明 細 書 Specification
チタン酸バリウム系半導体磁器組成物 Barium titanate-based semiconductor porcelain composition
技術分野 Technical field
[0001] 本発明は、サーミスタ用チタン酸バリウム系半導体磁器組成物に係り、特に、低抵 抗かつ高耐電圧を実現した上記磁器組成物に関する。 The present invention relates to a barium titanate-based semiconductor porcelain composition for a thermistor, and more particularly, to the above porcelain composition which realizes low resistance and high withstand voltage.
背景技術 Background art
[0002] 良質な絶縁体であるチタン酸バリウムにイットリウム、ランタン、ニオブ、 [0002] Barium titanate, which is a good insulator, is made of yttrium, lanthanum, niobium,
ゥム等の希土類元素を酸化物等の形態で微量添加して焼成すると、半導体化して比 抵抗と温度とが正比例関係をなす半導体磁器材料 (正特性サーミスタ用材料)が得 られることが知られている。このような材料は、室温での比抵抗が小さぐキュリー点付 近を越えると比抵抗と温度とが正比例関係を示す特性を利用して、カラーテレビ用消 磁器、定温発熱体、温度センサー等に使用されている。 It is known that when a small amount of rare earth elements such as aluminum is added in the form of an oxide or the like and fired, a semiconductor porcelain material (a material for positive temperature coefficient thermistors) whose resistivity and temperature are in a direct proportional relationship can be obtained. ing. Such a material uses a characteristic in which the specific resistance at room temperature exceeds the Curie point where the specific resistance is small, and exhibits a direct proportional relationship between the specific resistance and the temperature. Used in
[0003] このようなチタン酸バリウム系磁器組成物は、その主成分であるチタン酸バリウムの 影響から、キュリー点は通常 120°C付近である力 用途に応じてキュリー点を低温側 または高温側に移行させる必要が生じる場合がある。例えば、キュリー点を低温側に 移行させる場合には、バリウムの一部をストロンチウムに置換する技術が知られている [0003] Such a barium titanate-based porcelain composition has a Curie point at a low temperature or a high temperature depending on the application in which the Curie point is usually around 120 ° C due to the effect of the main component barium titanate. It may be necessary to shift to. For example, when the Curie point is shifted to the lower temperature side, a technique for replacing part of barium with strontium is known.
[0004] また、このチタン酸バリウム系半導体磁器組成物にマンガンを添加することによって 、上記キュリー点以上の温度において比抵抗と温度との間の比例定数 (温度による 抵抗の変化率)を増大することが可能であることが知られている。 [0004] Further, by adding manganese to the barium titanate-based semiconductor porcelain composition, the proportionality constant between the specific resistance and the temperature (the rate of change of the resistance depending on the temperature) is increased at a temperature equal to or higher than the Curie point. It is known that it is possible.
[0005] さらに、焼結体中の結晶粒径により、耐電圧や比抵抗が変動することも知られてい る。耐電圧や比抵抗を制御するためには、バリウムの一部をカルシウムに置換して結 晶粒を制御したり、焼結助剤としてシリカや酸化チタンを添加して粒成長を制御する ことが一般的である。 [0005] Further, it is known that the withstand voltage and the specific resistance vary depending on the crystal grain size in the sintered body. In order to control the withstand voltage and the specific resistance, barium is partially replaced with calcium to control the crystal grains, or silica or titanium oxide is added as a sintering aid to control the grain growth. General.
[0006] このようなチタン酸バリウム系半導体磁器組成物は、近年、 OA機器やモーター等 の過電流保護素子用としてとくに注目されており、大きな負荷の下での使用が要求さ れている。このような要求を満たすためには、低抵抗であり、かつ高耐電圧である PT
cサーミスタを得る必要がある。 [0006] Such barium titanate-based semiconductor porcelain compositions have recently received particular attention for use in overcurrent protection devices such as office automation equipment and motors, and are required to be used under large loads. To meet such demands, PT with low resistance and high withstand voltage You need to get a c thermistor.
[0007] し力しながら、低抵抗特性と高耐電圧特性とは相反する特性であり、両特性を同時 に高いレベルで満足させるのは困難である。これまで、上記両特性を満足させるため に様々な検討が行われてレ、る。 [0007] However, the low resistance characteristic and the high withstand voltage characteristic are contradictory characteristics, and it is difficult to satisfy both characteristics at a high level at the same time. Until now, various studies have been made to satisfy both of the above characteristics.
