WO2004022378A1 - 路面状態の変化を推定する装置や方法および自動車 - Google Patents

路面状態の変化を推定する装置や方法および自動車 Download PDF

Info

Publication number
WO2004022378A1
WO2004022378A1 PCT/JP2003/007919 JP0307919W WO2004022378A1 WO 2004022378 A1 WO2004022378 A1 WO 2004022378A1 JP 0307919 W JP0307919 W JP 0307919W WO 2004022378 A1 WO2004022378 A1 WO 2004022378A1
Authority
WO
WIPO (PCT)
Prior art keywords
road surface
angular acceleration
change
surface state
peak
Prior art date
Application number
PCT/JP2003/007919
Other languages
English (en)
French (fr)
Inventor
Akira Hommi
Kiyotaka Hamajima
Mitsuhiro Nada
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to AU2003243949A priority Critical patent/AU2003243949A1/en
Priority to US10/525,871 priority patent/US20050246087A1/en
Priority to DE10393181T priority patent/DE10393181B4/de
Publication of WO2004022378A1 publication Critical patent/WO2004022378A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/102Indicating wheel slip ; Correction of wheel slip of individual wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2210/00Detection or estimation of road or environment conditions; Detection or estimation of road shapes
    • B60T2210/10Detection or estimation of road conditions
    • B60T2210/12Friction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an apparatus for estimating a change in a road surface state on which an automobile is traveling, an automobile equipped with the apparatus, and a method for estimating a change in a road surface state.
  • a device for estimating a road surface friction coefficient based on a vibration component of a wheel speed detected when a brake oil pressure is changed in a pulse shape during braking For example, refer to Japanese Patent Application Laid-Open No. 2000-31313327
  • a device that estimates a braking torque gradient at the time of braking of a vehicle calculates a deviation from a target value, and controls the deviation to cancel the deviation.
  • it is estimated that the friction coefficient of the road surface has changed when the deviation has continued for a predetermined time or more over a predetermined value (for example, see Japanese Patent Application Laid-Open No. H11-1321617).
  • Various proposals have been made such as one that determines a rough road or vibration of a driving system based on a deviation from the wheel speed (for example, see JP-A-11-38034).
  • Estimating the change in road surface condition during traveling is based on using the estimated result for control to suppress idling of the drive wheels and lock of the drive wheels or driven wheels that may occur with the change in road surface condition, thereby improving the driving performance. Ensuring high stability Therefore, a more accurate estimation method is desired. Disclosure of the invention
  • the road surface state change estimating device, the vehicle equipped with the same, and the road surface state change estimating method of the present invention employ the following units in order to achieve at least a part of the above object.
  • a road surface state change estimating device of the present invention is a road surface state change estimating device that is mounted on a vehicle and that estimates a change in the state of a road surface on which the vehicle is running, and is mechanically connected to driving wheels of the vehicle.
  • a rotation angle acceleration detecting section for detecting the detected rotation angular acceleration of the drive shaft; and a state change estimating section for estimating a change in the road surface state based on the detected change in the rotation angular acceleration.
  • the road surface state change estimating device of the present invention it is possible to estimate a change in the road surface state based on a change in the rotational angular acceleration of the drive shaft mechanically connected to the drive wheels of the vehicle.
  • the idling of the drive wheels due to the change in the road surface condition appears as a change in the wheel speed in accordance with the degree of the change in the road surface condition and the torque acting on the drive wheels. Therefore, it is possible to estimate the change in the road surface condition by analyzing the change in the rotational angular acceleration of the drive shaft corresponding to the change in the wheel speed.
  • drive shaft mechanically connected to a drive wheel includes an axle directly connected to a single drive wheel, and a pair of drive shafts via mechanical parts such as a differential gear.
  • a shaft such as a rotating shaft connected to the wheel is also included.
  • ⁇ Rotational angular acceleration detection unit J includes those that directly detect rotational angular acceleration, and also detects the rotational angular velocity of the drive shaft and calculates the rotational angular acceleration of the drive shaft based on the detected rotational angular velocity. The one that performs the calculation is also included.
  • the state change estimating unit is configured to determine the road surface state based on a change in a cycle in a time change of the detected rotation angular acceleration when the detected rotation angular acceleration reaches a predetermined value or more. It can also be a part that estimates changes in If the road surface condition does not change, the cycle of the time change of the rotational angular acceleration will change slightly, but will not change suddenly, but will change suddenly when the road surface condition changes. It is based on the consideration of these phenomena that the change in the road surface condition can be estimated based on the change in the period of the rotational angular acceleration over time.
  • the state change estimating unit may be a unit that estimates that the road surface state has changed when the period of the time change of the rotational angular acceleration changes by a predetermined ratio or more. Further, in this case, the state change estimating unit is configured to determine, on the opposite side of the period of the first peak detected after the detected rotation angular acceleration reaches a predetermined value or more after the peak, When the cycle at the time of the peak is shorter than the predetermined ratio, the friction coefficient of the road surface may be estimated to increase rapidly. This makes it possible to estimate a sudden increase in the friction coefficient of the road surface, that is, a change from a low road to a high t road, as a change in the road surface condition based on the change in the cycle.
  • the state change estimating unit includes a first peak value detected first after the detected rotation angular acceleration reaches a predetermined value or more, and a first peak value detected first.
  • the change in the road surface condition may be estimated based on the next detected second peak value on the opposite side.
  • the peak value that normally occurs when the idling converges will be within a certain range depending on the road surface condition (coefficient of friction) and the vehicle, but when the road surface condition changes, that is, from a low road to a high road In such a case, the peak value at the time of convergence of the slip exceeds the range. It is based on consideration of these phenomena that the change in road surface condition can be estimated based on the first peak value and the second peak value. In this case, the state change estimating unit may estimate that the road surface state has changed when the absolute value of the second peak value has changed by a predetermined ratio or more with respect to the first peak value. it can.
  • the state change estimating unit estimates that the friction coefficient of the road surface has increased sharply when the absolute value of the second peak value is greater than the first peak value by the predetermined ratio or more. You can also. This makes it possible to estimate a sudden increase in the friction coefficient of the road surface, that is, a change from a low road to a high t road, as a change in the road surface condition, based on the first peak value and the second peak value.
  • the state change estimating unit estimates a road surface state change based on a second peak value detected after the rotation angular acceleration detected above reaches a predetermined value or more. It can also be done. As described above, when the driving wheels idle on low 6 roads, the second peak becomes the peak when the idling converges, and this peak value is within a certain range unless the road surface condition changes. When the road surface condition changes, it exceeds the range. It is based on the consideration of such phenomena that the change of the road surface condition can be estimated based on the second peak value.
  • the state change estimating unit may estimate that the friction coefficient of the road surface has increased rapidly when the absolute value of the second peak value is equal to or more than a predetermined value. In this way, it is possible to estimate a sudden increase in the friction coefficient of the road surface as a change in the road surface condition, that is, a change from a low At road to a high road based on the second peak value.
  • the vehicle of the present invention has a drive shaft mechanically connected to the drive wheels of the vehicle.
  • a motor capable of outputting a rotational angular acceleration of the drive shaft, a rotational angle acceleration detecting section, and a state change estimating section for estimating a change in a road surface state based on the detected change in the rotational angular acceleration.
  • the driving of the prime mover is controlled so that torque based on the driver's operation and the running state of the vehicle is output to the drive shaft, and the drive is performed when a change in the road surface state is estimated by the state change estimating unit.
  • a drive control unit that controls the drive of the motor so that the torque output to the shaft is limited for a predetermined time.
  • the prime mover that is drive-controlled so that a torque based on the operation of the driver and the running state of the vehicle is output to the drive shaft. Is controlled so that the torque output to the drive shaft is limited for a predetermined time. Since the torque output to the drive shaft is limited in this way, torque pulsation (including pulsation of rotational angular acceleration) that can occur in the vehicle due to a change in road surface condition can be suppressed.
  • the “motor” a motor or a motor generator having a quick response in control is preferable.
  • the drive control unit detects the change in the road surface state by the rotation angular acceleration detection unit when estimating the change in the road surface state.
  • the drive control may be performed such that the torque output to the drive shaft is limited by using the torque limit value set based on the peak value of the rotation angle acceleration that has been set. It is considered that the peak value of the rotational angular acceleration at the time of estimating the change in the road surface condition reflects the degree of the change in the road surface condition to some extent. Appropriate torque restrictions can be implemented.
  • the torque limit value may be set such that the torque limit value tends to increase as the peak value increases.
  • the state change estimating unit includes the detected rotation angle. It is assumed that when the period of the time change of the rotational angular acceleration when the acceleration reaches a predetermined value or more changes by a predetermined ratio or more, the road surface condition is estimated to have changed.
  • the absolute value of the second peak value on the opposite side detected after the first peak value is greater than or equal to a predetermined ratio with respect to the first peak value detected first after the detected rotation angular acceleration reaches a predetermined value or more. It is assumed that the road surface state has changed when it changes, and the state change estimating unit calculates the absolute value of the second peak value detected after the detected rotation angular acceleration reaches a predetermined value or more. It is also possible to estimate a change in the road surface condition when the value is equal to or more than a predetermined value.
  • a first road surface state change estimating method of the present invention is a road surface state change estimating method for estimating a change in a state of a road surface on which an automobile is traveling, and (a) mechanically connected to drive wheels of the vehicle. Detected rotation angular acceleration of the drive shaft,
  • the road surface state change estimation method of the present invention when the rotational angular acceleration of the drive shaft reaches a predetermined value or more, the period of the time change of the rotation angular acceleration changes by a predetermined ratio or more, the road surface state changes. Estimate the change. As described above, the change in the road surface state can be estimated based on the change in the period of the rotational angular acceleration of the drive shaft over time. As described above, the period of the change in the rotational angular acceleration of the drive shaft over time is If there is no change in the road surface condition, there will be a slight change but no sudden change, but if the road surface condition changes, it will be suddenly changed.
  • the second road surface state change estimation method of the present invention is a road surface state change estimation method for estimating a change in the state of a road surface on which an automobile is traveling, and (a) mechanically connected to drive wheels of the vehicle. Detected rotation angular acceleration of the drive shaft, (b) The absolute value of the second peak value on the opposite side detected after the first peak value with respect to the first peak value detected first after the detected rotation angular acceleration reaches a predetermined value or more. It is assumed that when the value changes by a predetermined ratio or more, the road surface condition is estimated to have changed.
  • the first peak value detected first after the rotational angular acceleration of the drive shaft has reached a predetermined value or more is next to the first peak value.
  • a change in the road surface condition is estimated.
  • the change in the road surface state can be estimated based on the first peak value and the second peak value of the rotational angular acceleration of the drive shaft, as described above, when the change in the road surface state occurs.
  • the third method for estimating road surface state change according to the present invention is based on the fact that the second peak value at the time of convergence of idling greatly changes with respect to the first peak value of the rotational angular acceleration immediately after the start of idling of the drive wheels.
  • a road surface state change estimating method for estimating a change in the state of a road surface wherein (a) detecting a rotational angular acceleration of a drive shaft mechanically connected to drive wheels of the vehicle; The gist is that, when the absolute value of the second peak value detected after the detected rotation angular acceleration reaches or exceeds the predetermined value is equal to or more than the predetermined value, it is estimated that the road surface state has changed.
  • the absolute value of the second peak value detected after the rotation angular acceleration of the drive shaft reaches the predetermined value or more becomes equal to or more than the predetermined value.
  • Estimate state changes.
  • the change in the road surface condition can be estimated based on the second peak value of the rotational angular acceleration of the drive shaft.
  • the second peak value becomes It is based on the fact that it appears larger than when no state change has occurred.
  • FIG. 1 is a configuration diagram schematically showing the configuration of an electric vehicle 10 including a control device 20 for a motor 12 that functions as a road surface state change estimation device according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an example of a road surface state change estimation process performed by the electronic control unit 40 of the embodiment.
  • FIG. 3 is an explanatory diagram showing an example of a temporal change of the rotational angular acceleration a when the road surface state does not change and a temporal change of the rotational angular acceleration ⁇ when the road surface state changes.
  • FIG. 4 is an explanatory diagram showing an example of a torque limit amount setting map
  • FIG. 5 is an explanatory diagram showing an example of a torque upper limit value setting map
  • FIG. 6 is a flowchart showing an example of a motor drive control routine executed by the electronic control unit 40.
  • FIG. 7 is an explanatory diagram showing an example of a required torque setting map
  • FIG. 8 is a flowchart showing an example of a slip state determination processing routine executed by the electronic control unit 40.
  • FIG. 9 is a flow chart showing an example of a slip occurrence control routine executed by the electronic control unit 40.
  • FIG. 10 is a flowchart showing an example of a slip convergence control routine executed by the electronic control unit 40.
  • FIG. 11 is a flowchart showing an example of a torque limit setting processing routine executed by the electronic control unit 40;
  • FIG. 12 is a configuration diagram schematically showing the configuration of a hybrid type automobile 110
  • FIG. 13 is a configuration diagram schematically showing the configuration of a hybrid type automobile 210
  • FIG. Configuration diagram showing the outline of the configuration of the automobile 310 , The best mode for carrying out the invention
  • FIG. 1 is a configuration diagram schematically showing a configuration of an electric vehicle 10 including a control device 20 of a motor 12 functioning as a road surface state change estimation device according to an embodiment of the present invention.
  • the control device 20 of the motor 12 uses the electric power supplied from the battery 16 through the inverter circuit 14 to drive the wheels 18 a, 18 of the electric vehicle 10.
  • a rotation angle sensor 22 that detects the rotation angle 0 of the rotation axis of the motor 12, and is configured as a device that drives and controls the motor 12 that can output power to the drive shaft connected to b.
  • a vehicle speed sensor 24 that detects the traveling speed of the electric vehicle 10; a driven wheel 1 that rotates following the wheel speeds of the drive wheels 18a and 18b (front wheels) and the drive wheels 18a and 18b 9a, 19b (rear wheel) wheel speed sensors 26a, 26b, 28a, 28b for detecting wheel speeds, and various sensors for detecting various operations by the driver (for example,
  • the shift position sensor 32 that detects the position of the shift lever 31 and the accelerator that detects the amount of depression of the accelerator pedal 33 (accelerator opening)
  • Pedal positive Chillon sensor 3 4 comprises depression amount of the brake pedal 35 and etc. brake pedal position sensor 3 6 for detecting a (brake opening)), and an electronic control Yuni' Bok 4 0 to control the entire apparatus.
  • the motor 12 is configured as, for example, a well-known synchronous generator motor that functions as a motor and also functions as a generator, and the inverter circuit 14 converts power from the battery 16 into power suitable for driving the motor 12. It is composed of multiple switching elements that convert to. Such a configuration of the motor 12-member circuit 14 is well known, and does not form the core of the present invention, so that further detailed description will be omitted.
  • the electronic control unit 40 is configured as a microprocessor centered on the CPU 42, and in addition to the CPU 42, a ROM 44 that stores a processing program and a RAM 46 that temporarily stores data. And an input / output port (not shown).
  • the electronic control unit 40 includes a rotation angle 0 of the rotating shaft of the motor 12 detected by the rotation angle sensor 22, a vehicle speed V of the electric vehicle 10 detected by the vehicle speed sensor 24, and a wheel speed sensor. 26 a, 26 b, 28 a, 28 b Wheel speeds V f 1, V f 2 of driven wheels 18 a, 18 b detected by 28 b, 28 b, and wheels of driven wheels 19 a, 19 b Speed Vr1, Vr2, shift position detected by shift position sensor 32, accelerator opening Acc detected by accelerator pedal position sensor 34, brake detected by brake pedal position sensor 36 The opening is input via the input port.
  • the electronic control unit 40 outputs a switching control signal to the switching element of the inverter circuit 14 for controlling the driving of the motor 2 via an output port.
  • the operation of the control device 20 of the motor 12 configured as described above in particular, the operation for estimating a change in the road surface state during traveling, and the electric vehicle performed using the estimation result of the change in the road surface state
  • the following describes the drive control of the motor 12 when the 10 drive wheels 18a and 18 slip and slip.
  • a process for estimating a change in the road surface state will be described, and then a drive control of the motor 12 will be described.
  • FIG. 2 is a flowchart illustrating an example of a road surface state change estimation process performed by the electronic control unit 40 of the embodiment. This process is repeatedly executed at predetermined time intervals (for example, at every 8 msec).
  • the CPU 42 of the electronic control unit 40 first inputs the motor rotation speed N m calculated based on the rotation angle 0 of the rotation angle sensor 22. And at the same time (step S100), the rotational angular acceleration ⁇ is calculated based on the input motor speed Nm (step S102).
  • the rotation angle acceleration ⁇ is calculated by subtracting the previous rotation speed Nm input in the previous processing from the current rotation speed Nm input in the current processing (current rotation speed Nm—previous rotation speed). N m).
