WO2004042227A1 - Synchronous machine comprising a permanent magnet excited axial field in a wind power station - Google Patents

Synchronous machine comprising a permanent magnet excited axial field in a wind power station Download PDF

Info

Publication number
WO2004042227A1
WO2004042227A1 PCT/EP2002/012466 EP0212466W WO2004042227A1 WO 2004042227 A1 WO2004042227 A1 WO 2004042227A1 EP 0212466 W EP0212466 W EP 0212466W WO 2004042227 A1 WO2004042227 A1 WO 2004042227A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial field
permanent magnet
wind power
power station
synchronous machine
Prior art date
Application number
PCT/EP2002/012466
Other languages
German (de)
French (fr)
Inventor
Günther FELDMANN
Original Assignee
Reichen, Werner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reichen, Werner filed Critical Reichen, Werner
Priority to AU2002342894A priority Critical patent/AU2002342894A1/en
Priority to PCT/EP2002/012466 priority patent/WO2004042227A1/en
Publication of WO2004042227A1 publication Critical patent/WO2004042227A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7064Application in combination with an electrical generator of the alternating current (A.C.) type
    • F05B2220/70642Application in combination with an electrical generator of the alternating current (A.C.) type of the synchronous type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/903Braking using electrical or magnetic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the exciter field can be generated by electromagnets or by permanent magnets, the permanently excited generators again provide the advantage over the electrically excited magnets that slip rings, brushes and auxiliary windings omitted and they require much less maintenance for this reason.
  • Synchronous synchronous generators are a so-called SPARK (synchronous machine with permanently excited axial field and toroidal winding)
  • the permanent magnets in the SPARK are made of NdFeB and are characterized by a high energy density, they also have a lower (material) density and are less brittle
  • the general advantages of using synchronous machines with permanently excited axial field and toroidal core winding are: a) the alternating, axial arrangement of rotors and stators one behind the other on a shaft, b) the absence of an "initial kick" for starting the rotor, so that even lower wind forces the red or can set in rotation; c) the absence of a periodically varying torque due to the absence

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Disclosed are synchronous machines which comprise a permanent magnet excited axial field and a toroidal core winding (SPARK) and are used as novel types of generators having a specific, modular structure and arrangement in wind power stations. Said synchronous machines have the advantage of being provided with a simple design while more efficiently converting mechanical power into electric power.

