WO2004076063A1 - Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst - Google Patents

Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst Download PDF

Info

Publication number
WO2004076063A1
WO2004076063A1 PCT/JP2004/002202 JP2004002202W WO2004076063A1 WO 2004076063 A1 WO2004076063 A1 WO 2004076063A1 JP 2004002202 W JP2004002202 W JP 2004002202W WO 2004076063 A1 WO2004076063 A1 WO 2004076063A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
liquefied petroleum
petroleum gas
catalyst component
zeolite
Prior art date
Application number
PCT/JP2004/002202
Other languages
French (fr)
Japanese (ja)
Inventor
Kaoru Fujimoto
Kenji Asami
Sachio Asaoka
Xiaohong Li
Original Assignee
Japan Gas Synthesize, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gas Synthesize, Ltd. filed Critical Japan Gas Synthesize, Ltd.
Priority to JP2005502906A priority Critical patent/JPWO2004076063A1/en
Priority to US10/546,754 priority patent/US20060242904A1/en
Publication of WO2004076063A1 publication Critical patent/WO2004076063A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a catalyst for producing a liquefied petroleum gas whose main component is propane by reacting carbon monoxide and hydrogen, a method for producing the catalyst, and a method for producing a liquefied petroleum gas using the catalyst About.
  • Liquefied petroleum gas is obtained by compressing petroleum or natural gas hydrocarbons that exhibit a gaseous state at normal temperature and pressure, or cooling them at the same time to make them liquid.
  • the main component is propane or butane. is there. Can be stored and transported in liquid form
  • LPG is characterized by its excellent portability and, unlike natural gas, which requires a pipeline for supply, can be supplied to any place in a state filled with bombs. Therefore, LPG containing propane as a main component, that is, propane gas, is widely used as fuel for home and business use. At present, even in Japan, about 25 million households (more than 50% of all households) are supplied. Propane gas is also used as industrial fuel and automotive fuel.
  • LPG has been 1) recovered from wet natural gas, 2) recovered from crude oil through the steaming (vapor pressure adjustment) process, and 3) separated and extracted from those produced in the oil refining process. It is produced by such methods.
  • LPG ⁇ propane gas, which is used as a fuel for home and business use, is expected to be demanded in the future, and is very useful if a new production method that can be implemented industrially can be established.
  • An object of the present invention is to provide a catalyst capable of producing liquefied petroleum gas whose main component is propane by reacting carbon monoxide and hydrogen, a method for producing the catalyst, and liquefied petroleum using the catalyst. It is to provide a method for producing gas.
  • the present invention provides a catalyst for producing liquefied petroleum gas, which is a catalyst used for producing liquefied petroleum gas, comprising a catalyst component for synthesis of methanol and a catalyst component for zeolite.
  • the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is 0.5-3 [methanol synthesis catalyst component / zeolite catalyst component].
  • the Zeorai preparative catalyst component S i 0 2 / A 1 2 0 3 molar ratio of 1 0-5 above catalyst for producing a liquefied petroleum gas is a Zeorai bets of 0 is provided .
  • the liquefied petroleum gas production method according to the above, wherein the zeolite catalyst component is a medium pore zeolite or a large pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse. A catalyst is provided.
  • the method for producing a liquefied petroleum gas production catalyst wherein a methanol synthesis catalyst component and a zeolite catalyst component are separately prepared and mixed.
  • the present invention is characterized in that carbon monoxide and hydrogen are reacted in the presence of the above-mentioned catalyst for producing liquefied petroleum gas to produce liquefied petroleum gas whose main component is propane.
  • a method for producing liquefied petroleum gas is provided.
  • a liquefied petroleum gas production process for producing a liquefied petroleum gas whose main component is propane by flowing a synthetic gas through a catalyst layer containing the above-mentioned liquefied petroleum gas production catalyst.
  • a method for producing a liquefied petroleum gas is provided.
  • An oil and gas production method is provided.
  • carbon monoxide and hydrogen are reacted in the presence of the catalyst of the present invention, the following reaction occurs.
  • LPG whose main component is propane can be produced.
  • methanol is synthesized from carbon monoxide and hydrogen on a methanol synthesis catalyst component.
  • the synthesized methanol is converted into a lower olefin hydrocarbon whose main component is propylene at the active site in the pores of the zeolite catalyst component.
  • carbene H0C :
  • carbene H0C :
  • lower olefins are generated by polymerization of the carbene.
  • the generated lower olefins escape from the pores of the zeolite catalyst component and are rapidly hydrogenated on the methanol synthesis catalyst component to become LPG whose main component is propane.
  • the produced methanol quickly becomes a raw material for the next reaction (conversion of methanol to lower olefins), so that the methanol synthesis reaction is advantageous for the production system.
  • the diffusion of the reaction molecules is limited, and a low concentration active sites, preferably S i 0 2 / A l 2 0 Since a so-called high silica zeolite having a molar ratio of 10 to 50 is used, the polymerization reaction is limited to a low degree of polymerization, and lower olefins whose main component is propylene are produced.
  • the lower olefins formed have a relatively large zeolite catalyst component, and the pores capable of diffusing the reactive molecules can easily escape from the three-dimensional pores. By being rapidly hydrogenated on the synthesis catalyst component, it becomes inert to further polymerization reactions and is stabilized. Simple day
  • FIG. 1 is a process flow diagram showing a main configuration of an example of an LPG manufacturing apparatus suitable for carrying out the LPG manufacturing method of the present invention.
  • the catalyst of the present invention contains a methyl synthesis catalyst component and a zeolite catalyst component.
  • the methanol synthesis catalyst component refers to a component that exhibits a catalytic action in the reaction of CO + 2 H 2 ⁇ CH 3 OH.
  • the zeolite catalyst component refers to a zeolite having a catalytic action in the condensation reaction of methanol to hydrocarbon and / or the condensation reaction of dimethyl ether to hydrocarbon.
  • the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is preferably 0.5 or more [methanol synthesis catalyst component / zeolite catalyst component], and 0.8 or more [methanol synthesis catalyst component / zeolite catalyst].
  • Catalyst component Further, the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is preferably 3 or less [methanol synthesis catalyst component Z zeolite catalyst component], and 2 or less [methanol synthesis catalyst component Z zeolite. G catalyst component].
  • the methanol synthesis catalyst component has a function as a methanol synthesis catalyst, and the zeolite catalyst component is a solid acid zeolite catalyst whose acidity is adjusted to the condensation reaction of methanol and / or dimethyl ether to a hydrocarbon. Has functions. Therefore, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is reflected in the relative ratio of the catalyst synthesis function of the present invention to the function of producing hydrocarbons from methanol.
  • carbon monoxide and hydrogen are sufficiently converted into methanol by a methanol synthesis catalyst component.
  • methanol is sufficiently converted to propylene by the zeolite catalyst component. It must be converted to a certain olefin and converted to liquefied petroleum gas whose main component is propane by the methanol synthesis catalyst component.
  • the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component By setting the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component to 0.5 or more [methanol synthesis catalyst component / zeolite catalyst component], higher conversion of carbon monoxide and hydrogen can be achieved. Can be converted to methanol.
  • the generated methanol can be more selectively converted to propane. It can be converted to liquefied petroleum gas as the main component.
  • the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is 3 or less [methanol synthesis catalyst component Z zeolite catalyst component], more preferably 2 or less [methanol synthesis catalyst component Z zeolite catalyst component]. ]
  • the produced methanol can be converted into liquefied petroleum gas whose main component is propane at a higher conversion rate.
  • methanol synthesis catalyst component known methanol synthesis catalysts, specifically, Cu—Zn system, Cu—Zn—Cr system, Cu—Zn—A1 system, Cu—Zn—Ag system, Cu—Zn—Mn— Cu-Zn system, such as V system, Cu-Zn-Mn-Cr system, Cu-Zn-Mn-Al-Cr system, and the one with the third component added, or ⁇ -! ! Type, Mo type, Ni-carbon type, and noble metal type such as Pd. Also, a commercially available methanol synthesis catalyst can be used.
  • the zeolite catalyst component is preferably a medium-pore zeolite or a large-pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse. These include, for example, ZSM-5, ⁇ -22 ⁇ , Peter, ⁇ types.
  • small pore zeolite such as SA-0-34 or the like having high selectivity for the condensation reaction of methanol and / or dimethyl ether to lower olefin hydrocarbons or pores such as mordenite are used.
  • medium pore zeolite refers to a zeolite having a pore diameter of 0.44 to 0.65 nm formed mainly by a 10-membered ring
  • large pore zeolite has a pore diameter of Is a zeolite of 0.66-0.76 nm formed mainly by a 12-membered ring.
  • the pore diameter of the zeolite catalyst component is more preferably 0.5 nm or more from the viewpoint of the selectivity of the C3 component in the gaseous product.
  • the skeletal pore diameter of the zeolite catalyst component is more preferably 0.77 nm or less from the viewpoint of suppressing the production of liquid products such as aromatic compounds such as benzene and gasoline components such as C5 component.
  • Zeorai bets catalyst component so-called high Shirikazeorai DOO, specifically S i 0 2 ZA 1 2 ⁇ 3 molar ratio Zeorai bets 1 0-5 0 preferred.
  • S I_ ⁇ 2 / A 1 2 0 3 molar ratio is used high Shirikazeorai bets 1 0-5 0, Orefin to generated mainly of more selectively propylene methanol, further a main component propane Liquid petroleum gas.
  • the Zeorai bets catalyst component in S i 0 2 / A l 2 0 3 molar ratio of 1 0-5 0, or pores Zeorai bets in the spread of pores capable of spreading anti Obunko is three-dimensional Large pore zeolites are particularly preferred. As such, for example, a solid acid zeolite such as USY ⁇ High Silica Type All Night is mentioned.
  • zeolite catalyst component a solid acid zeolite as described above whose acidity is adjusted by ion exchange or the like is used.
  • a method for producing the catalyst of the present invention it is preferable to separately prepare a methanol synthesis catalyst component and a zeolite catalyst component, and to mix them.
