明 細 書 Specification
細胞動態の検査方法 Cell dynamics testing method
技術分野 Technical field
[0001] 本発明は、癌治療の新たな領域を提供するものである。すなわち、新規な癌治療 法として着目されるチロシンキナーゼ阻害剤と、医学博士八木田旭邦が開発した NK 細胞の活性化能、 NKT細胞の活性化能、血管新生阻害能、 IL-12の産生誘導能及 び IFN γの産生誘導能の動態に着目した新免疫療法との併用にお 、て、パーフオリ ン産生細胞の動態に着目した新規な癌免疫療法の検査方法及び癌免疫療法剤の 提供に関する。 The present invention provides a new area of cancer treatment. In other words, a tyrosine kinase inhibitor, which is attracting attention as a novel cancer treatment, and NK cell activation, NKT cell activation, angiogenesis inhibitory, and IL-12 production induction developed by Dr. New immunotherapy that focuses on the dynamics of perforin-producing cells in combination with new immunotherapy that focuses on the dynamics of IFNγ and the ability to induce the production of IFNγ. .
[0002] 本出願は、参照によりここに援用されるところの、 日本特許出願特願 2003-40367 6号からの優先権を請求する。 [0002] The present application claims priority from Japanese Patent Application No. 2003-403676, which is incorporated herein by reference.
背景技術 Background art
[0003] ガン(malignant neoplasms) (cancer)の予防または治療のための有用な物質の選別 は、従来、ガン細胞へのその直接的作用が重要視されていた。免疫賦活剤がガン治 療に有用であることは認められて ヽたが、免疫賦活剤として得られた化合物は ヽず れもその抗ガン効果が微弱であり、免疫療法単独または化学療法との併用治療によ つてもガンの十分な治療効果は達成されて!、な!/、。 [0003] In the selection of useful substances for the prevention or treatment of cancer (malignant neoplasms) (cancer), direct action on cancer cells has been conventionally regarded as important. Although immunostimulants have been found to be useful in cancer treatment, all of the compounds obtained as immunostimulants have weak anticancer effects, indicating that immunotherapy alone or in combination with chemotherapy. Even with the combination treatment, a sufficient therapeutic effect for cancer has been achieved!
[0004] 本発明者の医学博士八木田は、先にガン治療における画期的な手法として、イン ターロイキン 12 (IL-12)を生体内で誘発する物質の有用性に着目し、キノコ菌糸体 加工物がその機能を有することを発見し、新免疫療法 (Novel Immunotherapy for cancer) (MTC)ともいうべきガン治療法を確立した。従来 IL-12は、抗ガン効果がある ものの生体内に IL-12自体を直接投与した場合には副作用を生じるために患者が治 療に耐えられないという事実があり、それ自体を抗ガン剤として使用できな力つた。し かし、八木田が報告したキノコ菌糸体加工物を含む製剤は、ガンの治療において著 しい治癒'延命効果を達成した。つまり八木田は、 IL- 12を生体内で誘発できる有効 量のキノコ菌糸体加工物を投与することにより、ガンの治療目的を達成した (特許文
[0005] IL- 12は、 TNF a→IFN y→IL- 12→CTL活性と!/、うルートでキラー T細胞の活性化 効果と増強効果をもつ。つまり IL-12の産生増強は、キラー T細胞の活性化と増強に より抗ガン効果を期待される。 [0004] The inventor of the present invention, Dr. Yagida's medical science, first focused on the usefulness of a substance that induces interleukin 12 (IL-12) in vivo as an epoch-making technique in the treatment of cancer. He discovered that a substance has its function and established a cancer treatment method that could be called a novel immunotherapy (Novel Immunotherapy for cancer) (MTC). Conventionally, IL-12 has an anticancer effect, but there is a fact that if IL-12 itself is administered directly into a living body, patients will not be able to tolerate the treatment due to side effects. Unable to use as a power. However, the formulation containing the processed mushroom mycelium reported by Yagida achieved a significant healing / life extension effect in the treatment of cancer. In other words, Yagida achieved the goal of treating cancer by administering an effective amount of a processed mushroom mycelium capable of inducing IL-12 in vivo. [0005] IL-12 has TNF a → IFN y → IL-12 → CTL activity, and has an activating and enhancing effect on killer T cells through the root. In other words, the enhancement of IL-12 production is expected to have an anticancer effect by activating and enhancing killer T cells.
[0006] 八木田は、 IL-12の産生増強の系とは別に NKT細胞の活性ィ匕が抗ガン効果に有用 であることを報告している。谷口等は、 NKT細胞が有する ν α 24ν |8 11という特異的 な Τ細胞抗原受容体 (TCR)が認識する特異的な糖脂質抗原を発見し、この抗原が 、 αガラクトシルセラミドであることを報告している。更に、 αガラクトシルセラミドを投 与した担ガンマウスでは、 ΝΚΤ細胞が活性ィ匕され、ガンの消失はみられないものの転 移が抑制されることを証明した。 [0006] Yagida reports that the activity of NKT cells, apart from the IL-12 production enhancement system, is useful for anticancer effects. Taniguchi et al. Discovered a specific glycolipid antigen recognized by the specific -cell antigen receptor (TCR) called να24ν | 811, which NKT cells possess, and found that this antigen is α-galactosylceramide. Reporting. Furthermore, it was demonstrated that in cancer-bearing mice to which α-galactosylceramide was administered, ΝΚΤ cells were activated and the migration was suppressed although the disappearance of the cancer was not observed.
ΝΚΤ細胞にはもう一つの受容体として ΝΚ細胞抗原受容体 (NKR-P1 ;ナチュラルキ ラー受容体 P1)があることが報告されている(非特許文献 1)。 NKR-P1も ΝΚΤ細胞の 活性ィ匕に関与し、この活性ィ匕が抗ガン効果において、より優位であることを八木田は 見出している (特許文献 2)。 It has been reported that ΝΚΤ cells have ΝΚ cell antigen receptor (NKR-P1; natural killer receptor P1) as another receptor (Non-patent Document 1). Yagida has found that NKR-P1 is also involved in the activity of ΝΚΤ cells, and that this activity is more superior in anticancer effect (Patent Document 2).
[0007] ガンの分子標的治療剤は、新タイプの制癌剤として従来の細胞標的治療剤と対比 してその意義が着目されている。そのなかでも特にシグナル伝達阻害作用を有する 薬剤としてチロシンキナーゼ阻害剤が注目されて 、る。 ZD1839 (ィレッサ:登録商標 ァストラゼネ力)は EGFR (上皮成長因子受容体)チロシンキナーゼの ΑΤΡ結合部位に おける ΑΤΡとの競合作用を有し、チロシンキナーゼの自己リン酸ィ匕を抑制することで チロシンキナーゼ活性を抑制する。その結果、 EGFRのもつ増殖、浸潤、分化、転移 に関連するシグナル伝達〔EGFRの細胞外ドメインに上皮成長因子 (EGF)等のリガン ドが結合することにより、細胞内ドメインにある EGFRチロシンキナーゼが活性ィ匕し、 EGFRの自己リン酸ィ匕および種々の細胞内標的たんぱくのリン酸ィ匕を引き起こすこと により細胞表面力 核への増殖シグナルが伝達され、癌細胞表面から核への増殖シ グナルが伝達され、癌細胞の増殖、浸潤、転移、血管新生を起こす〕を遮断すること により抗癌作用を発現する。 IMC-C225 (EGFR標的モノクローナル抗体)は細胞膜表 面の EGFRレセプター部分を認識し、 EGFRの自己リン酸ィ匕を抑制することでチロシン キナーゼ活性を阻害する。ハーセプチンは EGFRと相同性をもつ Her2/Neuに対する モノクローナル抗体であり、 STI-571 (グリベック)は BCR-Ablのチロシンキナーゼ活性
の阻害と c kitのチロシンキナーゼ活性の阻害能を有する(非特許文献 2)。 [0007] The molecular target therapeutic agent for cancer has attracted attention as a new type of anticancer agent in comparison with the conventional cell target therapeutic agent. Among them, a tyrosine kinase inhibitor has been particularly noted as a drug having a signal transduction inhibitory action. ZD1839 (Iressa: registered trademark AstraZene Power) has a competitive action with EG at the binding site of EGFR (Epidermal Growth Factor Receptor) tyrosine kinase, and suppresses tyrosine kinase autophosphorylation by controlling tyrosine kinase. Suppress activity. As a result, signal transduction related to the proliferation, invasion, differentiation, and metastasis of EGFR (the binding of EGFR tyrosine kinase to the extracellular domain of EGFR Activating, triggering autophosphorylation of EGFR and phosphorylation of various intracellular target proteins transmit cell surface forces, proliferation signals to nuclei, and proliferate signals from cancer cell surfaces to nuclei. Is transmitted to cause cancer cell proliferation, invasion, metastasis, and angiogenesis. IMC-C225 (EGFR-targeted monoclonal antibody) recognizes the EGFR receptor on the cell membrane surface and inhibits tyrosine kinase activity by suppressing EGFR autophosphorylation. Herceptin is a monoclonal antibody against Her2 / Neu with homology to EGFR, and STI-571 (Gleevec) is a tyrosine kinase activity of BCR-Abl And the ability to inhibit the tyrosine kinase activity of c kit (Non-Patent Document 2).
[0008] このような分子標的治療剤は新メカニズムのガン治療薬として着目される力 その 効果はいまだ革命的とはいえない。たとえば、 ZD1839 (ィレッサ)はァストラゼネカ社 が新規に開発した強力かつ選択的な EGFRチロシンキナーゼ阻害剤であり、ヒトでも その有用性が判明している。し力 非小細胞肺癌や前立腺癌などでの臨床成績は PR (部分寛解)が 10— 20数 %で、 CR (完全寛解)は全くないと言ってもよいが、あっても 極くまれで完全寛解まで 4ヶ月以上の期間が力かっていた。そこで ZA1839 (ィレッサ) と各種抗癌剤との併用療法が試みられて!/、るものの現時点では相加ある!、は相乗効 果は得られていない。 [0008] Such a molecular target therapeutic agent is attracting attention as a cancer therapeutic agent of a new mechanism. Its effect is not yet revolutionary. For example, ZD1839 (Iressa) is a powerful and selective EGFR tyrosine kinase inhibitor newly developed by AstraZeneca, and its usefulness has been proven in humans. Clinical results for non-small cell lung cancer and prostate cancer have PR (partial remission) of 10 to 20% and CR (complete remission) at all, but they are very rare It took more than four months to complete remission. Therefore, combination therapy with ZA1839 (Iressa) and various anticancer drugs has been tried! /, But at the moment it is additive !, but no synergistic effect has been obtained.