[0008] 例えば、(Ba Sr Ca ) TiO (但し、 0≤x≤0. 15、 0. 13≤y≤0. 17の範囲に [0008] For example, (Ba Sr Ca) TiO (However, within the range of 0≤x≤0.15, 0.13≤y≤0.17
1— x— y x y 3 1— x— y x y 3
ある値)で表される化合物に対し、 Ti〇を 0. 5—1. 5mol%、 Si〇を 1 · 0—2. 5mol 0.5〇1.5 mol% of Ti〇 and 1.0 · 2.5 mol of Si〇
2 2 twenty two
%、及び希土類元素と Mn化合物とを、希土類元素を &原子%、 Mnを 1)原子%とした とき、希土類元素力 0. 26原子0 /0未満の場合には、式(b = 0. 2a-0. 006 ± 0. 01) 、希土類元素が 0. 26原子%以上の場合には、式(b = 0. 715a— 0. 143 ± 0. 02) の関係が成立するように含有した正特性サーミスタ用半導体磁器組成物が開示され ている(特開平 6—151106号公報参照)。 %, And a rare earth element and Mn compound, a rare earth element and atomic%, when the Mn 1) and atomic%, if less than the rare earth element force 0.26 atomic 0/0, the formula (b = 0. 2a-0. 006 ± 0.011), when the rare earth element is 0.26 atomic% or more, it is contained so that the relation of the formula (b = 0.715a-0.143 ± 0.02) is established. A semiconductor ceramic composition for a positive temperature coefficient thermistor is disclosed (see Japanese Patent Application Laid-Open No. 6-151106).
[0009] また、チタン酸バリウム系の主成分に、マンガン、シリカ及び半導体化剤を添加含 有させたチタン酸バリウム系半導体磁器組成物において、 BaTiO , SrTiO , CaTi Further, in a barium titanate-based semiconductor porcelain composition obtained by adding manganese, silica and a semiconducting agent to a barium titanate-based main component, BaTiO 3, SrTiO 3, and CaTi
3 3 oを、 3 3 o,
3 Three
74モル BaTiO ≤97モル0 /0 74 mol BaTiO ≤97 mole 0/0
3 Three
1モル SrTiO ≤25モル% 1 mol SrTiO ≤25 mol%
3 Three
0. 6モル%< CaTi〇 く 3モル% 0.6 mol% <CaTi〇 3 mol%
3 Three
の割合で含有してなることを特徴とするチタン酸バリウム系半導体磁器組成物が開示 されている(特許第 3036051号公報参照)。 A barium titanate-based semiconductor porcelain composition characterized in that it is contained at a ratio of (1) disclosed in Japanese Patent No. 3036051.
[0010] 上記文献に記載された技術においては、チタン酸バリウム系半導体磁器組成物の 高耐電圧化と低比抵抗化とがある程度実現されている。し力しながら、近年において は、 PTCサーミスタの性能向上と用途拡大を図るため、さらに大きな負荷にも使用可 能とすべぐより低抵抗かつ高耐電圧の PTCサーミスタの開発が要請されている。 [0010] In the techniques described in the above-mentioned documents, a high withstand voltage and a low specific resistance of a barium titanate-based semiconductor ceramic composition have been realized to some extent. In recent years, however, in order to improve the performance of PTC thermistors and expand their applications, there is a demand for the development of PTC thermistors with lower resistance and higher withstand voltage that can be used for even larger loads.
[0011] 特許文献 1 :特開平 6— 151106号公報 Patent Document 1: JP-A-6-151106
特許文献 2 :特許第 3036051号公報 Patent Document 2: Patent No. 3036051
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems the invention is trying to solve
[0012] 本発明は、上記要請に鑑みてなされたものであり、 OA機器やモーター用過電流保
護素子のような大きな負荷にも使用できる低抵抗かつ高耐電圧の PTCサーミスタ用 として好適なチタン酸バリウム系半導体磁器組成物を提供することを目的としている。 [0012] The present invention has been made in view of the above demands, and has been made in consideration of overcurrent protection for OA equipment and motors. It is an object of the present invention to provide a barium titanate-based semiconductor ceramic composition suitable for a PTC thermistor having a low resistance and a high withstand voltage that can be used even for a large load such as a protection element.
[0013] 本発明のチタン酸バリウム系半導体磁器組成物は、チタン酸バリウムを主成分とす る正特性サーミスタ用材料であって、チタン酸バリウムを 100モルとした場合に、チタ ン酸カルシウムを 0. 05— 0. 20モノレ、チタン酸ストロンチウムを 20 30モル、酸化マ ンガンを 0. 05— 0. 15モノレ、酸化ケィ素を 2. 5—3. 5モノレ含有し、さらに半導体化 剤として希土類元素の酸化物を 0. 25-0. 30モル含有することを特徴としている。な お、上記希土類元素は、例えばイットリウムとすることができる。 [0013] The barium titanate-based semiconductor ceramic composition of the present invention is a material for a positive temperature coefficient thermistor containing barium titanate as a main component. When barium titanate is used in an amount of 100 mol, calcium titanate is used. 0.05 to 0.20 monole, 20 to 30 moles of strontium titanate, 0.05 to 0.15 monole of manganese oxide, 2.5 to 3.5 monole of silicon oxide, and as a semiconductor-forming agent It is characterized in that it contains 0.25-0.30 moles of an oxide of a rare earth element. The rare earth element can be, for example, yttrium.
[0014] 本発明によるチタン酸バリウム系半導体磁器組成物によれば、上記各成分の適正 ィ匕を図ることにより、比抵抗が 20 Ω ' cm以下、耐電圧が 160 190V/mmとなる。こ のため、〇A機器やモーター用過電流保護素子等の高負荷な用途への使用が十分 可能な程度に、低抵抗でかつ高耐電圧な PTCサーミスタ用材料が得られる。 [0014] According to the barium titanate-based semiconductor porcelain composition of the present invention, the specific resistance is 20 Ω'cm or less, and the withstand voltage is 160 190 V / mm by arranging the above components appropriately. For this reason, a PTC thermistor material with low resistance and high withstand voltage can be obtained that can be used in high-load applications such as 〇A equipment and motor overcurrent protection elements.
[0015] 以下、上記チタン酸バリウム系半導体磁器組成物の各成分について、含有比率限 定の根拠を本発明の作用とともに説明する。 Hereinafter, the grounds for limiting the content ratio of each component of the barium titanate-based semiconductor ceramic composition will be described together with the operation of the present invention.
[0016] 1)チタン酸カルシウム(CaTiO ) [0016] 1) Calcium titanate (CaTiO)
3 Three
チタン酸カルシウムは、チタン酸バリウムを BaTiO換算で 100モルとした場合、 Ca Calcium titanate is calculated as follows:
3 Three
Ti〇換算で 0· 05-0. 20モル含有する。チタン酸カルシウムは、チタン酸バリウム Contains 0.05-0.20 mol in terms of Ti〇. Calcium titanate is barium titanate
3 Three
系半導体磁器組成物の粒径を制御するために添加する。その含有量が 0· 05モル 未満では結晶粒径が大きぐまた粒度分布も広くなるため、特定の粒界に電圧が集 中し易くなり、耐電圧が低下するので好ましくなレ、。また、その含有量が 0· 20モルを 超えると、結晶粒が極端に微細化し、比抵抗が上昇するため好ましくない。 Is added to control the particle size of the system-based semiconductor ceramic composition. When the content is less than 0.05 mol, the crystal grain size is large and the grain size distribution is widened, so that the voltage is easily concentrated on a specific grain boundary, and the withstand voltage is lowered. On the other hand, if the content exceeds 0.20 mol, the crystal grains become extremely fine and the specific resistance increases, which is not preferable.
[0017] 2)チタン酸ストロンチウム(SrTi〇) [0017] 2) Strontium titanate (SrTi〇)
3 Three
チタン酸ストロンチウムは、チタン酸バリウムを BaTiO換算で 100モルとした場合、 Strontium titanate is obtained by converting barium titanate to 100 moles in terms of BaTiO.
3 Three
SrTiO換算で 20 30モル含有する。チタン酸ストロンチウムは、チタン酸バリウム系 It contains 20-30 moles in SrTiO conversion. Strontium titanate is based on barium titanate
3 Three
半導体磁器組成物のキュリー点を低温側に移行するために添加する。その含有量が It is added to shift the Curie point of the semiconductor porcelain composition to a lower temperature side. Its content
20モル未満では、上記キュリー点に関する特性改善の効果がなぐまた耐電圧が悪 化するので好ましくない。また、その含有量が 30モルを超えると、比抵抗が上昇する ため好ましくない。
[0018] 3)酸化マンガン(Mn〇 ) If the amount is less than 20 moles, the effect of improving the characteristics related to the Curie point will be lost, and the withstand voltage will be deteriorated. If the content exceeds 30 mol, the specific resistance increases, which is not preferable. [0018] 3) Manganese oxide (Mn〇)
2 Two
酸化マンガンは、チタン酸バリウムを BaTiO換算で 100モルとした場合、 MnO換 Manganese oxide is converted to MnO when barium titanate is 100 moles in terms of BaTiO.
3 2 算で 0. 05-0. 15モル含有する。酸化マンガンは、キュリー点よりも高温領域で、比 抵抗と温度とが正比例関係をなす特性 (比抵抗温度変化率)を増大させるために添 加する。その含有量が 0. 05モル未満では、耐電圧が低下し、また比抵抗温度変化 率増大の効果が得られないので好ましくなレ、。また、その含有量が 0. 15モルを超え ると、比抵抗が上昇するため好ましくない。 It contains 0.05 to 0.15 moles in 32 calculation. Manganese oxide is added in a region higher than the Curie point in order to increase the characteristic (specific resistance temperature change rate) in which resistivity and temperature have a direct proportional relationship. If the content is less than 0.05 mol, the withstand voltage is reduced and the effect of increasing the rate of change in specific resistance with temperature cannot be obtained. If the content exceeds 0.15 mol, the specific resistance increases, which is not preferable.
[0019] 4)酸化ケィ素(SiO ) [0019] 4) Silicon oxide (SiO 2)
2 Two
酸化ケィ素は、チタン酸バリウムを BaTiO換算で 100モルとした場合、 Si〇換算 Silicon oxide is equivalent to Si〇 when barium titanate is converted to 100 moles in terms of BaTiO.
3 2 で 2. 5— 3. 5モル含有する。酸化ケィ素は焼結助剤として、焼成時の極端な粒子成 長を抑制するために添加する。その含有量が 2. 5モル未満では極端な粒子成長の 抑制効果が得られず、耐電圧が低下するので好ましくない。また、その含有量が 3. 5 モルを超えると、焼成時に過焼結が生じたり、酸化ケィ素が粒界に偏祈して比抵抗が 上昇するため好ましくない。 It contains 2.5 to 3.5 moles in 32. Silicon oxide is added as a sintering aid to suppress extreme particle growth during firing. If the content is less than 2.5 mol, an extreme effect of suppressing the growth of particles cannot be obtained, and the withstand voltage decreases, which is not preferable. On the other hand, if the content exceeds 3.5 mol, oversintering may occur during firing, or silicon oxide may be biased toward the grain boundaries to increase the specific resistance, which is not preferable.
[0020] 5)希土類元素の酸化物(例えば、酸化イットリウム) (Y O ) 5) Oxide of rare earth element (for example, yttrium oxide) (Y 2 O 3)
2 3 twenty three
希土類元素の酸化物の一例である酸化イットリウムは、チタン酸バリウムを BaTiO Yttrium oxide, which is an example of a rare earth oxide, is obtained by converting barium titanate to BaTiO
3 換算で 100モルとした場合、 Y〇換算で 0, 250—0. 300モノレ含有する。酸化イット Assuming 100 moles in 3 conversion, it contains 0,250-0.300 monoles in Y〇 conversion. Oxidized it
2 3 twenty three
リウムは半導体化剤として添加され、結晶粒内に作用する成分であり、チタン酸バリウ ム中の Baの位置により多く置換することによって低抵抗化を実現する。その含有量を チタン酸バリウム内の固溶限、即ち 0. 300モルを超えるものとすると、比抵抗が上昇 するので好ましくない。また、その含有量を 0. 25モル未満とした場合には、低比抵 抗化と半導体化の効果が不充分となるので好ましくなレ、。なお、本発明のチタン酸バ リウム系半導体磁器組成物では、半導体化および低抵抗化の目的で酸化イットリウム を上記のように含有させている力 酸化イットリウム以外にも、ランタン、デイスプロシゥ ム、ニオブ、イッテルビウムなどの遷移金属元素の酸化物を適用することもでき、酸化 イットリウムの場合と同様の効果を得ることができる。 Li is added as a semiconducting agent and is a component that acts in the crystal grains, and achieves low resistance by substituting more Ba in the barium titanate. If its content exceeds the solid solubility limit in barium titanate, that is, more than 0.300 mol, it is not preferable because the specific resistance increases. If the content is less than 0.25 mol, the effects of low specific resistance and semiconductivity become insufficient, which is not desirable. In the barium titanate-based semiconductor porcelain composition of the present invention, lanthanum, dysprosium, niobium, and the like other than yttrium oxide containing yttrium oxide as described above for the purpose of semiconductor conversion and low resistance. An oxide of a transition metal element such as ytterbium can be used, and the same effect as in the case of yttrium oxide can be obtained.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下に、本発明のチタン酸バリウム系半導体磁器組成物の製造方法について説明
する。 Hereinafter, the method for producing the barium titanate-based semiconductor ceramic composition of the present invention will be described. I do.
