WO2005119609A2 - Wireless sensor system - Google Patents

Wireless sensor system Download PDF

Info

Publication number
WO2005119609A2
WO2005119609A2 PCT/US2005/016027 US2005016027W WO2005119609A2 WO 2005119609 A2 WO2005119609 A2 WO 2005119609A2 US 2005016027 W US2005016027 W US 2005016027W WO 2005119609 A2 WO2005119609 A2 WO 2005119609A2
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
wireless
humidity
data
sensor unit
Prior art date
Application number
PCT/US2005/016027
Other languages
French (fr)
Other versions
WO2005119609A3 (en
Inventor
Lawrence Kates
Original Assignee
Lawrence Kates
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/856,390 external-priority patent/US7102505B2/en
Priority claimed from US10/856,395 external-priority patent/US20050262923A1/en
Priority claimed from US10/856,231 external-priority patent/US7142107B2/en
Priority claimed from US10/856,717 external-priority patent/US7218237B2/en
Priority claimed from US10/856,170 external-priority patent/US7042352B2/en
Priority claimed from US10/856,387 external-priority patent/US7102504B2/en
Priority to CA002566606A priority Critical patent/CA2566606A1/en
Priority to EP05743356A priority patent/EP1756783A4/en
Priority to BRPI0511337-7A priority patent/BRPI0511337A/en
Application filed by Lawrence Kates filed Critical Lawrence Kates
Priority to AU2005251101A priority patent/AU2005251101A1/en
Priority to MXPA06013587A priority patent/MXPA06013587A/en
Publication of WO2005119609A2 publication Critical patent/WO2005119609A2/en
Publication of WO2005119609A3 publication Critical patent/WO2005119609A3/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/182Level alarms, e.g. alarms responsive to variables exceeding a threshold
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/007Details of data content structure of message packets; data protocols
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/009Signalling of the alarm condition to a substation whose identity is signalled to a central station, e.g. relaying alarm signals in order to extend communication range
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/007Wireless interrogation