  • a methanol synthesis catalyst component and a zeolite catalyst component By separately preparing the methanol synthesis catalyst component and the zeolite catalyst component, it is easy to optimally design each composition, structure, and physical properties for each function.
  • methyl synthesis catalysts require basicity
  • zeolite catalysts require acidity. Therefore, if both catalyst components are prepared simultaneously, it becomes difficult to optimize each function.
  • the methanol synthesis catalyst component can be prepared by a known method, and a commercially available product can also be used. Some methanol synthesis catalysts require a reduction treatment to activate them before use. In the present invention, it is not always necessary to activate the methanol synthesis catalyst component by a reduction treatment in advance, and the methanol synthesis catalyst component and the zeolite catalyst component are mixed and molded to produce the catalyst of the present invention. Prior to the start of the reaction, a reduction treatment can be performed to activate the methanol synthesis catalyst component.
  • the zeolite catalyst component can be prepared by a known method, and a commercially available product can also be used. Before mixing with the methanol synthesis catalyst component, the acid properties of the zeolite catalyst component may be adjusted in advance by a method such as metal ion exchange, if necessary.
  • the catalyst of the present invention is produced by uniformly mixing a methanol synthesis catalyst component and a zeolite catalyst component and then molding.
  • the method of mixing and molding the two catalyst components is not particularly limited, but a dry method is preferred.
  • compound transfer between both catalyst components such as transfer of basic components in methanol synthesis catalyst components to acid sites in zeolite catalyst components, and neutralization This may change the physical properties and the like optimized for the respective functions of both catalyst components.
  • the catalyst of the present invention may contain other additive components as needed as long as the desired effect is not impaired.
  • carbon monoxide is reacted with hydrogen using the catalyst of the present invention as described above to produce a liquefied petroleum gas, preferably a liquefied petroleum gas whose main component is propane. explain about.
  • the reaction temperature is preferably at least 270 ° C, more preferably at least 300 ° C, since the methanol synthesis catalyst component and the zeolite catalyst component exhibit sufficiently higher activities, respectively. .
  • the reaction temperature is preferably 400 ° C or lower, more preferably 380 ° C or lower, in view of the limit temperature for use of the catalyst, the regulation of equilibrium, and the ease of removing and recovering the reaction heat. .
  • the reaction pressure is preferably 1 MPa or more, more preferably 2 MPa or more, since the methanol synthesis catalyst component exhibits a sufficiently high activity. Further, the reaction pressure is preferably 10 MPa or less, more preferably 5 MPa or less, from the viewpoint of economy.
  • Gas space velocity in terms of economic efficiency, preferably 5 0 0 hr one 1 or more, 2 0 0 0 one 1 or more is more preferable.
  • the gas hourly space velocity is preferably 100 000 hr- 1 or less, since the methanol synthesis catalyst component and the zeolite catalyst component each provide a contact time showing a sufficiently higher conversion. 0 0 hr—less than 1 is more preferable.
  • the concentration of carbon monoxide in the gas sent to the reactor should be at least 20 mol% from the viewpoint of securing the pressure (partial pressure) of carbon monoxide required for the reaction and improving the unit consumption of raw materials. Is more preferable, and 25 mol% or more is more preferable.
  • the concentration of carbon monoxide in the gas fed into the reactor is preferably 40 mol% or less, more preferably 35 mol% or less, from the viewpoint that the conversion of carbon monoxide becomes sufficiently high. .
  • the concentration of hydrogen in the gas fed into the reactor is preferably at least 1.5 mol, more preferably at least 1.8 mol, per mol of carbon monoxide, since carbon monoxide reacts more sufficiently. Is more preferred. Further, the concentration of hydrogen in the gas fed into the reactor is preferably 3 mol or less, more preferably 2.3 mol or less, per 1 mol of carbon monoxide from the viewpoint of economy.
  • the gas fed into the reactor may be a mixture of carbon monoxide and hydrogen as raw material gases and carbon dioxide.
  • the gas fed into the reactor may contain steam.
  • an inert gas or the like can be contained.
  • the gas sent to the reactor can be split and sent to the reactor, thereby controlling the reaction temperature.
  • the reaction can be carried out in a fixed bed, a fluidized bed, a moving bed or the like, but it is preferable to select from both the control of the reaction temperature and the method for regenerating the catalyst.
  • fixed beds include quench-type reactors such as internal multi-stage quench systems, multi-tube reactors, multi-stage reactors including multiple heat exchangers, multi-stage cooling radial flow systems, and double-tube heat exchange.
  • Other reactors such as a system, a cooling coil built-in system and a mixed flow system can be used.
  • the catalyst of the present invention can be used after being diluted with silica, alumina, or the like, or an inert and stable heat conductor for the purpose of controlling the temperature. Further, the catalyst of the present invention can be used by applying it to the surface of a heat exchanger for temperature control.
  • a synthesis gas can be used as a source gas.
  • the synthesis gas can be produced by a known method, for example, by reacting a hydrocarbon gas such as natural gas (methane) with water vapor.
  • natural gas is desulfurized by passing it through activated carbon, and then mixed with steam or steam and carbon dioxide, and placed in a reaction tube filled with a nickel-based catalyst.
  • the synthesis gas is produced by passing at 0 ° C and 1.5 to 2 MPa.
  • an Rh-based catalyst or a Ru-based catalyst can be used in addition to the nickel-based catalyst.
  • Synthesis gas can be produced by reacting a hydrocarbon gas such as natural gas with carbon dioxide, or by reacting a hydrocarbon gas such as natural gas with oxygen. After producing synthesis gas by water vapor reforming of natural gas, it is also possible to adjust the composition of the synthesis gas by shift reaction (CO + H 2 0 ⁇ C 0 2 + H 2) as a raw material gas.
  • a water gas produced from coal coke can be used as a raw material gas.
  • FIG. 1 shows an example of an LPG manufacturing apparatus suitable for carrying out the LPG manufacturing method of the present invention.
  • natural gas which is a reaction raw material
  • steam is supplied to the line 3 for performing steam reforming.
  • a reforming catalyst layer 1a containing a reforming catalyst is provided in the reformer 1.
  • the reformer 1 includes a heating means (not shown) for supplying heat required for reforming.
  • methane is reformed in the presence of a reforming catalyst, and a synthesis gas containing hydrogen and carbon monoxide is obtained.
  • the synthesis gas thus obtained is supplied to the reactor 2 via the line 4.
  • the reactor 2 is provided with a catalyst layer 2a containing the catalyst of the present invention.
  • a hydrocarbon gas whose main component is propane is synthesized from the synthesis gas in the presence of the catalyst of the present invention.
  • the synthesized hydrocarbon gas is pressurized and cooled after removing water and the like as necessary, and LPG as a product is obtained from the line 5.
  • LPG may remove hydrogen or the like by gas-liquid separation or the like.
  • the LPG manufacturing apparatus is provided with a booster, a heat exchanger, a valve, an instrumentation control device, and the like as necessary.
  • a gas such as carbon dioxide is added to the synthesis gas obtained in the reformer 1 It can also be supplied to the reactor 2. Further, hydrogen or carbon monoxide may be further added to the synthesis gas obtained in the reformer 1, or the composition may be adjusted by a shift reaction and supplied to the reactor 2.
  • the content of LPG whose main component is propane specifically, the content of propane is at least 38 mol%, more preferably at least 40 mol%, particularly at least 55 mol% (100 mol%).
  • LPG (including mol%) can be produced.
  • the LPG produced according to the present invention has a composition suitable for propane gas, which is widely used as a fuel for home and business use.
  • a methanol synthesis catalyst component As a methanol synthesis catalyst component, a commercially available Cu—Zn-based methanol synthesis catalyst (manufactured by Nippon Zudohemie Co., Ltd.) that was mechanically powdered was used.
  • This catalyst synthesis component was uniformly mixed with the same weight of zeolite catalyst component, and the mixture was pressed and sized, and then reduced in a hydrogen stream at 300 ° C for 3 hours to obtain a catalyst.
  • the prepared catalyst was filled in a reaction tube, and a raw material gas having a composition of 66.7 mol% of hydrogen and 33.3 mol% of carbon monoxide was passed.
  • the reaction conditions reaction temperature 325 ° C, reaction pressure 2. a 1 MP a ⁇ gas hourly space velocity 3000 hr 1.
  • Analysis of the product by gas chromatography showed that the conversion of carbon monoxide to hydrocarbons was 38%.
  • 76% of the generated hydrocarbon gas is propane and The proportion of propane and butane was 55% for propane and 45% for butane on a carbon basis.
  • Zeorai DOO catalyst component As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of 37.1 proton-type base Isseki Zeorai Doo (pore diameter: minor 0.64 abdomen, the long diameter 0. 76 nm) powder A catalyst was obtained in the same manner as in Example 1 except that the catalyst was used.
  • Zeorai DOO catalyst component As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of 14.5 proton type ZSM 5 Zeorai bets: a (pore size minor 0. 53 nm, major axis 0. 5 6 nm) powder A catalyst was obtained in the same manner as in Example 1 except that the catalyst was used. (Manufacture of LPG)
  • Example 2 Using the prepared catalyst, the reaction was carried out in the same manner as in Example 1 except that 0.08 was added in a molar ratio of carbon dioxide to the raw material gas.
  • the conversion of carbon monoxide to hydrocarbon was 40%. %Met.
  • Propane and butane accounted for 56% of the generated hydrocarbon gas on a carbon basis, and the breakdown of propane and butane was 56% for propane and 44% for butane on a carbon basis.
  • Zeorai DOO catalyst component As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of proton type Z SM- 5 Zeorai bets 54.5 (pore diameter: minor 0.5311111, diameter 0. 5 6 nm) powder Except for using, a catalyst was obtained in the same manner as in Example 1.
  • liquefied petroleum gas whose main component is propane can be produced by reacting carbon monoxide and hydrogen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A catalyst for the production of a liquefied petroleum gas which comprises a methanol synthesis catalyst ingredient and a zeolite catalyst ingredient. Carbon monoxide is reacted with hydrogen in the presence of the catalyst to produce a liquefied petroleum gas comprising propane as the main component.

