装置を備えた投影露光装置
WO1999031462A1 (fr) * 1997-12-18 1999-06-24 Nikon Corporation Platine et appareil d'exposition
JP2000079367A (ja) * 1998-09-07 2000-03-21 Dainippon Screen Mfg Co Ltd 処理液供給用ノズルおよび該ノズルを備えた基板処理装置、ならびに該ノズルを用いた塗布方法
JP2001087696A (ja) * 1999-09-22 2001-04-03 Promos Technologies Inc フォトレジスト現像用のノズル座
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP2001170495A (ja) * 1999-12-16 2001-06-26 Daido Steel Co Ltd 光触媒活性を有するチタンまたはチタン基合金の製造方法
JP2001210582A (ja) 2000-01-28 2001-08-03 Nikon Corp 投影露光装置とその光洗浄方法、およびマイクロデバイス並びにマイクロデバイスの製造方法
DE10011130A1 (de) 2000-03-10 2001-09-13 Mannesmann Vdo Ag Entlüftungseinrichtung für einen Kraftstoffbehälter
JP2002014005A (ja) 2000-04-25 2002-01-18 Nikon Corp 空間像計測方法、結像特性計測方法、空間像計測装置及び露光装置
TW529172B (en) 2001-07-24 2003-04-21 Asml Netherlands Bv Imaging apparatus
JP2003124089A (ja) * 2001-10-09 2003-04-25 Nikon Corp 荷電粒子線露光装置及び露光方法
EP1313337A1 (de) * 2001-11-15 2003-05-21 Siemens Aktiengesellschaft Verfahren zur Übertragung von Informationen in einem zellularen Funkkommunikationssystem mit Funksektoren
EP1333323A3 (en) * 2002-02-01 2004-10-06 Nikon Corporation Self-cleaning reflective optical elements for use in x-ray optical systems, and optical systems and microlithography systems comprising same
US6778254B2 (en) * 2002-02-18 2004-08-17 Ando Electric Co., Ltd. Motion picture code evaluator and related systems
JP3806670B2 (ja) 2002-06-12 2006-08-09 住友金属建材株式会社 土留め用かご枠の連結部材
US20040021061A1 (en) * 2002-07-30 2004-02-05 Frederik Bijkerk Photodiode, charged-coupled device and method for the production
JP2004114619A (ja) * 2002-09-27 2004-04-15 Sony Corp インクジェット記録装置
CN101470360B (zh) * 2002-11-12 2013-07-24 Asml荷兰有限公司 光刻装置和器件制造方法
JP3953460B2 (ja) * 2002-11-12 2007-08-08 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ投影装置
DE60335595D1 (de) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
AU2003284672A1 (en) * 2002-12-03 2004-06-23 Nikon Corporation Contaminant removing method and device, and exposure method and apparatus
ATE424026T1 (de) * 2002-12-13 2009-03-15 Koninkl Philips Electronics Nv Flüssigkeitsentfernung in einem verfahren und einer einrichtung zum bestrahlen von flecken auf einer schicht
US7798159B2 (en) * 2002-12-19 2010-09-21 Valerie Palfy At-home integrated cleaning and disinfection system and method for dental hardware
DE602004024295D1 (de) * 2003-04-11 2010-01-07 Nippon Kogaku Kk Reinigungsverfahren für optik in immersionslithographie
TWI612556B (zh) * 2003-05-23 2018-01-21 Nikon Corp 曝光裝置、曝光方法及元件製造方法
US7317504B2 (en) * 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261742A3 (en) * 2003-06-11 2011-05-25 ASML Netherlands BV Lithographic apparatus and device manufacturing method.
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP2006528835A (ja) * 2003-07-24 2006-12-21 カール・ツアイス・エスエムテイ・アーゲー マイクロリソグラフィ投影露光装置および浸漬液体を浸漬空間へ導入する方法
JP2005083800A (ja) * 2003-09-05 2005-03-31 Hitachi Ltd 欠陥検査方法及び欠陥検査装置
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
JP2005236047A (ja) * 2004-02-19 2005-09-02 Canon Inc 露光装置及び方法
US20050205108A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
CN105911821B (zh) * 2004-06-09 2019-03-15 株式会社尼康 曝光装置
JP4677833B2 (ja) * 2004-06-21 2011-04-27 株式会社ニコン 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
WO2005124833A1 (ja) * 2004-06-21 2005-12-29 Nikon Corporation 露光装置及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
JP4444743B2 (ja) * 2004-07-07 2010-03-31 キヤノン株式会社 露光装置及びデバイス製造方法
JP2006032750A (ja) * 2004-07-20 2006-02-02 Canon Inc 液浸型投影露光装置、及びデバイス製造方法
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
JP4772306B2 (ja) * 2004-09-06 2011-09-14 株式会社東芝 液浸光学装置及び洗浄方法
EP1806771A4 (en) * 2004-10-08 2008-06-18 Nikon Corp EXPOSURE DEVICE AND DEVICE MANUFACTURING METHOD
US7362412B2 (en) * 2004-11-18 2008-04-22 International Business Machines Corporation Method and apparatus for cleaning a semiconductor substrate in an immersion lithography system
US7732123B2 (en) * 2004-11-23 2010-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion photolithography with megasonic rinse
KR101339887B1 (ko) * 2004-12-06 2013-12-10 가부시키가이샤 니콘 메인터넌스 방법, 메인터넌스 기기, 노광 장치, 및디바이스 제조 방법
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) * 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8125610B2 (en) * 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US9019466B2 (en) * 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
US5825043A (en) 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JPH10303114A (ja) 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
US20030011763A1 (en) 1997-11-21 2003-01-16 Nikon Corporation Projection exposure apparatus and method
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000058436A (ja) * 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
US6307620B1 (en) 1999-04-27 2001-10-23 Canon Kabushiki Kaisha Substrate holding apparatus, substrate transfer system, exposure apparatus, coating apparatus, method for making a device, and method for cleaning a substrate holding section
EP1329773A2 (en) 2002-01-18 2003-07-23 ASML Netherlands B.V. Lithographic apparatus, apparatus cleaning method, and device manufacturing method
WO2004019128A2 (en) * 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
EP1420299A2 (en) 2002-11-12 2004-05-19 ASML Netherlands B.V. Immersion lithographic apparatus and device manufacturing method
WO2004051717A1 (ja) * 2002-12-03 2004-06-17 Nikon Corporation 照明光学装置、露光装置および露光方法
JP2005072404A (ja) * 2003-08-27 2005-03-17 Sony Corp 露光装置および半導体装置の製造方法
JP2005079222A (ja) * 2003-08-29 2005-03-24 Nikon Corp 光学部品の洗浄機構を搭載した液浸投影露光装置及び液浸光学部品洗浄方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1783822A4

