明 細 書 Specification
多原色ディスプレイおよび多原色ディスプレイ用色変換方式 Multi-primary display and color conversion method for multi-primary display
技術分野 Technical field
[0001] 本発明は、 3原色を越える多色の発光体を発光セルとして使用することにより、実質 的エネルギー効率が高ぐ色域の広い多原色ディスプレイ、および前記多原色ディス プレイにおける色再現を改善するために線形計画法を用いた色変換方式に関する。 背景技術 [0001] The present invention provides a multi-primary display having a wide color gamut with substantially high energy efficiency and a color reproduction in the multi-primary display by using a multi-color luminous body exceeding three primary colors as a light emitting cell. The present invention relates to a color conversion method using a linear programming for improvement. Background art
[0002] (多原色ディスプレイの背景技術) [0002] (Background technology of multi-primary color display)
従来から 3原色を越える多色の発光体を組合せて使用したディスプレイの色再現方 式は実現が期待されていた力 物理的に 3原色以外の発光体について言及すること は少な力つたようである。代わりに、色再現のマトリクス回路を使用して色変換を行な うことにより、複数のディスプレイデバイスを組合せて、投射形として多原色のディスプ レイを実現する方式が公知であった。 The color reproduction method of displays using a combination of light emitters of more than three primary colors has been expected to be realized.It seems that there was little power to physically mention light emitters other than the three primary colors. . Instead, there has been known a method of realizing multi-primary color display as a projection type by combining a plurality of display devices by performing color conversion using a color reproduction matrix circuit.
[0003] 色再現システムの一具体例として大澤健郎氏により発明された特開 2000— 25326 3号(平成 12年 9月 14日公開)を挙げることができる。特開 2000-253263号によれ ば、色再現システムは多原色ディスプレイにカラー画像を表示するための色変換装 置を備えて構成したもので、測色的に正確な色再現を有するとともに、 XYZデータと 色信号値との連続性を利用して色再現域を最大限に活用することを図った演算シス テムである。 [0003] A specific example of the color reproduction system is disclosed in Japanese Patent Application Laid-Open No. 2000-253263 (published on September 14, 2000) invented by Takeo Osawa. According to Japanese Patent Application Laid-Open No. 2000-253263, a color reproduction system is configured to include a color conversion device for displaying a color image on a multi-primary color display. This is an arithmetic system that uses the continuity of data and color signal values to maximize the color gamut.
[0004] 前記色変換装置は、最大輝度信号算出装置と、カラー画像の表示信号算出装置と によって構成されている。最大輝度信号算出装置は、入力三刺激値ベクトルを囲む ディスプレイの色再現域表面を構成する多面体の面の頂点を表す色再現域頂点信 号と、入力三刺激値を色再現域頂点ベクトルの三刺激値の重み付き線形和として表 した場合の重み係数とを算出する。カラー画像の表示信号算出装置は、前記色再現 域頂点の信号と前記重み係数とから入力三刺激値を表示するためのカラー画像信 号を算出する。 [0004] The color conversion device includes a maximum luminance signal calculation device and a color image display signal calculation device. The maximum luminance signal calculation device calculates a gamut vertex signal representing a vertex of a surface of a polyhedron constituting a color gamut surface of the display surrounding the input tristimulus value vector, and the input tristimulus value into a color gamut vertex vector. Calculate the weighting factor when expressed as a weighted linear sum of the stimulus values. The color image display signal calculation device calculates a color image signal for displaying an input tristimulus value from the signal of the color reproduction area vertex and the weight coefficient.
[0005] 前記色再現のための演算システムでは、具体的に XYZデータから線形マトリクス演
算と階調補正を行うことにより、 4つのディスプレイ入力信号 C [0005] In the arithmetic system for color reproduction, specifically, a linear matrix operation is performed from XYZ data. Calculation and gradation correction, four display input signals C
1一 C を求めている。 I want one C.
4 Four
ディスプレイ入力信号 C一 C は、それぞれ色再現が可能な波長範囲内で、合理的 The display input signals C-C are within reasonable wavelength ranges where color reproduction is possible.
1 4 14
に分割された相異なる中心波長と波長域を有する 4つの色信号である。色信号 C , These are four color signals having different center wavelengths and wavelength ranges divided into two. Color signal C,
1 One
C をひとつのカラープロジェクタに入力し、色信号 C, C を他のカラープロジェクタC is input to one color projector, and the color signals C and C are input to another color projector.
2 3 4 2 3 4
に入力して、 4原色よりなるカラー画像を表示する。特開 2000— 253263号によれば 、ディスプレイ入力信号を発生するための手段を明らかにしてはいる力 ディスプレイ 装置の構成方式にっ ヽては言及して 、な 、。 To display a color image consisting of the four primary colors. According to Japanese Patent Application Laid-Open No. 2000-253263, reference is made to a configuration method of a force display device which discloses means for generating a display input signal.
[0006] 一方、従来のディスプレイでは 3原色を刺激値として使用していた。(公知の文献「 ディジタル画像」(Digital Pictures)を参照。)従って、従来は色域を拡大するために、 通常の 3原色以上の多原色を使ったディスプレイにおいて、色域の拡大に用いる複 数の原色は色度図上で色域の最外郭の色、すなわち色純度が高 、色を組み合わせ て表示していた。しかし、色純度の高い発光素子は発光効率が小さぐ従ってデイス プレイを構成すると消費電力が大変大きくなるため、ディスプレイの発熱が問題であ る。発熱が大きいとデバイスやその周辺部分の温度上昇が大きくなる。このため、シス テムの運用や信頼性に悪影響を及ぼすので、この点を改善する必要がある。 [0006] On the other hand, conventional displays use three primary colors as stimulus values. (Refer to the well-known document “Digital Pictures”.) Therefore, conventionally, in order to expand the color gamut, in a display using three or more primary colors or more, a plurality of colors used for expanding the color gamut are used. The primary colors are displayed at the outermost color of the color gamut on the chromaticity diagram, that is, the color purity is high, and the colors are combined. However, a light-emitting element with high color purity has a low luminous efficiency, so that when a display is configured, the power consumption becomes very large, and thus heat generation of the display is a problem. If the heat generation is large, the temperature rise of the device and its surroundings will increase. This has a negative effect on the operation and reliability of the system, and it is necessary to improve this point.
[0007] (多原色ディスプレイに用いる第 1および第 2の色変換方式の背景技術) (Background Art of First and Second Color Conversion Methods Used for Multi-Primary Color Display)
本発明では、後に詳述するように第 1の色変換方式およびこの第 1の色変換方式を 前提とする第 2の色変換方式を提供する。それらの背景技術は、大部分共通するの で、共通の部分について先ず説明し、次いで第 2の色変換方式の固有の背景技術 について言及する。 The present invention provides a first color conversion method and a second color conversion method based on the first color conversion method, as described in detail later. Since these background technologies are largely common, the common portions will be described first, and then the unique background technology of the second color conversion method will be referred to.
[0008] 近年、高忠実色再現について幾つかの文献がみられる。すなわち、山口雅浩,羽 石秀昭,大山永昭著, 「スペクトルに基づく高色再現映像システム-ナチュラルビジョ ン」と題する第 2の非特許文献 (映像情報メディア学会技術報告, 26卷, 58号, 7— 1 2頁, 2002年)、および「ヒューマンパーセプシヨンに基づく高詳細カラーマネージメ ントシステムの開発 その美術館、博物館収蔵品の記録再現への応用」と題する第 3 の非特許文献 (平成 8, 9年度 IPA独創的情報技術育成事業成果報告)によれば、 電子商取引,デジタルアーカイブ,遠隔医療などの分野での高忠実色再現の重要 性が指摘されている。
[0009] 一方、色再現の精度を劣化させる原因の一つとして、ディスプレイの色域の狭さが ある。図 5は、均等色度図(UCS)における、 HDTVの色域 (領域 Aで示す。)ならび に人間の可視領域 (領域 Bで示す。)を表している。図 5に示す三角形の内部が、 H DTVで表示可能な色の範囲であり、可視領域に対し表示域が充分でないことは明ら かである。 UCSの色度 u' v'は xy色度よりも色度図上での距離と人間の感覚が均等 であり、 CIEXYZ表色系力 UCS色度(u', ν' )への変換は式(1)で行なうことがで きる。 [0008] In recent years, there are several documents on high-fidelity color reproduction. In other words, Masahiro Yamaguchi, Hideaki Haneishi and Nagaaki Oyama, the second non-patent document entitled “High Color Reproduction Imaging System Based on Spectral: Natural Vision” (Technical Report of the Institute of Image Information and Television Engineers, Vol. 26, No. 58, No. 7) — 12 pages, 2002), and the third non-patent document entitled “Development of a High-Detailed Color Management System Based on Human Perception, Its Application to the Reproduction of Records in Museums and Museums” (Heisei 8, According to the FY2009 IPA Creative Information Technology Development Project Results Report), the importance of high fidelity color reproduction in fields such as e-commerce, digital archiving, and telemedicine has been pointed out. [0009] On the other hand, one of the causes of deteriorating the accuracy of color reproduction is a narrow color gamut of a display. FIG. 5 shows the color gamut of HDTV (indicated by region A) and the human visible region (indicated by region B) in the uniform chromaticity diagram (UCS). The inside of the triangle shown in FIG. 5 is the range of colors that can be displayed on the HDTV, and it is clear that the display area is not enough for the visible area. The chromaticity u 'v' of UCS is equal to the distance on the chromaticity diagram and the human sense than the xy chromaticity. The conversion to the CIEXYZ color system power UCS chromaticity (u ', ν') is expressed by the formula This can be done in (1).
u, = (4X) / (X+ 15Y+ 3Z) u, = (4X) / (X + 15Y + 3Z)
v' = (9Y) / (Χ+ 15Y+ 3Ζ) (1) v '= (9Y) / (Χ + 15Y + 3Ζ) (1)
[0010] 現在、 HDTVよりも色域が広!、ディスプレイの研究が行なわれてきて!/、る。ここで!/ヽ う広色域ディスプレイとは、色度図上での再現範囲が広いだけでなぐ最高輝度を低 下させずに広色域の色を再現可能とするディスプレイのことである。既存の装置のよ うに三原色で広色域ディスプレイの開発を行なうためには、高彩度かつ高輝度な原 色が必要である。一般に発光デバイスは彩度が高くなるにつれ発光効率は下がる。 このため、三原色を使った広色域ディスプレイは効率の悪いものになる。これは次の 2つの条件を満たす原色を用いることで解決できる。すなわち、高彩度だがそれほど 高輝度でない原色、および、高輝度だがそれほど高彩度でない原色が必要となる。 しかし、この場合、 4つ以上の原色が必要になる。 [0010] At present, the color gamut is wider than HDTV! Research on displays has been conducted! Here, the wide color gamut display is a display that can reproduce colors in a wide color gamut without lowering the maximum luminance, which only has a wide reproduction range on a chromaticity diagram. In order to develop a wide color gamut display with three primary colors like the existing devices, high saturation and high luminance primary colors are required. Generally, the luminous efficiency of a light emitting device decreases as the saturation increases. This makes wide color gamut displays using the three primary colors inefficient. This can be solved by using primary colors that satisfy the following two conditions. That is, a primary color with high saturation but not very high luminance and a primary color with high luminance but not high saturation are required. However, in this case, four or more primary colors are needed.
