明細 鋼板の冷却方法、 鋼板の冷却装置及び鋼板の製造方法 技術分野 本発明は、 熱間圧延された鋼板を冷却する方法、 特に、 冷却中に鋼板の反りや 挫屈が生ずることなく鋼板を均一冷却する方法、 その装置及ぴその方法を利用し た鋼板の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for cooling a hot-rolled steel sheet, and more particularly to a method for uniformly cooling a steel sheet without warping or buckling of the steel sheet during cooling. The present invention relates to a cooling method, an apparatus thereof, and a method for manufacturing a steel sheet using the method.
一般に、 熱間圧延後の鋼板は、 鋼板面が水平となるように搬送され、 鋼板面の 上下方向から注水される冷却水により冷却される。 この時、 鋼板には冷却ムラが 生じ易く、 鋼板の残留応力や材質のパラツキの原因となるばかりか、 鋼板に反り を発生させて操業上のトラブルを引き起こす。 また、 反りの発生した鋼板は、 プ レス機などで反りを矯正するための精整工程を必要とするため、 コスト増を招く。 近年、 圧延と冷却とを組み合わせた制御圧延 ·制御冷却 (TMCP)による鋼板の 製造では、 こうした冷却ムラをなくし、 高精度の温度コントロールを行い、 歪の 少ないフラットな鋼板を連続的に製造するニーズが高まっている。 特に、 板厚の 厚い鋼板の製造では、 板幅が 5mにもおよぶ^^があり、 冷却装置から出た冷却水 をいかにして冷却する必要のない鋼板の部位へ流出するのを食い止めて、 いわゆ る "水切り"によつて均一冷却を図るかが課題になっている。 Generally, the steel sheet after hot rolling is conveyed so that the steel sheet surface is horizontal, and is cooled by cooling water injected from above and below the steel sheet surface. At this time, uneven cooling of the steel sheet is likely to occur, causing not only residual stress of the steel sheet and dispersion of the material, but also warping of the steel sheet to cause trouble in operation. In addition, warped steel sheets require a refining process to correct the warpage with a press machine or the like, which leads to an increase in cost. In recent years, in the production of steel sheets by controlled rolling and controlled cooling (TMCP), a combination of rolling and cooling, there is a need to eliminate such cooling unevenness, perform high-precision temperature control, and continuously produce flat steel sheets with low distortion. Is growing. In particular, in the production of thick steel sheets, the width of the steel sheet is as large as 5 m, and the cooling water from the cooling device is prevented from flowing out to the parts of the steel sheet that do not need to be cooled. The issue is how to achieve uniform cooling by so-called "water drainage".
鋼板の冷却時の水切りについては、 例えば、 実開昭 53- 39508号公報には、 鋼 板の上面にエアノズルを上下移動自在に配置して、 P賁射するエアによって水切り を行う技術が開示されている。 また、 実開昭 58 - 125611号公報には、 鋼板をゴム ロールで挟んで押圧して水切りを行う方法が開示されている。 さらに、 特開昭 60 - 206516号公報には、 7_K切りロールと、 その下流側に鋼板の板幅方向に沿って
水噴射ノズルとを設けて、 鋼板の板幅方向中央部より両端部および水切りロール に向けて水を噴射して水切りを行う技術が開示されている。 Regarding drainage during cooling of a steel sheet, for example, Japanese Utility Model Application Laid-Open No. 53-39508 discloses a technique in which an air nozzle is disposed on the upper surface of a steel plate so as to be movable up and down, and the drainage is performed by air emitted from the air. ing. Further, Japanese Utility Model Application Laid-Open No. 58-125611 discloses a method of draining water by pressing a steel sheet with a rubber roll. Further, Japanese Patent Application Laid-Open No. 60-206516 discloses that a 7_K cutting roll and a downstream side thereof are provided along the width direction of the steel sheet. There is disclosed a technology in which a water injection nozzle is provided and water is injected from a central portion in the width direction of the steel sheet toward both ends and a drain roll to drain the steel sheet.
しかし、 上記いずれの方法によっても水切りを完全に行うことはできず、 鋼板 を急速に冷却しょうとすると、 鋼板の上下面の冷却が必ずしも同一とならず、 鋼 板の幅方向や長手方向に反りが生じる。 However, none of the above methods can completely drain water, and if the steel sheet is to be cooled rapidly, the cooling of the upper and lower surfaces of the steel sheet will not always be the same, and the steel sheet will warp in the width and longitudinal directions. Occurs.
Ψ畐方向の反りは、 板幅、 板厚、 上下面の温度や温度履歴の差によって反り量や 反りの方向が決まるが、 この反りが発生すると、 鋼板と水切りロールとの間に隙 間が生じ多量の冷却水が流出し、 7k りが困難となり冷却ムラを増長させる。 また、 長手方向の反りは、 板幅、 板厚、 上下面の温度や温度履歴の差の他、 鋼 板の搬送速度によっても反り量や反りの方向が決まるが、 この反りが発生すると、 安定して鋼板を搬送できず、 操業上のトラブルを引き起こす。 また、 鋼板が冷却 装置通過後に、 大きくこの反りが発生する ¾ ^もある。 The amount of warpage and the direction of warpage are determined by differences in sheet width, sheet thickness, upper and lower surface temperatures, and temperature histories.However, when this warpage occurs, a gap is created between the steel sheet and the draining roll. A large amount of cooling water flows out, and it becomes difficult to reduce the amount of cooling water to 7 k. The amount of warpage in the longitudinal direction is determined not only by the sheet width, the sheet thickness, the temperature of the upper and lower surfaces, the temperature history, but also by the transfer speed of the steel sheet. As a result, the steel sheet cannot be transported, causing operational problems. In addition, there is a large warp after the steel sheet passes through the cooling device.
特開平 10- 263670号公報には、 幅方向の反りが発生しないように冷却中の鋼板 面を拘束しながら冷却する技術が開示されている。 この方法では、 ある力以上で 鋼板を拘束しながら冷却しているので、 フラットなまま冷却することが可能とな る。 Japanese Patent Application Laid-Open No. Hei 10-263670 discloses a technique for cooling while restraining the steel sheet surface during cooling so that warpage in the width direction does not occur. In this method, the steel sheet is cooled while being restrained with a certain force or more, so it is possible to cool the steel sheet while keeping it flat.
しかしながら、 特開平 10- 263670号公報の方法では、 ある力以上で鋼板を拘束 すると、 鋼板自身が挫屈し、 冷却装置内あるいは冷却装置を通過後に大きな反り が生じ、 鋼板を搬送できなくなるようなトラブルを引き起こす^^がある。 発明の開示 本発明の目的は、 熱間圧延された鋼板を、 冷却ムラによる反りや拘束力による 挫屈が生じることなく均一冷却する方法、 その装置及ぴその方法を利用した鋼板 の製 法を ¾ ^することにある。 この目的は、 鋼板を、 鋼板面を複数組の上下ロールで拘束しながら水平に搬送 する工程と、 搬送中の鋼板を鋼板面の上下方向から水冷する工程とを有し、 1組
当りの上下ロールによる鋼板の拘束力が下記の(1)及ぴ(2)式で示される PI (t) 以上 P2 (t)未満である、 鋼板の冷却方法によって達成される。 However, in the method disclosed in Japanese Patent Application Laid-Open No. 10-263670, if the steel sheet is restrained with a certain force or more, the steel sheet itself buckles, causing a large warp in the cooling device or after passing through the cooling device, so that the steel sheet cannot be transported. Cause ^^. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for uniformly cooling a hot-rolled steel sheet without warping due to cooling unevenness and buckling due to a restraining force, an apparatus thereof, and a method for manufacturing a steel sheet using the method. ¾ ^ to do. The purpose is to convey the steel sheet horizontally while constraining the steel sheet surface with a plurality of sets of upper and lower rolls, and to water-cool the conveyed steel sheet from above and below the steel sheet surface. This is achieved by a method of cooling a steel sheet, wherein the binding force of the steel sheet by the upper and lower rolls is not less than PI (t) and less than P2 (t) shown by the following equations (1) and (2).