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
WO2006062065A1 (ja) * 2004-12-06 2006-06-15 Nikon Corporation メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
JP4784513B2 (ja) * 2004-12-06 2011-10-05 株式会社ニコン メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
US8891055B2 (en) 2004-12-06 2014-11-18 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US8456608B2 (en) 2004-12-06 2013-06-04 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
JP2012044204A (ja) * 2004-12-06 2012-03-01 Nikon Corp メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
JP2010171453A (ja) * 2004-12-06 2010-08-05 Nikon Corp メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
US8542341B2 (en) 2005-01-12 2013-09-24 Asml Netherlands B.V. Exposure apparatus
JPWO2006118108A1 (ja) * 2005-04-27 2008-12-18 株式会社ニコン 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
JP2008047847A (ja) * 2005-04-27 2008-02-28 Nikon Corp 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
WO2006118108A1 (ja) * 2005-04-27 2006-11-09 Nikon Corporation 露光方法、露光装置、デバイス製造方法、及び膜の評価方法
EP1901338A1 (en) * 2005-06-30 2008-03-19 Nikon Corporation Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
EP1901338A4 (en) * 2005-06-30 2011-06-29 Nikon Corp EXPOSURE APPARATUS AND METHOD, METHOD OF SERVICING THE EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD
JP2008283156A (ja) * 2006-05-18 2008-11-20 Nikon Corp 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007135990A1 (ja) * 2006-05-18 2007-11-29 Nikon Corporation 露光方法及び装置、メンテナンス方法、並びにデバイス製造方法
CN102298274A (zh) * 2006-05-18 2011-12-28 株式会社尼康 曝光方法及装置、维护方法、以及组件制造方法
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
JP4691066B2 (ja) * 2006-05-22 2011-06-01 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびリソグラフィ装置洗浄方法
KR101213594B1 (ko) 2006-05-22 2012-12-18 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치 및 리소그래피 장치 클리닝 방법
JP2007318129A (ja) * 2006-05-22 2007-12-06 Asml Netherlands Bv リソグラフィ装置およびリソグラフィ装置洗浄方法
WO2007136089A1 (ja) * 2006-05-23 2007-11-29 Nikon Corporation メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
JP2008010843A (ja) * 2006-05-23 2008-01-17 Nikon Corp メンテナンス方法、露光方法及び装置、並びにデバイス製造方法
CN102156389A (zh) * 2006-05-23 2011-08-17 株式会社尼康 维修方法、曝光方法及装置、以及组件制造方法
TWI508130B (zh) * 2006-08-30 2015-11-11 尼康股份有限公司 An exposure apparatus, an element manufacturing method, a cleaning method, and a cleaning member
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US7927428B2 (en) 2006-09-08 2011-04-19 Nikon Corporation Cleaning member, cleaning method, and device manufacturing method
US8189168B2 (en) 2007-05-28 2012-05-29 Nikon Corporation Exposure apparatus, device production method, cleaning apparatus, cleaning method, and exposure method
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9019466B2 (en) * 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US10175585B2 (en) 2008-04-24 2019-01-08 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8823918B2 (en) * 2008-04-24 2014-09-02 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
JP2010067967A (ja) * 2008-09-10 2010-03-25 Asml Netherlands Bv リソグラフィ装置、リソグラフィ装置用の物品を製造する方法及びデバイス製造方法
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
JP2015187752A (ja) * 2008-10-15 2015-10-29 株式会社ニコン 露光装置及びその組立て方法、並びにデバイス製造方法
JP2014160263A (ja) * 2008-10-15 2014-09-04 Nikon Corp 露光装置及びその組立て方法、並びにデバイス製造方法