Description

明細書  Specification
液化石油ガス製造用触媒、 その製造方法、 および、 この触媒を用いた液化石油ガスの製造方法 技術分野  Liquefied petroleum gas production catalyst, method for producing the same, and liquefied petroleum gas production method using the catalyst
本発明は、 一酸化炭素と水素とを反応させて主成分がプロパンである液化石油 ガスを製造するための触媒、 その触媒の製造方法、 および、 その触媒を用いた液 化石油ガスの製造方法に関する。  The present invention relates to a catalyst for producing a liquefied petroleum gas whose main component is propane by reacting carbon monoxide and hydrogen, a method for producing the catalyst, and a method for producing a liquefied petroleum gas using the catalyst About.
液化石油ガス (LPG) は、 常温常圧下ではガス状を呈する石油系もしくは天 然ガス系炭化水素を圧縮し、 あるいは同時に冷却して液状にしたものをいい、 そ の主成分はプロパンまたはブタンである。 液体の状態で貯蔵および輸送が可能なLiquefied petroleum gas (LPG) is obtained by compressing petroleum or natural gas hydrocarbons that exhibit a gaseous state at normal temperature and pressure, or cooling them at the same time to make them liquid. The main component is propane or butane. is there. Can be stored and transported in liquid form
L P Gは可搬性に優れ、 供給にパイプラインを必要とする天然ガスとは違い、 ボ ンベに充填した状態でどのような場所にでも供給することができるという特徴が ある。 そのため、 プロパンを主成分とする LP G、 すなわちプロパンガスが、 家 庭用 ·業務用の燃料として広く用いられている。 現在、 日本国内においても、 プ 口パンガスは約 2, 500万世帯 (全世帯の 50%以上) に供給されている。 ま た、 プロパンガスは工業用燃料、 自動車用燃料としても使用されている。 LPG is characterized by its excellent portability and, unlike natural gas, which requires a pipeline for supply, can be supplied to any place in a state filled with bombs. Therefore, LPG containing propane as a main component, that is, propane gas, is widely used as fuel for home and business use. At present, even in Japan, about 25 million households (more than 50% of all households) are supplied. Propane gas is also used as industrial fuel and automotive fuel.
従来、 LPGは、 1)湿性天然ガスから回収する方法、 2)原油のス夕ビライ ズ (蒸気圧調整) 工程から回収する方法、 3)石油精製工程などで生成されるも のを分離 ·抽出する方法などにより生産されている。  Conventionally, LPG has been 1) recovered from wet natural gas, 2) recovered from crude oil through the steaming (vapor pressure adjustment) process, and 3) separated and extracted from those produced in the oil refining process. It is produced by such methods.
LPGヽ 特に家庭用 ·業務用の燃料として用いられるプロパンガスは将来的に も需要が見込め、 工業的に実施可能な、 新規な製造方法を確立できれば非常に有 用であ^。  LPG ヽ In particular, propane gas, which is used as a fuel for home and business use, is expected to be demanded in the future, and is very useful if a new production method that can be implemented industrially can be established.
L P Gの製造方法として、 "Select ive S nt es is of LPG f rom Synthes is Gas" , aoru Fuj imot o e t a 1. , Bul l. C h e m. S o c . J p n. , LA, p. 3059-3060 ( 1985) には、 メ夕ノ一ル合成用触媒である 4wt%Pd/S i02、 Cu— Zn— A1混合酸化物 [Cu: Zn: Al = 4 0 : 23 : 37 (原子比) ] または Cu系低圧メタノール合成用触媒 (商品名: BASF S 3-85) と、 S i 02/Α 1203二 7. 6の高シリカ Y型ゼオラ イ トとから成るハイブリッド触媒を用い、 合成ガスからメタノール、 ジメチルェ —テルを経由して C 2〜C 4のパラフィンを選択率 69〜85%で製造する方法 が開示されている。 しかしながら、 この方法では、 プロパン (C3) およびプ夕 ン (C4) の選択率は 63〜74%程度であり、 生成物は LP G製品として適し たものとは言い難い。 As a method for producing LPG, "Selective Sentes is of LPG rom Synthes is Gas", aoru Fuj imot oeta 1., Bull. Chem. Soc. Jpn., LA, p. 3059-3060 (1985) shows that 4 wt% Pd / Si0 2. Cu-Zn-A1 mixed oxide [Cu: Zn: Al = 40:23:37 (atomic ratio)] or Cu-based low-pressure methanol synthesis catalyst (trade name: BASF S3-85) and Si Selectivity of C 2 to C 4 paraffins from synthesis gas via methanol and dimethyl ether using a hybrid catalyst consisting of 0 2 / Α 1 2 0 3 2 7.6 high silica Y-type zeolite A method of manufacturing at 69-85% is disclosed. However, with this method, the selectivity for propane (C3) and pulp (C4) is around 63-74%, and the product is not suitable for LPG products.
また、 上記の " S e 1 e c t i V e S nt he s i s of LPG f r om Synthe s i s Gas" , Bul l. C h e m. S o c. Jpn. , ^ , p. 3059-3060 ( 1985) に記載の方法により得ら れる生成物の主成分はブタンである。 家庭用 '業務用の燃料として用いられる L PGは、 前述の通り、 プロパンガスである。 プロパンガスは、 ブタンガスと比べ て、 低温下でも安定した高出力で燃焼を続けることができる利点がある。 家庭用 •業務用の燃料として、 また工業用燃料、 自動車用燃料としても広く用いられる 易液化性燃料ガスとしては、 冬季あるいは寒冷地においても十分なより高い蒸気 圧を持ち、 かつ、 燃焼時においてより高カロリーであるプロパンガスの方がプ夕 ンガスよりも優れている。 発明の闆示  Also described in the above-mentioned "Se1ectiVeSnt hesis of LPG from Synthesis Gas", Bull. Chem. Soc. Jpn., ^, P. 3059-3060 (1985). The main component of the product obtained by the above method is butane. LPG used as a fuel for domestic and commercial use is propane gas, as described above. Compared to butane gas, propane gas has the advantage that combustion can be continued at a stable and high output even at low temperatures. Household • Easy-to-liquefy fuel gas, which is widely used as a commercial fuel, industrial fuel, and automotive fuel, has a sufficiently high vapor pressure even in winter or cold regions and has a high Propane gas, which is higher in calories, is superior to pu gas. DISCLOSURE OF THE INVENTION
本発明の目的は、 一酸化炭素と水素とを反応させて主成分がプロパンである液 化石油ガスを製造することができる触媒、 その触媒の製造方法、 および、 その触 媒を用いた液化石油ガスの製造方法を提供することである。 本発明によれば、 一酸化炭素と水素とを反応させてプロパンを主成分とする液 化石油ガスを製造する際に用いられる触媒であって、 メ夕ノ一ル合成触媒成分と ゼォライ ト触媒成分とを含有することを特徴とする液化石油ガス製造用触媒が提 供される。 An object of the present invention is to provide a catalyst capable of producing liquefied petroleum gas whose main component is propane by reacting carbon monoxide and hydrogen, a method for producing the catalyst, and liquefied petroleum using the catalyst. It is to provide a method for producing gas. According to the present invention, a liquid containing propane as a main component by reacting carbon monoxide and hydrogen. The present invention provides a catalyst for producing liquefied petroleum gas, which is a catalyst used for producing liquefied petroleum gas, comprising a catalyst component for synthesis of methanol and a catalyst component for zeolite.
また、 本発明によれば、 該ゼ才ライ ト触媒成分に対する該メ夕ノール合成触媒 成分の含有比率 (質量基準) が、 0 . 5 - 3 [メタノール合成触媒成分/ゼオラ ィ ト触媒成分] である上記の液化石油ガス製造用触媒が提供される。  Further, according to the present invention, the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is 0.5-3 [methanol synthesis catalyst component / zeolite catalyst component]. Certain of the foregoing liquefied petroleum gas production catalysts are provided.
また、 本発明によれば、 該ゼォライ ト触媒成分が、 S i 0 2/A 1 2 0 3モル比 が 1 0〜5 0のゼォライ トである上記の液化石油ガス製造用触媒が提供される。 また、 本発明によれば、 該ゼォライ ト触媒成分が、 反応分子の拡散が可能な細 孔の広がりが 3次元である中細孔ゼォライ トまたは大細孔ゼォライ トである上記 の液化石油ガス製造用触媒が提供される。 Further, according to the present invention, the Zeorai preparative catalyst component, S i 0 2 / A 1 2 0 3 molar ratio of 1 0-5 above catalyst for producing a liquefied petroleum gas is a Zeorai bets of 0 is provided . Further, according to the present invention, the liquefied petroleum gas production method according to the above, wherein the zeolite catalyst component is a medium pore zeolite or a large pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse. A catalyst is provided.
また、 本発明によれば、 メタノール合成触媒成分とゼォライ ト触媒成分とを別 途に調製し、 これらを混合する上記の液化石油ガス製造用触媒の製造方法が提供 される。  Further, according to the present invention, there is provided the method for producing a liquefied petroleum gas production catalyst, wherein a methanol synthesis catalyst component and a zeolite catalyst component are separately prepared and mixed.
また、 本発明によれば、 上記の液化石油ガス製造用触媒の存在下で一酸化炭素 と水素とを反応させ、 主成分がプロパンである液ィ匕石油ガスを製造することを特 徴とする液化石油ガスの製造方法が提供される。  Further, according to the present invention, it is characterized in that carbon monoxide and hydrogen are reacted in the presence of the above-mentioned catalyst for producing liquefied petroleum gas to produce liquefied petroleum gas whose main component is propane. A method for producing liquefied petroleum gas is provided.
また、 本発明によれば、 上記の液化石油ガス製造用触媒を含有する触媒層に合 成ガスを流通させて、 主成分がプロパンである液化石油ガスを製造する液化石油 ガス製造工程を有することを特徴とする液化石油ガスの製造方法が提供される。 また、 本発明によれば、 (1 ) 炭化水素ガスと水蒸気とを反応させて合成ガス を製造する合成ガス製造工程と、  Further, according to the present invention, there is provided a liquefied petroleum gas production process for producing a liquefied petroleum gas whose main component is propane by flowing a synthetic gas through a catalyst layer containing the above-mentioned liquefied petroleum gas production catalyst. A method for producing a liquefied petroleum gas is provided. Further, according to the present invention, (1) a synthesis gas production step of producing a synthesis gas by reacting a hydrocarbon gas with water vapor;