Definitions

  • the present invention relates to a wireless sensor system for monitoring potentially dangerous or costly conditions such as, for example, smoke, temperature, water, gas and the like in a building or vehicle, and/or for monitoring energy usage or efficiency of water heaters and the like.
  • adding sensors such as, for example, smoke detectors, water sensors, and the like in an existing structure can be prohibitively expensive due to the cost of installing wiring between the remote sensors and a centralized monitoring device used to monitor the sensors. Adding wiring to provide power to the sensors further increases the cost.
  • most fire departments will not allow automatic notification of the fire department based on the data from a smoke detector alone. Most fire departments require that a specific temperature rate- of-rise be detected before an automatic fire alarm system can notify the fire department. Unfortunately, detecting fire by temperature rate-of-rise generally means that the fire is not detected until it is too late to prevent major damage.
  • the present invention solves these and other problems by providing a relatively low cost, robust, wireless sensor system that provides an extended period of operability without maintenance.
  • the system includes one or more intelligent sensor units and a base unit that can communicate with a the sensor units.
  • an anomalous condition e.g., smoke, fire, water, etc.
  • the sensor unit communicates with the base unit and provides data regarding the anomalous condition.
  • the base unit can contact a supervisor or other responsible person by a plurality of techniques, such as, telephone, pager, cellular telephone, Internet (and/or local area network), etc.
  • one or more wireless repeaters are used between the sensor units and the base unit to extend the range of the system and to allow the base unit to communicate with a larger number of sensors.
  • the sensor system includes a number of sensor units located throughout a building that sense conditions and report anomalous results back to a central reporting station.
  • the sensor units measure conditions that might indicate a fire, water leak, etc.
  • the sensor units report the measured data to the base unit whenever the sensor unit determines that the measured data is sufficiently anomalous to be reported.
  • the base unit can notify a responsible person such as, for example a building manager, building owner, private security service, etc.
  • the sensor units do not send an alarm signal to the central location. Rather, the sensors send quantitative measured data (e.g., smoke density, temperature rate of rise, etc.) to the central reporting station.
  • the sensor system includes a battery-operated sensor unit that detects a condition, such as, for example, smoke, temperature, humidity, moisture, water, water temperature, carbon monoxide, natural gas, propane gas, other flammable gases, radon, poison gasses, etc.
  • the sensor unit is placed in a building, apartment, office, residence, etc. In order to conserve battery power, the sensor is normally placed in a low-power mode. In one embodiment, while in the low power mode, the sensor unit takes regular sensor readings and evaluates the readings to determine if an anomalous condition exists. If an anomalous condition is detected, then the sensor unit "wakes up” and begins communicating with the base unit or with a repeater. At programmed intervals, the sensor also "wakes up” and sends status information to the base unit (or repeater) and then listens for commands for a period of time.
  • a condition such as, for example, smoke, temperature, humidity, moisture, water, water temperature, carbon monoxide, natural gas, propane gas, other flammable gases
  • the sensor unit is bi-directional and configured to receive instructions from the central reporting station (or repeater).
  • the central reporting station can instruct the sensor to: perform additional measurements; go to a standby mode; wake up; report battery status; change wake-up interval; run self-diagnostics and report results; etc.
  • the sensor unit also includes a tamper switch. When tampering with the sensor is detected, the sensor reports such tampering to the base unit.
  • the sensor reports its general health and status to the central reporting station on a regular basis (e.g., results of self-diagnostics, battery health, etc.).
  • the sensor unit provides two wake-up modes, a first wake-up mode for taking measurements (and reporting such measurements if deemed necessary), and a second wake-up mode for listening for commands from the central reporting station.
  • the two wake-up modes, or combinations thereof, can occur at different intervals.
  • the sensor units use spread-spectrum techniques to commumcate with the base unit and/or the repeater units. In one embodiment, the sensor units use frequency-hopping spread-spectrum. In one embodiment, each sensor unit has an Identification code (ID) and the sensor units attaches its ID to outgoing communication packets. In one embodiment, when receiving wireless data, each sensor unit ignores data that is addressed to other sensor units.
  • ID Identification code
  • the repeater unit is configured to relay communications traffic between a number of sensor units and the base unit.
  • the repeater units typically operate in an environment with several other repeater units and thus each repeater unit contains a database (e.g., a lookup table) of sensor IDs. During normal operation, the repeater only communicates with designated wireless sensor units whose IDs appears in the repeater's database.
  • the repeater is battery-operated and conserves power by maintaining an internal schedule of when it's designated sensors are expected to transmit and going to a low-power mode when none of its designated sensor units is scheduled to transmit.
  • the repeater uses spread-spectrum to communicate with the base unit and the sensor units.
  • the repeater uses frequency-hopping spread-spectrum to communicate with the base unit and the sensor units.
  • each repeater unit has an ID and the repeater unit attaches its ID to outgoing communication packets that originate in the repeater unit.
  • each repeater unit ignores data that is addressed to other repeater units or to sensor units not serviced by the repeater. -
  • the repeater is configured to provide bi-directional communication between one or more sensors and a base unit.
  • the repeater is configured to receive instructions from the central reporting station (or repeater).
  • the central reporting station can instruct the repeater to: send commands to one or more sensors; go to standby mode; "wake up”; report battery status; change wake- up interval; run self-diagnostics and report results; etc.
  • the base unit is configured to receive measured sensor data from a number of sensor units.
  • the sensor information is relayed through the repeater units.
  • the base unit also sends commands to the repeater units and/or sensor units.
  • the base unit includes a diskless PC that runs off of a CD-ROM, flash memory, DVD, or other read-only device, etc.
  • the base unit receives data from a wireless sensor indicating that there may be an emergency condition (e.g., a fire or excess smoke, temperature, water, flammable gas, etc.) the base unit will attempt to notify a responsible party (e.g., a building manager) by several communication channels (e.g., telephone, Internet, pager, cell phone, etc.).
  • the base unit sends instructions to place the wireless sensor in an alert mode (inhibiting the wireless sensor's low-power mode).
  • the base unit sends instructions to activate one or more additional sensors near the first sensor.
  • the base unit maintains a database of the health, battery status, signal strength, and current operating status of all of the sensor units and repeater units in the wireless sensor system.
  • the base unit automatically performs routine maintenance by sending commands to each sensor to run a self-diagnostic and report the results. The bases unit collects such diagnostic results.
  • the base unit sends instructions to each sensor telling the sensor how long to wait between "wakeup" intervals.
  • the base unit schedules different wakeup intervals to different sensors based on the sensor's health, battery health, location, etc.
  • the base unit sends instructions to repeaters to route sensor information around a failed repeater.
  • Figure 1 shows an sensor system that includes a plurality of sensor units that communicate with a base unit through a number of repeater units.
  • Figure 2 is a block diagram of a sensor unit.
  • Figure 3 is a block diagram of a repeater unit.
  • Figure 4 is a block diagram of the base unit.
  • Figure 5 shows one embodiment a network communication packet used by the sensor units, repeater units, and the base unit.
  • Figure 6 is a flowchart showing operation of a sensor unit that provides relatively continuous monitoring.
  • Figure 7 is a flowchart showing operation of a sensor unit that provides periodic monitoring.
  • Figure 8 shows how the sensor system can be used to detected water leaks.
  • Figure 1 shows an sensor system 100 that includes a plurality of sensor units 102-106 that communicate with a base unit 112 through a number of repeater units 110- 111.
  • the sensor units 102-106 are located throughout a building 101.
  • Sensor units 102-104 communicate with the repeater 110.
  • Sensor units 105-105 communicate with the repeater 111.
  • the repeaters 110-111 communicate with the base unit 112.
  • the base unit 112 communicates with a monitoring computer system 113 through a computer network connection such as, for example, Ethernet, wireless Ethernet, firewire port, Universal Serial Bus (USB) port, bluetooth, etc.
  • USB Universal Serial Bus
  • the computer system 113 contacts a building manager, maintenance service, alarm service, or other responsible personnel 120 using one or more of several communication systems such as, for example, telephone 121, pager 122, cellular telephone 123 (e.g., direct contact, voicemail, text, etc.), and/or through the Internet and/or local area network 124 (e.g., through email, instant messaging, network communications, etc.).
  • multiple base units 112 are provided to the monitoring computer 113.
  • the monitoring computer 113 is provided to more than one compute monitor, thus allowing more data to be displayed than can conveniently be displayed on a single monitor.
  • the monitoring computer 113 is provided to multiple monitors located in different locations, thus allowing the data form the monitoring computer 113 to be displayed in multiple locations.
  • the sensor units 102-106 include sensors to measure conditions, such as, for example, smoke, temperature, moisture, water, water temperature, humidity, carbon monoxide, natural gas, propane gas, security alarms, intrusion alarms (e.g., open doors, broken windows, open windows, and the like), other flammable gases, radon, poison gasses, etc.
  • sensors to measure conditions such as, for example, smoke, temperature, moisture, water, water temperature, humidity, carbon monoxide, natural gas, propane gas, security alarms, intrusion alarms (e.g., open doors, broken windows, open windows, and the like), other flammable gases, radon, poison gasses, etc.
  • Different sensor units can be configured with different sensors or with combinations of sensors.
  • the sensor units 102 and 104 could be configured with smoke and/or temperature sensors while the sensor unit 103 could be configured with a humidity sensor.
  • the discussion that follows generally refers to the sensor unit 102 as an example of a sensor unit, with the understanding that the description of the sensor unit 102 can be applied to many sensor units.
  • the discussion generally refers to the repeater 110 by way of example, and not limitation. It will also be understood by one of ordinary skill in the art that repeaters are useful for extending the range of the sensor units 102-106 but are not required in all embodiments. Thus, for example in one embodiment, one or more of the sensor units 102-106 can communicate directly with the bast unit 112 without going through a repeater.
  • Figure 1 shows only five sensor units ( 102- 106) and two repeater units ( 110- 111 ) for purposes of illustration and not by way of limitation. An installation in a large apartment building or complex would typically involve many sensor units and repeater units. Moreover, one of ordinary skill in the art will recognize that one repeater unit can service relatively many sensor units. In one embodiment, the sensor units 102 can communicate directly with the base unit 112 without going through a repeater 111.
  • the sensor unit 102 detects an anomalous condition (e.g., smoke, fire, water, etc.) the sensor unit communicates with the appropriate repeater unit 110 and provides data regarding the anomalous condition.
  • the repeater unit 110 forwards the data to the base unit 112, and the base unit 112 forwards the information to the computer 113.
  • the computer 113 evaluates the data and takes appropriate action. If the computer 113 determines that the condition is an emergency (e.g., fire, smoke, large quantities of water), then the computer 113 contacts the appropriate personnel 120. If the computer 113 determines that a the situation warrants reporting, but is not an emergency, then the computer 113 logs the data for later reporting. In this way, the sensor system 100 can monitor the conditions in and around the building 101.
  • an emergency e.g., fire, smoke, large quantities of water
  • the sensor unit 102 has an internal power source (e.g., battery, solar cell, fuel cell, etc.). In order to conserve power, the sensor unit 102 is normally placed in a low-power mode. In one embodiment, using sensors that require relatively little power, while in the low power mode the sensor unit 102 takes regular sensor readings and evaluates the readings to determine if an anomalous condition exists. In one embodiment, using sensors that require relatively more power, while in the low power mode the sensor unit 102 takes and evaluates sensor readings at periodic intervals. If an anomalous condition is detected, then the sensor unit 102 "wakes up" and begins communicating with the base unit 112 through the repeater 110.
  • an internal power source e.g., battery, solar cell, fuel cell, etc.
  • the sensor unit 102 also "wakes up” and sends status information (e.g., power levels, self diagnostic information, etc.) to the base unit (or repeater) and then listens for commands for a period of time.
  • the sensor unit 102 also includes a tamper detector. When tampering with the sensor unit 102 is detected, the sensor unit 102 reports such tampering to the base unit 112.
  • the sensor unit 102 provides bi-directional communication and is configured to receive data and/or instructions from the base unit 112.
  • the base unit 112 can instruct the sensor unit 102 to perform additional measurements, to go to a standby mode, to wake up, to report battery status, to change wakeup interval, to run self-diagnostics and report results, etc.
  • the sensor unit 102 reports its general health and status on a regular basis (e.g., results of self-diagnostics, battery health, etc.)
  • the sensor unit 102 provides two wake-up modes, a first wake-up mode for taking measurements (and reporting such measurements if deemed necessary), and a second wake-up mode for listening for commands from the central reporting station.
  • the two wake-up modes, or combinations thereof, can occur at different intervals.
  • the sensor unit 102 use spread-spectrum techniques to communicate with the repeater unit 110. In one embodiment, the sensor unit 102 use frequency-hopping spread-spectrum. In one embodiment, the sensor unit 102 has an address or identification (ID) code that distinguishes the sensor unit 102 from the other sensor units. The sensor unit 102 attaches its ID to outgoing communication packets so that transmissions from the sensor unit 102 can be identified by the repeater 110. The repeater 110 attaches the ID of the sensor unit 102 to data and/or instructions that are transmitted to the sensor unit 102. In one embodiment, the sensor unit 102 ignores data and/or instructions that are addressed to other sensor units.
  • ID address or identification
  • the sensor unit 102 includes a reset function.
  • the reset function is activated by the reset switch 208.
  • the reset function is active for a prescribed interval of time.
  • the transceiver 203 is in a receiving mode and can receive the identification code from an external programmer.
  • the external programmer wirelessly transmits a desired identification code.
  • the identification code is programmed by an external programmer that is connected to the sensor unit 102 through an electrical connector.
  • the electrical connection to the sensor unit 102 is provided by sending modulated control signals (power line carrier signals) through a connector used to connect the power source 206.
  • the external programmer provides power and control signals.
  • the external programmer also programs the type of sensor(s) installed in the sensor unit.
  • the identification code includes an area code (e.g., apartment number, zone number, floor number, etc.) and a unit number (e.g., unit 1, 2, 3, etc.).
  • the senor communicates with the repeater on the 900 MHz band. This band provides good transmission through walls and other-obstacles normally found in and around a building structure. In one embodiment, the sensor communicates with the repeater on bands above and/or below the 900 MHz band. In one embodiment, the sensor, repeater, and/or base unit listen to a radio frequency channel before transmitting on that channel or before beginning transmission. If the channel is in use, (e.g., by another devise such as another repeater, a cordless telephone, etc.) then the sensor, repeater, and/or base unit changes to a different channel.
  • the senor, repeater, and/or base unit coordinate frequency hopping by listening to radio frequency channels for interference and using an algorithm to select a next channel for transmission that avoids the interference.
  • the sensor will test (e.g., listen to) the channel before transmission to avoid channels that are blocked, in use, or jammed.
  • the sensor continues to transmit data until it receives an acknowledgement from the base unit that the message has been received.
  • the sensor transmits data having a normal priority (e.g., status information) and does not look for an acknowledgement, and the sensor transmits data having elevated priority (e.g., excess smoke, temperature, etc.) until an acknowledgement is received.
  • a normal priority e.g., status information
  • elevated priority e.g., excess smoke, temperature, etc.
  • the repeater unit 110 is configured to relay communications traffic between the sensor 102 (and, similarly, the sensor units 103-104) and the base unit 112.
  • the repeater unit 110 typically operates in an environment with several other repeater units (such as the repeater unit 111 in Figure 1) and thus the repeater unit 110 contains a database (e.g., a lookup table) of sensor unit IDs.
  • the repeater 110 has database entries for the Ids of the sensors 102-104, and thus the sensor 110 will only commumcate with sensor units 102- 104.
  • the repeater 110 has an internal power source (e.g., battery, solar cell, fuel cell, etc.) and conserves power by maintaining an internal schedule of when the sensor units 102-104 are expected to transmit.
  • an internal power source e.g., battery, solar cell, fuel cell, etc.
  • the repeater unit 110 goes to a low-power mode when none of its designated sensor units is scheduled to transmit.
  • the repeater 110 uses spread-spectrum techniques to communicate with the base unit 112 and with the sensor units 102-104.
  • the repeater 110 uses frequency-hopping spread-spectrum to communicate with the base unit 112 and the sensor units 102-104.
  • the repeater unit 110 has an address or identification (ID) code and the repeater unit 110 attaches its address to outgoing communication packets that originate in the repeater (that is, packets that are not being forwarded).
  • the repeater unit 110 ignores data and/or instructions that are addressed to other repeater units or to sensor units not serviced by the repeater 110.
  • the base unit 112 communicates with the sensor unit 102 by transmitting a communication packet addressed to the sensor unit 102.
  • the repeaters 110 and 111 both receive the communication packet addressed to the sensor unit 102.
  • the repeater unit 111 ignores the communication packet addressed to the sensor unit 102.
  • the repeater unit 110 transmits the communication packet addressed to the sensor unit 102 to the sensor unit 102.
  • the sensor unit 102, the repeater unit 110, and the base unit 112 communicate using Frequency-Hopping Spread Spectrum (FHSS), also known as channel-hopping.
  • FHSS Frequency-Hopping Spread Spectrum
  • Frequency-hopping wireless systems offer the advantage of avoiding other interfering signals and avoiding collisions. Moreover, there are regulatory advantages given to systems that do not transmit continuously at one frequency. Channel-hopping transmitters change frequencies after a period of continuous transmission, or when interference is encountered. These systems may have higher transmit power and relaxed limitations on in- band spurs. FCC regulations limit transmission time on one channel to 400 milliseconds (averaged over 10-20 seconds depending on channel bandwidth) before the transmitter must change frequency. There is a minimum frequency step when changing channels to resume transmission. If there are 25 to 49 frequency channels, regulations allow effective radiated power of 24 dBm, spurs must be -20 dBc, and harmonics must be -41.2 dBc. With 50 or more channels, regulations allow effective radiated power to be up to 30 dBm.
  • the sensor unit 102, the repeater unit 110, and the base unit 112 commumcate using FHSS wherein the frequency hopping of the sensor unit 102, the repeater unit 110, and the base unit 112 are not synchronized such that at any given moment, the sensor unit 102 and the repeater unit 110 are on different channels.
  • the base unit 112 communicates with the sensor unit 102 using the hop frequencies synchronized to the repeater unit 110 rather than the sensor unit 102.
  • the repeater unit 110 then forwards the data to the sensor unit using hop frequencies synchronized to the sensor unit 102.
  • Such a system largely avoids collisions between the transmissions by the base unit 112 and the repeater unit 110.
  • the sensor units 102-106 all use FHSS and the sensor units 102-106 are not synchronized. Thus, at any given moment, it is unlikely that any two or more of the sensor units 102-106 will transmit on the same frequency. In this manner, collisions are largely avoided. In one embodiment, collisions are not detected but are tolerated by the system 100. If a collisions does occur, data lost due to the collision is effectively re-transmitted the next time the sensor units transmit sensor data. When the sensor units 102-106 and repeater units 110-111 operate in asynchronous mode, then a second collision is highly unlikely because the units causing the collisions have hopped to different channels.
  • the sensor units 102-106, repeater units 110-110, and the base unit 112 use the same hop rate. In one embodiment, the sensor units 102-106, repeater units 110-110, and the base unit 112 use the same pseudo-random algorithm to control channel hopping, but with different starting seeds. In one embodiment, the starting seed for the hop algorithm is calculated from the ID of the sensor units 102-106, repeater units 110-110, or the base unit 112.
  • the base unit communicates with the sensor unit 102 by sending a communication packet addressed to the repeater unit 110, where the packet sent to the repeater unit 110 includes the address of the sensor unit 102.
  • the repeater unit 102 extracts the address of the sensor unit 102 from the packet and creates and transmits a packet addressed to the sensor unit 102.
  • the repeater unit 110 is configured to provide bidirectional communication between its sensors and the base unit 112. In one embodiment, the repeater 110 is configured to receive instructions from the base unit 110. Thus, for example, the base unit 112 can instruct the repeater to: send commands to one or more sensors; go to standby mode; "wake up”; report battery status; change wake-up interval; run self-diagnostics and report results; etc.
  • the base unit 112 is configured to receive measured sensor data from a number of sensor units either directly, or through the repeaters 110-111.
  • the base unit 112 also sends commands to the repeater units 110-111 and/or to the sensor units 110-111.
  • the base unit 112 communicates with a diskless computer 113 that runs off of a CD-ROM.
  • the base unit 112 receives data from a sensor unit 102-111 indicating that there may be an emergency condition (e.g., a fire or excess smoke, temperature, water, etc.) the computer 113 will attempt to notify the responsible party 120.
  • an emergency condition e.g., a fire or excess smoke, temperature, water, etc.
  • the computer 1 12 maintains a database of the health, power status (e.g., battery charge), and current operating status of all of the sensor units 102- 106 and the repeater units 110-111.
  • the computer 113 automatically performs routine maintenance by sending commands to each sensor unit 102-106 to run a self-diagnostic and report the results. The computer 113 collects and logs such diagnostic results.
  • the computer 113 sends instructions to each sensor unit 102-106- telling the sensor how long to wait between "wakeup" intervals.
  • the computer 113 schedules different wakeup intervals to different sensor unit 102-106 based on the sensor unit's health, power status, location, etc.
  • the computer 113 schedules different wakeup intervals to different sensor unit 102-106 based on the type of data and urgency of the data collected by the sensor unit (e.g., sensor units that have smoke and/or temperature sensors produce data that should be checked relatively more often than sensor units that have humidity or moisture sensors).
  • the base unit sends instructions to repeaters to route sensor information around a failed repeater.
  • the computer 113 produces a display that tells maintenance personnel which sensor units 102-106 need repair or maintenance. In one embodiment, the computer 113 maintains a list showing the status and/or location of each sensor according to the ID of each sensor.
  • the sensor units 102-106 and /or the repeater units 110-111 measure the signal strength of the wireless signals received (e.g., the sensor unit 102 measures the signal strength of the signals received from the repeater unit 110, the repeater unit 110 measures the signal strength received from the sensor unit 102 and/or the base unit 112).
