WO2004099868A1 - 反強誘電性液晶パネルおよびその駆動方法 - Google Patents

反強誘電性液晶パネルおよびその駆動方法 Download PDF

Info

Publication number
WO2004099868A1
WO2004099868A1 PCT/JP1995/000697 JP9500697W WO2004099868A1 WO 2004099868 A1 WO2004099868 A1 WO 2004099868A1 JP 9500697 W JP9500697 W JP 9500697W WO 2004099868 A1 WO2004099868 A1 WO 2004099868A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
liquid crystal
state
period
phase
Prior art date
Application number
PCT/JP1995/000697
Other languages
English (en)
French (fr)
Inventor
Shinya Kondoh
Original Assignee
Shinya Kondoh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinya Kondoh filed Critical Shinya Kondoh
Priority to PCT/JP1995/000697 priority Critical patent/WO2004099868A1/ja
Priority to US08/750,360 priority patent/US6008787A/en
Publication of WO2004099868A1 publication Critical patent/WO2004099868A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • G09G3/3633Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals with transmission/voltage characteristic comprising multiple loops, e.g. antiferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking

Definitions

  • the present invention relates to an antiferroelectric liquid crystal panel used in a liquid crystal display panel, a liquid crystal optical shutter array, and the like, and a method of driving the same. More specifically, the present invention relates to a matrix-like pixel using an antiferroelectric liquid crystal. And a method for driving the same. Background art
  • anti-ferroelectric liquid crystal panels have a wide viewing angle, high-speed response, and good multiplex characteristics. Is done
  • antiferroelectric liquid crystal panel for example, JP-A-2-173724.
  • the antiferroelectric liquid crystal panel has a hysteresis in light transmittance vs. applied voltage characteristics. For this reason, when a certain voltage is applied to the antiferroelectric liquid crystal panel, the ferroelectric state as the first stable state is selected when the product of the applied voltage value and its pulse width takes a value equal to or greater than a threshold value.
  • the ferroelectric state as the second stable state is selected depending on the polarity of the voltage, and when the absolute value of the product of the pulse width and the applied voltage value is lower than the threshold, the antiferroelectric state as the third stable state A state is selected.
  • An example of the light transmittance-applied voltage characteristic is shown in FIG. FIG.
  • FIG. 2 shows an example of an electrode of an antiferroelectric liquid crystal panel having matrix-shaped pixels.
  • a scanning voltage is sequentially and periodically applied to the scanning electrodes Y1 to Y128, and a predetermined signal voltage is applied to the signal electrodes XI to X160.
  • ⁇ Time-division driving is adopted in which liquid crystal molecules of the selected pixel are switched in accordance with display information by applying voltage in parallel in synchronization with the voltage.
  • Various methods have been proposed for the time-division driving. ing. Examples of the proposed method are shown in Figures 3 and 4.
  • FIG. 3 shows the change in the voltage and the transmittance of the pixel when the ON state is set, and in FIG. 4 the OFF state is set.
  • the scanning voltage applied to the scanning electrode has three phases as shown in Figs. 3 and 4, and is always turned off once in the first phase, that is, in the antiferroelectric state, and in the second phase, Holds the state in the first phase and selects whether to set it to the ON state, that is, the ferroelectric state, in the third phase.
  • Figs. 3 The scanning voltage applied to the scanning electrode has three phases as shown in Figs. 3 and 4, and is always turned off once in the first phase, that is, in the antiferroelectric state, and in the second phase, Holds the state in the first phase and selects whether to set it to the ON state, that is, the ferroelectric state, in the third phase.
  • the third phase of the composite voltage which is the difference between the scanning voltage and the signal voltage, exceeds the threshold voltage for setting the ferroelectric state, so the ON state, that is, the ferroelectric state
  • the OFF state that is, the antiferroelectric state is maintained in order not to exceed the threshold voltage.
  • One of the problems of the antiferroelectric liquid crystal panel is that the response speed of switching from the ferroelectric state to the antiferroelectric state is twice as fast as that of switching from the antiferroelectric state to the ferroelectric state. May be late. For this reason, in the conventional driving method, the period for resetting to the antiferroelectric state is longer than the period for setting to the ferroelectric state or the antiferroelectric state. However, if the number of scanning electrodes is increased for this reason, there is a disadvantage that the writing time for all pixels becomes extremely long.
  • One object of the present invention is to solve the disadvantages of the prior art of antiferroelectric liquid crystal panels.
  • One purpose is to eliminate the afterimage phenomenon that occurs due to the different layer structure of the liquid crystal for each pixel even if the same display is performed for a long time in an antiferroelectric liquid crystal panel having pixels in a matrix form. It is another object of the present invention to provide a liquid crystal panel which can display images well.
  • the voltage on the scanning side of the phase that determines the display state is V.
  • V D the voltage value of the signal side
  • IV c I - IVDII ⁇ V 1 must meet
  • V is used for time division drive. Because> is driven by V D, when the difference of V 1 and V 5 is using a large listening liquid crystal material V. From the above equation The range of values of is considerably limited (see Fig. 1).
  • One object of the present invention is to set the range of the voltage value during the non-selection period wider than the conventional range, and to easily and satisfactorily display even a liquid crystal material having a large difference between the voltage values of VI and V5.
  • the number of liquid crystal molecules in the antiferroelectric liquid crystal is three. When no voltage is applied, it is in the third stable state as an antiferroelectric state, and when a voltage higher than the threshold voltage Vth is applied, it is applied.
  • the first stable state as the ferroelectric state or the second stable state as the ferroelectric state is switched depending on the polarity of the voltage.
  • the applied voltage is set to 0 V in order to switch from the ferroelectric state to the antiferroelectric state. Ching is performed, and the response speed from the ferroelectric state to the antiferroelectric state is very slow.
  • the antiferroelectric state is always required in the first half of the first phase S1 of the selection period including the first (S1), second (S2), and third (S3) phases.
  • the ferroelectric state or the antiferroelectric state is selected by a select pulse in the third phase S 3 (see FIG. 18).
  • One object of the present invention is to provide a method for driving an antiferroelectric liquid crystal element which can be reset at a high speed and completely to an antiferroelectric state within a selection period and which can be driven at a high speed.
  • the liquid crystal molecules of the antiferroelectric liquid crystal have three stable states, and when no voltage is applied, the liquid crystal molecules are in the third stable state, which is the antiferroelectric state, and the absolute value
  • the first stable state in the ferroelectric state or the second stable state in the ferroelectric state depends on the polarity of the applied voltage. Ching. Switching from the ferroelectric state to the antiferroelectric state is very slow.
  • An object of the present invention is to provide a method of driving an antiferroelectric liquid crystal element which can be completely reset to an antiferroelectric state within a selection period and display can be performed at high speed. Disclosure of the invention
  • an antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scan electrodes and signal electrodes on opposing surfaces, and an antiferroelectric liquid crystal having pixels in a matrix form.
  • a method of driving an anti-ferroelectric liquid crystal panel is characterized in that a driving period of an anti-ferroelectric liquid crystal panel is characterized in that a period in which all pixels are simultaneously placed in an anti-ferroelectric state is provided every time a display state of any pixel is changed.
  • an antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scanning electrodes and signal electrodes on opposing surfaces, and an antiferroelectric liquid crystal having pixels in a matrix shape is provided.
  • An antiferroelectric liquid crystal display characterized in that, in a panel, the antiferroelectric liquid crystal of all pixels is in a ferroelectric liquid crystal state for a certain period.
  • an antiferroelectric liquid crystal is sandwiched between a pair of substrates each having a plurality of scanning electrodes and signal electrodes on opposing surfaces, and an antiferroelectric liquid crystal having liquid crystal pixels in a matrix shape is provided.
  • the liquid crystal panel the liquid crystal
  • the actual driving of the 0B panel includes at least two scanning periods, and each scanning period has at least two periods of a selection period and a non-selection period, and the upper limit of the pulse wave applied in the non-selection period is set.
  • the voltage value Vu is increased by applying a voltage value having the same polarity as the pulse wave to the antiferroelectric liquid crystal panel, the voltage value V1 at which the transmittance starts to increase and the voltage value is decreased.
  • the present invention also has at least a first scanning period and a second scanning period, wherein voltage waveforms of the first scanning period and the second scanning period are symmetric with respect to 0 V,
  • the first scanning period and the second scanning period each have at least a selection period and a non-selection period.
  • the scan electrode is reset at a first phase during the selection period.
  • a select pulse is applied at a second phase of the selection period, and the polarity of the voltage of the reset pulse is such that when the state before the selection period is one ferroelectric state, the other ferroelectric state
  • the absolute value of the reset pulse voltage is greater than 0 and smaller than the absolute value of the threshold voltage, and the reset voltage within the same selection period is the same as the reset voltage.
  • the present invention also has at least a first scanning period and a second scanning period, and the voltage waveforms of the first scanning period and the second scanning period are symmetric with respect to 0 V.
  • the first scanning period and the second scanning period each have at least a selection period and a non-selection period, wherein the selection period is a first phase and a second phase.
  • a reset pulse is applied to the scan electrode in the first phase during the selection period, a base voltage is applied in the second phase, and a select voltage is applied in the third phase.
  • a reset pulse is applied, and the polarity of the voltage of the reset pulse is changed when the ferroelectric state is changed to the other ferroelectric state when the ferroelectric state is immediately before the selection period.
  • the absolute value of the voltage of the reset pulse is greater than 0 and less than the absolute value of the threshold voltage
  • the voltage value Vbx of the base voltage is inequality V 3 ⁇ Vbx is given by V 1, where V 1 is the voltage at which the light transmittance starts to increase when a positive voltage is applied to the antiferroelectric liquid crystal element, and V 3 is the light transmission when a negative voltage is applied
  • the reset pulse and the select pulse have the same polarity within the same selection period, respectively, and a method for driving an anti-ferroelectric liquid crystal element is provided. Is done.
  • Figure 1 shows an example of the light transmittance vs. applied voltage characteristics of an antiferroelectric liquid crystal panel.
  • Fig. 2 is a diagram showing an example of electrodes of an antiferroelectric liquid crystal panel having matrix-shaped pixels.
  • FIGS. 3 and 4 show examples of the conventionally proposed time-division driving method.
  • FIG. 5 is a view showing a cross section of a liquid crystal panel as one embodiment of the present invention
  • FIG. 6 is an example of a drive voltage waveform applied to pixels of the liquid crystal panel.
  • FIG. 7 is a diagram showing a liquid crystal panel as another embodiment of the present invention.
  • FIG. 8 is a diagram showing a driving voltage waveform of a liquid crystal panel as another embodiment of the present invention.
  • FIGS. 9, 10, and 11 show examples of the layer structure of the antiferroelectric liquid crystal.
  • FIG. 12 is a diagram showing the configuration of a liquid crystal panel and a polarizing plate corresponding to the operation in the driving method
  • FIG. 13 is a diagram showing a drive waveform in the conventional technology compared to the drive waveform in one embodiment of the present invention
  • FIG. 14 is a diagram showing driving waveforms in one embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a driving method according to an embodiment of the present invention.
  • FIG. 16 is a diagram illustrating a relationship between a voltage applied to a scanning electrode and light transmittance.
  • FIG. 17 is a diagram illustrating the relationship between the voltage applied to the scanning electrode and the light transmittance
  • FIG. 18 is a diagram illustrating an example of a time-division driving method of a liquid crystal element according to the related art.
  • FIG. 19 illustrates the state of the liquid crystal molecules
  • FIG. 20 is a diagram illustrating a driving method of a liquid crystal element as one embodiment of the present invention.
  • FIG. 21 is a diagram showing the relationship between the voltage applied to the scanning electrode and the light transmittance.
  • the antiferroelectric liquid crystal panel is configured by sandwiching an antiferroelectric liquid crystal 46 between a pair of substrates 43 and 48 such that the layer thickness is about 2. Electrodes 44 are formed on the opposing surfaces of the substrates 43 and 48, and alignment films 45 and 47 are provided thereon. Further, a first polarizing plate 41 is provided outside the one substrate 43 so that the polarization axis of the polarizing plate and the alignment processing method of the alignment films 45 and 47 are parallel to each other. The second polarizing plate 49 is installed so that it differs from the polarizing axis of the first polarizing plate 41 by 90 °.
  • FIG. 6 shows an example of the drive voltage waveform applied to the pixels of the liquid crystal panel of FIG.
  • the liquid crystal panel an antiferroelectric liquid crystal panel having 128 scanning electrodes and 160 signal electrodes as shown in FIG. 2 is used.
  • a 1 and A 128 in FIG. 6 correspond to pixels A 1 and A 128 in FIG.
  • one selection period is composed of two pulses.
  • One scan is composed of two frames, and the first frame and the second frame have voltage values symmetric with respect to 0 V.
  • the voltage value of the second phase during the selection period of the first frame is 30 V
  • the voltage value of the second phase during the selection period of the second frame is ⁇ 30 V
  • the OFF state When displaying the status, the voltage value of the second phase during the selection period of the first frame is 26 V
  • the voltage value of the second phase during the scanning period of the second frame is 126 V.
  • the scanning is performed with a scanning time of about 80 ms.
  • the two display screens are alternately displayed, and each time the two display screens are changed, a pause period is provided in which the voltage applied to all the pixels is 0 V as shown in FIG.
  • the suspension period is 500 as.
  • the display time of one screen is set to about 3 seconds, and 40 scans are performed to display one screen accordingly.
  • the voltage in the first phase of the first frame is 0 V.
  • the ferroelectric state is reset as the ON state because the second phase after that exceeds the threshold voltage value for switching to the ferroelectric state.