[0009] NK細胞からの IFN γ産生を誘導するケモカインとして CX3C-ケモカインが報告され 、そのレセプターとして CX3CR1があり、これは G蛋白共役 7回膜貫通型レセプターで ΝΚ細胞や単球及び一部 Τ細胞に発現している(非特許文献 3)。西村等は Τ細胞に おける CX3CR1発現は CD3(+)CD161(+)とグランザィム Β陽性細胞に限られ、細胞障 害活性が CX3CR1陽性細胞によって担われていることを明らかにした (非特許文献 4) [0009] CX3C-chemokine has been reported as a chemokine that induces IFN γ production from NK cells, and its receptor is CX3CR1, which is a G protein-coupled seven-transmembrane receptor {cells, monocytes and some of them). It is expressed in cells (Non-Patent Document 3). Nishimura et al. Have shown that CX3CR1 expression in Τ cells is limited to CD3 (+) CD161 (+) and granzym Β positive cells, and that cytotoxic activity is carried by CX3CR1 positive cells (Non-patent Document 4 )
[0010] 特許文献 1 :特開平 10— 139670号公報 Patent Document 1: JP-A-10-139670
特許文献 2: US2002-0010149A1 Patent Document 2: US2002-0010149A1
非特許文献 1:特集 NKT細胞の基礎と臨床:最新医学 55卷 4号 2000年 818— 823 ぺ1 ~~シ Non-patent document 1: Special issue: Basics and clinical practice of NKT cells: Latest Medicine 55 Vol. 4 2000 818—823 ぺ1 ~~
非特許文献 2 :血液 ·免疫'腫瘍 Vol. 7 No.3 2002-7 Non-Patent Document 2: Blood and Immune 'Tumor Vol. 7 No.3 2002-7
非特許文献 3 : Cell 1997 ;91 : 521 Non-Patent Document 3: Cell 1997; 91: 521
非特許文献 4:J. Immunol 2002; 168: 6173 Non-Patent Document 4: J. Immunol 2002; 168: 6173
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0011] 本発明は、上記のような分子標的治療薬のより有効な効果をもたらすことを目的とし 、完全寛解率を上げ、完全寛解への期間の短縮化を達成し、免疫療法との相乗効 果を達成するための手段を提供するものである。つまり、 CTL活性、 NKT活性、 NK活 性及び VEGF等に着目する新免疫療法と、分子標的治療薬、特にチロシンキナーゼ
阻害剤との併用による相乗効果の達成を課題とする。 [0011] The present invention aims to provide a more effective effect of the above-mentioned molecular target therapeutic agent, and achieves a higher complete remission rate, a shorter time to complete remission, and a synergy with immunotherapy. It provides the means to achieve the effect. In other words, new immunotherapy focusing on CTL activity, NKT activity, NK activity, VEGF, etc., and molecular targeted therapeutics, especially tyrosine kinases The task is to achieve a synergistic effect when used in combination with an inhibitor.
課題を解決するための手段 Means for solving the problem
[0012] 本発明は、チロシンキナーゼ阻害剤と癌免疫療法剤の併用がガン治療における優 位な相乗効果を達成するためには、癌免疫療法剤がパーフォリン産生細胞に有効に 影響するものであることが重要であることを見出し本発明を完成した。 [0012] In the present invention, in order for a combined use of a tyrosine kinase inhibitor and a cancer immunotherapy to achieve an excellent synergistic effect in cancer treatment, the cancer immunotherapy effectively affects perforin-producing cells. It has been found that this is important, and the present invention has been completed.
[0013] すなわち本発明は、 [0013] That is, the present invention provides
「1.チロシンキナーゼ阻害剤と癌免疫療法剤の併用において、癌免疫療法剤による パーフォリン産生細胞の動態をマーカーにする細胞動態の検査方法。 "1. A method for examining cell kinetics using, as a marker, the kinetics of perforin-producing cells by a cancer immunotherapeutic agent in a combination use of a tyrosine kinase inhibitor and a cancer immunotherapy agent.
2.チロシンキナーゼ阻害剤と癌免疫療法剤の併用において、癌免疫療法剤の有効 性判定のためにパーフォリン産生細胞の動態をマーカーにする癌免疫療法剤。 2. A cancer immunotherapeutic agent that uses the dynamics of perforin-producing cells as a marker to determine the efficacy of the cancer immunotherapeutic agent in combination with a tyrosine kinase inhibitor and a cancer immunotherapeutic agent.
3.チロシンキナーゼ阻害剤と癌免疫療法剤の併用において、癌免疫療法剤の有効 性判定のためにパーフォリン産生細胞の動態をマーカーにする癌免疫療法剤のスク リーニング方法。 3. A method for screening a cancer immunotherapeutic agent using a tyrosine kinase inhibitor and a cancer immunotherapeutic agent in combination with the kinetics of perforin-producing cells to determine the efficacy of the cancer immunotherapeutic agent.
4.チロシンキナーゼ阻害剤が、以下の少なくとも 1の受容体に対する選択的標的作 用を有し、癌免疫療法剤の機能が IL-12産生誘導及び Z又は IL-21介在反応である 前項 1又は 3の方法。 4.The tyrosine kinase inhibitor has a selective targeting effect on at least one of the following receptors, and the function of the cancer immunotherapeutic agent is IL-12 production induction and Z or IL-21-mediated response. 3 ways.
HER2/neu、 HER3、 HER4、 c— kit、 PDGFR、 bcr— abl、 EGFR HER2 / neu, HER3, HER4, c-kit, PDGFR, bcr-abl, EGFR
5.チロシンキナーゼ阻害剤が、以下の少なくとも 1の受容体に対する選択的標的作 用を有し、癌免疫療法剤の機能が IL-12産生誘導及び Z又は IL-21介在反応である 前項 2の癌免疫療法剤。 5.The tyrosine kinase inhibitor has a selective targeting effect on at least one of the following receptors, and the function of the cancer immunotherapeutic agent is IL-12 production induction and Z or IL-21-mediated response. Cancer immunotherapy.
HER2/neu、 HER3、 HER4、 c— kit、 PDGFR、 bcr— abl、 EGFR HER2 / neu, HER3, HER4, c-kit, PDGFR, bcr-abl, EGFR
6.癌免疫療法剤が、 β 1,3/1, 6グルカン構造を有する物質である前項 4の方法。 6. The method according to the above item 4, wherein the immunotherapeutic agent is a substance having a β1,3 / 1,6 glucan structure.
7.癌免疫療法剤が、 |8 1,3/1,6グルカン構造を有する物質である前項 5の癌免疫療 法剤。 7. | The cancer immunotherapeutic agent according to the above item 5, wherein the cancer immunotherapeutic agent is a substance having a | 1,3 / 1,6 glucan structure.
8.癌免疫療法剤が、 β 1,3/1,6グルカン構造を有する酵母由来成分である前項 4の 方法。 8. The method according to the above item 4, wherein the cancer immunotherapy agent is a yeast-derived component having a β1,3 / 1,6 glucan structure.
9.癌免疫療法剤が、 β 1,3/1,6グルカン構造を有する酵母由来成分である前項 5の 癌免疫療法剤。
10.パーフォリン産生細胞の動態が、 NKTP(+)値、 NKT8(+)P(+)値、 CD8(+)P(+)T値、 及び Thl/Th2比のうちの少なくとも一により判定される前項 1、 3、 4、 6、及び 8の何れ か一の方法。 9. The cancer immunotherapy agent according to the above item 5, wherein the cancer immunotherapy agent is a yeast-derived component having a β1,3 / 1,6 glucan structure. 10.Perforin-producing cell dynamics are determined by at least one of NKTP (+), NKT8 (+) P (+), CD8 (+) P (+) T, and Thl / Th2 ratio Any one of methods 1, 3, 4, 6, and 8 above.
11.パーフォリン産生細胞の動態が、 NKTP(+)値、 NKT8(+)P(+)値、 CD8(+)P(+)T値、 及び Thl/Th2比のうちの少なくとも一により判定される前項 2、 5、 7、及び 9の何れか 一の癌免疫療法剤。 11.Perforin-producing cell dynamics are determined by at least one of NKTP (+), NKT8 (+) P (+), CD8 (+) P (+) T, and Thl / Th2 ratio The cancer immunotherapeutic agent according to any one of the above items 2, 5, 7, and 9.
12.ガンの化学療法剤及び放射線治療との併用無しに処置される前項 2、 5、 7、 9、 及び 11の何れか一の癌免疫療法剤。 12. The cancer immunotherapeutic agent according to any one of the above items 2, 5, 7, 9, and 11, which is treated without combination with a chemotherapeutic agent and radiation therapy for cancer.
13. NKT細胞の NKR-P1に選択的に作用して NKT細胞を活性ィ匕をおこす物質と併 用される前項 2、 5、 7、 9、 11、及び 12の何れか一の癌免疫療法剤。 13. Any one of the above 2, 5, 7, 9, 11, and 12 for cancer immunotherapy which is used in combination with a substance which selectively acts on NKT-P1 of NKT cells to activate NKT cells. Agent.
14.血管新生阻害能を有する物質と併用される前項 2、 5、 7、 9、 11、 12及び 13の 何れか一の癌免疫療法剤。」 14. The cancer immunotherapeutic agent according to any one of the above items 2, 5, 7, 9, 11, 12, and 13, which is used in combination with a substance capable of inhibiting angiogenesis. "
からなる。 Consists of
発明の効果 The invention's effect
[0014] 本発明では、免疫療法剤によるパーフォリン産生細胞の動態への影響をマーカー にすることの臨床的意義を見出し、これを測定すれば、より確実にチロシンキナーゼ 阻害剤と免疫療法剤の併用による効果を達成可能である。 [0014] In the present invention, the clinical significance of using the effect of immunotherapeutic agents on the dynamics of perforin-producing cells as a marker was discovered, and by measuring this, the combination of a tyrosine kinase inhibitor and an immunotherapeutic agent could be more reliably determined. The effect by the above can be achieved.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]免疫マーカーの寄与度について多変量解析図である。 FIG. 1 is a multivariate analysis of the contribution of an immune marker.
[図 2]各々の effector細胞中のパーフォリン産生細胞の寄与度を検討した図である。 FIG. 2 is a diagram in which the contribution of perforin-producing cells to each effector cell was examined.
[図 3]寄与度を比率で見た図である。 FIG. 3 is a diagram showing the degree of contribution as a ratio.
[図 4]免疫学的 factorの重要性を検討した図である。 FIG. 4 is a diagram examining the importance of immunological factors.
[図 5]免疫学的 factorの重要性を検討した図である。 FIG. 5 is a diagram examining the importance of immunological factors.
[図 6]免疫学的 factorの重要性を検討した図である。 FIG. 6 is a diagram examining the importance of immunological factors.
[図 7]NK細胞で検討した図である。 FIG. 7 is a diagram examined for NK cells.
[図 8]CD8(+)細胞で検討した図である。 FIG. 8 is a diagram examined with CD8 (+) cells.
[図 9]肺腺癌における奏効への寄与 (N=50)を示す図である。 FIG. 9 is a graph showing contribution to response in lung adenocarcinoma (N = 50).
[図 10]肺腺癌 (ィレッサ投与後)における奏効への寄与 (N=48)を示す図である。
[図 11]肺腺癌 (ィレッサ投与後)における奏効率 (N=30)を示す図である。 発明を実施するための最良の形態 FIG. 10 is a graph showing contribution to response in lung adenocarcinoma (after administration of Iressa) (N = 48). FIG. 11 is a view showing a response rate (N = 30) in lung adenocarcinoma (after administration of Iressa). BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を詳しく説明するが、本明細書中で使用されている技術的および科 学的用語は、別途定義されていない限り、本発明の属する技術分野において通常の 知識を有する者により普通に理解される意味を持つ。 Hereinafter, the present invention will be described in detail. Unless defined otherwise, technical and scientific terms used in the present specification have ordinary knowledge in the technical field to which the present invention pertains. Has a meaning commonly understood by others.
[0017] 本発明者の医学博士八木田のガン新免疫療法 (NITC)とは 4つの異なる作用機序 を組み合わせることからなる治療手段である。 [0017] The present inventor's medical doctor, Dr. Yagida's New Cancer Therapy for Cancer (NITC) is a therapeutic means comprising a combination of four different mechanisms of action.
第一の作用機序は、血管新生阻害物質 (ベターシヤーク)を投与してガンへの血流 を障害してガン縮小をは力る方法である。これは血管内皮細胞増殖因子 (VEGF)を 測定することでその効果の判定が可能である。血管新生阻害作用は VEGF値のマイ ナス(負)値(- VEGF)で評価できる。この VEGF値の代わりに FGF、 HGFなどのその他 の血管増殖因子を用いても血管新生阻害能を評価することが可能である。また VEGFの替わりに血管新生阻害因子の正数値でもその評価が可能である(例えばェ ンドスタチン値)。 The first mechanism of action is to administer an angiogenesis inhibitor (Bettershark) to impede blood flow to the cancer and to reduce the size of the cancer. The effect can be determined by measuring vascular endothelial cell growth factor (VEGF). The angiogenesis inhibitory effect can be evaluated by a negative (negative) VEGF value (-VEGF). It is possible to evaluate the angiogenesis inhibitory ability by using other vascular growth factors such as FGF and HGF instead of the VEGF value. In addition, the positive value of an angiogenesis inhibitor can be evaluated instead of VEGF (for example, endstatin value).
[0018] 第-の作用機序は、 β 1 ,3グルカン構造を担持する化合物を投与して Thlサイトカイ ン (TNF o;、 IFN y , IL- 12)を誘導して CTLを活性ィ匕する方法である。 CTL活性は CD8(+)パーフォリン産生能力で判定が可能である力 この CD8(+)パーフォリン値には 細胞障害性 T細胞 (CTL)と免疫抑制性 T細胞 (STC; Suppressor T cell)とがあり、前者 はガン細胞を障害し、後者の活性ィ匕は結果的にガンの増殖につながる。したがって その絶体値では評価はできない。し力し、 IFN y力 S 10 IU/ml以上力もしくは IL-12値が 7.8 pg/ml以上であれば CTLであり、 IFN γと IL-12が低値であれば STCと判定される 。そこで CTL活性は、 IFN y産生能力(IFN y値)もしくは IL-12産生能力 (IL-12値)で 評価が可能である。 [0018] The first mode of action is that a compound having a β1,3 glucan structure is administered to induce Thl cytokines (TNF o; IFN y, IL-12) to activate CTLs. How to CTL activity can be determined by CD8 (+) perforin producing ability This CD8 (+) perforin level includes cytotoxic T cells (CTL) and immunosuppressive T cells (STC; Suppressor T cells). On the other hand, the former damages cancer cells, and the latter activates cancers as a result. Therefore, it cannot be evaluated with its absolute value. If the IFN y force S 10 IU / ml or more or the IL-12 value is 7.8 pg / ml or more, it is CTL, and if the IFN γ and IL-12 are low, it is judged as STC. Therefore, CTL activity can be evaluated based on IFN y production ability (IFN y value) or IL-12 production ability (IL-12 value).
[0019] 第三及び第四の作用機序である ex 1 ,3グルカン構造を担持する化合物の投与によ つて活性化される effector細胞は NK細胞と NKT細胞である。この NKと NKT細胞とは NKR-P1(NK細胞受容体 CD161(+》を共有しており、前者について、 CD3(-)CD161(+) の表面マーカーで NK細胞数は測定可能であり、その活性ィ匕は CD3(-)CD161(+)パー フォリン産生能力で判定が可能である。一方後者の NKT細胞は CD3(+)CD161(+)で
その細胞数は測定が可能となり、そのパーフォリン産生能力(NKTP(+)と記す)で NKT 細胞の活性ィ匕は測定可能である。 [0019] The effector cells activated by the administration of the compound having the ex-1,3 glucan structure, which is the third and fourth mechanism of action, are NK cells and NKT cells. The NK and NKT cells share the NKR-P1 (NK cell receptor CD161 (+), and for the former, the number of NK cells can be measured using the CD3 (-) CD161 (+) surface marker. Activatedi can be determined by its ability to produce CD3 (-) CD161 (+) perforin, whereas the latter NKT cells are CD3 (+) CD161 (+). The cell number can be measured, and the activity of NKT cells can be measured by its perforin-producing ability (denoted as NKTP (+)).
[0020] したがってガン治療にお!、て新免疫療法 (NITC)であっても一般的な免疫療法で あっても以下の測定項目でそれぞれの effector細胞もしくは血管新生阻害作用を評 価することが可能である。具体的には、 CTL活性は IFN yあるいは IL-12の産生誘導 能力で評価が可能である。 NK細胞の活性ィ匕は CD3(-)CD161(+)で、もしくは [0020] Therefore, in the treatment of cancer, whether using new immunotherapy (NITC) or general immunotherapy, it is possible to evaluate each effector cell or angiogenesis inhibitory effect by the following measurement items. It is possible. Specifically, CTL activity can be evaluated based on its ability to induce IFNy or IL-12 production. NK cell activity is CD3 (-) CD161 (+), or
CD3(- )CD161(+)パーフォリン値でも評価可能である。 NKT細胞の活性ィ匕は It can also be evaluated by CD3 (-) CD161 (+) perforin value. NKT cell activity
CD3(+)CD161(+)で、もしくは CD3(+)CD161(+)パーフォリン値 (NKTP値)でも評価が 可能である。 Evaluation can be performed using CD3 (+) CD161 (+) or CD3 (+) CD161 (+) perforin (NKTP).
[0021] 本発明は、上記の新免疫療法にチロシンキナーゼ阻害剤を併用することによる臨 床における結果を検討することにより行われた。本発明者は、新免疫療法 (NITC)と して、ガン患者に a 1 ,3グルカン構造を担持する化合物、 /3 1 ,3グルカン構造を担持 する化合物と血管新生阻害作用物質 (サメ軟骨)を併用し、 IL-12、 IFN y他の各種サ イト力インを測定した。なお、 CD8(+)パーフォリン産生は、 IFN y及び IL-12の産生とは 強い正の相関性が存在し、この結果、 CD8(+)パーフォリン産生の測定は CTL活性ル ートの評価に意義があることを見出している。本発明では、新免疫療法にチロシンキ ナーゼ阻害剤を併用し、その有効患者の腫瘍細胞障害細胞の特定を行い、 The present invention was carried out by examining clinical results obtained by using a tyrosine kinase inhibitor in combination with the above-mentioned new immunotherapy. The present inventors have proposed a new immunotherapy (NITC) in cancer patients, a compound carrying an a1,3 glucan structure, a compound carrying a / 1,3 glucan structure, and an angiogenesis inhibitory substance (shark cartilage). In addition, IL-12, IFNy, and various other sites were measured. CD8 (+) perforin production has a strong positive correlation with IFNy and IL-12 production.As a result, measurement of CD8 (+) perforin production is significant for the evaluation of CTL activity route. Have found that there is. According to the present invention, a tyrosine kinase inhibitor is used in combination with a new immunotherapy, and tumor cytotoxic cells of an effective patient are identified.
NKTP (+)〔CD3(+)CD161(+)パーフォリン (+)〕、 NKT8(+)P (+)〔CD3(+)CD161(+)CD8(+) パーフォリン (+)〕、 CD8(+)P(+丌 CD8(+)パーフォリン (+)〕T細胞、及び ΝΚΡ(+丌 NKTP (+) (CD3 (+) CD161 (+) perforin (+)), NKT8 (+) P (+) (CD3 (+) CD161 (+) CD8 (+) perforin (+)), CD8 (+) P (+ 丌 CD8 (+) perforin (+)] T cells and ΝΚΡ (+ 丌
CD3(-)CD161(+)パーフォリン (+)〕に強い寄与度を確認した。そして、 IFN yや IL-12で は活性ィ匕されないが、 Thl/Th2比に依存的である effector細胞の存在を確認した。こ の細胞はパーフォリンと非常に強い関連性をもち、本発明者は CX3CR1類似細胞で あるとして Y細胞と仮称した。この細胞は、 IL-21で活性化される IL-21介在性反応に 関連するものと推定された。 CD3 (-) CD161 (+) perforin (+)]. Then, the presence of effector cells that were not activated by IFNy or IL-12 but were dependent on the Thl / Th2 ratio was confirmed. These cells have a very strong relationship with perforin, and the present inventors tentatively named Y cells as being CX3CR1-like cells. These cells were presumed to be involved in an IL-21-mediated response activated by IL-21.
[0022] この意義により免疫療法剤とチロシンキナーゼ阻害剤の併用において、少なくとも パーフォリン産生細胞の測定は、チロシンキナーゼ阻害剤との併用において有用な 癌免疫療法剤のスクリーニング方法に適用可能であり、このスクリーニング方法を利 用すればチロシンキナーゼ阻害剤との併用にお 、て有用な癌細胞障害性を機能を
担持する新規 ι8 1,3グルカンの特定が可能である。本発明で使用する、癌免疫療法 剤は、例えば、 β 1,3グルカン構造を持つ茸菌糸体組成物製剤 (例えば ILXffi^ :東 西医薬研究所、 ILYffi^ :セイシン企業)、或は j8 1,3グルカン構造を持つ各種酵母( 海洋性酵母、パン酵母、 NBG™)が利用できる。特に海洋性酵母が好ましい。また、 新規な癌免疫療法剤は、パーフォリン産生細胞の測定を組み合わせることで当業者 には容易に特定可能である。この方法により、本発明では海洋性酵母が、チロシンキ ナーゼ阻害剤との併用において有用な癌免疫療法剤として最適であり、この系は CX3CR1発現細胞も活性ィ匕しているものと考えられた。 [0022] Due to this significance, in the combination use of an immunotherapeutic agent and a tyrosine kinase inhibitor, at least the measurement of perforin-producing cells can be applied to a method for screening a cancer immunotherapy agent useful in combination with a tyrosine kinase inhibitor. Screening methods can be used to demonstrate useful cancer cytotoxicity in combination with tyrosine kinase inhibitors. It is possible to identify the new ι8 1,3 glucan to be carried. The cancer immunotherapeutic agent used in the present invention is, for example, a mushroom mycelium composition preparation having a β1,3 glucan structure (eg, ILX ffi ^ : Tozai Pharmaceutical Research Institute, ILY ffi ^ : Seishin Enterprise), or j8 Various yeasts with 1,3 glucan structure (marine yeast, baker's yeast, NBG ™) can be used. In particular, marine yeast is preferred. In addition, a novel cancer immunotherapeutic agent can be easily identified by those skilled in the art by combining measurement of perforin-producing cells. According to this method, in the present invention, marine yeast was most suitable as a useful cancer immunotherapeutic agent in combination with a tyrosine kinase inhibitor, and it was considered that this system also activated CX3CR1-expressing cells.
[0023] 本発明では、この癌免疫療法剤とチロシンキナーゼ阻害剤の併用が必須である。 In the present invention, a combination use of this cancer immunotherapy agent and a tyrosine kinase inhibitor is essential.
具体例では、 ZD1839 (ィレッサ商品名)又は STI571 (ダリベック商品名)を使った力 各種チ 口シンキナーゼ阻害剤が有効に利用できる。それらの標的分子として、 HER2/neu、 HER3、 HER4、 c-kit、 PDGFR、 bcr- abl、 EGFR等が例示される。最も効果的な分子は EGFR又は C- kitである。 In a specific example, various oral synthase inhibitors using ZD1839 (trade name of Iressa) or STI571 (trade name of Dalibec) can be effectively used. Examples of such target molecules include HER2 / neu, HER3, HER4, c-kit, PDGFR, bcr-abl, EGFR and the like. The most effective molecules are EGFR or C-kit.
チロシンキナーゼ阻害剤の投与量は、各分子標的化合物の推奨投与量に従うが、 The dose of the tyrosine kinase inhibitor follows the recommended dose of each molecular target compound,
10— 500mg/日の経口投与がおこなわれる。 Oral administration of 10-500 mg / day is performed.
[0024] 癌免疫療法剤とチロシンキナーゼ阻害剤の併用は、特に限定はされな 、が、治療 初期からでもよいし、どちらを先行させても良い。具体例では、 NITC療法特に癌免疫 療法剤を一定期間投与後に、チロシンキナーゼ阻害剤を併用し、劇的な臨床効果を 確認した。 [0024] The combination use of the cancer immunotherapeutic agent and the tyrosine kinase inhibitor is not particularly limited, but may be performed from the early stage of the treatment or either of them may be performed first. In a specific example, a dramatic clinical effect was confirmed using a tyrosine kinase inhibitor in combination with NITC therapy, especially a cancer immunotherapy drug, for a certain period of time.
[0025] 本発明では、癌免疫療法剤として、 IL-12産生誘導剤に加えて、 NK活性化剤又は NKT活性化剤の併用が可能である。 -ゲロオリゴ糖、フコィダン等の a 1,3グルカン構 造を持つ化合物の組成物製剤が NK活性化剤又は NKT活性化剤として有用である。 a 1,3グルカン構造を持つ化合物は種々知られており、この既知構造と CD3 (-) CD161 (+)、 CD3 (-) CD161 (+)パーフォリン産生能、 CD3 (+) CD161 (+)、 CD3 (+) CD161 (+)パーフォリン産生能の測定を組み合わせれば当業者は容易に NK活性ィ匕 剤を特定可能である。なお、 CD3 (+) CD161 (+)は NKT細胞の受容体 NKR-P1に作用 することを意味する。 [0025] In the present invention, an NK activator or NKT activator can be used in combination with an IL-12 production inducer as a cancer immunotherapy agent. - Geroorigo sugar, is useful as a 1, 3-glucan composition formulations structure with compound NK or NKT activator agent such Fukoidan. a Various compounds having a 1,3 glucan structure are known, and the known structure and CD3 (-) CD161 (+), CD3 (-) CD161 (+) perforin-producing ability, CD3 (+) CD161 (+), Those skilled in the art can easily specify the NK-activating agent by combining the measurement of the ability to produce CD3 (+) CD161 (+) perforin. CD3 (+) CD161 (+) means that it acts on the NKT cell receptor NKR-P1.
[0026] a 1,3グルカン構造の糖類物質としては、例えば、 -ゲロオリゴ糖 (TSO)、フコイダ
ン、硫酸オリゴ糖等が挙げられる。 A Examples of the saccharide substances having a 1,3 glucan structure include -gelooligosaccharide (TSO), fucoida , Sulfated oligosaccharides and the like.
-ゲロオリゴ糖は、 3—0— a D ダルコビラノシルー D グルコースを構成単位して 含有する糖類である。代表的なものとしては、 -ゲロース、 -ゲロシルグルコース、二 ゲロシルマルトース等が挙げられる。 -Gello-oligosaccharide is a saccharide containing 3-0-a D darcoviranosyl-D glucose as a constituent unit. Typical examples include -gelose, -gelosylglucose, and digerosylmaltose.
[0027] また、市販されている-ゲロオリゴ糖としては、 -ゲロオリゴ糖液糖 (販売者'武田食 品工業株式会社)が挙げられるが、これが含有する主な-ゲロオリゴ糖は (1) -ゲロ ース a— D— Glcp— (1,3)— D— Glc (2) -ゲロシルグルコース a— D— Glcp— (1,3)— α - D- Glcp- (1,4) - D- Glc (3) -ゲロシルマルトース a - D- Glcp- (1,3) - a - D- Glcp- (1,4) - a - D- Glcp- (1,4) - D- Glc (なお、 Glcはグルコース、 pはビラノースの略号であ る)である。 [0027] Examples of commercially available -gelooligosaccharides include -gerooligosaccharide liquid sugar (seller: Takeda Shokuhin Kogyo Co., Ltd.). Source a— D— Glcp— (1,3) — D— Glc (2) -Gerosylglucose a— D— Glcp— (1,3) — α-D- Glcp- (1,4)-D- Glc (3) -Gerosil maltose a-D- Glcp- (1,3)-a-D- Glcp- (1,4)-a-D- Glcp- (1,4)-D- Glc ( Glc is glucose, and p is an abbreviation for viranose).
フコィダンは、狭義ではフコースの 2— 6分子に硫酸 1分子が結合した硫酸ィ匕フコー ス含有多糖類であり、これにキシロースあるいはゥロン酸を含有したフコィダン様多糖 体を食品レベルで「フコィダン」と称している。フコィダンは、例えばコンブを破砕し、 チップ化し、水溶液成分を抽出した後、抽出残渣を遠心分離により除去し、ョードや 塩ィ匕ナトリウム等の低分子物質を限外ろ過により除去して凍結乾燥ィ匕して製剤化さ れる。 Fucoidan, in a narrow sense, is a sulfated fucose-containing polysaccharide in which one to two sulfuric acid molecules are bonded to two to six molecules of fucose, and a fucoidan-like polysaccharide containing xylose or peronic acid is called `` fucoidan '' at the food level. Is called. Fucoidan, for example, is obtained by crushing kelp, chipping, extracting aqueous components, removing the extraction residue by centrifugation, removing low-molecular substances such as eodo and sodium salt by ultrafiltration, and freeze-drying. It is formulated into a formulation.
フコィダンとしては、褐藻類由来フコィダン、例えばガゴメコンブ由来のフコィダン、 およびォキナヮモズク由来フコィダン等が例示される。ガゴメコンブ等の褐藻類コンブ 科由来のフコィダンには少なくとも 3種類のフコィダン、 F フコィダン( a L フコー スのポリマー)、 U フコィダン( 13 D—グルクロン酸と a—D マンノースを主鎖とし、 側鎖に a Lーフコースをもつ)、 G フコィダン( |8— D ガラクトースを主鎖とし、側鎖 に α Lーフコースをもつ)、が存在しており、いずれのフコイダンもフコースが硫酸化 されている。 Examples of fucoidan include fucoidan derived from brown algae, such as fucoidan derived from gagome kelp, and fucoidan derived from Okinawa mozuku. Fucoidans derived from brown algae Laminariaceae, such as gagome kelp, include at least three types of fucoidan, F-fucoidan (a polymer of a L-fucos), and U-fucoidan (13D-glucuronic acid and a-D mannose as the main chain and a L-fucose) and G-fucoidan (| 8—D-galactose in the main chain and α L-fucose in the side chain), and all fucoidans are sulfated.
[0028] 硫酸オリゴ糖としては、例えば株式会社白子製のスサビノリ(Poryphyra Yezaensis) 由来の抽出物があげられる。該抽出物の主成分は ex 1,3結合のガラクタン硫酸のオリ ゴ糖と ex 1,3結合および β 1,4結合よりなるガラクタン硫酸のオリゴ糖である。 [0028] Examples of the oligosulfate sulfate include, for example, an extract derived from susabinori (Poryphyra Yezaensis) manufactured by Shiroko Co., Ltd. The main components of the extract are an oligosaccharide of ex-1,3 linkage galactan sulfate and a galactan sulfate oligosaccharide consisting of ex1,3 linkage and β1,4 linkage.
[0029] 本発明のチロシンキナーゼ阻害剤と癌免疫療法剤、 CTL活性化剤 (IL-12産生誘 導剤、 INF y産生誘導剤)との併用、更には NK活性化剤、 NKT活性化剤、新生血管
阻害剤との併用は、その適用法を選別することで肺ガン (肺扁平上皮ガン、肺腺ガン 、小細胞肺ガン)、胸腺腫、甲状腺ガン、前立腺ガン、腎ガン、膀胱ガン、結腸ガン、 直腸ガン、食道ガン、盲腸ガン、尿管ガン、乳ガン、子宮頸ガン、脳ガン、舌ガン、咽 頭ガン、鼻腔ガン、喉頭ガン、胃ガン、肝ガン、胆管ガン、精巣ガン、卵巣ガン、子宫 体ガン、転移性骨ガン、悪性黒色腫、骨肉腫、悪性リンパ腫、形質細胞腫、脂肪肉 腫等の治療に有効である。 [0029] Use of the tyrosine kinase inhibitor of the present invention in combination with a cancer immunotherapy agent and a CTL activator (IL-12 production inducer, INFy production inducer), and furthermore, a NK activator and an NKT activator , New blood vessels In combination with inhibitors, the method of application is selected to determine whether lung cancer (lung squamous cell carcinoma, lung adenocarcinoma, small cell lung cancer), thymoma, thyroid cancer, prostate cancer, renal cancer, bladder cancer, colon cancer , Rectal cancer, esophageal cancer, cecal cancer, ureteral cancer, breast cancer, cervical cancer, brain cancer, tongue cancer, pharyngeal cancer, nasal cavity cancer, larynx cancer, stomach cancer, liver cancer, bile duct cancer, testicular cancer, ovarian cancer It is effective in treating cortical cancer, metastatic bone cancer, malignant melanoma, osteosarcoma, malignant lymphoma, plasmacytoma, liposarcoma, and the like.
[0030] 本発明に係るチロシンキナーゼ阻害剤と癌免疫療法剤、 CTL活性化剤 (IL-12産生 誘導剤、 INF y産生誘導剤)の併用、更には NK活性化剤、 NKT活性化剤、新生血管 阻害剤との併用は、その活性ィ匕を誘導または増強し、さらに活性化を維持できる処 方にて用いられる。すなわち、その活性ィ匕を誘導または増強し、さらに活性化を維持 できる投与量、ならびに投与期間を選択して用いられる。具体的には、その投与量は 、 NK活性化剤又は NKT活性化剤であるひ- 1,3グルカン構造を持つ化合物は lg— 4 OgZ日程度、好ましくは 5g— 20gZ日程度で、 CTL活性化剤 (IL- 12産生誘導剤、 INF y産生誘導剤)である β -1,3グルカン構造を持つ化合物は lg— 10gZ日程度、 好ましくは 3g— 6gZ日程度である。また、投与期間は一般的には 10日間一 24ヶ月 間、投与頻度は隔日又は 1一 3回 Z日で、好ましくは連日投与である。当該癌免疫療 法剤、 CTL活性化剤 (IL-12産生誘導剤、 INF y産生誘導剤)、 NK活性化剤、 NKT活 性化剤は、好適には経口摂取される。 [0030] A combination of the tyrosine kinase inhibitor according to the present invention and a cancer immunotherapy agent, a CTL activator (IL-12 production inducer, INFy production inducer), and further a NK activator, an NKT activator, When used in combination with a neovascular inhibitor, it is used in a manner capable of inducing or enhancing its activation and maintaining its activation. That is, the dose and the administration period that can induce or enhance the activation and maintain the activation can be selected and used. Specifically, the dose of the compound having a 1,3-glucan structure that is an NK activator or NKT activator is about lg-4 OgZ days, preferably about 5 g-20 gZ days, The compound having a β-1,3 glucan structure as an agent (IL-12 production inducer, INFy production inducer) has an lg of about 10 gZ days, preferably about 3 g to 6 gZ days. The administration period is generally 10 days to 24 months, and the administration frequency is every other day or 1 to 3 times Z days, preferably daily administration. The cancer immunotherapy agent, CTL activator (IL-12 production inducer, INFy production inducer), NK activator, and NKT activator are preferably orally ingested.
[0031] 抗ガン (化学療法)剤、放射線、あるいはステロイド併用療法を、本発明の併用に加 えて行う場合には、 2種類の免疫系のうち、 TNF Q;→IFN Y→IL- 12→キラー T細胞の 系統が著しく障害される。そのためこれらは本発明では用いないことが好ましい。但し 抗ガン剤を投与するとき、上記の免疫系を障害しない投与法である低濃度化学療法 すなわち 5FU、 UFT、ミフロール、フルツロン、 CDDP ^ /z g—lO /z g)の低濃度の投 与法やタキソテールあるいはタキノール、アドリアマイシン、マイトマイシン、 CPT-11 などの低濃度抗ガン剤の投与法等を適用することは有用である。また同様に放射線 療法にお!ヽて低容量照射の適用、ステロイド療法にぉ ヽても低濃度投与等を選択す る必要がある。 [0031] When an anticancer (chemotherapy) agent, radiation, or steroid combination therapy is performed in addition to the combination of the present invention, TNF Q; → IFN Y → IL-12 → The killer T cell lineage is severely impaired. Therefore, they are preferably not used in the present invention. However, when administering anticancer drugs, low-dose chemotherapy, which is a method that does not impair the immune system, such as low-dose chemotherapy such as 5FU, UFT, mifurol, furturon, and CDDP ^ / zg-lO / zg) It is useful to apply administration methods such as taxotere or low-concentration anticancer drugs such as taquinol, adriamycin, mitomycin, and CPT-11. Similarly, it is necessary to select low-dose irradiation for radiotherapy and low-concentration administration for steroid therapy.
[0032] 細胞および各サイト力インの測定方法を以下に例示する。
(NKT細胞の測定)(NK細胞の測定)(CD8の測定) [0032] A method for measuring the force of cells and each site is described below. (Measurement of NKT cells) (Measurement of NK cells) (Measurement of CD8)
NKR-P1を有する NKT細胞の測定は、 NKT細胞の細胞表面に特異的に存在する細 胞表面抗原(CD3および CD161)の測定により行うことができる。具体的には、末梢血 中のリンパ球について、 CD3が陽性でかつ CD161が陽性〔CD3(+)CD161(+)〕の細胞 を検定する。つまり、 NKT細胞の細胞表面抗原である CD3および CD161を、モノクロ ーナル抗体を用いてフローサイトメトリーを使用する Two Color検査により測定する。 ここで NKT細胞が活性化されているとは、リンパ球の中で NKT〔CD3(+)CD161(+)〕細 胞の割合が 10%以上、より好ましくは 16%以上であることをいう。 NKT細胞活性ィ匕能 とは、 NKT細胞の割合を 10%以上、より好ましくは 16%以上に増加せしめる機能、ま たはある物質を投与する前の NKT細胞の割合より更に増強せしめる機能を意味する 同様に〔CD3(-)CD161(+)〕とは CD3が陰性でかつ CD161が陽性の細胞を検定する ことである。この方法は NK細胞の測定に有用である。 The measurement of NKT cells having NKR-P1 can be performed by measuring cell surface antigens (CD3 and CD161) specifically present on the cell surface of NKT cells. Specifically, for lymphocytes in peripheral blood, cells that are positive for CD3 and positive for CD161 [CD3 (+) CD161 (+)] are assayed. That is, CD3 and CD161 which are cell surface antigens of NKT cells are measured by a two-color test using a flow cytometry using a monoclonal antibody. Here, “activated NKT cells” means that the ratio of NKT [CD3 (+) CD161 (+)] cells in lymphocytes is 10% or more, more preferably 16% or more. NKT cell activity is a function that increases the proportion of NKT cells to 10% or more, more preferably 16% or more, or a function that further enhances the proportion of NKT cells before administration of a certain substance. Similarly, [CD3 (-) CD161 (+)] refers to assaying cells that are negative for CD3 and positive for CD161. This method is useful for measuring NK cells.
さらに CD8(+)とは CD8が陽性の細胞を検定することである。この方法は CTL活性の 測定に有用である。 Further, CD8 (+) refers to assaying for CD8-positive cells. This method is useful for measuring CTL activity.
[0033] 実施例ではガン患者の血液を用いて、血中細胞につ!、て細胞表面抗原である [0033] In Examples, the blood cell of a cancer patient is used to detect cell surface antigens.