  • the sensor units 102-106 and /or the repeater units 110-111 report such signal strength measurement back to the computer 113.
  • the computer 113 evaluates the signal strength measurements to ascertain the health and robustness of the sensor system 100. In one embodiment, the computer 113 uses the signal strength information to re-route wireless communications traffic in the sensor system 100.
  • FIG. 2 is a block diagram of the sensor unit 102.
  • the computer 113 can send instructions to the repeater unit 111 to add the ID of the sensor unit 102 to the database of the repeater unit 111 (and similarly, send instructions to the repeater unit 110 to remove the ID of the sensor unit 102), thereby routing the traffic for the sensor unit 102 through the router unit 111 instead of the router unit 110.
  • Figure 2 is a block diagram of the sensor unit 102.
  • the sensor unit 102 one or more sensors 201 and a transceiver 203 are provided to a controller 202.
  • the controller 202 typically provides power, data, and control information to the sensor(s) 201 and the transceiver 202.
  • a power source 206 is provided to the controller 202.
  • An optional tamper sensor 205 is also provided to the controller 202.
  • a reset device (e.g., a switch) 208 is proved to the controller 202.
  • an optional audio output device 209 is provided.
  • the sensor 201 is configured as a plug-in module that can be replaced relatively easily.
  • the transceiver 203 is based on a TRF 6901 transceiver chip from Texas Instruments. Inc.
  • the controller 202 is a ⁇ conventional programmable microcontroller.
  • the controller 202 is based on a Field Programmable Gate Array (FPGA), such as, for example, provided by Xilinx Corp.
  • the sensor 201 includes an optoelectric smoke sensor with a smoke chamber.
  • the sensor 201 includes a thermistor.
  • the sensor 201 includes a humidity sensor.
  • the sensor 201 includes an sensor, such as, for example, a water level sensor, a water temperature sensor, a carbon monoxide sensor, a moisture sensor, a water flow sensor, natural gas sensor, propane sensor, etc.
  • the controller 202 receives sensor data from the sensor(s) 201. Some sensors 201 produce digital data. However, for many types of sensors 201, the sensor data is analog data. Analog sensor data is converted to digital format by the controller 202. In one embodiment, the controller evaluates the data received from the sensor(s) 201 and determines whether the data is to be transmitted to the base unit 112. The sensor unit 102 generally conserves power by not transmitting data that falls within a normal range. In one embodiment, the controller 202 evaluates the sensor data by comparing the data value to a threshold value (e.g., a high threshold, a low threshold, or a high-low threshold).
  • a threshold value e.g., a high threshold, a low threshold, or a high-low threshold
  • the data threshold is programmed into the controller 202. In one embodiment, the data threshold is programmed by the base unit 112 by sending instructions to the controller 202. In one embodiment, the controller 202 obtains sensor data and transmits the data when commanded by the computer 113.
  • the tamper sensor 205 is configured as a switch that detects removal of or tampering with the sensor unit 102.
  • FIG. 3 is a block diagram of the repeater unit 110.
  • a first transceiver 302 and a second transceiver 305 are provided to a controller 303.
  • the controller 303 typically provides power, data, and control information to the transceivers 302, 304.
  • a power source 306 is provided to the controller 303.
  • An optional tamper sensor (not shown) is also provided to the controller 303.
  • the controller 303 When relaying sensor data to the base unit 112, the controller 303 receives data from the first transceiver 303 and provides the data to the second transceiver 304. When relaying instructions from the base unit 112 to a sensor unit, the controller 303 receives data from the second transceiver 304 and provides the data to the first transceiver 302. In one embodiment, the controller 303 conserves power by powering-down the transceivers 302, 304 during periods when the controller 303 is not expecting data. The controller 303 also monitors the power source 306 and provides status information, such as, for example, self- diagnostic information and/or information about the health of the power source 306, to the base unit 112.
  • status information such as, for example, self- diagnostic information and/or information about the health of the power source 306, to the base unit 112.
  • the controller 303 sends status information to the base unit 112 at regular intervals. In one embodiment, the controller 303 sends status information to the base unit 112 when requested by the base unit 112. In one embodiment, the controller 303 sends status information to the base unit 112 when a fault condition (e.g., battery low) is detected.
  • a fault condition e.g., battery low
  • the controller 303 includes a table or list of identification codes for wireless sensor units 102.
  • the repeater 303 forwards packets received from, or sent to, sensor units 102 in the list.
  • the repeater 110 receives entries for the list of sensor units from the computer 113.
  • the controller 303 determines when a transmission is expected from the sensor units 102 in the table of sensor units and places the repeater 110 (e.g., the transceivers 302, 304) in a low-power mode when no transmissions are expected from the transceivers on the list.
  • the controller 303 recalculates the times for low-power operation when a command to change reporting interval is forwarded to one of the sensor units 102 in the list (table) of sensor units or when a new sensor unit is added to the list (table) of sensor units.
  • FIG 4 is a block diagram of the base unit 112.
  • a transceiver 402 and a computer interface 404 are provided to a controller 403.
  • the controller 303 typically provides data and control information to the transceivers 402 and to the interface.
  • the interface 402 is provided to a port on the monitoring computer 113.
  • the interface 402 can be a standard computer data interface, such as, for example, Ethernet, wireless Ethernet, firewire port, Universal Serial Bus (USB) port, bluetooth, etc.
  • USB Universal Serial Bus
  • Figure 5 shows one embodiment a communication packet 500 used by the sensor units, repeater units, and the base unit.
  • the packet 500 includes a preamble portion 501, an address (or ID) portion 502, a data payload portion 503, and an integrity portion 504.
  • the integrity portion 504 includes a checksum.
  • the sensor units 102-106, the repeater units 110-111, and the base unit 112 communicate using packets such as the packet 500.
  • the packets 500 are transmitted using FHSS.
  • the data packets that travel between the sensor unit 102, the repeater unit 111, and the base unit 112 are encrypted.
  • the data packets that travel between the sensor unit 102, the repeater unit 111, and the base unit 112 are encrypted and an authentication code is provided in the data packet so that the sensor unit 102, the repeater unit, and/or the base unit 112 can verify the authenticity of the packet.
  • the address portion 502 includes a first code and a second code.
  • the repeater 111 only examines the first code to determine if the packet should be forwarded.
  • the first code can be interpreted as a building (or building complex) code and the second code interpreted as a subcode (e.g., an apartment code, area code, etc.).
  • a repeater that uses the first code for forwarding thus forwards packets having a specified first code (e.g., corresponding to the repeater's building or building complex).
  • a specified first code e.g., corresponding to the repeater's building or building complex.
  • each repeater waits for a programmed delay period before forwarding a packet.
  • a delay period is programmed into each repeater.
  • delay periods are preprogrammed onto the repeater units at the factory or during installation.
  • a delay period is programmed into each repeater by the base unit 112.
  • a repeater randomly chooses a delay period.
  • a repeater randomly chooses a delay period for each forwarded packet.
  • the first code is at least 6 digits.
  • the second code is at least 5 digits.
  • the first code and the second code are programmed into each sensor unit at the factory. In one embodiment, the first code and the second code are programmed when the sensor unit is installed. In one embodiment, the base unit 112 can re- program the first code and/or the second code in a sensor unit.
  • collisions are further avoided by configuring each repeater unit 111 to begin transmission on a different frequency channel.
  • each repeater unit 111 to begin transmission on a different frequency channel.
  • FIG. 6 is a flowchart showing one embodiment of the operation of the sensor unit 102 wherein relatively continuous monitoring is provided.
  • a power up block 601 is followed by an initialization block 602.
  • the sensor unit 102 checks for a fault condition (e.g., activation of the tamper sensor, low battery, internal fault, etc.) in a block 603.
  • a decision block 604 checks the fault status. If a fault has occurred, then the process advances to a block 605 were the fault information is transmitted to the repeater 110 (after which, the process advances to a block 612); otherwise, the process advances to a block 606.
  • the sensor unit 102 takes a sensor reading from the sensor(s) 201.
  • the sensor data is subsequently evaluated in a block 607. If the sensor data is abnormal, then the process advances to a transmit block 609 where the sensor data is transmitted to the repeater 110 (after which, the process advances to a block 612); otherwise, the process advances to a timeout decision block 610. If the timeout period has not elapsed, then the process returns to the fault-check block 603; otherwise, the process advances to a transmit status block 611 where normal status information is transmitted to the repeater 110. In one embodiment, the normal status information transmitted is analogous to a simple "ping" which indicates that the sensor unit 102 is functioning normally. After the block 611, the process proceeds to a block 612 where the sensor unit 102 momentarily listens for instructions from the monitor computer 113.
  • transceiver 203 is normally powered down.
  • the controller 202 powers up the transceiver 203 during execution of the blocks 605, 609, 611, and 612.
  • the monitoring computer 113 can send instructions to the sensor unit 102 to change the parameters used to evaluate data used in block 607, the listen period used in block 612, etc.
  • Relatively continuous monitoring such as shown in Figure 6, is appropriate for sensor units that sense relatively high-priority data (e.g., smoke, fire, carbon monoxide, flammable gas, etc.).
  • periodic monitoring can be used for sensors that sense relatively lower priority data (e.g., humidity, moisture, water usage, etc.).
  • Figure 7 is a flowchart showing one embodiment of operation of the sensor unit 102 wherein periodic monitoring is provided.
  • a power up block 701 is followed by an initialization block 702. After initialization, the sensor unit 102 enters a low-power sleep mode.
  • the process enters a wake-up block 704 followed by a transmit fault block 705. If no fault occurs during the sleep period, then when the specified sleep period has expired, the process enters a block 706 where the sensor unit 102 takes a sensor reading from the sensor(s) 201. The sensor data is subsequently sent to the monitoring computer 113 in a report block 707. After reporting, the sensor unit 102 enters a listen block 708 where the sensor unit 102 listens for a relatively short period of time for instructions from monitoring computer 708: If an instruction is received, then the sensor unit 102 performs the instructions, otherwise, the process returns to the sleep block 703.
  • a listen block 708 where the sensor unit 102 listens for a relatively short period of time for instructions from monitoring computer 708: If an instruction is received, then the sensor unit 102 performs the instructions, otherwise, the process returns to the sleep block 703.
  • the senor 201 and transceiver 203 are normally powered down.
  • the controller 202 powers up the sensor 201 during execution of the block 706.
  • the controller 202 powers up the transceiver during execution of the blocks 705, 707, and 708.
  • the monitoring computer 113 can send instructions to the sensor unit 102 to change the sleep period used in block 703, the listen period used in block 708, etc.
  • the sensor unit transmits sensor data until a handshaking-type acknowledgement is received.
  • the sensor unit 102 retransmits its data and waits for an acknowledgement.
  • the sensor unit 102 continues to transmit data and wait for an acknowledgement until an acknowledgement is received.
  • the sensor unit accepts an acknowledgement from a repeater unit 111 and it then becomes the responsibility of the repeater unit 111 to make sure that the data is forwarded to the base unit 112.
  • the repeater unit 111 does not generate the acknowledgement, but rather forwards an acknowledgement from the base unit 112 to the sensor unit 102.
  • the two-way communication ability of the sensor unit 102 provides the capability for the base unit 112 to control the operation of the sensor unit 102 and also provides the capability for robust handshaking-type communication between the sensor unit 102 and the base unit 112.
  • the monitoring computer 113 can instruct the sensor unit 102 to operate in a relatively continuous mode where the sensor repeatedly takes sensor readings and transmits the readings to the monitoring computer 113.
  • a relatively continuous mode where the sensor repeatedly takes sensor readings and transmits the readings to the monitoring computer 113.
  • a potentially dangerous condition e.g., smoke, rapid temperature rise, etc.
  • Figure 8 shows the sensor system used to detect water leaks.
  • the sensor unit 102 includes a water level sensor and 803 and/or a water temperature sensor 804.
  • the water level sensor 803 and/or water temperature sensor 804 are place, for example, in a tray underneath a water heater 801 in order to detect leaks from the water heater 801 and thereby prevent water damage from a leaking water heater.
  • an temperature sensor is also provide to measure temperature near the water heater.
  • the water level sensor can also be placed under a sink, in a floor sump, etc.
  • the severity of a leak is ascertained by the sensor unit 102 (or the monitoring computer 113) by measuring the rate of rise in the water level.
  • the severity of a leak can also be ascertained at least in part by measuring the temperature of the water.
  • a first water flow sensor is placed in an input water line for the hot water tank 801 and a second water flow sensor is placed in an output water line for the hot water tank. Leaks in the tank can be detected by observing a difference between the water flowing through the two sensors.
  • a remote shutoff valve 810 is provided, so that the monitoring system 100 can shutoff the water supply to the water heater when a leak is detected.
  • the shutoff valve is controlled by the sensor unit 102.
  • the sensor unit 102 receives instructions from the base unit 112 to shut off the water supply to the heater 801.
  • the responsible party 120 sends instructions to the monitoring computer 113 instructing the monitoring computer 113 to send water shut off instructions to the sensor unit 102.
  • the sensor unit 102 controls a gas shutoff valve 811 to shut off the gas supply to the water heater 801 and/or to a furnace (not shown) when dangerous conditions (such as, for example, gas leaks, carbon monoxide, etc.) are detected.
  • a gas detector 812 is provided to the sensor unit 102.
  • the gas detector 812 measures carbon monoxide.
  • the gas detector 812 measures flammable gas, such as, for example, natural gas or propane.
  • an optional temperature sensor 818 is provided to measure stack temperature. Using data from the temperature sensor 818, the sensor unit 102 reports conditions, such as, for example, excess stack temperature. Excess stack temperature is often indicative of poor heat transfer (and thus poor efficiency) in the water heater 818.
  • an optional temperature sensor 819 is provided to measure temperature of water in the water heater 810. Using data from the temperature sensor 819, the sensor unit 102 reports conditions, such as, for example, over-temperature or under-temperature of the water in the water heater.
  • an optional current probe 821 is provided to measure electric current provided to a heating element 820 in an electric water heater. Using data from the current probe 821, the sensor unit 102 reports conditions, such as, for example, no current (indicating a burned-out heating element 820). An over-current condition often indicates that the heating element 820 is encrusted with mineral deposits and needs to be replaced or cleaned. By measuring the current provided to the water heater, the monitoring system can measure the amount of energy provided to the water heater and thus the cost of hot water, and the efficiency of the water heater.
  • the sensor 803 includes a moisture sensor. Using data from the moisture sensor, the sensor unit 102 reports moisture conditions, such as, for example, excess moisture that would indicate a water leak, excess condensation, etc.
  • the sensor unit 102 is provided to a moisture sensor (such as the sensor 803) located near an air conditioning unit. Using data from the moisture sensor, the sensor unit 102 reports moisture conditions, such as, for example, excess moisture that would indicate a water leak, excess condensation, etc.
  • a moisture sensor such as the sensor 803 located near an air conditioning unit.
  • the senor 201 includes a moisture sensor.
  • the moisture sensor can be place under a sink or a toilet (to detect plumbing leaks) or in an attic space (to detect roof leaks).
  • the sensor 201 includes a humidity sensor.
  • the humidity sensor can be place under a sink, in an attic space, etc. to detect excess humidity (due to leaks, condensation, etc.).
  • the monitoring computer 113 compares humidity measurements taken from different sensor units in order to detect areas that have excess humidity. Thus for example, the monitoring computer 113 can compare the humidity readings from a first sensor unit 102 in a first attic area, to a humidity reading from a second sensor unit 102 in a second area.
  • the monitoring computer can take humidity readings from a number of attic areas to establish a baseline humidity reading and then compare the specific humidity readings from various sensor units to determine if one or more of the units are measuring excess humidity.
  • the monitoring computer 113 would flag areas of excess humidity for further investigation by maintenance personnel.
  • the monitoring computer 113 maintains a history of humidity readings for various sensor units and flags areas that show an unexpected increase in humidity for investigation by maintenance personnel.
  • the monitoring system 100 detects conditions favorable for fungus (e.g., mold, mildew, fungus, etc.) growth by using a first humidity sensor located in a first building area to produce first humidity data and a second humidity sensor located in a second building area to produce second humidity data.
  • the building areas can be, for example, areas near a sink drain, plumbing fixture, plumbing, attic areas, outer walls, a bilge area in a boat, etc.
  • the monitoring station 113 collects humidity readings from the first humidity sensor and the second humidity sensor and indicates conditions favorable for fungus growth by comparing the first humidity data and the second humidity data.
  • the monitoring station 113 establishes a baseline humidity by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity by a specified amount.
  • the monitoring station 113 establishes a baseline humidity by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity by a specified percentage.
  • the monitoring station 113 establishes a baseline humidity history by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity history by a specified amount over a specified period of time. In one embodiment, the monitoring station 113 establishes a baseline humidity history by comparing humidity readings from a plurality of humidity sensors over a period of time and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity by a specified percentage of a specified period of time. [0077] In one embodiment, the sensor unit 102 transmits humidity data when it determines that the humidity data fails a threshold test.
  • the humidity threshold for the threshold test is provided to the sensor unit 102 by the monitoring station 113. In one embodiment, the humidity threshold for the threshold test is computed by the monitoring station from a baseline humidity established in the monitoring station. In one embodiment, the baseline humidity is computed at least in part as an average of humidity readings from a number of humidity sensors. In one embodiment, the baseline humidity is computed at least in part as a time average of humidity readings from a number of humidity sensors. In one embodiment, the baseline humidity is computed at least in part as a time average of humidity readings from a humidity sensor. In one embodiment, the baseline humidity is computed at least in part as the lesser of a maximum humidity reading an average of a number of humidity readings.
  • the sensor unit 102 reports humidity readings in response to a query by the monitoring station 113. In one embodiment, the sensor unit 102 reports humidity readings at regular intervals. In one embodiment, a humidity interval is provided to the sensor unit 102 by the monitoring station 113.
  • the calculation of conditions for fungus growth is comparing humidity readings from one or more humidity sensors to the baseline (or reference) humidity. In one embodiment, the comparison is based on comparing the humidity readings to a percentage (e.g., typically a percentage greater than 100%) of the baseline value. In one embodiment, the comparison is based on comparing the humidity readings to a specified delta value above the reference humidity. In one embodiment, the calculation of likelihood of conditions for fungus growth is based on a time history of humidity readings, such that the longer the favorable conditions exist, the greater the likelihood of fungus growth. In one embodiment, relatively high humidity readings over a period of time indicate a higher likelihood of fungus growth than relatively high humidity readings for short periods of time.
  • a relatively sudden increase in humidity as compared to a baseline or reference humidity is reported by the monitoring station 113 as a possibility of a water leak. If the relatively high humidity reading continues over time then the relatively high humidity is reported by the monitoring station 113 as possibly being a water leak and/or an area likely to have fungus growth or water damage.
  • Temperatures relatively more favorable to fungus growth increase the likelihood of fungus growth.
  • temperature measurements from the building areas are also used in the fungus grown-likelihood calculations.
  • a threshold value for likelihood of fungus growth is computed at least in part as a function of temperature, such that temperatures relatively more favorable to fungus growth result in a relatively lower threshold than temperatures relatively less favorable for fungus growth.
  • the calculation of a likelihood of fungus growth depends at least in part on temperature such that temperatures relatively more favorable to fungus growth indicate a relatively higher likelihood of fungus growth than temperatures relatively less favorable for fungus growth.
  • a maximum humidity and/or minimum threshold above a reference humidity is relatively lower for temperature more favorable to fungus growth than the maximum humidity and/or minimum threshold above a reference humidity for temperatures relatively less favorable to fungus growth.
  • a water flow sensor is provided to the sensor unit 102.
  • the sensor unit 102 obtains water flow data from the water flow sensor and provides the water flow data to the monitoring computer 113.
  • the monitoring computer 113 can then calculate water usage.
  • the monitoring computer can watch for water leaks, by, for example, looking for water flow when there should be little or no flow. Thus, for example, if the monitoring computer detects water usage throughout the night, the monitoring computer can raise an alert indicating that a possible water leak has occurred.
  • the sensor 201 includes a water flow sensor is provided to the sensor unit 102.
  • the sensor unit 102 obtains water flow data from the water flow sensor and provides the water flow data to the monitoring computer 113.
  • the monitoring computer 113 can then calculate water usage.
  • the monitoring computer can watch for water leaks, by, for example, looking for water flow when there should be little or no flow. Thus, for example, if the monitoring computer detects water usage throughout the night, the monitoring computer can raise an alert indicating that a possible water leak has occurred.
  • the sensor 201 includes a fire-extinguisher tamper sensor is provided to the sensor unit 102.
  • the fire-extinguisher tamper sensor reports tampering with or use of a fire-extinguisher.
  • the fire-extinguisher temper sensor reports that the fire extinguisher has been removed from its mounting, that a fire extinguisher compartment has been opened, and/or that a safety lock on the fire extinguisher has been removed.
  • modulation uses is not limited to any particular modulation method, such that modulation scheme used can be, for example, frequency modulation, phase modulation, amplitude modulation, combinations thereof, etc.
  • modulation scheme used can be, for example, frequency modulation, phase modulation, amplitude modulation, combinations thereof, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Alarm Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A low cost, robust, wireless sensor system (100) that provides an extended period of operability without maintenance is described. The system (100) includes one or more intelligent sensor units and a base unit (112) that can communicate with a large number of sensors. When one or more of the sensors detects an anomalous condition (e.g., smoke, fire, water, etc.) the sensor communicates with the base unit (112) and provides data regarding the anomalous condition. The base unit (112) can contact a supervisor or other responsible person by a plurality of techniques, such as, telephone, pager, cellular telephone, Internet, etc. In one embodiment, one or more wireless repeaters (110-111) are used between the sensors and the base unit (112) to extend the range of the system (100) and to allow the base unit (112) to communicate with a larger number of sensors.