  • the first phase in the selection period is 0 V, so that it is reset to the OFF state first, and then the second Since the phase does not exceed the threshold voltage for setting the ferroelectric state, the antiferroelectric state as the OFF state is maintained.
  • FIG. 7 shows an antiferroelectric liquid crystal panel as another embodiment of the present invention.
  • the scanning side drive circuit 12 and the signal side drive circuit 13 are electrically connected to the antiferroelectric liquid crystal panel 16 on the liquid crystal panel.
  • the circuit consists of a display drive waveform output circuit 14 for displaying a display pattern and a layer structure control output circuit 15 for controlling the smectic layer in the cell in order to output two different waveforms. Is equipped with an output switch 11 so that the user can arbitrarily select the output source.
  • T is a waveform output terminal. Therefore, after the same display is performed for a long time, a waveform for controlling the layer structure is applied to the liquid crystal cell for a few seconds, so that all the pixels are brought into a ferroelectric liquid crystal state. Can be made the same, so that an afterimage phenomenon caused by a difference in the layer structure can be prevented.
  • FIG. 8 shows a driving waveform of an antiferroelectric liquid crystal panel as another embodiment of the present invention.
  • a liquid crystal panel a liquid crystal cell having 128 electrodes on the scanning side and 160 electrodes on the signal side was used (FIGS. 2 and 5).
  • Y 1 and Y 2 in FIG. 8 correspond to the scan electrodes Y 1 and Y 2 in FIG.
  • one selection period is composed of two pulses.
  • One scan is composed of two scan periods, and the first scan period and the second scan period take symmetrical voltage values with respect to 0 V.
  • the first phase In the selection period of the first scanning period applied to the scanning electrodes, the first phase is 0 V, the voltage value of the second phase is 30 V, and the two phases before the next selection period are the reset period of 30 V
  • a voltage waveform of 10 V is applied, the first phase of the selection period in the second scanning period is 0 V, the voltage value of the second phase is 130 V, and the next selection period
  • the two phases before are the reset period-30 V
  • the remaining non-selection period is 110 V.
  • a voltage waveform of 0 V for the first phase and 6 V for the second phase in the ON state in synchronization with the scanning electrode side is applied to the signal electrode side.
  • a voltage waveform of 0 V is applied to the first phase and a voltage waveform of 16 V is applied to the second phase.
  • Driving is performed with a frame frequency of about 60 ms.
  • the liquid crystal in the pixel section is reset to the ferroelectric liquid crystal state, and then chooses to turn it on or off during the selection period. Therefore, even if the same display is performed for a long time, since the layer structure does not differ for each pixel, the afterimage phenomenon does not occur even when a new display is written.
  • the antiferroelectric liquid crystal has a hysteresis in the transmitted light quantity-voltage characteristic as shown in FIG. 1, and when a certain pulse wave is applied to the liquid crystal molecules, the product of the pulse width and the voltage value is obtained.
  • the first stable state in the ferroelectric state is selected when the value is equal to or greater than the threshold, and the second stable state in the ferroelectric state is selected depending on the polarity of the applied voltage. From the first state and the second state, when the absolute value of the product of the pulse width and the voltage value is lower than a certain threshold, a third stable state that is an antiferroelectric state is obtained. Selected.
  • Figure 2 shows the electrode configuration of a matrix-type liquid crystal panel containing an antiferroelectric liquid crystal.
  • a selection voltage is sequentially and periodically applied to the scan electrodes Y1 to Y128, and a predetermined information signal is applied to the signal electrodes ⁇ 1 to ⁇ 160 in parallel with the scan electrode signal in parallel, and the selected electrode is selected.
  • the liquid crystal molecules of the pixels are switched in accordance with the display information, whereby time-division driving is performed.
  • time-division driving for example, methods shown in FIGS. 3 and 4 have been proposed. In the drive illustrated in Fig. 7 and Fig. 8, even when the same display is performed for a long time, the previous screen does not remain after writing a new screen, so that the display is performed well. be able to.
  • the antiferroelectric liquid crystal between the glass substrates G has a layer structure due to the smectic layer S, and the substrate normal and the layer normal do not become perpendicular in the cell in the antiferroelectric liquid crystal state before applying a voltage
  • the cell has a chevron structure in which the layers are bent in the shape of a "ku" in the cell.
  • a Brooksielf-type layer structure is formed so that the substrate normal and the layer normal are perpendicular (Fig.
  • FIG. 1 shows an example of the operation in the driving method of the antiferroelectric liquid crystal display.
  • the actual driving of the antiferroelectric liquid crystal panel is composed of at least two scanning periods, and each scanning period has at least two periods, a selection period and a non-selection period.
  • the level Vu of the upper limit value of the pulse wave applied in the selection period is increased by applying a voltage value having the same polarity as the pulse width to the liquid crystal panel, a voltage value VI at which the transmittance starts to increase, and a voltage value Is set in the range of V 2 ⁇ Vu ⁇ V 1 between the voltage value V 2 at which the transmittance starts to decrease when is decreased, and the level Vd of the lower limit value of the pulse wave is defined as the voltage value V 1
  • the voltage value at which the transmittance starts to increase is set to V 3 ⁇ Vd ⁇ V 2 between V 3 and V 2.
  • the three stable states set in the selection period must be maintained.
  • the voltage value applied during the non-selection period is equal to or less than the voltage value V2 of the hysteresis loop. Above, it was necessary to make the voltage value V 1 or less.
  • the first stable state when the voltage value of the pulse wave applied thereafter is a value between V2 and V3, the third stable state is obtained. After a pulse wave with a voltage value of V3 or more below, a pulse of a voltage value between V1 and V2 within a time sufficiently shorter than the time required for the liquid crystal molecules to return to the third stable state It was found that the wave did not return from the first stable state to the third stable state.
  • Ordinary antiferroelectric liquid crystals are more likely to switch from the first stable state or the second stable state than the time required for switching from the third stable state to the first stable state or the second stable state.
  • the pulse width of one pulse applied during non-selection is too short to switch from the first stable state to the third stable state because the switching time of the stable state 3 is longer.
  • the range of the voltage value applied when not selected when the first stable state is selected, must be V2 or more and V1 or less, and the width of the voltage value is narrow.
  • the lower limit range of the voltage value applied at the time of non-selection only needs to be set to V 3 or lower at V I or lower, so that the voltage value range can be widened.
  • the upper limit of the pulse wave during the non-selection period Voltage value can be increased to V 1
  • the difference between the absolute value of the selection pulse applied during the selection period of the scanning-side voltage waveform and the absolute value of the signal-side voltage waveform is applied to the pixel when the ON state is selected.
  • the difference between the voltage value of the pulse wave applied and the voltage value of the pulse wave applied to the pixel when selecting the OFF state The size can be increased, and it becomes easy to drive a liquid crystal material in which the rise and fall of the hysteresis loop are not so steep. Therefore, the drive is better when the absolute value of the signal side voltage is as large as possible.
  • the absolute value of the signal-side voltage can be made larger than before, so that display can be easily performed with respect to many liquid crystal materials.
  • FIG. 15 shows a driving waveform when this antiferroelectric liquid crystal is used.
  • the driving waveform is composed of two scanning periods, and one selection period is composed of four pulses. The first scanning period and the second scanning period take symmetrical voltage values with respect to 0 V.
  • Each pulse width is 100 s
  • the first to third phases of the selection period of the first scanning period applied to the scanning electrode are 0 V for the first phase, 30 V for the fourth phase, and 30 V for the remaining non-selection period.
  • As the holding voltage a voltage waveform of 4.5 V is applied
  • the voltage value of the first to third phases in the selection period of the second scanning period is 0 V
  • the voltage value of the fourth phase is -30. V
  • a holding voltage of -4.5 V is applied to the remaining non-selection period.
  • the first to second phases in the ON state in synchronization with the scanning electrode side are 0 V
  • the third phase is 12 V
  • the fourth phase is one.
  • a voltage waveform of 12V is applied.
  • FIG. 12 shows a configuration in which an antiferroelectric liquid crystal is used as a display.
  • the liquid crystal cell 22 is placed between the polarizers 21a and 21b in accordance with the crossed Nicols so that the polarization axis of either polarizer and the major axis of the molecule when no voltage is applied are parallel. Black is displayed when no voltage is applied, and white is displayed when an electric field is applied.
  • a voltage is applied to the liquid crystal cell in such a cell configuration, the change in transmittance is plotted in a graph, whereby a hysteresis loop as shown in Fig. 1 can be drawn.
  • the voltage value at which the transmittance starts to change when increasing the voltage is VI
  • the voltage value at which the transmittance change saturates is V5
  • the voltage value at which the transmittance starts decreasing when the voltage value decreases is V.
  • the voltage at which the transmittance starts to change is V3
  • the voltage at which the transmittance change is saturated is V6, and vice versa.
  • the voltage value at which the transmittance starts to change when the absolute value of the voltage is reduced is V 4.
  • the first ferroelectric state is established. Is selected, and a second stable state, which is a ferroelectric state, is selected according to the polarity of the applied voltage. From the first state and the second state, the product of the pulse width and the voltage value is selected. If the absolute value of this value is lower than a certain threshold, the third stable state, which is an antiferroelectric state, is selected.
  • Fig. 2 shows the electrode configuration of a matrix-type liquid crystal panel containing an antiferroelectric liquid crystal.
  • a selection voltage is sequentially and periodically applied to the scan electrodes Y1 to Y128, and a predetermined information signal is applied to the signal electrodes ⁇ 1 to ⁇ 160 in synchronization with the scan electrode signal in parallel to select the selected pixel.
  • Time-division driving is adopted in which the liquid crystal molecules are switched according to display information.
  • the driving method shown in FIG. 14 in order to write one screen, 2 During the second scanning period of the first scanning period, the voltage values of the respective waveforms are in a symmetrical relationship with respect to the voltage value of 0 V, thereby achieving AC.
  • FIG. 14 shows the change in the voltage waveform and the transmittance of the pixel when the ON and OFF states of the pixel unit A 1 in FIG. 2 are set.
  • the signal applied to the scan electrode Y1 has three phases, and is reset to the OFF state, which is the antiferroelectric state once in the first phase, and is reset in the first phase in the second phase. Select whether to keep the state and set the ferroelectric state to the ON state in the third phase. When the third phase exceeds the threshold voltage for setting to the ferroelectric state, the ferroelectric state is set to the ON state.
  • the dielectric state is maintained in the OFF state.
  • the voltage during the non-selection period in the case of time-division driving is lower than the voltage value V 1 at which the transmittance starts to change when the applied voltage is increased in Fig. 1.
  • V c of the scanning in order to perform time-division driving the voltage value of the signal side when the V D when the setting voltage is considered between the first run ⁇ described above, IV . I + IVDI ⁇ V 5 and 0 ⁇ IIV c IIV D II ⁇ V 1 must meet, in the case of performing the time-division driving
  • V. Because> is driven by V D, in the case of using a liquid crystal material having a large difference of VI and V 5 is V. From the above equation The range of values for is quite limited. Therefore, when a liquid crystal material having a large difference between V 1 and V 5 is used, the voltage setting range is regulated to be very narrow, and it has been difficult to perform good display.
  • the driving method according to the embodiment of the present invention by setting the range of the voltage value during the non-selection period wider than the conventional range, the liquid crystal material having a large difference between the voltage values of V 1 and V 5 can be used. Driving of the antiferroelectric liquid crystal, which can easily perform good display, is realized. According to the driving method according to the embodiment of the present invention, in the antiferroelectric liquid crystal display, a favorable display can be easily performed satisfactorily without contributing to the characteristics of the antiferroelectric liquid crystal material used.
  • FIG. 15 A driving method of an antiferroelectric liquid crystal device as another embodiment of the present invention is illustrated in FIG.
  • the driving method illustrated in FIG. 15 has at least a first scanning period and a second scanning period, and the voltage waveforms in the first and second scanning periods are symmetric with respect to 0 V;
  • Each of the first scanning period and the second scanning period has at least a selection period and a non-selection period.
  • a reset pulse is applied to the scan electrodes in the first phase of the selection period, and the reset pulse is selected in the second phase of the selection period.
  • the polarity of the reset pulse voltage is the same as the polarity of the threshold voltage that changes to the other ferroelectric state.
  • the absolute value of the reset pulse voltage is smaller than the absolute value of the threshold voltage and greater than 0 V, and the reset pulse and the select pulse have the same polarity during the same selection period.
  • the absolute value is threshold. Switching can be performed at high speed by applying a voltage having a value voltage V6 or more and the same polarity as the threshold voltage V6. In addition, when switching the antiferroelectric liquid crystal from the second stable state to the first stable state, a voltage having an absolute value equal to or higher than the threshold voltage V5 and having the same polarity as the threshold voltage V5 is applied. Switching can be performed at high speed by applying the voltage.
  • the liquid crystal molecules must be in the antiferroelectric state during the transition from the first or second stable state, which is one ferroelectric state, to the second or first stable state, which is the other ferroelectric state. Pass through the third stable state of. Also, each threshold voltage value When a voltage having the same polarity as V 6 and V 5 and a voltage smaller than the respective threshold voltage values V 6 and V 5 and larger than 0 V is applied, the liquid crystal molecules enter the first or second stable state. It has been shown that the transition to the third stable state, which is an antiferroelectric state, cannot be made after a safe transition o