Description

SYNCHRONMASCHINE MIT PΞRMANENTERREGTEM AXIALFELD IN WINDKRAFTANLAGESYNCHRONIZED MACHINE WITH POMERANT SURGICAL AXIAL FIELD IN WIND POWER PLANT
BESCHREIBUNG Vor allem Windkraftanlagen haben in den letzten zwei Dekaden im Bereiche der alternativen, bzw. erneuerbaren Energie einen enormen Auftrieb erfahren und eine Trendwende zeichnet sich auch in der nahen Zukunft nicht ab. Auch die Grossen der Anlagen mit Bezug auf die zu erbringende Leistung dürften noch nicht an die Grenzen gestossen sein. Während für die kleinen LeistungenDESCRIPTION Wind turbines in particular have enjoyed a tremendous boost over the last two decades in the field of alternative or renewable energy, and a turnaround will not be apparent in the near future. Also, the size of the facilities with regard to the service to be provided may not yet have reached their limits. While for the small achievements
Synchrongeneratoren verwendet werden, werden in der Regel für Anlagen im Leistungsbereich von mehr als 5 - 10 kW Asynchrongeneratoren eingesetzt mit dem Nachteil ihrer leistungsabhängigen Grosse und ihrer aufwändigen Regelungstechnik. Entsprechend ihren äusseren Dimensionen sind die Gondelgrössen zu bemessen, so dass am Ende ein Gebilde mit der Ausdehnung eines kleineren Einfamilienhauses zur Aufnahme von Generator und der Technik notwendig wird. Hinzu kommt, dass die Asynchrongeneratoren eine schlechtere Energiebilanz aufweisen und weniger verschleissfest sind als Synchrongeneratoren. Sie sind zudem auch anfälliger gegen Korrosion, z.B. salzhaltige Luft bei den Offshore- Anlagen.Synchronous generators are used, as a rule for systems in the power range of more than 5 - 10 kW asynchronous generators used with the disadvantage of their performance-dependent size and their complex control technology. According to their outer dimensions, the gondola sizes are to be dimensioned, so that in the end a structure with the extension of a smaller family home to accommodate the generator and the technology is necessary. In addition, the asynchronous generators have a lower energy balance and are less resistant to wear than synchronous generators. They are also more susceptible to corrosion, e.g. saline air in offshore installations.
Bei den Synchrongeneratoren kann das Erregerfeld durch Elektromagnete oder durch Permanentmagnete erzeugt werden, wobei die permanent erregten Generatoren gegenüber den elektrisch erregten Magneten wiederum den Vorteil bieten, dass Schleifringe, Bürsten und Hilfswicklungen entfallen und sie aus diesem Grunde auch viel weniger Wartungsaufwand erfordern. Bei den konventionellen Permanentmagneten wirkt sich das grössere Anlαufmoment (durch das „Zusammenkleben" von den Polen der Magnete mit dem Anker) nachteilig auf. Auch bei diesen sind die extensiven Wicklungsköpfe an den Enden räumlich ungünstig, die ausserdem noch durch den zusätzlichen elektrischen Widerstand die Verluste vergrössern. Bei einer neuartige Generation von permanent erregten Synchrongeneratoren handelt es sich um eine sog. SPARK (Synchronmaschine mit permanenterregtem Axialfeld und Ringkernwicklung). Die Permanentmagnete in der SPARK bestehen aus NdFeB und zeichnen sich durch eine hohe Energiedichte aus. Sie haben zudem eine geringere (Material-) Dichte und sind weniger spröde als die üblichen SmCo-Magnete. Die generellen Vorteile der Verwendung von Synchronmaschinen mit permanenterregtem Axialfeld und Ringkernwicklung sind: a) die alternierende, axiale Anordnung von Rotoren und Statoren hintereinander auf einer Welle; b) das Fehlen eines „Initialstosses" zum Anlaufen des Rotors, so dass auch geringere Windstärken den Rotor in Drehung versetzen können; c) das Fehlen eines periodisch variierenden Drehmomentes durch Fehlen des magnetischen Widerstandes, der bei konventionellen Generatoren durch die Dreiphasenwicklungen auftritt; d) die durch das Fehlen der endständigen Wickelköpfe bestehende Möglichkeit die Anzahl von Rotoren und Statoren beliebig zu verändern, i.e. den Generator an die geforderteIn synchronous generators, the exciter field can be generated by electromagnets or by permanent magnets, the permanently excited generators again provide the advantage over the electrically excited magnets that slip rings, brushes and auxiliary windings omitted and they require much less maintenance for this reason. In the case of conventional permanent magnets, the larger one has an effect Anlαufmoment (by the "sticking together" of the poles of the magnets with the armature) disadvantageous.Also, the extensive winding heads at the ends are spatially unfavorable, which also further increase the losses by the additional electrical resistance Synchronous synchronous generators are a so-called SPARK (synchronous machine with permanently excited axial field and toroidal winding) The permanent magnets in the SPARK are made of NdFeB and are characterized by a high energy density, they also have a lower (material) density and are less brittle The general advantages of using synchronous machines with permanently excited axial field and toroidal core winding are: a) the alternating, axial arrangement of rotors and stators one behind the other on a shaft, b) the absence of an "initial kick" for starting the rotor, so that even lower wind forces the red or can set in rotation; c) the absence of a periodically varying torque due to the absence of the magnetic resistance which occurs in conventional generators by the three-phase windings; d) the possibility of changing the number of rotors and stators as a result of the absence of the end windings, ie the generator to the required