P1=6.85X10"7S3L0-65 ··· (1) P1 = 6.85X10 "7 S 3 L 0 - 65 ··· (1)
P2=1.2X10"6S3L0-65 -" (2) P2 = 1.2X10 "6 S 3 L 0 - 65 -" (2)
ここで、 L (mm)は隣り合う上下口一ル組間の距離、 S (mm)は鋼板の厚みを表す。 この鋼板の冷却方法は、 搬送中の鋼板を拘束するための複^ 1の上下ロールと、 搬送中の鋼板を鋼板面の上下方向から水冷する手段と、 鋼板を拘束する拘束力を 調整するために複数組の上下ロールを上下移動させる手段とを有する鋼板の冷却 装置によって実現できる。 図面の簡単な説明 図 1は、 本発明の鋼板の冷却装置の 1例を示す図である。 発明を実施するための形態 図 1に、 本発明の鋼板の冷却装置の 1例を示す。 Here, L (mm) represents the distance between a pair of adjacent upper and lower openings, and S (mm) represents the thickness of the steel plate. This method of cooling the steel sheet includes multiple vertical rolls for restraining the steel sheet being transported, means for water cooling the steel sheet being transported from above and below the steel sheet surface, and adjusting the restraining force for restraining the steel sheet. And a means for vertically moving a plurality of sets of upper and lower rolls. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of a steel plate cooling device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 shows an example of a steel sheet cooling device of the present invention.
この冷却装置においては、 上ロール 2と下ロール 3からなり、 lm間隔で配置され た 20組の上下口ールの間を圧延直後の鋼板 1が拘束されながら搬送される。 この とき、 鋼板の上面はスリットノズル 4からの冷却水により、 鋼板の下面は円管ノ ズル 5からの冷却水により、 それぞれ冷却される。 図 1においては、 上ロール 2の 3 本分、 冷却ゾーンの 2ゾーン分が示されている。 また、 各上下ロールのピッチは lmである。 In this cooling device, the steel sheet 1 immediately after rolling is conveyed while being constrained between 20 sets of upper and lower jaws comprising an upper roll 2 and a lower roll 3 arranged at an interval of lm. At this time, the upper surface of the steel plate is cooled by the cooling water from the slit nozzle 4, and the lower surface of the steel plate is cooled by the cooling water from the circular tube nozzle 5, respectively. In FIG. 1, three upper rolls 2 and two cooling zones are shown. The pitch between the upper and lower rolls is lm.
上下ロールの間にある鋼板 1の上面には、 スリツトノズル 4から上流側の上ロー ル 2から下流側の上ロール 2に向って、 鋼板 1の進行方向に沿つて鋼板単位面積あ たりに上下それぞれに 2m3 /minの冷却水が噴射される。 一方、 鋼板 1の下面は、 円管ノズル 5から冷却水が噴射される。
20組の上下ロールにおいて、 下ロール 3は搬送ロールを兼ねており、 固定され ている。 上ロール 2は直径 250醒で、 上下に 0 . 5mmピッチで昇降が可能になって いる。 上ロール 2と下ロール 3のギャップは、 鋼板 1の厚み以下にセットされ、 鋼 板 1が通過すると、 上ロール 2が油圧シリンダ 6の押しつけ力に抗する反力により 鋼板 1に力がかかり、 鋼板 1は拘束される。 また、 この拘束力は圧力センサで計測 され、 後述する値を越えると、 油圧シリンダ 6の圧力が調整される。 油圧シリン ダ 6の圧力が調整されると、 その圧力に応じた拘束力が鋼板 1に作用し、 鋼板 1か らの反力に応じて、 上ロール 2は鋼板 1にならつて上下移動することができる。 ま た、 上ロール 2の位置がある値を越えると、 上ロール 2を速やかに上方へ する 機構が備えられている。 さらに、 上ロール 2と鋼板 1との隙間から漏洩する冷却水 を鋼板端部から除去するための水切りスプレーノズル 7が設けられている。 On the upper surface of the steel plate 1 between the upper and lower rolls, from the slit nozzle 4 to the upper roll 2 on the upstream side, and from the upper roll 2 on the downstream side, each upper and lower unit per steel plate unit area along the traveling direction of the steel plate 1. 2m 3 / min of cooling water is injected. On the other hand, cooling water is injected from the circular tube nozzle 5 to the lower surface of the steel plate 1. Of the 20 upper and lower rolls, the lower roll 3 also serves as a transport roll and is fixed. The upper roll 2 has a diameter of 250 and can move up and down at a pitch of 0.5 mm up and down. The gap between the upper roll 2 and the lower roll 3 is set to be equal to or less than the thickness of the steel sheet 1.When the steel sheet 1 passes, a force is applied to the steel sheet 1 by a reaction force against the pressing force of the hydraulic cylinder 6 when the upper roll 2 passes. Steel plate 1 is bound. Further, this restraining force is measured by a pressure sensor, and when the value exceeds a value described later, the pressure of the hydraulic cylinder 6 is adjusted. When the pressure of the hydraulic cylinder 6 is adjusted, the restraining force corresponding to the pressure acts on the steel plate 1, and the upper roll 2 moves up and down along with the steel plate 1 according to the reaction force from the steel plate 1. Can be. Also, a mechanism is provided to quickly move the upper roll 2 upward when the position of the upper roll 2 exceeds a certain value. Further, a drainer spray nozzle 7 is provided for removing cooling water leaking from a gap between the upper roll 2 and the steel plate 1 from the end of the steel plate.
1組当りの上下ロールによる鋼板の拘束力を PI (t)以上 P2 (t)未満にして、 鋼 板を拘束しながら鋼板の上下面を単位面積あたりそれぞれ水量 2m3 /min以上で冷 却すれば、 温度が拡散して温度偏差が解消し、 反りが発生せず、 確実に水切りが 可能となって冷却ムラが生じない。 したがって、 冷却後鋼板を無拘束にしても、 フラットな状態が得られる。 The upper and lower surfaces of the steel sheet are cooled at a water volume of 2 m 3 / min or more per unit area while restraining the steel sheet by setting the binding force of the steel sheet by the upper and lower rolls per set to PI (t) or more and less than P2 (t). If the temperature is diffused, the temperature deviation is eliminated, no warpage occurs, and the drainage can be performed without fail, resulting in no uneven cooling. Therefore, even if the steel sheet is not restrained after cooling, a flat state can be obtained.
Pl (t)未満の拘束力では、 幅方向の反りによって上下ロールが浮き上がり、 冷 却水力 S漏出して、 冷却ムラが起こる。 With a restraining force less than Pl (t), the upper and lower rolls are lifted by warpage in the width direction, and the cooling water power S leaks out, causing uneven cooling.
また、 P2 (t)以上の拘束力では、 鋼板が座屈し、 その時点では鋼板はフラット に保たれているが、 その後水冷を止めると鋼板が反って、 冷却装置内で搬送不能 となったり、 装置を破損したり、 あるいは、 冷却装置を抜けた後に大きな歪が残 る。 Also, with a restraining force of P2 (t) or more, the steel plate buckles, and at that time the steel plate is kept flat, but when water cooling is stopped, the steel plate warps and becomes unable to be conveyed in the cooling device, Damaged equipment or significant distortion left after exiting cooling system.
P2 (t)以上の拘束力になった場合は、 複数組の上下ロールを P2 (t) 未満の力 で押し付けながら鋼板の反りに倣つて上下移動させれば、 鋼板を冷却装置内で搬 送でき、 装置を破損したりすることがなくなる。 さらに、 冷却装置を抜けた後、 例えば冷却床で冷却している際に、 大きな歪みが残ることもなくなる。 一方、 冷 却がアンパランスとなって、 鋼板が反ろうとしている時に大きな拘束力で鋼板を 押しつけると、 冷却装置内で逆反りが発生したり、 あるいは冷却装置を出た段階
で予想以上の反りが発生する。 実際には、 P2 (t>以上の拘束力になった場合は、 その反力を圧力センサが検知し、 まず、 拘束力が P2 (t>未満になるまで油圧シリ ンダ 6にかかる圧力が減圧され、 その結果、 上ロールは上昇する。 ここで、 鋼板 の搬送に支障がない にはこの状態で鋼板の通過させる。 しかしながら、 シリ ンダ圧力を減圧し、 上ロールをある高さ例えば 300mm上昇させても、 まだ鋼板か らの反力(拘束力)が P2 (t)以上の場合には、 上ロールを速やかに開放し拘束力を ゼロにして、 上方へ »させる。 こうすることにより、 例えば、 下面あるいは上 面の冷却水が何かの原因によって噴射しなかったり、 所定の流量で噴射しなかつ たりして鋼板の冷却が上下非対称となり鋼板の上面と下面とで大きな温度差が生 じた場合、 この温度差から鋼板に大きな反りが発生しょうとするので、 上ロール を持ち上げようとする鋼板からの反力が P2 (t)を大きく越えて、 上ロール 2を上 方へ押し上げるようとするが、 上記のように上ロールを速やかに i¾Sさせできれ ば、 未然に設備トラブルや設備破損を防止できる。 If the binding force exceeds P2 (t), the steel sheet is transported in the cooling device by moving multiple sets of upper and lower rolls up and down according to the warpage of the steel sheet while pressing with a force less than P2 (t). It will not damage the equipment. Furthermore, after leaving the cooling device, for example, when cooling on the cooling floor, no large distortion remains. On the other hand, when the cooling becomes an imbalance and the steel sheet is about to be warped and pressed against the steel sheet with a large restraining force, reverse warpage occurs in the cooling device, or when the steel sheet leaves the cooling device. Warps more than expected. Actually, when the restraining force becomes P2 (t> or more, the pressure sensor detects the reaction force.First, the pressure applied to the hydraulic cylinder 6 is reduced until the restraining force becomes less than P2 (t>). As a result, the upper roll rises, where the steel sheet is passed in this state so as not to hinder the conveyance of the steel sheet.However, the cylinder pressure is reduced, and the upper roll is raised by a certain height, for example, 300 mm. However, if the reaction force (restraining force) from the steel sheet is still P 2 (t) or more, the upper roll is quickly released, the restraining force is reduced to zero, and the force is lifted upward. For example, the cooling water on the lower or upper surface is not sprayed for some reason or is not sprayed at a predetermined flow rate, so that the cooling of the steel plate is vertically asymmetric and a large temperature difference occurs between the upper and lower surfaces of the steel plate. If this temperature difference Therefore, the reaction force from the steel plate that lifts the upper roll greatly exceeds P2 (t) and pushes the upper roll 2 upward. If it is possible to make i ト ラ ブ ル S, equipment troubles and equipment damage can be prevented.
以上の説明は、 1組の上下ロールによる拘束力に関するものであるが、 もし他 の上下ロールについても拘束力が P2 (t)以上になれば、 上記のような対応を行え ばよい。 The above description relates to the restraining force of one set of upper and lower rolls. However, if the restraining force of the other upper and lower rolls is equal to or higher than P2 (t), the above measures may be taken.