  • the second stable state in the other ferroelectric state A voltage having the same polarity as the threshold voltage V 6 required for switching and having an absolute value smaller than the absolute value of the threshold voltage V 6 and larger than 0 V is applied.
  • the third stable state which is an antiferroelectric state
  • a voltage having the same polarity as the required threshold voltage V 5 and a voltage smaller than the absolute value of the threshold voltage V 5 and larger than 0 V is applied.
  • FIG. 15 shows voltage waveforms when the ON state for white display and the OFF state for black display are set.
  • Writing of one screen is performed in the first scanning period Se and the second scanning period Sf.
  • the first scanning period Se and the second scanning period Si correspond to the selection period Sc and the non-selection period, respectively.
  • the selection period Sc is composed of the first phase Sa and the second phase Sb.
  • a reset pulse Vrp is applied to the scan electrode in the first phase Sa, and a select pulse Vs is applied in the second phase Sb.
  • the ferroelectric state When the ferroelectric state is maintained, that is, when the S display state is maintained, the first or second stable state, which is the stable state, differs for each scanning period Se and Sf.
  • the state immediately before the selection period Sc is the first stable state
  • the polarity of the reset pulse Vrp is set to the same polarity as the threshold voltage V6 for the second stable state, and the reset pulse Vrp
  • the polarity of the reset pulse Vrp is set to the same polarity as the threshold voltage V5 for the first stable state, and the voltage of the reset pulse Vrp is set.
  • the antiferroelectric state can be quickly reset. Further, when the immediately preceding state is the antiferroelectric state, the reset pulse VrP is within the above range, and the switching to the ferroelectric state is performed without exceeding the threshold voltages V5 and V6. I can't. Therefore, regardless of the state immediately before the selection period Sc, the anti-ferroelectric state is completely reset within the period of the first phase Sa, which is the application period of the reset pulse Vrp, thereby increasing the frame frequency. I can do it. In addition, it is possible to drive the video in a video without delaying the screen writing time.
  • FIG. 16 shows the relationship between the voltage applied to the scanning electrode and the light transmittance during the selection period Sc of the ON state for white display.
  • the selection period is composed of two phases, a first phase Sa and a second phase Sb.
  • the reset pulse Vrp is applied, and in the second phase Sb, the select pulse Vs is applied.
  • the state immediately before the selection period Sc is a ferroelectric state.
  • the antiferroelectric state can be completely reset within the period of the first phase Sa, the light transmittance is sufficiently low immediately before the application of the select pulse Vs.
  • the threshold voltage V 5 is 40 V
  • the threshold voltage V 6 is ⁇ 40 V.
  • a reset pulse Vrp is applied to the scan electrode in the first phase Sa, and a select pulse Vs is applied in the second phase Sb.
  • the voltage value of the reset pulse Vrp in the first scanning period Se is 18 V
  • the voltage value of the select pulse Vs is 30 V
  • the holding voltage value in the non-selection period Sd is 4.
  • the voltage value of the reset pulse Vrp in the second scanning period Sf is -18 V
  • the voltage value of the select pulse Vs is -30 V
  • the non-selection period Sd The OFF set voltage of is set to —4.5 V, respectively.
  • a voltage synchronized with the voltage applied to the scanning electrode is applied to the signal electrode.
  • a voltage of 12 V is applied in the first phase Sa of the first scanning period Se in the ON state for white display, and a voltage of -12 V is applied in the second phase Sb.
  • ⁇ 12 V is applied in the first phase Sa of the second scanning period Sf.
  • a voltage of 12 V was set to be applied in the second phase Sb.
  • a voltage of —12 V is applied in the first phase Sa of the first scanning period Se
  • a voltage of 12 V is applied in the second phase Sb
  • a voltage of 12 V is applied in the first phase Sa of the second scanning period Sf.
  • a voltage of 12 V is set.
  • Each pulse width is set to 100.
  • the frame frequency becomes very fast, and the driving can be performed well even at the video rate frequency.
  • resetting to the antiferroelectric state can be performed quickly and completely within the selection period. Therefore, even when driving at a frame frequency close to the video rate, the display can be easily performed well.
  • FIG. 18 shows the voltage waveforms when the ON state for white display and the OFF state for black display are set.
  • writing of one screen is performed in two scanning periods S6 and S7.
  • the voltage waveforms of the first scanning period S 6 and the second scanning period S 7 are symmetrical to each other with respect to a voltage value of 0 V, and the two scanning periods S 6 and S 7 are converted into AC by writing. I am planning.
  • the first scanning period S6 and the second scanning period S7 include a selection period S4 and a non-selection period S5, respectively.
  • the voltage applied in the selection period S4 has three phases: a first phase S1, a second phase S2, and a third phase S3.
  • the composite waveform of the voltage applied to the scanning electrode and the voltage applied to the signal electrode is in the state shown in Fig. 18, and is always in the OFF state, which is the antiferroelectric state once in the first phase S1.
  • the second phase S2 keeps the state in the first phase S1 and selects whether to set the ferroelectric ON state by the select pulse SP of the third phase S3. If the select pulse SP of the third phase S3 exceeds the threshold voltage Vth for setting the ferroelectric state, the ferroelectric state is set to the ON state, and the threshold voltage Vt is set. If h is not exceeded, the OFF state, which is the antiferroelectric state, is maintained.
  • the state of the liquid crystal molecules of the antiferroelectric liquid crystal is illustrated in FIG. Fig. 19
  • the liquid crystal molecule M of the antiferroelectric liquid crystal has three stable states. When no voltage is applied, it is in the third stable state, which is an antiferroelectric state.
  • the first stable state which is in a ferroelectric state, depends on the polarity of the applied voltage. Switching to the second stable state, which is a state or a ferroelectric state, is performed.
  • the applied voltage is set to 0 V because switching from the ferroelectric state to the antiferroelectric state is performed.
  • the switching is performed by the properties of the liquid crystal molecules themselves, for example, the viscosity, without applying an external force to the antiferroelectric liquid crystal. Therefore, the response speed from the ferroelectric state to the antiferroelectric state was extremely slow.
  • the ferroelectric state is always reset to the antiferroelectric state once in the first half of the first phase S1 of the selection period S4, and then to the ferroelectric state by the select pulse SP of the third phase S3 Or anti-ferroelectric state.
  • the antiferroelectric liquid crystal has a slow response speed from the ferroelectric state to the antiferroelectric state.
  • the first phase S 1 as the resetting period is short, it is not possible to completely enter the antiferroelectric state, and it is not possible to perform a favorable display. Therefore, it was necessary to make the selection period S4 sufficiently long, and it was not possible to make the frame frequency too high. As a result, the screen writing time was slow, and driving at a video rate was difficult.
  • FIG. 12 illustrates the relationship between the deflection axis of the antiferroelectric liquid crystal element and the average major axis direction of the liquid crystal molecules.
  • FIG. 20 A driving method of an antiferroelectric liquid crystal device as another embodiment of the present invention is illustrated in FIG.
  • the driving method illustrated in FIG. 20 has at least a first scanning period and a second scanning period, and the voltage waveforms of the first scanning period and the second scanning period are symmetric with respect to 0 V.
  • the first scanning period and the second scanning period each have at least a selection period and a non-selection period, and the selection period has a first phase, a second phase, and a third phase
  • a reset pulse is applied to the scan electrode in the first phase of the selection period, a base voltage is applied in the second phase, a select pulse is applied in the third phase, and the polarity of the reset pulse voltage is the same as before the selection period.
  • the voltage value VbX of the base voltage is given by the inequality V3 ⁇ Vbx ⁇ V1, where VI is the voltage at which the light transmittance starts to increase when a positive voltage is applied to the antiferroelectric liquid crystal element.
  • V3 is a voltage at which the light transmittance starts to increase when a negative voltage is applied, and the reset pulse and the select pulse have the same polarity during the same selection period.
  • the base voltage applied in the second phase of the selection period is 0V.
  • the other (2) A voltage having the same polarity as the threshold voltage V6 required for switching to the ferroelectric state as a stable state and having an absolute value smaller than the absolute value of the threshold voltage V6 and larger than 0 V Apply the reset pulse Vrp.
  • a reset pulse Vrp of the same polarity as the required threshold voltage V5 and having a smaller absolute value than the threshold voltage V5 and a voltage larger than 0 V is applied.
  • the liquid crystal molecules that have fluctuated to near the ferroelectric state as the first or second stable state due to the application of the reset pulse VrP are subjected to the anti-ferromagnetic state as the third stable state.
  • the second phase after applying the reset pulse Vrp to completely transition to the dielectric state Apply the base voltage Vbx.
  • the base voltage Vbx is defined by the voltages V 3 and VI at which the light transmittance starts to increase, and is V 3 VVbx ⁇ VI, where V 1 is the value when a positive voltage is applied to the antiferroelectric liquid crystal element.
  • V3 is the voltage at which the light transmittance starts increasing when a negative voltage is applied.
  • the polarity of the base voltage can be arbitrarily selected, and may be the same as or different from the polarity of the reset pulse Vrp.
  • the base voltage is more preferably 0 V.
  • the select pulse Vs in the third phase is applied regardless of whether the state before the selection period is the ferroelectric state or the antiferroelectric state. Before that, the liquid crystal molecules can be completely reset to the antiferroelectric state. If the base voltage exceeds the above range, the liquid crystal molecules shift to the ferroelectric state.
  • the ON state for white display and the OFF display for black display are set, the voltage waveforms applied to the scan electrodes and signal electrodes, respectively, and the composite waveforms are shown.
  • writing of one screen is performed in the first scanning period Sf and the second scanning period Sg.
  • the first scanning period Sf and the second scanning period Sg each include a selection period Sd and a non-selection period Se.
  • the selection period Sd is composed of the first phase Sa, the second phase Sb, and the third phase Sc.
  • a reset pulse Vrp is applied to the scan electrode in the first phase Sa, a base voltage Vbx is applied in the second phase Sb, and a select pulse Vs is applied in the third phase Sc.
  • the stable state becomes the first or second stable state for each scanning period Sf, Sg, and is different.
  • the state immediately before the selection period Sd is the second stable state
  • the polarity is the same as the threshold voltage V5 for the first stable state
  • a reset pulse Vr with a pressure value of IV 5 I> I Vrp I> 0 is applied.
  • the state immediately before the selection period Sd is the first stable state
  • the polarity is the same as the threshold voltage V 6 for the second stable state, and the voltage value is
  • a reset pulse Vrp expressed as I Vrp I> 0 is applied.
  • the base voltage Vbx applied in the second phase Sb is set to 0 V, and the liquid crystal molecules fluctuated by the application of the reset pulse Vrp are completely in the antiferroelectric state as the third stable state. Has been restored.
  • the base voltage Vbx expressed as V 3, Vbx, and VI after the application of the reset pulse Vrp, the antiferroelectric state can be completely reset in the second phase Sb. Therefore, regardless of the state immediately before the selection period Sd, it is possible to completely reset to the antiferroelectric state before applying the select pulse Vs. As a result, display can be performed quickly and satisfactorily irrespective of the display pattern.
  • FIG. 21 shows the relationship between the voltage applied to the scanning electrodes and the light transmittance during the white display ON state selection period Sd. Immediately before the selection period Sd, it is in an antiferroelectric state. The liquid crystal molecules that fluctuated to near the ferroelectric state as the first or second stable state by applying the reset pulse Vrp are completely changed to the antiferroelectric state in the second phase Sb by applying the base voltage Vbx. Can be reset. Thereby, the light transmittance can be sufficiently reduced before the third phase Sc.
  • FIG. 1 shows the relationship between the applied voltage and the light transmittance of the liquid crystal display panel used in this embodiment.
  • the threshold voltage V5 is 40V
  • the threshold voltage V6 is -40V.
  • a reset pulse Vrp is applied to the scan electrode in the first phase Sa of the selection period Sd, a base voltage Vbx is applied in the second phase Sb, and a select pulse Vs is applied in the third phase Sc.
  • ON state for white display, OF for black display In both the F and F states, the reset pulse Vrp voltage of the first phase Sa in the first scanning period Sf is 18 V, the base voltage is 0 V, the voltage of the select pulse Vs is 30 V, and the OFF set voltage in the non-selection period Se was set to 4.5 V.
  • the reset pulse Vrp voltage in the second scanning period Sg is ⁇ 18 V
  • the base voltage is 0 V
  • the select pulse Vs voltage is 130 V.
  • the holding voltage value during the non-selection period Se is set to —4.5 Y, respectively.
  • a voltage synchronized with the voltage applied to the scanning electrode is applied to the signal electrode. 12V for the first phase Sa of the first scanning period Sf in the ON state for white display, 0 V for the second phase Sb, and -12 V for the third phase Sc, the first phase of the second scanning period Sg
  • the voltage is set so that a voltage of -12 V is applied for Sa, 0 V for the second phase Sb, and 12 V for the third phase Sc.
  • a voltage of -12 V for the first phase Sa of the first scanning period Sf, 0 V for the second phase Sb, and 12 V for the third phase Sc of the first scanning period Sg in the first scanning period Sg of the second scanning period Sg A voltage of 12 V is applied for phase Sa, 0 V for second phase Sb, and -12 V for third phase Sc.
  • Each pulse width is set to 100 jam.
  • driving can be performed at a frame frequency of about 15 ms, the frame frequency becomes much faster than in the case of the conventional technology, and good display can be performed even at the video rate frequency. it can. Also, regardless of the display pattern, display can be performed quickly and satisfactorily.
  • the antiferroelectric liquid crystal element can be driven even at the frame rate of the video rate. Also, display can be performed quickly and satisfactorily regardless of the display pattern. Industrial potential
  • the antiferroelectric liquid crystal panel and the method of driving the same according to the present invention can be used, for example, in display panels and optical shutter arrays using antiferroelectric liquid crystals having matrix-shaped pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Description