Description

WIRELESS SENSORSYSTEM
Background of the Invention Field of the invention [0001] The present invention relates to a wireless sensor system for monitoring potentially dangerous or costly conditions such as, for example, smoke, temperature, water, gas and the like in a building or vehicle, and/or for monitoring energy usage or efficiency of water heaters and the like.
Description of the Related Art [0002] Maintaining and protecting a building or complex is difficult and costly. Some conditions, such as fires, gas leaks, etc. are a danger to the occupants and the structure. Other malfunctions, such as water leaks in roofs, plumbing, etc. are not necessarily dangerous for the occupants, but can nevertheless cause considerable damage. In many cases, an adverse condition such as water leakage, fire, etc. is not detected in the early stages when the damage and/or danger is relatively small. Sensors can be used to detect such adverse conditions, but sensors present their own set of problems. For example, adding sensors, such as, for example, smoke detectors, water sensors, and the like in an existing structure can be prohibitively expensive due to the cost of installing wiring between the remote sensors and a centralized monitoring device used to monitor the sensors. Adding wiring to provide power to the sensors further increases the cost. Moreover, with regard to fire sensors, most fire departments will not allow automatic notification of the fire department based on the data from a smoke detector alone. Most fire departments require that a specific temperature rate- of-rise be detected before an automatic fire alarm system can notify the fire department. Unfortunately, detecting fire by temperature rate-of-rise generally means that the fire is not detected until it is too late to prevent major damage. Summary [0003] The present invention solves these and other problems by providing a relatively low cost, robust, wireless sensor system that provides an extended period of operability without maintenance. The system includes one or more intelligent sensor units and a base unit that can communicate with a the sensor units. When one or more of the sensor units detects an anomalous condition (e.g., smoke, fire, water, etc.) the sensor unit communicates with the base unit and provides data regarding the anomalous condition. The base unit can contact a supervisor or other responsible person by a plurality of techniques, such as, telephone, pager, cellular telephone, Internet (and/or local area network), etc. In one embodiment, one or more wireless repeaters are used between the sensor units and the base unit to extend the range of the system and to allow the base unit to communicate with a larger number of sensors.
[0004] In one embodiment, the sensor system includes a number of sensor units located throughout a building that sense conditions and report anomalous results back to a central reporting station. The sensor units measure conditions that might indicate a fire, water leak, etc. The sensor units report the measured data to the base unit whenever the sensor unit determines that the measured data is sufficiently anomalous to be reported. The base unit can notify a responsible person such as, for example a building manager, building owner, private security service, etc. In one embodiment, the sensor units do not send an alarm signal to the central location. Rather, the sensors send quantitative measured data (e.g., smoke density, temperature rate of rise, etc.) to the central reporting station.
[0005] In one embodiment, the sensor system includes a battery-operated sensor unit that detects a condition, such as, for example, smoke, temperature, humidity, moisture, water, water temperature, carbon monoxide, natural gas, propane gas, other flammable gases, radon, poison gasses, etc. The sensor unit is placed in a building, apartment, office, residence, etc. In order to conserve battery power, the sensor is normally placed in a low-power mode. In one embodiment, while in the low power mode, the sensor unit takes regular sensor readings and evaluates the readings to determine if an anomalous condition exists. If an anomalous condition is detected, then the sensor unit "wakes up" and begins communicating with the base unit or with a repeater. At programmed intervals, the sensor also "wakes up" and sends status information to the base unit (or repeater) and then listens for commands for a period of time.
[0006] In one embodiment, the sensor unit is bi-directional and configured to receive instructions from the central reporting station (or repeater). Thus, for example, the central reporting station can instruct the sensor to: perform additional measurements; go to a standby mode; wake up; report battery status; change wake-up interval; run self-diagnostics and report results; etc. In one embodiment, the sensor unit also includes a tamper switch. When tampering with the sensor is detected, the sensor reports such tampering to the base unit. In one embodiment, the sensor reports its general health and status to the central reporting station on a regular basis (e.g., results of self-diagnostics, battery health, etc.).
[0007] In one embodiment, the sensor unit provides two wake-up modes, a first wake-up mode for taking measurements (and reporting such measurements if deemed necessary), and a second wake-up mode for listening for commands from the central reporting station. The two wake-up modes, or combinations thereof, can occur at different intervals.
[0008] In one embodiment, the sensor units use spread-spectrum techniques to commumcate with the base unit and/or the repeater units. In one embodiment, the sensor units use frequency-hopping spread-spectrum. In one embodiment, each sensor unit has an Identification code (ID) and the sensor units attaches its ID to outgoing communication packets. In one embodiment, when receiving wireless data, each sensor unit ignores data that is addressed to other sensor units.
[0009] The repeater unit is configured to relay communications traffic between a number of sensor units and the base unit. The repeater units typically operate in an environment with several other repeater units and thus each repeater unit contains a database (e.g., a lookup table) of sensor IDs. During normal operation, the repeater only communicates with designated wireless sensor units whose IDs appears in the repeater's database. In one embodiment, the repeater is battery-operated and conserves power by maintaining an internal schedule of when it's designated sensors are expected to transmit and going to a low-power mode when none of its designated sensor units is scheduled to transmit. In one embodiment, the repeater uses spread-spectrum to communicate with the base unit and the sensor units. In one embodiment, the repeater uses frequency-hopping spread-spectrum to communicate with the base unit and the sensor units. In one embodiment, each repeater unit has an ID and the repeater unit attaches its ID to outgoing communication packets that originate in the repeater unit. In one embodiment, each repeater unit ignores data that is addressed to other repeater units or to sensor units not serviced by the repeater. -
[0010] In one embodiment, the repeater is configured to provide bi-directional communication between one or more sensors and a base unit. In one embodiment, the repeater is configured to receive instructions from the central reporting station (or repeater). Thus, for example, the central reporting station can instruct the repeater to: send commands to one or more sensors; go to standby mode; "wake up"; report battery status; change wake- up interval; run self-diagnostics and report results; etc.
[0011] The base unit is configured to receive measured sensor data from a number of sensor units. In one embodiment, the sensor information is relayed through the repeater units. The base unit also sends commands to the repeater units and/or sensor units. In one embodiment, the base unit includes a diskless PC that runs off of a CD-ROM, flash memory, DVD, or other read-only device, etc. When the base unit receives data from a wireless sensor indicating that there may be an emergency condition (e.g., a fire or excess smoke, temperature, water, flammable gas, etc.) the base unit will attempt to notify a responsible party (e.g., a building manager) by several communication channels (e.g., telephone, Internet, pager, cell phone, etc.). In one embodiment, the base unit sends instructions to place the wireless sensor in an alert mode (inhibiting the wireless sensor's low-power mode). In one embodiment, the base unit sends instructions to activate one or more additional sensors near the first sensor.
[0012] In one embodiment, the base unit maintains a database of the health, battery status, signal strength, and current operating status of all of the sensor units and repeater units in the wireless sensor system. In one embodiment, the base unit automatically performs routine maintenance by sending commands to each sensor to run a self-diagnostic and report the results. The bases unit collects such diagnostic results. In one embodiment, the base unit sends instructions to each sensor telling the sensor how long to wait between "wakeup" intervals. In one embodiment, the base unit schedules different wakeup intervals to different sensors based on the sensor's health, battery health, location, etc. In one embodiment, the base unit sends instructions to repeaters to route sensor information around a failed repeater.
Brief Description of the Drawings [0013] Figure 1 shows an sensor system that includes a plurality of sensor units that communicate with a base unit through a number of repeater units. [0014] Figure 2 is a block diagram of a sensor unit. [0015] Figure 3 is a block diagram of a repeater unit. [0016] Figure 4 is a block diagram of the base unit. [0017] Figure 5 shows one embodiment a network communication packet used by the sensor units, repeater units, and the base unit. [0018] Figure 6 is a flowchart showing operation of a sensor unit that provides relatively continuous monitoring. [0019] Figure 7 is a flowchart showing operation of a sensor unit that provides periodic monitoring. [0020] Figure 8 shows how the sensor system can be used to detected water leaks. Detailed Description [0021] The entire contents of Applicant's co-pending application, Application No. , titled "WIRELESS SENSOR SYSTEM," filed May 27, 2004 is hereby incorporated by reference. [0022] The entire contents of Applicant's co-pending application, Application No. , titled "WIRELESS SENSOR UNIT," filed May 27, 2004 is hereby incorporated by reference. [0023] The entire contents of Applicant's co-pending application, Application No. , titled "WIRELESS REPEATER FOR SENSOR SYSTEM," filed May
27, 2004 is hereby incorporated by reference. [0024] The entire contents of Applicant's co-pending application, Application No. , titled "WIRELESS SENSOR MONITORING UNIT," filed May 27,
2004 is hereby incorporated by reference. [0025] The entire contents of Applicant's co-pending application, Application No. , titled "METHOD AND APPARATUS FOR DETECTING
CONDITIONS FAVORABLE FOR GROWTH OF FUNGUS," filed May 27, 2004 is hereby incorporated by reference. [0026] The entire contents of Applicant's co-pending application, Application No. , titled "METHOD AND APPARATUS FOR DETECTING WATER
LEAKS," filed May 27, 2004 is hereby incorporated by reference.
[0027] Figure 1 shows an sensor system 100 that includes a plurality of sensor units 102-106 that communicate with a base unit 112 through a number of repeater units 110- 111. The sensor units 102-106 are located throughout a building 101. Sensor units 102-104 communicate with the repeater 110. Sensor units 105-105 communicate with the repeater 111. The repeaters 110-111 communicate with the base unit 112. The base unit 112 communicates with a monitoring computer system 113 through a computer network connection such as, for example, Ethernet, wireless Ethernet, firewire port, Universal Serial Bus (USB) port, bluetooth, etc. The computer system 113 contacts a building manager, maintenance service, alarm service, or other responsible personnel 120 using one or more of several communication systems such as, for example, telephone 121, pager 122, cellular telephone 123 (e.g., direct contact, voicemail, text, etc.), and/or through the Internet and/or local area network 124 (e.g., through email, instant messaging, network communications, etc.). In one embodiment, multiple base units 112 are provided to the monitoring computer 113. In one embodiment, the monitoring computer 113 is provided to more than one compute monitor, thus allowing more data to be displayed than can conveniently be displayed on a single monitor. In one embodiment, the monitoring computer 113 is provided to multiple monitors located in different locations, thus allowing the data form the monitoring computer 113 to be displayed in multiple locations.
[0028] The sensor units 102-106 include sensors to measure conditions, such as, for example, smoke, temperature, moisture, water, water temperature, humidity, carbon monoxide, natural gas, propane gas, security alarms, intrusion alarms (e.g., open doors, broken windows, open windows, and the like), other flammable gases, radon, poison gasses, etc. Different sensor units can be configured with different sensors or with combinations of sensors. Thus, for example, in one installation the sensor units 102 and 104 could be configured with smoke and/or temperature sensors while the sensor unit 103 could be configured with a humidity sensor.
[0029] The discussion that follows generally refers to the sensor unit 102 as an example of a sensor unit, with the understanding that the description of the sensor unit 102 can be applied to many sensor units. Similarly, the discussion generally refers to the repeater 110 by way of example, and not limitation. It will also be understood by one of ordinary skill in the art that repeaters are useful for extending the range of the sensor units 102-106 but are not required in all embodiments. Thus, for example in one embodiment, one or more of the sensor units 102-106 can communicate directly with the bast unit 112 without going through a repeater. It will also be understood by one of ordinary skill in the art that Figure 1 shows only five sensor units ( 102- 106) and two repeater units ( 110- 111 ) for purposes of illustration and not by way of limitation. An installation in a large apartment building or complex would typically involve many sensor units and repeater units. Moreover, one of ordinary skill in the art will recognize that one repeater unit can service relatively many sensor units. In one embodiment, the sensor units 102 can communicate directly with the base unit 112 without going through a repeater 111.
[0030] When the sensor unit 102 detects an anomalous condition (e.g., smoke, fire, water, etc.) the sensor unit communicates with the appropriate repeater unit 110 and provides data regarding the anomalous condition. The repeater unit 110 forwards the data to the base unit 112, and the base unit 112 forwards the information to the computer 113. The computer 113 evaluates the data and takes appropriate action. If the computer 113 determines that the condition is an emergency (e.g., fire, smoke, large quantities of water), then the computer 113 contacts the appropriate personnel 120. If the computer 113 determines that a the situation warrants reporting, but is not an emergency, then the computer 113 logs the data for later reporting. In this way, the sensor system 100 can monitor the conditions in and around the building 101.
[0031] In one embodiment, the sensor unit 102 has an internal power source (e.g., battery, solar cell, fuel cell, etc.). In order to conserve power, the sensor unit 102 is normally placed in a low-power mode. In one embodiment, using sensors that require relatively little power, while in the low power mode the sensor unit 102 takes regular sensor readings and evaluates the readings to determine if an anomalous condition exists. In one embodiment, using sensors that require relatively more power, while in the low power mode the sensor unit 102 takes and evaluates sensor readings at periodic intervals. If an anomalous condition is detected, then the sensor unit 102 "wakes up" and begins communicating with the base unit 112 through the repeater 110. At programmed intervals, the sensor unit 102 also "wakes up" and sends status information (e.g., power levels, self diagnostic information, etc.) to the base unit (or repeater) and then listens for commands for a period of time. In one embodiment, the sensor unit 102 also includes a tamper detector. When tampering with the sensor unit 102 is detected, the sensor unit 102 reports such tampering to the base unit 112. [0032] In one embodiment, the sensor unit 102 provides bi-directional communication and is configured to receive data and/or instructions from the base unit 112. Thus, for example, the base unit 112 can instruct the sensor unit 102 to perform additional measurements, to go to a standby mode, to wake up, to report battery status, to change wakeup interval, to run self-diagnostics and report results, etc. In one embodiment, the sensor unit 102 reports its general health and status on a regular basis (e.g., results of self-diagnostics, battery health, etc.)
[0033] In one embodiment, the sensor unit 102 provides two wake-up modes, a first wake-up mode for taking measurements (and reporting such measurements if deemed necessary), and a second wake-up mode for listening for commands from the central reporting station. The two wake-up modes, or combinations thereof, can occur at different intervals.
[0034] In one embodiment, the sensor unit 102 use spread-spectrum techniques to communicate with the repeater unit 110. In one embodiment, the sensor unit 102 use frequency-hopping spread-spectrum. In one embodiment, the sensor unit 102 has an address or identification (ID) code that distinguishes the sensor unit 102 from the other sensor units. The sensor unit 102 attaches its ID to outgoing communication packets so that transmissions from the sensor unit 102 can be identified by the repeater 110. The repeater 110 attaches the ID of the sensor unit 102 to data and/or instructions that are transmitted to the sensor unit 102. In one embodiment, the sensor unit 102 ignores data and/or instructions that are addressed to other sensor units.
[0035] In one embodiment, the sensor unit 102 includes a reset function. In one embodiment, the reset function is activated by the reset switch 208. In one embodiment, the reset function is active for a prescribed interval of time. During the reset interval, the transceiver 203 is in a receiving mode and can receive the identification code from an external programmer. In one embodiment, the external programmer wirelessly transmits a desired identification code. In one embodiment, the identification code is programmed by an external programmer that is connected to the sensor unit 102 through an electrical connector. In one embodiment, the electrical connection to the sensor unit 102 is provided by sending modulated control signals (power line carrier signals) through a connector used to connect the power source 206. In one embodiment, the external programmer provides power and control signals. In one embodiment, the external programmer also programs the type of sensor(s) installed in the sensor unit. In one embodiment, the identification code includes an area code (e.g., apartment number, zone number, floor number, etc.) and a unit number (e.g., unit 1, 2, 3, etc.).
[0036] In one embodiment, the sensor communicates with the repeater on the 900 MHz band. This band provides good transmission through walls and other-obstacles normally found in and around a building structure. In one embodiment, the sensor communicates with the repeater on bands above and/or below the 900 MHz band. In one embodiment, the sensor, repeater, and/or base unit listen to a radio frequency channel before transmitting on that channel or before beginning transmission. If the channel is in use, (e.g., by another devise such as another repeater, a cordless telephone, etc.) then the sensor, repeater, and/or base unit changes to a different channel. In one embodiment, the sensor, repeater, and/or base unit coordinate frequency hopping by listening to radio frequency channels for interference and using an algorithm to select a next channel for transmission that avoids the interference. Thus, for example, in one embodiment, if a sensor senses a dangerous condition and goes into a continuous transmission mode, the sensor will test (e.g., listen to) the channel before transmission to avoid channels that are blocked, in use, or jammed. In one embodiment, the sensor continues to transmit data until it receives an acknowledgement from the base unit that the message has been received. In one embodiment, the sensor transmits data having a normal priority (e.g., status information) and does not look for an acknowledgement, and the sensor transmits data having elevated priority (e.g., excess smoke, temperature, etc.) until an acknowledgement is received.
[0037] The repeater unit 110 is configured to relay communications traffic between the sensor 102 (and, similarly, the sensor units 103-104) and the base unit 112. The repeater unit 110 typically operates in an environment with several other repeater units (such as the repeater unit 111 in Figure 1) and thus the repeater unit 110 contains a database (e.g., a lookup table) of sensor unit IDs. In Figure 1, the repeater 110 has database entries for the Ids of the sensors 102-104, and thus the sensor 110 will only commumcate with sensor units 102- 104. In one embodiment, the repeater 110 has an internal power source (e.g., battery, solar cell, fuel cell, etc.) and conserves power by maintaining an internal schedule of when the sensor units 102-104 are expected to transmit. In one embodiment, the repeater unit 110 goes to a low-power mode when none of its designated sensor units is scheduled to transmit. In one embodiment, the repeater 110 uses spread-spectrum techniques to communicate with the base unit 112 and with the sensor units 102-104. In one embodiment, the repeater 110 uses frequency-hopping spread-spectrum to communicate with the base unit 112 and the sensor units 102-104. In one embodiment, the repeater unit 110 has an address or identification (ID) code and the repeater unit 110 attaches its address to outgoing communication packets that originate in the repeater (that is, packets that are not being forwarded). In one embodiment, the repeater unit 110 ignores data and/or instructions that are addressed to other repeater units or to sensor units not serviced by the repeater 110.
[0038] In one embodiment, the base unit 112 communicates with the sensor unit 102 by transmitting a communication packet addressed to the sensor unit 102. The repeaters 110 and 111 both receive the communication packet addressed to the sensor unit 102. The repeater unit 111 ignores the communication packet addressed to the sensor unit 102. The repeater unit 110 transmits the communication packet addressed to the sensor unit 102 to the sensor unit 102. In one embodiment, the sensor unit 102, the repeater unit 110, and the base unit 112 communicate using Frequency-Hopping Spread Spectrum (FHSS), also known as channel-hopping.
[0039] Frequency-hopping wireless systems offer the advantage of avoiding other interfering signals and avoiding collisions. Moreover, there are regulatory advantages given to systems that do not transmit continuously at one frequency. Channel-hopping transmitters change frequencies after a period of continuous transmission, or when interference is encountered. These systems may have higher transmit power and relaxed limitations on in- band spurs. FCC regulations limit transmission time on one channel to 400 milliseconds (averaged over 10-20 seconds depending on channel bandwidth) before the transmitter must change frequency. There is a minimum frequency step when changing channels to resume transmission. If there are 25 to 49 frequency channels, regulations allow effective radiated power of 24 dBm, spurs must be -20 dBc, and harmonics must be -41.2 dBc. With 50 or more channels, regulations allow effective radiated power to be up to 30 dBm.
[0040] In one embodiment, the sensor unit 102, the repeater unit 110, and the base unit 112 commumcate using FHSS wherein the frequency hopping of the sensor unit 102, the repeater unit 110, and the base unit 112 are not synchronized such that at any given moment, the sensor unit 102 and the repeater unit 110 are on different channels. In such a system, the base unit 112 communicates with the sensor unit 102 using the hop frequencies synchronized to the repeater unit 110 rather than the sensor unit 102. The repeater unit 110 then forwards the data to the sensor unit using hop frequencies synchronized to the sensor unit 102. Such a system largely avoids collisions between the transmissions by the base unit 112 and the repeater unit 110.
[0041] In one embodiment, the sensor units 102-106 all use FHSS and the sensor units 102-106 are not synchronized. Thus, at any given moment, it is unlikely that any two or more of the sensor units 102-106 will transmit on the same frequency. In this manner, collisions are largely avoided. In one embodiment, collisions are not detected but are tolerated by the system 100. If a collisions does occur, data lost due to the collision is effectively re-transmitted the next time the sensor units transmit sensor data. When the sensor units 102-106 and repeater units 110-111 operate in asynchronous mode, then a second collision is highly unlikely because the units causing the collisions have hopped to different channels. In one embodiment, the sensor units 102-106, repeater units 110-110, and the base unit 112 use the same hop rate. In one embodiment, the sensor units 102-106, repeater units 110-110, and the base unit 112 use the same pseudo-random algorithm to control channel hopping, but with different starting seeds. In one embodiment, the starting seed for the hop algorithm is calculated from the ID of the sensor units 102-106, repeater units 110-110, or the base unit 112.
[0042] In an alternative embodiment, the base unit communicates with the sensor unit 102 by sending a communication packet addressed to the repeater unit 110, where the packet sent to the repeater unit 110 includes the address of the sensor unit 102. The repeater unit 102 extracts the address of the sensor unit 102 from the packet and creates and transmits a packet addressed to the sensor unit 102.
[0043] In one embodiment, the repeater unit 110 is configured to provide bidirectional communication between its sensors and the base unit 112. In one embodiment, the repeater 110 is configured to receive instructions from the base unit 110. Thus, for example, the base unit 112 can instruct the repeater to: send commands to one or more sensors; go to standby mode; "wake up"; report battery status; change wake-up interval; run self-diagnostics and report results; etc.
[0044] The base unit 112 is configured to receive measured sensor data from a number of sensor units either directly, or through the repeaters 110-111. The base unit 112 also sends commands to the repeater units 110-111 and/or to the sensor units 110-111. In one embodiment, the base unit 112 communicates with a diskless computer 113 that runs off of a CD-ROM. When the base unit 112 receives data from a sensor unit 102-111 indicating that there may be an emergency condition (e.g., a fire or excess smoke, temperature, water, etc.) the computer 113 will attempt to notify the responsible party 120.
[0045] In one embodiment, the computer 1 12 maintains a database of the health, power status (e.g., battery charge), and current operating status of all of the sensor units 102- 106 and the repeater units 110-111. In one embodiment, the computer 113 automatically performs routine maintenance by sending commands to each sensor unit 102-106 to run a self-diagnostic and report the results. The computer 113 collects and logs such diagnostic results. In one embodiment, the computer 113 sends instructions to each sensor unit 102-106- telling the sensor how long to wait between "wakeup" intervals. In one embodiment, the computer 113 schedules different wakeup intervals to different sensor unit 102-106 based on the sensor unit's health, power status, location, etc. In one embodiment, the computer 113 schedules different wakeup intervals to different sensor unit 102-106 based on the type of data and urgency of the data collected by the sensor unit (e.g., sensor units that have smoke and/or temperature sensors produce data that should be checked relatively more often than sensor units that have humidity or moisture sensors). In one embodiment, the base unit sends instructions to repeaters to route sensor information around a failed repeater.
[0046] In one embodiment, the computer 113 produces a display that tells maintenance personnel which sensor units 102-106 need repair or maintenance. In one embodiment, the computer 113 maintains a list showing the status and/or location of each sensor according to the ID of each sensor.
[0047] In one embodiment, the sensor units 102-106 and /or the repeater units 110-111 measure the signal strength of the wireless signals received (e.g., the sensor unit 102 measures the signal strength of the signals received from the repeater unit 110, the repeater unit 110 measures the signal strength received from the sensor unit 102 and/or the base unit 112). The sensor units 102-106 and /or the repeater units 110-111 report such signal strength measurement back to the computer 113. The computer 113 evaluates the signal strength measurements to ascertain the health and robustness of the sensor system 100. In one embodiment, the computer 113 uses the signal strength information to re-route wireless communications traffic in the sensor system 100. Thus, for example, if the repeater unit 110 goes offline or is having difficulty communicating with the sensor unit 102, the computer 113 can send instructions to the repeater unit 111 to add the ID of the sensor unit 102 to the database of the repeater unit 111 (and similarly, send instructions to the repeater unit 110 to remove the ID of the sensor unit 102), thereby routing the traffic for the sensor unit 102 through the router unit 111 instead of the router unit 110. [0048] Figure 2 is a block diagram of the sensor unit 102. In the sensor unit 102, one or more sensors 201 and a transceiver 203 are provided to a controller 202. The controller 202 typically provides power, data, and control information to the sensor(s) 201 and the transceiver 202. A power source 206 is provided to the controller 202. An optional tamper sensor 205 is also provided to the controller 202. A reset device (e.g., a switch) 208 is proved to the controller 202. In one embodiment, an optional audio output device 209 is provided. In one embodiment, the sensor 201 is configured as a plug-in module that can be replaced relatively easily.
[0049] In one embodiment, the transceiver 203 is based on a TRF 6901 transceiver chip from Texas Instruments. Inc. In one embodiment, the controller 202 is a~ conventional programmable microcontroller. In one embodiment, the controller 202 is based on a Field Programmable Gate Array (FPGA), such as, for example, provided by Xilinx Corp. In one embodiment, the sensor 201 includes an optoelectric smoke sensor with a smoke chamber. In one embodiment, the sensor 201 includes a thermistor. In one embodiment, the sensor 201 includes a humidity sensor. In one embodiment, the sensor 201 includes an sensor, such as, for example, a water level sensor, a water temperature sensor, a carbon monoxide sensor, a moisture sensor, a water flow sensor, natural gas sensor, propane sensor, etc.
[0050] The controller 202 receives sensor data from the sensor(s) 201. Some sensors 201 produce digital data. However, for many types of sensors 201, the sensor data is analog data. Analog sensor data is converted to digital format by the controller 202. In one embodiment, the controller evaluates the data received from the sensor(s) 201 and determines whether the data is to be transmitted to the base unit 112. The sensor unit 102 generally conserves power by not transmitting data that falls within a normal range. In one embodiment, the controller 202 evaluates the sensor data by comparing the data value to a threshold value (e.g., a high threshold, a low threshold, or a high-low threshold). If the data is outside the threshold (e.g., above a high threshold, below a low threshold, outside an inner range threshold, or inside an outer range threshold), then the data is deemed to be anomalous and is transmitted to the base unit 112. In one embodiment, the data threshold is programmed into the controller 202. In one embodiment, the data threshold is programmed by the base unit 112 by sending instructions to the controller 202. In one embodiment, the controller 202 obtains sensor data and transmits the data when commanded by the computer 113.
[0051] In one embodiment, the tamper sensor 205 is configured as a switch that detects removal of or tampering with the sensor unit 102.
[0052] Figure 3 is a block diagram of the repeater unit 110. In the repeater unit 110, a first transceiver 302 and a second transceiver 305 are provided to a controller 303. The controller 303 typically provides power, data, and control information to the transceivers 302, 304. A power source 306 is provided to the controller 303. An optional tamper sensor (not shown) is also provided to the controller 303.
[0053] When relaying sensor data to the base unit 112, the controller 303 receives data from the first transceiver 303 and provides the data to the second transceiver 304. When relaying instructions from the base unit 112 to a sensor unit, the controller 303 receives data from the second transceiver 304 and provides the data to the first transceiver 302. In one embodiment, the controller 303 conserves power by powering-down the transceivers 302, 304 during periods when the controller 303 is not expecting data. The controller 303 also monitors the power source 306 and provides status information, such as, for example, self- diagnostic information and/or information about the health of the power source 306, to the base unit 112. In one embodiment, the controller 303 sends status information to the base unit 112 at regular intervals. In one embodiment, the controller 303 sends status information to the base unit 112 when requested by the base unit 112. In one embodiment, the controller 303 sends status information to the base unit 112 when a fault condition (e.g., battery low) is detected.
[0054] In one embodiment, the controller 303 includes a table or list of identification codes for wireless sensor units 102. The repeater 303 forwards packets received from, or sent to, sensor units 102 in the list. In one embodiment, the repeater 110 receives entries for the list of sensor units from the computer 113. In one embodiment, the controller 303 determines when a transmission is expected from the sensor units 102 in the table of sensor units and places the repeater 110 (e.g., the transceivers 302, 304) in a low-power mode when no transmissions are expected from the transceivers on the list. In one embodiment, the controller 303 recalculates the times for low-power operation when a command to change reporting interval is forwarded to one of the sensor units 102 in the list (table) of sensor units or when a new sensor unit is added to the list (table) of sensor units.
[0055] Figure 4 is a block diagram of the base unit 112. In the base unit 112, a transceiver 402 and a computer interface 404 are provided to a controller 403. The controller 303 typically provides data and control information to the transceivers 402 and to the interface. The interface 402 is provided to a port on the monitoring computer 113. The interface 402 can be a standard computer data interface, such as, for example, Ethernet, wireless Ethernet, firewire port, Universal Serial Bus (USB) port, bluetooth, etc.
[0056] Figure 5 shows one embodiment a communication packet 500 used by the sensor units, repeater units, and the base unit. The packet 500 includes a preamble portion 501, an address (or ID) portion 502, a data payload portion 503, and an integrity portion 504. in one embodiment, the integrity portion 504 includes a checksum. In one embodiment, the sensor units 102-106, the repeater units 110-111, and the base unit 112 communicate using packets such as the packet 500. In one embodiment, the packets 500 are transmitted using FHSS.
[0057] In one embodiment, the data packets that travel between the sensor unit 102, the repeater unit 111, and the base unit 112 are encrypted. In one embodiment, the data packets that travel between the sensor unit 102, the repeater unit 111, and the base unit 112 are encrypted and an authentication code is provided in the data packet so that the sensor unit 102, the repeater unit, and/or the base unit 112 can verify the authenticity of the packet. [0058] In one embodiment the address portion 502 includes a first code and a second code. In one embodiment, the repeater 111 only examines the first code to determine if the packet should be forwarded. Thus, for example, the first code can be interpreted as a building (or building complex) code and the second code interpreted as a subcode (e.g., an apartment code, area code, etc.). A repeater that uses the first code for forwarding thus forwards packets having a specified first code (e.g., corresponding to the repeater's building or building complex). Thus alleviates the need to program a list of sensor units 102 into a repeater, since a group of sensors in a building will typically all have the same first code but different second codes. A repeater so configured, only needs to know the first code to forward packets for any repeater in the building or building complex. This does, however, raise the possibility that two repeaters in the same building could try to forward packets for the same sensor unit 102. In one embodiment, each repeater waits for a programmed delay period before forwarding a packet. Thus reducing the chance of packet collisions at the base unit (in the case of sensor unit to base unit packets) and reducing the chance of packet collisions at the sensor unit (in the case of base unit to sensor unit packets). In one embodiment, a delay period is programmed into each repeater. In one embodiment, delay periods are preprogrammed onto the repeater units at the factory or during installation. In one embodiment, a delay period is programmed into each repeater by the base unit 112. In one embodiment, a repeater randomly chooses a delay period. In one embodiment, a repeater randomly chooses a delay period for each forwarded packet. In one embodiment, the first code is at least 6 digits. In one embodiment, the second code is at least 5 digits.
[0059] In one embodiment, the first code and the second code are programmed into each sensor unit at the factory. In one embodiment, the first code and the second code are programmed when the sensor unit is installed. In one embodiment, the base unit 112 can re- program the first code and/or the second code in a sensor unit.
[0060] In one embodiment, collisions are further avoided by configuring each repeater unit 111 to begin transmission on a different frequency channel. Thus, if two repeaters attempt to begin transmission at the same time, the repeaters will not interfere with each other because the transmissions will begin on different channels (frequencies).
[0061] Figure 6 is a flowchart showing one embodiment of the operation of the sensor unit 102 wherein relatively continuous monitoring is provided. In Figure 6, a power up block 601 is followed by an initialization block 602. After initialization, the sensor unit 102 checks for a fault condition (e.g., activation of the tamper sensor, low battery, internal fault, etc.) in a block 603. A decision block 604 checks the fault status. If a fault has occurred, then the process advances to a block 605 were the fault information is transmitted to the repeater 110 (after which, the process advances to a block 612); otherwise, the process advances to a block 606. In the block 606, the sensor unit 102 takes a sensor reading from the sensor(s) 201. The sensor data is subsequently evaluated in a block 607. If the sensor data is abnormal, then the process advances to a transmit block 609 where the sensor data is transmitted to the repeater 110 (after which, the process advances to a block 612); otherwise, the process advances to a timeout decision block 610. If the timeout period has not elapsed, then the process returns to the fault-check block 603; otherwise, the process advances to a transmit status block 611 where normal status information is transmitted to the repeater 110. In one embodiment, the normal status information transmitted is analogous to a simple "ping" which indicates that the sensor unit 102 is functioning normally. After the block 611, the process proceeds to a block 612 where the sensor unit 102 momentarily listens for instructions from the monitor computer 113. If an instruction is received, then the sensor unit 102 performs the instructions, otherwise, the process returns to the status check block 603. In one embodiment, transceiver 203 is normally powered down. The controller 202 powers up the transceiver 203 during execution of the blocks 605, 609, 611, and 612. The monitoring computer 113 can send instructions to the sensor unit 102 to change the parameters used to evaluate data used in block 607, the listen period used in block 612, etc.
[0062] Relatively continuous monitoring, such as shown in Figure 6, is appropriate for sensor units that sense relatively high-priority data (e.g., smoke, fire, carbon monoxide, flammable gas, etc.). By contrast, periodic monitoring can be used for sensors that sense relatively lower priority data (e.g., humidity, moisture, water usage, etc.). Figure 7 is a flowchart showing one embodiment of operation of the sensor unit 102 wherein periodic monitoring is provided. In Figure 7, a power up block 701 is followed by an initialization block 702. After initialization, the sensor unit 102 enters a low-power sleep mode. If a fault occurs during the sleep mode (e.g., the tamper sensor is activated), then the process enters a wake-up block 704 followed by a transmit fault block 705. If no fault occurs during the sleep period, then when the specified sleep period has expired, the process enters a block 706 where the sensor unit 102 takes a sensor reading from the sensor(s) 201. The sensor data is subsequently sent to the monitoring computer 113 in a report block 707. After reporting, the sensor unit 102 enters a listen block 708 where the sensor unit 102 listens for a relatively short period of time for instructions from monitoring computer 708: If an instruction is received, then the sensor unit 102 performs the instructions, otherwise, the process returns to the sleep block 703. In one embodiment, the sensor 201 and transceiver 203 are normally powered down. The controller 202 powers up the sensor 201 during execution of the block 706. The controller 202 powers up the transceiver during execution of the blocks 705, 707, and 708. The monitoring computer 113 can send instructions to the sensor unit 102 to change the sleep period used in block 703, the listen period used in block 708, etc.
[0063] In one embodiment, the sensor unit transmits sensor data until a handshaking-type acknowledgement is received. Thus, rather than sleep of no instructions or acknowledgements are received after transmission (e.g., after the decision block 613 or 709) the sensor unit 102 retransmits its data and waits for an acknowledgement. The sensor unit 102 continues to transmit data and wait for an acknowledgement until an acknowledgement is received. In one embodiment, the sensor unit accepts an acknowledgement from a repeater unit 111 and it then becomes the responsibility of the repeater unit 111 to make sure that the data is forwarded to the base unit 112. In one embodiment, the repeater unit 111 does not generate the acknowledgement, but rather forwards an acknowledgement from the base unit 112 to the sensor unit 102. The two-way communication ability of the sensor unit 102 provides the capability for the base unit 112 to control the operation of the sensor unit 102 and also provides the capability for robust handshaking-type communication between the sensor unit 102 and the base unit 112.
[0064] Regardless of the normal operating mode of the sensor unit 102 (e.g., using the Flowcharts of Figures 6, 7, or other modes) in one embodiment, the monitoring computer 113 can instruct the sensor unit 102 to operate in a relatively continuous mode where the sensor repeatedly takes sensor readings and transmits the readings to the monitoring computer 113. Such a mode would can be used, for example, when the sensor unit 102 (or a nearby sensor unit) has detected a potentially dangerous condition (e.g., smoke, rapid temperature rise, etc.)
[0065] Figure 8 shows the sensor system used to detect water leaks. In one embodiment, the sensor unit 102 includes a water level sensor and 803 and/or a water temperature sensor 804. The water level sensor 803 and/or water temperature sensor 804 are place, for example, in a tray underneath a water heater 801 in order to detect leaks from the water heater 801 and thereby prevent water damage from a leaking water heater. In one embodiment, an temperature sensor is also provide to measure temperature near the water heater. The water level sensor can also be placed under a sink, in a floor sump, etc. In one embodiment, the severity of a leak is ascertained by the sensor unit 102 (or the monitoring computer 113) by measuring the rate of rise in the water level. When placed near the hot water tank 801, the severity of a leak can also be ascertained at least in part by measuring the temperature of the water. In one embodiment, a first water flow sensor is placed in an input water line for the hot water tank 801 and a second water flow sensor is placed in an output water line for the hot water tank. Leaks in the tank can be detected by observing a difference between the water flowing through the two sensors.
[0066] In one embodiment, a remote shutoff valve 810 is provided, so that the monitoring system 100 can shutoff the water supply to the water heater when a leak is detected. In one embodiment, the shutoff valve is controlled by the sensor unit 102. In one embodiment, the sensor unit 102 receives instructions from the base unit 112 to shut off the water supply to the heater 801. In one embodiment, the responsible party 120 sends instructions to the monitoring computer 113 instructing the monitoring computer 113 to send water shut off instructions to the sensor unit 102. Similarly, in one embodiment, the sensor unit 102 controls a gas shutoff valve 811 to shut off the gas supply to the water heater 801 and/or to a furnace (not shown) when dangerous conditions (such as, for example, gas leaks, carbon monoxide, etc.) are detected. In one embodiment, a gas detector 812 is provided to the sensor unit 102. In one embodiment, the gas detector 812 measures carbon monoxide. In one embodiment, the gas detector 812 measures flammable gas, such as, for example, natural gas or propane.
[0067] In one embodiment, an optional temperature sensor 818 is provided to measure stack temperature. Using data from the temperature sensor 818, the sensor unit 102 reports conditions, such as, for example, excess stack temperature. Excess stack temperature is often indicative of poor heat transfer (and thus poor efficiency) in the water heater 818.
[0068] In one embodiment, an optional temperature sensor 819 is provided to measure temperature of water in the water heater 810. Using data from the temperature sensor 819, the sensor unit 102 reports conditions, such as, for example, over-temperature or under-temperature of the water in the water heater.
[0069] In one embodiment, an optional current probe 821 is provided to measure electric current provided to a heating element 820 in an electric water heater. Using data from the current probe 821, the sensor unit 102 reports conditions, such as, for example, no current (indicating a burned-out heating element 820). An over-current condition often indicates that the heating element 820 is encrusted with mineral deposits and needs to be replaced or cleaned. By measuring the current provided to the water heater, the monitoring system can measure the amount of energy provided to the water heater and thus the cost of hot water, and the efficiency of the water heater. [0070] In one embodiment, the sensor 803 includes a moisture sensor. Using data from the moisture sensor, the sensor unit 102 reports moisture conditions, such as, for example, excess moisture that would indicate a water leak, excess condensation, etc.
[0071] In one embodiment, the sensor unit 102 is provided to a moisture sensor (such as the sensor 803) located near an air conditioning unit. Using data from the moisture sensor, the sensor unit 102 reports moisture conditions, such as, for example, excess moisture that would indicate a water leak, excess condensation, etc.
[0072] In one embodiment, the sensor 201 includes a moisture sensor. The moisture sensor can be place under a sink or a toilet (to detect plumbing leaks) or in an attic space (to detect roof leaks).
[0073] Excess humidity in a structure can cause sever problems such as rotting, growth of molds, mildew, and fungus, etc. (hereinafter referred to generically as fungus). In one embodiment, the sensor 201 includes a humidity sensor. The humidity sensor can be place under a sink, in an attic space, etc. to detect excess humidity (due to leaks, condensation, etc.). In one embodiment, the monitoring computer 113 compares humidity measurements taken from different sensor units in order to detect areas that have excess humidity. Thus for example, the monitoring computer 113 can compare the humidity readings from a first sensor unit 102 in a first attic area, to a humidity reading from a second sensor unit 102 in a second area. For example, the monitoring computer can take humidity readings from a number of attic areas to establish a baseline humidity reading and then compare the specific humidity readings from various sensor units to determine if one or more of the units are measuring excess humidity. The monitoring computer 113 would flag areas of excess humidity for further investigation by maintenance personnel. In one embodiment, the monitoring computer 113 maintains a history of humidity readings for various sensor units and flags areas that show an unexpected increase in humidity for investigation by maintenance personnel. [0074] In one embodiment, the monitoring system 100 detects conditions favorable for fungus (e.g., mold, mildew, fungus, etc.) growth by using a first humidity sensor located in a first building area to produce first humidity data and a second humidity sensor located in a second building area to produce second humidity data. The building areas can be, for example, areas near a sink drain, plumbing fixture, plumbing, attic areas, outer walls, a bilge area in a boat, etc.
[0075] The monitoring station 113 collects humidity readings from the first humidity sensor and the second humidity sensor and indicates conditions favorable for fungus growth by comparing the first humidity data and the second humidity data. In one embodiment, the monitoring station 113 establishes a baseline humidity by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity by a specified amount. In one embodiment, the monitoring station 113 establishes a baseline humidity by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity by a specified percentage.
[0076] In one embodiment, the monitoring station 113 establishes a baseline humidity history by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity history by a specified amount over a specified period of time. In one embodiment, the monitoring station 113 establishes a baseline humidity history by comparing humidity readings from a plurality of humidity sensors over a period of time and indicates possible fungus growth conditions in the first building area when at least a portion of the first humidity data exceeds the baseline humidity by a specified percentage of a specified period of time. [0077] In one embodiment, the sensor unit 102 transmits humidity data when it determines that the humidity data fails a threshold test. In one embodiment, the humidity threshold for the threshold test is provided to the sensor unit 102 by the monitoring station 113. In one embodiment, the humidity threshold for the threshold test is computed by the monitoring station from a baseline humidity established in the monitoring station. In one embodiment, the baseline humidity is computed at least in part as an average of humidity readings from a number of humidity sensors. In one embodiment, the baseline humidity is computed at least in part as a time average of humidity readings from a number of humidity sensors. In one embodiment, the baseline humidity is computed at least in part as a time average of humidity readings from a humidity sensor. In one embodiment, the baseline humidity is computed at least in part as the lesser of a maximum humidity reading an average of a number of humidity readings.
[0078] In one embodiment, the sensor unit 102 reports humidity readings in response to a query by the monitoring station 113. In one embodiment, the sensor unit 102 reports humidity readings at regular intervals. In one embodiment, a humidity interval is provided to the sensor unit 102 by the monitoring station 113.
[0079] In one embodiment, the calculation of conditions for fungus growth is comparing humidity readings from one or more humidity sensors to the baseline (or reference) humidity. In one embodiment, the comparison is based on comparing the humidity readings to a percentage (e.g., typically a percentage greater than 100%) of the baseline value. In one embodiment, the comparison is based on comparing the humidity readings to a specified delta value above the reference humidity. In one embodiment, the calculation of likelihood of conditions for fungus growth is based on a time history of humidity readings, such that the longer the favorable conditions exist, the greater the likelihood of fungus growth. In one embodiment, relatively high humidity readings over a period of time indicate a higher likelihood of fungus growth than relatively high humidity readings for short periods of time. In one embodiment, a relatively sudden increase in humidity as compared to a baseline or reference humidity is reported by the monitoring station 113 as a possibility of a water leak. If the relatively high humidity reading continues over time then the relatively high humidity is reported by the monitoring station 113 as possibly being a water leak and/or an area likely to have fungus growth or water damage.
[0080] Temperatures relatively more favorable to fungus growth increase the likelihood of fungus growth. In one embodiment, temperature measurements from the building areas are also used in the fungus grown-likelihood calculations. In one embodiment, a threshold value for likelihood of fungus growth is computed at least in part as a function of temperature, such that temperatures relatively more favorable to fungus growth result in a relatively lower threshold than temperatures relatively less favorable for fungus growth. In one embodiment, the calculation of a likelihood of fungus growth depends at least in part on temperature such that temperatures relatively more favorable to fungus growth indicate a relatively higher likelihood of fungus growth than temperatures relatively less favorable for fungus growth. Thus, in one embodiment, a maximum humidity and/or minimum threshold above a reference humidity is relatively lower for temperature more favorable to fungus growth than the maximum humidity and/or minimum threshold above a reference humidity for temperatures relatively less favorable to fungus growth.
[0081] In one embodiment, a water flow sensor is provided to the sensor unit 102. The sensor unit 102 obtains water flow data from the water flow sensor and provides the water flow data to the monitoring computer 113. The monitoring computer 113 can then calculate water usage. Additionally, the monitoring computer can watch for water leaks, by, for example, looking for water flow when there should be little or no flow. Thus, for example, if the monitoring computer detects water usage throughout the night, the monitoring computer can raise an alert indicating that a possible water leak has occurred.
[0082] In one embodiment, the sensor 201 includes a water flow sensor is provided to the sensor unit 102. The sensor unit 102 obtains water flow data from the water flow sensor and provides the water flow data to the monitoring computer 113. The monitoring computer 113 can then calculate water usage. Additionally, the monitoring computer can watch for water leaks, by, for example, looking for water flow when there should be little or no flow. Thus, for example, if the monitoring computer detects water usage throughout the night, the monitoring computer can raise an alert indicating that a possible water leak has occurred.
[0083] In one embodiment, the sensor 201 includes a fire-extinguisher tamper sensor is provided to the sensor unit 102. The fire-extinguisher tamper sensor reports tampering with or use of a fire-extinguisher. In one embodiment the fire-extinguisher temper sensor reports that the fire extinguisher has been removed from its mounting, that a fire extinguisher compartment has been opened, and/or that a safety lock on the fire extinguisher has been removed.
[0084] It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributed thereof; furthermore, various omissions, substitutions and changes may be made without departing from the spirit of the inventions. For example, although specific embodiments are described in terms of the 900 MHz frequency band, one of ordinary skill in the art will recognize that frequency bands above and below 900 MHz can be used as well. The wireless system can be configured to operate on one or more frequency bands, such as, for example, the HF band, the VHF band, the UHF band, the Microwave band, the Millimeter wave band, etc. One of ordinary skill in the art will further recognize that techniques other than spread spectrum can also be used and/or can be use instead spread spectrum. The modulation uses is not limited to any particular modulation method, such that modulation scheme used can be, for example, frequency modulation, phase modulation, amplitude modulation, combinations thereof, etc. The foregoing description of the embodiments is therefore to be considered in all respects as illustrative and not restrictive, with the scope of the invention being delineated by the appended claims and their equivalents.

Claims

WHAT IS CLAIMED IS: 1. A wireless sensor system, comprising: one or more wireless sensor units, each of said one or more wireless sensor units comprising at least one sensor configured to measure a condition, said wireless sensor unit configured to receive instructions; said wireless sensor unit configured to report data measured by said at least one sensor when said wireless sensor determines that data measured by said at least one sensor fails a threshold test, said one or more wireless sensor units operating in a low-power mode when not transmitting or receiving data, said one or more wireless sensors configured to transmit status information at regular intervals; one or more wireless repeater units, each of said one or more wireless sensor units configured to communicate with at least one of said one or more wireless repeater units, each wireless sensor unit configured to send communication packets comprising an identification field, each of said one or more wireless repeater units configured to communicate with a selected subset of said one or more wireless sensor units, said one or more wireless sensor units configured to communicate with said one or more wireless repeater units using frequency-hopping techniques to avoid collisions; a base unit configured to communicate with said one or more wireless router units and to provide data from said one or more sensor units to a monitoring computer, said monitoring computer configured to send a notification to a responsible party when data from one or more of said wireless sensor units corresponds to an emergency condition, said monitoring computer configured to log data from one or more of said wireless sensor units when said data from one or more of said wireless sensor units corresponds to an abnormal condition.
2. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a smoke sensor.
3. The wireless sensor system of Claim 1, wherein said at least one sensor comprises an air temperature sensor.
4. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a water-level sensor.
5. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a water-temperature sensor.
6. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a moisture sensor.
7. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a humidity sensor.
8. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a carbon monoxide sensor.
9. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a flammable gas sensor.
10. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a door-open sensor.
11. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a broken- window sensor.
12. The wireless sensor system of Claim 1, wherein said at least one sensor comprises an intrusion sensor.
13. The wireless sensor system of Claim 1, wherein said at least one sensor comprises a power-failure sensor.
14. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by telephone.
15. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by cellular telephone.
16. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by cellular text messaging.
17. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by pager.
18. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by Internet.
19. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by email.
20. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to attempt to contact said responsible party by Internet instant messaging.
21. The wireless sensor system of Claim 1, wherein said monitoring computer comprises a diskless computer.
22. The wireless sensor system of Claim 1, wherein said threshold test comprises a high threshold level.
23. The wireless sensor system of Claim 1, wherein said threshold test comprises a low threshold level.
24. The wireless sensor system of Claim 1, wherein said threshold test comprises an inner threshold range.
25. The wireless sensor system of Claim 1, wherein said threshold test comprises an outer threshold range.
26. The wireless sensor system of Claim 1, wherein said one or more wireless sensor units comprise a tamper sensor and an ambient condition sensor.
27. The wireless sensor system of Claim 1, wherein said one or more wireless sensor units are configured to receive an instruction to change a status reporting interval.
28. The wireless sensor system of Claim 1, wherein said one or more wireless sensor units are configured to receive an instruction to change a sensor data reporting interval.
29. The wireless sensor system of Claim 1, wherein said monitoring computer is configured to monitor status of each of said one or more wireless sensors.
30. A wireless ambient sensor unit, comprising: a frequency-hopping spread spectrum transceiver configured to transmit sensor data and to receive instructions; at least one sensor configured to measure an ambient condition; and a controller configured to control said transceiver and said at least one sensor, said wireless sensor unit configured to report data measured by said at least one sensor when said wireless sensor unit determines that data measured by said at least one sensor fails a threshold test, said sensor unit configured to operate in a low-power mode when not transmitting data or receiving instructions, said sensor unit configured to transmit status information at regular intervals and to enter a receive mode for a period after transmitting said status information, said sensor unit having an identification code and configured to implement instructions addressed to the sensor unit according to said identification code.
31. The wireless ambient sensor unit of Claim 30,- wherein said at least one sensor comprises a smoke sensor.
32. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises an air temperature sensor.
33. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a water-level sensor.
34. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a water-temperature sensor.
35. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a moisture sensor.
36. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a humidity sensor.
37. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a carbon monoxide sensor.
38. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a flammable gas sensor.
39. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a door-open sensor.
40. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a broken- window sensor.
41. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises an intrusion sensor.
42. The wireless ambient sensor unit of Claim 30, wherein said at least one sensor comprises a power-failure sensor.
43. The wireless ambient sensor unit of Claim 30, wherein said threshold test comprises a high threshold level.
44. The wireless ambient sensor unit of Claim 30, wherein said threshold test comprises a low threshold level.
45. The wireless ambient sensor unit of Claim 30, wherein said threshold test comprises an inner threshold range.
46. The wireless ambient sensor unit of Claim 30, wherein said threshold test comprises an outer threshold range.
47. The wireless ambient sensor unit of Claim 30, wherein said wireless sensor units further comprises a tamper sensor.
48. The wireless ambient sensor unit of Claim 30, wherein said wireless sensor unit is configured to receive an instruction to change a status reporting interval.
49. The wireless ambient sensor unit of Claim 30, wherein said wireless sensor unit is configured to receive an instruction to change a sensor data reporting interval.
50. The wireless ambient sensor unit of Claim 30, further comprising a reset switch to activate a reset function, said ambient sensor unit configured to receive said identification code during a prescribed interval of time after activation of said reset function.
51. The wireless ambient sensor unit of Claim 30, further configured to receive said identification code during a reset interval.
52. The wireless ambient sensor unit of Claim 30, further configured to receive said identification code wirelessly during a reset interval.
53. The wireless ambient sensor unit of Claim 30, further configured to receive said identification code using battery connections during a reset interval.
54. A wireless ambient sensor unit, comprising: a frequency-hopping spread spectrum transceiver configured to transmit sensor data and to receive instructions; means for sensing an ambient condition; and a controller configured to control said transceiver and said at least one sensor, said wireless sensor unit configured to report data measured by said means for sensing when said wireless sensor unit determines that data measured by said means for sensing fails a threshold test, said sensor unit configured to operate in a low-power mode when not transmitting data or receiving instructions, said sensor unit configured to transmit status information at regular intervals and to enter a receive mode for a period after transmitting said status information, said sensor unit having an identification code and configured to implement instructions addressed to the sensor unit according to said identification code.
55. The wireless ambient sensor unit of Claim 54, wherein said threshold test comprises a high threshold level.
56. The wireless ambient sensor unit of Claim 54, wherein said threshold test comprises a low threshold level.
57. The wireless ambient sensor unit of Claim 54, wherein said threshold test comprises an inner threshold range.
58. The wireless ambient sensor unit of Claim 54, wherein said threshold test comprises an outer threshold range.
59. The wireless ambient sensor unit of Claim 54, wherein said wireless sensor units further comprises a tamper sensor.
60. The wireless ambient sensor unit of Claim 54, wherein said wireless sensor unit is configured to receive an instruction to change a status reporting interval.
61. The wireless ambient sensor unit of Claim 54, wherein said wireless sensor unit is configured to receive an instruction to change a sensor data reporting interval.
62. The wireless ambient sensor unit of Claim 54, further comprising reset means to activate a reset function, said ambient sensor unit configured to receive said identification code during a prescribed interval of time after activation of said reset function.
63. The wireless ambient sensor unit of Claim 54, further configured to receive said identification code during a reset interval.
64. The wireless ambient sensor unit of Claim 54, further configured to receive said identification code wirelessly during a reset interval.
65. The wireless ambient sensor unit of Claim 54, further configured to receive said identification code using battery connections during a reset interval.
66. A wireless repeater for an ambient sensor system, comprising: a first frequency-hopping transceiver configured to commumcate with a plurality of sensor units, each sensor unit having a sensor unit identification code used to identify transmissions from the sensor unit; a second frequency-hopping transceiver configured to communicate with a base unit; and a controller configured to control operation of said first transceiver and said second transceiver, said wireless repeater having a repeater identification, said controller configured to manage a sensor unit identification table that contains a list of sensor unit identification codes, where entries for said sensor unit identification table are received by said second transceiver from said base unit and identified by said repeater identification, said confroller configured to control said first transceiver and said second transceiver to forward data from sensor units listed in said sensor unit identification table and to ignore data from sensor units not listed in said sensor unit identification table, said controller configured to control said first transceiver and said second transceiver to forward data from said base unit that is addressed to sensor units listed in said sensor unit identification table and to ignore data from said base unit that is addressed to sensor units not listed in said sensor unit identification table, said controller configured to place said first transceiver and said second transceiver in a low-power mode when no transmissions are expected from said base unit or from sensor units listed in said sensor identification table.
67. The wireless repeater of Claim 66, said wireless repeater further comprising a tamper sensor.
68. The wireless repeater of Claim 66, further configured to receive an instruction to change a status reporting interval.
69. The wireless repeater of Claim 66, wherein said wireless repeater is configured to change low-power intervals according to an instruction to change a sensor data reporting interval.
70. The wireless repeater of Claim 66, further comprising reset means to activate a reset function, said repeater configured to receive said repeater identification code during a prescribed interval of time after activation of said reset function.
71. The wireless ambient sensor unit of Claim 66, further configured to receive said repeater identification code during a reset interval.
72. The wireless ambient sensor unit of Claim 66, further configured to receive said identification code wirelessly during a reset interval.
73. The wireless ambient sensor unit of Claim 66, further configured to receive said identification code using battery connections during a reset interval.
74. A wireless repeater for an ambient sensor system, comprising: first means for wireless frequency-hopping communication with a plurality of sensor units; second means for wireless frequency-hopping communication with a base unit; and a confroller configured to control operation of said first means and said second means, said wireless repeater having a repeater identification, said controller configured to manage a sensor unit identification table that contains a list of sensor unit identification codes, where entries for said sensor unit identification table are received by said second means from said base unit and identified by said repeater identification, said controller configured to control said first means and said second means to forward data from sensor units listed in said sensor unit identification table and to ignore data from sensor units not listed in said sensor unit identification table, said controller configured to control said first means and said second means to forward data from said base unit that is addressed to sensor units listed in said sensor unit identification table and to ignore data from said base unit that is addressed to sensor units not listed in said sensor unit identification table, said controller configured to place said first means and said second means in a low-power mode when no transmissions are expected from said base unit or from sensor units listed in said sensor identification table.
75. The wireless repeater of Claim 74, said wireless repeater further comprising a tamper sensor.
76. The wireless repeater of Claim 74, further configured to receive an instruction to change a status reporting interval.
77. The wireless repeater of Claim 74, wherein said wireless repeater is configured to change low-power intervals according to an instruction to change a sensor data reporting interval.
78. The wireless repeater of Claim 74, further comprising reset means to activate a reset function, said repeater configured to receive said repeater identification code during a prescribed interval of time after activation of said reset function.
79. The wireless ambient sensor unit of Claim 74, further configured to receive said repeater identification code during a reset interval.
80. The wireless ambient sensor unit of Claim 74, further configured to receive said identification code wirelessly during a reset interval.
81. The wireless ambient sensor unit of Claim 74, further configured to receive said identification code using battery connections during a reset interval.
82. A method of repeating data in a wireless repeater for an ambient sensor system, comprising: programming a repeater identification code; maintaining a sensor unit identification table that contains a list of sensor unit identification codes; received a sensor identification code from a base unit; entering said sensor identification code into said sensor unit identification table; controlling a first transceiver and a second transceiver to forward data from sensor units listed in said sensor unit identification table; ignoring data from sensor units not listed in said sensor unit identification table; controlling said first transceiver and said second transceiver to forward data from said base unit that is addressed to sensor units listed in said sensor unit identification table; placing said first transceiver and said second transceiver in a low- power mode when no fransmissions are expected from said base unit or from sensor units listed in said sensor unit identification table.
83. The method of Claim 82, further comprising sending a tamper message to said base unit when a tamper sensor has been activated.
84. The method of Claim 82, further comprising specifying low-power intervals according to an instruction to change a sensor data reporting interval.
85. The method of Claim 82, further comprising activating a reset function and receiving said repeater identification code during a prescribed interval of time after activation of said reset function.
86. The method of Claim 82, further comprising receiving said repeater identification code during a reset interval.
87. The method of Claim 82, further comprising receiving said repeater identification code wirelessly during a reset interval.
88. The method of Claim 82, further comprising receiving said repeater identification code using batter connections during a reset interval.
89. A wireless sensor monitoring unit, comprising: a base unit configured to commumcate with one or more sensor units, said monitoring computer configured to send a notification to a responsible party when data from one or more of said wireless sensor units corresponds to an abnormal condition , said monitoring computer configured to log data from one or more of said wireless sensor units when said data from one or more of said wireless sensor units corresponds to an abnormal condition, said base unit configured to send an acknowledgements to acknowledge receipt of sensor data from said one or more wireless sensor units, each of said one or more wireless sensor units comprising at least one sensor configured to measure an ambient condition, said wireless sensor unit configured to receive instructions; said wireless sensor unit configured to report data measured by said at least one sensor when said wireless sensor determines that data measured by said at least one sensor fails a threshold test, said one or more wireless sensor units operating in a low-power mode when not transmitting or receiving data, said one or more wireless sensors configured to transmit status information at regular intervals.
90. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a smoke sensor.
91. The wireless sensor system of Claim 89, wherein said at least one sensor comprises an air temperature sensor.
92. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a water-level sensor.
93. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a water-temperature sensor.
94. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a moisture sensor.
95. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a humidity sensor.
96. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a carbon monoxide sensor.
97. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a flammable gas sensor.
98. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a door-open sensor.
99. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a broken-window sensor.
100. The wireless sensor system of Claim 89, wherein said at least one sensor comprises an intrusion sensor.
101. The wireless sensor system of Claim 89, wherein said at least one sensor comprises a power-failure sensor.
102. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by telephone.
103. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by cellular telephone.
104. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by cellular text messaging.
105. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by pager.
106. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by Internet.
107. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by email.
108. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to attempt to contact said responsible party by Internet instant messaging.
109. The wireless sensor system of Claim 89, wherein said monitoring computer comprises a diskless computer.
110. The wireless sensor system of Claim 89, wherein said threshold test comprises a high threshold level.
111. The wireless sensor system of Claim 89, wherein said threshold test comprises a low threshold level.
112. The wireless sensor system of Claim 89, wherein said threshold test comprises an inner threshold range.
113. The wireless sensor system of Claim 89, wherein said threshold test comprises an outer threshold range.
114. The wireless sensor system of Claim 89, wherein said one or more wireless sensor units comprise a tamper sensor and an condition sensor.
115. The wireless sensor system of Claim 89, wherein said one or more wireless sensor units are configured to receive an instruction to change a status reporting interval.
116. The wireless sensor system of Claim 89, wherein said one or more wireless sensor units are configured to receive an instruction to change a sensor data reporting interval.
117. The wireless sensor system of Claim 89, wherein said monitoring computer is configured to monitor status of each of said one or more wireless sensors.
118. The wireless sensor system of Claim 89, wherein said monitoring computer communicates with said wireless sensor units through one or more repeaters.
119. The wireless sensor system of Claim 89, wherein said one or more repeaters recognize said one or more sensor units by a first address code.
120. The wireless sensor system of Claim 89, wherein said monitoring computer recognize said one or more sensor units by a first address code and a second address code.
121. The wireless sensor system of Claim 89, wherein said monitoring computer displays historical sensor data from one or more of said wireless sensor units.
122. A system for detecting conditions favorable for fungus, comprising: a first humidity sensor located in a first building area to produce first humidity data; a second humidity sensor located in a second building area to produce second humidity data; and a processor configured to collect moisture readings from said first humidity sensor and said second humidity sensor, said processor configured to indicate conditions favorable for fungus growth by comparing said first humidity data and said second humidity data.
123. The system of Claim 122, wherein said first processor establishes a baseline humidity by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in said first building area when at least a portion of said first humidity data exceeds said baseline humidity by a specified amount.
124. The system of Claim 122, wherein said first processor establishes a baseline humidity by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in said first building area when at least a portion of said first humidity data exceeds said baseline humidity by a specified percentage.
125. The system of Claim 122, wherein said first processor establishes a baseline humidity history by comparing humidity readings from a plurality of humidity sensors and indicates possible fungus growth conditions in said first building area when at least a portion of said first humidity data exceeds said baseline humidity history by a specified amount over a specified period of time.
126. The system of Claim 122, wherein said first processor establishes a baseline humidity history by comparing humidity readings from a plurality of humidity sensors over a period of time and indicates possible fungus growth conditions in said first building area when at least a portion of said first humidity data exceeds said baseline humidity by a specified percentage of a specified period of time.
127. The system of Claim 122, wherein said first building area comprises an area proximate to sink drain.
128. The system of Claim 122, said first building area comprises an area proximate to a plumbing fixture.
129. The system of Claim 122, wherein said first building area comprises an attic area.
130. The system of Claim 122, wherein said first building area comprises an exterior wall area.
131. The system of Claim 122, further comprising means for wirelessly transmitting data from said first humidity sensor to said processor.
132. The system of Claim 122, said first humidity sensor provided to a sensor unit configured to wireless transmit said first humidity data to said processor.
133. The system of Claim 122, wherein said first humidity sensor is provided to a wireless sensor unit configured to report data measured by said first humidity sensor when said wireless sensor unit determines that said first humidity data fails a threshold test, said wireless sensor unit configured to operating in a low- power mode when not transmitting or receiving data.
134. The system of Claim 122, wherein said first humidity sensor is provided to a wireless sensor unit configured to report data measured by said first humidity sensor when said wireless sensor unit determines that said first humidity data fails a threshold test compared to a baseline humidity setting, said wireless sensor unit configured to receive said baseline humidity setting from said processor.
135. The system of Claim 122, wherein said processor provides said first humidity sensor data and said second humidity sensor data to a monitoring computer than notifies a responsible party.
136. The system of Claim 122, wherein said first humidity sensor is provided to a wireless sensor unit, said wireless sensor unit configured to receive an instruction to change a status reporting interval.
137. The system of Claim 122, wherein said first humidity sensor is provided to a wireless sensor unit, said wireless- sensor unit configured to receive an instruction to change a sensor data reporting interval.
138. The system of Claim 122, wherein said first humidity sensor is provided to a wireless sensor unit, wherein a monitoring computer is configured to monitor a status of said wireless sensor unit.
139. A method for detecting conditions favorable for fungus, comprising: measuring humidity in a first area using a first humidity sensor to obtain first humidity data; measuring humidity in a second area using a second humidity sensor to obtain second humidity data; comparing said first humidity data to a reference humidity established from at least a portion of said second humidity data comparing said first humidity data to said second humidity data; and computing the possibility of conditions favorable to fungus growth in said first area when at least a portion of said first humidity data exceeds a threshold value, said threshold value determined at least in part as a function of said reference humidity.
140. The method of Claim 139, wherein said threshold value is established at least in part as a percentage of said reference humidity.
141. The method of Claim 139, wherein said threshold value is established at least in part as a specified humidity delta above said reference humidity.
142. The method of Claim 139, wherein said threshold value is established at least in part as the lesser of a specified humidity and percentage of said reference humidity.
143. The method of Claim 139, wherein said threshold value is established at least in part as the lesser of a specified maximum humidity and scaled value of said reference humidity.
144. The method of Claim 139, wherein said comparing said first humidity data to a reference humidity comprises a comparison over time.
145. The method of Claim 139, wherein said reference humidity is based at least in part on a time history of humidity measurements.
146. The method of Claim 139, wherein said first area comprises an area proximate to sink drain.
147. The method of Claim 139, said first area comprises an area proximate to a plumbing fixture.
148. The method of Claim 139, wherein said first area comprises an attic area.
149. The method of Claim 139, wherein said first area comprises an exterior wall area.
150. The method of Claim 139, further comprising wirelessly transmitting data from said first humidity sensor to a monitoring station.
151. The method of Claim 139, further comprising transmitting said first humidity data when said first humidity data fails a threshold test, and operating a humidity sensor unit in a low-power mode when not transmitting or receiving data.
152. The method of Claim 139, further comprising receiving a threshold humidity setting from a monitoring station and transmitting at least a portion of said first humidity data when said at least a portion of said first humidity data fails a threshold test compared to said threshold humidity setting.
153. The method of Claim 139, further comprising measuring a temperature in said first area and using temperature measurements in said first area in connection with humidity measurements in said first area to compute a likelihood of fungus growth, wherein a relatively warmer temperature increases a likelihood of fungus growth.
154. The method of Claim 139, further comprising measuring a temperature in said first area and using temperature measurements in said first area in connection with humidity measurements in said first area to adjust said threshold value.
155. The method of Claim 139, further comprising measuring a temperature in said first area, wherein said threshold value is computed at least in part as a function of temperature.
156. The method of Claim 139, wherein said threshold value is computed at least in part as a function of temperature, such that temperatures relatively more favorable to fungus growth result in a relatively lower threshold than temperatures relatively less favorable for fungus growth.
157. The method of Claim 139, wherein said computing the possibility of conditions favorable to fungus growth depends at least in part on a temperature of said first area such that temperatures relatively more favorable to fungus growth indicate a relatively higher likelihood of fungus growth than temperatures relatively less favorable for fungus growth.
158. A system for detecting conditions favorable for fungus, comprising: means for reporting humidity measurements from a first location; means for reporting humidity measurements from a second location; and a processor configured to compute a reference humidity established least a portion of said humidity measurements from said first location, and to indicating the possibility of conditions favorable to fungus growth in said first area when at least a portion of said humidity measurements form said first location exceeds a value determined at least in part as a function of said reference humidity.
159. A system for detecting water leaks, comprising: a moisture sensor; a water level sensor; a water temperature sensor; and a processor configured to collect moisture readings from said moisture sensor, water level readings from said water level sensor, and temperature readings from said water temperature sensor, said processor configured to report a possible water leak when said moisture sensor detects moisture above a moisture threshold value, said processor configured to report a water leak when said water level reading exceeds a water threshold value, said processor configured to report a hot water leak when said temperature reading exceeds a temperature threshold value.
160. The system of Claim 159, further comprising a water shutoff valve, said processor configured to close said water shutoff valve when a water leak or a hot water leak is detected.
161. The system of Claim 159, wherein said moisture sensor, said water level sensor and said water temperature sensor are placed proximate to a water heater.
162. The system of Claim 159, wherein at least one of said moisture sensor, said water level sensor and said water temperature sensor are placed proximate to sink drain.
163. The system of Claim 159, wherein at least one of said moisture sensor, said water level sensor and said water temperature sensor are placed proximate to a plumbing fixture.
164. The system of Claim 159, wherein at least one of said moisture sensor, said water level sensor and said water temperature sensor are placed proximate to a toilet.
165. The system of Claim 159, further comprising means for wirelessly fransmitting data from at least one of said moisture sensor, said water level sensor and said water temperature sensor to a monitoring station.
166. The system of Claim 159, further comprising means for wirelessly transmitting data from at least one of said moisture sensor, said water level sensor and said water temperature sensor to a monitoring station.
167. The system of Claim 166, further comprising means for receiving instructions to close a water shutoff valve from a remote operator.
168. The system of Claim 159, wherein said moisture sensor is provided to a wireless sensor unit configured to report data measured by said moisture sensor when said wireless sensor determines that said moisture data fails a threshold test, said wireless sensor unit configured to operating in a low-power mode when not transmitting or receiving data
169. The system of Claim 159, wherein said water sensor is provided to a wireless sensor unit configured to report data measured by said water sensor when said wireless sensor determines that said water data fails a threshold test, said wireless sensor unit configured to operating in a low-power mode when not transmitting or receiving data
170. The system of Claim 159, wherein said temperature sensor is provided to a wireless sensor unit configured to report data measured by said temperature sensor when said wireless sensor determines that said temperature data fails a threshold test, said wireless sensor unit configured to operating in a low-power mode when not transmitting or receiving data
171. The system of Claim 159, further comprising a flammable gas sensor.
172. The system of Claim 159, further comprising a flammable gas sensor and a gas shutoff valve controlled by said processor.
173. The system of Claim 172, wherein said further comprising a flammable gas sensor and a gas shutoff valve, said processor configured to close said gas shutoff valve when said flammable gas sensor detects flammable gas above a threshold value.
173. The system of Claim 172, wherein said further comprising a flammable gas sensor and a gas shutoff valve, said processor configured to close said gas shutoff valve upon receipt of instructions from a remote operator.
174. The system of Claim 172, wherein said further comprising a flammable gas sensor and a gas shutoff valve, said processor configured to close said gas shutoff valve upon receipt of instructions from a monitoring station.
175. The system of Claim 159, wherein said processor provides sensor data to a monitoring computer than notifies a responsible party.
176. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by telephone.
177. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by cellular telephone.
178. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by cellular text messaging.
179. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by pager.
180. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by internet.
181. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by email.
182. The system of Claim 172, wherein said monitoring computer is configured to attempt to contact said responsible party by Internet instant messaging.
183. The system of Claim 172, further comprising a flammable gas sensor and a gas shutoff valve, said processor configured to close said gas shutoff valve upon receipt of instructions from said responsible party.
184. The system of Claim 159, wherein at least one of said temperature sensor, said water sensor, and said moisture sensor is provided to a wireless sensor unit configured to report sensor data when said wireless sensor determines that said sensor data fails a threshold test, said wireless sensor unit configured to operating in a low-power mode when not transmitting or receiving data
185. The system of Claim 184, wherein said wireless sensor unit is are configured to receive an instruction to change a status reporting interval.
186. The system of Claim 184, wherein said wireless sensor unit is configured to receive an instruction to change a sensor data reporting interval.
187. The system of Claim 184, wherein a monitoring computer is configured to monitor a status of said wireless sensor unit.
188. A method for sensing water leaks, comprising, comprising: measuring moisture data using a moisture sensor; measuring water data using a water sensor; sending said moisture data and said water data to a monitoring station; reporting a possible water leak when said moisture data fails a moisture threshold test; and report a water leak when said water data fails a water threshold test and said temperature data fails a temperature threshold test.
PCT/US2005/016027 2004-05-27 2005-05-06 Wireless sensor system WO2005119609A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MXPA06013587A MXPA06013587A (en) 2004-05-27 2005-05-06 Wireless sensor system.
AU2005251101A AU2005251101A1 (en) 2004-05-27 2005-05-06 Wireless sensor system
CA002566606A CA2566606A1 (en) 2004-05-27 2005-05-06 Wireless sensor system
BRPI0511337-7A BRPI0511337A (en) 2004-05-27 2005-05-06 wireless sensor system, wireless room sensor and wireless sensor monitoring units, wireless repeaters for room sensor system and its repeat method, fungal favorable condition detection systems and method and detection system water leakage and its sensing method
EP05743356A EP1756783A4 (en) 2004-05-27 2005-05-06 Wireless sensor system

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US10/856,390 2004-05-27
US10/856,390 US7102505B2 (en) 2004-05-27 2004-05-27 Wireless sensor system
US10/856,387 US7102504B2 (en) 2004-05-27 2004-05-27 Wireless sensor monitoring unit
US10/856,387 2004-05-27
US10/856,170 2004-05-27
US10/856,170 US7042352B2 (en) 2004-05-27 2004-05-27 Wireless repeater for sensor system
US10/856,717 US7218237B2 (en) 2004-05-27 2004-05-27 Method and apparatus for detecting water leaks
US10/856,395 2004-05-27
US10/856,231 US7142107B2 (en) 2004-05-27 2004-05-27 Wireless sensor unit
US10/856,717 2004-05-27
US10/856,395 US20050262923A1 (en) 2004-05-27 2004-05-27 Method and apparatus for detecting conditions favorable for growth of fungus
US10/856,231 2004-05-27

Publications (2)

Publication Number Publication Date
WO2005119609A2 true WO2005119609A2 (en) 2005-12-15
WO2005119609A3 WO2005119609A3 (en) 2006-07-13

Family

ID=35463594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/016027 WO2005119609A2 (en) 2004-05-27 2005-05-06 Wireless sensor system

Country Status (6)

Country Link
EP (1) EP1756783A4 (en)
AU (1) AU2005251101A1 (en)
BR (1) BRPI0511337A (en)
CA (1) CA2566606A1 (en)
MX (1) MXPA06013587A (en)
WO (1) WO2005119609A2 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129578A2 (en) * 2007-04-20 2008-10-30 Paolo Diprima Gas and water leak detecting system with human presence detector
GB2453602A (en) * 2007-10-11 2009-04-15 Lincoln Ofonansi Integrated multiple detector alarm device connected to a personal computer.
WO2012056212A1 (en) 2010-10-25 2012-05-03 Enecsys Limited Renewable energy monitoring system
CN102723790A (en) * 2012-06-21 2012-10-10 无锡米兰磁传感网络有限公司 Power supply system for wireless traffic sensor
EP2348243A3 (en) * 2009-08-12 2012-12-26 TLV Co., Ltd. Valve-member monitoring system
CN102855737A (en) * 2012-09-06 2013-01-02 江苏科技大学 All-dimensional harmful gas detection alarm device in welding field
GB2518489A (en) * 2013-07-17 2015-03-25 Honeywell Int Inc Surveillance systems and methods
FR3013071A1 (en) * 2013-11-14 2015-05-15 Finsecur DEVICE FOR DESENGINATING A LOCAL, DEVICE FOR SECURING A SITE AND METHOD FOR DEPLOYING A DEVICE FOR DISENGAGING A LOCAL
WO2015071606A1 (en) 2013-11-14 2015-05-21 Finsecur Method and device for deploying a link between at least one security system and an alarm centre
CN104835225A (en) * 2015-04-30 2015-08-12 江门市大光明电力设备厂有限公司 Wireless intelligent lock system used in electric metering box
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
CN105652766A (en) * 2015-12-31 2016-06-08 百川伟业(天津)建筑科技股份有限公司 Building monitoring system based on BIM
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
EP3091519A1 (en) * 2015-05-08 2016-11-09 Securitas Direct AB Jamming detection method and device
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN109427171A (en) * 2017-08-30 2019-03-05 诸暨马谷亲科技有限公司 A kind of network monitoring device of tobacco storage silo
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10672252B2 (en) 2015-12-31 2020-06-02 Delta Faucet Company Water sensor
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10931480B1 (en) 2017-06-14 2021-02-23 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wireless flight sensor system for air and space vehicles
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US12136890B2 (en) 2023-11-14 2024-11-05 Solaredge Technologies Ltd. Multi-level inverter

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716866A (en) * 2013-12-23 2014-04-09 天津大学 Method for selecting optimum relay node of cooperative communication in underwater sensor network
US10055781B2 (en) 2015-06-05 2018-08-21 Boveda Inc. Systems, methods and devices for controlling humidity in a closed environment with automatic and predictive identification, purchase and replacement of optimal humidity controller
US10909607B2 (en) 2015-06-05 2021-02-02 Boveda Inc. Systems, methods and devices for controlling humidity in a closed environment with automatic and predictive identification, purchase and replacement of optimal humidity controller
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735630B1 (en) 1999-10-06 2004-05-11 Sensoria Corporation Method for collecting data using compact internetworked wireless integrated network sensors (WINS)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB231458A (en) * 1924-03-26 1926-01-21 Benzonaftene Improved method of using catalyzers
US5665561A (en) * 1994-06-06 1997-09-09 The Rockefeller University Modulators of pneumococcal adherence to pulmonary and vascular cells and diagnostic and therapeutic applications
US6025788A (en) * 1995-11-24 2000-02-15 First Smart Sensor Corp. Integrated local or remote control liquid gas leak detection and shut-off system
US5907491A (en) * 1996-08-23 1999-05-25 Csi Technology, Inc. Wireless machine monitoring and communication system
US6437692B1 (en) * 1998-06-22 2002-08-20 Statsignal Systems, Inc. System and method for monitoring and controlling remote devices
US6369714B2 (en) * 1999-03-18 2002-04-09 Scott A. Walter Water leak detection and correction device
WO2000055825A1 (en) * 1999-03-18 2000-09-21 Statsignal Systems, Inc. System for monitoring conditions in a residential living community
US6552647B1 (en) * 1999-07-01 2003-04-22 Ricky H. Thiessen Building environment monitor and control system
WO2003009631A1 (en) * 2001-07-13 2003-01-30 Kyohei Imai Mobile security system, advanced mobile security system and superior mobile security system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735630B1 (en) 1999-10-06 2004-05-11 Sensoria Corporation Method for collecting data using compact internetworked wireless integrated network sensors (WINS)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1756783A4

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12107417B2 (en) 2006-12-06 2024-10-01 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12046940B2 (en) 2006-12-06 2024-07-23 Solaredge Technologies Ltd. Battery power control
US12032080B2 (en) 2006-12-06 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12068599B2 (en) 2006-12-06 2024-08-20 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2008129578A2 (en) * 2007-04-20 2008-10-30 Paolo Diprima Gas and water leak detecting system with human presence detector
WO2008129578A3 (en) * 2007-04-20 2008-12-31 Paolo Diprima Gas and water leak detecting system with human presence detector
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
GB2453602A (en) * 2007-10-11 2009-04-15 Lincoln Ofonansi Integrated multiple detector alarm device connected to a personal computer.
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US12055647B2 (en) 2007-12-05 2024-08-06 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
EP2348243A3 (en) * 2009-08-12 2012-12-26 TLV Co., Ltd. Valve-member monitoring system
US10215783B2 (en) 2010-10-25 2019-02-26 Solarcity Corporation Renewable energy monitoring system
US8624443B2 (en) 2010-10-25 2014-01-07 Enecsys Limited Renewable energy monitoring system
WO2012056212A1 (en) 2010-10-25 2012-05-03 Enecsys Limited Renewable energy monitoring system
US9453861B2 (en) 2010-10-25 2016-09-27 Solarcity Corporation Renewable energy monitoring system
GB2485335B (en) * 2010-10-25 2012-10-03 Enecsys Ltd Renewable energy monitoring system
GB2485335A (en) * 2010-10-25 2012-05-16 Enecsys Ltd Wireless monitoring and control of solar photovoltaic devices using repeaters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US12094306B2 (en) 2012-01-30 2024-09-17 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN102723790A (en) * 2012-06-21 2012-10-10 无锡米兰磁传感网络有限公司 Power supply system for wireless traffic sensor
CN102855737A (en) * 2012-09-06 2013-01-02 江苏科技大学 All-dimensional harmful gas detection alarm device in welding field
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US12119758B2 (en) 2013-03-14 2024-10-15 Solaredge Technologies Ltd. High frequency multi-level inverter
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US12132125B2 (en) 2013-03-15 2024-10-29 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
GB2518489A (en) * 2013-07-17 2015-03-25 Honeywell Int Inc Surveillance systems and methods
GB2518489B (en) * 2013-07-17 2017-12-06 Honeywell Int Inc Surveillance systems and methods
WO2015071606A1 (en) 2013-11-14 2015-05-21 Finsecur Method and device for deploying a link between at least one security system and an alarm centre
FR3013071A1 (en) * 2013-11-14 2015-05-15 Finsecur DEVICE FOR DESENGINATING A LOCAL, DEVICE FOR SECURING A SITE AND METHOD FOR DEPLOYING A DEVICE FOR DISENGAGING A LOCAL
FR3013143A1 (en) * 2013-11-14 2015-05-15 Finsecur DEVICE AND METHOD FOR SECURING A SITE
FR3013070A1 (en) * 2013-11-14 2015-05-15 Finsecur DEVICE FOR AERATION OF A LOCAL, DEVICE FOR SECURING A SITE AND METHOD FOR AERATION OF A SITE
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
CN104835225A (en) * 2015-04-30 2015-08-12 江门市大光明电力设备厂有限公司 Wireless intelligent lock system used in electric metering box
EP3091519A1 (en) * 2015-05-08 2016-11-09 Securitas Direct AB Jamming detection method and device
US11217082B2 (en) 2015-12-31 2022-01-04 Delta Faucet Company Water sensor
CN105652766A (en) * 2015-12-31 2016-06-08 百川伟业(天津)建筑科技股份有限公司 Building monitoring system based on BIM
US10672252B2 (en) 2015-12-31 2020-06-02 Delta Faucet Company Water sensor
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US10931480B1 (en) 2017-06-14 2021-02-23 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wireless flight sensor system for air and space vehicles
CN109427171A (en) * 2017-08-30 2019-03-05 诸暨马谷亲科技有限公司 A kind of network monitoring device of tobacco storage silo
US12136890B2 (en) 2023-11-14 2024-11-05 Solaredge Technologies Ltd. Multi-level inverter

Also Published As

Publication number Publication date
WO2005119609A3 (en) 2006-07-13
EP1756783A2 (en) 2007-02-28
MXPA06013587A (en) 2007-04-02
EP1756783A4 (en) 2008-11-12
AU2005251101A1 (en) 2005-12-15
CA2566606A1 (en) 2005-12-15
BRPI0511337A (en) 2007-12-04

Similar Documents

Publication Publication Date Title
US10395513B2 (en) Relaying communications in a wireless sensor system
US7102504B2 (en) Wireless sensor monitoring unit
US7218237B2 (en) Method and apparatus for detecting water leaks
US7042352B2 (en) Wireless repeater for sensor system
US7102505B2 (en) Wireless sensor system
US20050262923A1 (en) Method and apparatus for detecting conditions favorable for growth of fungus
WO2005119609A2 (en) Wireless sensor system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2566606

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005251101

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/013587

Country of ref document: MX

NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 7178/DELNP/2006

Country of ref document: IN

ENP Entry into the national phase in:

Ref document number: 2005251101

Country of ref document: AU

Date of ref document: 20050506

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005251101

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005743356

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580021324.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006145962

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005743356

Country of ref document: EP

ENP Entry into the national phase in:

Ref document number: PI0511337

Country of ref document: BR