[0011] 図 5の 6原色カラーディスプレイは多原色による広色域ディスプレイの一つであるォ リンパス社製の 6原色リア投射型ディスプレイの色域である。原色を 4つ以上用いるこ とで、三原色の場合より効率のよい広色域ディスプレイが実現可能になる。しかし、原 色が増えることで新たな問題も発生する。色変換の自由度もその一つである。既存の 三原色ディスプレイでは色の三刺激値 XYZと三原色 RGBは 3対 3の関係であるため 変換に自由度は存在せず、ユニークに相互変換可能である。しかし、原色の数が増 えると三刺激値と原色が 3対 4以上の関係になるため、三刺激値力 各原色の信号 値の変換に自由度が発生し一意に変換を行なうことができない。これは、ある XYZを 表示するための原色の組み合わせが複数存在すると 、うことを示して 、る。このため 、発光効率が悪い原色の組み合わせも存在してしまう。
[0012] 本発明による多原色ディスプレイは、通常の RGBよりなる色度図上の三角形によつ て囲まれた範囲外に発光色を有する 1種類以上の原色の発光セルを備え、これをマ トリタス配列して構成したセルアレイを使って構成したものである。この多原色ディスプ レイではセルアレイが信号処理部と一体ィ匕して構成され、広 、色域範囲のカラー画 像信号を実効的に高エネルギー効率で表示できるようにしてある。 The six-primary-color display shown in FIG. 5 is a color gamut of a six-primary-color rear-projection display manufactured by Olympus, which is one of wide color gamut displays using multiple primary colors. By using four or more primary colors, a more efficient wide color gamut display can be realized than in the case of three primary colors. However, new problems also arise as the number of primary colors increases. The degree of freedom of color conversion is one of them. In existing three-primary-color displays, the tristimulus values XYZ of the colors and the three-primary colors RGB have a three-to-three relationship, so there is no degree of freedom in conversion, and unique mutual conversion is possible. However, as the number of primary colors increases, the relationship between tristimulus values and primary colors becomes three to four or more.Thus, there is a degree of freedom in converting the signal values of each primary color into tristimulus values, making it impossible to perform unique conversion. . This indicates that there are a plurality of combinations of primary colors for displaying a certain XYZ. For this reason, there are combinations of primary colors having poor luminous efficiency. The multi-primary-color display according to the present invention includes one or more types of primary-color light-emitting cells having a light-emitting color outside a range surrounded by a triangle on a chromaticity diagram composed of ordinary RGB, and the light-emitting cells are arranged in a matrix. It is configured using a cell array configured in a tritas array. In this multi-primary color display, a cell array is formed integrally with a signal processing section, so that a color image signal in a wide color gamut can be displayed effectively with high energy efficiency.
[0013] このようにディスプレイは加法混色により色再現を行っている。 n原色ディスプレイに おいて、出力される色の三刺激値 X, Y, Zと、各原色の三刺激値 [0013] As described above, the display performs color reproduction by additive color mixture. On the primary color display, the tristimulus values X, Y, and Z of the output colors and the tristimulus values of each primary color
{ ( X , , Υ , , "Ζ ι ) , ( X , T 2 , Z" 2 ) , · . · , ( X„ , Υ„ , Ζ"„ ) } には以下の式(2)に記載する関係がある。例えば、非特許文献 4を参照できる。 {(X, Υ,, "Ζ ι), (X, T 2 , Z" 2 ),..., (X „, Υ„, Ζ "„)} There is a relationship to do. For example, reference can be made to Non-Patent Document 4.
[0014] に記 Note on [0014]
[0015] ただし、 X , Υ , Ζ は、最高輝度を出力した際の原色 ηの三刺激値であり、 S は 原色 ηに対する入力信号値である。 S は 0≤S ≤1の値を取るため、原色 nの最高 輝度を 1で正規ィ匕した値と考えることができる。以降 S を原色 nの相対輝度と呼ぶこと にする。(2)および (3)式をまとめ行列を用いて表すと、各原色の相対輝度値から三 刺激値 XYZの変換は次の式 (4)で与えられる。 Here, X, ,, and あ り are tristimulus values of the primary color η when the maximum luminance is output, and S is an input signal value for the primary color η. Since S takes a value of 0≤S≤1, it can be considered as a value obtained by normalizing the maximum luminance of the primary color n by 1. Hereinafter, S is referred to as the relative luminance of the primary color n. When the expressions (2) and (3) are expressed using a summary matrix, the conversion of the tristimulus value XYZ from the relative luminance value of each primary color is given by the following expression (4).
[0016] さらに、式 (4)より XYZ力 各原色の相対輝度への変換は次の式(5)となる。
[0016] Further, from equation (4), conversion of the XYZ forces into relative luminance of each primary color is represented by the following equation (5).
[0017] ここで、式(5)にお 、て原色数が 3の時、係数行列は正方行列となるため、逆行列 がー意に決まり、問題なく変換を行うことができる。しかし原色数力 以上になると、係 数が 3 * n (n> 3)の行列になるため一意に逆行列を求めることができな!/、。 Here, in Equation (5), when the number of primary colors is 3, since the coefficient matrix is a square matrix, the inverse matrix is determined arbitrarily, and conversion can be performed without any problem. However, when the number of primary colors is exceeded, the coefficient becomes a matrix of 3 * n (n> 3), so it is not possible to find a unique inverse matrix! / ,.
[0018] この問題に対処するための幾つかの研究が行われ、第 5—第 7の非特許文献として 発表されている。 [0018] Several studies have been conducted to address this problem, and have been published as fifth to seventh non-patent documents.
[0019] 第 5の非特許文献は、寺地剛志,大澤健郎,山口雅浩,大山永昭著, 「6原色ディ スプレイを用いた等色実験」と題する論文 (カラーフォーラム JAPAN2001, 97— 10 0頁, 2001年)である。この文献では、色再現に CIE-XYZ等色関数を用いず、観測 者ごとに等色関数を使 ヽ分ける方法や、マルチスぺ外ルカメラで推定された分光放 射輝度の形状を再現する方法を提案して ヽる。等色関数の次元数をディスプレイの 次元数に合わせることや、自由度がない分光放射輝度を再現することで一意に色変 換を行うことができる。しかし、個人ごとに等色関数を測定したり、マルチスペクトル力 メラを用いるのは現実的な方法ではな 、。 [0019] The fifth non-patent document is a paper entitled "Toshiji Terachi, Takeo Osawa, Masahiro Yamaguchi, and Nagaaki Oyama", "Color Matching Experiment Using Six Primary Color Displays" (Color Forum JAPAN 2001, pp. 97-100, 2001). This document describes a method of using color matching functions for each observer instead of using CIE-XYZ color matching functions for color reproduction, and a method of reproducing the shape of the spectral radiance estimated by a multi-spectral camera. I suggest. Color conversion can be performed uniquely by matching the number of dimensions of the color matching function to the number of dimensions of the display, or by reproducing spectral radiance with no degree of freedom. However, it is not practical to measure the color matching function for each individual or to use a multispectral camera.
[0020] 第 6の非特許文献は、アジト'タケユキ,ォォサヮ 'ケンロウ,オビ'タカシ,ャマダチ' マサヒロ,ォオヤマ'ナガアキ著, 「マトリックススイツテを使った多原色ディスプレイの 色変換法」,オプティカルレビュー誌, 8卷, 3号, 191一 197頁(2001年) (Takeyuki AJITO, Kenro OHSAWA, Takashi OBI, Masahiro YAMAGUCHI and Nagaaki OH YAM A, "Color Conversion Method for Multiprimary Display Using Matrix Switching", Optical Review, Vol.8, No.3, pp.191- 197 (2001》である。この文献では 、原色によって作られる色域を領域分割し優先順位をつけることで一意に色変換を 行う方法を提案して 、る。この方法は高速な変換を行うことができると 、う利点を持つ ているが、領域ごとの優先順位のみで自由度を解消しており、自由度の他の有効な 利用法を考慮することができない。 [0020] The sixth non-patent document is "Ajito's Takeyuki, Osa ', Kenro, Obi's Takashi, Yamadachi' Masahiro, Ooyama's Nagaaki," Color Conversion Method of Multi-Primary Color Display Using Matrix Switch ", Optical Review Journal, Vol. 8, No. 3, 191-197 (2001) (Takeyuki AJITO, Kenro OHSAWA, Takashi OBI, Masahiro YAMAGUCHI and Nagaaki OH YAM A, "Color Conversion Method for Multiprimary Display Using Matrix Switching", Optical Review, Vol. .8, No. 3, pp. 191-197 (2001), which proposes a method for uniquely performing color conversion by dividing the color gamut created by primary colors into regions and assigning priorities. Although this method has the advantage of being able to perform high-speed conversion, it eliminates the degree of freedom only by priority for each area, and considers other effective uses of degrees of freedom. I can't.
[0021] 第 7の非特許文献は、モトムラ'ヒデォ著, 「等輝度面上の線形内挿法を使った多原
色ディスプレイの色変換」, SIDジャーナル誌, 11卷, 2号, 371— 387頁(2003年) (Hideto MOTOMURA, し olor conversion for a multi-primary display using linear interpolation on equト luminance plane method (LIQUID) , Journal of the SID, 11/2, pp.371-387 (2003》である。この文献では、等輝度な 3点による、線形補間法を用い ることで、自由度がない変換を行うことができる。しかし、第 5の非特許文献と同様に、 自由度のほかの有効な利用法を考慮することができない。 [0021] The seventh non-patent document is written by Motomura Hideo, “A multi-source using linear interpolation method on isoluminance plane. Color Conversion of Color Displays ”, SID Journal, Vol. 11, No. 2, pp. 371--387 (2003) (Hideto MOTOMURA, color conversion for a multi-primary display using linear interpolation on equ luminance plane method (LIQUID) , Journal of the SID, 11/2, pp. 371-387 (2003) .In this document, it is possible to perform conversion with no degree of freedom by using linear interpolation with three points of equal luminance. Yes, but as with the fifth non-patent document, it cannot take into account other effective uses of degrees of freedom.