明 細 書 反強誘電性液晶パネルおよびその駆動方法 技術分野
本発明は、 液晶表示パネルや液晶光シャッターアレイ等に利用さ れる反強誘電性液晶パネルおよびその駆動方法に関し、 より特定的 には、 反強誘電性液晶を用いマ ト リ ッ クス状の画素を有する反強誘 電性液晶パネルおよびその駆動方法に関する。 背景技術
反強誘電性液晶パネルは、 広視野角を有するこ と、 高速応答が可 能なこと、 マルチプレックス特性が良好なこと等が知られており、 この反強誘電性液晶パネルについての研究が精力的になされている
。 反強誘電性液晶パネルに関しては例えば特開平 2 - 173724号公報 を参照することができる。
反強誘電性液晶パネルは光透過率一印加電圧特性にヒステリ シス を有する。 このため反強誘電性液晶パネルにある電圧を印加すると 、 印加電圧値とそのパルス幅との積が閾値以上の値をとる場合に第 1 の安定状態としての強誘電状態が選択され、 また印加電圧の極性 の違いで第 2の安定状態としての強誘電状態が選択され、 パルス幅 と印加電圧値の積の絶対値がしきい値より低い場合に第 3の安定状 態としての反強誘電状態が選択される。 光透過率一印加電圧特性の 一例が第 1 図に示される。 マ ト リ ックス状の画素を有する反強誘電 性液晶パネルの電極の一例が第 2図に示される。 このような反強誘 電性液晶パネルでは一般に、 走査電極 Y 1〜Y 128 に順次周期的に 走査電圧を印加し、 信号電極 X I〜: X 160 には所定の信号電圧を走 查電圧と同期させて並列的に印加し、 選択された画素の液晶分子を 表示情報に応じてスィ ッチングさせる時分割駆動が採用されている 時分割駆動の方法としては、 種々の方法が提案されている。 提案 されている方法の例が第 3図および第 4図に示される。 1画面を書 き込むために、 2フレームの書き込みを行い、 第 1 フレームと第 2 フレームはそれぞれの波形の電圧値が互いに電圧値 0 Vに対して対 称な関係になっており、 これにより、 2フレームの書き込みによつ て交流化を図っている。 第 3図には ON状態が、 第 4図には OFF 状態 をセッ トする時の電圧と画素の透過率の変化が示される。 走査電極 に印加される走査電圧は第 3図および第 4図に示すように 3位相か らなり、 第 1位相で必ず一度 OFF 状態すなわち反強誘電状態にリセ ッ ト し、 第 2位相では、 第 1位相での状態を保持し、 第 3位相で ON 状態すなわち強誘電状態にセッ トするかどうか選択する。 第 3図の 場合には、 走査電圧と信号電圧の差である合成電圧の第 3番の位相 が強誘電状態にセッ トするためのしきい値電圧を越えるために、 ON 状態すなわち強誘電状態にセッ トされ、 第 4図の場合には前記しき い値電圧を越えないために OFF 状態すなわち反強誘電状態が保持さ れる。
反強誘電性液晶パネルの問題点の一つとして、 反強誘電状態から 強誘電状態へのスィ ッチングの応答速度に比べて強誘電状態から反 強誘電状態へのスィ ッチングの応答速度が 2倍近く遅いことがある 。 このために従来の駆動法においては、 反強誘電状態にリセッ トす るための期間が強誘電状態または反強誘電状態にセッ トする期間に 比べて長く とられている。 しかしこのために走査電極数を多くする と、 全画素の書き込み時間が非常に長くなるという不利益が生ずる 本発明の 1つの目的は反強誘電性液晶パネルの従来技術における 不利益な点を解決することにある。
また 1つの観点においては、 従来技術の駆動方法で長時間同じ表 示を行っていると、 画素によっては強誘電性液晶状態になる画素と 、 一度も強誘電性液晶状態にならない画素とが存在し、 これらの画 素を再び反強誘電性液晶状態にスィッチングしたときに画素毎に液 晶の層構造に違いがあらわれる。 これは、 それぞれの画素が異なる 層構造をとるためである。 これにより光の透過率にも相違が生じ、 これが残像現象として視覚されるという不利益が生ずる。 本発明の
1つの目的は、 マト リ ツ クス状に画素を有する反強誘電性液晶パネ ルにおいて、 長時間同じ表示を行っていても、 画素ごとに液晶の層 構造が異なるために起きる残像現象を無く し、 表示を良好に行う液 晶パネルを提供することにある。
また、 1 つの観点においては、 液晶ディスプレイの駆動において 時分割駆動を良好に行うためには、 表示状態を決定する位相の走査 側の電圧値を V。 、 信号側の電圧値を V D とした場合、 電圧の設定 は、 第 1 の走査期間について I V C I + I V D 1 ≥ ¥ 5かっ 0 ≤ | I V c I - I V D I I ≤ V 1 を満たす必要があり、 時分割駆動を行 う場合、 一般に V。 > V D で駆動されるので、 V 1 と V 5の差が大 きい液晶材料を用いる場合には上記の関係式より V。 の値の範囲が かなり限定される (第 1 図参照) 。 よって、 V 1 と V 5の差が大き い液晶材料を用いた場合、 電圧設定範囲がかなり狭く規制され、 表 示を良好に行うことが困難である。 本発明の 1つの目的は、 非選択 期間の電圧値の範囲を従来の範囲よりも広く設定し、 V I と V 5の 電圧値の差が大きな液晶材料についても、 表示を容易に良好に行う ことが可能な反強誘電性液晶の駆動方法を提供することにある。 また、 1つの観点においては、 反強誘電性液晶の液晶分子は 3つ の安定状態をもつことを前提とし、 電圧無印加時は反強誘電状態と しての第 3の安定状態に位置し、 しきい値電圧 Vth 以上の電圧が印 加されるとその印加された電圧の極性によつて強誘電状態としての 第 1の安定状態または強誘電状態としての第 2の安定状態ヘスィ ッ チングする。 従来技術の駆動方法においては、 強誘電状態から反強 誘電状態へスィ ッチングするために印加電圧を 0 Vにし、 反強誘電 性液晶に外力を与えず液晶分子自身の粘性等の性質によりスィ ッチ ングが行われるようになつており、 強誘電状態から反強誘電状態へ の応答速度は非常に遅いものである。 従来技術の駆動方法では、 第 1 ( S 1 ) 、 第 2 ( S 2 ) 、 および第 3 ( S 3 ) の位相からなる選 択期間の第 1の位相 S 1前半で一度必ず反強誘電状態にリセッ ト し 、 その後第 3の位相 S 3 におけるセレク トパルスで強誘電状態にす るか反強誘電状態にするかを選択するが (第 18図参照) 、 前述のよ うに反強誘電性液晶は強誘電状態から反強誘電状態への応答速度が 遅く、 リセッ トする期間としての第 1の位相 S 1が短いと完全に反 強誘電状態にすることができず、 表示を良好に行う ことができず、 それにより、 選択期間を充分長くする必要があり、 フ レーム周波数 をあまり高くすることができず、 画面の書き込み時間が遅くなり、 ビデオレー トにおける駆動が困難である。 本発明の 1 つの目的は、 選択期間内で反強誘電状態へのリセッ トを高速かつ完全に行い、 高 速駆動の可能な反強誘電性液晶素子の駆動方法を提供することにあ る o
また、 1つの観点においては、 反強誘電性液晶の液晶分子は 3つ の安定状態をもつことを前提とし、 電圧無印加時には反強誘電状態 である第 3の安定状態に位置し、 絶対値がしきい値電圧 Vs以上の電 圧が印加されると、 印加された電圧の極性によつて強誘電状態であ る第 1 の安定状態または強誘電状態である第 2の安定状態ヘスィ ッ チングする。 強誘電状態から反強誘電状態へのスィッチングは非常 に遅い。 本発明の 1つの目的は、 選択期間内で反強誘電状態に完全 にリセッ トし、 表示を高速に行うことが可能な反強誘電性液晶素子 の駆動方法を提供するこ とにある。 発明の開示
本発明においては、 対向面にそれぞれ複数の走查電極と信号電極 を有する 1対の基板間に反強誘電性液晶を挟持してなり、 マ ト リ ツ クス状に画素を有する反強誘電性液晶パネルの駆動方法において、 いずれかの画素の表示状態を変える毎に全画素を同時に反強誘電状 態にする期間を設けるこ とを特徴とする反強誘電性液晶パネルの駆 動方法、 が提供される。
本発明においてはまた、 対向面にそれぞれ複数の走査電極と信号 電極を有する 1対の基板間に反強誘電性液晶を挟持し、 マ ト リ ッ ク ス状に画素を有する反強誘電性液晶パネルにおいて、 或る期間全画 素の反強誘電性液晶を強誘電性液晶状態にすることを特徴とする反 強誘電性液晶ディスプレイ、 が提供される。
本発明においてはまた、 対向面にそれぞれ複数の走査電極と信号 電極を有する 1対の基板間に反強誘電性液晶を挟持し、 マ ト リ ッ ク ス状に液晶画素を有する反強誘電性液晶パネルにおいて、 前記液曰
0B パネルの実駆動は少なく とも 2つの走査期間からなり、 各走查期間 は少なく とも選択期間と非選択期間の 2つの期間が存在し、 前記非 選択期間に印加されるパルス波の上限値の電圧値 Vuが、 前記パルス 波と同極性の電圧値を前記反強誘電性液晶パネルに印加して増大さ せた場合に透過率が増加し始める電圧値 V 1 と電圧値を減少させた 場合に透過率が減少し始める電圧値 V 2 との間である V 2 ≤ Vu≤ V 1 の範囲に設定され、 また前記パルス波の下限値の電圧値 Vdが前記 電圧値 V 1 とは逆極性の電圧の絶対値を増加させたときに透過率が 増加し始める電圧値 V 3 と前記電圧値 V 1 との間である V 3 ≤Vd≤ V 1 の範囲に設定されることを特徵とする反強誘電性液晶ディスプ レイの駆動方法、 が提供される。
本発明においてはまた、 少なく とも第 1 の走査期間および第 2の 走査期間を有し、 前記第 1 の走査期間と前記第 2の走査期間の電圧 波形が 0 Vに対して対称であり、 前記第 1 の走査期間および前記第 2の走査期間はそれぞれ少なく とも選択期間と非選択期間を有する 反強誘電性液晶素子の駆動方法において、 走査電極には前記選択期 間の第 1 の位相でリセッ トパルスを印加し、 前記選択期間の第 2の 位相でセレク トパルスを印加し、 前記リセッ トパルスの電圧の極性 は前記選択期間の前の状態が一方の強誘電状態であるときに他方の 強誘電状態へ変化させるしきい値電圧の極性と同極性であり、 前記 リセッ トパルスの電圧の絶対値は、 0 より大き く前記しきい値電圧 の絶対値より小さ く、 同一の前記選択期間内における前記リセッ ト パルスと前記セレク トパルスの極性は同極性であることを特徴とす る反強誘電性液晶素子の駆動方法、 が提供される。
本発明においてはまた、 少なく とも第 1 の走査期間および第 2の 走査期間を有し、 前記第 1 の走査期間と前記第 2の走査期間とは電 圧波形が 0 Vに対して対称であり、 前記第 1 の走査期間と前記第 2 の走査期間はそれぞれ少なく とも選択期間と非選択期間を有する反 強誘電性液晶素子の駆動方法において、 前記選択期間は第 1 の位相 、 第 2の位相、 および第 3の位相を有し、 走査電極には前記選択期 間の前記第 1 の位相でリセッ トパルスが印加され、 前記第 2の位相 でベース電圧が印加され、 前記第 3の位相でセレク トパルスが印加 され、 前記リセッ トパルスの電圧の極性は、 前記選択期間の直前が 一方の強誘電状態であるとき他方の強誘電状態へ変化させるときの しきい値電圧と同極性であり、 前記リセッ トパルスの電圧の絶対値 は、 0 より大き く前記しきい値電圧の絶対値より小さ く、 前記べ一 ス電圧の電圧値 Vbx は不等式 V 3 < Vbx く V 1 で与えられ、 ここに 、 V 1 は反強誘電性液晶素子に正電圧を印加するときに光透過率が 増加し始める電圧を、 V 3は負電圧を印加するときに光透過率が増 加し始める電圧をそれぞれ表し、 同一の前記選択期間内における前 記リセッ トパルスと前記セレク トパルスの極性は同極性であること を特徵とする反強誘電性液晶素子の駆動方法、 が提供される。
本発明による反強誘電性液晶パネルの駆動方法においては、 画素 の書換えを行う毎に 1度全画素を同時に反強誘電状態にリセッ トし ておき、 その後各走査電極 1 ライン毎に書き込みを行い、 強誘電状 態または反強誘電状態にセッ トするための駆動波形が画素に順次印 加される。 全画素を同時に反強誘電状態にセッ トするための期間が 設けられることにより、 個々の書込みにおける リセッ ト期間が不要 または短期間ですみ、 また電極 1 ラインの書き込み時間自体が短縮 されることにより、 走査電極の数が多くなつても全画素の書き込み 時間を短縮することができる。 図面の簡単な説明
第 1 図は反強誘電性液晶パネルの光透過率 -印加電圧特性の例を 示す図、
第 2図はマ ト リ ックス状の画素を有する反強誘電性液晶パネルの 電極の例を示す図、
第 3図および第 4図は従来提案されている時分割駆動の方法の例 を示す図、
第 5図は本発明の一実施例としての液晶パネルの断面を示す図、 第 6図は液晶パネルの画素に印加される駆動電圧波形の例を示す 図、
第 7図は本発明の他の 1つの実施例としての液晶パネルを示す図 第 8図は本発明の他の 1つの実施例としての液晶パネルの駆動電 圧波形を示す図、
第 9図、 第 10図、 および第 1 1図は反強誘電性液晶の層構造の例を 示す図、
第 12図は駆動方法における動作に対応する液晶パネルと偏光板の 構成を示す図、
第 13図は本発明の一実施例における駆動波形に対比される従来技 術における駆動波形を示す図、
第 14図は本発明の一実施例における駆動波形を示す図、