  • the execution time interval of this processing is 8 msec. / 8 msec].
  • any unit may be used as long as it can be expressed as the rate of change of the rotational speed with time.
  • the rotational angular acceleration ⁇ and the wheel speed difference ⁇ are calculated as the average of the rotational angular acceleration and the wheel speed difference calculated over the past several times (for example, three times) from this routine in order to reduce the error. The average may be used.
  • the value of the road surface state change determination flag FC is checked (step S104).
  • the road surface state change determination flag FC indicates that the rotation angle acceleration ⁇ in the next step S106 exceeds the threshold as I ip for determining that slippage has occurred due to idling of the drive wheels 18a and 18b.
  • the value 1 is set (step S108). That is, when the road surface state change determination flag FC has a value of 0, the calculated rotational angular acceleration a is compared with a threshold as I ip (step S106), and when the rotational angular acceleration a is equal to or less than the threshold as I ip, this processing is performed.
  • the value 1 is set to the road surface state change determination flag FC (step S108).
  • the rotational angular acceleration a reaches the first peak. (Step S110), and when the first peak is reached, the rotational angular acceleration a at that time is set to the first peak. Peak angular acceleration a; set as 1 (step S 1 1 2).
  • the first peak of the rotation angular acceleration ⁇ is when the time derivative of the rotation angular acceleration ⁇ changes from positive to negative after the rotation angular acceleration ⁇ exceeds the threshold as I ip.
  • step S114 it is determined whether or not the rotation angular acceleration ⁇ has reached the second peak.
  • the rotation angle at that time is determined.
  • a value obtained by multiplying the acceleration ⁇ by ⁇ 1 is set as a second peak angular acceleration ⁇ 2 (step S116).
  • the second peak means a negative peak that occurs immediately after the first peak. Therefore, the reason why the rotation angular acceleration ⁇ is multiplied by ⁇ 1 to set the second peak angular acceleration ⁇ 2 is to make the sign equal to the first peak angular acceleration ⁇ 1.
  • the second peak angular acceleration ⁇ 2 is compared with the threshold aref (step S118), and the second peak angular acceleration ⁇ 2 is set.
  • a comparison is made between the peak angular acceleration ⁇ 2 and the first peak angular acceleration ⁇ 1 multiplied by a constant k (step S120).
  • the threshold value ref is set to a value larger than a value in a normal range that can be set to the first peak angular acceleration ⁇ 1 when slippage due to slip occurs.
  • the maximum value that can be set to the first peak angular acceleration ⁇ 1 in an experiment in which the target electric vehicle 10 slips on a low-t road by slipping is 100 [rpm / 8 msec. ], A value such as 120 or ⁇ 40 can be used for the threshold aref.
  • the constant k is set as a value equal to or more than 1, and can be set as, for example, 1.2 or 1.4.
  • the second peak angular acceleration ⁇ 2 is less than the threshold value Q: ref and the second peak angular acceleration 0: 2 is less than or equal to the first peak angular acceleration ⁇ 1 multiplied by the constant k, no change in the road surface state is estimated.
  • the road surface state change determination flag FC is set to a value of 0 (step S122), and the road surface state change estimation processing is terminated.
  • the first peak angular acceleration ⁇ is obtained by multiplying the second peak angular acceleration ⁇ 2 by a constant k.
  • step S124 it is determined that the road surface condition has changed, that is, the vehicle has shifted from a low road to a high / ⁇ road (step S124).
  • the first peak is the peak immediately after the start of the idle rotation, and the second peak is the peak when the idling converges.
  • the value of the second peak that normally occurs when the idling converges will be within a certain range depending on the road surface condition (friction coefficient) and the vehicle, but when the road surface condition changes That is, when the road changes from the low t road to the high road, the second peak angular acceleration ⁇ 2 at the time of such convergence of the idling exceeds the range. Therefore, when the second peak angular acceleration ⁇ 2 is equal to or larger than the threshold aref which is set as a larger value than the value in the normal range that can be set to the first peak angular acceleration ⁇ 1 when slippage occurs due to slippage, The change in state (transition from low t road to high t road) can be determined.
  • FIG. 3 shows an example of a temporal change of the rotational angular acceleration ⁇ when no change occurs in the road surface state and a temporal change of the rotational angular acceleration ⁇ when a change occurs in the road surface state.
  • the second peak angular acceleration ⁇ 2 is not only smaller than the threshold aref but also smaller than the first peak angular acceleration a1, but when the road surface condition changes.
  • a sharp change in the rotational angular acceleration 0; is observed on the negative side, and the second peak angular acceleration a 2 is the first peak angular acceleration a.
  • the change in the road surface state that is, the change in the state of shifting from a low road to a high road during a slip in slipping is estimated by comparing the second peak angular acceleration ⁇ 2 with the threshold value aref, and the second peak angular acceleration When ⁇ 2 is less than the threshold value a; ref, the estimation is performed by comparing the second peak angular acceleration ⁇ 2 with the first peak angular acceleration ⁇ ⁇ multiplied by a constant k of 1 or more.
  • the torque output from the motor 12 for a predetermined time is limited (step S126), and the road surface state change estimation process ends.
  • the torque limit is set to ⁇ 5 change based on the second peak angular acceleration a2 by, for example, a torque limit setting map illustrated in FIG. 4, and the torque limit ⁇ 5 change
  • the torque upper limit value Tmax is derived from the torque upper limit setting map illustrated in FIG.
  • the torque limit ⁇ change is set so as to increase as the second peak angular acceleration ⁇ 2 increases, and the torque upper limit value Tmax is, as shown in FIG.
  • the torque limitation for limiting the torque from the motor 12 with the torque upper limit value Tmax over a predetermined time is performed because of the vibration of the rotational angular acceleration ⁇ that can be caused by the change in the road surface condition, that is, the front and rear of the vehicle. This is for suppressing the vibration in the direction.
  • the predetermined time can be set by performing an experiment involving such a change in the road surface state and measuring the time during which the vibration converges.
  • the broken line in the time change of the rotational angular acceleration ⁇ when the road surface condition changes in FIG. 3 indicates the temporal change of the rotational angular acceleration ⁇ when the torque limitation is not performed for such a predetermined time.
  • FIG. 6 is a flowchart showing an example of a motor drive control routine executed by the electronic control unit 40. This routine is repeatedly executed at predetermined time intervals (for example, at every 8 msec).
  • the CPU 42 of the electronic control unit 40 first transmits the accelerator opening Acc from the accelerator pedal position sensor 34, the vehicle speed V from the vehicle speed sensor 24, and the wheel speed sensor. Processing to input the wheel speeds Vf, Vr from 26a, 26b, 28a, 28b and the motor rotation speed Nm calculated based on the rotation angle ⁇ of the rotation angle sensor 22 (Step S200).
  • the wheel speeds Vf and Vr are respectively determined by the wheel speed sensors 26a and 26b and the wheel speeds Vf1 and Vf detected by the wheel speed sensors 28a and 28b, respectively. 2 and the average values of the wheel speeds Vr1 and Vr2 were used.
  • the vehicle speed V detected by the vehicle speed sensor 24 was used.
  • the wheel speed V detected by the wheel speed sensors 26a, 26b, 28a, 28b was used. It may be calculated from f 1, V f 2, V r 1, V r 2.
  • the required torque Tm * of the motor 12 is set based on the input accelerator opening A cc and vehicle speed V (step S 202).
  • the relationship between the accelerator opening Acc, the vehicle speed V, and the required motor torque Tm * is determined in advance and stored in the ROM 44 as a required torque setting map. It should be noted that, given the accelerator opening Acc and the vehicle speed V, the corresponding required torque Tm * is derived from the map. An example of this map is shown in Country 7.
  • Step S204 the rotational angular acceleration ⁇ is calculated based on the motor rotational speed Nm input in step S200 (step S204), and the driving wheels 18a, 1a are determined based on the calculated rotational angular acceleration ⁇ .
  • Judgment of 8b slip state (Step S206).
  • the determination of the slip state is performed based on the slip state determination processing routine of FIG.
  • the description of the processing of the motor drive control routine of FIG. 6 will be temporarily interrupted, and the processing of the slip state determination processing routine of FIG. 8 will be described.
  • the CPU 42 of the electronic control unit 40 determines that the rotational angular acceleration ⁇ calculated in step S204 of the routine in FIG.
  • step S220 It is determined whether or not the threshold value that can be regarded as “asI ip” is exceeded (step S220).
  • the slip occurrence flag F1 indicating the occurrence of the slip is set to a value. Set to 1 (Step S2 2 2) and end this routine.
  • the value of the slip occurrence flag F1 is checked next (step S224).
  • the slip occurrence flag F ⁇ has the value 1, it is determined whether or not the rotational angular acceleration a is a negative value and continues for a predetermined time (step S2226), and the rotational angular acceleration a is negative.
  • the slip generated on the drive wheels 18a and 18b is determined to have converged, and the value 1 is set to the slip convergence flag F2 ( Step S228), end this routine.
  • the slip occurrence flag F1 has a value of 1 and the rotational angular acceleration ⁇ is not a negative value, or that the rotational angular acceleration ⁇ has a negative value but does not continue for a predetermined time. In some cases, it is determined that the slip that has occurred has not yet converged, and the routine ends.
  • step S210 the slip occurrence flag F 1 has a value of 1 and the slip convergence flag F 2 has a value of 0.
  • the slip occurrence process step S210
  • step S212 the slip convergence process
  • step S2 14 it is determined whether or not the execution of the torque control
  • the motor required torque Tm * is limited by the limit derived from the torque limit ⁇ change and the torque upper limit setting map of FIG. 5 (step S 2 16 , S 218), and drives the motor 12 using the limited motor required torque Tm * (step S 220), and terminates this routine. Vibration of the rotational angular acceleration ⁇ that can occur with a change in the road surface condition, that is, vibration in the front-rear direction of the vehicle can be suppressed.
  • the slip occurrence process in step S210 is performed by a slip occurrence control routine illustrated in FIG.
  • this routine is executed, first, it is determined whether or not the rotational angular acceleration exceeds the peak value apeak (step S230), and it is determined that the rotational angular acceleration ⁇ exceeds the peak value apeak. Then, a process of updating the value of the peak value apeak to the rotational angular acceleration ⁇ is performed (step S2 32).
  • the peak value ⁇ ⁇ eak is basically the value of the rotational angular acceleration when the rotational angular acceleration ⁇ increases due to slip and indicates a peak, and the value 0 is set as an initial value. ing.
  • the peak value ⁇ peak is sequentially updated to the value of the rotational angular acceleration ⁇ until the rotational angular acceleration ⁇ rises and reaches a peak, and when the rotational angular acceleration 0;
  • the angular acceleration ⁇ is fixed as the peak value ⁇ peak.
  • the map has a characteristic that the torque upper limit value Tmax decreases as the rotational angular acceleration ⁇ increases. Therefore, as the rotational angular acceleration ⁇ increases and the peak value apeak increases, that is, as the degree of slip increases, a smaller value is set as the torque upper limit value TmaX, and the motor 12 outputs a corresponding amount. Torque will be limited.
  • the torque upper limit value TmaX is set, the motor required torque Tm * is limited by the set torque upper limit value TmaX (steps S236, S238), and the routine ends.
  • the torque output from the motor 12 when a slip occurs is a low torque for suppressing the slip (specifically, it corresponds to the peak value apeak of the rotational angle acceleration in the map of Fig. 5). Since the torque is limited to the upper limit value Tmax), the slip can be effectively suppressed.
  • the process at the time of slip convergence in step S212 is performed by a slip convergence control routine illustrated in FIG.
  • a slip convergence control routine illustrated in FIG.
  • the torque limit ⁇ 5 1 is calculated by subtracting the torque upper limit value Tmax set corresponding to the peak value apeak of the rotational angular acceleration in the slip control.
  • This parameter is used to set the degree of recovery when returning from the torque limit by raising the torque, and is set based on the torque limit amount setting processing routine in FIG.
  • This torque control amount setting processing routine is performed when the value 1 is set to the slip occurrence flag F1 in step S222 of the slip state determination processing routine shown in FIG. as
  • ⁇ 5 1 is set (step S2688), and this routine ends.
  • the torque limit ⁇ 5 1 was obtained by calculation using a predetermined coefficient k 1, but a map showing the relationship between the torque upper limit Tmax and the time integral aint is prepared. However, it may be derived by applying a map from the calculated time integral aint.
  • a release request for releasing the torque limit ⁇ 1 is input (step S 2 42), and it is determined whether or not the release request has been issued (step S 2 44).
  • This processing determines whether or not a request to cancel the torque limit ⁇ 5 ⁇ , which is a parameter used when setting the degree of return from torque limitation (gradually increase the degree of return), has been received.
  • the cancellation amount is set to increase from zero by a certain increment every time a predetermined standby period elapses after the first execution of this routine. A request for cancellation by the user is input.
  • the waiting period and the increment of the release amount ⁇ 1 may be changed in accordance with the driver's own release request, for example, the accelerator opening indicating the torque output request desired by the driver. I do not care.
  • the release request is determined, the release amount ⁇ 1 is subtracted from the torque limit amount ⁇ 51 input in step S240 to release the torque limit amount ⁇ 51 (step S246).
  • the torque limit amount (51 is not canceled).
  • a torque upper limit value T max which is an upper limit of the torque that the motor 12 can output based on the torque limit amount ⁇ 1 is set by using the torque upper limit value setting map of FIG. 5 (step S 2 48).
  • the required motor torque Tm * is limited by the set torque upper limit value Tmax (steps S250, S252).
  • it is determined whether or not the torque limit amount 1 has been released to a value of 0 or less (Step S254). If the torque limit amount 1 has been released to a value of 0 or less, a slip occurrence flag F1 and a slip convergence flag F2 are determined. The value is reset to 0 (step S256), and this routine ends.
  • the torque of the motor 12 is controlled based on the torque limit ⁇ 1 set in accordance with the time integral value of the rotational angular acceleration ⁇ , when the generated slip converges.
  • Pickpocket This is for restoring an appropriate amount of torque according to the state of the step. That is, in a situation where the time integral of the rotational angular acceleration ⁇ is large and re-slip is likely to occur, the torque to be restored when the slip converges is reduced, the time integral of the rotational angular acceleration ⁇ is small, and In situations where the slip is unlikely to occur, increasing the torque to be restored when the slip converges can prevent the occurrence of re-slip more reliably without excessive torque limitation.
  • the change in the road surface condition can be estimated based on ⁇ 2 alone or based on the first peak angular acceleration ⁇ and the second peak angular acceleration ⁇ 2.
  • the torque output from the motor 12 is limited for a predetermined time. The resulting vibration of the rotational angular acceleration ⁇ (the vibration in the longitudinal direction of the vehicle) can be suppressed.
  • the second peak angular acceleration ⁇ 2 is equal to or larger than the threshold aref and the second peak angular acceleration ⁇ 2 is smaller than the threshold aref.
  • the peak angular acceleration a2 is larger than the first peak angular acceleration a1 multiplied by the constant k
  • the change in the road surface condition is estimated, but only when the second peak angular acceleration a2 is greater than or equal to the threshold aref.
  • the change in the road surface condition was estimated based on the second peak angular acceleration at2 and the first peak angular acceleration a1, but as shown in FIG. Estimating a change in the road surface state based on the difference between the first cycle in the time change of the rotational angular acceleration a including the second cycle and the second cycle in the time change of the rotational angular acceleration a including the second peak angular acceleration a2. It may be something. For example, when the second period is smaller than the first period multiplied by a constant r smaller than the value 1, it may be estimated that the vehicle has shifted from the low road to the high road.
  • the torque limit ⁇ 5 change is set using the second peak angular acceleration a2 and the torque limit setting map, and the set torque is set.
  • the torque upper limit T max was derived by using the limit amount S change and the torque upper limit setting map, and the torque was limited to 1 or 2 overnight, but from the second peak angular acceleration ⁇ ; 2 the torque upper limit T A map that directly derives max may be created to derive the torque upper limit value T max to limit the torque of the motor 12.
  • the torque upper limit value Tmax is derived based on the second peak angular acceleration ⁇ 2, but the first peak angular acceleration a1 Deviation of the second peak angular acceleration ⁇ 2 and the ratio of the first peak angular acceleration ⁇ ⁇ to the second peak angular acceleration ⁇ 2,
  • the torque upper limit value T max is derived based on the ratio of the period in the time change of the rotational angular acceleration ⁇ including the peak angular acceleration ⁇ 1 to the period in the time change of the rotational angular acceleration ⁇ including the second peak angular acceleration ⁇ 2. It does not matter.
  • the motor 12 in the automobile 10 including the motor 12 mechanically connected to the drive shafts connected to the drive wheels 18a and 18b so as to be able to output power directly is provided.
  • the present invention may be applied to a vehicle having any configuration as long as the vehicle includes a motor capable of directly outputting power to a drive shaft or an axle.
  • a motor capable of directly outputting power to a drive shaft or an axle.
  • an engine a generator connected to the output shaft of the engine, a battery for charging the generated power from the generator, and a power supply from the battery mechanically connected to the drive shaft connected to the drive wheels.
  • the present invention may be applied to a so-called series-type hybrid vehicle including a motor driven by a motor.
  • the motor need not be mounted on the drive shaft, but may be mounted on the axle, or may be mounted directly on the drive wheels like a so-called wheel-in motor.
  • the engine 1 1, the planetary gear 1 17 connected to the engine 1 1 1, and the motor 1 13 connected to the planetary gear 1 17 A so-called machine-distribution hybrid vehicle having a motor 1 12 connected to the planetary gears 1 17 and mechanically connected to the drive shaft so that power can be directly output to the drive shaft connected to the drive wheels 1 1 0, or as shown in Figure 13 the inner row connected to the output shaft of the engine 2 11 1 and the drive wheels 2 18 a and 2 18 b
  • Motor 2 1 having an outer rotor 2 13 b attached to the mounted drive shaft and relatively rotating by the electromagnetic action of the inner rotor 2 13 a and the 3 and a motor mechanically connected to the drive shaft so that power can be output directly to the drive shaft.
  • a drive shaft connected to the drive wheels 318a and 318b is connected to a drive shaft 314 (such as a continuously variable transmission or a stepped automatic transmission). It is provided with an engine 311 connected thereto, and a motor 312 (or a motor directly connected to the driveshaft), which is downstream of the engine 311 and is connected to the driveshaft via a transmission 314. It can also be applied to hybrid vehicles 310.
  • the control output from the drive shaft is mainly performed by controlling the motor mechanically connected to the drive shaft due to torque output responsiveness. Although the torque is limited, it may be possible to control a re-engine that controls another motor in cooperation with the control of this motor.
  • control device 20 functioning as a road surface state change estimating device for estimating a change in the road surface state during traveling has been described. It may be in a form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