鋼スラブを圧延して鋼板をとし、 矯正後、 本発明である鋼板の冷却方法により 冷却し、 さらに冷却後の鋼板を矯正すれば、 冷却中に鋼板の反りや挫屈が生ずる ことなく、 力つフラットで材質の均一な鋼板を製造できる。 実施例 If the steel slab is rolled into a steel sheet, straightened, cooled by the steel sheet cooling method of the present invention, and the steel sheet after the cooling is straightened, the steel sheet does not warp or buckle during cooling, A flat and uniform steel plate can be manufactured. Example
図 1に示す鋼板の冷却装置を用いて、 鋼板の板厚 S (mm)、 上下ロール組間の距 離 L (mm)、 拘束力 P (t)を表 1に示すように変化させて鋼板を冷却し、 反りの発生 状況を調査した。 表 1には、 上記式(1)、 )から求めた P1および P2を併せて示 すが、 発明例では P1 <Pく P2の関係が成り立つている。 Using the steel plate cooling device shown in Fig. 1, the steel plate thickness S (mm), the distance L (mm) between the upper and lower roll sets, and the binding force P (t) were changed as shown in Table 1 Was cooled and the occurrence of warpage was investigated. Table 1, the above equation (1)) from the combined P1 and P 2 obtained shown but, in the invention examples have established the relationship P1 <P rather P2.
本発明の方法で冷却された鋼板は、 いずれも冷却装置を問題なく通過し、 また、 冷却床で常温まで冷却された後も良好な形状を維持した。 Each of the steel sheets cooled by the method of the present invention passed through the cooling device without any problem, and maintained a good shape even after being cooled to room temperature by the cooling floor.
発明例 4と 6において、 搬送中に実際の拘束力が P2を越えたが、 この時はロール
が持ち上がって P2以上の拘束力がかからなかった。 鋼板は冷却装置を通過するこ とができ、 また、 冷却床では当初反りが存在していたが、 放冷して温度が下がつ た後に反りは解消してフラットとなった。 In Inventive Examples 4 and 6, the actual restraining force exceeded P2 during transport. Was lifted and did not have a binding force higher than P2. The steel sheet was able to pass through the cooling device, and the warp was initially present in the cooling floor, but after cooling down, the warp disappeared and became flat.
一方、 鋼板が P1未満の拘束力で拘束されながら冷却された比較例 1、 2、 5、 7、 9、 11では、 冷却装置内で発生した幅方向の反りによって鋼板が持ち上がり、 鋼 板とロールとの間に隙間が発生し、 そこから冷却水が漏出して局所的な温度ムラ が発生し、 冷却床で大きな反りが発生した。 On the other hand, in Comparative Examples 1, 2, 5, 7, 9, and 11, where the steel sheet was cooled while being restrained by a restraining force less than P1, the steel sheet was lifted by the warp in the width direction generated in the cooling device, and the steel sheet was rolled. A gap was created between them, and cooling water leaked out from the gap, causing local temperature unevenness, causing a large warpage in the cooling floor.
また、 鋼板が P2以上の拘束力で拘束されながら冷却された比較例 4、 6、 8、 10、 12では、 冷却装置内では歪が発生しなかったが、 冷却床で放冷している段階で大 きな長手方向の反りが発生した。 鋼板が冷却装置内で降伏し、 その後、 冷却装置 を出た段階ではフラットであっても放冷されて常温に近づくにつれて温度が均一 となつた段階で降伏した分の歪が発生したものと考えられる。
In Comparative Examples 4, 6, 8, 10, and 12, in which the steel sheet was cooled while being restrained by the restraining force of P2 or more, no strain was generated in the cooling device, but the steel sheet was cooled on the cooling floor. Large warpage occurred in the longitudinal direction. It is considered that the steel plate yielded in the cooling device, and then, when it exited the cooling device, even if it was flat, it was allowed to cool down, and as the temperature approached room temperature, the strain caused by the yielding occurred when the temperature became uniform. Can be