第 1 5図は本発明の一実施例における駆動方法を図解する図、 第 1 6図は走査電極に印加される電圧と光透過率の関係を図解する 図、
第 17図は走査電極に印加される電圧と光透過率の関係を図解する 図、
第 18図は従来技術における液晶素子の時分割駆動方法の例を図解 する図、
第 1 9図は液晶分子の状態を図解する図、
第 20図は本発明の一実施例としての液晶素子の駆動方法を図解す る図、
第 21図は、 走査電極に印加される電圧と光透過率の関係を示す図 でめ 。 発明を実施するための最良の形態
本発明の一実施例としての反強誘電性液晶パネルの断面図が第 5 図に示される。 反強誘電性液晶パネルは、 反強誘電性液晶 46をその 層厚が約 2 になるように一対の基板 43, 48で挟持して構成されて いる。 基板 43, 48の対向面には電極 44が形成され、 その上に配向膜 45, 47が設けられている。 さらに一方の基板 43の外側に偏光板の偏 光軸と配向膜 45, 47の配向処理方法とが平行になるように第 1 の偏 光板 41が設置されており、 他方の基板 48の外側には第 1 の偏光板 41 の偏光軸と 90 ° 異なるようにして第 2の偏光板 49が設置されている o
第 5図の液晶パネルの画素に印加される駆動電圧波形の例が第 6 図に示される。 液晶パネルとしては第 2図に示される走査電極数 12 8 本、 信号電極数 160 本の反強誘電性液晶パネルが用いられる。 第 6 図における A 1 , A 128 は、 第 2図における画素 A 1 , A 128 に 対応する。 この駆動方法においては、 1選択期間が 2パルスで構成 される。 1走査が 2 フレームから構成され、 第 1 フレームと第 2 フ レームは互いに 0 Vに対して対称な電圧値をとる。 ON状態を表示す る場合の第 1 フ レームの選択期間の第 2番の位相の電圧値は 30 V、 第 2 フレームの選択期間の第 2番の位相の電圧値は— 30 V、 OFF 状 態を表示する場合の第 1 フレームの選択期間の第 2番の位相の電圧 値は 26 V、 第 2 フ レームの走査期間の第 2番の位相の電圧値は一 26 Vであり、 一画面の走査時間は約 80msとして駆動が行われる。 この 場合において、 2つの表示画面を交互に表示し、 この 2つの表示画 面を替える毎に、 第 6図に示されるように全画素に印加される電圧 値を 0 Vとする休止期間を設け、 この休止期間を 500 a s とする。 この場合において、 1画面の表示時間を約 3秒間とし、 それにした がい 1画面を表示するために、 40回の走査を行う。
ON状態を選択するための駆動波形が各画素に印加された場合、 第 1 フ レームの第 1番の位相の電圧値が 0 Vのために、 まず OFF 状態 としての反強誘電状態にリセッ トされ、 その後の第 2番の位相が強 誘電状態にスィッチングするためのしきい値電圧値を越えるために ON状態としての強誘電状態にセッ トされる。 OFF 状態を選択するた めの駆動波形が各画素に印加された場合には、 選択期間の第 1番の 位相が 0 Vのために、 まず OFF 状態にリセッ トされる、 その後の第 2番の位相が強誘電状態にセッ トするためのしきい値電圧値を越え ないために、 OFF 状態としての反強誘電状態が維持される。
第 5図、 第 6図に図解される駆動方法においては新しい表示を行 う場合には、 全画素に印加される電圧値が 0 Vとなる休止期間が約 500 sあるために、 この期間で全画素を強誘電状態から反強誘電 状態に完全にリセッ トすることができる。 したがって、 反強誘電状 態をセッ トするためのパルス幅と強誘電状態をセッ トするためのパ ルス幅を等しく しても、 駆動を良好に行うことができる。 これに対 し従来の駆動方法では、 反強誘電状態をセッ トするためのパルス幅 と強誘電状態をセッ トするためのパルス幅を等しく してしまう と、 ON状態を表示していた画素を OFF 状態にリセッ トする場合に、 選択 パルスの第 1位相だけでは強誘電状態から反強誘電状態へのリセッ トを充分に行うことができない。
第 5図、 第 6図に図解される駆動方法においては、 画素の書換え を行う毎に全画素を同時に反強誘電状態にする期間が設けられ、 そ れにより反強誘電状態を選択するパルス幅と強誘電状態を選択する パルス幅が同じ長さにされることができ、 走査電極数が増加した場 合においても、 書き込み時間を大幅に長くすることを回避して駆動 を行うことができる。
本発明の他の 1つの実施例としての反強誘電性液晶パネルが第 7 図に示される。 液晶パネルには反強誘電性液晶パネル 1 6に走査側駆 動回路 12と信号側駆動回路 13が電気的な接続がされ、 この駆動用の 回路は 2つの異なる波形を出力するために、 表示パターンを表示す る表示用駆動波形出力回路 14とスメクチック層をセル内で制御する 層構造制御用出力回路 15から構成され、 両波形の出力部には出力切 替えスィ ッチ 1 1が付いており、 どちらからの出力を行うかを任意に 選択できる。 Tは波形出力端子である。 したがって、 長時間同じ表 示を行った後に数秒間層構造の制御用の波形を液晶セルに印加させ ることにより、 全画素を強誘電性液晶状態にし、 電圧印加後は全画 素の層構造を同一にすることができ、 それにより層構造の違いによ り生ずる残像現象を防止することができる。
本発明の他の 1 つの実施例としての反強誘電性液晶パネルの駆動 波形が第 8図に示される。 液晶パネルとしては、 走査側電極数 128 本、 信号側電極数 160 本の電極を有する液晶セルを用いた (第 2図 、 第 5図) 。 第 8図の Y l , Y 2は、 第 2図の走査電極 Y 1 , Y 2 に対応する。 駆動波形は 1選択期間が 2パルスで構成される。 また 1走査が 2つの走査期間から構成され、 第 1走査期間と第 2走査期 間は互いに 0 Vに対して対称な電圧値を取っている。 走査電極に印 加される第 1走査期間の選択期間の第 1位相目は 0 V、 第 2位相目 の電圧値は 30 V、 次の選択期間の前の 2位相はリセッ ト期間とし 30 V、 残りの非選択期間には 10 Vの電圧波形が印加され、 第 2走査期 間の選択期間の第 1位相目は 0 V、 第 2位相目の電圧値は一 30 V、 次の選択期間の前の 2位相はリセッ ト期間とし— 30 V、 残りの非選 択期間には一 10 Vの電圧波形が印加される。 また信号電極側には、 走査電極側と同期して ON状態の時の第 1位相は 0 V、 第 2位相は 6 Vの電圧波形が印加される。 また OFF 状態の時の第 1位相は 0 V、 第 2位相は一 6 Vの電圧波形が印加される。 フレーム周波数約 60ms として駆動が行われる。
ON状態、 OFF 状態の信号電極によらずに、 リセッ ト期間に一度必 ず強誘電性液晶状態に画素部の液晶はリセッ トされ、 その後選択期 間で ON状態にするか OFF 状態にするかを選択する。 したがって、 長 時間同じ表示を行っても、 画素毎に層構造が異なることがないため 、 新たな表示の書き込みを行った場合においても残像現象は生じな い。
反強誘電性液晶は第 1 図に示されるように透過光量一電圧特性に ヒステリ シスを有し、 これにより、 液晶分子にあるパルス波を印加 した場合に、 このパルス幅と電圧値の積の値がしきい値以上の値を とる場合に強誘電状態である第 1 の安定状態が選択され、 また印加 電圧の極性の違いによつて、 強誘電状態である第 2の安定状態が選 択され、 この第 1 の状態および第 2の状態から、 前記パルス幅と電 圧値の積の値の絶対値が或るしきい値より低い場合に反強誘電状態 である第 3の安定状態が選択される。 反強誘電性液晶を含むマ ト リ ックス形の液晶パネルの電極構成が第 2図に示される。 走査電極 Y 1〜Y 128 に順次周期的に選択電圧を印加し、 信号電極 Χ 1〜Χ 1 6 0 には所定の情報信号を走査電極信号と同期させて並列的に印加し 、 選択された画素の液晶分子を表示情報に応じてスィツチングし、 それにより時分割駆動が行われる。 時分割駆動の方法としては、 例 えば第 3図および第 4図に示されるような方法が提案されている。 第 7図、 第 8図に図解される駆動においては、 長時間同じ表示を 行った場合においても新たな画面を書き込んだとき以前の画面が残 像することがなく、 それにより表示を良好に行うことができる。
なお反誘電性液晶の層構造の例が第 9図、 第 10図、 第 1 1図に示さ れる。 ガラス基板 G間の反強誘電性液晶はスメクチック層 Sのため に層構造を有し、 電圧を印加する前の反強誘電性液晶状態ではセル 内で基板法線と層法線が垂直にならないように構成され、 セルの中 で層が 「く 」 の字状に折れ曲がつているシェブロン構造をとり (第 9図) 、 電圧が印加され強誘電性液晶状態になると基板法線と層法 線が垂直になるように構成されたブッ クシエルフ型層構造となり ( 第 10図) 、 その後再度反強誘電性液晶状態になったときには、 初期 の反強誘電性液晶状態の時の層構造とは異なる (第 11図) 。 このこ とは例えば刊行物、 応用物理、 VOL. 59, NO. 10 に記載されている。 したがって、 従来技術における駆動方法において長時間同じ表示を 行う と、 画素により強誘電性液晶状態になる画素と、 一度も強誘電 性液晶状態にならない画素が存在することになる。 このため、 これ らの画素を再び反強誘電性液晶状態にスィ ッチングしたとき画素毎 に液晶の層構成に違いがあらわれる。 これは、 それぞれの画素が第 9図、 第 1 1図に示されるような異なる層構造をとるためである。 そ れにより、 光の透過率にも相違が生じ、 それが残像現象として視覚 されることになる。
反強誘電性液晶ディスプレイの駆動方法における動作の例が第 1 図に示される。 第 1 図に示される動作においては、 反強誘電性液晶 パネルの実駆動が少なく とも 2つの走査期間からなり、 各走査期間 は少なく とも選択期間と非選択期間の 2つの期間が存在し、 非選択 期間に印加されるパルス波の上限値のレベル Vuが、 前記パルス幅と 同極性の電圧値を前記液晶パネルに印加し増大させた場合に透過率 が増加し始める電圧値 V I と、 電圧値を減少させた場合に透過率が 減少し始める電圧値 V 2 との間 V 2 ≤Vu≤ V 1 の範囲に設定され、 また前記パルス波の下限値のレベル Vdが前記電圧値 V 1 とは逆極性 の電圧の絶対値を増加させたときに透過率が増加し始める電圧値 V 3 と V 2の間 V 3 ≤Vd≤ V 2に設定される。
非選択期間に於いては選択期間で設定された 3つの安定状態を保 持しなければならない。 例えば第 1 の安定状態をとる場合には非選 択期間内に印加される電圧値はヒステリ シスループの電圧値 V 2以 上で電圧値 V 1以下にする必要があった。 第 1 の安定状態をとつた 場合に、 その後に印加されるパルス波の電圧値が V 2以下で V 3以 上の間の値の場合には第 3の安定状態をとるが、 この V 2以下で V 3以上の電圧値を持つパルス波の後に、 液晶分子が第 3の安定状態 へ戻るために必要な時間よりも十分短い時間内に、 V 1 と V 2の間 の電圧値のパルス波が印加されれば第 1 の安定状態から第 3の安定 状態へ戻ることはないことが判明した。 通常の反強誘電性液晶は第 3 の安定状態から第 1 の安定状態もしく は第 2の安定状態ヘスィッ チングする時間より も、 第 1 の安定状態もしく は第 2の安定状態か ら第 3の安定状態ヘスィッチングする時間の方が長いために、 非選 択時に印加される 1 パルスのパルス幅は、 第 1 の安定状態から第 3 の安定状態ヘスィッチングするためには短かすぎる。
従来技術においては、 例えば第 1 の安定状態を選択した場合には 、 非選択時に印加される電圧値の範囲は V 2以上でかつ V 1以下に しなければならず、 電圧値の幅が狭かった。 第 1 図に示される動作 においては、 非選択時に印加される電圧値の下限の範囲が、 V I以 下で V 3以上に設定されていればよいため電圧値の範囲を広くする ことができる。 例えば、 第 1 図において、 I V 1 — V 2 I ≥ I V 2 - V 4 I であれば走査側電圧の非選択時における保持電圧を V 2に した場合には、 非選択期間のパルス波の上限の電圧値は V 1 まで大 き くすることができ、 下限の電圧値は V 2 - ( I V 1 - V 2 | ) の 値をとることができ、 従来技術に比べて信号側電圧の幅を大き く と ることができる。
時分割駆動に於いては、 走査側電圧波形の選択期間に印加される 選択パルスの絶対値と信号側電圧波形の絶対値の差が小さい方が、 ONの状態を選択する場合に画素に印加されるパルス波の電圧値と OF F 状態を選択する場合に画素に印加されるパルス波の電圧値の差を 大き くすることができ、 ヒステリ シスループの立ち上がりや立ち下 がりがあま り急峻でない液晶材料を駆動することも容易になる。 し たがって、 信号側電圧の絶対値はできるだけ大である場合のほうが 駆動がより良好になる。 第 1 図に示される動作においては、 従来よ り も信号側電圧の絶対値を大き くすることができ、 それにより、 多 く の液晶材料について表示を容易に良好に行う ことができる。
第 1 図に示される動作の一例として、 反強誘電性液晶は第 1 図に 示されるようなヒステリ シスループを画き、 その場合に V 1 = 18 V 、 V 2 = 4 V . V 3 = - 18 V、 V 4 = - 4 V . V 5 = 30 V、 V 6 = — 30 Vである。 この反強誘電性液晶を用いた場合の駆動波形が第 15 図に示される。 駆動波形は 2つの走査期間から構成され、 また 1選 択期間は 4パルスで構成される。 第 1走査期間と第 2走査期間は互 いに 0 Vに対して対称な電圧値をとる。 各パルス幅は 100 s、 走 査電極に印加される第 1走査期間の選択期間の 1位相目から第 3番 の位相は 0 V、 第 4番の位相は 30 V、 残りの非選択期間の保持電圧 は 4. 5 Vの電圧波形が印加され、 第 2走査期間の選択期間の第 1番 の位相から第 3番の位相の電圧値は 0 V、 第 4番の位相の場合が- 30 V、 残りの非選択期間の保持電圧は- 4. 5 Vの電圧波形が印加さ れる。 また信号電極側には、 走査電極側と同期して ONの状態の時の 第 1番の位相から第 2番の位相は 0 V、 第 3番の位相は 12V、 第 4 番の位相は一 12Vの電圧波形が印加される。 また OFF の状態の時の 第 1番の位相と第 2番の位相は 0 V、 第 3番の位相は一 12V、 第 4 番の位相は 12 Vの電圧波形が印加される。 フレーム周波数約 60msと して、 駆動が行われた。 したがって、 従来に比べて信号側電圧値を 大き く設定することができ、 また走査側電圧の非選択時の保持電圧 値を低く設定することができ、 それにより、 表示を良好に行う こと ができる。 反強誘電性液晶をディスプレイとして用いる場合の構成が第 12図 に示される。 クロスニコルに合わせた偏光板 21 a, 21 bの間に、 ど ちらかの偏光板の偏光軸と電圧無印加時に於ける分子の長軸方向が 平行になるように液晶セル 22を置き、 電圧無印加時に黒が、 電界印 加時には白が表示できるようにしている。 このようなセル構成に於 いて液晶セルに電圧を印加したとき、 それに対する透過率変化をグ ラフにプロッ トすると第 1 図のようなヒステリ シスループを描く こ とが出来、 電圧を印加し増加させていく場合に透過率が変化し始め る電圧値を V I、 透過率の変化が飽和する電圧値を V 5、 逆に電圧 値を減少させていく場合に透過率が減少し始める電圧値を V 2、 ま た前記電圧値と逆電圧を印加し、 その絶対値を増加させた場合に透 過率が変化し始める電圧値を V 3、 透過率変化が飽和する電圧値を V 6、 逆に電圧の絶対値を減少させた場合に透過率が変化し始める 電圧値を V 4 とする。 第 1図から理解されるように、 液晶分子にあ るパルス波を印加した場合、 このパルス幅と電圧値の積の値がしき い値以上の値をとる場合に強誘電状態である第 1 の安定状態が選択 され、 また印加電圧の極性の違いによって、 強誘電状態である第 2 の安定状態が選択され、 この第 1 の状態及び第 2の状態から、 前記 パルス幅と電圧値の積の値の絶対値があるしきい値より低い場合に は反強誘電状態である第 3の安定状態が選択される。
時分割駆動の方法としては、 従来、 種々の方法が提案されている 。 反強誘電性液晶を含むマ ト リ ッ クス形の液晶パネルの電極構成が 第 2図に示される。 走査電極 Y 1〜Y 128 に順次周期的に選択電圧 を印加し、 信号電極 Χ 1〜Χ 160 には所定の情報信号を走査電極信 号と同期させて並列的に印加し、 選択された画素の液晶分子を表示 情報に応じてスィツチングさせる時分割駆動が採用されている。 第 14図に示される駆動方法においては、 1画面を書き込むために、 2 つの走査期間の書き込みを行い、 第 1走査期間の第 2走査期間はそ れそれの波形の電圧値が互いに電圧値 0 Vに対して対称な関係にな つており、 これにより、 交流化を図っている。 第 2図における画素 部 A 1 の ONの状態と OFF の状態をセッ トする時の電圧波形と画素の 透過率の変化が第 14図に示される。 選択期間中、 走査電極 Y 1 に印 加される信号は 3位相からなり、 第 1位相で必ず一度反強誘電状態 である OFF の状態にリセッ ト し、 第 2位相では、 第 1位相での状態 を保持し、 第 3位相で強誘電状態の ONの状態にセッ トするかどうか 選択する。 第 3位相目が強誘電状態にセッ トするためのしきい値電 圧を越えた場合には、 強誘電状態の ONの状態にセッ トされ、 前記し きい値電圧を越えない場合は反強誘電状態の OFF の状態を保持する ここで、 時分割駆動の場合の非選択期間の電圧は、 第 1 図におい て印加電圧を増加させた場合に透過率が変化し始める電圧値 V 1 以 下でかつ印加電圧の絶対値を減少させた場合に透過率が変化する電 圧値 V 2以上に設定されている。
良好に時分割駆動を行うためには走査側の電圧値を V c 、 信号側 の電圧値を V D とした場合には電圧の設定は上記で説明した第 1走 查期間について考えると、 I V。 I + I V D I ≥ V 5かつ 0 ≤ I I V c I - I V D I I ≤ V 1 を満たす必要があり、 ここで時分割駆動 を行う場合、 一般に V。 > V D で駆動されるので、 V I と V 5の差 が大きい液晶材料を用いる場合には上記の関係式より V。 の値の範 囲がかなり限定される。 よって、 V 1 と V 5の差が大きい液晶材料 を用いた場合、 電圧設定範囲がかなり狭く規制され、 良好な表示を 行うことが困難であった。 本発明の実施例による駆動方法において は、 非選択期間の電圧値の範囲を従来の範囲より も広く設定するこ とにより、 V 1 と V 5の電圧値の差が大きな液晶材料に関しても、 表示が容易に良好に行われることが可能な反強誘電性液晶の駆動が 実現される。 本発明の実施例による駆動方法によれば、 反強誘電性 液晶ディ スプレイにおいて、 使用する反強誘電性液晶材料の特性に 寄与されることなく良好な表示を容易に良好に行う ことができる。
本発明の他の 1つの実施例としての反強誘電性液晶素子の駆動方 法が第 15図に図解される。 第 15図に図解される駆動方法においては 、 少なく とも第 1走査期間および第 2走査期間を有し、 第 1走査期 間と第 2走査期間の電圧波形が 0 Vに対して対称であり、 第 1走査 期間および第 2走査期間はそれぞれ少なく とも選択期間と非選択期 間を有し、 走査電極には選択期間の第 1位相でリセッ トパルスを印 加し、 選択期間の第 2位相でセレク トパルスを印加し、 リセッ トパ ルスの電圧の極性は選択期間の前の状態が一方の強誘電状態である ときに他方の強誘電状態へ変化させるしきい値電圧の極性と同極性 であり、 リセッ トパルスの電圧の絶対値はしきい値電圧の絶対値よ り小さ く 0 Vより大きく、 かつ同一の選択期間内における リセッ ト パルスとセレク トパルスの極性は同極性である。
第 1 図に示されるように、 第 1 の安定状態としての強誘電状態か ら第 2の安定状態としての強誘電状態へ反強誘電性液晶をスィッチ ングする場合には、 絶対値がしきい値電圧 V 6以上でしきい値電圧 V 6 と同極性の電圧を印加することにより高速にスィッチングする こ とができる。 また、 第 2の安定状態から第 1 の安定状態へ反強誘 電性液晶をスィツチングする場合には、 絶対値がしきい値電圧 V 5 以上でしきい値電圧 V 5 と同極性の電圧を印加することにより高速 にスィ ッチングすることができる。 この場合液晶分子は一方の強誘 電状態である第 1 または第 2の安定状態から他方の強誘電状態であ る第 2 または第 1 の安定状態へ移行する間に必ず反強誘電状態とし ての第 3の安定状態を通過する。 また、 それぞれのしきい値電圧値 V 6, V 5 と同極性で、 それぞれのしきい値電圧値 V 6 , V 5 より 絶対値の小さい電圧で 0 Vより大きい電圧を印加すると、 液晶分子 は第 1 または第 2の安定状態へ安全に移行することができず、 その 後反強誘電状態である第 3の安定状態へ移行することがわかってい o
この現象を利用して強誘電状態である第 1 の安定状態から反強誘 電状態である第 3の安定状態へ高速でスィッチングするためには、 他方の強誘電状態である第 2の安定状態ヘスィ ッチングするのに必 要なしきい値電圧 V 6 と同極性で、 絶対値がこのしきい値電圧 V 6 の絶対値より絶対値が小さ く 0 Vより大きい電圧を印加する。 同様 に強誘電状態である第 2の安定状態から反強誘電状態である第 3の 安定状態へ高速でスィ ツチングするためには、 他方の強誘電状態で ある第 1 の安定状態ヘスィツチングするのに必要なしきい値電圧 V 5 と同極性で、 このしきい値電圧 V 5の絶対値より絶対値の小さい 電圧で 0 Vより大きい電圧を印加する。 それにより反強誘電状態で 液晶分子が止まるようになり、 強誘電状態である第 1 または第 2の 安定状態から反強誘電状態である第 3の安定状態へ高速度でスィ ッ チングするこ とができる。 この方法においては、 上記のようなリセ ッ トパルス Vrp が印加される。 したがって、 第 1 の位相 Saの反強誘 電状態から次の状態としての強誘電状態または反強誘電状態へセッ トするためのセレク トパルス Vsの極性は、 リセッ トパルス Vrp の極 性と同じである。
第 15図においては、 白表示用の ON状態と黒表示の OFF 状態をセッ トするときの電圧波形を示される。 1画面の書き込みを第 1走査期 間 Seと第 2走査期間 Sfとで行っている。 ここで第 1走査期間 Seと第 2走査期間 Sf とはその電圧波形が互いに 0 Vに対して対称になって いる。 第 1走査期間 Seと第 2走査期間 Siはそれぞれ選択期間 Scと非 選択期間 Sdとで構成されている。 選択期間 Scは第 1位相 Saと第 2位 相 Sbで構成されている。 走査電極には第 1位相 Saでリセッ トパルス Vrp が印加され、 第 2位相 Sbでセレク トパルス Vsが印加される。
強誘電状態が維持されている場合、 すなわち S表示の状態が維持 されている場合、 には各走査期間 Se, Sf毎にその安定状態である第 1 または第 2安定状態が異なる。 しかし、 選択期間 Scの直前の状態 が第 1安定状態である場合には、 リセッ トパルス Vr p の極性を第 2 安定状態へのしきい値電圧 V 6 と同極性にし、 かつリセッ トパルス Vr p の電圧値を I V 6 I > I Vrp I > 0であるようにすることによ り、 高速に反強誘電状態にリセッ トすることができる。 また選択期 間 Scの直前の状態が第 2安定状態である場合には、 リセッ トパルス Vrp の極性を第 1安定状態へのしきい値電圧 V 5 と同極性にし、 か つリセッ トパルス Vrp の電圧値を I V 5 I > I Vrp I > 0であるよ うにすることにより、 高速に反強誘電状態にリセッ トすることがで きる。 さらに直前の状態が反強誘電状態の場合、 リセッ トパルス Vr P の電圧値が上記範囲にあるため、 しきい値電圧 V 5, V 6を越え ることがなく強誘電状態へのスィ ッチングは行われない。 したがつ て、 選択期間 Scの直前の状態にかかわらず、 リセッ トパルス Vrp の 印加期間である第 1位相 Saの期間内で反強誘電状態に完全にリセッ トされ、 それにより、 フレーム周波数を高くすることがてきる。 ま た、 それにより、 画面の書き込み時間が遅くなることを回避してビ デォレ一 トでの駆動を行うことができる。
白表示用の ON状態の選択期間 S cにおいて、 走査電極に印加される 電圧と光透過率の関係が第 16図に示される。 選択期間は第 1位相 Sa と第 2位相 Sbの 2位相から構成される。 第 1 位相 Saではリセッ トパ ルス Vrp が、 第 2位相 Sbではセレク トパルス Vsが印加される。 なお 、 選択期間 Scの直前の状態は強誘電状態である。 この実施例におい ては、 第 1位相 Saの期間内で反強誘電状態に完全にリセッ トするこ とができるため、 光透過率がセレク トパルス Vsを印加する直前で十 分低くなっている。
これに対比させて第 18図に示される従来技術による駆動方法の場 合における走査電極に印加される電圧と光透過率の関係が第 17図に 示される。 第 17図にみられるように、 選択期間 S 4の第 1位相 S 1 、 第 2位相 S 2の期間内では反強誘電状態に充分にリセッ トされて いない。
この実施例における液晶表示パネルの印加電圧と光透過率の関係 は第 1 図に示されており、 この実施例におけるしきい値電圧 V 5は 40 Vであり、 しきい値電圧 V 6は— 40 Vである。
走査電極には第 1位相 Saでリセッ トパルス Vrp が印加され第 2位 相 Sbでセレク トパルス Vsが印加される。 白表示用の ON状態、 黒表示 用の OFF 状態ともに、 第 1走査期間 Seのリセッ トパルス Vrp の電圧 値は 18 V、 セレク トパルス Vsの電圧値は 30 V、 非選択期間 Sdの保持 電圧値は 4. 5 Vにそれぞれ設定される。 また、 白表示用の ON状態、 黒表示用の OFF 状態ともに、 第 2走査期間 Sfのリセッ トパルス Vrp の電圧値は— 18 V、 セレク トパルス Vsの電圧値は— 30 V、 非選択期 間 Sdの OFF のセッ ト電圧値は— 4. 5 Vにそれぞれ設定される。