駆動軸に直接トルクを出力するモータの回転角加速度αが空転によるスリップの発生を検出可能な閾値αslipを超えた後、第1ピークに至った第1ピーク角加速度α1と次の負の第2ピークに至った値に−1を乗じた第2ピーク角加速度α2とを検出し、第2ピーク角加速度α2が閾値αref以上のときや第2ピーク角加速度α2が閾値αref未満でも第2ピーク角加速度α2が定数kを乗じた第1ピーク角加速度α1より大きいときに路面状態の変化(低μ路から高μ路への変化)を判定する。路面状態の変化が判定されたときには、所定時間に亘ってモータから駆動軸に出力するトルクを制限する。

Description

明細書 路面状態の変化を推定する装置や方法および自動車 技術分野
本発明は、 自動車が走行している路面状態の変化を推定する装置およ びこれを搭載する自動車並びに路面状態の変化を推定する方法に関する。 背景技術
従来、 走行中の路面の状態の変化を推定する装置としては、 制動時に ブレーキ油圧をパルス状に変化させたときに検出される車輪速度の振動 成分に基づいて路面の摩擦係数を推定するもの (例えば、 特開 2 0 0 0 - 3 1 3 3 2 7号公報参照) や、 車両の制動時に制動トルク勾配を推定 して目標値との偏差を演算すると共にこの偏差が打ち消されるよう制御 する装置において、 偏差が一定値以上所定時間継続したときに路面の摩 擦係数が変化したのを推定するもの (例えば、 特開平 1 1一 3 2 1 6 1 7号公報参照) 、 駆動輪速度と従動輪速度との偏差に基づいて悪路や駆 動系の振動を判定するもの (例えば、 特開平 1 1一 3 8 0 3 4号公報参 照) など種々提案されている。
また、 路面状態や運転状態に基づいてスリップやロックした際に対応 する自動車としては、 スリップやロックが判定されたときには、 その状 態が収束するまで駆動軸に出力されるトルクの変化を禁止するものが提 案されている (例えば、 特開平 7 - 1 4 3 6 1 8号公報) 。
走行中の路面状態の変化を推定することは、 推定した結果を路面状態 の変化に伴って生じ得る駆動輪の空転や駆動輪又は従動輪のロックを抑 止する制御に用いることによって走行のより高い安定性を確保すること に繋がるため、 より精度の高い推定手法が望まれている。 発明の開示
本発明の路面状態変化推定装置および路面状態変化推定方法は、 上述 した手法とは異なる手法を用いて走行中の路面状態の変化を推定するこ とを目的の一つとする。 また、 本発明の路面状態変化推定装置および路 面状態変化推定方法は、 路面の摩擦係数の急増を推定することを目的の 一つとする。 本発明の自動車は、 走行中の路面状態の変化に対処するこ とを目的とする。
本発明の路面状態変化推定装置およびこれを搭載する自動車並びに路 面状態変化推定方法は、 上述の目的の少なくとも一部を達成するために 以下の部を採った。
本発明の路面状態変化推定装置は、 自動車に搭載されて該自動車が走 行している路面の状態の変化を推定する路面状態変化推定装置であって、 前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出す る回転角加速度検出部と、 該検出された回転角加速度の変化に基づいて 路面状態の変化を推定する状態変化推定部とを備えることを要旨とする。
この本発明の路面状態変化推定装置では、 車両の駆動輪に機械的に接 続された駆動軸の回転角加速度の変化に基づいて路面状態の変化を推定 することができる。 路面状態の変化に伴う駆動輪の空転は、 路面状態の 変化の程度や駆動輪に作用するトルクに対応して車輪速の変化として現 われる。 したがって、 車輪速の変化に対応する駆動軸の回転角加速度の 変化の様子を解析することにより路面状態の変化を推定することができ る。 ここで、 「駆動輪に機械的に接続された駆動軸」 には、 単一の駆動 輪に直接接続された車軸が含まれる他、 デフアレンシャルギヤなどの機 械部品を介して一対の駆動輪に接続された回転軸などの軸も含まれる。 また、 「回転角加速度検出部 J には、 直接回転角加速度を検出するもの が含まれる他、 駆動軸の回転角速度を検出すると共に検出された回転角 速度に基づいて駆動軸の回転角加速度を演算するものも含まれる。
こうした本発明の路面状態変化推定装置において、 前記状態変化推定 部は、 前記検出された回転角加速度が所定値以上に至った際の該回転角 加速度の時間変化における周期の変化に基づいて路面状態の変化を推定 する部であるものとすることもできる。 回転角加速度の時間変化におけ る周期は、 路面状態に変化がなければ若干の変化はあるものの急変は生 じないが、 路面状態に変化が生じると急変する。 回転角加速度の時間変 化における周期の変化に基づいて路面状態の変化を推定することができ るのは、 こうした現象の考察に基づく。 この場合、 前記状態変化推定部 は、 前記回転角加速度の時間変化における周期が所定割合以上変化した ときに路面状態が変化したと推定する部であるものとすることもできる。 更にこの場合、 前記状態変化推定部は、 前記検出された回転角加速度が 所定値以上に至った後に最初に検出されるピークの際の周期に対して該 ピークの次に検出される反対側のピークの際の周期が前記所定割合以上 短いときに路面の摩擦係数が急増したと推定する部であるものとするこ ともできる。 こうすれば、 周期の変化に基づいて路面状態の変化として 路面の摩擦係数の急増、 即ち低 路から高 t路への変化を推定すること ができる。
また、 本発明の路面状態変化推定装置において、 前記状態変化推定部 は、 前記検出された回転角加速度が所定値以上に至った後に最初に検出 される第 1 ピーク値と該第 1 ピーク値の次に検出される反対側の第 2ピ ーク値とに基づいて路面状態の変化を推定するものとすることもできる。 低 At路で駆動輪が空転した場合、 第〗 ピークは空転開始直後のピークと なり、 第 2ピークは空転の収束の際のピークとなる。 路面状態に変化が なければ空転の収束の際に通常生じるピーク値は路面状態 (摩擦係数) や車両にもよるが一定の範囲内となるが、 路面状態に変化が生じたとき、 即ち低 路から高 路に変化したときには、 こうした空転の収束の際の ピーク値がその範囲を超える。 第 1 ピーク値と第 2ピーク値とに基づい て路面状態の変化を推定することができるのは、 こうした現象の考察に 基づく。 この態様の場合、 前記状態変化推定部は、 前記第 1 ピーク値に 対して前記第 2ピーク値の絶対値が所定割合以上変化したときに路面状 態が変化したと推定するものとすることもできる。 更にこの場合、 前記 状態変化推定部は、 前記第 1 ピーク値に対して前記第 2ピーク値の絶対 値が前記所定割合以上大きいときに路面の摩擦係数が急増したと推定す るものとすることもできる。 こうすれば、 第 1 ピーク値と第 2ピーク値 とに基づいて路面状態の変化として路面の摩擦係数の急増、 即ち低 路 から高 t路への変化を推定することができる。
本発明の路面状態変化推定装置において、 前記状態変化推定部は、 前 記検出された回転角加速度が所定値以上に至った後に検出される 2番目 のピーク値に基づいて路面状態の変化を推定するものとすることもでき る。 前述したように、 低 ·6路で駆動輪が空転した場合、 2番目のピーク は空転の収束の際のピークとなり、 このピーク値は、 路面状態に変化が なければ一定の範囲内となるが、 路面状態に変化が生じたときにはその 範囲を超える。 第 2ピーク値に基づいて路面状態の変化を推定すること ができるのは、 こうした現象の考察に基づく。 この態様の場合、 前記状 態変化推定部は、 前記 2番目のピーク値の絶対値が所定値以上のときに 路面の摩擦係数が急増したと推定するものとすることもできる。 こうす れば、 2番目のピーク値に基づいて路面状態の変化としての路面の摩擦 係数の急増、 即ち低 At路から高 路への変化を推定することができる。 本発明の自動車は、 車両の駆動輪に機械的に接続された駆動軸に動力 を出力可能な原動機と、 前記駆動軸の回転角加速度を検出する回転角加 速度検出部と、 該検出された回転角加速度の変化に基づいて路面状態の 変化を推定する状態変化推定部と、 運転者の操作と車両の走行状態とに 基づいたトルクが前記駆動軸に出力されるよう前記原動機を駆動制御す ると共に前記状態変化推定部により路面状態の変化が推定されたときに は前記駆動軸に出力されるトルクが所定時間制限されるよう前記原動機 を駆動制御する駆動制御部と、 を備えることを要旨とする。
この本発明の自動車では、 状態変化推定部により路面状態の変化が推 定されたときには、 運転者の操作と車両の走行状態に基づいたトルクが 駆動軸に出力されるよう駆動制御されている原動機を駆動軸に出力され るトルクが所定時間制限されるよう駆動制御する。 このように駆動軸に 出力されるトルクが制限されるから、 路面状態の変化に伴って車両に生 じ得るトルク脈動 (回転角加速度の脈動などを含む) を抑制することが できる。 なお、 「原動機」 としては、 制御における応答性が速い電動機 または電動発電機が好ましい。
こうした本発明の自動車において、 前記駆動制御部は、 前記路面状態 変化推定装置により路面状態の変化が推定されたときには、 該路面状態 の変化の推定の際に前記回転角加速度検出部によリ検出された回転角加 速度のピーク値に基づいて設定されるトルク制限値を用いて前記駆動軸 に出力されるトルクが制限されるよう駆動制御するものとすることもで きる。 路面状態の変化の推定の際の回転角加速度のピーク値は、 路面状 態の変化の程度をある程度反映するものと考えられるから、 このピーク 値に基づいて卜ルク制限値を設定することによりよリ適正な卜ルク制限 を実行することができる。 なお、 こうした態様では、 ピーク値が大きい ほど卜ルク制限値が大きくなる傾向で卜ルク制限値を設定することもで きる。 この態様の場合、 前記状態変化推定部は、 前記検出された回転角 加速度が所定値以上に至った際の該回転角加速度の時間変化における周 期が所定割合以上変化したときに路面状態が変化したと推定するものと したり、 前記状態変化推定部は、 前記検出された回転角加速度が所定値 以上に至った後に最初に検出される第 1 ピーク値に対して該第 1 ピーク 値の次に検出される反対側の第 2ピーク値の絶対値が所定割合以上変化 したときに路面状態が変化したと推定するものとしたり、 前記状態変化 推定部は、 前記検出された回転角加速度が所定値以上に至った後に検出 される 2番目のピーク値の絶対値が所定値以上のときに路面状態の変化 を推定するものとすることもできる。
本発明の第 1の路面状態変化推定方法は、 自動車が走行している路面 の状態の変化を推定する路面状態変化推定方法であって、 (a ) 前記車 両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、
( b ) 該検出された回転角加速度が所定値以上に至った際の該回転角加 速度の時間変化における周期が所定割合以上変化したときに路面状態が 変化したと推定する、 ことを要旨とする。
この本発明の第 1 の路面状態変化推定方法によれば、 駆動軸の回転角 加速度が所定値以上に至った際の回転角加速度の時間変化における周期 が所定割合以上変化したことにより路面状態の変化を推定する。 このよ うに駆動軸の回転角加速度の時間変化における周期の変化に基づいて路 面状態の変化を推定することができるのは、 上述したように、 駆動軸の 回転角加速度の時間変化における周期は、 路面状態に変化がなければ若 干の変化はあるものの急変は生じないが、 路面状態に変化が生じると急 変することに基づく。
本発明の第 2の路面状態変化推定方法は、 自動車が走行している路面 の状態の変化を推定する路面状態変化推定方法であって、 (a ) 前記車 両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、 ( b ) 該検出された回転角加速度が所定値以上に至った後に最初に検出 される第 1 ピーク値に対して該第 1 ピーク値の次に検出される反対側の 第 2ピーク値の絶対値が所定割合以上変化したときに路面状態が変化し たと推定する、 ことを要旨とする。