特許文献 1:特開 2000-253263号公報 Patent Document 1: JP-A-2000-253263
非特許文献 1 :エー.ェヌ.ネットラバリ,ビー.ジー.ハスケル著, 「ディジタル画像」, プレナムプレス, 1988年 (A. N. Netravali and B. G. Haskell, "Digital Pictures", Plenum Press, 1988) Non-Patent Document 1: A. N. Netravali and B. G. Haskell, "Digital Pictures", Plenum Press, 1988, "Digital Images" by A.N.
非特許文献 2 :山口雅浩,羽石秀昭,大山永昭著, 「スペクトルに基づく高色再現映 像システム-ナチュラルビジョン」,映像情報メディア学会技術報告, 26卷, 58号, 7 一 12頁, 2002年 Non-Patent Document 2: Masahiro Yamaguchi, Hideaki Haneishi, Nagaaki Oyama, "High Color Reproduction Imaging System Based on Spectrum-Natural Vision", Technical Report of the Institute of Image Information and Television Engineers, Vol. 26, No. 58, pp. 112, 2002
非特許文献 3:「ヒューマンパーセプシヨンに基づく高詳細カラーマネージメントシステ ムの開発 その美術館、博物館収蔵品の記録再現への応用」,平成 8, 9年度 IPA独 創的情報技術育成事業成果報告 Non-Patent Document 3: “Development of a High-Detailed Color Management System Based on Human Perception, Its Application to the Reproduction of Records in Art Museums and Museums”, Report on the FY1996 / 9 IPA Creative Information Technology Fostering Project
非特許文献 4 :「国際カラーコンソーシアム:" ICCプロファイル仕様 第 3. 2版"」, 19 95年 (Internationalし olor Consortium: .ICし Profile specification Version 6.2 , 1995 Non-Patent Document 4: "International Color Consortium:" ICC Profile Specification Version 3.2 "", 1995 (International and European Consortium: .IC Profile Specification Version 6.2, 1995
非特許文献 5 :寺地剛志,大澤健郎,山口雅浩,大山永昭著, 「6原色ディスプレイを 用いた等色実験」,カラーフォーラム JAPAN2001, 97— 100頁, 2001年 Non-Patent Document 5: Takeshi Terachi, Takeo Osawa, Masahiro Yamaguchi, and Nagaaki Oyama, "Color Matching Experiment Using Six Primary Color Displays", Color Forum JAPAN 2001, 97-100, 2001
非特許文献 6 :アジト'タケユキ,ォォサヮ 'ケンロウ,オビ'タカシ,ャマダチ'マサヒロ, ォオヤマ ·ナガアキ著, 「マトリックススイツテを使った多原色ディスプレイの色変換法」 ,オプティカルレビュー誌, 8卷, 3号, 191一 197頁(2001年) (Takeyuki AJITO, Kenro OHSAWA, Takashi OBI, Masahiro YAMAGUCHI and Nagaaki OHYAMA, "Color Conversion Method for Multiprimary Display Using Matrix Switching , Optical Review, Vol.8, No.3, pp.191- 197 (2001)) Non-Patent Document 6: Ajito's Takeyuki, Ossa 'Kenlow, Obi's Takashi, Yamadachi' Masahiro, Ooyama Nagaaki, "Color conversion method of multi-primary color display using matrix switch", Optical Review Magazine, Vol. 8, No. 3, No. 191-197 (2001) (Takeyuki AJITO, Kenro OHSAWA, Takashi OBI, Masahiro YAMAGUCHI and Nagaaki OHYAMA, "Color Conversion Method for Multiprimary Display Using Matrix Switching, Optical Review, Vol. 8, No. 3, pp. 191- 197 (2001))
非特許文献 7:モトムラ ·ヒデォ著, 「等輝度面上の線形内挿法を使った多原色ディス
プレイの色変換」, SIDジャーナル誌, 11卷, 2号, 371— 387頁(2003年)(Hideto MOTOYAMA, 〃し olor conversion for a multi-primary display using linear Non-Patent Document 7: Motomura Hideo, "Multi-primary color discs using linear interpolation on equi-luminance surfaces." Color Conversion of Play ", SID Journal, Vol. 11, No. 2, pp. 371-387 (2003) (Hideto MOTOYAMA, olor conversion for a multi-primary display using linear
interpolation on equi— luminance plane method (LIQUID; , Journal of the SID, 丄丄 /2, pp.371- 387 (2003)) interpolation on equi—luminance plane method (LIQUID;, Journal of the SID, 丄 丄 / 2, pp.371-387 (2003))
非特許文献 8 :坂和正敏著, 「線形システムの最適化く一目的力 多目的へ〉」,森 北出版, 1984年 Non-Patent Document 8: Masatoshi Saka, "Optimization of Linear Systems: One Purpose Power, Multipurpose", Morikita Publishing, 1984
非特許文献 9 :ジー.ビー.ダンツィッヒ著, 「線形プログラミングにおける上限、第 2の 制限、およびブロック三角形」,ェコノメトリ力, 23卷, 174— 183頁(1955年) (G. B. Dantzig, Upper bounds, secondary constraints ana olock triangularity in linear programming , Econometrica, 23, pp.174- 183 (1955)) Non-Patent Document 9: GB Dantzig, Upper bounds, secondary, by BB Danzig, "Upper bounds, second bounds, and block triangles in linear programming", Econometric Force, 23, 174—183 (1955) constraints ana olock triangularity in linear programming, Econometrica, 23, pp.174-183 (1955))
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0022] (多原色ディスプレイの発明が解決しょうとする課題) (Problems to be solved by invention of multi-primary display)
解決しょうとする問題点は、それぞれ色再現が可能な波長範囲内で、合理的に分 割された相異なる中心波長と波長域を有する多原色の色信号を入力して、良好な色 再現性をもってカラー画像を再生できる、高エネルギー効率の広色域多原色ディス プレイの構成方式を提供することにある。 The problem to be solved is that, within the wavelength range where each color can be reproduced, a color signal of multi-primary colors having rationally divided different center wavelengths and wavelength ranges is input, and good color reproducibility is obtained. An object of the present invention is to provide an energy-efficient, wide-gamut, multi-primary-color display system capable of reproducing a color image by using the above method.
[0023] (多原色ディスプレイに用いる第 1の色変換方式の発明が解決しょうとする課題) 解決しょうとする問題点は、多原色カラーディスプレイにおいて色再現性を向上す るための 4原色以上の多原色の色変換にぉ 、て、線形計画法を利用して発光セル の消費電力を最小化することにより多原色の値を一次元的に決定することにある。 (Problem to be Solved by the Invention of the First Color Conversion Method Used for Multi-Primary Display) The problem to be solved is to use four or more primary colors to improve color reproducibility in a multi-primary color display. In the conversion of multi-primary colors, the value of multi-primary colors is one-dimensionally determined by minimizing the power consumption of a light emitting cell using linear programming.
[0024] (多原色ディスプレイに用いる第 2の色変換方式の発明が解決しょうとする課題) このような多原色ディスプレイに対する前述の第 1の色換方式で、さらに色域外に 色データが存在する場合には、表示色が決定されな!ヽため画像に対して自然な色 再現が損なわれるという課題があり、これを線形計画問題として解くことにより表示色 を決定することにある。 (Problem to be Solved by Invention of Second Color Conversion Method Used for Multi-Primary Color Display) In the above-described first color conversion method for such a multi-primary color display, color data further exists outside the color gamut. In that case, the display color is not decided! Therefore, there is a problem that natural color reproduction is impaired for an image, and the display color is determined by solving this as a linear programming problem.
課題を解決するための手段 Means for solving the problem
[0025] (多原色ディスプレイの発明の課題を解決するための手段)
本発明による多原色ディスプレイは、通常の RGBより成る 3原色発光セルの他に、 RGBより成る色度図上の三角形によって囲まれた範囲外に発光色を有する 1種類以 上の原色の発光セルを備えて配列されたセルマトリクス構成により成り立つ発光セル アレイ、およびその駆動回路を含む表示部本体と、 XYZ信号を入力したとき、前記表 示部本体に対して前記 3原色およびその他の 1種類以上の原色の発光セルに対応 した多原色信号を供給するための信号処理部本体とを具備し、広 、色域範囲のカラ 一画像信号を実効的に高 、エネルギー効率で表示することができるように構成する (Means for Solving the Problems of the Invention of Multi-Primary Color Display) The multi-primary-color display according to the present invention includes light-emitting cells of one or more types of primary colors having a light-emitting color outside a range surrounded by a triangle on a chromaticity diagram of RGB, in addition to light-emitting cells of three primary colors of normal RGB. A light-emitting cell array constituted by a cell matrix configuration arranged with a display, a display unit main body including a driving circuit thereof, and when an XYZ signal is input, the three primary colors and one or more other types are displayed on the display unit main body. And a signal processing unit for supplying multi-primary-color signals corresponding to light-emitting cells of different primary colors, so that color image signals having a wide color gamut can be effectively displayed with high energy efficiency. Configure
[0026] 前記構成の多原色ディスプレイにおいて、 RGBより成る色度図上の三角形により囲 まれた範囲外に発光色を有する 1種類以上の原色の発光セルは、入力画像信号が RGBより成る 3原色発光セルによって定義された発光色の範囲内に含まれないとき に限って発光するように前記信号処理部本体により制御されることにより、実効的に 高 、エネルギー効率を実現できるものである。 In the multi-primary-color display having the above-described configuration, the light-emitting cells of one or more types of primary colors having emission colors outside the range surrounded by the triangle on the chromaticity diagram of RGB include three primary colors whose input image signals are composed of RGB. By controlling the signal processing unit so as to emit light only when it is not within the range of the emission color defined by the emission cell, high efficiency and energy efficiency can be realized effectively.