CD3、 CD161、 CD8について陽性'陰性で区別し、各細胞の割合を、フローサイトメト リーを用いた Two Color検査により常法通り測定した。このとき CD3、 CD161、 CD8に 対するモノクローナル抗体は、それぞれコールター社製又はべタトンディッキンソン社 製のものを使用した。 CD3, CD161, and CD8 were discriminated as positive or negative, and the proportion of each cell was measured by a two-color test using a flow cytometer as usual. At this time, monoclonal antibodies against CD3, CD161 and CD8 were manufactured by Coulter or Betaton Dickinson, respectively.
[0034] (パーフォリン産生細胞の測定) (Measurement of perforin-producing cells)
末梢血中のリンパ球について、細胞表面抗原である CD3、 CD161、 CD8のうち 2者と パーフォリンについてフローサイトメトリーを用いた Three Color検査により常法通り測 定する。具体的には、採取した血液に固定液をカ卩えて細胞を固定し、膜透過液を添 加後、抗パーフォリン抗体(Pharmingen社製)を添カ卩して反応させ、さらに PRE— Cy5 標識二次抗体 (DAKO社製)を添カ卩して反応させ、っ 、で抗 CD3- PE (Coulter 6604627)抗体および抗 CD161-FITC (B- D)抗体を添カ卩して反応させ、その後フロー サイトメトリーで測定する。図 ·表中での略語は P又は PERと表示した。
[0035] (サイト力インを測定するための試料の調製) For lymphocytes in peripheral blood, two of cell surface antigens, CD3, CD161, and CD8, and perforin are measured by a three-color test using flow cytometry as usual. Specifically, cells were fixed by collecting a fixation solution into the collected blood, and after adding a membrane permeate, the reaction was performed by adding an anti-perforin antibody (manufactured by Pharmingen) and reacting, followed by PRE-Cy5 labeling. A secondary antibody (manufactured by DAKO) was added and reacted, and then an anti-CD3-PE (Coulter 6604627) antibody and an anti-CD161-FITC (B-D) antibody were added and reacted. Measure by flow cytometry. Figures · Abbreviations in the table are indicated as P or PER. (Preparation of Sample for Measuring Site Force In)
まず、血液より単核球画分を分離調製する。へパリン加末梢血をリン酸緩衝生理食 塩水(Phosphate Buffered Saline) (PBS)で 2倍に希釈して混和した後、 FicoU- Conray 液 (比重 1. 077)上に重層し、 400Gで 20分間遠沈後、単核球画分を採取する。洗 浄後、 10%牛胎児血清(FBS)をカ卩えた RPMI - 1640培地をカ卩え、細胞数を 1 X 10 6個となるように調製する。得られた細胞浮遊液 200 1にフイトへマダルチュン( Phytohemagglutinin) (DIFCO社製)を gZmlの濃度となるように加え、 96穴マイ クロプレートにて 5%CO存在下、 37°Cで 24時間培養し、該培養した細胞溶液中の First, a mononuclear cell fraction is separated and prepared from blood. Heparin-added peripheral blood is diluted 2-fold with Phosphate Buffered Saline (PBS) and mixed, then layered on FicoU-Conray solution (specific gravity 1.077), and 400 G for 20 minutes After centrifugation, the mononuclear cell fraction is collected. After washing, prepare RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), and adjust the cell number to 1 × 10 6. Phytohemagglutinin (manufactured by DIFCO) was added to the obtained cell suspension 2001 to a concentration of gZml, and cultured in a 96-well microplate at 37 ° C for 24 hours in the presence of 5% CO. And in the cultured cell solution
2 2
サイト力インを測定する試料とする。 Use as a sample for measuring the site force-in.
[0036] (IL- 12の測定) [0036] (Measurement of IL-12)
IL-12量の測定は自体公知の臨床、生化学的検査を利用できる力 R&D SYSTEMS 社や MBL社より入手することのできる酵素免疫測定法 (ELISA)による測定キットが使 用される。ここでは R&D SYSTEMS社の測定キットを用いた。実際には 96穴マイクロプ レートの各穴に測定用希釈液 Assay Diluent 1¾ を50 1、標準液(standard)また は前記サイト力イン測定用試料の調製法で調製した試料を 200 μ 1ずつ分注した後、 室温にて静置して 2時間反応させた。その後、西洋わさびパーォキシダーゼ (horse radish peroxidase) (HRP)標識抗 IL- 12抗体を 200 μ 1ずつ分注し 2時間室温で静置 した。各穴の反応液を除去し 3回洗浄後、発色基質溶液を 200 1ずつ分注し、 20分 間室温静置後、酵素反応停止溶液を 50 1ずつ分注した。 550nmを対照として 450 nmにおける各穴の吸光度を Emax (和光純薬株式会社製)にて測定した。 IL-12量 は、 pgZmlとして表される。ここで IL-12産生誘発能とは、末梢血単核球画分が刺激 により産生する IL-12量を、 7. 8pgZml以上に増強せしめる機能、またはある物質を 投与する前の IL-12産生量より増強せしめる機能を意味する。 For the measurement of the amount of IL-12, a measurement kit by enzyme immunoassay (ELISA) available from R & D SYSTEMS or MBL is used, which is a power that can use clinical and biochemical tests known per se. Here, a measurement kit from R & D SYSTEMS was used. Actually, into each well of a 96-well microplate, dispense 50 1 of the assay diluent Assay Diluent 1¾, and 200 μl of the standard solution or 200 μl of the sample prepared by the above-mentioned method for preparing a cytoforce-in sample. After that, the reaction was left standing at room temperature for 2 hours. Thereafter, horseradish peroxidase (HRP) -labeled anti-IL-12 antibody was dispensed in 200 μl aliquots and allowed to stand at room temperature for 2 hours. After removing the reaction solution in each well and washing three times, 200 1 of the chromogenic substrate solution was dispensed at a time, and the mixture was allowed to stand at room temperature for 20 minutes. Using 550 nm as a control, the absorbance of each well at 450 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.). IL-12 levels are expressed as pgZml. Here, the ability to induce IL-12 production refers to a function that enhances the amount of IL-12 produced by stimulation of the peripheral blood mononuclear cell fraction to 7.8 pgZml or more, or IL-12 production before administration of a certain substance. A function that enhances the amount.
[0037] (IFN yの測定) (Measurement of IFN y)
IFN yの測定は、 BioSource Europe S.社の IFN y EASIAキットを用いて、酵素免 疫測定法 (EIA法)で測定した。実際には 96穴マイクロプレートの各穴に標準液( standard)または上記調製した試料を 2倍に希釈したものを 50 1ずつ分注し、 HRP 標識抗 IFN— γ抗体を 50 μ 1ずつ分注し更に振盪しながら 2時間室温で反応させた。
各穴の反応液を除去し 3回洗浄後、発色基質溶液を 200 1ずつ分注し、振盪しなが ら 15分間室温で反応させ、酵素反応停止溶液を 50 1ずつ分注した。 630nmを対 照として 450nmおよび 490nmにおける各穴の吸光度を Emax (和光純薬株式会社 製)にて測定した。 IFN y量は、 IUZmlとして表される。 IFN y was measured by an enzyme immunoassay (EIA method) using an IFN y EASIA kit from BioSource Europe S. Actually, in each well of a 96-well microplate, dispense 50 1 of a standard solution or a 2-fold dilution of the sample prepared above, and dispense 50 μl of HRP-labeled anti-IFN-γ antibody. The mixture was further reacted at room temperature with shaking for 2 hours. After removing the reaction solution from each well and washing three times, 200 1 of the chromogenic substrate solution was dispensed, and the mixture was allowed to react at room temperature for 15 minutes while shaking, and 50 1 of the enzyme reaction stopping solution was dispensed. The absorbance of each well at 450 nm and 490 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.) with 630 nm as a reference. IFN y content is expressed as IUZml.
[0038] (Thl/Th2比) [0038] (Thl / Th2 ratio)
Thl/Th2比とは、細胞表面抗原 CD4を有するヘルパー T細胞の中で、 Ν γを産生 する細胞 (Thl)と IL-4を産生する細胞 (Th2)の比率を表すもので、 CD4(+)IFN y (+)/CD4(+)IL- 4(+)と記す。 Thl/Th2細胞比は、フローサイトメトリーによるヘルパー T( Th)細胞系統 Three Color解析検査によって当業者には公知である常法を用いて、 具体的には国際公開公報 WO 02/04944号に記載の方法を用いて検定した。 The Thl / Th2 ratio indicates the ratio of cells producing Νγ (Thl) to cells producing IL-4 (Th2) among helper T cells having the cell surface antigen CD4, and CD4 (+ ) IFN y (+) / CD4 (+) IL-4 (+). The Thl / Th2 cell ratio was determined by a helper T (Th) cell line Three Color analysis test by flow cytometry using a conventional method known to those skilled in the art, and specifically described in WO 02/04944. The test was carried out using the method described above.
[0039] (血管新生阻害能の測定) (Measurement of angiogenesis inhibitory ability)
(血管内皮細胞増殖因子/ VEGFと、塩基性繊維芽細胞増殖因子/ bFGF、及び血 管新生阻害因子エンドスタチン/ endostatinの測定) (Measurement of vascular endothelial cell growth factor / VEGF, basic fibroblast growth factor / bFGF, and angiogenesis inhibitor endostatin / endostatin)
巿販キットの各酵素免疫固相法(ELISA: enzyme linked immuno sorbent assay) ( ACCUCYTE Human VEGF, ACCUCYTE Human bFGF, ACCUCYTE Human Endostatin: CYTIMMUNE Sciences Inc.)で血清中濃度を測定した。 Serum concentrations were measured by enzyme-linked immunosorbent assay (ELISA) (ACCUCYTE Human VEGF, ACCUCYTE Human bFGF, ACCUCYTE Human Endostatin: CYTIMMUNE Sciences Inc.) of the sales kit.
[0040] なお、臨床検査に用いた各マーカーは何れも市販品を用い、各推奨の方法により 測定値を示した。表示される略字は各一般的な表示方法によった。 [0040] Each marker used in the clinical test was a commercially available marker, and the measured value was shown by each recommended method. The displayed abbreviations are based on each general display method.
[0041] 患者の効果判定は、次の CR (完全寛解)、 PR (部分寛解)、 LNC (長期不変)、 SNC [0041] Patients were evaluated for the following CR (complete remission), PR (partial remission), LNC (long-term unchanged), SNC
(短期不変)、 PD (病状進行)の 5段階判定を行った。また、各癌種での奏効率とは、 各癌種の全症例中の CR、 PR、 LNC、 SNC、 PDの割合を示す。 (Short-term invariant) and PD (disease progression) were evaluated in five stages. The response rate for each type of cancer indicates the proportion of CR, PR, LNC, SNC, and PD in all cases of each type of cancer.
実施例 Example
[0042] 以下に、実施例を用いて本発明を具体的に説明するが、本発明は本実施例に限 定されるものではない。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the Examples.
新免疫療法 (MTC)として進行末期癌症例に対し治療を行ってきた。この NITCは β -1,3グルカンの投与で内因性 TNF α、 IFN γ、 IL- 12を誘導して CTL (キラー T細胞 )を活性化し、かつ α -1,3グルカンの投与で ΝΚおよび ΝΚΤ細胞の活性化をはかると 共にベターシヤークの経口投与で血管新生阻害をは力る BRM療法である。患者には
、癌免疫療法剤、 IL-12産生誘発剤、サメ軟骨 (セイシン企業)、及び o 1 ,3構造をも つ糖類等を、各推奨処方により投与された。また、 IL-12産生誘導剤として、 ILX (東 西医薬)、 ILY (セイシン企業)、クレスチン (三共)、イミュトール (NBG)等を患者の症 状により、単独又は併用して投与がなされた。 We have been treating advanced terminal cancer patients as new immunotherapy (MTC). This NITC induces endogenous TNFα, IFNγ, and IL-12 upon β-1,3 glucan administration to activate CTLs (killer T cells), and ΝΚ and で upon α-1,3 glucan administration. This is a BRM therapy that works to activate cells and also to inhibit angiogenesis by oral administration of Better Shear. For patients , A cancer immunotherapeutic agent, an IL-12 production inducer, shark cartilage (Seishin Enterprise), and saccharides having an o1,3 structure were administered according to the recommended formulations. ILX (Tozai Pharmaceutical), ILY (Seishin Pharmaceutical), Krestin (Sankyo), Immutol (NBG), etc. were administered alone or in combination as an IL-12 production inducer depending on the patient's condition.
なお、本実施例での IL- 10量の測定は、 Bio Source Europe製のキットを用いた ELISA法にて行った。実際には 96穴マイクロプレートの各穴に標準液または前記サ イト力イン測定用試料の調製法で調製した試料を 50 1ずつ分注した後、室温にて 2 時間反応させた。各穴の反応液を除去し、 3回洗浄後、パーォキシダーゼ標識抗ヒト IL-10モノクローナル抗体を 50 1ずつ分注し、室温にて 2時間反応後、各穴の反応 液を除去し、 3回洗浄した。発色基質溶液を 200 1ずつ分注し、 25分間室温静置後 、酵素反応停止溶液を 50 1ずつ分注した。 620nmを対照として 450nmにおける 各穴の吸光度を Emax (和光純薬株式会社製)にて測定した。 IL-10量は、 pgZmlと し一 し/こ。 The measurement of the amount of IL-10 in this example was performed by an ELISA method using a kit manufactured by Bio Source Europe. Actually, 50 1 of a standard solution or a sample prepared by the above-described method for preparing a site force-in sample was dispensed into each well of a 96-well microplate, and reacted at room temperature for 2 hours. After removing the reaction solution in each well, washing three times, dispensing 50 1 of peroxidase-labeled anti-human IL-10 monoclonal antibody, and reacting at room temperature for 2 hours, removing the reaction solution in each well, Washed three times. The chromogenic substrate solution was dispensed at 200 1 each, and allowed to stand at room temperature for 25 minutes, and then the enzyme reaction stop solution was dispensed at 501 each. Using 620 nm as a control, the absorbance of each well at 450 nm was measured by Emax (manufactured by Wako Pure Chemical Industries, Ltd.). The amount of IL-10 is the same as pgZml.
NITCを施行し有効性が認められた肺腺癌患者を対象にィレッサ (ゲフニチブ) Iressa (gefunitib) in patients with lung adenocarcinoma who have been effective after NITC
250mg/日を経口投与した。対象患者は 37例で奏効における種々の免疫マーカーの 寄与度について多変量解析 (口ジステック解析)を施行した。その結果、寄与度 1.0以 上もしくは 1.0以下の factorは、 NKT細胞〔CD3(+)CD161(+)細胞〕、なかでも 250 mg / day was orally administered. Thirty-seven target patients underwent multivariate analysis (oral dystech analysis) for the contribution of various immune markers to response. As a result, factors with a contribution of 1.0 or more or 1.0 or less were found in NKT cells (CD3 (+) CD161 (+) cells), especially
NKT8(+)T細胞〔CD3(+)CD161(+)CD8(+)細胞〕と Thl/Th2比、 IFN y、 IL- 12であり、マ ィナス要因としては IL- 10であった(図 1)。なお、以下で図中 NKT(8+)は NKT8(+丌 CD3(+)CD161(+)CD8(+)〕、 NKT(4+)は NKT4(+)〔CD3(+)CD161(+)CD4(+)〕と同義であ る。また、(P+)と P(+)とも同義である。 NKT8 (+) T cells [CD3 (+) CD161 (+) CD8 (+) cells] and Thl / Th2 ratio, IFNy, IL-12, and IL-10 as a negative factor (Fig. 1) ). In the figures below, NKT (8+) is NKT8 (+ 丌 CD3 (+) CD161 (+) CD8 (+)], NKT (4+) is NKT4 (+) (CD3 (+) CD161 (+) CD4 (+)], And (P +) and P (+).
っ 、で癌細胞を障害するに際し、各 effector細胞では対象となる腫瘍細胞にパーフ ォリンあるいはグランザィム B蛋白を注入して、細胞障害性を発揮することが知られて いることから、各々の effector細胞中のパーフォリン産生細胞の寄与度を検討した(図 2)。その結果、寄与度 1.0あるいは 1.0を超えるものは NKT P(+)〔CD3(+)CD161(+)パ ーフォリン (+)〕、なかでも NKT8(+)P(+)〔CD3(+)CD161(+)CD8(+)パーフォリン (+)〕細胞 であり、 CD8(+)P(+)T〔CD8(+)パーフォリン (+)〕細胞であった。また、 Thl/Th2比と IL-12および IL- 10も寄与度は高かった。
さらに寄与度を比率で見た場合は、 ALL/NKT8(+)〔CD3(+)CD161(+)CD8(+)パーフ ォリン (+)/ CD3(+)CD161(+)CD8(+)〕、 CD8(+)P(+)/CD8(+丌 CD8(+)パーフォリン (+)/CD8(+)〕、 Thl/Th2比、及び IL- 10で有意であった(図 3)。 Therefore, when infecting cancer cells, it is known that each effector cell exerts cytotoxicity by injecting perforin or granzym B protein into target tumor cells. The contribution of perforin-producing cells was examined (Fig. 2). As a result, those with a contribution of 1.0 or more than 1.0 were NKT P (+) [CD3 (+) CD161 (+) perforin (+)], especially NKT8 (+) P (+) [CD3 (+) CD161 ( +) CD8 (+) perforin (+)] cells and CD8 (+) P (+) T [CD8 (+) perforin (+)] cells. The contributions of the Thl / Th2 ratio and IL-12 and IL-10 were also high. Furthermore, when the contribution is viewed as a ratio, ALL / NKT8 (+) (CD3 (+) CD161 (+) CD8 (+) perforin (+) / CD3 (+) CD161 (+) CD8 (+)), CD8 (+) P (+) / CD8 (+ 丌 CD8 (+) perforin (+) / CD8 (+)], Thl / Th2 ratio, and IL-10 were significant (FIG. 3).
[0044] 以上の結果をまとめると MTCとィレッサの併用で effector細胞として注目される細胞 は CD3(+)CD161(+)CD8(+)パーフォリン産生細胞と CD8(+)パーフォリン T細胞が最も 細胞障害性が強いと考えられる。また、その時の免疫学的作用として注目される factorは、 Thl/Th2比と IL- 10と考えられた。 [0044] Summarizing the above results, the most notable effector cells of the combination use of MTC and Iressa are CD3 (+) CD161 (+) CD8 (+) perforin-producing cells and CD8 (+) perforin T cells. It is thought that sex is strong. In addition, the factors that were noted as immunological effects at that time were thought to be the Thl / Th2 ratio and IL-10.
[0045] 次に、 NITCとィレッサの併用療法において有効群 23例と無効群 14例において、い ずれの免疫学的 factorが重要かを検討し図 4、図 5、図 6に示した。 NKT8(+) [ CD3(+)CD161(+)CD8(+)〕細胞では、 NKT8(+)P(+)〔CD3(+)CD161(+)CD8(+)パーフォ リン (+)〕細胞が、無効例に比較して有効例で有意に増加していた。逆に NKT4(+)P(+) 〔CD3(+)CD161(+)CD4(+)パーフォリン (+)〕細胞では、有効と無効とで差が認められな かった。 Next, whether the immunological factor was important in 23 effective groups and 14 ineffective groups in the combination therapy of NITC and Iressa was examined, and the results are shown in FIGS. 4, 5, and 6. In NKT8 (+) [CD3 (+) CD161 (+) CD8 (+)] cells, NKT8 (+) P (+) [CD3 (+) CD161 (+) CD8 (+) perforin (+)] cells , Significantly increased in effective cases compared to ineffective cases. Conversely, in NKT4 (+) P (+) [CD3 (+) CD161 (+) CD4 (+) perforin (+)] cells, there was no difference between effective and ineffective.
[0046] NK細胞で検討すると、 NKP(+)/NK(CD3(— )CD161(+)パーフォリン (+)) [0046] When examined in NK cells, NKP (+) / NK (CD3 (-) CD161 (+) perforin (+))
/CD3(-)CD161(+)細胞での比にお!、てのみ(P〈0.05)有効群で増加して 、た(図 7)。 The ratio in the / CD3 (-) CD161 (+) cells increased only in the effective group (P <0.05) (FIG. 7).