この本発明の第 2の路面状態変化推定方法によれば、 駆動軸の回転角 加速度が所定値以上に至った後に最初に検出される第 1 ピーク値に対し てこの第 1 ピーク値の次に検出される反対側の第 2ピーク値の絶対値が 所定割合以上変化したことにより路面状態の変化を推定する。 このよう に駆動軸の回転角加速度の第 1 ピーク値と第 2ピーク値とに基づいて路 面状態の変化を推定することができるのは、 前述したように、 路面状態 の変化が生じると、 駆動輪の空転開始直後の回転角加速度の第 1 ピーク 値に対する空転の収束の際の第 2ピーク値が大きく変化することに基づ 本発明の第 3の路面状態変化推定方法は、 自動車が走行している路面 の状態の変化を推定する路面状態変化推定方法であって、 (a ) 前記車 両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出し、 ( b ) 該検出された回転角加速度が所定値以上に至った後に検出される 2番目のピーク値の絶対値が所定値以上のときに路面状態が変化したと 推定する、 ことを要旨とする。
この本発明の第 3の路面状態変化推定方法によれば、 駆動軸の回転角 加速度が所定値以上に至った後に検出される 2番目のピーク値の絶対値 が所定値以上となることにより路面状態の変化を推定する。 このように 駆動軸の回転角加速度の 2番目のピーク値に基づいて路面状態の変化を 推定することができるのは、 前述しように、 路面状態の変化が生じると、 2番目のピーク値が路面状態の変化が生じていないときに比して大きく 現われることに基づく。 図面の簡単な説明
図 1 は、 本発明の一実施例である路面状態変化推定装置として機能す るモータ 1 2の制御装置 2 0を備える電気自動車 1 0の構成の概略を示 す構成図、
図 2は、 実施例の電子制御ュニッ卜 4 0により実行される路面状態変 化推定処理の一例を示すフローチヤ一卜、
図 3は、 路面状態に変化が生じなかったときの回転角加速度 aの時間 変化と路面状態に変化が生じたときの回転角加速度 αの時間変化との一 例を示す説明図、
図 4は、 トルク制限量設定マップの一例を示す説明図、
図 5は、 トルク上限値設定マップの一例を示す説明図、
図 6は、 電子制御ュニッ卜 4 0により実行されるモータ駆動制御ルー チンの一例を示すフローチヤ一卜、
図 7は、 要求トルク設定マップの一例を示す説明図、
図 8は、 電子制御ュニッ卜 4 0により実行されるスリップ状態判定処 理ルーチンの一例を示すフローチヤ一卜、
図 9は、 電子制御ュニッ卜 4 0により実行されるスリップ発生時制御 ルーチンの一例を示すフローチヤ一卜、
図 1 0は、 電子制御ユニット 4 0により実行されるスリップ収束時制 御ルーチンの一例を示すフローチヤ一卜、
図 1 1 は、 電子制御ユニット 4 0により実行されるトルク制限量設定 処理ルーチンの一例を示すフローチヤ一卜、
図 1 2は、 ハイブリッド型の自動車 1 1 0の構成の概略を示す構成図、 図 1 3は、 ハイプリッド型の自動車 2 1 0の構成の概略を示す構成図、 図 1 4は、 ハイプリッド型の自動車 3 1 0の構成の概略を示す構成図 である, 発明を実施するための最良の形態
次に、 本発明を実施するための最良の形態を実施例を用いて説明する。 図 1 は、 本発明の一実施例である路面状態変化推定装置として機能する モータ 1 2の制御装置 2 0を備える電気自動車 1 0の構成の概略を示す 構成図である。 実施例のモータ 1 2の制御装置 2 0は、 図示するように、 バッテリ 1 6からインバー夕回路 1 4を介して供給された電力を用いて 電気自動車 1 0の駆動輪 1 8 a, 1 8 bに接続された駆動軸に動力の出 力が可能なモータ 1 2を駆動制御する装置として構成されており、 モー タ 1 2の回転軸の回転角 0を検出する回転角センサ 2 2と、 電気自動車 1 0の走行速度を検出する車速センサ 2 4と、 駆動輪 1 8 a, 1 8 b (前輪) の車輪速と駆動輪 1 8 a, 1 8 bに従動して回転する従動輪 1 9 a, 1 9 b (後輪) の車輪速を検出する車輪速センサ 2 6 a, 2 6 b , 2 8 a , 2 8 bと、 運転者からの各種操作を検出する各種センサ (例え ば、 シフ卜レバー 3 1 のポジションを検出するシフ卜ポジションセンサ 3 2や, アクセルペダル 3 3の踏み込み量 (アクセル開度) を検出する アクセルペダルポジシヨンセンサ 3 4, ブレーキペダル 3 5の踏み込み 量 (ブレーキ開度) を検出するブレーキペダルポジションセンサ 3 6な ど) と、 装置全体をコントロールする電子制御ュニッ卜 4 0とを備える。 モータ 1 2は、 例えば、 電動機として機能すると共に発電機としても 機能する周知の同期発電電動機として構成され、 インバー夕回路 1 4は、 バッテリ 1 6からの電力をモータ 1 2の駆動に適した電力に変換する複 数のスイッチング素子により構成されている。 こうしたモータ 1 2ゃィ ンバ一夕回路 1 4の構成そのものは周知であり、 本発明の中核をなさな いから、 これ以上の詳細な説明は省略する。 電子制御ュニッ卜 4 0は、 C P U 4 2を中心としたマイクロプロセッ サとして構成されており、 C P U 4 2の他に処理プログラムを記憶した R O M 4 4と、 一時的にデータを記憶する R A M 4 6と、 入出力ポー卜 (図示せず) とを備える。 この電子制御ユニット 4 0には、 回転角セン サ 2 2により検出されたモータ 1 2の回転軸の回転角 0や、 車速センサ 2 4により検出された電気自動車 1 0の車速 V、 車輪速センサ 2 6 a, 2 6 b , 2 8 a , 2 8 bにより検出された駆動輪 1 8 a, 1 8 bの車輪 速 V f 1, V f 2および従動輪 1 9 a, 1 9 bの車輪速 V r 1, V r 2、 シフトポジションセンサ 3 2により検出されたシフトポジション、 ァク セルペダルポジションセンサ 3 4により検出されたアクセル開度 A c c、 ブレーキペダルポジションセンサ 3 6により検出されたブレーキ開度な どが入力ポー卜を介して入力されている。 また、 電子制御ユニット 4 0 からは、 モータ〗 2を駆動制御するインバータ回路 1 4のスイッチング 素子へのスィツチング制御信号などが出力ポー卜を介して出力されてい る。
次に、 こうして構成されたモータ 1 2の制御装置 2 0の動作、 特に、 走行中の路面状態の変化を推定する際の動作と、 この路面状態の変化の 推定結果を用いて行なわれる電気自動車 1 0の駆動輪 1 8 a, 1 8 が 空転してスリップした際のモータ 1 2の駆動制御とについて説明する。 まず、 路面状態の変化を推定する処理について説明し、 その後にモータ 1 2の駆動制御について説明する。
図 2は、 実施例の電子制御ュニッ卜 4 0により実行される路面状態変 化推定処理の一例を示すフローチヤ一卜である。 この処理は、 所定時間 毎 (例えば、 8 m s e c毎) に繰り返し実行される。 路面状態変化推定 処理が実行されると、 電子制御ユニット 4 0の C P U 4 2は、 まず、 回 転角センサ 2 2の回転角 0に基づいて算出されるモータ回転数 N mを入 力すると共に (ステップ S 1 0 0) 、 入力したモータ回転数 N mに基づ いて回転角加速度 αを計算する (ステップ S 1 0 2) 。 ここで、 回転角 加速度 αの計算は、 実施例では、 今回の処理で入力した現回転数 Nmか ら前回の処理で入力した前回回転数 N mを減じる (現回転数 N m—前回 回転数 N m) ことにより行なうものとした。 なお、 回転角加速度 αの単 位は、 回転数 N mの単位を 1分間あたりの回転数 [ r p m] で示すと、 実施例では、 本処理の実行時間間隔は 8 m s e cであるから、 [ r p m /8 m s e c ] となる。 勿論、 回転速度の時間変化率として示すことが できれば、 如何なる単位を採用するものとしても構わない。 また、 回転 角加速度 αおよび車輪速差 Δνは、 誤差を小さくするために、 それぞれ 今回のルーチンから過去数回 (例えば、 3回) に亘つて計算された回転 角加速度の平均および車輪速差の平均を用いるものとしても構わない。 次に、 路面状態変化判定フラグ F Cの値を調べる (ステップ S 1 0 4) 。 路面状態変化判定フラグ F Cは、 次のステップ S 1 0 6の回転角 加速度 αが駆動輪 1 8 a, 1 8 bの空転によるスリップが生じていると 判定するための閾値 a s I i pを超えたときに路面状態の変化を判定す る条件に至ったとして値 1が設定される (ステップ S 1 0 8) 。 即ち、 路面状態変化判定フラグ F Cが値 0のときには計算した回転角加速度 a を閾値 a s I i pと比較して (ステップ S 1 0 6 ) 、 回転角加速度 aが 閾値 a s I i p以下のときには本処理を終了し、 回転角加速度 aが閾値 a s I i pより大きいときには路面状態変化判定フラグ F Cに値 1 をセ ッ卜する (ステップ S 1 0 8) 。
こうして路面状態変化判定フラグ F Cに値 1がセッ卜されるかステツ プ S 1 0 4で路面状態変化判定フラグ F Cが値 1であると判定されると、 回転角加速度 aが第 1 ピークに至ったか否かを判定し (ステップ S 1 1 0) 、 第 1 ピークに至ったときには、 そのときの回転角加速度 aを第 1 ピーク角加速度 a; 1 としてセットする (ステップ S 1 1 2) 。 回転角加 速度 αの第 1 ピークは、 回転角加速度 αが閾値 a s I i pを超えてから 回転角加速度 αの時間微分値が正から負に至るときである。 第 1 ピーク 角加速度 a 1 をセッ卜すると、 回転角加速度 αが第 2ピークに至ったか 否かを判定し (ステップ S 1 1 4) 、 第 2ピークに至ったときには、 そ のときの回転角加速度 αに— 1 を乗じたものを第 2ピーク角加速度 α 2 としてセッ卜する (ステップ S 1 1 6) 。 ここで第 2ピークは、 第 1 ピ ークの直後に生じる負側のピークを意味する。 したがって、 第 2ピーク 角加速度 α 2をセッ卜するのに回転角加速度 αに— 1 を乗じるのは第 1 ピーク角加速度 α 1 と符号を揃えるためである。
第 1 ピーク角加速度 α 1 と第 2ピーク角加速度 α 2とがセッ卜される と、 第 2ピーク角加速度 α 2と閾値 a r e f とを比較すると共に (ステ ップ S 1 1 8 ) 、 第 2ピーク角加速度 α 2と定数 kを乗じた第 1 ピーク 角加速度 α 1 とを比較する (ステップ S 1 2 0) 。 ここで、 閾値 r e f は、 空転によるスリップが生じたときの第 1 ピーク角加速度 α 1 にセッ 卜され得る通常範囲の値により大きな値として設定されている。 例えば、 対象となる電気自動車 1 0を低 t路で空転によるスリップを生じさせる 実験を行なったときに第 1 ピーク角加速度 α 1 にセッ卜され得る最大の 値が 1 0 0 [ r p m/8 m s e c] であつたときには、 閾値 a r e f に は 1 2 0や Ί 4 0などの値を用いることができる。 また、 定数 kは、 値 1以上の値として設定されており、 例えば、 1 . 2や 1 . 4などのよう に設定することもできる。
第 2ピーク角加速度 α 2が閾値 Q: r e f 未満のときで第 2ピーク角加 速度 0: 2が定数 kを乗じた第 1 ピーク角加速度 α 1以下のときには、 路 面状態の変化は推定されないとして路面状態変化判定フラグ F Cに値 0 をセットし (ステップ S 1 2 2) 、 この路面状態変化推定処理を終了し、 第 2ピーク角加速度 ο; 2が閾値 a r e f 以上のときや第 2ピーク角加速 度な 2が閾値 a r e f 未満であっても第 2ピーク角加速度 α 2が定数 k を乗じた第 1 ピーク角加速度 α〗 より大きいときには、 路面状態の変化、 即ち低 路から高/ ^路へ移行したと判定する (ステップ S 1 2 4 ) 。 低 路で駆動輪 1 8 a, 1 8 bが空転した場合、 第 1 ピークは空転開始直 後のピークとなり、 第 2ピークは空転の収束の際のピークとなる。 路面 状態に変化がなければ空転の収束の際に通常生じる第 2ピークの値は路 面状態 (摩擦係数) や車両にもよるが一定の範囲内となるが、 路面状態 に変化が生じたとき、 即ち低 t路から高 路に変化したときには、 こう した空転の収束の際の第 2ピーク角加速度 α 2がその範囲を超える。 し たがって、 第 2ピーク角加速度 α 2が空転によるスリップが生じたとき の第 1 ピーク角加速度 α 1 にセッ卜され得る通常範囲の値により大きな 値として設定された閾値 a r e f 以上のときには、 路面状態の変化 (低 t路から高 t路への移行) を判定することができるのである。 また、 第 2ピーク角加速度 α 2が閾値 a r e f 未満であっても第 2ピーク角加速 度 α 2が定数 kを乗じた第 1 ピーク角加速度 α 1 より大きいときに路面 状態の変化を推定できるのは、 路面状態に変化がなければ空転の収束の 際に通常生じる第 2ピークの値は第 1 ピークの値以下となるのが通常で あることが実験により確かめられたことに基づく。
図 3に路面状態に変化が生じなかったときの回転角加速度 αの時間変 化と路面状態に変化が生じたときの回転角加速度 αの時間変化との一例 を示す。 図示するように、 路面状態に変化が生じなかったときには、 第 2ピーク角加速度 α 2は閾値 a r e f より小さいだけでなく第 1 ピーク 角加速度 a 1 より小さくなるが、 路面状態に変化が生じたとき (低 μ路 から高 At路へ移行したとき) には、 急峻な回転角加速度 0;の負側への変 化が認められると共に第 2ピーク角加速度 a 2は第 1 ピーク角加速度 a 1 に比較して大きくなるだけでなく場合によっては閾値 a r e f ょリ大 きくなる。 実施例では、 路面状態の変化、 即ち空転におけるスリップ中 に低 路から高 ^路へ移行した状態変化を第 2ピーク角加速度 α 2と閾 値 a r e f との比較によって推定すると共に第 2ピーク角加速度 α 2が 閾値 a; r e f 未満のときには第 2ピーク角加速度 α 2と値 1以上の定数 kを乗じた第 1 ピーク角加速度 α Ί との比較によって推定するのである。 こうして路面状態の変化が推定ざれたときには、 所定時間に亘つてモ 一夕 1 2から出力される卜ルクを制限して (ステップ S 1 2 6) 、 路面 状態変化推定処理を終了する。 トルクの制限は、 実施例では、 第 2ピー ク角加速度 a 2に基づいて例えば図 4に例示するトルク制限量設定マツ プにより トルク制限量 <5 c h a n g eを設定し、 このトルク制限量 <5 c h a n g eに基づいて図 5に例示するトルク上限値設定マップにより 卜 ルク上限値 Tm a xを導いて行なわれる。 卜ルク制限量 δ c h a n g e は、 図 4に示すように、 第 2ピーク角加速度 α 2が大きいほど大きくな るよう設定され、 トルク上限値 Tm a xは、 図 5に例示するように、 卜 ルク制限量 δ c h a n g eが大きいほど小さくなるよう設定されている から、 第 2ピーク角加速度 α 2が大きくなるほど小さな卜ルク上限値 Τ m a xが設定されることになる。 こうしたトルク上限値 Tm a xでモー 夕 1 2からのトルクを制限する卜ルク制限を所定時間に亘つて行なうの は、 路面状態の変化に伴って生じ得る回転角加速度 αの振動、 即ち車両 の前後方向の振動を抑制するためである。 所定時間は、 こうした路面状 態の変化を伴う実験を行なって振動が収束する時間を計測して設定する ことができる。 図 3の路面状態に変化が生じたときの回転角加速度 αの 時間変化における破線は、 こうした所定時間に亘るトルク制限を行なわ なかったときの回転角加速度 αの時間変化を示す。
次に、 この路面状態の変化の推定結果を用いて行なわれるモータ 1 2 の駆動制御の一例について説明する。 図 6は、 電子制御ュニッ卜 40に より実行されるモータ駆動制御ルーチンの一例を示すフローチヤ一卜で ある。 このルーチンは、 所定時間毎 (例えば、 8 m s e c毎) に繰り返 し実行される。
モータ駆動制御ルーチンが実行されると、 電子制御ユニット 4 0の C P U 4 2は、 まず、 アクセルペダルポジションセンサ 3 4からのァクセ ル開度 A c cや車速センサ 2 4からの車速 V、 車輪速センサ 2 6 a, 2 6 b, 2 8 a, 2 8 bからの車輪速 V f , V r、 回転角センサ 2 2の回 転角 Θに基づいて算出されるモータ回転数 Nmなどを入力する処理を行 なう (ステップ S 2 0 0 ) 。 ここで、 車輪速 V f , V rは、 実施例では、 車輪速センサ 2 6 a, 2 6 bおよび車輪速センサ 2 8 a, 2 8 bにより 各々検出される車輪速 V f 1, V f 2および車輪速 V r 1, V r 2の平 均値を用いるものとした。 また、 車速 Vについては、 実施例では、 車速 センサ 2 4により検出されたものを用いたが、 車輪速センサ 2 6 a, 2 6 b, 2 8 a, 2 8 bにより検出される車輪速 V f 1, V f 2 , V r 1 , V r 2から算出するものとしても構わない。
次に、 入力したアクセル開度 A c cと車速 Vとに基づいてモータ 1 2 の要求卜ルク Tm *を設定する (ステップ S 2 0 2 ) 。 モータ要求卜ル ク Tm *の設定は、 実施例では、 アクセル開度 A c cと車速 Vとモータ 要求卜ルク Tm *との関係を予め求めて要求卜ルク設定マップとして R OM 4 4に記憶しておき、 アクセル開度 A c cと車速 Vとが与えられる と、 マップから対応するモ一夕要求トルク Tm *を導出するものとした。 このマップの一例を國 7に示す。
続いて、 ステップ S 2 0 0で入力したモータ回転数 Nmに基づいて回 転角加速度 αを計算し (ステップ S 2 0 4 ) 、 計算した回転角加速度 α に基づいて駆動輪 1 8 a, 1 8 bのスリップ状態を判定する (ステップ S 2 0 6 ) 。 このスリップ状態の判定は、 図 8のスリップ状態判定処理 ルーチンに基づいて行なわれる。 以下、 図 6のモータ駆動制御ルーチン の処理の説明を一旦中断し、 図 8のスリップ状態判定処理ルーチンの処 理を説明する。 スリップ状態判定処理ルーチンが実行されると、 電子制 御ユニット 4 0の C P U 4 2は、 図 6のルーチンのステップ S 2 0 4で 計算された回転角加速度 αが、 空転によるスリップが発生したとみなす ことのできる閾値 a s I i pを超えているか否かを判定する (ステップ S 2 2 0 ) 。 回転角加速度 aが閾値 a s I i pを超えていると判定され たときには、 駆動輪 1 8 a, 1 8 bにスリップが発生したと判断して、 スリップの発生を示すスリップ発生フラグ F 1 を値 1 にセッ卜して (ス テツプ S 2 2 2 ) 、 本ルーチンを終了する。 一方、 回転角加速度 αが閾 値 a s I i pを超えていないと判定されたときには、 次にスリップ発生 フラグ F 1の値を調べる (ステップ S 2 2 4 ) 。 スリップ発生フラグ F Ίが値 1 のときには、 回転角加速度 aが負の値であり且つそれが所定時 間継続しているか否かを判定し (ステップ S 2 2 6 ) 、 回転角加速度 a が負の値であり且つそれが所定時間継続したと判定されたときには駆動 輪 1 8 a, 1 8 bに発生したスリップは収束したと判断してスリップ収 束フラグ F 2に値 1をセットして (ステップ S 2 2 8 ) 、 本ルーチンを 終了する。 スリップ発生フラグ F 1が値 1であって、 回転角加速度 αが 負の値でないと判定されたり、 回転角加速度 αが負の値であってもそれ が所定時間継続していないと判定されたときには、 発生したスリップは 未だ収束していないと判断してそのまま本ルーチンを終了する。
図 6のモータ駆動制御ルーチンに戻って、 こうした図 8のスリップ状 態判定処理ルーチンによリスリップ発生時ゃスリップ収束時が判定され ると、 判定結果に応じた処理 (ステップ S 2 1 0, S 2 1 2 ) 、 即ち、 スリップ発生フラグ F 1が値 1 でスリップ収束フラグ F 2が値 0のスリ ップ発生時と判定されたときにはスリップ発生時処理 (ステップ S 2 1 0) 、 スリップ発生フラグ F 1 とスリップ収束フラグ F 2とが共に値 1 の発生したスリップが収束していると判定されたときにはスリップ収束 時処理 (ステップ S 2 1 2) を行なう。 これらの処理については後述す る。
そして、 図 2の路面状態変化推定処理により所定時間のトルク制 |j艮の 実行が指示されているか否か、 即ちトルク制限量 <5 c h a n g eが設定 されているかを判定し (ステップ S 2 1 4) 、 トルク制限量 <5 c h a n g eが設定されていないときには、 ダリップ時にはステップ S 2 02で 設定されたモータ要求卜ルク Tm *を用いてモータ 1 2を駆動制御して (ステップ S 2 20 ) 、 このルーチンを終了する。 トルク制限量 (5 c h a n g eが設定されているときには、 トルク制限量 δ c h a n g eと図 5の卜ルク上限値設定マップとにより導き出される制限値でモータ要求 トルク Tm *を制限して (ステップ S 2 1 6, S 2 1 8) 、 制限された モータ要求トルク Tm *を用いてモータ 1 2を駆動制御して (ステップ S 2 20 ) 、 このルーチンを終了する。 こうしたトルク制限により、 上 述したように、 路面状態の変化に伴って生じ得る回転角加速度 αの振動、 即ち車両の前後方向の振動を抑制することができる。
ステップ S 2 1 0のスリップ発生時処理は、 図 9に例示するスリップ 発生時制御ルーチンにより行なわれる。 このルーチンが実行されると、 まず、 回転角加速度ながピーク値 a p e a kを超えているか否かを判定 し (ステップ S 2 3 0 ) 、 回転角加速度 αがピーク値 a p e a kを超え ていると判定されたときにはピーク値 a p e a kの値を回転角加速度 α に更新する処理を行なう (ステップ S 2 3 2 ) 。 ここで、 ピーク値 α ρ e a kは、 基本的には、 スリップにより回転角加速度 αが上昇してピー クを示すときの回転角加速度の値であり、 初期値として値 0が設定され ている。 したがって、 回転角加速度 αが上昇してピークに達するまでの 間はピーク値 α p e a kを回転角加速度 αの値に順次更新していき、 回 転角加速度 0;がピークに達した時点でその回転角加速度 αがピーク値 α p e a kとして固定されることになる。 こうしてピーク値 a p e a kが 設定されると、 このピーク値 a; p e a kに基づいてモータ 1 2が出力で きるトルクの上限であるトルク上限値 Tm a xを設定する処理を行なう (ステップ S 2 3 4 ) 。 この処理は、 実施例では、 図 5に例示するトル ク上限値設定マップの横軸を回転角加速度 αに置き換えて用いることに より行なった。 このマップでは、 図示するように、 回転角加速度 αが大 きくなるほどトルク上限値 Tm a xは小さくなる特性を有している。 し たがって、 回転角加速度 αが上昇してピーク値 a p e a kが大きくなる ほど、 即ちスリップの程度が大きいほど、 卜ルク上限値 Tm a Xとして 小さな値が設定され、 その分モータ 1 2から出力されるトルクが制限さ れることになる。 トルク上限値 Tm a Xが設定されると、 モータ要求卜 ルク Tm *を設定したトルク上限値 Tm a Xで制限して (ステップ S 2 3 6, S 2 3 8) 、 本ルーチンを終了する。 こうした処理により、 スリ ップ発生時においてモータ 1 2から出力されるトルクは、 スリップを抑 制するための低いトルク (具体的には、 図 5のマップにおいて回転角加 速度のピーク値 a p e a kに対応するトルク上限値 Tm a x) に制限さ れるから、 スリップを効果的に抑制することができる。