( 2 ) 上記の液化石油ガス製造用触媒を含有する触媒層に合成ガスを流通させ て、 主成分がプロパンである液化石油ガスを製造する液化石油ガス製造工程と を有することを特徴とする液化石油ガスの製造方法が提供される。 本発明の触媒の存在下で一酸化炭素と水素とを反応させると、 次のような反応 が起こり、 主成分がプロパンである L P Gを製造することができる。 まず、 メタ ノール合成触媒成分上で一酸化炭素と水素とからメタノールが合成される。 次い で、 合成されたメ夕ノールはゼォライト触媒成分の細孔内の活性点にて主成分が プロピレンである低級ォレフィン炭化水素に転換される。 この反応では、 メ夕ノ ールの脱水によってカルベン ( H o C : ) が生成し、 このカルベンの重合によつ て低級ォレフインが生成すると考えられる。 そして、 生成した低級ォレフィンは ゼォライ ト触媒成分の細孔内から抜け出し、 メ夕ノール合成触媒成分上で速やか に水素化されて主成分がプロパンである L P Gとなる。 (2) A liquefied petroleum gas production step of producing a liquefied petroleum gas whose main component is propane by flowing a synthesis gas through a catalyst layer containing the liquefied petroleum gas production catalyst. An oil and gas production method is provided. When carbon monoxide and hydrogen are reacted in the presence of the catalyst of the present invention, the following reaction occurs. Then, LPG whose main component is propane can be produced. First, methanol is synthesized from carbon monoxide and hydrogen on a methanol synthesis catalyst component. Next, the synthesized methanol is converted into a lower olefin hydrocarbon whose main component is propylene at the active site in the pores of the zeolite catalyst component. In this reaction, carbene (H0C :) is generated by dehydration of methanol, and it is considered that lower olefins are generated by polymerization of the carbene. Then, the generated lower olefins escape from the pores of the zeolite catalyst component and are rapidly hydrogenated on the methanol synthesis catalyst component to become LPG whose main component is propane.
本発明の触媒の存在下では、 生成したメ夕ノールは速やかに次の反応 (メタノ —ルから低級ォレフィンへの転換反応) の原料となるため、 メ夕ノール合成反応 は生成系に有利である。 また、 メタノールの転換反応においては、 希薄メタノ一 ル原料系が成り立つとともに、 触媒として、 反応分子の拡散が制限され、 かつ、 低濃度活性点である、 好ましくは S i 0 2/A l 2 03モル比が 1 0 ~ 5 0の値を 有する、 いわゆる高シリカゼォライ トを用いるため、 重合反応としては低い重合 度に止まり、 主成分がプロピレンである低級ォレフインが生成する。 その生成し た低級ォレフィンは、 ゼォライ ト触媒成分の比較的大きく、 反応分子の拡散が可 能な細孔の広がりが 3次元である細孔内から容易に抜け出すことができ、 メ夕ノ ール合成触媒成分上で速やかに水素化されることによって、 さらなる重合反応に 不活性となり、 安定化する。 闵面の簡 な ,日 In the presence of the catalyst of the present invention, the produced methanol quickly becomes a raw material for the next reaction (conversion of methanol to lower olefins), so that the methanol synthesis reaction is advantageous for the production system. . In the conversion reaction of methanol with dilute methanol one Le stock system holds, as a catalyst, the diffusion of the reaction molecules is limited, and a low concentration active sites, preferably S i 0 2 / A l 2 0 Since a so-called high silica zeolite having a molar ratio of 10 to 50 is used, the polymerization reaction is limited to a low degree of polymerization, and lower olefins whose main component is propylene are produced. The lower olefins formed have a relatively large zeolite catalyst component, and the pores capable of diffusing the reactive molecules can easily escape from the three-dimensional pores. By being rapidly hydrogenated on the synthesis catalyst component, it becomes inert to further polymerization reactions and is stabilized. Simple day
図 1は、 本発明の L P Gの製造方法を実施するのに好適な L P G製造装置の一 例について、 主要な構成を示すプロセスフロー図である。  FIG. 1 is a process flow diagram showing a main configuration of an example of an LPG manufacturing apparatus suitable for carrying out the LPG manufacturing method of the present invention.
主要な符号の説明  Explanation of major signs
1 改質器  1 Reformer
l a 改質触媒層  l a Reforming catalyst layer
2 反応器 2 a 触媒層 2 reactor 2a catalyst layer
3、 4、 5 ライン 3, 4, 5 lines
^明》卖施する めの暴 ϋの形熊 ^ Ming}
本発明の触媒は、 メ夕ノ一ル合成触媒成分とゼォライ ト触媒成分とを含有する。 ここで、 メ夕ノール合成触媒成分とは、 C O + 2 H 2→C H 3 O Hの反応におい て触媒作用を示すものを指す。 また、 ゼォライ ト触媒成分とは、 メタノールの炭 化水素への縮合反応および/またはジメチルエーテルの炭化水素への縮合反応に おいて触媒作用を示すゼォライ トを指す。 The catalyst of the present invention contains a methyl synthesis catalyst component and a zeolite catalyst component. Here, the methanol synthesis catalyst component refers to a component that exhibits a catalytic action in the reaction of CO + 2 H 2 → CH 3 OH. The zeolite catalyst component refers to a zeolite having a catalytic action in the condensation reaction of methanol to hydrocarbon and / or the condensation reaction of dimethyl ether to hydrocarbon.
ゼォライ ト触媒成分に対するメタノール合成触媒成分の含有比率 (質量基準) は、 0 . 5以上 [メタノール合成触媒成分/ゼォライ ト触媒成分] であることが 好ましく、 0 . 8以上 [メタノール合成触媒成分/ゼォライ ト触媒成分] である ことがより好ましい。 また、 ゼォライ ト触媒成分に対するメタノール合成触媒成 分の含有比率 (質量基準) は、 3以下 [メタノール合成触媒成分 Zゼォライ ト触 媒成分] であることが好ましく、 2以下 [メタノール合成触媒成分 Zゼォライ ト 触媒成分] であることがより好ましい。 ゼォライ ト触媒成分に対するメタノール 合成触媒成分の含有比率を上記の範囲にすることにより、 より高選択率、 髙収率 でプロパンを製造することができる。  The content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is preferably 0.5 or more [methanol synthesis catalyst component / zeolite catalyst component], and 0.8 or more [methanol synthesis catalyst component / zeolite catalyst]. Catalyst component]. Further, the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is preferably 3 or less [methanol synthesis catalyst component Z zeolite catalyst component], and 2 or less [methanol synthesis catalyst component Z zeolite. G catalyst component]. By setting the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component within the above range, propane can be produced with higher selectivity and higher yield.
メタノール合成触媒成分はメタノール合成触媒としての機能を有し、 また、 ゼ ォライ ト触媒成分はメタノールおよび/またはジメチルエーテルの炭化水素への 縮合反応に対して酸性が調整された固体酸ゼォライ ト触媒としての機能を有する。 そのため、 ゼォライ ト触媒成分に対するメタノール合成触媒成分の含有比率は、 本発明の触媒の持つメ夕ノール合成機能とメタノールからの炭化水素生成機能と の相対比に反映される。 本発明において一酸化炭素と水素とを反応させて主成分 がプロパンである液化石油ガスを製造するにあたり、 一酸化炭素と水素とをメタ ノ一ル合成触媒成分によつて十分にメ夕ノールに転化しなければならず、 かつ、 生成したメタノールをゼオライ ト触媒成分によって十分に主成分がプロピレンで あるォレフィンに転化し、 それをメタノール合成触媒成分によって主成分がプロ パンである液化石油ガスに転化しなければならない。 The methanol synthesis catalyst component has a function as a methanol synthesis catalyst, and the zeolite catalyst component is a solid acid zeolite catalyst whose acidity is adjusted to the condensation reaction of methanol and / or dimethyl ether to a hydrocarbon. Has functions. Therefore, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is reflected in the relative ratio of the catalyst synthesis function of the present invention to the function of producing hydrocarbons from methanol. In producing liquefied petroleum gas whose main component is propane by reacting carbon monoxide and hydrogen in the present invention, carbon monoxide and hydrogen are sufficiently converted into methanol by a methanol synthesis catalyst component. Must be converted, and the generated methanol is sufficiently converted to propylene by the zeolite catalyst component. It must be converted to a certain olefin and converted to liquefied petroleum gas whose main component is propane by the methanol synthesis catalyst component.
ゼォライ ト触媒成分に対するメタノール合成触媒成分の含有比率 (質量基準) を 0. 5以上 [メタノール合成触媒成分/ゼォライ ト触媒成分] にすることによ り、 一酸化炭素と水素とをより高転化率でメ夕ノールに転化させることができる。 また、 ゼォライ ト触媒成分に対するメタノール合成触媒成分の含有比率 (質量基 準) を 0. 8以上 [メタノール合成触媒成分 Zゼォライ ト触媒成分] にすること により、 生成したメタノールをより選択的にプロパンを主成分とする液化石油ガ スに転化させることができる。  By setting the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component to 0.5 or more [methanol synthesis catalyst component / zeolite catalyst component], higher conversion of carbon monoxide and hydrogen can be achieved. Can be converted to methanol. In addition, by setting the content ratio (mass basis) of the methanol synthesis catalyst component to the zeolite catalyst component to 0.8 or more [methanol synthesis catalyst component Z zeolite catalyst component], the generated methanol can be more selectively converted to propane. It can be converted to liquefied petroleum gas as the main component.
一方、 ゼォライ ト触媒成分に対するメタノール合成触媒成分の含有比率 (質量 基準) を 3以下 [メタノール合成触媒成分 Zゼォライ ト触媒成分] 、 より好まし くは 2以下 [メタノール合成触媒成分 Zゼォライ ト触媒成分] にすることにより、 生成したメタノールをより高転化率で主成分がプロパンである液化石油ガスに転 化させることができる。  On the other hand, the content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is 3 or less [methanol synthesis catalyst component Z zeolite catalyst component], more preferably 2 or less [methanol synthesis catalyst component Z zeolite catalyst component]. ], The produced methanol can be converted into liquefied petroleum gas whose main component is propane at a higher conversion rate.