原料として、酸化チタン、炭酸バリウム、炭酸カルシウム、炭酸ストロンチウム、炭酸 マンガン、酸化イットリウム、二酸化ケイ素を準備する。これらを所定の配合比で混合 し、ボールミル等で湿式粉砕する。次いで、ろ過、乾燥した後、室温から昇温速度 18 0°C/hで加熱し、 1140°Cで 2時間仮焼する。仮焼後、炉冷してからボールミル等で 3時間湿式粉砕し、ろ過、乾燥する。こうして得られた配合粉末にバインダ等を加えて 造粒し、成形圧力 1. 5-2. Okg/cm2で成形して円盤状の成形体を得る。この成形 体を 1300— 1400°Cで 1時間焼結し、チタン酸バリウム系半導体磁器を得る。この円 盤状半導体磁器の両面に電極を塗布し、 500 600°Cで 10— 30分間焼き付けて供 試体とする。 Prepare titanium oxide, barium carbonate, calcium carbonate, strontium carbonate, manganese carbonate, yttrium oxide, and silicon dioxide as raw materials. These are mixed at a predetermined mixing ratio and wet-pulverized by a ball mill or the like. Then, after filtration and drying, the mixture is heated from room temperature at a rate of 180 ° C / h, and calcined at 1140 ° C for 2 hours. After calcining, cool the furnace and wet-pulverize with a ball mill for 3 hours, filter and dry. A binder or the like is added to the compounded powder thus obtained, and the mixture is granulated, and molded at a molding pressure of 1.5-2. Okg / cm 2 to obtain a disk-shaped molded body. This compact is sintered at 1300-1400 ° C for 1 hour to obtain a barium titanate-based semiconductor porcelain. Electrodes are applied to both sides of this disc-shaped semiconductor porcelain, and baked at 500 600 ° C for 10-30 minutes to obtain test specimens.
[0022] [実施例] [Example]
以下、本発明の具体的な実施例を挙げ、本発明をより詳細に説明する。 原料の酸化チタン、炭酸バリウム、炭酸カルシウム、炭酸ストロンチウム、炭酸マンガ ン、酸化イットリウムおよび酸化ケィ素の粉末を、表 1に示したチタン酸バリウム系半導 体磁器組成物の配合比となるように配合し、湿式混合した。混合は、ボールミルで 6 時間、回転数 107rpmで実施した。これをろ過、乾燥させた後、室温から加熱速度 1 80°C/hで加熱し、 1140°Cに到達した時点で 2時間保持して仮焼した。仮焼後、炉 冷した組成物を湿式粉砕した。粉砕は、ボールミルで 3時間、回転数 107rpmで実施 した。これをろ過、乾燥した後、ポリビエルアルコールを加えて造粒し、成形圧力 1 · 6 kg/cm2で成形して円盤状の直径 14. 50mm,厚さ 2. 33mmの成形体を得た。こ れを、 1350°Cで 2時間焼成し、チタン酸バリウム系半導体磁器を得た。この半導体 磁器の両面に電極を塗布し、 540°Cで 20分間焼き付けて各供試体とした。このように して得られた各供試体(実施例 1一 4、比較例 1一 10)について、比抵抗および耐電 圧を調査した。 Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention. The powders of the raw materials titanium oxide, barium carbonate, calcium carbonate, strontium carbonate, manganese carbonate, yttrium oxide and silicon oxide are adjusted to the compounding ratio of the barium titanate-based semiconductor composition shown in Table 1. Compounded and wet mixed. Mixing was performed in a ball mill for 6 hours at a speed of 107 rpm. After filtration and drying, the mixture was heated from room temperature at a heating rate of 180 ° C / h, and when the temperature reached 1140 ° C, it was calcined for 2 hours. After calcination, the composition cooled in a furnace was wet-pulverized. The pulverization was performed at 107 rpm with a ball mill for 3 hours. After filtration and drying, the mixture was granulated by adding polyvinyl alcohol, and molded at a molding pressure of 1.6 kg / cm 2 to obtain a disk-shaped molded body having a diameter of 14.50 mm and a thickness of 2.33 mm. . This was fired at 1350 ° C for 2 hours to obtain a barium titanate-based semiconductor porcelain. Electrodes were applied to both sides of this semiconductor ceramic and baked at 540 ° C for 20 minutes to obtain each specimen. With respect to each of the test pieces (Examples 14 and 14 and Comparative Examples 1 to 10) thus obtained, the specific resistance and the withstand voltage were examined.