[0027] (多原色ディスプレイに用いる第 1の色変換方式の発明の課題を解決するための手 段) (Means for Solving the Problems of the Invention of the First Color Conversion Method Used for Multi-Primary Display)
多原色ディスプレイに用いる第 1の色変換方式の発明は、多原色ディスプレイの多 原色色変換において、多原色のマトリクス値を決定する際に消費電力を最小化する ための線形計画法を適用し、色変換における多原色値の決定の自由度について、 目的関数を消費電力とした線形計画問題に置き換えることにより解決し、色再現性の 向上と消費電力の最小化とを同時に達成できる多原色カラーディスプレイの色変換 方式を提供する。 The invention of the first color conversion method used for a multi-primary color display applies a linear programming method for minimizing power consumption when determining a matrix value of the multi-primary colors in the multi-primary color conversion of the multi-primary display, A multi-primary color display that solves the degree of freedom in determining multi-primary color values in color conversion by replacing the objective function with a linear programming problem that uses power consumption, thereby simultaneously improving color reproducibility and minimizing power consumption. It provides a color conversion method.
[0028] (多原色ディスプレイに用いる第 2の色変換方式の発明の課題を解決するための手 段) (Means for Solving the Problems of the Invention of the Second Color Conversion Method Used for Multi-Primary Color Display)
多原色ディスプレイに用いる第 2の色変換方式の発明は、入力三刺激値と画像中 の白色点の色度値とを通る直線に沿って、輝度一定で色度を下げるマッピングを行う ことにより課題を解決し、色域外に色データが多く含まれた画像に対して自然な色再 現が可能な色変換方式を提供する。 The invention of the second color conversion method used for a multi-primary color display is a problem by performing mapping that lowers the chromaticity at a constant luminance along a straight line passing through the input tristimulus values and the chromaticity values of the white point in the image. To provide a color conversion method capable of natural color reproduction for an image containing much color data outside the color gamut.
発明の効果
[0029] (多原色ディスプレイの発明の効果) The invention's effect (Effect of Invention of Multi-Primary Color Display)
通常のディスプレイ規格の色域を超える物体の明度が中程度に小さく彩度の大き な色を、新たに追加する原色を使って再現することにより表示する。この場合にも、通 常の 3原色の色と新たな原色の色の適当な組み合わせで表示する。このように、彩度 は大き!/、が発光効率の低!、素子と、彩度は小さ!、が発光効率の大きな素子を組み 合わせて使用することにより、従来の多原色ディスプレイと比べて、はるかに広色域 でエネルギー効率の良いディスプレイを実現することができる。したがって、発熱によ る温度上昇の問題を解決できるため、広色域で高輝度のディスプレイを比較的容易 に実現できる。 An object that exceeds the color gamut of the normal display standard is displayed by reproducing colors with medium brightness and high saturation using newly added primary colors. In this case as well, the image is displayed in an appropriate combination of the ordinary three primary colors and the new primary colors. In this way, the saturation is large! / Is low in luminous efficiency! And the element is low in saturation! Is used in combination with the element with high luminous efficiency. Energy-efficient displays with a much wider color gamut. Therefore, since the problem of temperature rise due to heat generation can be solved, a display with high luminance in a wide color gamut can be realized relatively easily.
[0030] (多原色ディスプレイに用いる第 1の色変換方式の発明の効果) (Effect of Invention of First Color Conversion Method Used for Multi-Primary Color Display)
線形計画法を用いることで、 4原色以上の多原色ディスプレイにおける多原色の色 変換には自由度が存在する。このため、色変換における自由度の問題を、目的関数 を消費電力とした線形計画問題に置き換えることで、消費電力最小の組み合わせを 探すことができた。これによつて多原色ディスプレイにおいて、消費電力を増加させ ずに色再現性を向上できると!、う効果がある。 By using the linear programming, there is a degree of freedom in the color conversion of multi-primary colors in a multi-primary display with four or more primary colors. Therefore, by replacing the problem of the degree of freedom in color conversion with a linear programming problem with the power consumption of the objective function, we were able to find the combination with the lowest power consumption. This has the effect of improving color reproducibility in multi-primary color displays without increasing power consumption!
[0031] (多原色ディスプレイに用いる第 2の色変換方式の発明の効果) (Effect of Invention of Second Color Conversion Method Used for Multi-Primary Color Display)
線形計画法を用いることで、 4原色以上の多原色ディスプレイにおける多原色の色 変換には自由度が存在する。そこで、線形計画法にもとづくマッピングにより色域外 の色データを色変換して色域内に入れるため、色域外の色データが多く含まれた画 像に対して自然な色再現が可能になると!/、う効果がある。 By using the linear programming, there is a degree of freedom in the color conversion of multi-primary colors in a multi-primary display with four or more primary colors. Therefore, since color data outside the color gamut is converted into a color gamut by mapping based on linear programming, natural color reproduction can be realized for an image containing a large amount of color data outside the color gamut! / There is an effect.
図面の簡単な説明 Brief Description of Drawings
[0032] [図 1]本発明による多原色ディスプレイにおける表示領域分割例を示す図である。 FIG. 1 is a diagram showing an example of display area division in a multi-primary-color display according to the present invention.
[図 2]5つの原色 R, G, B, G , B より成り立つセル配置の一例を示す図である。 FIG. 2 is a diagram showing an example of a cell arrangement composed of five primary colors R, G, B, G, B.
b b b b
[図 3]本発明によるディスプレイの信号処理部本体と表示部本体との接続を示す図で ある。 FIG. 3 is a diagram showing a connection between a signal processing unit main body and a display unit main body of a display according to the present invention.
[図 4]色域判別処理手段と 5原色の最適組合せ処理手段の構成を示す図である。 FIG. 4 is a diagram showing a configuration of a color gamut determination processing means and an optimal combination processing means of five primary colors.
[図 5]UCS色度図上の各色範囲領域を示す図である。 FIG. 5 is a diagram showing each color range region on a UCS chromaticity diagram.
[図 6]シンプレックス法のアルゴリズム流れ図である。
[図 7]LEDの発光色測定装置を示す図である。 FIG. 6 is an algorithm flow chart of the simplex method. FIG. 7 is a view showing a light emission color measuring device of an LED.
[図 8]LEDの発光輝度特性を示す図である。 FIG. 8 is a diagram showing emission luminance characteristics of an LED.
[図 9]UCS色度図上の LED発光色の色度を示す図である。 FIG. 9 is a diagram showing chromaticity of LED emission colors on a UCS chromaticity diagram.
[図 10]最大消費電力に対する最小消費電力の比の頻度分布を示す図である。 FIG. 10 is a diagram showing a frequency distribution of a ratio of a minimum power consumption to a maximum power consumption.
[図 11]6原色の入力値を表す 8ビットのグレースケール画像である。 FIG. 11 is an 8-bit grayscale image representing input values of six primary colors.
[図 12]カラーチャートである。 FIG. 12 is a color chart.
[図 13]6原色カラーディスプレイ上に再現された画像である。 FIG. 13 is an image reproduced on a six-primary-color display.
[図 14]UCS色度図上の各色範囲領域を示す図である。 FIG. 14 is a diagram showing each color range area on a UCS chromaticity diagram.
[図 15]マッピングを行わないときの多原色ディスプレイでの出力結果を示す画像であ る。 FIG. 15 is an image showing an output result on a multi-primary-color display when no mapping is performed.
[図 16]マッピングを行った時の多原色ディスプレイでの出力結果を示す画像である。 符号の説明 FIG. 16 is an image showing an output result on a multi-primary-color display when mapping is performed. Explanation of symbols
[0033] 1 信号処理部本体 [0033] 1 Signal processing unit main body
2 表示部本体 2 Display unit
3 判別処理手段 3 Judgment processing means
4 組合せ最適化処理手段 4 Combination optimization processing means
101 安定化 DC電源 101 stabilized DC power supply
102 回路 102 circuits
103 輝度測定器 103 Luminance measuring instrument
104 LED 104 LED
105 ガラス板 105 glass plate
106 完全反射形光拡散装置 106 Perfect reflection type light diffuser
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0034] (多原色ディスプレイの実施形態) (Embodiment of Multi-Primary Color Display)
本発明による構成方式は、標準のディスプレイの色表示に関する規格 (例えば HD TV規格)の色域より格段に広!ヽ色域をもつ画像情報、例えば XYZや広色域の信号 を使って表された画像情報を表示する場合に、 4種類あるいはそれ以上の発光物質 を使い、エネルギー効率は高いが、実効的に色域を狭くすることなく必要な輝度を得
ることにより、ディスプレイをエネルギー効率よく実現する方法である。 The configuration scheme according to the present invention is significantly wider than the color gamut of a standard display color display standard (for example, HD TV standard)! Uses four or more types of light-emitting substances to display the image information that has high energy efficiency, but achieves the required brightness without effectively reducing the color gamut. This is a method for realizing a display with energy efficiency.
[0035] 以下に本発明の基本概念を記述する。自然界の物体の持つ色を縦軸:明度、半径 方向:彩度、円周方向:色彩として色の 3次元座標に表すと、明度の大きな色は無彩 色軸の近くに存在し、これらの多くの色は標準ディスプレイの色域(例: HDTVの色 域)の範囲内にある。しかし、物体の明度が比較的小さな色は、標準のディスプレイ の色域を超える色が多数存在する。また、絵の具、塗料、染料、 LEDなどの発光素 子による人工的に作られた色には、標準のディスプレイの色域を超えるものがある。 一方、明度がさらに小さな色は標準のディスプレイの色域内にある。このような物体の 色の分布を考慮して以下の(1) , (2)が同時に実現できる方式を提案する。 Hereinafter, the basic concept of the present invention will be described. When the color of an object in the natural world is represented as the vertical axis: lightness, radial direction: saturation, and circumferential direction: color in three-dimensional coordinates of a color, a color with a large lightness exists near the achromatic color axis. Many colors fall within the gamut of standard displays (eg, HDTV gamut). However, there are many colors whose object brightness is relatively small, exceeding the color gamut of a standard display. In addition, some artificial colors created by light-emitting elements such as paints, paints, dyes, and LEDs exceed the color gamut of standard displays. On the other hand, lighter colors are within the gamut of a standard display. Considering the color distribution of such an object, we propose a method that can simultaneously realize the following (1) and (2).
[0036] ( 1)として、物体の明度が大きく比較的彩度の小さい色を、 HDTVなど現在のディ スプレイの規格に合わせて開発された 3原色を使って表示する。これら原色の素子は これまでに多数実用化され、輝度が高く彩度と効率のバランスが大変良い。物体の 明度の大変小さな色についてもほとんどの場合にこれらの 3原色を使って表示できる [0036] As (1), a color in which the brightness of the object is large and the saturation is relatively small is displayed using three primary colors developed according to the current display standard such as HDTV. Many of these primary color elements have been put to practical use, and have high luminance and a very good balance between saturation and efficiency. In most cases, even very light colors of objects can be displayed using these three primary colors.
[0037] (2)として、逆に、従来のディスプレイ規格の色域を超える物体の明度が中程度に 小さく彩度の大きな色は、新たに追加する原色を使って表示する。この場合にも、こ れらの 3原色の色と新たな原色の色の適当な組み合わせで表示する。こうすることに より、彩度は大きいが発光効率の低い素子と彩度は小さいが発光効率の大きな素子 を組み合わせて使用するので、ディスプレイ装置全体として見た場合に、広色域でェ ネルギー効率の良いものを実現することができる。 [0037] Conversely, as (2), conversely, an object that exceeds the color gamut of the conventional display standard and has a medium brightness and a high saturation color is displayed using a newly added primary color. In this case as well, the display is made in an appropriate combination of these three primary colors and the new primary colors. In this way, an element with high saturation but low luminous efficiency and an element with low saturation but high luminous efficiency are used in combination, so that when viewed as a whole display device, the energy efficiency in a wide color gamut is increased. Good things can be realized.
[0038] 図 1には、本発明によって構成される多原色ディスプレイにおける表示領域分割の 一実施例を示す。図 1において、 RGBは標準のディスプレイの色表示に関する規格 (例えば、 HDTV規格)の色域の 3原色である。 G , B は、新たに追加された原色 FIG. 1 shows an embodiment of display area division in a multi-primary-color display constructed according to the present invention. In FIG. 1, RGB is the three primary colors in the color gamut of a standard for displaying colors on a standard display (for example, the HDTV standard). G and B are newly added primary colors
b b b b
の一例であり、 RGBによって形成される色域の外にある。 X, Yは CIE規格における ものであり、 3原色 R , G , B の線形結合により次式で与えられる。(「ディジタル画 And is outside the color gamut formed by RGB. X and Y are in the CIE standard, and are given by the following equation by a linear combination of the three primary colors R, G, and B. ("Digital image
0 0 0 0 0 0
像(Digital Pictures) J , 50頁参照。 ) See Pictures (Digital Pictures) J, p. )
X= 2. 365R -0. 515G + 0. 005Β X = 2.365R -0.55G + 0.005Β
0 0 0 0 0 0
Y=-0. 897R + 1. 426G —0. 014B
Z=-0. 468R +0. 089G + 1. 009B Y = -0. 897R + 1.426G —0.014B Z = -0.468R + 0.089G + 1.09B
0 0 0 0 0 0
[0039] 図 1では広色域の画像情報を表示するにあたり適当な色域を判別することにより、 忠実な色再現、エネルギー効率の最適化を図る。必要な輝度を出すために使用する 原色数は、 3以上の最適な数、例えば本実施例では 5である。 3原色 RGBで囲まれ た範囲は通常のディスプレイの発光素子を使って表示しているので、輝度は大きくと れる。既に説明したように、 G と B が新たに追加された原色の例である。したがって b b In FIG. 1, faithful color reproduction and optimization of energy efficiency are achieved by determining an appropriate color gamut when displaying image information in a wide color gamut. The number of primary colors used to obtain the required luminance is an optimal number of 3 or more, for example, 5 in this embodiment. Since the area surrounded by the three primary colors RGB is displayed using the light-emitting elements of a normal display, the brightness can be increased. As already explained, G and B are examples of newly added primary colors. Therefore b b
、例えば三角形 R, G , B で囲まれた範囲の色のうち、 G, B, G , B で囲まれた四 b b b b For example, among colors in a range surrounded by triangles R, G, and B, four colors b b b b surrounded by G, B, G, and B
辺形内の色については、原色 G, B, G , B を使って表示する。しかし、任意の 3原 b b The colors in the rectangle are displayed using the primary colors G, B, G, and B. But any three prima b b
色を使って表示することが可能な範囲の色は、表示しなければならな 、輝度および 消費エネルギーを考慮して決定する。 The range of colors that can be displayed using colors is determined in consideration of the brightness and energy consumption that must be displayed.
[0040] 図 2には、 5つの原色 R, G, B, G , B を使用して構成したパネル形ディスプレイ b b [0040] FIG. 2 shows a panel-type display b b composed of five primary colors R, G, B, G, and B.
における発光材料のセル配置の一例を示す。図 2において、 1行目は R, G , R, B b b の繰り返しパターンより成り立ち、第 2行目は G, B, G, Bの繰り返しパターン力 成り 立つ。 3行目は 1行目と同様な繰り返しである力 1行目より 1列だけ右にシフトしてい る。同様に、 4行目は 2行目と同様な繰り返しである力 2行目より 1列だけ右にシフト している。したがって、 1列目では R, G, B , Bの繰り返しパターンが形成され、 2列 b 1 shows an example of the cell arrangement of the luminescent material in the above. In FIG. 2, the first line is composed of a repetition pattern of R, G, R, Bbb, and the second line is composed of a repetition pattern power of G, B, G, B. The third line is the same repetition as the first line, and is shifted one column to the right from the first line. Similarly, the fourth line is shifted one column to the right from the second line, which is the same repetition as the second line. Therefore, the repetition pattern of R, G, B, B is formed in the first row, and the second row b
目では G , B, R, Gの繰り返しパターンが形成されている。 In the eyes, a repeating pattern of G, B, R, and G is formed.
b b
[0041] 前記行と列より成り立つセルアレイの駆動では、行と列より成り立つマトリクスのひと つ、或いは複数の交点が同時にアクセスされ得る。したがって、このセルアレイでは 各行のラインが常に駆動され、 1列目のライン力 順次、 2列目、 3列目のラインへと 駆動される形成のライン ·アット ·ァ ·タイム形の走査が適切なセル駆動方式のひとつ である。しかし、各セルに記憶機能が備えてあれば、この走査方式には限らない。ま た、 5原色の配置方法も図 2に示す方法に限らず、任意の組み合わせパターンの繰り 返しでかまわない。 In driving the cell array composed of rows and columns, one or a plurality of intersections of a matrix composed of rows and columns can be simultaneously accessed. Therefore, in this cell array, the line of each row is always driven, and the line-at-a-time scanning of the formation, in which the line force of the first column is sequentially driven and the lines of the second and third columns are driven, is appropriate. This is one of the cell driving methods. However, as long as each cell has a storage function, the scanning method is not limited to this. Also, the arrangement method of the five primary colors is not limited to the method shown in FIG. 2, and any combination pattern may be repeated.
[0042] 次に、本発明によるディスプレイの表示方式について説明する。図 3には画像信号 を入力してから、 5つの原色 R, G, B, G , B を求めてディスプレイ上に表示するた b b Next, the display method of the display according to the present invention will be described. In Fig. 3, after the image signal is input, the five primary colors R, G, B, G, and B are calculated and displayed on the display.
めの信号処理部本体 1と、多原色ディスプレイ駆動回路を含む表示部本体 2との接 続を示す。図 4には、図 3に示す信号処理部本体 1の詳細構成の一例を示す。図 4に
示すように、信号処理部本体 1は色域判別処理手段 3と、この判別処理で得られた 5 原色信号の最適組合せを実行するための最適組合せ処理手段 4とから成り立つ。 1 shows a connection between a signal processing unit main body 1 and a display main unit 2 including a multi-primary-color display driving circuit. FIG. 4 shows an example of a detailed configuration of the signal processing unit main body 1 shown in FIG. Figure 4 As shown, the signal processing unit main body 1 is composed of a color gamut discrimination processing means 3 and an optimum combination processing means 4 for executing an optimum combination of the five primary color signals obtained by this discrimination processing.
[0043] 図 4にお 、て、判別処理手段 3の動作は次により実行される。 XYZZCIE— RGB信 号が信号処理部本体 1に入力されると、判別処理手段 3はカラー信号 RGBより成る 三角形の範囲内に入力信号が含まれる力否かを判別する。 RGBより成る三角形の 範囲内であれば、ベクトル RGBが組合せ最適化処理手段 4に含まれるグループ 1の 原色分割部に入力され、個々の RGB成分に分割して出力される。もし、 RGBより成 る三角形の範囲外であれば、 G, B, B , G より成る四辺形の範囲内に含まれるか b b In FIG. 4, the operation of the discrimination processing means 3 is executed as follows. XYZZCIE—When an RGB signal is input to the signal processing unit main body 1, the determination processing means 3 determines whether or not the input signal is included in the range of the triangle formed by the color signal RGB. If it is within the range of the triangle composed of RGB, the vector RGB is input to the primary color division section of group 1 included in the combination optimization processing means 4 and divided into individual RGB components and output. If it is outside the range of the triangle consisting of RGB, it is included in the range of the quadrangle consisting of G, B, B, G or b b
否かを判別する。 G, B, B , G より成る範囲内に含まれていれば、ベクトル G, B, B b b Determine whether or not. G, B, B b b if contained in the range consisting of G, B, B, G
, G が組合せ最適化処理手段 4に含まれるグループ 2の原色分割部に入力され、 b b , G are input to the primary color division section of group 2 included in the combination optimization processing means 4, and b b
個々の G, B, B , G 成分に分割されて出力される。 The output is divided into individual G, B, B, and G components.
b b b b
[0044] もし、 G, B, B , G より成る四辺形の範囲外であれば、 G , G, Rの三角形の範囲 b b b [0044] If it is out of the range of the quadrilateral consisting of G, B, B, and G, the range b b b of the triangle of G, G, and R
内に含まれる力、或いは B , B, Rの三角形の範囲内に含まれるかの判別が実行さ b It is determined whether the force is contained within or within the range of the triangle of B, B, R b
れる。判別結果に従って、ベクトル G , G, R或いはベクトル B , B, Rが組合せ最適 b b It is. According to the discrimination result, the vector G, G, R or the vector B, B, R
化処理手段 4に含まれるグループ 3の原色分割部に入力され、個々の G , G, R成 b 分或いは B , B, R成分が分割して出力される。 Is input to the primary color division section of the group 3 included in the conversion processing means 4, and the individual G, G, R components or B, B, R components are divided and output.
b b
[0045] 個々の RGB成分、 G, B, B , G 成分、 G , G, R成分或いは B , B, R成分がそ b b b b [0045] Each RGB component, G, B, B, G component, G, G, R component or B, B, R component is
れぞれ原色グループの切替え部に入力され、それぞれが組み合わされて、 R, G, B , G B 信号が個々にディスプレイの入力端子に入力される。 R, G, B, and G B signals are individually input to the input terminals of the display by being input to the primary color group switching unit and combined with each other.
b b b b
[0046] (多原色ディスプレイに用いる第 1の色変換方式の実施形態) (Embodiment of First Color Conversion Method Used for Multi-Primary Color Display)
線形計画問題は制約条件下で目的関数 Zを最大、あるいは最小にする最適化問題 であり、制約条件や目的関数が線形式として表される。この問題については、坂和正 敏著「線形システムの最適化 <一目的から多目的へ >」,森北出版(1984)が参考 文献となる。線形という条件の下で問題を代数的に扱うことができるため、非線形最 適化問題に比べ単純に最適解を得ることができる。線形計画問題の標準形を次の式 (6)に示す。 The linear programming problem is an optimization problem that maximizes or minimizes the objective function Z under the constraint condition, and the constraint condition and the objective function are represented as a linear form. References to this issue can be found in Kazumasa Saka, "Optimization of Linear Systems <From One Purpose to Multipurpose>", Morikita Publishing (1984). Since the problem can be treated algebraically under the condition of linearity, the optimal solution can be obtained simply compared to the nonlinear optimization problem. Equation (6) shows the standard form of the linear programming problem.