ステップ S 2 1 2のスリップ収束時処理は、 図 1 0に例示するスリッ プ収束時制御ルーチンにより行なわれる。 このルーチンが実行されると、 まず、 トルク制限量 (5 1 (単位は、 回転角加速度と同じ単位の [ r p m /8 m s e c ] ) を入力する処理を行なう (ステップ S 24 0) 。 ここ で、 トルク制限量 <5 1 は、 スリップ発生時制御において回転角加速度の ピーク値 a p e a kに対応して設定された卜ルク上限値 Tm a xを引き 上げてトルク制限から復帰させる際の復帰の度合いを設定するために用 いるパラメータであり、 図 1 1のトルク制限量設定処理ルーチンに基づ いて設定される。 このトルク制御量設定処理ルーチンは、 図 8に例示す るスリップ状態判定処理ルーチンのステップ S 2 2 2でスリップ発生フ ラグ F 1 に値 1がセットされたとき (即ち、 回転角加速度 αが閾値 a s
1 i pを超えたとき) に実行される。 このルーチンでは、 回転角センサ
2 2により検出された回転角 Θに基づいて算出されたモータ回転数 N m を入力し、 入力したモータ回転数 N mに基づいて回転角加速度 aを計算 し、 回転角加速度 aが閾値 a s I i pを超えた時点からの回転角加速度 atの時間積分値 a i n tを計算する処理を回転角加速度 aが閾値 a s I i p未満になるまで繰り返す (ステップ S 2 6 0〜S 2 6 4 ) 。 回転角 加速度 aの時間積分値 a i n tの計算は、 実施例では、 次式 ( 1 ) を用 いて行なうものとした。 ここで、 △ tは本ルーチンのステップ S 2 6 0 〜S 2 6 6の繰り返しの実行時間間隔であり、 実施例では 8 m s e cで ある。 a i n t «-a i n t + ( — s I i p) · Δ ΐ ( 1 ) そして、 回転角加速度 aが閾値 a s l i p未満となると、 計算した時 間積分値 a i n tに所定の係数 k 1 を乗じて卜ルク制限量 <5 1 を設定し て (ステップ S 2 6 8 ) 、 本ルーチンを終了する。 なお、 このルーチン では、 トルク制限量 <5 1 は、 所定の係数 k 1 を用いて計算により求めた が、 トルク上限値 Tm a Xと時間積分値 a i n tとの関係を示すマップ を用意しておき、 計算された時間積分値 a i n tからマップを適用して 導出するものとしても構わない。
図 1 0のスリップ収束時制御ルーチンに戻って、 こうして設定された トルク制限量 <5 1 を入力すると、 卜ルク制限量 δ 1 を解除する解除要求 を入力し (ステップ S 2 4 2 ) 、 解除要求があつたか否かを判定する (ステップ S 2 4 4 ) 。 この処理は、 トルク制限からの復帰の度合いを 設定する際に用いるパラメータである卜ルク制限量 <5 〗 を解除 (復帰の 度合いを徐々に大きく) するための要求の入力があつたか否かを判定す る処理であり、 実施例では、 本ルーチンが最初に実行されてから所定の 待機期間が経過する度にゼロから一定の増加量だけ増加していくように 設定される解除量 Δ 6 1 による解除の要求が入力されるものとした。 な お、 この待機期間や解除量 Δ 1の増加量は、 運転者自らによる解除の 要求、 例えば、 運転者が欲するトルクの出力要求を表わすアクセル開度 の大きさに応じて変更するものとしても構わない。 解除要求が判定され ると、 ステップ S 2 4 0で入力した卜ルク制限量 <5 1 から解除量 Δ δ 1 を減じて卜ルク制限量 <5 1 を解除する (ステップ S 2 4 6 ) 。 解除要求 が無いと判定されたとき、 即ち本ルーチンの実行が開始されてから前述 の所定の待機期間が経過するまでは、 卜ルク制限量 (5 1 の解除は行なわ れない。
続いて、 トルク制限量 δ 1 に基づいてモータ 1 2が出力できるトルク の上限であるトルク上限値 T m a Xを図 5の卜ルク上限値設定マップを 用いて設定し (ステップ S 2 4 8 ) 、 設定したトルク上限値 T m a Xで モータ要求トルク T m *を制限する (ステップ S 2 5 0, S 2 5 2 ) 。 そして、 卜ルク制限量 1 の値 0以下に解除されたか否かを判定し (ス テツプ S 2 5 4 ) 、 値 0以下に解除されたときにはスリップ発生フラグ F 1 とスリップ収束フラグ F 2とを値 0にリセッ卜して (ステップ S 2 5 6 ) 、 本ルーチンを終了する。 このように、 回転角加速度 αの時間積 分値に応じて設定されたトルク制限量 δ 1 に基づいてモータ 1 2の卜ル クを制御するのは、 発生したスリップが収束したときに、 発生したスリ ップの状況に応じて適切な量のトルクを復帰させるためである。 即ち、 回転角加速度 αの時間積分値が大きく、 再スリップが発生しやすい状況 では、 スリップが収束したときに復帰させるトルクを低くし、 回転角加 速度 αの時間積分値が小さく、 再スリップが発生しにくい状況では、 ス リップが収束したときに復帰させる卜ルクを高くすることにより、 過剰 なトルクの制限を伴うことなくより確実に再スリップの発生を防止する ことができるのである。
こうしたステップ S 2 1 0のスリップ発生時処理やステップ S 2 1 2 のスリップ収束時処理によりモータ 1 2のモータ要求卜ルク T m *が制 限されても、 図 6のステップ S 2 1 4〜S 2 1 8で明らかなように、 路 面状態の変化が推定されたときには、 制限されたモータ要求トルク T m *は路面状態の変化の推定の結果により設定されたトルク制限量 (5 c h a n g eに基づく トルク上限値よる制限も受けることになる。 この結果、 スリップ発生時ゃスリップ収束時に拘わらず、 路面状態が変化したとき に生じ得る回転角加速度 αの振動、 即ち車両の前後方向の振動を抑制す ることができる。
以上説明した実施例の電気自動車 1 0によれば、 空転によるスリップ が生じた際の駆動輪 1 8 a, 1 8 bの車軸に接続された駆動軸の回転角 加速度 αの第 2ピーク角加速度 α 2だけに基づいて或いは第 1 ピーク角 加速度 α 〗 と第 2ピーク角加速度 α 2とに基づいて路面状態の変化を推 定することができる。 また、 実施例の電気自動車 1 0によれば、 路面状 態の変化が推定されたときには、 所定時間に亘つてモータ 1 2から出力 されるトルクを制限するから、 路面状態が変化したときに生じ得る回転 角加速度 αの振動 (車両の前後方向の振動) を抑制することができる。 実施例の電気自動車 1 0では、 第 2ピーク角加速度 α 2が閾値 a r e f 以上のときと第 2ピーク角加速度 α 2が閾値 a r e f 未満でも第 2ピ ーク角加速度 a 2が定数 kを乗じた第 1 ピーク角加速度 a 1 より大きい ときに路面状態の変化を推定するものとしたが、 第 2ピーク角加速度 a 2が閾値 a r e f 以上のときだけを路面状態が変化したと推定するもの としたり、 第 2ピーク角加速度 a 2の大きさに拘わらず、 第 2ピーク角 加速度 a 2が定数 kを乗じた第 1 ピーク角加速度 a 1 より大きいときに 路面状態が変化したと推定するものとしてもよい。
実施例の電気自動車 1 0では、 第 2ピーク角加速度 at 2や第 1 ピーク 角加速度 a 1 に基づいて路面状態の変化を推定したが、 図 3に示すよう に、 第 1 ピーク角加速度 a 1を含む回転角加速度 aの時間変化における 第 1 の周期と第 2ピーク角加速度 a 2を含む回転角加速度 aの時間変化 における第 2の周期とが異なることに基づいて路面状態の変化を推定す るものとしてもよい。 例えば、 第 2の周期が値 1 より小さな定数 rを乗 じた第 1 の周期より小さいときに低 路から高 路へ移行したと推定す るものとしてもよい。
実施例の電気自動車 1 0では、 路面状態の変化が推定されたときには、 第 2ピーク角加速度 a 2とトルク制限量設定マップとを用いてトルク制 限量 <5 c h a n g eを設定し、 設定した卜ルク制限量 S c h a n g eと トルク上限値設定マップを用いて卜ルク上限値 T m a xを導き出してモ 一夕 1 2のトルク制限を行なうものとしたが、 第 2ピーク角加速度 ο; 2 からトルク上限値 T m a xを直接導き出すマップを作成してトルク上限 値 T m a Xを導き出してモータ 1 2のトルク制限を行なうものとしても よい。
実施例の電気自動車〗 0では、 路面状態の変化が推定されたときには、 第 2ピーク角加速度 α 2に基づいて卜ルク上限値 T m a xを導き出すも のとしたが、 第 1 ピーク角加速度 a 1 と第 2ピーク角加速度 α 2の偏差 や第 1 ピーク角加速度 α 〗 と第 2ピーク角加速度 α 2との割合, 第 1 ピ ーク角加速度 α 1 を含む回転角加速度 αの時間変化における周期と第 2 ピーク角加速度 α 2を含む回転角加速度 αの時間変化における周期との 割合などに基づいてトルク上限値 T m a xを導き出すものとしても差し 支えない。
実施例では、 駆動輪 1 8 a, 1 8 bに接続された駆動軸に直接的に動 力の出力が可能に機械的に接続されたモータ 1 2を備える自動車 1 0に おけるモータ 1 2の制御として説明したが、 駆動軸や車軸に直接的に動 力の出力が可能な電動機を備える車両であれば、 如何なる構成の車両に 適用するものとしても構わない。 例えば、 エンジンと、 エンジンの出力 軸に接続されたジェネレータと、 ジェネレータからの発電電力を充電す るバッテリと、 駆動輪に接続された駆動軸に機械的に接続されバッテリ からの電力の供給を受けて駆動するモータとを備えるいわゆるシリーズ 型のハイブリッド自動車に適用するものとしてもよい。 この場合、 モー 夕は駆動軸に取り付けられる必要はなく、 車軸に取り付けるものとして もよいし、 いわゆるホイールインモータのように駆動輪に直接取り付け るものとしてもよい。 また、 図 1 2に示すように、 エンジン】 1 1 と、 エンジン 1 1 1 に接続されたブラネタリギヤ 1 1 7と、 プラネ夕リギヤ 1 1 7に接続された発電可能なモータ 1 1 3と、 同じくプラネタリギヤ 1 1 7に接続されると共に駆動輪に接続された駆動軸に直接動力が出力 可能に駆動軸に機械的に接続されたモータ 1 1 2とを備えるいわゆる機 械分配型のハイブリッド自動車 1 1 0に適用することもできるし、 図 1 3に示すように、 エンジンの 2 1 1 の出力軸に接続されたインナーロー 夕 2 1 3 aと駆動輪 2 1 8 a , 2 1 8 bに接続された駆動軸に取り付け られたアウターロータ 2 1 3 bとを有しインナーロータ 2 1 3 aとァゥ 夕一口一タ 2 1 3 bとの電磁的な作用により相対的に回転するモータ 2 1 3と、 駆動軸に直接動力が出力可能に駆動軸に機械的に接続されたモ 一夕 2 1 2と備えるいわゆる電気分配型のハイプリッド自動車 2 1 0に 適用することもできる。 あるいは、 図 1 4に示すように、 駆動輪 3 1 8 a, 3 1 8 bに接続された駆動軸に変速機 3 1 4 (無段変速機や有段の 自動変速機など) を介して接続されたエンジン 3 1 1 と、 エンジン 3 1 1 の後段であって駆動軸に変速機 3 1 4を介して接続されたモータ 3 1 2 (または駆動軸に直接接続されたモータ) とを備えるハイブリッド自 動車 3 1 0に適用することもできる。 このとき、 駆動輪にスリップが発 生したときの制御としては、 トルクの出力応答性などから主に駆動軸に 機械的に接続されたモータを制御することによリ駆動軸に出力される卜 ルクを制限するが、 このモータの制御と協調して他のモータを制御した リエンジンを制御したりするものとしてもよい。
実施例では、 走行中の路面状態の変化を推定する路面状態変化推定装 置として機能する制御装置 2 0の形態として説明したが、 走行中の路面 状態の変化を推定する路面状態変化推定方法の形態としてもよい。
以上、 本発明の実施の形態について実施例を用いて説明したが、 本発 明はこうした実施例に何等限定されるものではなく、 本発明の要旨を逸 脱しない範囲内において、 種々なる形態で実施し得ることは勿論である。 産業上の利用の可能性
自動車産業等に利用することができる。

Claims

請求の範囲
1 . 自動車に搭載されて該自動車が走行している路面の状態の変化を推 定する路面状態変化推定装置であって、
前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を検出 する回転角加速度検出部と、
該検出された回転角加速度の変化に基づいて路面状態の変化を推定す る状態変化推定部と、
を備える路面状態変化推定装置。
2 . 請求項 1記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った際の該回転角加速度の時間変化における周期の変化に基づいて路 面状態の変化を推定する
路面状態変化推定装置。
3 . 請求項 2記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記回転角加速度の時間変化における周期が 所定割合以上変化したときに路面状態が変化したと推定する
路面状態変化推定装置。
4 . 請求項 3記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った後に最初に検出されるピークの際の周期に対して該ピークの次に 検出される反対側のピークの際の周期が前記所定割合以上短いときに路 面の摩擦係数が急増したと推定する
路面状態変化推定装置。
5 . 請求項 1記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った後に最初に検出される第 1 ピーク値と該第〗 ピーク値の次に検出 される反対側の第 2ピーク値とに基づいて路面状態の変化を推定する 路面状態変化推定装置。
6 . 請求項 5記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記第 1 ピーク値に対して前記第 2ピーク値 の絶対値が所定割合以上変化したときに路面状態が変化したと推定する 路面状態変化推定装置。
7 . 請求項 6記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記第 1 ピーク値に対して前記第 2ピーク値 の絶対値が前記所定割合以上大きいときに路面の摩擦係数が急増したと 推定する
路面状態変化推定装置。
8 . 請求項 1記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った後に検出される 2番目のピーク値に基づいて路面状態の変化を推 定する
路面状態変化推定装置。
9 . 請求項 8記載の路面状態変化推定装置であって、
前記状態変化推定部は、 前記 2番目のピーク値の絶対値が所定値以上 のときに路面の摩擦係数が急増したと推定する
路面状態変化推定装置。
1 0 . 自動車であって、
車両の駆動輪に機械的に接続された駆動軸に動力を出力可能な原動機 と、
前記駆動軸の回転角加速度を検出する回転角加速度検出部と、 該検出された回転角加速度の変化に基づいて路面状態の変化を推定す る状態変化推定部と、
運転者の操作と車両の走行状態とに基づいたトルクが前記駆動軸に出 力されるよう前記原動機を駆動制御すると共に前記状態変化推定部によ リ路面状態の変化が推定されたときには前記駆動軸に出力されるトルク が所定時間制限されるよう前記原動機を駆動制御する駆動制御部と、 を備える自動車。
1 1 . 請求項 1 0記載の自動車であって、
前記駆動制御部は、 前記状態変化推定部により路面状態の変化が推定 されたときには、 該路面状態の変化の推定の際に前記回転角加速度検出 部により検出された回転角加速度のピーク値に基づいて設定される卜ル ク制限値を用いて前記駆動軸に出力されるトルクが制限されるよう駆動 制御する
自動車。
1 2 . 請求項 1 1記載の自動車であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った際の該回転角加速度の時間変化における周期が所定割合以上変化 したときに路面状態が変化したと推定する
自動車。
1 3 . 請求項 1 1記載の自動車であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った後に最初に検出される第 1 ピーク値に対して該第 1 ピーク値の次 に検出される反対側の第 2ピーク値の絶対値が所定割合以上変化したと きに路面状態が変化したと推定する
自動車。
1 4 . 請求項 1 1記載の自動車であって、
前記状態変化推定部は、 前記検出された回転角加速度が所定値以上に 至った後に検出される 2番目のピーク値の絶対値が所定値以上のときに 路面状態の変化を推定する
自動車。
1 5. 自動車が走行している路面の状態の変化を推定する路面状態変化 推定方法であって、
(a) 前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を 検出し、
( b) 該検出された回転角加速度が所定値以上に至った際の該回転角加 速度の時間変化における周期が所定割合以上変化したときに路面状態が 変化したと推定する、
路面状態変化推定方法。
1 6. 自動車が走行している路面の状態の変化を推定する路面状態変化 推定方法であって、
(a) 前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を 検出し、
(b) 該検出された回転角加速度が所定値以上に至った後に最初に検出 される第 1 ピーク値に対して該第 1 ピーク値の次に検出される反対側の 第 2ピーク値の絶対値が所定割合以上変化したときに路面状態が変化し たと推定する、
路面状態変化推定方法。
1 7. 自動車が走行している路面の状態の変化を推定する路面状態変化 推定方法であって、
(a) 前記車両の駆動輪に機械的に接続された駆動軸の回転角加速度を 検出し、
(b) 該検出された回転角加速度が所定値以上に至った後に検出される 2番目のピーク値の絶対値が所定値以上のときに路面状態が変化したと 推定する、 路面状態変化推定方法 <
PCT/JP2003/007919 2002-08-29 2003-06-23 路面状態の変化を推定する装置や方法および自動車 WO2004022378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003243949A AU2003243949A1 (en) 2002-08-29 2003-06-23 Device, method, and car for estimating variation of state of road surface
US10/525,871 US20050246087A1 (en) 2002-08-29 2003-06-23 Device, method, and car for estimating variation of state of road surface
DE10393181T DE10393181B4 (de) 2002-08-29 2003-06-23 Vorrichtung zum Abschätzen einer Strassenoberflächen-Zustandsänderung, entsprechendes Verfahren sowie Kraftfahrzeug mit dieser Vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-251361 2002-08-29
JP2002251361A JP3855886B2 (ja) 2002-08-29 2002-08-29 路面状態変化推定装置およびこれを搭載する自動車