Leistung anzupassen, bzw. e) eine beliebige Anzahl von SPARK-Einheiten seriell hintereinander zu schalten (modulare Bauweise), so dass eine Aufrüstung zu grösserer Leistung durch Zuschαltung eines Moduls bei gleichzeitiger Verlängerung der Rotorblätter auch nachträglich möglich ist; f) durch die Zuschaltung eines Moduls in Umkehrschaltung kann die Drehgeschwindigkeit der Generatorwelle auf einfache Weise konstant gehalten werden; dieses zugeschaltete Modul funktioniert so als Bremse; g) dass bei geeigneter Anordnung der Energiezusammenführung von den einzelnen Elemente (z.B. SPARK) durch einen einfachen Umrichter auch mehrere Element als Bremse genutzt werden können. h) Windkraftanlagen, die mit Synchronmaschinen mit permanenterregtem Axialfeld und Ringkernwicklung ausgestattet sind, sind zudem praktisch wartungsfrei, weil der Generaforfeil ein in sich geschlossenes System darstellt. Die Erfindung besteht in der Konstruktion von Windkraffanlagen, in welchen die Umwandlung von mechanischer Energie in elektrische Energie mittels einer (oder mehreren) Synchronmaschine(n) mit permanent-erregtem Axialfeld und Ringkernwicklung (SPARK) erfolgt, gemäss Figur 1. Die SPARK's (2,3 und 4) werden dabei als Einheiten (Module) gebaut, so dass die Welle (5) an einem Ende mit Nocken versehen ist und am anderen mit Nuten. Diese Einheiten werden auf der drehbaren Tragbühne (6) in einem Abstand hintereinander fixiert, so dass die durch klimatische oder betriebsabhängige Temperaturveränderungen bedingten Verlängerungen oder Verkürzungen der Welle (5) kompensiert werden. Der Rotor (1 ) wird mit der ersten Einheit (4) fest verbunden. Die Energieleitungen (8) werden von jedem einzelnen SPARK in die Energiezentrale (9) geleitet, in der auch die entsprechenden Steuerungen angebracht sind, die die Energie in der vom Anwender gewünschten Form verfügbar machen. To adapt power, or e) any number of SPARK units serially in series (modular design), so that an upgrade to greater performance by adding a module while simultaneously extending the rotor blades is also possible later; f) by the connection of a module in reverse circuit, the rotational speed of the generator shaft can be kept constant in a simple manner; this connected module works as a brake; g) that with a suitable arrangement of energy reunification of the individual elements (eg SPARK) by a simple inverter and several elements can be used as a brake. h) Wind turbines, which are equipped with synchronous machines with permanent-excited axial field and toroidal winding, are also virtually maintenance-free, because the Generaforfeil represents a self-contained system. The invention consists in the construction of wind power plants, in which the conversion of mechanical energy into electrical energy by means of one (or more) synchronous machine (s) with permanently-excited axial field and ring core winding (SPARK), according to Figure 1. The SPARK's (2, 3 and 4) are built as units (modules), so that the shaft (5) is provided at one end with cams and at the other with grooves. These units are fixed on the rotatable supporting platform (6) at a distance one behind the other, so that due to climatic or operationally dependent temperature changes extensions or shortenings of the shaft (5) can be compensated. The rotor (1) is firmly connected to the first unit (4). The power lines (8) are routed from each SPARK to the power station (9), which also houses the appropriate controls that provide the power in the form desired by the user.
PCT/EP2002/012466 2002-11-08 2002-11-08 Synchronous machine comprising a permanent magnet excited axial field in a wind power station WO2004042227A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002342894A AU2002342894A1 (en) 2002-11-08 2002-11-08 Synchronous machine comprising a permanent magnet excited axial field in a wind power station
PCT/EP2002/012466 WO2004042227A1 (en) 2002-11-08 2002-11-08 Synchronous machine comprising a permanent magnet excited axial field in a wind power station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/012466 WO2004042227A1 (en) 2002-11-08 2002-11-08 Synchronous machine comprising a permanent magnet excited axial field in a wind power station