[0023] [表 1]
試料 BaTiOii CaTiO SrTiO γ20., 比抵抗 耐 電 番号 モル比 モル比 モル比 モル比 モル比 モル比 Ω · η 圧 [Table 1] Samples BaTiOii CaTiO SrTiO γ 2 0., resistivity Withstand ID molar ratio molar ratio molar ratio molar ratio molar ratio molar ratio Omega · eta pressure
V/龍 寞 旆 例 100 0.10 25.0 0.10 0.25 3.0 19 180 V / Dragon lonely example 100 0.10 25.0 0.10 0.25 3.0 19 180
実 施 例 100 0.07 20.5 0.07 0.27 2.5 16 175 Example 100 0.07 20.5 0.07 0.27 2.5 16 175
2 Two
旆例 1 00 0.19 97 0.12 0,28 32 15 170 3 Hill example 1 00 0.19 97 0.12 0,28 32 15 170 3
拿施例 1 00 0.10 22.5 0.08 0.29 3.0 17 165 4 Sample 1 00 0.10 22.5 0.08 0.29 3.0 17 165 4
比較例 1 00 0.15 24.5 0,09 0.20 3.1 21 215 Comparative Example 1 00 0.15 24.5 0,09 0.20 3.1 21 215
1 1
1 00 0.14 25.5 0.11 0.35 2.8 22 190 1 00 0.14 25.5 0.11 0.35 2.8 22 190
2 Two
1 00 0リ 04 0.11 0.27 2.9 20 145 1 00 0 RE 04 0.11 0.27 2.9 20 145
3 Three
I 剖 1 00 Π 9 リ 012 24 I autopsy 1 00 Π 9 re 012 24
4 Four
比較例 1 00 0.07 19.5 0.10 0.28 3.1 18 150 比較例 1 00 0.08 31.0 0.08 0.27 2.9 23 170 比 較 例 1 00 0.10 25.5 0.04 0.27 2.7 18 150 7 Comparative Example 1 00 0.07 19.5 0.10 0.28 3.1 18 150 Comparative Example 1 00 0.08 31.0 0.08 0.27 2.9 23 170 Comparative Example 1 00 0.10 25.5 0.04 0.27 2.7 18 150 7
比較例 1 00 0.11 24.5 0.16 0.27 3.0 22 180 Comparative Example 1 00 0.11 24.5 0.16 0.27 3.0 22 180
8 8
比較例 1 00 0.09 25.0 0.11 0.28 2.0 16 145 9 Comparative Example 1 00 0.09 25.0 0.11 0.28 2.0 16 145 9
比較例 1 00 0,10 25.0 0.12 0.29 3.6 21 175 10 記各供試体の評価は、以下のようにして実施した。 Comparative Example 1 00 0,10 25.0 0.12 0.29 3.6 21 175 10 The evaluation of each specimen was performed as follows.
)比抵抗(0 111)
室温(25°C)において、デジタルマルチメーターを用いて各供試体の抵抗値 Ι ( Ω ) を測定した。この測定値と、素子の比表面積 S (cm2)および厚さ D (cm)とにより、下 記の式(1)にしたがい比抵抗 pを求めた。この結果を表 1に併記する。 ) Specific resistance (0 111) At room temperature (25 ° C.), the resistance Ι (Ω) of each specimen was measured using a digital multimeter. Based on the measured value, the specific surface area S (cm 2 ) and the thickness D (cm) of the device, a specific resistance p was obtained according to the following equation (1). The results are shown in Table 1.
p =R X (S/D) p = R X (S / D)
[0025] 2)耐電圧 (V/mm) [0025] 2) Withstand voltage (V / mm)
各供試体に 180Vの電圧を 1分間印加した後、その電流値を測定した。 40分間電 圧を印加しない状態のまま保持した後、さらに 10V高い電圧を 1分間印加し、その電 流値を測定した。上記のように、 40分の間隔をおいて前回よりも 10V高い電圧を印 加する操作を繰り返し、測定した電流値が前回の測定した電流値よりも大きくなつた ときに試料は破壊したとして、 1回前に印加した電圧を供試体破壊電圧 Vm (V)とし た。耐電圧 Vfは、供試体破壊電圧 Vm (V)と供試体の厚さ D (mm)とにより、以下の 式(2)から求めた。この結果を表 1に併記する。 After applying a voltage of 180 V to each specimen for one minute, the current value was measured. After maintaining the state where no voltage was applied for 40 minutes, a voltage higher by 10 V was applied for 1 minute, and the current value was measured. As described above, the operation of applying a voltage 10 V higher than the previous time was repeated at intervals of 40 minutes, and when the measured current value became larger than the previous measured current value, the sample was destroyed. The voltage applied one time before was defined as the specimen breakdown voltage Vm (V). The withstand voltage Vf was obtained from the following equation (2) using the specimen breakdown voltage Vm (V) and the specimen thickness D (mm). The results are shown in Table 1.
Vf=Vm/D · · · (2) Vf = Vm / D (2)
[0026] 表 1から明ら力なように、本発明のチタン酸バリウム系半導体磁器組成物(実施例 1 一 4)は、すべて比抵抗が 20 Ω ' cm以下であり、かつ耐電圧が 160V/mm以上で あった。これに対し、従来のチタン酸バリウム系半導体磁器組成物(比較例 1一 10) は、すべて比抵抗が 20 Ω ' cmを超え、および/または耐電圧が 160V/mm未満で あった。これにより、各実施例は各比較例に比して低抵抗値、高耐電圧の両特性を 実現すること力できる。このため、各実施例の供試体からは、 OA機器やモーター用 過電流保護素子等の高負荷への適応が可能な PTCサーミスタを得ることができる。 産業上の利用可能性 [0026] As is clear from Table 1, all the barium titanate-based semiconductor ceramic compositions of the present invention (Examples 14 to 14) have a specific resistance of 20 Ω'cm or less and a withstand voltage of 160V. / mm or more. In contrast, all of the conventional barium titanate-based semiconductor ceramic compositions (Comparative Examples 1 to 10) had a specific resistance of more than 20 Ω'cm and / or a withstand voltage of less than 160 V / mm. As a result, each embodiment can realize both characteristics of a low resistance value and a high withstand voltage as compared with each comparative example. For this reason, a PTC thermistor that can be applied to a high load, such as an OA device or an overcurrent protection element for a motor, can be obtained from the specimen of each embodiment. Industrial applicability
[0027] 以上説明したように本発明のチタン酸バリウム系半導体磁器組成物によれば、主成 分のチタン酸バリウムに、副成分としてチタン酸カルシウム、チタン酸ストロンチウム、 酸化マンガン、酸化ケィ素、および希土類元素の酸化物を規定量含有させたことで、 低抵抗でかつ高耐電圧なる特性を実現することができる。したがって、本発明は、 O A機器やモーター用過電流保護素子等の高負荷用途として使用する PTCサーミス タに適用可能なチタン酸ノ リウム系半導体磁器組成物を提供することができる点で 有望である。
[0027] As described above, according to the barium titanate-based semiconductor ceramic composition of the present invention, calcium titanate, strontium titanate, manganese oxide, silicon oxide, By including a rare earth element oxide in a specified amount, characteristics of low resistance and high withstand voltage can be realized. Therefore, the present invention is promising in that it can provide a titanium titanate-based semiconductor porcelain composition applicable to PTC thermistors used for high-load applications such as OA equipment and overcurrent protection elements for motors. .