[0047] CD8(+)細胞では、 CD8(+)P(+)/CD8(+)〔CD8(+)パーフォリン (+)/CD8(+)〕の比率が P く 0.01の危険率で差が認められた(図 8)。 [0047] In the CD8 (+) cells, the ratio of CD8 (+) P (+) / CD8 (+) [CD8 (+) perforin (+) / CD8 (+)] showed a (Figure 8).
[0048] 従って、 NITCとィレッサの併用症例では、 NKT8(+)P(+) > CD8(+)P (+) > NKP (+) の順に重要であり、 V、ずれもパーフォリン産生細胞が重要な effector細胞であることが 判明した。 [0048] Therefore, in the case of combined use of NITC and Iressa, the order of NKT8 (+) P (+)> CD8 (+) P (+)> NKP (+) is important, and Effector cells.
[0049] 以上の分析から、 NKT8(+)P (+)〔CD3(+)CD161(+)CD8(+)パーフォリン (+)〕細胞、 [0049] From the above analysis, NKT8 (+) P (+) [CD3 (+) CD161 (+) CD8 (+) perforin (+)] cells,
CD8(+)P (+)〔CD8(+)パーフォリン (+)〕 T細胞、 NK P (+)〔CD3(- )CD161(+)パーフォリン (+)〕細胞力 癌細胞を障害する際の effector細胞であることが明らかになった力 この ような細胞に共通して発現して 、る細胞が最近見出されて 、る(非特許文献 3 & 4)。 それは、 CX3CR1のケモカインを発現している細胞であって、パーフオリンゃグランザ ィム B陽性細胞で、強 、細胞障害性を発揮できる細胞であることが確認されて 、る。 この CX3CR1発現細胞では、 NK細胞、単球 T細胞(CD4、 CD8、 y δ Τ細胞)というサ ブセットを越えた細胞に発現し、強い細胞障害性を示すことが報告されている。今回
確認された effector細胞では、 NITCとィレッサ併用投与で誘導される細胞であり、少 なくともパーフォリン産生細胞である、 NKT8(+)P (+)〔CD3(+)CD161(+)CD8(+)パーフォ リン (+)〕細胞が最も強力であった。っ 、で CD8(+)P(+)〔CD8(+)パーフォリン (+)〕 T細胞 、 NK P (+)〔CD3(-)CD161(+)パーフォリン (+)〕細胞の順に細胞障害性を有して!/、たが 、この細胞は、極めて CX3CR1発現細胞と類似している。 CD8 (+) P (+) (CD8 (+) perforin (+)) T cell, NK P (+) (CD3 (-) CD161 (+) perforin (+)) cell effector effector in damaging cancer cells Forces that have become cells It has recently been discovered that such cells are commonly expressed in such cells (Non-Patent Documents 3 & 4). It has been confirmed that it is a cell expressing the chemokine of CX3CR1, a perforin-granzyme B-positive cell that can exert strong cytotoxicity. These CX3CR1-expressing cells have been reported to be expressed in cells beyond a subset of NK cells and monocyte T cells (CD4, CD8, yδΤ cells) and show strong cytotoxicity. this time Among the identified effector cells, NKT8 (+) P (+) (CD3 (+) CD161 (+) CD8 (+), which is a cell induced by co-administration of NITC and Iressa and is at least a perforin-producing cell Perforin (+)] cells were the most potent. Thus, the cytotoxicity of CD8 (+) P (+) (CD8 (+) perforin (+)) T cells and NKP (+) (CD3 (-) CD161 (+) perforin (+)) cells in that order. Yes, but this cell is very similar to CX3CR1-expressing cells.
海洋性酵母はこの細胞群を活性ィ匕することみ 、だしており、 NITCあるいは海洋性 酵母群は、 CX3CR1発現細胞を活性ィ匕して ヽるものと考えられる。 The marine yeast activates this group of cells, and the NITC or the marine yeast group is thought to activate CX3CR1-expressing cells.
A. 肺腺癌における奏効への寄与 (N=50) A. Contribution to response in lung adenocarcinoma (N = 50)
図 9に示すように、 NITC単独では、 IFN- γと IL-12の寄与度が高ぐその時の effector細胞が、 NKT8(+)P(+)/NKT8(+)〔CD3(+)CD161(+)CD8(+)パーフォリン As shown in FIG. 9, in the case of NITC alone, the effector cells at which the contribution of IFN-γ and IL-12 were high were NKT8 (+) P (+) / NKT8 (+) (CD3 (+) CD161 ( +) CD8 (+) perforin
(+)/CD3(+)CD161(+)CD8(+)]細胞、 CD8(+)P(+)/CD8(+)〔CD8(+)パーフォリン (+) / CD3 (+) CD161 (+) CD8 (+)] cells, CD8 (+) P (+) / CD8 (+) [CD8 (+) perforin
(+)/CD8(+)〕T細胞、 NK P(+)/NK〔CD3(— )CD161(+)パーフォリン (+)/CD3(— )CD161(+) 〕細胞の順に活性が高い。 (+) / CD8 (+)] T cells and NKP (+) / NK [CD3 (-) CD161 (+) perforin (+) / CD3 (-) CD161 (+)] cells in this order.
B. 肺腺癌 (ィレッサ投与後)における奏効への寄与 (N=48) B. Contribution to response in lung adenocarcinoma (after Iressa) (N = 48)
図 10に示すように、 NITCとィレッサの併用では、 IFN- γと IL-12は活性ィ匕されないが Thl/Th2比バランスでコントロールされる effector細胞があり、その細胞傷害性は、 CD8(+) P(+)/CD8(+)〔CD8(+)パーフォリン (+)/CD8(+)〕 T細胞、 NKT8(+)P(+)/NKT8(+) 〔CD3(+)CD161(+)CD8(+)パーフォリン (+)/CD3(+)CD161(+)CD8(+)〕細胞、 NK P(+)/NK〔CD3(- )CD161(+)パーフォリン (+)/CD3(- )CD161(+)〕細胞の順に活性が高 い。 As shown in FIG. 10, in the combination of NITC and Iressa, IFN-γ and IL-12 are not activated, but there are effector cells controlled by the Thl / Th2 ratio balance, and their cytotoxicity is CD8 (+ ) P (+) / CD8 (+) (CD8 (+) perforin (+) / CD8 (+)) T cells, NKT8 (+) P (+) / NKT8 (+) (CD3 (+) CD161 (+) CD8 (+) perforin (+) / CD3 (+) CD161 (+) CD8 (+)] cells, NK P (+) / NK (CD3 (-) CD161 (+) perforin (+) / CD3 (-) CD161 (+)] The activity is higher in the order of cells.
上記 A.の NITCで誘導される CX3CR1保有細胞は、 B.の NITCとィレッサ併用時に誘 導される CX3CR1保有細胞と類似する Y細胞 (仮称)に比較して細胞傷害性の力価は 少し劣ると考えられる。 The CX3CR1-bearing cells induced by NITC of A. above have slightly lower cytotoxic potency than the Y cells (provisional name) similar to the CX3CR1-bearing cells induced by combined use of NITC and Iressa of B. it is conceivable that.
また、 Y細胞では、 IFN- γや IL- 12に非依存性であるが Thl/Th2比に依存的である In Y cells, it is independent of IFN-γ and IL-12 but is dependent on the Thl / Th2 ratio
CD8(+)P(+)、 NKT8(+)P(+)、 NKP(+)の順に細胞傷害性の力価が低下する力 図 11 によると、 No.1— No.6までの粟粒性肺内転移を起こした末期癌でも、他臓器転移を起 こした末期癌でも(強力な免疫抑制がある状態)細胞傷害性を発揮できる強力な細胞
(Y細胞)への刺激が行われていると考えられる。この Υ細胞は、 IL-21媒介反応によつ て活性化される細胞と考えられる(The Journal of Immunology, 2003, 171: 608-615) この IL-21 activate細胞では、 TH1サイト力インや Th2サイト力インに非依存的で CD4(+)T細胞にも影響されない。また、 CD8(+)、 NK細胞で免疫細胞に障害されにく い細胞でも強力な細胞障害を示すこと、 IL-21Rを介すことなどが知られている力 Y 細胞と極めて類似している。 CD8 (+) P (+), NKT8 (+) P (+), and NKP (+) in order of decreasing cytotoxicity titer According to Fig. 11, miliary properties from No.1 to No.6 Strong cells that can exert cytotoxicity in terminal cancers that have metastasized to the lung or in other terminal cancers that have metastasized to other organs (with strong immunosuppression) (Y cells) are considered to be stimulated. These Υ cells are considered to be activated by an IL-21-mediated reaction (The Journal of Immunology, 2003, 171: 608-615). Independent of cytoin and is not affected by CD4 (+) T cells. In addition, CD8 (+) and NK cells, which are hardly damaged by immune cells, show strong cytotoxicity, and are very similar to the force Y cells known to be mediated by IL-21R. .
Y細胞は、 IL-21で活性ィ匕し培養して本人に戻したり、拒絶反応を調整して (たとえ ば HLAが同じ症例)他人でも投与可能とする。 Y cells may be activated and cultured with IL-21 and returned to the subject, or adjusted for rejection (for example, in the case of the same HLA) so that others can administer the Y cells.
産業上の利用可能性 Industrial applicability
以上説明したように、本発明の細胞動態の検査方法を用いることにより、チロシンキ ナーゼ阻害剤と癌免疫療法剤との併用にお ヽて癌治療の有効性を検査することが でき、より有効に癌治療を行うことが可能となる。また、本発明のスクリーニング方法を 用いることにより、チロシンキナーゼ阻害剤との併用において優れた効果を有する癌 免疫療法剤が得られ、当該癌免疫療法剤は癌治療に効果的に用いることができる。
As described above, by using the method for examining cell kinetics of the present invention, it is possible to examine the efficacy of cancer treatment in a combination use of a tyrosine kinase inhibitor and a cancer immunotherapeutic agent, and more effectively. It is possible to perform cancer treatment. Further, by using the screening method of the present invention, a cancer immunotherapeutic agent having an excellent effect when used in combination with a tyrosine kinase inhibitor can be obtained, and the cancer immunotherapeutic agent can be used effectively for cancer treatment.