Publications (1)

Publication Number Publication Date
WO2004022378A1 true WO2004022378A1 (ja) 2004-03-18

Family

ID=31972676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007919 WO2004022378A1 (ja) 2002-08-29 2003-06-23 路面状態の変化を推定する装置や方法および自動車

Country Status (6)

Country Link
US (1) US20050246087A1 (ja)
JP (1) JP3855886B2 (ja)
CN (2) CN1931630B (ja)
AU (1) AU2003243949A1 (ja)
DE (1) DE10393181B4 (ja)
WO (1) WO2004022378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400331C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626481B2 (ja) * 2005-10-25 2011-02-09 トヨタ自動車株式会社 車輌の駆動力制御装置
IL174061A0 (en) * 2006-03-02 2006-08-01 Amihud Rabin Safety control system for electric vehicle
US7957881B2 (en) * 2006-10-04 2011-06-07 Toyota Jidosha Kabushiki Kaisha Vehicle and method of controlling driving force for the vehicle based on detected slip of the drive wheel
JP5047822B2 (ja) * 2008-01-22 2012-10-10 株式会社アドヴィックス 車両の車体速度演算装置
JP5531730B2 (ja) * 2010-03-31 2014-06-25 トヨタ自動車株式会社 車両の制御装置
DE102010030346A1 (de) * 2010-06-22 2011-12-22 Zf Friedrichshafen Ag Verfahren zur Fahrbetriebssteuerung eines Kraftfahrzeugs
DE102011100814A1 (de) 2011-05-06 2012-11-08 Audi Ag Einrichtung zur Antriebsschlupfregelung für ein Fahrzeug mit elektromotorischem Fahrzeugantrieb
JP5990946B2 (ja) * 2012-03-13 2016-09-14 日産自動車株式会社 エンジン制御装置
JP5979246B2 (ja) * 2012-12-11 2016-08-24 トヨタ自動車株式会社 車両の状態検出装置
ITMI20130983A1 (it) * 2013-06-14 2014-12-15 Pirelli Metodo e sistema per stimare l'attrito potenziale tra un pneumatico per veicoli ed una superficie di rotolamento
DE102014225085A1 (de) * 2014-12-08 2016-06-09 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Ermittlung des Reibwertes einer Fahrbahnoberfläche
CN105946826B (zh) * 2016-05-10 2018-07-06 南京理工大学 无需轮速信息的车辆防滑控制方法、控制系统以及车辆
JP6673766B2 (ja) * 2016-06-30 2020-03-25 株式会社ブリヂストン 路面状態判別方法
KR20200029010A (ko) 2017-07-18 2020-03-17 인3바이오 리미티드 합성 단백질 및 그 치료학적 용도
KR102689881B1 (ko) * 2019-11-12 2024-08-01 현대자동차주식회사 친환경 차량 및 그 모터 토크 제어 방법
JP7449128B2 (ja) 2020-03-11 2024-03-13 株式会社Subaru 車両用制御装置
US20230184563A1 (en) * 2021-12-14 2023-06-15 GM Global Technology Operations LLC Connected vehicle-based road surface quality determination

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130078A (ja) * 1992-10-20 1994-05-13 Mitsubishi Motors Corp 車輪加速度検出方法及び路面判定方法
JPH10299529A (ja) * 1997-04-28 1998-11-10 Mitsubishi Motors Corp 路面摩擦係数推定装置
JPH1120654A (ja) * 1997-06-27 1999-01-26 Hino Motors Ltd 路面摩擦係数推定装置および方法
JP2001163202A (ja) * 1999-12-08 2001-06-19 Sumitomo Rubber Ind Ltd 路面摩擦係数判定装置および方法
JP2001247027A (ja) * 2000-03-03 2001-09-11 Sumitomo Rubber Ind Ltd 路面摩擦係数判定装置および方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674320A (en) * 1970-07-15 1972-07-04 Bendix Corp Adaptive braking control system
JPS60596A (ja) * 1983-06-16 1985-01-05 株式会社デンソー 路面状態識別装置
US4837727A (en) * 1985-03-04 1989-06-06 Nippon Soken, Inc. Road surface detecting device for vehicle
JPH01138034A (ja) * 1987-11-25 1989-05-30 Honda Motor Co Ltd 段付中空ギアの製造方法
JP2591082B2 (ja) * 1988-07-07 1997-03-19 株式会社デンソー 車両のスリップ制御装置
JPH0238174A (ja) * 1988-07-29 1990-02-07 Aisin Seiki Co Ltd 路面状態検出装置および車上制御装置
JP2902059B2 (ja) * 1990-06-21 1999-06-07 マツダ株式会社 車両のトラクション制御装置
EP0630786B1 (de) * 1993-06-22 1996-10-09 Siemens Aktiengesellschaft Verfahren und Schaltungsanordnung zum Ermitteln des Reibwerts
JPH07143618A (ja) * 1993-11-18 1995-06-02 Nissan Motor Co Ltd 電気自動車の動力制御装置
JP3304575B2 (ja) * 1993-12-17 2002-07-22 トヨタ自動車株式会社 アンチロック制御装置
JPH0920223A (ja) * 1995-07-07 1997-01-21 Nippondenso Co Ltd 路面状態識別装置
JP3526675B2 (ja) * 1995-09-14 2004-05-17 日産ディーゼル工業株式会社 車輪の駆動トルク制御装置
EP0887241A3 (en) * 1997-06-27 1999-12-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Road surface condition estimating apparatus and variation reduction processing apparatus
JP3331310B2 (ja) * 1997-09-25 2002-10-07 富士重工業株式会社 路面摩擦係数検出装置
JPH11321617A (ja) * 1998-05-14 1999-11-24 Toyota Central Res & Dev Lab Inc Abs用路面適応装置
US6308115B1 (en) * 1998-07-29 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Vehicle running condition judgement device
DE19933389A1 (de) * 1998-07-29 2000-02-03 Continental Teves Ag & Co Ohg Verfahren und Vorrichtung zur Erkennung einer Fahrstrecke eines Fahrzeugs als Schlechtweg sowie zur Geschwindigkeitsregelung
JP2000190836A (ja) * 1998-12-25 2000-07-11 Aisin Seiki Co Ltd 摩擦係数ピ―ク推定装置、及び該推定装置を備えたアンチスキッド制御装置
JP2000313327A (ja) * 1999-04-28 2000-11-14 Toyota Central Res & Dev Lab Inc 路面状態推定装置
JP4496598B2 (ja) * 2000-04-06 2010-07-07 株式会社デンソー 路面状態識別装置
JP3371889B2 (ja) * 2000-04-17 2003-01-27 トヨタ自動車株式会社 車両のスリップ制御
JP4153688B2 (ja) * 2001-10-16 2008-09-24 住友ゴム工業株式会社 路面状態判定方法および装置、ならびに路面状態の判定のしきい値設定プログラム
JP3832405B2 (ja) * 2002-08-29 2006-10-11 トヨタ自動車株式会社 原動機の制御装置および原動機の制御方法
JP3870878B2 (ja) * 2002-08-29 2007-01-24 トヨタ自動車株式会社 原動機の制御装置および原動機の制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130078A (ja) * 1992-10-20 1994-05-13 Mitsubishi Motors Corp 車輪加速度検出方法及び路面判定方法
JPH10299529A (ja) * 1997-04-28 1998-11-10 Mitsubishi Motors Corp 路面摩擦係数推定装置
JPH1120654A (ja) * 1997-06-27 1999-01-26 Hino Motors Ltd 路面摩擦係数推定装置および方法
JP2001163202A (ja) * 1999-12-08 2001-06-19 Sumitomo Rubber Ind Ltd 路面摩擦係数判定装置および方法
JP2001247027A (ja) * 2000-03-03 2001-09-11 Sumitomo Rubber Ind Ltd 路面摩擦係数判定装置および方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400331C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法

Also Published As

Publication number Publication date
JP3855886B2 (ja) 2006-12-13
DE10393181B4 (de) 2007-06-28
US20050246087A1 (en) 2005-11-03
CN1931630B (zh) 2010-12-22
DE10393181T5 (de) 2005-09-01
CN1931630A (zh) 2007-03-21
CN1678472A (zh) 2005-10-05
AU2003243949A1 (en) 2004-03-29
CN100364803C (zh) 2008-01-30
JP2004090695A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
WO2004022378A1 (ja) 路面状態の変化を推定する装置や方法および自動車
WO2004022380A1 (ja) 原動機の制御装置および原動機の制御方法
JP4239725B2 (ja) 車両および車両の制御方法
JP3772809B2 (ja) 原動機の制御装置および原動機の制御方法
JP4534641B2 (ja) 車輪のスリップ率演算装置及び車輪の制駆動力制御装置
US20160297440A1 (en) Control method for front and rear wheel torque distribution of electric 4 wheel drive hybrid electric vehicle
EP1654138B1 (en) Vehicle slip control system and method
JPH11123946A (ja) 4輪駆動車の差動制限制御装置
CN109532479B (zh) 四轮驱动车辆的控制装置
JP2008167624A (ja) 車両およびその制御方法
KR20160040667A (ko) 전기 또는 하이브리드 차량의 회생 제동 제어
US8135524B2 (en) Vehicle driving force control device
JP2002211377A (ja) 制駆動力制御装置
JP5033008B2 (ja) 4輪駆動車の駆動力配分制御装置
JPWO2003091056A1 (ja) 駆動力伝達装置
JP2019043268A (ja) 制御装置及び制御方法
JP4443582B2 (ja) アンダーステア抑制装置
JP4158539B2 (ja) 車輌用車輪状態推定装置
US8725377B2 (en) Control device for controlling drive force that operates on vehicle
JP4980261B2 (ja) 路面摩擦係数設定装置
KR20080022771A (ko) 4륜 구동 차량의 차량안전 시스템 제어방법
CN114684157A (zh) 一种车速估计方法、装置和电动汽车
JP4062199B2 (ja) 車両および車両の制御方法
JP4269901B2 (ja) 車両挙動制御装置およびプログラム
JP2006129584A (ja) トラクション制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038200805

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10525871

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607