信号電極には走査電極の印加電圧と同期した電圧を印加される。 白表示用の ON状態の第 1走査期間 Seの第 1位相 Saでは 12V、 第 2位 相 Sbでは - 12 Vの電圧が印加され、 第 2走査期間 Sfの第 1位相 Saで は— 12V、 第 2位相 Sbでは 12Vの電圧が印加されるように設定した 。 また黒表示用の OFF 状態の時の第 1走査期間 Seの第 1位相 Saでは — 12 V、 第 2位相 Sbでは 12Vの電圧が印加され、 第 2走査期間 Sfの 第 1位相 Saでは 12 V、 第 2位相 Sbでは一 12 Vの電圧が印加されるよ うに設定される。 各パルス幅は 100 に設定される。 この結果フ レーム周波数約 15msで駆動することができ、 従来技術と対比して、 フ レーム周波数 が非常に早くなり、 ビデオレー トの周波数においても、 駆動を良好 に行うことができる。 このように、 この実施例においては、 選択期 間内において反強誘電状態へのリセッ トを高速にかつ完全に行うこ とができる。 そのためをビデオレー トに近いフレーム周波数で駆動 する場合においても、 表示を容易に良好に行うことができる。
反強誘電液晶素子の時分割駆動方法としては、 従来、 種々のもの が提案されているが、 その一例が第 18図に示される。 第 18図におい ては、 白表示用の ON状態と黒表示用の OFF 状態をセッ トする時の電 圧波形が示される。 この駆動方法は 1 つの画面の書き込みを 2つの 走査期間 S 6 , S 7で行う。 第 1走査期間 S 6 と第 2走査期間 S 7 とはそれぞれの電圧波形が互いに電圧値 0 Vに対して対称な関係に なっており、 2つの走査期間 S 6 , S 7の書き込みによって交流化 を図っている。 第 1走査期間 S 6および第 2走査期間 S 7はそれぞ れ選択期間 S 4および非選択期間 S 5からなる。 選択期間 S 4に印 加される電圧は、 第 1位相 S l、 第 2位相 S 2、 第 3位相 S 3の 3 位相からなる。 走査電極に印加される電圧と信号電極に印加される 電圧との合成波形は第 18図に示されるような状態になり、 第 1 位相 S 1 で必ず一度反強誘電状態である OFF の状態にリセッ ト し、 第 2 位相 S 2で第 1位相 S 1 における状態を保持し、 第 3位相 S 3のセ レク トパルス SPで強誘電状態である ONの状態にセッ トするかどうか を選択する。 第 3位相 S 3のセレク トパルス SPが強誘電状態にセッ トするためのしきい値電圧 Vt h を越える場合には、 強誘電状態であ る ONの状態にセッ トされ、 しきい値電圧 Vt h を越えない場合は反強 誘電状態である OFF の状態を保持する。
反強誘電体液晶の液晶分子の状態が第 1 9図に図解される。 第 1 9図 に示されるように反強誘電性液晶の液晶分子 Mは 3つの安定状態を もつ。 電圧無印加時は反強誘電状態である第 3安定状態に位置し、 しきい値電圧 Vth 以上の電圧が印加されるとその印加された電圧の 極性によつて強誘電状態である第 1安定状態または強誘電状態であ る第 2安定状態へのスィ ツチングが行われる。 第 18図に示される従 来の駆動方法では、 強誘電状態から反強誘電状態へのスィ ツチング が行われるために印加電圧を 0 Vにしていた。 すなわち、 反強誘電 性液晶に外力を与えるこ となく液晶分子自身の性質例えば粘性によ りスィ ッチングが行われるようにしていた。 このため強誘電状態か ら反強誘電状態への応答速度は非常に遅かった。
第 18図に示される駆動方法においては、 選択期間 S 4の第 1 位相 S 1前半で一度必ず反強誘電状態にリセッ トし、 その後第 3位相 S 3のセレク トパルス SPで強誘電状態にするか反強誘電状態にするか を選択する。 しかし、 上述したように反強誘電性液晶は強誘電状態 から反強誘電状態への応答速度が遅い。 このためリセッ トする期間 としての第 1位相 S 1 が短いと完全に反強誘電状態にすることがで きず、 表示を良好に行う ことができない。 そのため選択期間 S 4を 充分長くする必要があり、 フ レーム周波数をあまり高くすることが できなかった。 その結果、 画面の書き込み時間が遅くなり、 ビデオ レー トでの駆動が困難であった。 反強誘電性液晶素子の偏向軸と液 晶分子の平均的長軸方向の関係が第 12図に図解される。
本発明の他の 1つの実施例としての反強誘電性液晶素子の駆動方 法が第 20図に図解される。 第 20図に図解される駆動方法においては 、 少なく とも第 1走査期間および第 2走査期間を有し、 第 1走査期 間と第 2走査期間とは電圧波形が 0 Vに対して対称であり、 第 1走 査期間と第 2走査期間はそれぞれ少なく とも選択期間と非選択期間 を有し、 選択期間は第 1位相、 第 2位相、 および第 3位相を有し、 走査電極には選択期間の第 1位相でリセッ トパルスが印加され、 第 2位相でベース電圧が印加され、 第 3位相でセレク トパルスが印加 され、 リセッ トパルスの電圧の極性は、 選択期間の直前が一方の強 誘電状態であるとき他方の強誘電状態へ変化させるときのしきい値 電圧と同極性であり、 かつリセッ トパルスの電圧の絶対値はしきい 値電圧の絶対値より小さ く 0 Vより大きく、 ベース電圧の電圧値 Vb X は不等式 V 3 < Vbx < V 1 で与えられ、 ここに、 V I は反強誘電 性液晶素子に正電圧を印加するときに光透過率が増加し始める電圧 、 V 3は負電圧を印加するときに光透過率が増加し始める電圧であ り、 同一の選択期間内における リセッ トパルスとセレク トパルスの 極性は同極性である。 好適には、 選択期間の第 2位相で印加される ベース電圧は 0 Vである。
反強誘電性液晶の液晶分子を第 1図に示される第 1安定状態とし ての強誘電状態から、 第 3安定状態としての反強誘電状態へ高速で スイ ッチングするためには、 他方の第 2安定状態としての強誘電状 態へスィ ツチングするのに必要なしきい値電圧 V 6 と同極性で、 絶 対値がこのしきい値電圧 V 6の絶対値より小さ く 0 Vより大きい電 圧のリセッ トパルス Vrp を印加する。 同様に第 2安定状態としての 強誘電状態から第 3安定状態としての反強誘電状態へ高速でスィ ッ チングするためには、 他方の第 1安定状態としての強誘電状態ヘス ィ ツチングするのに必要なしきい値電圧 V 5 と同極性で、 このしき い値電圧 V 5の絶対値より絶対値の小さい電圧で 0 Vより大きい電 圧のリセッ トパルス Vrp を印加する。
第 20図に図解される駆動方法においては、 上記リセッ トパルス Vr P の印加により他方の第 1 または第 2安定状態としての強誘電状態 付近まで揺らいだ液晶分子を、 第 3安定状態としての反強誘電状態 へ完全に移行させるために、 リセッ トパルス Vrp 印加後の第 2位相 でベース電圧 Vbx を印加する。 ベース電圧 Vbx は光透過率が増加し 始める電圧 V 3 , V Iで規定され、 V 3 く Vbx く V Iであり、 こ こ に、 V 1 は反強誘電性液晶素子に正電圧を印加するときに光透過率 が増加し始める電圧、 V 3は負電圧を印加するときに光透過率が増 加し始める電圧である。 ベース電圧の極性は任意選択することがで き、 リセッ トパルス Vrp の極性と同じでもよく異なっていてもよい 。 また、 ベース電圧としてより好ましく は 0 Vである。 本発明では 第 2位相でベース電圧を印加することにより、 選択期間の前の状態 が強誘電状態であるか反強誘電状態であるかにかかわらず、 第 3位 相におけるセレク トパルス Vsを印加する前に液晶分子を完全に反強 誘電状態にリセッ トすることができる。 なお、 ベース電圧が上記範 囲を越える場合には、 液晶分子が強誘電状態に移行してしまう。 第 20図に示されるように、 白表示用の ONの状態と黒表示用の OFF の表示をセッ トするときに、 走査電極、 信号電極にそれぞれ印加さ れる電圧波形、 およびその合成波形を表している。 この実施例にお いては、 一画面の書き込みを第 1走査期間 Sfと第 2走査期間 Sgとで 行っている。 ここで第 1走査期間 Sf と第 2走査期間 Sgは電圧波形が 0 Vに対して対称になっている。 第 1走査期間 Sfと第 2走査期間 Sg はそれぞれ選択期間 Sdと非選択期間 Seとで構成されている。 選択期 間 Sdは第 1位相 Sa、 第 2位相 Sb、 第 3位相 Scで構成されている。 走 査電極には第 1位相 Saでリセッ トパルス Vrp が印加され、 第 2位相 Sbでベース電圧 Vbx が印加され、 第 3位相 Scでセレク トパルス Vsが 印加される。
白表示用の強誘電状態が維持されている場合には、 各走査期間 Sf , Sg毎にその安定状態が第 1 または第 2の安定状態になり、 異なつ ている。 選択期間 Sdの直前の状態が第 2の安定状態である場合には 、 極性が第 1 の安定状態へのしきい値電圧 V 5 と同極性であり、 電 圧値が I V 5 I > I Vrp I > 0 としてあらわされる リセッ トパルス Vr が印加される。 選択期間 Sdの直前の状態が第 1 の安定状態であ る場合には、 極性が第 2の安定状態へのしきい値電圧 V 6 と同極性 であり、 かつ電圧値が | V 6 I > I Vrp I > 0 としてあらわされる リセッ トパルス Vrp が印加される。
第 20図に図解される駆動方法においては、 第 2位相 Sbで印加する ベース電圧 Vbx を 0 Vにし、 リセッ トパルス Vrp の印加で揺らいだ 液晶分子を完全に第 3安定状態としての反強誘電状態に復帰させて いる。 このようにしてリセッ トパルス Vrp 印加後に、 V 3 く Vbx く V I としてあらわされるベース電圧 Vbx を印加することにより、 第 2位相 Sb内で反強誘電状態に完全にリセッ トすることができる。 し たがって選択期間 Sdの直前の状態にかかわらず、 セレク トパルス Vs を印加する前に反強誘電状態に完全にリセッ トすることができる。 それにより、 表示パターンによらずに表示を高速かつ良好に行う こ とができる。
白表示用の ON状態の選択期間 Sdにおける、 走査電極に印加される 電圧と光透過率の関係が第 21図に示される。 選択期間 Sdの直前は反 強誘電状態である。 リセッ トパルス Vrp の印加により第 1 または第 2の安定状態としての強誘電状態付近まで揺らいだ液晶分子を、 ベ ース電圧 Vbx を印加することにより第 2位相 Sb内で反強誘電状態に 完全にリセッ トすることができる。 それにより、 第 3位相 Sc前に光 透過率を充分低くすることができる。 この実施例で使用される液晶 表示パネルの印加電圧と光透過率の関係は第 1 図に示される。 しき い値電圧 V 5 は 40V、 しきい値電圧 V 6は— 40Vである。
走査電極には選択期間 Sdの第 1位相 Saでリセッ トパルス Vrp が印 加され、 第 2位相 Sbでベース電圧 Vbx が印加され、 第 3位相 Scでセ レク トパルス Vsが印加される。 白表示用の ONの状態、 黒表示用の OF F の状態ともに、 第 1走査期間 Sfの第 1位相 Saのリセッ トパルス Vr p の電圧を 18 V、 ベース電圧を 0 V、 セレク トパルス Vsの電圧を 30 V、 非選択期間 Seの OFF セッ ト電圧を 4. 5 Vに設定した。 また、 白 表示用の ONの状態、 黒表示用の OFF の状態ともに第 2走査期間 Sgの リセッ トパルス Vrp の電圧は- 1 8V、 ベース電圧は 0 V、 セレク ト パルス Vsの電圧は一 30 V、 非選択期間 Seの保持電圧値は— 4. 5 Yに それぞれ設定される。
信号電極には走査電極の印加電圧と同期した電圧が印加される。 白表示用の ONの状態の第 1走査期間 Sfの第 1位相 Saでは 12V、 第 2 位相 Sbでは 0 V、 第 3位相 Scでは - 12 Vの電圧が、 第 2走査期間 Sg の第 1位相 Saでは - 12V、 第 2位相 Sbでは 0 V、 第 3位相 Scでは 12 Vの電圧がそれぞれ印加されるように設定される。 黒表示用の OFF の状態の時の第 1走査期間 Sfの第 1位相 Saでは- 12V、 第 2位相 Sb では 0 V、 第 3位相 Scでは 12Vの電圧が、 第 2走査期間 Sgの第 1位 相 Saでは 12V、 第 2位相 Sbでは 0 V、 第 3位相 Scでは— 12 Vの電圧 がそれぞれ印加されるように設定される。 各パルス幅は 100 ja mに 設定される。 それにより、 フ レーム周波数約 15msにおいて駆動を行 うことができ、 従来技術の場合と比較してフレーム周波数が非常に 速いものになり、 ビデオレー トの周波数においても表示を良好に行 うことができる。 また、 表示パターンにかかわらず、 表示を高速か つ良好に行うことができる。
本発明の一実施例として第 20図に図解される駆動方法によれば、 反強誘電性液晶素子をビデオレー トのフレーム周波数においても駆 動を行う ことができる。 また、 表示パターンにかかわらず表示を高 速かつ良好に行うことができる。 産業上の利用の可能性 本発明による反強誘電性液晶パネルおよびその駆動方法は、 例え ばマ ト リ ックス状の画素を有する反強誘電性液晶を用いる表示パネ ル、 光シャッターアレイ等に利用されることができる。

Claims

請 求 の 範 囲
1. 対向面にそれぞれ複数の走査電極と信号電極を有する 1対の 基板間に反強誘電性液晶を挟持してなり、 マ ト リ ツ クス状に画素を 有する反強誘電性液晶パネルの駆動方法において、 いずれかの画素 の表示状態を変える毎に全画素を同時に反強誘電状態にする期間を 設けることを特徴とする反強誘電性液晶パネルの駆動方法。
2. 対向面にそれぞれ複数の走査電極と信号電極を有する 1対の 基板間に反強誘電性液晶を挟持し、 マ ト リ ツクス状に画素を有する 反強誘電性液晶パネルにおいて、 或る期間全画素の反強誘電性液晶 を強誘電性液晶状態にすることを特徵とする反強誘電性液晶ディス プレイ。
3. 前記反強誘電性液晶パネルと電気的な接続を持った駆動回路 が、 表示パターンを表示させるための表示用駆動波形出力回路と、 スメ クチッ ク層の層構造をセル内で制御するための層構造制御用出 力回路の 2つの回路から構成され、 この 2つの回路からの出力を任 意に選択する、 請求の範囲 2記載の反強誘電性液晶ディスプレイ。
4. 前記反強誘電性液晶パネルにおいて、 全走査電極の書き込み を行うための期間内に、 少なく とも 2つの走査期間を設け、 前記走 查期間中に少なく とも 1度は全画素が必ず強誘電性液晶状態になる ためのリセッ ト期間を設けた駆動方法を用いる、 請求の範囲 2記載 の反強誘電性液晶ディスプレイ。
5. 対向面にそれぞれ複数の走査電極と信号電極を有する 1対の 基板間に反強誘電性液晶を挟持し、 マ ト リ ツクス状に液晶画素を有 する反強誘電性液晶パネルにおいて、 前記液晶パネルの実駆動は少 なく とも 2つの走査期間からなり、 各走査期間は少なく とも選択期 間と非選択期間の 2つの期間が存在し、 前記非選択期間に印加され るパルス波の上限値の電圧値 Vuが、 前記パルス波と同極性の電圧値 を前記反強誘電性液晶パネルに印加して増大させた場合に透過率が 増加し始める電圧値 V 1 と電圧値を減少させた場合に透過率が減少 し始める電圧値 V 2 との間である。 V 2 ≤Vu≤ V 1 の範囲に設定さ れ、 また前記パルス波の下限値の電圧値 Vdが前記電圧値 V 1 とは逆 極性の電圧の絶対値を増加させたときに透過率が増加し始める電圧 値 V 3 と前記電圧値 V 1 との間である。 V 3 ≤Vd≤ V 1 の範囲に設 定されることを特徴とする反強誘電性液晶ディスプレイの駆動方法 ο
6. 少なく とも第 1 の走査期間および第 2の走査期間を有し、 前 記第 1 の走査期間と前記第 2の走査期間の電圧波形が 0 Vに対して 対称であり、 前記第 1 の走査期間および前記第 2の走査期間はそれ ぞれ少なく とも選択期間と非選択期間を有する反強誘電性液晶素子 の駆動方法において、 走査電極には前記選択期間の第 1 の位相でリ セッ トパルスを印加し、 前記選択期間の第 2の位相でセレク トパル スを印加し、 前記リセッ トパルスの電圧の極性は前記選択期間の前 の状態が一方の強誘電状態であるときに他方の強誘電状態へ変化さ せるしきい値電圧の極性と同極性であり、 前記リセッ トパルスの電 圧の絶対値は、 0 より大き く前記しきい値電圧の絶対値より小さ く 、 同一の前記選択期間内における前記リセッ トパルスと前記セレク トパルスの極性は同極性であることを特徴とする反強誘電性液晶素 子の駆動方法。
7. 少なく とも第 1 の走査期間および第 2の走査期間を有し、 前 記第 1 の走査期間と前記第 2の走査期間とは電圧波形が 0 Vに対し て対称であり、 前記第 1 の走査期間と前記第 2の走査期間はそれぞ れ少なく とも選択期間と非選択期間を有する反強誘電性液晶素子の 駆動方法において、 前記選択期間は第 1 の位相、 第 2の位相、 およ び第 3の位相を有し、 走査電極には前記選択期間の前記第 1 の位相 でリセッ トパルスが印加され、 前記第 2の位相でベース電圧が印加 され、 前記第 3の位相でセレク トパルスが印加され、 前記リセッ ト パルスの電圧の極性は、 前記選択期間の直前が一方の強誘電状態で あるとき他方の強誘電状態へ変化させるときのしきい値電圧の同極 性であり、 前記リセッ トパルスの電圧の絶対値は、 0 より大き く前 記しきい値電圧の絶対値より小さ く、 前記ベース電圧の電圧値 Vbx は不等式 V 3 く Vbx く V I で与えられ、 ここに、 V 1 は反強誘電性 液晶素子に正電圧を印加するときに光透過率が増加し始める電圧を 、 V 3は負電圧を印加するときに光透過率が増加し始める電圧をそ れぞれ表し、
同一の前記選択期間内における前記リセッ トパルスと前記セレク トパルスの極性は同極性であることを特徴とする反強誘電性液晶素 子の駆動方法。
8. 前記ベース電圧が 0 Vであることを特徵とする請求の範囲 7 記載の反強誘電性液晶素子の駆動方法。
PCT/JP1995/000697 1995-04-07 1995-04-07 反強誘電性液晶パネルおよびその駆動方法 WO2004099868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1995/000697 WO2004099868A1 (ja) 1995-04-07 1995-04-07 反強誘電性液晶パネルおよびその駆動方法
US08/750,360 US6008787A (en) 1995-04-07 1995-04-07 Antiferrolectric liquid crystal panel and method for driving same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000697 WO2004099868A1 (ja) 1995-04-07 1995-04-07 反強誘電性液晶パネルおよびその駆動方法

Publications (1)

Publication Number Publication Date
WO2004099868A1 true WO2004099868A1 (ja) 2004-11-18

Family

ID=14125858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000697 WO2004099868A1 (ja) 1995-04-07 1995-04-07 反強誘電性液晶パネルおよびその駆動方法

Country Status (2)

Country Link
US (1) US6008787A (ja)
WO (1) WO2004099868A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0919849A4 (en) 1997-06-20 2000-09-13 Citizen Watch Co Ltd ANTIFERROMAGNETIC LIQUID CRYSTAL DISPLAY AND METHOD FOR CONTROLLING THE SAME
TW428158B (en) * 1998-02-24 2001-04-01 Nippon Electric Co Method and device for driving liquid crystal display element
US6339416B1 (en) * 1998-03-10 2002-01-15 Citizen Watch Co., Ltd. Antiferroelectric liquid crystal display and method of driving
KR20000001145A (ko) * 1998-06-09 2000-01-15 손욱 반강유전성 액정표시장치의 구동방법
US6309469B2 (en) * 1999-03-15 2001-10-30 Shop Vac Corporation Debris access door
US7126569B2 (en) * 1999-03-23 2006-10-24 Minolta Co., Ltd. Liquid crystal display device
GB0001802D0 (en) * 2000-01-26 2000-03-22 Univ Madrid Politecnica Antiferroelectric liquid crystal devices
KR100329577B1 (ko) * 2000-06-09 2002-03-23 김순택 반강유전성 액정 표시 패널의 구동 방법
JP4284857B2 (ja) * 2000-11-06 2009-06-24 コニカミノルタホールディングス株式会社 液晶表示装置
KR100751311B1 (ko) * 2001-09-29 2007-08-22 삼성에스디아이 주식회사 반강유전성 액정 디스플레이 패널의 투과도를 균일하게하는 구동 방법
KR100692812B1 (ko) * 2005-09-06 2007-03-14 엘지전자 주식회사 플라즈마 표시장치 및 그 구동방법
KR100727300B1 (ko) * 2005-09-09 2007-06-12 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동 방법
JP4662494B2 (ja) * 2007-10-16 2011-03-30 東芝モバイルディスプレイ株式会社 液晶表示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695624A (ja) * 1992-09-11 1994-04-08 Citizen Watch Co Ltd 反強誘電性液晶パネルの駆動方法
JPH06202078A (ja) * 1992-12-28 1994-07-22 Citizen Watch Co Ltd 反強誘電性液晶ディスプレイ
JPH06214215A (ja) * 1993-01-14 1994-08-05 Citizen Watch Co Ltd 反強誘電性液晶ディスプレイの駆動方法
JPH0720830A (ja) * 1993-07-06 1995-01-24 Citizen Watch Co Ltd 反強誘電性液晶素子の駆動方法
JPH0728432A (ja) * 1993-07-09 1995-01-31 Citizen Watch Co Ltd 反強誘電性液晶素子の駆動方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078477A (en) * 1988-11-09 1992-01-07 Mitsubishi Gas Chemical Company, Inc. Ferroelectric liquid crystal cell
JP3183537B2 (ja) * 1990-09-06 2001-07-09 セイコーエプソン株式会社 液晶電気光学素子の駆動方法
KR960013313B1 (ko) * 1991-07-12 1996-10-02 가부시키가이샤 한도오따이 에네루기 겐큐쇼 전기광학 표시장치
JP2866518B2 (ja) * 1992-01-17 1999-03-08 シャープ株式会社 反強誘電性液晶素子の駆動方法
JPH05249435A (ja) * 1992-03-03 1993-09-28 Mitsubishi Gas Chem Co Inc 反強誘電性液晶素子
JPH05247026A (ja) * 1992-03-04 1993-09-24 Mitsubishi Gas Chem Co Inc ジオキサン系液晶物質
US5631752A (en) * 1992-12-24 1997-05-20 Casio Computer Co., Ltd. Antiferroelectric liquid crystal display element exhibiting a precursor tilt phenomenon
US5546208A (en) * 1993-02-19 1996-08-13 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device involving a mixture of liquid crystal, photo curable resins and reaction initiating material for forming resinous columns
US5594569A (en) * 1993-07-22 1997-01-14 Semiconductor Energy Laboratory Co., Ltd. Liquid-crystal electro-optical apparatus and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695624A (ja) * 1992-09-11 1994-04-08 Citizen Watch Co Ltd 反強誘電性液晶パネルの駆動方法
JPH06202078A (ja) * 1992-12-28 1994-07-22 Citizen Watch Co Ltd 反強誘電性液晶ディスプレイ
JPH06214215A (ja) * 1993-01-14 1994-08-05 Citizen Watch Co Ltd 反強誘電性液晶ディスプレイの駆動方法
JPH0720830A (ja) * 1993-07-06 1995-01-24 Citizen Watch Co Ltd 反強誘電性液晶素子の駆動方法
JPH0728432A (ja) * 1993-07-09 1995-01-31 Citizen Watch Co Ltd 反強誘電性液晶素子の駆動方法

Also Published As

Publication number Publication date
US6008787A (en) 1999-12-28

Similar Documents

Publication Publication Date Title
JPH04362990A (ja) 液晶電気光学素子の駆動方法
JP3603904B2 (ja) 反強誘電性液晶表示素子の駆動方法及び装置
JPS6152630A (ja) 液晶素子の駆動方法
JPH01134346A (ja) 強誘電性液晶表示装置及びその駆動方法並びに駆動波形発生方法
WO2004099868A1 (ja) 反強誘電性液晶パネルおよびその駆動方法
US6115021A (en) Method and apparatus for driving a liquid crystal panel using a ferroelectric liquid crystal material having a negative dielectric anisotropy
EP0542518A2 (en) Liquid crystal element and driving method thereof
WO1999046634A1 (fr) Afficheur a cristaux liquides anti-ferroelectriques et procede de commande
US6351256B1 (en) Addressing method and apparatus
KR19990008127A (ko) 액정 디스플레이 장치
US6329970B2 (en) Method of driving antiferroelectric liquid crystal display
JP3171713B2 (ja) 反強誘電性液晶ディスプレイ
JP3411336B2 (ja) 反強誘電性液晶素子
JP3302752B2 (ja) 反強誘電性液晶パネルの駆動方法
JP3441096B2 (ja) 反強誘電性液晶パネル
JPH0720830A (ja) 反強誘電性液晶素子の駆動方法
JP3258110B2 (ja) 反強誘電性液晶パネルの駆動方法
JP3171833B2 (ja) 反強誘電性液晶パネル
JP3149451B2 (ja) 液晶電気光学素子の駆動方法
KR100279684B1 (ko) 액정 디바이스 및 액정 디바이스를 어드레싱하는 방법
JP3247518B2 (ja) 反強誘電性液晶パネル
JP3247524B2 (ja) 反強誘電性液晶パネル
JP3093511B2 (ja) 表示装置
JP3317244B2 (ja) 液晶電気光学素子の駆動方法
JPH11231286A (ja) 反強誘電性液晶表示素子の駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08750360

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US