最 zjヽィ匕 Z = C X + C X + · · · + C X Zz Xd 匕 Z = C X + C X +
1 1 2 2 n n 1 1 2 2 n n
目的関数 a X + a X + · · · + & X ± d = b
a x +a x + · · · +a x ±d =b Objective function a X + a X + + + X ± d = b ax + ax +
21 1 22 2 2n n 2 2 a x +a x + e e e +a x ±d =b (6) ml 1 m2 2 mn n m m 21 1 22 2 2n n 2 2 ax + ax + eee + ax ± d = b (6) ml 1 m2 2 mn nmm
0≤x , d (j = l, 2, · · · , n) 0≤x, d (j = l, 2,
a , c :定数 a, c: Constant
(j = l, 2, · · · , n:i= l, 2, · · · , m) (j = l, 2, ..., n: i = l, 2, ..., m)
[0047] 一方、線形計画法には次の 2つの基本定理が与えられている。すなわち、第 1は「 実行可能な解が存在するならば、必ず実行可能な基底解が存在する」 ヽぅものであ り、第 2は「最適解が存在するならば、実行可能な基底解の中にも最適解が存在する 」というものである。 On the other hand, the following two basic theorems are given to the linear programming. In other words, the first is "if there is a feasible solution, there is always a feasible basis solution." There is also an optimal solution in ".
[0048] この定理を用いることで有限回の組み合わせ探索により最適解を得ることができる。 By using this theorem, an optimal solution can be obtained by a finite number of combination searches.
しかし、変数の数が増えると組み合わせの数が多くなり処理に時間がかかる。そこで 用いるのがシンプレックス法である。シンプレックス法は相対費用係数を用い最適性 を判断することで線形計画法の基本定理を効率よく利用し最適解を得ることができる 。シンプレックス法の基本的アルゴリズムを図 6に示す。 However, when the number of variables increases, the number of combinations increases, and the processing takes time. Therefore, the simplex method is used. The simplex method can use the basic theorem of linear programming efficiently to determine the optimality by using the relative cost coefficient to obtain the optimal solution. Figure 6 shows the basic algorithm of the simplex method.
[0049] 次に、色変換における線形計画法につ!、て記述する。線形計画法を色変換に用い るには各原色の相対輝度値から XYZへの変換式ならびに相対輝度値のとりうる範囲 を制約条件とし、何らかの目的関数を設定すればよい。色変換の問題を線形計画法 の標準形に直したものを次の式(7)に示す。 Next, a linear programming method in color conversion will be described. In order to use the linear programming for color conversion, a conversion formula from the relative luminance value of each primary color to XYZ and a range in which the relative luminance value can be taken are set as constraints, and some objective function may be set. Equation (7) below shows the color conversion problem converted to the standard form of linear programming.
最小化 z = c S +c S H he S Minimized z = c S + c S H he S
1 1 2 2 n n 1 1 2 2 n n
目的関数 X S +X S H hX S =X Objective function X S + X S H hX S = X
1 1 2 2 n n 1 1 2 2 n n
Y S +Y S H hY S =Y (7) Y S + Y S H hY S = Y (7)
1 1 2 2 n n 1 1 2 2 n n
Z S +Z S H hZ S =Z Z S + Z S H hZ S = Z
1 1 2 2 n n 1 1 2 2 n n
0≤S ≤1 (j = l, 2, · · · , n) 0≤S ≤1 (j = l, 2,
[0050] 式 (6)と式(7)を比較すると、通常の線形計画問題と比べて 2つの違 、が存在する 。 1つは変数の取りうる範囲である。通常の線形計画問題は変数の取りうる範囲は 0 ≤x である力 色変換を行う上で、相対輝度の範囲は 0≤S ≤1となっており、この ままではシンプレックス法を適用することができない。これは、 S ≤1に対し不足変数
を導入し、 Sn + α = 1として制約条件に組み込んで解くか、上限法を用いることで対 処可能である。この問題の参考書には、第 8の非特許文献、すなわち、ジー.ビー. ダンツィッヒ著, 「線形プログラミングにおける上限、第 2の制限、およびブロック三角 开 ,ェコノメトリ力, 23卷, 174— 183頁, 1955年(G. B. Dantzig, "Upper bounds, secondary constraints ana block triangularity in linear programming , conometrica, 23, pp.174- 183 (1955》がある。 [0050] Comparing equations (6) and (7), there are two differences compared to the normal linear programming problem. One is the range of variables. In the ordinary linear programming problem, the range of the variable is 0 ≤ x.In performing the color conversion, the range of the relative luminance is 0 ≤ S ≤ 1, and the simplex method can be applied as it is. Can not. This is the missing variable for S ≤1 And solve it by incorporating it into the constraints as S n + α = 1, or by using the upper bound method. A reference book on this subject can be found in the eighth non-patent document, G. B. Danzig, "Upper Limits in Linear Programming, Second Restrictions, and Block Triangles ,, Econometic Force, Vol. 23, pp. 174—183. , 1955 (GB Dantzig, "Upper bounds, secondary constraints ana block triangularity in linear programming, conometrica, 23, pp.174-183 (1955).
[0051] もう 1つ、色変換の問題に不足 Z余裕変数 (dj )が存在しないという違いがある。通 常の線形計画法では不足 Z余裕変数を非基底変数( = 0)とすることで、初期実行可 能基底解を求め、それを用いてシンプレックス法を進めていく。色変換で用いる線形 計画法では、不足 Z余裕変数がないうえに、変数に上限値が与えられているため、 0 と 1の、 2種類の非基底変数の様々な組み合わせを探さなければならず、初期実行 可能基底解を探すことが困難になる。このためには、 2段階シンプレックス法を用いる 必要がある。 2段階シンプレックス法は、第一段階で初期実行可能基底解を見つける 力あるいは存在しな 、と 、う情報を得る。第二段階で初期実行可能基底解から最適 解を見つけるか、ある 、は解が有界ではな 、(どこまでも小さ 、解がある) 、う情報 を得る。 [0051] Another problem is that there is no missing Z margin variable (dj) in the problem of color conversion. In ordinary linear programming, the initial feasible basis solution is obtained by setting the missing Z-margin variable to a non-basis variable (= 0), and the simplex method is advanced using that. In the linear programming method used in color conversion, there are no missing Z-margin variables and the variables have upper bounds, so various combinations of two kinds of non-basis variables, 0 and 1, must be searched for. Therefore, it is difficult to find an initial feasible basis solution. This requires the use of a two-step simplex method. The two-stage simplex method obtains information in the first stage that finds or does not exist an initial feasible basis solution. The second step is to find the optimal solution from the initial feasible basis solution, or to obtain information such that the solution is unbounded (there is a small solution everywhere).
[0052] 次に、消費電力を考慮した色変換について記述する。前述により制約条件が決ま つたため、あとは目的関数さえ与えれば色変換を行うことができる。多原色の色変換 には自由度が存在するため、自発光型のディスプレイでは、消費電力を大きくする原 色の組み合わせも存在する。線型計画法を用いて消費電力を最小にする原色の値 を求めるには、原色 nの相対輝度 S と消費電力 P を次の式 (8)のような線形式で表 さなければならない。また、式 (8)を満たす多原色ディスプレイの消費電力は式 (9)と なる。 Next, color conversion in consideration of power consumption will be described. Since the constraints are determined as described above, color conversion can be performed only by providing the objective function. Because there is a degree of freedom in color conversion of multi-primary colors, there are also combinations of primary colors that increase power consumption in self-luminous displays. In order to find the value of the primary color that minimizes power consumption using linear programming, the relative luminance S and power consumption P of the primary color n must be expressed in a linear form as shown in the following equation (8). Also, the power consumption of the multi-primary color display that satisfies Equation (8) is expressed by Equation (9).
P =c X S (8) P = c X S (8)
P +P H hP =c S +c S H he S (9) P + P H hP = c S + c S H he S (9)
1 2 n 1 1 2 2 n n 1 2 n 1 1 2 2 n n
[0053] 前述の式 (9)は式 (7)の目的関数 zと一致する。実際に消費電力が式 (9)のような 線形式となる階調制御の一方法として時間階調制御がある。また、その他の制御方 法も非線形ではあるが、消費電力が高くなるにつれ、輝度も高くなるという特徴を持つ
ている。線形計画法において目的関数の精度がそれほど正確でなくとも得られる基 底解は制約条件を満たしている。このため、たとえ相対輝度と消費電力の関係を式(The above equation (9) matches the objective function z of equation (7). Time gray scale control is one method of gray scale control where the power consumption actually becomes a linear form as shown in equation (9). Other control methods are also nonlinear, but have the characteristic that the higher the power consumption, the higher the brightness. ing. In linear programming, the base solution that can be obtained even if the accuracy of the objective function is not so accurate satisfies the constraints. Therefore, even if the relationship between relative luminance and power consumption is
8)として近似しても、それほど問題はない。 There is not much problem even if it is approximated as 8).
[0054] 以上のことを確認するために、具体的な色変換方式の一実施例を構成し、 LEDを 用いて色変換の精度および、消費電力の改善の程度を調べた。用いた LEDは輝度 や色度を考慮し選んだ 5つの原色と白色の計 6種類である。まず、 LEDの電流に対 する輝度の関係を測定した。測定装置の概要を図 7に示す。図において、電源 101 に接続されている回路 102は、基板に支持された LED104を駆動する。 LED104は 、磨りガラスであるガラス板 105を介して、前方の完全反射形光拡散装置 106を照射 する。分光放射輝度計である輝度測定器 103により拡散散乱光が測定される。 LED 104とガラス板 105の間の空間は遮光筒で囲まれている。 LEDの電流と輝度の関係 を図 8に示す。線形近似を行ってもそれほど問題がないことが分かる。さらに、 LED の時間経過や加法混色に対する信頼性を調べるために、測定で得られた値を組み 合わせて混色を行ったところ、理論値と実測値の色差は 0. 86となった。これは 2級色 差 (並べて比較した場合、色差が認められる)内であり、実験で用いても問題のない 程度である。 In order to confirm the above, an embodiment of a specific color conversion method was configured, and the accuracy of color conversion and the degree of improvement in power consumption were examined using LEDs. The LEDs used are of a total of six types: five primary colors and white, selected in consideration of brightness and chromaticity. First, the relationship between the LED current and the luminance was measured. Figure 7 shows an overview of the measurement device. In the figure, a circuit 102 connected to a power supply 101 drives an LED 104 supported on a substrate. The LED 104 illuminates the front fully-reflective light diffusion device 106 via a glass plate 105 made of polished glass. The diffuse scattered light is measured by a luminance measuring device 103 which is a spectral radiation luminance meter. The space between the LED 104 and the glass plate 105 is surrounded by a light shielding tube. Figure 8 shows the relationship between LED current and brightness. It turns out that there is not much problem even if the linear approximation is performed. In addition, the color difference between the theoretical value and the measured value was 0.86 when color mixing was performed by combining the values obtained from the measurements to check the reliability of the LED over time and additive color mixing. This is within the secondary color difference (color difference is observed when compared side by side), and it is of no problem if used in experiments.
[0055] 次に、図 8を用いて最高輝度を出すための LEDの電流と三刺激値を決定した。実 験に用いる LEDの三刺激値および電流を次の表 1に示す。また、この時の色度を図 9に示す。 Next, with reference to FIG. 8, the LED current and the tristimulus value for obtaining the highest luminance were determined. Table 1 shows the tristimulus values and currents of the LEDs used in the experiment. FIG. 9 shows the chromaticity at this time.
[表 1] [table 1]
輝度特性が線形である時間階調制御を想定したシミュレーション実験を行った。時
間階調制御は LEDの ONZOFFの時間比(duty比)によって、輝度を変化させる方 法である。 ONの時間だけ電流が流れるため、 duty比と輝度の関係はほぼ線形とな る。表 1より目的関数 zの値は次の式(10)で与えられる。 A simulation experiment was performed assuming time gray scale control with a linear luminance characteristic. Time Inter-grayscale control is a method of changing the luminance according to the ONZOFF time ratio (duty ratio) of the LED. Since the current flows only during the ON time, the relationship between duty ratio and luminance is almost linear. From Table 1, the value of the objective function z is given by the following equation (10).
z = 294. OS + 323. OS + 322. 8S z = 294. OS + 323. OS + 322.8S
1 2 3 one two Three
+ 331. OS + 304. 5S ( + 302. 4S ) (10) + 331. OS + 304.5S (+ 302.4S) (10)
4 5 6 4 5 6
[0057] この目的関数 zにより消費電力を最小にする組み合わせを求めることができる。 LE Dによって作られる色再現範囲内の色をランダムに 100種類選び、シミュレーション により消費電力量を求めた。さらに、比較のため、目的関数の係数をすベて負とした 場合も計算した。これにより消費電力を最大にする組み合わせを得ることができる。 白を用いた場合 (6原色)と、用いない場合 (5原色)の 2種類で計算を行った。 100種 類の色に対してシミュレーションを行った結果、電力量最大として解いた場合の単位 時間の電力量は、平均で 447. 62mW(5原色), 472. 36mW(6原色)となり、電力 量最小として解いた場合、平均で 359. 03mW(5原色), 309. 91mW(6原色)とな つた。発光効率の良い白を入れることで、電力量が低くなることが確認できた。 [0057] With this objective function z, a combination that minimizes power consumption can be obtained. We randomly selected 100 types of colors within the color reproduction range created by LEDs, and calculated the power consumption by simulation. For comparison, calculations were also performed for all negative coefficients of the objective function. Thus, a combination that maximizes power consumption can be obtained. The calculation was performed using two types, one using white (6 primary colors) and the other not using (5 primary colors). As a result of simulating 100 kinds of colors, the power consumption per unit time when the power consumption was solved as the maximum was 447.62 mW (5 primary colors) and 472.36 mW (6 primary colors) on average. When solved as the minimum, the average was 359.03mW (5 primary colors) and 309.91mW (6 primary colors). It was confirmed that the amount of power was reduced by adding white having good luminous efficiency.
[0058] 前述の結果は、用いる原色によっては、原色を増やしても全体の消費エネルギーを 抑えることが可能だということを示している。さらに、どの程度消費電力が改善された かを調べるために 100種類の結果に対し、電力最大の組み合わせの電力量と、電力 最小の組み合わせの電力量の比を取ったところ、平均で 5原色の場合が 0. 802, 6 原色の場合が 0. 656,標準偏差は 5原色が 0. 085, 6原色が 0. 151となった。実際 の分布は図 10の通りである。線形計画法により、効率の良い原色の組み合わせを得 られることがわかった。 The above results show that depending on the primary colors used, the total energy consumption can be reduced even if the primary colors are increased. Furthermore, to determine how much power consumption has been improved, the ratio of the amount of power of the combination with the maximum power to the amount of power with the combination of the minimum power was calculated for 100 results. The case was 0.802, the case of 6 primary colors was 0.656, and the standard deviation was 0.085 for the 5 primary colors and 0.151 for the 6 primary colors. Figure 10 shows the actual distribution. It was found that the linear programming method can provide an efficient combination of primary colors.
[0059] 次に、画像データを用い、線形計画法を確認する。ここまで、多原色ディスプレイに おける、消費電力を考慮した色変換方法の理論およびシミュレーションによる確認実 験を行った。しかし、画像データに対し多原色の色変換を行った場合、次の 2つの問 題点が考えられる。すなわち、第 1の問題は「原色の割合が変わることにより疑似輪 郭が発生する」という点であり、第 2の問題は「階調再現誤差により不自然な色再現と なる」という点である。 Next, the linear programming is confirmed using the image data. So far, we have performed theoretical and simulation experiments on color conversion methods for multi-primary color displays that take power consumption into consideration. However, when multi-primary color conversion is performed on image data, the following two problems can be considered. That is, the first problem is that "pseudo contours occur due to the change in the ratio of primary colors", and the second problem is that "unnatural color reproduction due to gradation reproduction errors" .
[0060] この問題が本発明の手法で発生するか否かを確認するために、 6原色リア投射型
ディスプレイを対象に XYZ画像の色変換を行った。 6原色リア投射型ディスプレイは プロジェクタを用いているため、ランプの消費電力は一定であり、明るさとフィルタの 分光透過率によって各原色の三刺激値が決まる。従って、消費電力の検討はできな いが、色再現の確認を行うことは可能である。撮影に用いた装置は ΧΥΖ三刺激値を 出力可能なォリンパス社の 16バンドマルチスペクトルカメラである。実際に用いた目 的関数 ζは次の式(11)のように係数をすベて 1とした。 [0060] In order to confirm whether or not this problem occurs with the method of the present invention, a 6 primary color rear projection type XYZ image color conversion was performed on the display. Since the 6 primary color rear projection display uses a projector, the power consumption of the lamp is constant, and the tristimulus value of each primary color is determined by the brightness and the spectral transmittance of the filter. Therefore, although power consumption cannot be examined, it is possible to confirm color reproduction. The device used for imaging was Olympus' 16-band multispectral camera capable of outputting tristimulus values. The objective function 実 際 actually used was set to 1 for all coefficients as in the following equation (11).
z = S +S +S +S +S +S (11) z = S + S + S + S + S + S (11)
1 2 3 4 5 6 1 2 3 4 5 6
[0061] 図 11に各原色の相対輝度を 0から 255の白黒画像として表したものを示す。左上 力 右下にかけて、短波長側の原色から長波長側の原色になっており、色度は図 5 の通りである。画像内の色票はそれぞれ図 12のような配色になっており、各原色が 色票の色に応じた階調になっているのが分かる。 FIG. 11 shows the relative luminance of each primary color represented as a black and white image from 0 to 255. From upper left to lower right, the primary color is shifted from the short wavelength primary color to the long wavelength primary color, and the chromaticity is as shown in Fig. 5. Each color chart in the image has a color scheme as shown in Fig. 12, and it can be seen that each primary color has a gradation corresponding to the color of the color chart.
[0062] 線形計画法は、制約条件によって作られる空間や目的関数が線形であるため、端 点が最適解になると 、う特徴があり、原色によって黒 、部分が多 、画像となって 、る 。混色してディスプレイに表示させた画像を図 13に示す。光源の当たり方により輝度 むらがあるため、疑似輪郭が発生しやすい背景部分も、問題なく変換が可能であるこ とが確認できた。また、この画像データに対して、理論的な量子化誤差の影響を計算 したところ平均で色差 0. 26であることが確認できた。 0. 26は、識別色差(同一物体 の測色再現精度)内であり、色再現として問題のないレベルである。 [0062] In the linear programming, since the space created by the constraint conditions and the objective function are linear, the optimal solution at the end point has the following characteristics: black depending on the primary color, many parts, and an image. . Figure 13 shows the image that was mixed and displayed on the display. Since there was uneven brightness due to the way the light source hits, it was confirmed that conversion was possible without any problem even for background parts where false contours were likely to occur. In addition, when the effect of the theoretical quantization error was calculated for this image data, it was confirmed that the color difference was 0.26 on average. 0.26 is within the discrimination color difference (colorimetric reproduction accuracy of the same object), which is a level at which there is no problem in color reproduction.
[0063] (多原色ディスプレイに用いる第 2の色変換方式の実施形態) (Embodiment of Second Color Conversion Method Used for Multi-Primary Color Display)
この第 2の色変換方式は、前述した第 1の色変換方式で、さらに色域外の色データ が入力された場合、本発明を適用していないならば、制御は解が存在しないという情 報と途中経過のデータを返す。このデータは測色的に意味を持たないためマツピン グに利用できない。この場合、 The second color conversion method is the same as the first color conversion method described above, and furthermore, when color data outside the color gamut is input, if the present invention is not applied, the control is that there is no solution. And the data in progress. This data has no colorimetric meaning and cannot be used for mapping. in this case,
「第 1に色変換を行う。色域内だったら終了する。」、 "First perform color conversion. If it is within the color gamut, end."
「第 2に色域外ならばマッピングを行う。」、 "Second, mapping is performed outside the color gamut.",
「第 3に再度、色変換を行う。」の 3つの手順で処理を行うと仮定する。 It is assumed that the processing is performed in three steps, "Third, color conversion is performed again."
[0064] 前記第 1および第 3の手順では、初期解が必要なため、変換を行う毎にシンプレツ タス法を 2回行う。このため、この方法では計 4回のシンプレックス法が必要になる。シ
ンプレックス法のアルゴリズムを図 6に示す。また、マッピングも行うためさらに計算量 は増える。そこで、マッピングと色変換を一つの線形計画問題として解く方法を新た に採用する。このときの制約条件と目的関数は式(12)として表すことができる。 最小化 z= I (X - X ) In the first and third procedures, since the initial solution is required, the simplet method is performed twice each time the conversion is performed. Therefore, this method requires a total of four simplex methods. Shi Figure 6 shows the algorithm of the simplex method. In addition, the amount of calculation further increases because mapping is performed. Therefore, a new method of solving mapping and color conversion as one linear programming problem is adopted. The constraint condition and the objective function at this time can be expressed as Expression (12). Minimize z = I (X-X)
org I org I
目的関数 X +---+X S -X 0 Objective function X + --- + X S -X 0
1 s +X S 1 s + X S
1 2 2 n n 1 2 2 n n
Y S +Y S +···+Υ S =Y Y S + Y S +
1 1 2 2 n n org 1 1 2 2 n n org
Z S +Z S +---+Z =0 Z S + Z S + --- + Z = 0
1 1 2 2 n s -z 1 1 2 2 n s -z
n n
(X— x )/(x -x ) = (z-z )Z(z — Z ) (12) (X—x) / (x-x) = (z-z) Z (z—Z) (12)
X ≤X≤X if(X ≤X ) X ≤X≤X if (X ≤X)
org w org org w org
X ≤X≤X if(X >X ) X ≤X≤X if (X> X)
org w w org org w w org
0≤S ≤1 (j = l, 2, ···, n) 0≤S ≤1 (j = l, 2, ..., n)
j j
[0065] 前述の式(12)で、 X , Υ , Ζ は入力三刺激値、 χ ,y は画像中の白色点の org org org w w In the above equation (12), X, Υ, and Ζ are input tristimulus values, and χ and y are org org org ww w w of the white point in the image.
xy色度値である。 X, Y, Ζは X , Υ , Ζ と、 X , Υ , Ζ の 2点を通る直線上 org org org w org w The xy chromaticity value. X, Y, Ζ are on a straight line passing through two points, X, Υ, Ζ and X, Υ, Ζ org org org w org w
にある。この直線に沿って、輝度一定で色度を下げるマッピングを行う。もともと色域 が広いディスプレイでは、それほど複雑なマッピングは必要ないため、このような線形 マッピングでも問題ない。目的関数 zは X と Xの差の絶対値として与え、これを最小 org It is in. Along this straight line, mapping is performed to lower the chromaticity at a constant luminance. A display with a wide color gamut originally does not require much complicated mapping, so such a linear mapping is no problem. The objective function z is given as the absolute value of the difference between X and X.
化することで最適なマッピングを行うことができる。色域内の場合 zの値は 0となる。 By doing so, it is possible to perform optimal mapping. In the gamut, the value of z is 0.
[0066] この方法を用いることで、色域マッピングと色変換を同時に行うことができる。しかし 、この方法では発光効率を考慮することができない。そこで、以下の手順で色変換を 行う。 By using this method, color gamut mapping and color conversion can be performed simultaneously. However, this method cannot consider the luminous efficiency. Therefore, color conversion is performed in the following procedure.
(1)マッピングと色変換を行う (1) Perform mapping and color conversion
(2) (1)の結果を用いて、発光効率を考慮した色変換を行う (2) Perform color conversion in consideration of luminous efficiency using the result of (1)
[0067] 本手法ではマッピングと色変換を一つの線形計画問題として扱っており、単独で 2 つの計算を行うより効率的である。また、線形計画法を 2回行っているが、最初の計 算によって手順 (2)の初期実行可能基底解が得られるため、手順 (2)では 2段階法
を用いる必要がなく速度の向上が図れる。 [0067] In this method, mapping and color conversion are treated as one linear programming problem, which is more efficient than performing two calculations alone. Although the linear programming is performed twice, the initial calculation gives the initial feasible basis solution of step (2). It is not necessary to use the speed, and the speed can be improved.
[0068] 以上のことを確認するために、具体的な色変換方式の一実施例を構成し、前述の マッピングによる改善の様子を調べた。すなわち、前述の方法を用いて 6原色リア投 射型ディスプレイを対象に XYZ画像の色変換を行った。このディスプレイの色域は図 14の通りである。本装置は、プロジェクタを用いておりランプの消費電力は一定であ るため、実際の消費電力について検討することができない。そこで、すべての原色で 発光効率は線形かつ等し 、と仮定し前述の手法の有効性をシミュレーションする。こ の場合、前述の手順(2)の目的関数の係数はすべて 1となる。なお、撮影に用いた 装置は XYZ画像を出力可能な 16バンドマルチスペクトルカメラであり、用いた画像は 高彩度な布を撮影したものである。 [0068] In order to confirm the above, an embodiment of a specific color conversion method was configured, and the state of improvement by the above-described mapping was examined. That is, the color conversion of the XYZ image was performed for the rear projection display of the six primary colors using the method described above. The color gamut of this display is as shown in FIG. Since this device uses a projector and the power consumption of the lamp is constant, it is not possible to consider the actual power consumption. Therefore, assuming that the luminous efficiencies of all the primary colors are linear and equal, the effectiveness of the above method is simulated. In this case, the coefficients of the objective function in step (2) above are all 1. The equipment used for photography was a 16-band multispectral camera capable of outputting XYZ images, and the images used were photographs of highly saturated cloth.
[0069] 図 15および図 16に、 XYZ画像を変換しディスプレイに出力させた画像をディジタ ルカメラで撮影したものを示す。ただし、図 15はマッピングなしの画像であり、色域外 のデータは白となっている。一方、図 16はマッピングを行った画像である。両者を比 較すると、色変換ならびにマッピングが問題なく行われて 、ることが確認できた。 産業上の利用可能性 FIG. 15 and FIG. 16 show images obtained by converting an XYZ image and outputting the converted image to a display, using a digital camera. However, FIG. 15 shows an image without mapping, and data outside the color gamut is white. On the other hand, FIG. 16 shows an image on which mapping has been performed. Comparing the two, it was confirmed that color conversion and mapping were performed without any problem. Industrial applicability
[0070] (多原色ディスプレイの産業上の利用可能性) [0070] (Industrial applicability of multi-primary color display)
前述の多原色ディスプレイの構成によって、 RGBで定義される範囲外にカラー信 号成分が存在するときに限って G , B のセルが発光するので、 G B のセルの発 b b b b Due to the configuration of the multi-primary color display described above, the G and B cells emit light only when the color signal component exists outside the range defined by RGB.
光時間は十分に短くなる。このため、ディスプレイ全体としての実使用時のエネルギ 一効率を改善できる。したがって、大形の高輝度、高色域ディスプレイを容易に実現 でき、実使用時の温度上昇を抑圧することができる。このような動作によって、大型の 鮮明な画像をディスプレイ上に実現できる。よって、本発明では染色、服装、 CGなど の色彩デザイン関係、鮮魚、野菜、生物などの鮮度を表すための画像ディスプレイが 実現できる可能性を秘めて!/ヽる。 The light time is short enough. For this reason, the energy efficiency of the entire display in actual use can be improved. Accordingly, a large-sized high-brightness, high-gamut display can be easily realized, and a temperature rise during actual use can be suppressed. By such an operation, a large clear image can be realized on the display. Therefore, the present invention has the potential of realizing an image display for expressing the relationship between color design such as dyeing, clothing, CG, and the freshness of fresh fish, vegetables, living things, and the like! / Puru.
[0071] (多原色ディスプレイに用いる第 1の色変換方式の産業上の利用可能性) [0071] (Industrial applicability of the first color conversion method used for multi-primary display)
前述の第 1の色変換方式では、輝度特性が線形になる時間階調制御で実際の LE Dの特性を測定し、本発明による手法で消費電力最小の組み合わせを求めた。得ら れた結果と、目的関数の符号を入れ替えて消費電力が最大となる結果と比較したと
ころ、 5原色を用いた場合で約 20%,さらに発光効率の良い白を加えた場合で 35% 、消費電力が改善できていることが確認できた。この結果は HDTVやその他の高精 度ディスプレイに使用される多原色ディスプレイが、線形計画法に基づ ヽた設計手 法によって設計、製作されれば、ディスプレイの消費電力が減ぜられることを示して いる。従って、大面積、高精細のディスプレイに本発明の手法が利用できる。 In the first color conversion method described above, the actual LED characteristics were measured by time grayscale control in which the luminance characteristics became linear, and the combination with the minimum power consumption was obtained by the method according to the present invention. The results obtained are compared with the results that maximize the power consumption by changing the sign of the objective function. At this time, it was confirmed that the power consumption was improved by about 20% when the five primary colors were used, and by 35% when white with good luminous efficiency was added. The results show that multiprimary displays used in HDTVs and other high-definition displays are designed and built using linear programming-based design techniques to reduce display power consumption. ing. Therefore, the technique of the present invention can be used for a large-area, high-definition display.
(多原色ディスプレイに用いる第 2の色変換方式の産業上の利用可能性) 本発明による前述の第 2の色変換方式は、多原色ディスプレイの色再現の最適化 計画および装置の効率化の計画に広く利用できる。
(Industrial Applicability of Second Color Conversion Method Used for Multi-Primary Color Display) The above-mentioned second color conversion method according to the present invention is a method for optimizing the color reproduction of a multi-primary display and planning the efficiency of the device. Widely available to.