Publications (1)

Publication Number Publication Date
WO2004042227A1 true WO2004042227A1 (en) 2004-05-21

Family

ID=32309282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/012466 WO2004042227A1 (en) 2002-11-08 2002-11-08 Synchronous machine comprising a permanent magnet excited axial field in a wind power station

Country Status (2)

Country Link
AU (1) AU2002342894A1 (en)
WO (1) WO2004042227A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049861B3 (en) * 2008-10-01 2010-06-02 Universität Bremen Device for simulating the force of one or more mechanical drive elements on at least one drive component of a drive train
DE102009009894A1 (en) * 2009-04-11 2010-10-28 Hurrelmeyer, Dirk, Dipl.-Wirtsch. Ing. Permanent magnet excited modular axial field synchronous machine for wind energy conversion, has power coils interconnected in three-phase alternating current circuit against oscillations, and permanent magnets for excitation purpose
ITMI20092060A1 (en) * 2009-11-23 2011-05-24 Rolic Invest Sarl WIND POWER PLANT FOR THE GENERATION OF ELECTRICITY
WO2011117005A3 (en) * 2010-03-22 2012-02-02 Vestas Wind Systems A/S A nacelle for a wind turbine, the nacelle comprising side units
DE102010049407A1 (en) * 2010-09-23 2012-03-29 Converteam Gmbh Test stand for components of wind-power plant, has motor drive for pressurizing gearbox with rotational torque simulating wind force at specific rotation speed
ITMI20112322A1 (en) * 2011-12-20 2013-06-21 Wilic Sarl WIND POWER PLANT FOR THE GENERATION OF ELECTRICITY
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine
US12031519B2 (en) 2020-02-17 2024-07-09 Vestas Wind Systems A/S Nacelle for a wind turbine and a method of making a wind turbine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486765A1 (en) * 1990-11-22 1992-05-27 Franz Mroz Wind motor
EP0627805A2 (en) * 1993-06-03 1994-12-07 Secretary Of State For Trade And Industry In Her Britannic Majesty's Gov. Of The U.K. Of Great Britain And Northern Ireland Electromagnetic machine
DE19652673A1 (en) * 1996-12-18 1998-06-25 Marten Dipl Ing Jensen Wind power plant for electric power generation
WO2001007784A1 (en) * 1999-07-22 2001-02-01 Jeumont Industrie Wind turbine with counter rotating rotors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0486765A1 (en) * 1990-11-22 1992-05-27 Franz Mroz Wind motor
EP0627805A2 (en) * 1993-06-03 1994-12-07 Secretary Of State For Trade And Industry In Her Britannic Majesty's Gov. Of The U.K. Of Great Britain And Northern Ireland Electromagnetic machine
DE19652673A1 (en) * 1996-12-18 1998-06-25 Marten Dipl Ing Jensen Wind power plant for electric power generation
WO2001007784A1 (en) * 1999-07-22 2001-02-01 Jeumont Industrie Wind turbine with counter rotating rotors