メタノール合成触媒成分としては、 公知のメタノール合成触媒、 具体的には、 Cu— Zn系、 Cu— Zn—Cr系、 Cu— Zn— A1系、 Cu— Zn— Ag系、 Cu—Zn— Mn— V系、 Cu— Z n— Mn— C r系、 Cu—Zn— Mn— Al — C r系などの Cu— Zn系およびそれに第三成分が加わったもの、 あるいは、 ^^ー !!系のもの、 Mo系のもの、 Ni—炭素系のもの、 さらには Pdなど貴 金属系のものなどが挙げられる。 また、 メタノール合成触媒として市販されてい るものを使用することもできる。  As the methanol synthesis catalyst component, known methanol synthesis catalysts, specifically, Cu—Zn system, Cu—Zn—Cr system, Cu—Zn—A1 system, Cu—Zn—Ag system, Cu—Zn—Mn— Cu-Zn system, such as V system, Cu-Zn-Mn-Cr system, Cu-Zn-Mn-Al-Cr system, and the one with the third component added, or ^^-! ! Type, Mo type, Ni-carbon type, and noble metal type such as Pd. Also, a commercially available methanol synthesis catalyst can be used.
ゼォライ ト触媒成分としては、 反応分子の拡散が可能な細孔の広がりが 3次元 である中細孔ゼォライ トまたは大細孔ゼォライ トが好ましい。 このようなものと しては、 例えば、 Z SM— 5、 Μ〇Μ—22Φ、 ペータ、 Υ型などが挙げられる。 本発明においては、 一般にメ夕ノールぉよび Ζまたはジメチルエーテルから低級 ォレフィン炭化水素への縮合反応に高い選択性を示す S A Ρ 0— 34などの小細 孔ゼォライ トあるいはモルデナィ トなどの細孔内での反応分子の拡散が 3次元で ないゼォライ トよりも、 一般にメ夕ノールぉよび/またはジメチルエーテルから アルキル置換芳香族炭化水素への縮合反応に高い選択性を示す Z S M— 5、 M C M- 2 2などの中細孔ゼォライトあるいはベータ、 Y型などの大細孔ゼォライト などの細孔内での反応分子の拡散が 3次元であるゼォライトが好ましい。 中細孔 ゼォライ 1、あるいは大細孔ゼォライ トなどの細孔内での反応分子の拡散が 3次元 であるゼォライ トを用いることにより、 生成したメタノールをより選択的にプロ ビレンを主成分とするォレフィン、 さらにはプロパンを主成分とする液化石油ガ スに転化させることができる。 The zeolite catalyst component is preferably a medium-pore zeolite or a large-pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse. These include, for example, ZSM-5, Μ〇Μ-22Φ, Peter, Υ types. In the present invention, generally, small pore zeolite such as SA-0-34 or the like having high selectivity for the condensation reaction of methanol and / or dimethyl ether to lower olefin hydrocarbons or pores such as mordenite are used. Diffusion of reactive molecules in three dimensions Medium-pore zeolites or beta, such as ZSM-5, MCM-22, which generally show higher selectivity for the condensation of methanol and / or dimethyl ether to alkyl-substituted aromatic hydrocarbons than zeolite without Zeolites in which the diffusion of reactive molecules in pores such as large-pore zeolites such as Y-type are three-dimensional are preferred. The use of zeolite with three-dimensional diffusion of reactive molecules in the pores, such as medium-pore zeolite 1 or large-pore zeolite, allows the generated methanol to be more selectively composed mainly of propylene. It can be converted to olefins and even liquefied petroleum gas based on propane.
ここで、 中細孔ゼオライ トは、 細孔径が主に 1 0員環によって形成される 0 . 4 4〜0 . 6 5 nmのゼオライ トをいい、 また、 大細孔ゼオライ トは、 細孔径が 主に 1 2員環によって形成される 0 . 6 6〜0 . 7 6 nmのゼオライ トをいう。 ゼォライ ト触媒成分の細孔径は、 ガス状生成物内の C 3成分選択性の点から、 0 . 5 nm以上がより好ましい。 また、 ゼォライ ト触媒成分の骨格細孔径は、 ベンゼ ン等の芳香族化合物や C 5成分等のガソリン成分などの液状生成物の生成抑制の 点から、 0 . 7 7 nm以下がより好ましい。  Here, medium pore zeolite refers to a zeolite having a pore diameter of 0.44 to 0.65 nm formed mainly by a 10-membered ring, and large pore zeolite has a pore diameter of Is a zeolite of 0.66-0.76 nm formed mainly by a 12-membered ring. The pore diameter of the zeolite catalyst component is more preferably 0.5 nm or more from the viewpoint of the selectivity of the C3 component in the gaseous product. The skeletal pore diameter of the zeolite catalyst component is more preferably 0.77 nm or less from the viewpoint of suppressing the production of liquid products such as aromatic compounds such as benzene and gasoline components such as C5 component.
また、 ゼォライ ト触媒成分としては、 いわゆる高シリカゼォライ ト、 具体的に は S i 02ZA 1 23モル比が 1 0〜5 0のゼォライ トが好ましい。 S i〇2/ A 1 2 0 3モル比が 1 0〜5 0の高シリカゼォライ トを用いることにより、 生成 したメタノールをより選択的にプロピレンを主成分とするォレフィン、 さらには プロパンを主成分とする液ィ匕石油ガスに転化させることができる。 As the Zeorai bets catalyst component, so-called high Shirikazeorai DOO, specifically S i 0 2 ZA 1 23 molar ratio Zeorai bets 1 0-5 0 preferred. By S I_〇 2 / A 1 2 0 3 molar ratio is used high Shirikazeorai bets 1 0-5 0, Orefin to generated mainly of more selectively propylene methanol, further a main component propane Liquid petroleum gas.
ゼォライ ト触媒成分としては、 S i 0 2/A l 2 03モル比が 1 0〜5 0で、 反 応分子の拡散が可能な細孔の広がりが 3次元である中細孔ゼォライ トまたは大細 孔ゼォライ 卜が特に好ましい。 そのようなものとしては、 例えば、 U S Yゃ高シ リカタイプのべ一夕などの固体酸ゼォライ トが挙げられる。 The Zeorai bets catalyst component in S i 0 2 / A l 2 0 3 molar ratio of 1 0-5 0, or pores Zeorai bets in the spread of pores capable of spreading anti Obunko is three-dimensional Large pore zeolites are particularly preferred. As such, for example, a solid acid zeolite such as USY ゃ High Silica Type All Night is mentioned.
ゼォライト触媒成分としては、 イオン交換などによって酸性を調整した上記の ような固体酸ゼォライトを用いる。  As the zeolite catalyst component, a solid acid zeolite as described above whose acidity is adjusted by ion exchange or the like is used.
次に、 本発明の触媒の製造方法について説明する。 本発明の触媒の製造方法としては、 メタノール合成触媒成分とゼォライ ト触媒 成分とを別途に調製し、 これらを混合することが好ましい。 メタノール合成触媒 成分とゼォライ ト触媒成分とを別途に調製することにより、 各々の機能に対して、 それぞれの組成、 構造、 物性を最適に設計することが容易にできる。 一般に、 メ 夕ノ一ル合成触媒は塩基性を必要とし、 ゼォライ ト触媒は酸性を必要とする。 そ のため、 両触媒成分を同時に調製すると、 各々の機能に対して最適化することが 困難になってくる。 Next, a method for producing the catalyst of the present invention will be described. As a method for producing the catalyst of the present invention, it is preferable to separately prepare a methanol synthesis catalyst component and a zeolite catalyst component, and to mix them. By separately preparing the methanol synthesis catalyst component and the zeolite catalyst component, it is easy to optimally design each composition, structure, and physical properties for each function. Generally, methyl synthesis catalysts require basicity, and zeolite catalysts require acidity. Therefore, if both catalyst components are prepared simultaneously, it becomes difficult to optimize each function.
メタノール合成触媒成分は公知の方法で調製することができ、 また、 市販品を 使用することもできる。 メタノール合成触媒には、 使用前に還元処理をして活性 化することが必要なものもある。 本発明においては、 メタノール合成触媒成分を 予め還元処理して活性化する必要は必ずしもなく、 メタノール合成触媒成分とゼ ォライ ト触媒成分とを混合 ·成形して本発明の触媒を製造した後に、 反応を開始 するに先立ち還元処理をしてメ夕ノール合成触媒成分を活性化することができる。 ゼォライ ト触媒成分は公知の方法で調製することができ、 また、 市販品を使用 することもできる。 ゼォライ ト触媒成分は、 必要に応じて、 メタノール合成触媒 成分との混合に先立ち、 金属イオン交換などの方法によって予め酸性質を調整し てもよい。  The methanol synthesis catalyst component can be prepared by a known method, and a commercially available product can also be used. Some methanol synthesis catalysts require a reduction treatment to activate them before use. In the present invention, it is not always necessary to activate the methanol synthesis catalyst component by a reduction treatment in advance, and the methanol synthesis catalyst component and the zeolite catalyst component are mixed and molded to produce the catalyst of the present invention. Prior to the start of the reaction, a reduction treatment can be performed to activate the methanol synthesis catalyst component. The zeolite catalyst component can be prepared by a known method, and a commercially available product can also be used. Before mixing with the methanol synthesis catalyst component, the acid properties of the zeolite catalyst component may be adjusted in advance by a method such as metal ion exchange, if necessary.
本発明の触媒は、 メタノール合成触媒成分とゼォライ ト触媒成分とを均一に混 合した後、 成形して製造される。 両触媒成分の混合 ·成形の方法としては特に限 定されないが、 乾式の方法が好ましい。 湿式で両触媒成分の混合 ·成形を行った 場合、 両触媒成分間での化合物の移動、 例えばメタノール合成触媒成分中の塩基 性成分のゼォライ ト触媒成分中の酸点への移動 ·中和が生じることによって、 両 触媒成分の各々の機能に対して最適化された物性等が変化することがある。  The catalyst of the present invention is produced by uniformly mixing a methanol synthesis catalyst component and a zeolite catalyst component and then molding. The method of mixing and molding the two catalyst components is not particularly limited, but a dry method is preferred. When both catalyst components are mixed and molded in a wet process, compound transfer between both catalyst components, such as transfer of basic components in methanol synthesis catalyst components to acid sites in zeolite catalyst components, and neutralization This may change the physical properties and the like optimized for the respective functions of both catalyst components.
なお、 本発明の触媒は、 その所望の効果を損なわない範囲内で必要により他の 添加成分を含有していてもよい。  In addition, the catalyst of the present invention may contain other additive components as needed as long as the desired effect is not impaired.
次に、 上記のような本発明の触媒を用いて一酸化炭素と水素とを反応させ、 液 化石油ガス、 好ましくは主成分がプロパンである液化石油ガスを製造する方法に ついて説明する。 Next, carbon monoxide is reacted with hydrogen using the catalyst of the present invention as described above to produce a liquefied petroleum gas, preferably a liquefied petroleum gas whose main component is propane. explain about.
反応温度は、 メ夕ノール合成触媒成分とゼオライ ト触媒成分とが、 それそれ、 より十分に高い活性を示す点から、 2 7 0 °C以上が好ましく、 3 0 0 °C以上がよ り好ましい。 また、 反応温度は、 触媒の使用制限温度の点と、 平衡規制、 反応熱 の除去 ·回収が容易である点とから、 4 0 0 °C以下が好ましく、 3 8 0 °C以下が より好ましい。  The reaction temperature is preferably at least 270 ° C, more preferably at least 300 ° C, since the methanol synthesis catalyst component and the zeolite catalyst component exhibit sufficiently higher activities, respectively. . The reaction temperature is preferably 400 ° C or lower, more preferably 380 ° C or lower, in view of the limit temperature for use of the catalyst, the regulation of equilibrium, and the ease of removing and recovering the reaction heat. .
反応圧力は、 メ夕ノール合成触媒成分がより十分に高い活性を示す点から、 1 M P a以上が好ましく、 2 M P a以上がより好ましい。 また、 反応圧力は、 経済 性の点から、 1 0 MP a以下が好ましく、 5 M P a以下がより好ましい。  The reaction pressure is preferably 1 MPa or more, more preferably 2 MPa or more, since the methanol synthesis catalyst component exhibits a sufficiently high activity. Further, the reaction pressure is preferably 10 MPa or less, more preferably 5 MPa or less, from the viewpoint of economy.
ガス空間速度は、 経済性の点から、 5 0 0 h r一1以上が好ましく、 2 0 0 0 一1以上がより好ましい。 また、 ガス空間速度は、 メタノール合成触媒成分 とゼオライ ト触媒成分とが、 それぞれ、 より十分に高い転化率を示す接触時間を 与える点から、 1 0 0 0 0 h r— 1以下が好ましく、 5 0 0 0 h r— 1以下がより 好ましい。 Gas space velocity, in terms of economic efficiency, preferably 5 0 0 hr one 1 or more, 2 0 0 0 one 1 or more is more preferable. The gas hourly space velocity is preferably 100 000 hr- 1 or less, since the methanol synthesis catalyst component and the zeolite catalyst component each provide a contact time showing a sufficiently higher conversion. 0 0 hr—less than 1 is more preferable.
反応器に送入されるガス中の一酸化炭素の濃度は、 反応に必要とされる一酸化 炭素の圧力 (分圧) の確保と、 原料原単位向上との点から、 2 0モル%以上が好 ましく、 2 5モル%以上がより好ましい。 また、 反応器に送入されるガス中の一 酸化炭素の濃度は、 一酸化炭素の転化率がより十分に高くなる点から、 4 0モル %以下が好ましく、 3 5モル%以下がより好ましい。  The concentration of carbon monoxide in the gas sent to the reactor should be at least 20 mol% from the viewpoint of securing the pressure (partial pressure) of carbon monoxide required for the reaction and improving the unit consumption of raw materials. Is more preferable, and 25 mol% or more is more preferable. The concentration of carbon monoxide in the gas fed into the reactor is preferably 40 mol% or less, more preferably 35 mol% or less, from the viewpoint that the conversion of carbon monoxide becomes sufficiently high. .
反応器に送入されるガス中の水素の濃度は、 一酸化炭素がより十分に反応する 点から、 一酸ィヒ炭素 1モルに対して 1 . 5モル以上が好ましく、 1 . 8モル以上 がより好ましい。 また、 反応器に送入されるガス中の水素の濃度は、 経済性の点 から、 一酸化炭素 1モルに対して 3モル以下が好ましく、 2 . 3モル以下がより 好ましい。  The concentration of hydrogen in the gas fed into the reactor is preferably at least 1.5 mol, more preferably at least 1.8 mol, per mol of carbon monoxide, since carbon monoxide reacts more sufficiently. Is more preferred. Further, the concentration of hydrogen in the gas fed into the reactor is preferably 3 mol or less, more preferably 2.3 mol or less, per 1 mol of carbon monoxide from the viewpoint of economy.
反応器に送入されるガスは、 原料ガスである一酸化炭素および水素に、 二酸化 炭素を加えたものであってもよい。 反応器から排出される二酸化炭素をリサイク ルする、 あるいは、 それに見合う量の二酸化炭素を加えることによって、 反応器 中での一酸化炭素からのシフト反応による二酸化炭素の生成を実質的に軽減し、 さらには、 その生成をなくすこともできる。 The gas fed into the reactor may be a mixture of carbon monoxide and hydrogen as raw material gases and carbon dioxide. By recycling the carbon dioxide emitted from the reactor or adding a corresponding amount of carbon dioxide, the reactor The production of carbon dioxide by the shift reaction from carbon monoxide in the atmosphere can be substantially reduced, and the production can be eliminated.
また、 反応器に送入されるガスには水蒸気を含有させることもできる。 反応器 に送入されるガスには、 その他に、 不活性ガスなどを含有させることもできる。 反応器に送入されるガスは、 分割して反応器に送入し、 それにより反応温度を 制御することもできる。  Further, the gas fed into the reactor may contain steam. In addition to the gas fed into the reactor, an inert gas or the like can be contained. The gas sent to the reactor can be split and sent to the reactor, thereby controlling the reaction temperature.
反応は固定床、 流動床、 移動床などで行うことができるが、 反応温度の制御と 触媒の再生方法との両面から選定することが好ましい。 例えば、 固定床としては、 内部多段クェンチ方式などのクェンチ型反応器、 多管型反応器、 複数の熱交換器 を内包するなどの多段型反応器、 多段冷却ラジアルフロー方式や二重管熱交換方 式や冷却コイル内蔵式や混合流方式などその他の反応器などを用いることができ る。  The reaction can be carried out in a fixed bed, a fluidized bed, a moving bed or the like, but it is preferable to select from both the control of the reaction temperature and the method for regenerating the catalyst. For example, fixed beds include quench-type reactors such as internal multi-stage quench systems, multi-tube reactors, multi-stage reactors including multiple heat exchangers, multi-stage cooling radial flow systems, and double-tube heat exchange. Other reactors such as a system, a cooling coil built-in system and a mixed flow system can be used.
本発明の触媒は、 温度制御を目的として、 シリカ、 アルミナなど、 あるいは、 不活性で安定な熱伝導体で希釈して用いることもできる。 また、 本発明の触媒は、 温度制御を目的として、 熱交換器表面に塗布して用いることもできる。  The catalyst of the present invention can be used after being diluted with silica, alumina, or the like, or an inert and stable heat conductor for the purpose of controlling the temperature. Further, the catalyst of the present invention can be used by applying it to the surface of a heat exchanger for temperature control.
本発明においては、 原料ガスとして合成ガスを用いることができる。 合成ガス は公知の方法で、 例えば、 天然ガス (メタン) などの炭化水素ガスと水蒸気とを 反応させて製造することができる。  In the present invention, a synthesis gas can be used as a source gas. The synthesis gas can be produced by a known method, for example, by reacting a hydrocarbon gas such as natural gas (methane) with water vapor.
天然ガスの水蒸気改質法では、 例えば、 天然ガスを活性炭に通じて脱硫した後、 水蒸気と、 あるいは、 水蒸気および二酸化炭素と混合し、 ニッケル系触媒を充填 した反応管に 8 5 0〜8 9 0 °C、 1 . 5〜 2 M P aで通すことにより合成ガスを 製造する。 改質触媒としては、 二ヅケル系触媒以外に、 R h系触媒あるいは R u 系触媒などを用いることもできる。 本発明においての原料ガスとして好適な組成 の合成ガスを得るには、 二ッケル /アルミナ固溶体系触媒や、 溶融ジルコニァま たはマグネシア担持 R hあるいは R u系触媒などを用いた、 経済的に有利な低ス チーム Zカーボン比、 具体的には 0 . 8〜1 . 2程度のスチーム/カーボン比で の天然ガスの改質が好ましい。 合成ガスは、 天然ガスなどの炭化水素ガスと二酸化炭素とを反応させて、 ある いは、 天然ガスなどの炭化水素ガスと酸素とを反応させて製造することもできる。 天然ガスの水蒸気改質などにより合成ガスを製造した後、 シフト反応 ( C O + H 20→C 02 + H 2 ) によって合成ガスの組成を調整して原料ガスとすることも できる。 In the natural gas steam reforming method, for example, natural gas is desulfurized by passing it through activated carbon, and then mixed with steam or steam and carbon dioxide, and placed in a reaction tube filled with a nickel-based catalyst. The synthesis gas is produced by passing at 0 ° C and 1.5 to 2 MPa. As the reforming catalyst, an Rh-based catalyst or a Ru-based catalyst can be used in addition to the nickel-based catalyst. In order to obtain a synthesis gas having a composition suitable as a raw material gas in the present invention, it is economically advantageous to use a nickel / alumina solid solution catalyst, a molten zirconia or magnesia-supported Rh or Ru catalyst. It is preferable to reform natural gas with a low steam Z carbon ratio, specifically, a steam / carbon ratio of about 0.8 to 1.2. Synthesis gas can be produced by reacting a hydrocarbon gas such as natural gas with carbon dioxide, or by reacting a hydrocarbon gas such as natural gas with oxygen. After producing synthesis gas by water vapor reforming of natural gas, it is also possible to adjust the composition of the synthesis gas by shift reaction (CO + H 2 0 → C 0 2 + H 2) as a raw material gas.
また、 本発明の L P Gの製造方法においては、 原料ガスとして、 石炭コ一クス から製造される水性ガスを用いることもできる。  In the method for producing LPG of the present invention, a water gas produced from coal coke can be used as a raw material gas.
次に、 図面を参照しながら、 本発明の L P Gの製造方法の一実施形態について 説明する。  Next, an embodiment of the method for producing LPG of the present invention will be described with reference to the drawings.
図 1に、 本発明の L P Gの製造方法を実施するのに好適な L P G製造装置の一 例を示す。  FIG. 1 shows an example of an LPG manufacturing apparatus suitable for carrying out the LPG manufacturing method of the present invention.
まず、 反応原料である天然ガス (メタン) が、 ライン 3を経て、 改質器 1に供 給される。 また、 水蒸気改質を行うため、 図示しないが水蒸気がライン 3に供給 される。 改質器 1内には、 改質触媒を含有する改質触媒層 1 aが備えられている。 また、 改質器 1は、 改質のために必要な熱を供給するための加熱手段 (不図示) を備える。 この改質器 1内において、 改質触媒の存在下、 メタンが改質され、 水 素および一酸化炭素を含む合成ガスが得られる。  First, natural gas (methane), which is a reaction raw material, is supplied to the reformer 1 via the line 3. Although not shown, steam is supplied to the line 3 for performing steam reforming. In the reformer 1, a reforming catalyst layer 1a containing a reforming catalyst is provided. Further, the reformer 1 includes a heating means (not shown) for supplying heat required for reforming. In the reformer 1, methane is reformed in the presence of a reforming catalyst, and a synthesis gas containing hydrogen and carbon monoxide is obtained.
このようにして得られた合成ガスは、 ライン 4を経て、 反応器 2に供給される。 反応器 2内には、 本発明の触媒を含有する触媒層 2 aが備えられている。 この反 応器 2内において、 本発明の触媒の存在下、 合成ガスから主成分がプロパンであ る炭化水素ガスが合成される。  The synthesis gas thus obtained is supplied to the reactor 2 via the line 4. The reactor 2 is provided with a catalyst layer 2a containing the catalyst of the present invention. In the reactor 2, a hydrocarbon gas whose main component is propane is synthesized from the synthesis gas in the presence of the catalyst of the present invention.
合成された炭化水素ガスは、 必要に応じて水分等を除去した後、 加圧 ·冷却さ れ、 ライン 5から製品となる L P Gが得られる。 L P Gは、 気液分離などにより 水素等を除去してもよい。  The synthesized hydrocarbon gas is pressurized and cooled after removing water and the like as necessary, and LPG as a product is obtained from the line 5. LPG may remove hydrogen or the like by gas-liquid separation or the like.
なお、 図示しないが、 L P G製造装置には、 昇圧機、 熱交換器、 バルブ、 計装 制御装置などが必要に応じて設けられる。  Although not shown, the LPG manufacturing apparatus is provided with a booster, a heat exchanger, a valve, an instrumentation control device, and the like as necessary.
また、 改質器 1において得られた合成ガスに二酸化炭素などのガスを添加して 反応器 2に供給することもできる。 また、 改質器 1において得られた合成ガスに、 さらに水素または一酸化炭素を添加して、 あるいは、 シフト反応によって組成を 調整し、 反応器 2に供給することもできる。 Also, a gas such as carbon dioxide is added to the synthesis gas obtained in the reformer 1 It can also be supplied to the reactor 2. Further, hydrogen or carbon monoxide may be further added to the synthesis gas obtained in the reformer 1, or the composition may be adjusted by a shift reaction and supplied to the reactor 2.
本発明の LP Gの製造方法によれば、 主成分がプロパンである LP G、 具体的 にはプロパンの含有量が 38モル%以上、 さらには 40モル%以上、 特には 55 モル%以上 (100モル%も含む) である L P Gを製造することができる。 本発 明により製造される L P Gは、 家庭用 ·業務用の燃料として広く用いられている プロパンガスに適した組成を有するものである。 実施例  According to the method for producing LPG of the present invention, the content of LPG whose main component is propane, specifically, the content of propane is at least 38 mol%, more preferably at least 40 mol%, particularly at least 55 mol% (100 mol%). LPG (including mol%) can be produced. The LPG produced according to the present invention has a composition suitable for propane gas, which is widely used as a fuel for home and business use. Example
以下、 実施例により本発明をさらに詳細に説明する。 なお、 本発明はこれらの 実施例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples. Note that the present invention is not limited to these examples.
〔実施例 1 )  (Example 1)
(触媒の製造)  (Production of catalyst)
メタノール合成触媒成分としては、 市販の Cu— Zn系メタノール合成触媒 ( 日本ズ一ドへミー社製) を機械的に粉末にしたものを用いた。 ゼォライ ト触媒成 分としては、 別途調製した S i02/Al 203モル比が 1 2. 2のプロトン型 U SYゼォライ ト (骨格細孔径: 0. 74nm) 粉末を用いた。 As a methanol synthesis catalyst component, a commercially available Cu—Zn-based methanol synthesis catalyst (manufactured by Nippon Zudohemie Co., Ltd.) that was mechanically powdered was used. The Zeorai preparative catalyst Ingredients, S i0 2 / Al 2 0 3 molar ratio which is separately prepared is 1 2.2 proton type U SY Zeorai preparative (skeletal pore diameter: 0. 74 nm) powder was used.
このメ夕ノール合成触媒成分と同じ重量のゼォライ ト触媒成分とを均一に混合 して加圧成型 ·整粒した後、 水素気流中にて 300°C、 3時間還元して触媒を得 た。  This catalyst synthesis component was uniformly mixed with the same weight of zeolite catalyst component, and the mixture was pressed and sized, and then reduced in a hydrogen stream at 300 ° C for 3 hours to obtain a catalyst.
(LPGの製造)  (Manufacture of LPG)
調製した触媒を反応管に充填して、 組成が水素 66. 7モル%、 一酸化炭素 3 3. 3モル%の原料ガスを流通させた。 反応条件は、 反応温度 325 °C、 反応圧 力 2. 1 MP aヽ ガス空間速度 3000 hr 1とした。 生成物をガスクロマト グラフィ一により分析したところ、 一酸化炭素の炭化水素への転化率は 38%で あった。 また、 生成した炭化水素ガスは炭素基準で 76%がプロパンおよびブ夕 ンであり、 そのプロパンおよびブタンの内訳は炭素基準でプロパンが 55 %、 ブ タンが 45%であった。 The prepared catalyst was filled in a reaction tube, and a raw material gas having a composition of 66.7 mol% of hydrogen and 33.3 mol% of carbon monoxide was passed. The reaction conditions, reaction temperature 325 ° C, reaction pressure 2. a 1 MP aヽgas hourly space velocity 3000 hr 1. Analysis of the product by gas chromatography showed that the conversion of carbon monoxide to hydrocarbons was 38%. In addition, 76% of the generated hydrocarbon gas is propane and The proportion of propane and butane was 55% for propane and 45% for butane on a carbon basis.
〔実施例 2〕  (Example 2)
(触媒の製造)  (Production of catalyst)
ゼォライ ト触媒成分として、 別途調製した S i02/Al 203モル比が 37. 1のプロトン型べ一夕ゼォライ ト (細孔径:短径 0. 64腹、 長径 0. 76 n m)粉末を用いた以外は実施例 1と同様にして触媒を得た。 As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of 37.1 proton-type base Isseki Zeorai Doo (pore diameter: minor 0.64 abdomen, the long diameter 0. 76 nm) powder A catalyst was obtained in the same manner as in Example 1 except that the catalyst was used.
(LPGの製造)  (Manufacture of LPG)
調製した触媒を用い、 実施例 1と同様にして反応を行ったところ、 一酸化炭素 の炭化水素への転化率は 32%であった。 また、 生成した炭化水素ガスは炭素基 準で 73%がプロパンおよびブタンであり、 そのプロパンおよびブタンの内訳は 炭素基準でプロパンが 51%、 ブタンが 49%であった。  When a reaction was carried out in the same manner as in Example 1 using the prepared catalyst, the conversion of carbon monoxide to hydrocarbon was 32%. In addition, 73% of the generated hydrocarbon gas was propane and butane on a carbon basis, and the breakdown of propane and butane was 51% for propane and 49% for butane on a carbon basis.
〔実施例 3〕  (Example 3)
(触媒の製造)  (Production of catalyst)
ゼォライ ト触媒成分として、 別途調製した S i02/Al 203モル比が 16. 9のプロトン型モルデナイ トゼォライ ト (細孔径:短径 0. 65nm、 長径 0. 70 nm)粉末を用いた以外は実施例 1と同様にして触媒を得た。 As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of 16.9 proton type Morudenai Tozeorai Application: except for using (pore size minor 0. 65 nm, major axis 0. 70 nm) powder Was obtained in the same manner as in Example 1.
(LPGの製造)  (Manufacture of LPG)
調製した触媒を用い、 実施例 1と同様にして反応を行ったところ、 一酸化炭素 の炭化水素への転化率は 5%であった。 また、 生成した炭化水素ガスは炭素基準 で 40%がプロパンおよびブタンであり、 そのプロパンおよびブタンの内訳は炭 素基準でプロパンが 28%、 ブタンが 72%であった。  When a reaction was carried out in the same manner as in Example 1 using the prepared catalyst, the conversion of carbon monoxide into hydrocarbons was 5%. Propane and butane accounted for 40% of the generated hydrocarbon gas on a carbon basis, and the breakdown of propane and butane was 28% for propane and 72% for butane on a carbon basis.
〔実施例 4〕  (Example 4)
(触媒の製造)  (Production of catalyst)
ゼォライ ト触媒成分として、 別途調製した S i02/Al 203モル比が 14. 5のプロトン型 ZSM— 5ゼォライ ト (細孔径:短径 0. 53nm、 長径 0. 5 6 nm)粉末を用いた以外は実施例 1と同様にして触媒を得た。 (LPGの製造) As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of 14.5 proton type ZSM 5 Zeorai bets: a (pore size minor 0. 53 nm, major axis 0. 5 6 nm) powder A catalyst was obtained in the same manner as in Example 1 except that the catalyst was used. (Manufacture of LPG)
調製した触媒を用い、 原料ガスに対して二酸化炭素をモル比で 0. 08加えた 以外は実施例 1と同様にして反応を行ったところ、 一酸化炭素の炭化水素への転 化率は 40%であった。 また、 生成した炭化水素ガスは炭素基準で 56%がプロ パンおよびプ夕ンであり、 そのプロパンおよびブタンの内訳は炭素基準でプロパ ンが 56%、 ブタンが 44%であった。  Using the prepared catalyst, the reaction was carried out in the same manner as in Example 1 except that 0.08 was added in a molar ratio of carbon dioxide to the raw material gas. The conversion of carbon monoxide to hydrocarbon was 40%. %Met. Propane and butane accounted for 56% of the generated hydrocarbon gas on a carbon basis, and the breakdown of propane and butane was 56% for propane and 44% for butane on a carbon basis.
〔実施例 5〕  (Example 5)
(触媒の製造)  (Production of catalyst)
ゼォライ ト触媒成分として、 別途調製した S i02/Al 203モル比が 54. 5のプロトン型 Z SM— 5ゼォライ ト (細孔径:短径 0. 5311111、 長径0. 5 6 nm)粉末を用いた以外は実施例 1と同様にして触媒を得た。 As Zeorai DOO catalyst component, separately prepared S i0 2 / Al 2 0 3 molar ratio of proton type Z SM- 5 Zeorai bets 54.5 (pore diameter: minor 0.5311111, diameter 0. 5 6 nm) powder Except for using, a catalyst was obtained in the same manner as in Example 1.
(LPGの製造)  (Manufacture of LPG)
調製した触媒を用い、 実施例 4と同様にして反応を行ったところ、 一酸化炭素 の炭化水素への転化率は 3%であった。 また、 生成した炭化水素ガスは炭素基準 で 7 %がプロパンおよびブタンであり、 そのプロパンおよびブタンの内訳は炭素 基準でプロパンが 100%、 ブタンが 0%であった。 庠業卜の利用可能件  When a reaction was carried out in the same manner as in Example 4 using the prepared catalyst, the conversion of carbon monoxide to hydrocarbon was 3%. Propane and butane accounted for 7% of the generated hydrocarbon gas on a carbon basis. Propane and butane were 100% propane and 0% butane on a carbon basis. Available items
以上のように、 本発明の触媒を用いることにより、 一酸化炭素と水素とを反応 させて主成分がプロパンである液化石油ガスを製造することができる。  As described above, by using the catalyst of the present invention, liquefied petroleum gas whose main component is propane can be produced by reacting carbon monoxide and hydrogen.

Claims

請求の範囲 The scope of the claims
1 . 一酸化炭素と水素とを反応させてプロパンを主成分とする液化石油ガス を製造する際に用いられる触媒であって、 1. A catalyst used in producing liquefied petroleum gas containing propane as a main component by reacting carbon monoxide with hydrogen.
メタノール合成触媒成分とゼオライ ト触媒成分とを含有することを特徴とする 液化石油ガス製造用触媒。  A liquefied petroleum gas production catalyst comprising a methanol synthesis catalyst component and a zeolite catalyst component.
2 . 該ゼォライ ト触媒成分に対する該メタノール合成触媒成分の含有比率 ( 質量基準) が、 0 . 5 ~ 3 [メタノール合成触媒成分 Zゼォライ ト触媒成分] で ある請求項 1に記載の液化石油ガス製造用触媒。 2. The liquefied petroleum gas production according to claim 1, wherein a content ratio (by mass) of the methanol synthesis catalyst component to the zeolite catalyst component is 0.5 to 3 [methanol synthesis catalyst component Z zeolite catalyst component]. Catalyst.
3 . 該ゼオライ ト触媒成分が、 S i〇2ZA 1 2 03モル比が 1 0〜5 0のゼ ォライ トである請求項 1に記載の液化石油ガス製造用触媒。 3. The zeolite preparative catalyst component, S I_〇 2 ZA 1 2 0 3 molar ratio of 1 0-5 0 Ze Orai preparative liquefied petroleum gas production catalyst according to claim 1.
4 . 該ゼォライ ト触媒成分が、 反応分子の拡散が可能な細孔の広がりが 3次 元である中細孔ゼォライ トまたは大細孔ゼォライ トである請求項 1に記載の液化 石油ガス製造用触媒。 4. The liquefied petroleum gas production according to claim 1, wherein the zeolite catalyst component is a medium pore zeolite or a large pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse. catalyst.
5 . メタノール合成触媒成分とゼォライ ト触媒成分とを別途に調製し、 これ らを混合する請求項 1に記載の液化石油ガス製造用触媒の製造方法。 5. The method for producing a liquefied petroleum gas production catalyst according to claim 1, wherein a methanol synthesis catalyst component and a zeolite catalyst component are separately prepared and mixed.
6 . 請求項 1に記載の液化石油ガス製造用触媒の存在下で一酸化炭素と水素 とを反応させ、 主成分がプロパンである液化石油ガスを製造することを特徴とす る液化石油ガスの製造方法。 6. A liquefied petroleum gas characterized by reacting carbon monoxide and hydrogen in the presence of the liquefied petroleum gas production catalyst according to claim 1 to produce a liquefied petroleum gas whose main component is propane. Production method.
7 . 請求項 1に記載の液化石油ガス製造用触媒を含有する触媒層に合成ガス を流通させて、 主成分がプロパンである液化石油ガスを製造する液化石油ガス製 造工程を有することを特徴とする液化石油ガスの製造方法。 7. A liquefied petroleum gas produced by circulating a synthesis gas through a catalyst layer containing the liquefied petroleum gas production catalyst according to claim 1 to produce a liquefied petroleum gas whose main component is propane. A method for producing liquefied petroleum gas, comprising a production process.
8 . ( 1 ) 炭化水素ガスと水蒸気とを反応させて合成ガスを製造する合成ガ ス製造工程と、 8. (1) A synthesis gas production process for producing a synthesis gas by reacting a hydrocarbon gas with steam.
( 2 ) 請求項 1に記載の液化石油ガス製造用触媒を含有する触媒層に合成ガス を流通させて、 主成分がプロパンである液化石油ガスを製造する液化石油ガス製 造工程と  (2) A liquefied petroleum gas production process for producing a liquefied petroleum gas whose main component is propane by flowing synthesis gas through a catalyst layer containing the liquefied petroleum gas production catalyst according to claim 1.
を有することを特徴とする液化石油ガスの製造方法。 A method for producing a liquefied petroleum gas, comprising:
9 . 製造される液化石油ガス中のプロパンの含有量が、 3 8モル%以上であ る請求項 6〜 8のいずれかに記載の液化石油ガスの製造方法。 9. The method for producing a liquefied petroleum gas according to any one of claims 6 to 8, wherein the content of propane in the produced liquefied petroleum gas is 38 mol% or more.
PCT/JP2004/002202 2003-02-26 2004-02-25 Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst WO2004076063A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005502906A JPWO2004076063A1 (en) 2003-02-26 2004-02-25 Catalyst for producing liquefied petroleum gas, method for producing the same, and method for producing liquefied petroleum gas using the catalyst
US10/546,754 US20060242904A1 (en) 2003-02-26 2004-02-25 Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003049588 2003-02-26
JP2003-049588 2003-02-26

Publications (1)

Publication Number Publication Date
WO2004076063A1 true WO2004076063A1 (en) 2004-09-10

Family

ID=32923310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002202 WO2004076063A1 (en) 2003-02-26 2004-02-25 Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst

Country Status (4)

Country Link
US (1) US20060242904A1 (en)
JP (1) JPWO2004076063A1 (en)
CN (1) CN1753727A (en)
WO (1) WO2004076063A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181755A (en) * 2006-01-05 2007-07-19 Nippon Gas Gosei Kk Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
WO2007094457A1 (en) * 2006-02-17 2007-08-23 Japan Gas Synthesize, Ltd. Catalyst for liquefied petroleum gas production
JPWO2006016444A1 (en) * 2004-08-10 2008-05-01 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
WO2011122331A1 (en) * 2010-03-30 2011-10-06 独立行政法人石油天然ガス・金属鉱物資源機構 Preparation method for activated catalyst for fischer-tropsch synthesis, preparation method for catalyst slurry, and method for supplying catalyst slurry to fischer-tropsch synthesis reactor
WO2023277187A1 (en) * 2021-07-02 2023-01-05 古河電気工業株式会社 Catalyst for synthesizing liquefied petroleum gas and method for producing liquefied petroleum gas
WO2023277188A1 (en) * 2021-07-02 2023-01-05 古河電気工業株式会社 Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas
WO2023277189A1 (en) * 2021-07-02 2023-01-05 古河電気工業株式会社 Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012142725A1 (en) * 2011-04-21 2012-10-26 Dalian Institute Of Chemical Physics Chinese Academy Of Sciences Production of saturated hydrocarbons from synthesis gas
US20140316177A1 (en) * 2011-04-21 2014-10-23 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalyst for use in production of hydrocarbons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123688A (en) * 1984-07-12 1986-02-01 Hiroo Tominaga Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123688A (en) * 1984-07-12 1986-02-01 Hiroo Tominaga Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006016444A1 (en) * 2004-08-10 2008-05-01 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
JP2007181755A (en) * 2006-01-05 2007-07-19 Nippon Gas Gosei Kk Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
WO2007094457A1 (en) * 2006-02-17 2007-08-23 Japan Gas Synthesize, Ltd. Catalyst for liquefied petroleum gas production
JP5405103B2 (en) * 2006-02-17 2014-02-05 日本ガス合成株式会社 Catalyst for liquefied petroleum gas production
WO2011122331A1 (en) * 2010-03-30 2011-10-06 独立行政法人石油天然ガス・金属鉱物資源機構 Preparation method for activated catalyst for fischer-tropsch synthesis, preparation method for catalyst slurry, and method for supplying catalyst slurry to fischer-tropsch synthesis reactor
JP2011206741A (en) * 2010-03-30 2011-10-20 Japan Oil Gas & Metals National Corp Preparation method for activated catalyst for fischer-tropsch synthesis reaction, preparation method for catalyst slurry, and method for supplying catalyst slurry to fischer-tropsch synthesis reactor
WO2023277187A1 (en) * 2021-07-02 2023-01-05 古河電気工業株式会社 Catalyst for synthesizing liquefied petroleum gas and method for producing liquefied petroleum gas
WO2023277188A1 (en) * 2021-07-02 2023-01-05 古河電気工業株式会社 Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas
WO2023277189A1 (en) * 2021-07-02 2023-01-05 古河電気工業株式会社 Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas

Also Published As

Publication number Publication date
JPWO2004076063A1 (en) 2006-06-01
US20060242904A1 (en) 2006-11-02
CN1753727A (en) 2006-03-29

Similar Documents

Publication Publication Date Title
CN101016493B (en) Method of producing liquefied petroleum gas
CA2816141C (en) Single loop multistage fuel production
JP2009179801A (en) Method for producing liquefied petroleum gas
JP2006021100A (en) Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
CN102942975A (en) Process for producing liquefied petroleum gas
JP5405103B2 (en) Catalyst for liquefied petroleum gas production
JP4989650B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
JP4558751B2 (en) Method for producing liquefied petroleum gas and / or gasoline from synthesis gas
JP4965258B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
JP3930879B2 (en) Method for producing liquefied petroleum gas
WO2004076063A1 (en) Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst
JPS6123688A (en) Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas
WO2005037962A1 (en) Method for producing liquefied petroleum gas containing propane or butane as main component
JP4459925B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
WO2004076600A1 (en) Method for producing liquefied petroleum gas mainly containing propane or butane
JP2006143752A (en) Manufacturing method of liquefied petroleum gas mainly composed of propane or butane
WO2004074410A1 (en) Method for producing liquefied petroleum gas
JP2007181755A (en) Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
WO2006016583A1 (en) Method for producing liquefied petroleum gas
JP5086658B2 (en) Method for producing liquefied petroleum gas
JP2007063568A (en) Method for producing liquefied petroleum gas
Zhu et al. 2-11. Synthesis of LPG from DME with semi-direct method
JP2006182646A (en) Method for producing liquefied petroleum gas mainly containing propane or butane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502906

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048050645

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006242904

Country of ref document: US

Ref document number: 10546754

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10546754

Country of ref document: US