Also Published As

Publication number Publication date
KR101228244B1 (ko) 2013-01-31
JP2014027316A (ja) 2014-02-06
KR20070020080A (ko) 2007-02-16
EP3255652A1 (en) 2017-12-13
US20090225286A1 (en) 2009-09-10
KR101245070B1 (ko) 2013-03-18
EP3190605A1 (en) 2017-07-12
EP3255652B1 (en) 2018-07-25
HK1243226B (zh) 2019-08-23
JP2012134512A (ja) 2012-07-12
US20100134772A1 (en) 2010-06-03
EP1783822A4 (en) 2009-07-15
EP3190605B1 (en) 2018-05-09
JP5713085B2 (ja) 2015-05-07
JP5353856B2 (ja) 2013-11-27
EP3098835B1 (en) 2017-07-26
EP3098835A1 (en) 2016-11-30
KR101342303B1 (ko) 2013-12-16
US20080252865A1 (en) 2008-10-16
KR20120125995A (ko) 2012-11-19
EP1783822A1 (en) 2007-05-09
EP3462241A1 (en) 2019-04-03
KR20120003509A (ko) 2012-01-10
JP5573857B2 (ja) 2014-08-20
JP2011014929A (ja) 2011-01-20

Similar Documents

Publication Publication Date Title
JP5713085B2 (ja) 露光装置、及びデバイス製造方法
JP4677833B2 (ja) 露光装置、及びその部材の洗浄方法、露光装置のメンテナンス方法、メンテナンス機器、並びにデバイス製造方法
JP6308316B2 (ja) 露光装置、デバイス製造方法及び露光方法
US8810767B2 (en) Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
JP4784513B2 (ja) メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
JP4655763B2 (ja) 露光装置、露光方法及びデバイス製造方法
JP2010118714A (ja) 露光装置、露光方法及びデバイス製造方法
WO2006062188A1 (ja) 露光装置、露光方法及びデバイス製造方法
WO2004105107A1 (ja) 露光装置及びデバイス製造方法
WO2006051909A1 (ja) 露光方法、デバイス製造方法、及び基板
WO2006059636A1 (ja) 露光装置及びデバイス製造方法
JP2008160101A (ja) 液浸露光装置及び露光方法、並びにデバイス製造方法
WO2006006565A1 (ja) 露光装置及びデバイス製造方法
JP4752320B2 (ja) 基板保持装置及び露光装置、基板保持方法、露光方法、並びにデバイス製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005753447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005753447

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11630110

Country of ref document: US

Ref document number: 1020067026825

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067026825

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005753447

Country of ref document: EP