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008049861B3 (en) * 2008-10-01 2010-06-02 Universität Bremen Device for simulating the force of one or more mechanical drive elements on at least one drive component of a drive train
DE102009009894A1 (en) * 2009-04-11 2010-10-28 Hurrelmeyer, Dirk, Dipl.-Wirtsch. Ing. Permanent magnet excited modular axial field synchronous machine for wind energy conversion, has power coils interconnected in three-phase alternating current circuit against oscillations, and permanent magnets for excitation purpose
US8659867B2 (en) 2009-04-29 2014-02-25 Wilic S.A.R.L. Wind power system for generating electric energy
US8618689B2 (en) 2009-11-23 2013-12-31 Wilic S.Ar.L. Wind power turbine for generating electric energy
ITMI20092060A1 (en) * 2009-11-23 2011-05-24 Rolic Invest Sarl WIND POWER PLANT FOR THE GENERATION OF ELECTRICITY
CN102072092A (en) * 2009-11-23 2011-05-25 威力克有限公司 Wind power turbine for generating electric energy
WO2011061353A1 (en) * 2009-11-23 2011-05-26 Wilic S.A.R.L. Wind power turbine for generating electric energy
EP2333323A1 (en) * 2009-11-23 2011-06-15 Wilic S.Ar.L Wind power turbine
US8541902B2 (en) 2010-02-04 2013-09-24 Wilic S.Ar.L. Wind power turbine electric generator cooling system and method and wind power turbine comprising such a cooling system
WO2011117005A3 (en) * 2010-03-22 2012-02-02 Vestas Wind Systems A/S A nacelle for a wind turbine, the nacelle comprising side units
US8937397B2 (en) 2010-03-30 2015-01-20 Wilic S.A.R.L. Wind power turbine and method of removing a bearing from a wind power turbine
US8975770B2 (en) 2010-04-22 2015-03-10 Wilic S.Ar.L. Wind power turbine electric generator and wind power turbine equipped with an electric generator
DE102010049407B4 (en) * 2010-09-23 2015-02-19 Converteam Gmbh Test rig for a wind turbine and method for testing a wind turbine in a test rig
DE102010049407A1 (en) * 2010-09-23 2012-03-29 Converteam Gmbh Test stand for components of wind-power plant, has motor drive for pressurizing gearbox with rotational torque simulating wind force at specific rotation speed
US8957555B2 (en) 2011-03-10 2015-02-17 Wilic S.Ar.L. Wind turbine rotary electric machine
US8937398B2 (en) 2011-03-10 2015-01-20 Wilic S.Ar.L. Wind turbine rotary electric machine
US9006918B2 (en) 2011-03-10 2015-04-14 Wilic S.A.R.L. Wind turbine
WO2013093856A3 (en) * 2011-12-20 2013-10-24 Wilic S.Ar.L. Wind turbine for generating electric energy
ITMI20112322A1 (en) * 2011-12-20 2013-06-21 Wilic Sarl WIND POWER PLANT FOR THE GENERATION OF ELECTRICITY
US12031519B2 (en) 2020-02-17 2024-07-09 Vestas Wind Systems A/S Nacelle for a wind turbine and a method of making a wind turbine

Also Published As

Publication number Publication date
AU2002342894A1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US8129853B2 (en) Power converter for use with wind generator
ES2894102T3 (en) Variable speed machine assembly and method for manufacturing the same
DE69008538T2 (en) WIND TURBINE.
US7843099B2 (en) Hollow generator
AT411093B (en) DEVICE AND METHOD FOR GENERATING ELECTRICAL ENERGY
WO2004042227A1 (en) Synchronous machine comprising a permanent magnet excited axial field in a wind power station
US8178992B1 (en) Axial flux alternator with air gap maintaining arrangement
EP2478619A2 (en) Wind or water energy installation
CN101213732A (en) A variable rotor speed wind turbine, wind park, method of transmitting electric power and method of servicing or inspecting a variable rotor speed wind turbine
RU2352810C2 (en) Windmill generator
EP1252441A2 (en) Group of at least two windmills
EP2696464A1 (en) Photovoltaic power plant
US20130088103A1 (en) Synchronic Wind Turbine Generator
Neidhoefer Evolution of the synchronous machine
DE102011116690A1 (en) Magnetically suspended axial flow generator for use in wind-power plant for generating electricity, has component arranged as Halbach arrays that appear on operating conditions to convert flux of another component into low electric current
RU2352809C1 (en) Bolotov's wind-driven electric plant
DE10010792A1 (en) Wind power plant has generator with stator assigned to tower and turbine assigned to housing connected with rotor, able to be coupled with rotor
CN102171921A (en) A power generation unit and a method for generating electric energy
CN109578211A (en) Generator landing type T axis mixed drive variable-pitch variable-speed wind generating machine and control methods
EP2795771A2 (en) Generator of a gearless wind turbine
DE102010050545A1 (en) Multi-pole alternator i.e. multi-pole permanent magnet-excited alternator, for use in wind power plant, has permanent magnets connected to combination of inner and outer rotors in force-fit manner to form double rotor
RU2421864C1 (en) Electric generator with opposite rotating inductor and armature
DE102009038933A1 (en) Magnet turbine
DE202013102657U1 (en) Multipurpose single power plant
WO2015086311A1 (en) Electric generator and electric motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP