WO2003074210A2 - Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method - Google Patents

Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method Download PDF

Info

Publication number
WO2003074210A2
WO2003074210A2 PCT/DE2003/000661 DE0300661W WO03074210A2 WO 2003074210 A2 WO2003074210 A2 WO 2003074210A2 DE 0300661 W DE0300661 W DE 0300661W WO 03074210 A2 WO03074210 A2 WO 03074210A2
Authority
WO
WIPO (PCT)
Prior art keywords
molds
melt
casting
container
metal alloy
Prior art date
Application number
PCT/DE2003/000661
Other languages
German (de)
French (fr)
Other versions
WO2003074210A3 (en
Inventor
Manfred Renkel
Wilfried Smarsly
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27771077&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003074210(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to EP03722201A priority Critical patent/EP1480770B1/en
Priority to US10/506,982 priority patent/US20050279481A1/en
Priority to JP2003572710A priority patent/JP2005527375A/en
Priority to DE50301746T priority patent/DE50301746D1/en
Publication of WO2003074210A2 publication Critical patent/WO2003074210A2/en
Publication of WO2003074210A3 publication Critical patent/WO2003074210A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/04Centrifugal casting; Casting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/06Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould
    • B22D13/066Centrifugal casting; Casting by using centrifugal force of solid or hollow bodies in moulds rotating around an axis arranged outside the mould several moulds being disposed in a circle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/101Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/10Accessories for centrifugal casting apparatus, e.g. moulds, linings therefor, means for feeding molten metal, cleansing moulds, removing castings
    • B22D13/107Means for feeding molten metal

Definitions

  • non-ferrous metal alloys preferably of TiAl components, in particular for use in turbomachinery construction
  • alloy elements evaporate from the melt during the heating and the casting process, boundary layers which adversely affect the casting process are formed, and there is a risk of the formation of blowholes that lead to a destabilization of the alloy structure. It should also be taken into account here that the time for the actual casting process is negligible compared to the time for the heating process of the melt.
  • Such components manufactured by investment casting must therefore be reimbursed by a so-called HIP / experienced, i.e. A hot isostatic pressing process is used to compress the blowholes and the structure of the component produced by casting is to be stabilized by subsequent heat treatment.
  • this object is achieved according to the invention by a method for precision investment casting corresponding to the outer shape of the components to be manufactured, Casting molds consisting of heated mold shells, to which the melt is fed via a heated pouring device in such a way that a complete filling of the casting molds via the acceleration forces and the tion occurring Coriolis forces and the centrifugal forces applied to the melt.
  • the melt for the casting process is deflected by means of the centrifugal forces against the flow direction determined by gravity by approximately 30 ° to 180 ° and forced into the casting molds by the Coriolis forces for homogeneous filling of the casting molds.
  • the heated casting device and the heated casting molds are kept at predetermined process temperatures which correspond to the non-ferrous metal alloys used for the investment casting production and maintain their flowability, preferably 10 to 200 ° C. above the melting point of the non-ferrous metal alloy.
  • the method according to the invention has a number of advantages.
  • the evaporation rate of the melt is reduced by the method according to the invention and the porosity of the cast parts with regard to the achievable reduction in the size of the pores in the melt is reduced and the structure is therefore finer than that by the flow-mechanically optimized design of the pouring device for utilizing the Coriolis forces are currently achievable. It is therefore no longer necessary to after-treat the cast parts removed from the mold for tempering by hot isostatic pressing and then adding heat to stabilize the alloy structure. This leads to a significant cost reduction in the production of such components and to savings in material costs for the non-ferrous metal alloys to be used in terms of quantity, composition and purity. In addition, the reject rate is reduced and post-treatment costs are greatly reduced, if not saved.
  • a vertically standing, rotatably mounted cup-shaped container with a streamlined bottom surface is used as a pouring device, with which the shell surface associated with its lateral surface and arranged at a predetermined distance from the bottom surface is used. communicate upright molds, the spatial angle of attack of which can be adjusted in relation to the respectively associated, also aerodynamically designed outlet openings of the container, all in such an arrangement that the mold is filled without flow breaks of the melt.
  • containers and casting molds consist of ceramic which has little reaction to the melt and has embedded metal particles, so that containers and casting molds can be heated precisely, preferably inductively, by known inductors or by means of microwaves.
  • the casting trough serving to supply the melt is also designed to be streamlined in relation to the melt and consists of ceramic which has little reaction to the melt and has embedded metal particles.
  • the melt can also be produced within the container of the pouring device during its rotation.
  • fillers and troughs can be made of coated steel, coated graphite, tantalum, titanium or niobium.
  • a TiAl alloy is used as the non-ferrous metal alloy with 30 to 33 wt.% Al, 4 to 6 wt.% Nb, 0.5 to 3 wt.% Mn and 0.1 to 0.5 wt. % B, balance Ti.
  • such a TiAl alloy with 0.5 to 3 wt.% Mn has an oxygen content of 0 to 2000 ppm, a carbon content of 0 to 2000 ppm, preferably 800 to 1200 ppm, and a nickel content of 100 to 2000 ppm and a nitrogen content of 0 to 2000 ppm.
  • oxygen content 0 to 2000 ppm
  • carbon content of 0 to 2000 ppm preferably 800 to 1200 ppm
  • nickel content 100 to 2000 ppm and a nitrogen content of 0 to 2000 ppm.
  • other non-ferrous metal alloys can also be used to carry out the precision casting production according to the invention.
  • Fig. 1 shows a first embodiment of an apparatus for performing the method according to the invention
  • FIG. 2 shows a modified embodiment of the device according to FIG. 1.
  • the device according to FIG. 1 shows a pouring device, which can be rotated about an axis 10 and is designated as a whole by the reference numeral 11, to which the melt is fed from a ladle 12 via a pouring trough 14 designed to be streamlined.
  • the pouring device 11 is mounted so that it can be rotated vertically - the drive device required for this is not shown for the sake of clarity - and comprises a cup-shaped container 15 with a rotationally symmetrical side wall 16 and a flow-optimized base 18 formed thereon at a distance a from the base 18 are located symmetrically on the circumference of the side wall 16, flow-mechanically optimized outlet openings 19, which communicate with molds 22 consisting of half-shells 20.
  • the molds are adjustably connected to the container 15 by spatial angles sr with respect to the associated outlet openings 19.
  • the angle sr is set as a function of the specific weights of the non-ferrous metal alloy used, the casting temperature and the speed n of the container as well as the respective specific weight of the alloy, so that the entire feed is designed to be fluid-mechanically optimized.
  • the container 15 and the associated casting molds 22 are arranged in their predetermined position by means of a holder 23 made of suitable ceramic and serving as a matrix for this, which is clamped between a base plate 24 and a cover plate 26.
  • the melt, heated to the casting temperature can be removed from the casting ne 12 escaping melt and passed on via the trough 14 enter the container 15.
  • suitable, precisely controllable heating devices 30 - such as, for example, inductors - both the pouring device 11 and casting trough 14 and the casting molds 22 are heated inductively in such a way that the melt remains at the casting temperature until the casting is complete.
  • These temperatures which maintain the flowability of the melt, correspond to the non-ferrous metal alloys used for investment casting.
  • Containers and casting molds can also consist of coated steel, tantalum, titanium or niobium.
  • the Coriolis force is the inertial force which, in addition to the guide force and the centrifugal force, acts on a body moving in a rotating system.
  • the Coriolis force is perpendicular to the plane formed by the speed vector and the axis of rotation.
  • the non-ferrous metal alloy is a TiAl alloy with 30 to 33 parts by weight of aluminum, 4 to 6% by weight of niobium, 0.5 to 3% by weight of manganese and 0.1 to 0.5% by weight of boron, the rest Titanium for use.
  • the non-ferrous metal alloy located in the casting ladle 12 is converted into the desired melt by heating in the usual manner and, as already described, passes via the heated casting trough 14 into the rotating, likewise heated, pouring device 11, where it is gravitationally applied to the Bottom 18 of the container 15 arrives.
  • centrifugal forces act on the melt, which bring about a reversal of the direction of flow of the melt from approximately 30 ° to 180 °, so that it rises against the inner wall of the side wall 16 up to the height of the outlet openings 19.
  • the spatial angles of attack sr of the molds 22 are selected such that they coincide with the direction of the Coriolis force vectors, these act on the melt in addition to the centrifugal forces, with the result that the melt can not only enter the molds via the openings 19 but also ⁇ S3ss this fills the cavities of the casting molds adjoining the openings 19 quickly and safely as well as completely and homogeneously.
  • the molds are removed and the respective investment casting component is applied in the customary manner.
  • the molds 22 which are adjustable in their angular position sr and held in the holder 23 are located at the upper edge of the in the pouring device 1 1 now rotatably mounted container 15. This has in this area a distributor 42 which acts as a nozzle for the melt.
  • the outlet openings 19 leading to the inside of the casting mold 22 are - as in the exemplary embodiment according to FIG.
  • the non-ferrous metal alloy is here fed to the container 15 as a so-called ingot melting in the rotating container, so that the ladle 12 and pouring channel 14 of the exemplary embodiment according to FIG. 1 are omitted.
  • the container 15 For the insertion of the ingot into the container 15, the latter has a lid 44 which is openable for this purpose and to which the distributor 42 is fastened.
  • the cover plate 26 is removably connected to the pouring device 40. Since the likewise inductively heatable container 15 is rotatably supported by itself in the pouring device 40, temperature-resistant seals 45 are provided between the inlet openings of the stationary molds 22 and the outlet openings 19 of the rotating container 15.
  • the mode of operation of the pouring device described above corresponds to the mode of operation described in connection with FIG. 1, but the supply of the melt into the molds 22 and thus their filling is favorably influenced via the distributor 42 which develops the nozzle action.
  • the cast components can still be heated in the casting molds to 600 to 700 ° C., which is also done inductively via the existing heating devices 30. In this way, the cooling rate of the cast components is kept low in a controlled manner in order to avoid cracks, breaks, etc. in the components.
  • the cast components are only removed from the molds after the desired degree of cooling has been reached, which is to be selected depending on the composition of the non-ferrous metal alloy used With the invention described above, it is ensured for the first time that the Coriolis forces of the centrifugal forces applied to the melt can also act in a targeted manner and act on the melt in a similar way to a pressure ram and thus force the melt completely and homogeneously into the casting mold, that is to say fill it completely and without voids. without a damaging stall of the melt and a different solidification of the boundary layer.
  • the cooling rate is kept low in a controlled manner, so that the residual stresses in the components that result from uncontrolled cooling and the resulting cracks, breaks, etc. are avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

The invention relates to a method for producing precision investment-cast NE metal alloy members, especially for use in power unit technology. The inventive method is characterized by using a rotation casting method, whereby the outer shell of the casting molds (22) to be produced are fed via an inert pouring spout (14) which is fluidically optimized vis-à-vis the used alloys. These casting molds are likewise fluidically optimized at the sprue positions (19) and are arranged on a rotatably mounted casting device (11) in a manner as to be spatially adjustable. The casting molds can be inductively (30) heated during the casting process for the purpose of temperature adjustment. The components of the device are mounted in such a manner as to allow for a completely homogeneous filling of the casting molds by virtue of the Coriolis forces of the centrifugal forces to which the melt is subjected so that the cast metal is free from inclusions.

Description

Verfahren und Vorrichtung zur maßgenauen Feingussherstellung von Bauteilen aus NE- Metalllegierungen sowie NE-Metalllegierungen zur Durchführung des Verfahrens Method and device for the precise investment casting of components made of non-ferrous metal alloys and non-ferrous metal alloys for carrying out the method
Die Feingussherstellung von NE-Metalllegierungen, vorzugsweise von TiAI-Bauteilen insbesondere zur Verwendung im Turbomaschinenbau ist aufwendig und schwierig, da während des Aufheizens und des Gießvorganges Legierungselemente aus der Schmelze verdampfen, den Gießvorgang ungünstig beeinflussende Grenzschichten gebildet werden sowie die Gefahr der Entstehung von Gießlunkern besteht, die zu einer DeStabilisierung des Legierungs- gefüges führen. Hierbei ist ferner zu berücksichtigen, dass die Zeit für den eigentlichen Gießvorgang gegenüber der Zeit für den Aufheizvorgang der Schmelze verschwindend gering ist.The investment casting of non-ferrous metal alloys, preferably of TiAl components, in particular for use in turbomachinery construction, is complex and difficult because alloy elements evaporate from the melt during the heating and the casting process, boundary layers which adversely affect the casting process are formed, and there is a risk of the formation of blowholes that lead to a destabilization of the alloy structure. It should also be taken into account here that the time for the actual casting process is negligible compared to the time for the heating process of the melt.
Solche durch Feinguß hergestellten Bauteile sind daher anschließend durch ein sogenanntes HIP /erfahren zu vergüten, d.h. durch einen heissisostatischen Pressvorgang sind Gießlunker zu verdichten und ist durch anschließende Wärmebehandlung das Gefüge des durch Gießen hergestellten Bauteils zu stabilisieren.Such components manufactured by investment casting must therefore be reimbursed by a so-called HIP / experienced, i.e. A hot isostatic pressing process is used to compress the blowholes and the structure of the component produced by casting is to be stabilized by subsequent heat treatment.
Die Einhaltung vorgegebener Werkstoffspezifikationen für solche derart herzustellenden Bauteile ist daher überaus kostenintensiv und hohe Ausschussquoten sind unvermeidlich.Compliance with specified material specifications for such components to be manufactured in this way is therefore extremely cost-intensive and high reject rates are inevitable.
Hier setzt nun die Erfindung ein, deren Aufgabe es ist, die Herstellung von Bauteilen aus NE- Metalllegierungen insbesondere für den Einsatz im Turbomaschinenbau mittels Feinguss signifikant zu verbessern.This is where the invention comes in, the task of which is to significantly improve the production of components from non-ferrous metal alloys, in particular for use in turbomachinery, by means of investment casting.
Ausgehend von dem bekannten Schleuderformguss, bei dem durch Rotation eines Teils der Gießeinrichtung die Zentrifugalkräfte Einfluss auf die Formgestaltung, die Formfüllung und die Kristallisation der Schmelze nehmen, wird diese Aufgabe erfindungsgemäß gelöst durch ein Verfahren zur maßgenauen Feingussherstellung mit der Außenform der jeweils herzustellenden Bauteile korrespondierenden, aus beheizten Formschalen bestehenden Gussformen, denen die Schmelze über eine beheizte Eingussvorrichtung derart zugeführt wird, dass ein vollständiges Füllen der Gussformen über die Beschleunigungskräfte sowie der bei Rota- tion auftretenden Coriolis-Kräfte und der der Schmelze aufgeprägten Zentrifugalkräfte erfolgt.Starting from the known centrifugal casting, in which the centrifugal forces influence the shape, the mold filling and the crystallization of the melt by rotating a part of the casting device, this object is achieved according to the invention by a method for precision investment casting corresponding to the outer shape of the components to be manufactured, Casting molds consisting of heated mold shells, to which the melt is fed via a heated pouring device in such a way that a complete filling of the casting molds via the acceleration forces and the tion occurring Coriolis forces and the centrifugal forces applied to the melt.
Hierbei wird nach einem weiteren Merkmal der Erfindung die Schmelze für den Gießvorgang mittels der Zentrifugalkräfte entgegen der durch die Schwerkraft bestimmten Fließrichtung um annähernd 30° - 180° umgelenkt und beim Einfließen in die Gussformen durch die Coriolis-Kräfte zur homogenen Füllung der Gussformen gezwungen.According to a further feature of the invention, the melt for the casting process is deflected by means of the centrifugal forces against the flow direction determined by gravity by approximately 30 ° to 180 ° and forced into the casting molds by the Coriolis forces for homogeneous filling of the casting molds.
Nach einem weiteren Merkmal der Erfindung werden die beheizte Eingussvorrichtung und die beheizten Gussformen auf vorbestimmten, mit den für die Feingussherstellung verwendeten NE-Metalllegierungen korrespondierenden, deren Fließfähigkeit aufrechterhaltenden, vorzugsweise 10 bis 200° C über dem Schmelzpunkt der NE-Metalllegierung liegenden Verfahrenstemperaturen gehalten.According to a further feature of the invention, the heated casting device and the heated casting molds are kept at predetermined process temperatures which correspond to the non-ferrous metal alloys used for the investment casting production and maintain their flowability, preferably 10 to 200 ° C. above the melting point of the non-ferrous metal alloy.
Das erfindungsgemäße Verfahren weist eine Reihe von Vorteilen auf.The method according to the invention has a number of advantages.
Überraschenderweise hat sich gezeigt, dass durch das erfindungsgemäße Verfahren die Abdampfrate der Schmelze verringert und durch die strömungsmechanisch optimierte Ausgestaltung der Eingussvorrichtung zur Ausnutzung der Coriolis-Kräfte die Porosität der Gussteile im Hinblick auf die erzielbare Verkleinerung der Poren in der Schmelze verringert und damit feinere Gefüge als bisher erzielbar sind. Daher ist eine Nachbehandlung der aus der Form entnommenen Gussteile zwecks Vergütung durch heiss-isostatisches Pressen und anschließende Zufuhr von Wärme zwecks Stabilisierung des Legierungsgefüges nicht mehr notwendig. Dies führt zu einer wesentlichen Kostenreduzierung bei der Herstellung solcher Bauteile sowie zu Einsparungen bei den Materialkosten für die zu verwendenden NE- Metalllegierungen bezüglich Menge, Zusammensetzung und Reinheit. Darüber hinaus wird die Ausschussrate kleiner und werden Nachbehandlungskosten stark reduziert, wenn nicht gar eingespart.Surprisingly, it has been shown that the evaporation rate of the melt is reduced by the method according to the invention and the porosity of the cast parts with regard to the achievable reduction in the size of the pores in the melt is reduced and the structure is therefore finer than that by the flow-mechanically optimized design of the pouring device for utilizing the Coriolis forces are currently achievable. It is therefore no longer necessary to after-treat the cast parts removed from the mold for tempering by hot isostatic pressing and then adding heat to stabilize the alloy structure. This leads to a significant cost reduction in the production of such components and to savings in material costs for the non-ferrous metal alloys to be used in terms of quantity, composition and purity. In addition, the reject rate is reduced and post-treatment costs are greatly reduced, if not saved.
Zur Durchführung des erfindungsgemäßen Verfahrens wird nach der Erfindung als Eingussvorrichtung ein senkrecht stehender, drehbar gelagerter napfförmiger Behälter mit strömungsgünstig ausgebildeter Bodenfläche verwendet, mit dem die seiner Mantelfläche zugeordneten im vorbestimmten Abstand zur Bodenfläche angeordneten aus Formschalemoe- stehenden Gussformen kommunizieren, deren räumliche Anstellwinkel in Bezug auf die jeweils zugeordnete ebenfalls strömungsgünstig ausgebildeten Austrittsöffnungen des Behälters einstellbar ist, dies alles in derartiger Anordnung, dass die Gussformfüllung ohne Strömungsabrisse der Schmelze erfolgt.To carry out the method according to the invention, according to the invention, a vertically standing, rotatably mounted cup-shaped container with a streamlined bottom surface is used as a pouring device, with which the shell surface associated with its lateral surface and arranged at a predetermined distance from the bottom surface is used. communicate upright molds, the spatial angle of attack of which can be adjusted in relation to the respectively associated, also aerodynamically designed outlet openings of the container, all in such an arrangement that the mold is filled without flow breaks of the melt.
Nach einem bevorzugten Ausführungsbeispiel der Erfindung bestehen Behälter und Gussformen aus gegenüber der Schmelze reaktionsarmer Keramik mit eingelagerten Metallpartikeln, sodass Behälter und Gussformen vorzugsweise induktiv an sich bekannter Induktoren oder mittels Mikrowellen exakt steuerbar beheizbar sind.According to a preferred exemplary embodiment of the invention, containers and casting molds consist of ceramic which has little reaction to the melt and has embedded metal particles, so that containers and casting molds can be heated precisely, preferably inductively, by known inductors or by means of microwaves.
Vorteilhaft ist es, wenn nach einem weiteren Merkmal der Erfindung die der Zuführung der Schmelze dienende Gießrinne in Bezug auf die Schmelze ebenfalls strömungsgünstig ausgebildet ist und aus gegenüber der Schmelze reaktionsarmer beheizbarer Keramik mit eingelagerten Metallpartikeln besteht. Die Schmelze kann aber gemäß einem weiteren Ausführungsbeispiel der Erfindung auch innerhalb des Behälters der Eingussvorrichtung während dessen Rotation erzeugt werden.It is advantageous if, according to a further feature of the invention, the casting trough serving to supply the melt is also designed to be streamlined in relation to the melt and consists of ceramic which has little reaction to the melt and has embedded metal particles. According to a further exemplary embodiment of the invention, however, the melt can also be produced within the container of the pouring device during its rotation.
Schließlich können Einfüllvorrichtungen und Gießrinne aus beschichtetem Stahl, beschichteten Graphit, aus Tantal, aus Titan oder aus Niob bestehen.Finally, fillers and troughs can be made of coated steel, coated graphite, tantalum, titanium or niobium.
Als NE-Metalllegierung gelangt gemäß der Erfindung eine TiAI-Legierung zur Verwendung mit 30 bis 33 Gew.% AI, 4 bis 6 Gew.% Nb, 0,5 bis 3 Gew.% Mn und 0, 1 bis 0,5 Gew.% B, Rest Ti.According to the invention, a TiAl alloy is used as the non-ferrous metal alloy with 30 to 33 wt.% Al, 4 to 6 wt.% Nb, 0.5 to 3 wt.% Mn and 0.1 to 0.5 wt. % B, balance Ti.
Im Rahmen der Erfindung weist eine solche TiAI-Legierung mit 0,5 bis 3 Gew.% Mn einen Sauerstoffgehalt von 0 bis 2000 ppm, einen Kohlenstoffgehalt von 0 bis 2000 ppm, vorzugsweise 800 bis 1200 ppm, einen Nickel-Gehalt von 100 bis 2000 ppm und einen Stickstoff-Gehalt von 0 bis 2000 ppm auf. Selbstverständlich sind auch andere NE- Metalllegierungen zur Durchführung der erfindungsgemäßen maßgenauen Feingussherstellung einsetzbar.In the context of the invention, such a TiAl alloy with 0.5 to 3 wt.% Mn has an oxygen content of 0 to 2000 ppm, a carbon content of 0 to 2000 ppm, preferably 800 to 1200 ppm, and a nickel content of 100 to 2000 ppm and a nitrogen content of 0 to 2000 ppm. Of course, other non-ferrous metal alloys can also be used to carry out the precision casting production according to the invention.
Weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen. Die Erfindung ist nachfolgend anhand zweier in der Zeichnung schematisch dargestellter Ausführungsbeispiele beschrieben.Further features of the invention emerge from the subclaims. The invention is described below with reference to two exemplary embodiments shown schematically in the drawing.
Es zeigenShow it
Fig. 1 ein erstes Ausführungsbeispiel einer Vorrichtung zur Durchführung des Verfahrens nach der Erfindung undFig. 1 shows a first embodiment of an apparatus for performing the method according to the invention and
Fig. 2 ein abgewandeltes Ausführungsbeispiel der Vorrichtung nach Figur 1.2 shows a modified embodiment of the device according to FIG. 1.
Die Vorrichtung nach Figur 1 zeigt eine um eine Achse 10 drehbare insgesamt mit der Bezugsziffer 1 1 bezeichnete Eingussvorrichtung, der die Schmelze aus einer Gießpfanne 12 über eine strömungsgünstig ausgebildete Gießrinne 14 zugeführt wird.The device according to FIG. 1 shows a pouring device, which can be rotated about an axis 10 and is designated as a whole by the reference numeral 11, to which the melt is fed from a ladle 12 via a pouring trough 14 designed to be streamlined.
Die Eingussvorrichtung 1 1 ist senkrecht stehend drehbar gelagert - die hierzu erforderliche Antriebsvorrichtung ist der Übersicht halber nicht dargestellt -, und umfasst einen napfför- migen Behälter 15 mit einer rotationssymmetrischen Seitenwandung 16 und einem daran angeformten strömungsoptimiert ausgebildeten Boden 18. Im Abstand a vom Boden 18 befinden sich symmetrisch am Umfang der Seitenwandung 16 verteilt strömungsmechanisch optimierte Austrittsöffnungen 19, die mit aus Halbschalen 20 bestehenden Gussformen 22 kommunizieren.The pouring device 11 is mounted so that it can be rotated vertically - the drive device required for this is not shown for the sake of clarity - and comprises a cup-shaped container 15 with a rotationally symmetrical side wall 16 and a flow-optimized base 18 formed thereon at a distance a from the base 18 are located symmetrically on the circumference of the side wall 16, flow-mechanically optimized outlet openings 19, which communicate with molds 22 consisting of half-shells 20.
Die Gussformen sind um räumliche Winkel sr in Bezug auf die zugeordneten Austrittsöffnungen 19 einstellbar mit dem Behälter 15 verbunden. Die Einstellung der Winkel sr erfolgt in Abhängigkeit der spezifischen Gewichte der verwendeten NE-Me-talllegierung, der Gießtemperatur und der Drehzahl n des Behälters sowie des jeweiligen spezifischen Gewichts der Legierung, sodass die gesamte Zuführung strömungsmechanisch optimiert ausgebildet ist.The molds are adjustably connected to the container 15 by spatial angles sr with respect to the associated outlet openings 19. The angle sr is set as a function of the specific weights of the non-ferrous metal alloy used, the casting temperature and the speed n of the container as well as the respective specific weight of the alloy, so that the entire feed is designed to be fluid-mechanically optimized.
Der Behälter 15 und die zugeordneten Gussformen 22 sind in ihrer vorbestimmten Lage mittels einer aus geeigneter Keramik bestehenden, als Matrix für diese dienenden Halterung 23 angeordnet, die zwischen einer Grundplatte 24 und einer Deckplatte 26 eingespannt ist. Über eine Öffnung 28 kann die auf Gießtemperatur aufgeheizte Schmelze aus der Gieß'pFan- ne 12 austretende und über die Gießrinne 14 weitergeleitete Schmelze in den Behälter 15 eintreten. Über geeignet exakt steuerbare Heizvorrichtungen 30 - wie z.B. Induktoren - werden sowohl die Eingussvomchtung 1 1 und Gießrinne 14 als auch die Gussformen 22 derart induktiv beheizt, dass die Schmelze bis zum vollendeten Guss auf Gießtemperatur verbleibt. Diese die Fließfähigkeit der Schmelze aufrechterhaltenden Temperaturen korrespondieren mit den für die Feingussherstellung verwendeten NE-Metalllegierungen. Hierzu bestehen Gießrinnen 14, Behälter 15 und Gussformen 22 aus gegenüber der Schmelze reaktionsarmer Keramik mit eingelagerten Metallpartikeln. Behälter und Gießformen können aber auch aus beschichteten Stahl, aus Tantal, aus Titan oder aus Niob bestehen.The container 15 and the associated casting molds 22 are arranged in their predetermined position by means of a holder 23 made of suitable ceramic and serving as a matrix for this, which is clamped between a base plate 24 and a cover plate 26. The melt, heated to the casting temperature, can be removed from the casting ne 12 escaping melt and passed on via the trough 14 enter the container 15. Using suitable, precisely controllable heating devices 30 - such as, for example, inductors - both the pouring device 11 and casting trough 14 and the casting molds 22 are heated inductively in such a way that the melt remains at the casting temperature until the casting is complete. These temperatures, which maintain the flowability of the melt, correspond to the non-ferrous metal alloys used for investment casting. For this purpose, there are casting troughs 14, containers 15 and casting molds 22 made of low-reaction ceramic with embedded metal particles. Containers and casting molds can also consist of coated steel, tantalum, titanium or niobium.
Mit Coriolis-Kraft wird bekanntlich die Trägheitskraft bezeichnet, die neben der Führungskraft und der Zentrifugalkraft auf einen sich in einem rotierenden System bewegenden Körper einwirkt. Die Coriolis-Kraft steht senkrecht auf der vom Geschwindigkeitsvektor und der Drehachse gebildeten Ebene.As is known, the Coriolis force is the inertial force which, in addition to the guide force and the centrifugal force, acts on a body moving in a rotating system. The Coriolis force is perpendicular to the plane formed by the speed vector and the axis of rotation.
Als NE-Metalllegierung gelangt eine TiAI-Legierung mit 30 bis 33 Gew.-Anteilen Aluminium, 4 bis 6 Gew.% Niob, 0,5 bis 3 Gew.% Mangan und 0, 1 bis 0,5 Gew.% Bor, Rest Titan zur Anwendung. Vorzugsweise wird eine TiAI-Metalllegierung mit einem Sauerstoff-Gehalt von 0 bis 2000 ppm, einem Kohlenstoffgehalt von 0 bis 2000 ppm, vorzugsweise 800 bis 1200 ppm, einem Nickel-Gehalt von 100 bis 2000 ppm und einem Stickstoff-Gehalt von 0 bis 2000 ppm verwendet.The non-ferrous metal alloy is a TiAl alloy with 30 to 33 parts by weight of aluminum, 4 to 6% by weight of niobium, 0.5 to 3% by weight of manganese and 0.1 to 0.5% by weight of boron, the rest Titanium for use. A TiAl metal alloy with an oxygen content of 0 to 2000 ppm, a carbon content of 0 to 2000 ppm, preferably 800 to 1200 ppm, a nickel content of 100 to 2000 ppm and a nitrogen content of 0 to 2000 ppm is preferred used.
Für den Gießvorgang wird die in der Gießpfanne 12 befindliche NE-Metalllegierung durch Erhitzen in üblicher Weise in die gewünschte Schmelze überführt und gelangt - wie bereits beschrieben - über die beheizte Gießrinne 14 in die rotierende ebenfalls beheizte Eingussvorrichtung 1 1, wo sie durch Schwerkraft auf den Boden 18 des Behälters 15 gelangt. Infolge der Drehung des Behälters wirken auf die Schmelze Zentrifugalkräfte, die eine Richtungsumkehr der Fließrichtung der Schmelze von annährend 30° bis 180° bewirken, sodass diese an der Innenwandung der Seitenwandung 16 anliegend aufsteigt bis in die Höhe der Austrittsöffnungen 19. Da die räumlichen Anstellwinkel sr der Gussformen 22 derart gewählt sind, dass diese mit der Richtung der Coriolis-Kraftvektoren koinzidieren, wirken diese zusätzlich zu den Zentrifugalkräften auf die Schmelze ein, was zur Folge hat, dass die Schmelze nicht nur über die Öffnungen 19 in die Gussformen eintreten kann, sondern <S3ss diese die sich an die Öffnungen 19 anschließenden Hohlräume der Gussformen schnell und sicher sowie vollständig und homogen ausfüllt. Nach Erstarren der Schmelze werden die Gussformen abgenommen und das jeweilige Feingussbauteil in üblicher Weise ausgebracht.For the casting process, the non-ferrous metal alloy located in the casting ladle 12 is converted into the desired melt by heating in the usual manner and, as already described, passes via the heated casting trough 14 into the rotating, likewise heated, pouring device 11, where it is gravitationally applied to the Bottom 18 of the container 15 arrives. As a result of the rotation of the container, centrifugal forces act on the melt, which bring about a reversal of the direction of flow of the melt from approximately 30 ° to 180 °, so that it rises against the inner wall of the side wall 16 up to the height of the outlet openings 19. Since the spatial angles of attack sr of the molds 22 are selected such that they coincide with the direction of the Coriolis force vectors, these act on the melt in addition to the centrifugal forces, with the result that the melt can not only enter the molds via the openings 19 but also <S3ss this fills the cavities of the casting molds adjoining the openings 19 quickly and safely as well as completely and homogeneously. After the melt has solidified, the molds are removed and the respective investment casting component is applied in the customary manner.
Bei dem in Figur 2 dargestellten, insgesamt mit der Bezugziffer 40 bezeichneten Ausführungsbeispiel der Eingussvorrichtung, dessen der Eingussvorrichtung 1 1 entsprechende Bauteile mit gleichen Bezugziffern bezeichnet sind, befinden sich die in ihrer Winkelstellung sr einstellbaren, in der Haltung 23 gehaltenen Gussformen 22 am oberen Rand des in der Eingussvorrichtung 1 1 nunmehr drehbar gelagerten Behälters 15. Dieser weist in diesem Bereich einen für die Schmelze als Düse wirkenden Verteiler 42 auf. Die zum Inneren der Gussform 22 führenden Austrittsöffnungen 19 sind - wie im Ausführungsbeispiel nach Figur 1 - ebenfalls für die Schmelze strömungsgünstig ausgebildet.In the embodiment of the pouring device shown in FIG. 2, designated overall by reference numeral 40, the components of which correspond to the pouring device 1 1 are identified by the same reference numerals, the molds 22 which are adjustable in their angular position sr and held in the holder 23 are located at the upper edge of the in the pouring device 1 1 now rotatably mounted container 15. This has in this area a distributor 42 which acts as a nozzle for the melt. The outlet openings 19 leading to the inside of the casting mold 22 are - as in the exemplary embodiment according to FIG.
Die NE-Metalllegierung wird hier dem Behälter 15 als im rotierenden Behälter aufschmelzender sogenannter Ingot zugeführt, sodass Gießpfanne 12 und Gießrinne 14 des Ausführungsbeispiels nach Figur 1 entfallen. Für das Einsetzen des Ingots in den Behälter 15 weist dieser einen hierfür zu öffnenden Deckel 44 auf, an den Verteiler 42 befestigt ist. Hierzu ist die Deckplatte 26 abnehmbar mit der Eingussvorrichtung 40 verbunden. Da der ebenfalls induktiv aufheizbare Behälter 15 für sich allein drehbar in der Eingussvorrichtung 40 gelagert ist, sind temperaturbeständige Dichtungen 45 zwischen den Einlassöffnungen der stillstehenden Gussformen 22 und den Austrittsöffnungen 19 des sich drehenden Behälters 15 vorgesehen. Die Wirkungsweise der vorstehend beschriebenen Eingussvomchtung entspricht der in Verbindung mit Figur 1 beschriebenen Wirkungsweise, wobei jedoch über den düsenwirkungsentfaltenden Verteiler 42 die Zuführung der Schmelze in die Gussformen 22 und damit deren Füllung günstig beeinflusst wird.The non-ferrous metal alloy is here fed to the container 15 as a so-called ingot melting in the rotating container, so that the ladle 12 and pouring channel 14 of the exemplary embodiment according to FIG. 1 are omitted. For the insertion of the ingot into the container 15, the latter has a lid 44 which is openable for this purpose and to which the distributor 42 is fastened. For this purpose, the cover plate 26 is removably connected to the pouring device 40. Since the likewise inductively heatable container 15 is rotatably supported by itself in the pouring device 40, temperature-resistant seals 45 are provided between the inlet openings of the stationary molds 22 and the outlet openings 19 of the rotating container 15. The mode of operation of the pouring device described above corresponds to the mode of operation described in connection with FIG. 1, but the supply of the melt into the molds 22 and thus their filling is favorably influenced via the distributor 42 which develops the nozzle action.
Für beide Ausführungsformen, also nach Figur 1 und Figur 2, ist vorgesehen, dass die gegossenen Bauteile noch in den Gussformen auf 600 bis 700° C aufgeheizt werden können, was ebenfalls induktiv über die vorhandenen Heizvorrichtungen 30 erfolgt. Auf diese Weise wird die Abkühlungsrate der gegossenen Bauteile gesteuert niedrig gehalten, um Risse, Brüche u.a. in den Bauteilen zu vermeiden. Die Entnahme der gegossenen Bauteile aus den Gussformen erfolgt also erst nach Erreichen des jeweils gewünschten Abkühlungsgrades, der je nach Zusammensetzung der jeweils verwendeten NE-Metalllegierung zu wählen isTÜ Mit der vorstehend beschriebenen Erfindung wird erstmals sichergestellt, dass die Coriolis- Kräfte der der Schmelze aufgeprägten Zentrifugalkräfte gezielt ebenfalls wirksam werden können und die Schmelze ähnlich einem Druckstempel beaufschlagen und damit die Schmelze vollständig und homogen in die Gussform drängen, diese also vollständig und lunkerfrei füllen, ohne dass ein schädlicher Strömungsabriss der Schmelze sowie eine unterschiedlich erstarrende Grenzschichtbildung erfolgen kann. Durch das Aufheizen des gegossenen Bauteils in der Gussform wird die Abkühlungsrate gesteuert niedrig gehalten, sodass die bei ungesteuerter Abkühlung auftretenden Eigenspannungen in den Bauteilen und daraus resultierende Risse, Brüche u.a. vermieden werden. For both embodiments, that is to say according to FIG. 1 and FIG. 2, it is provided that the cast components can still be heated in the casting molds to 600 to 700 ° C., which is also done inductively via the existing heating devices 30. In this way, the cooling rate of the cast components is kept low in a controlled manner in order to avoid cracks, breaks, etc. in the components. The cast components are only removed from the molds after the desired degree of cooling has been reached, which is to be selected depending on the composition of the non-ferrous metal alloy used With the invention described above, it is ensured for the first time that the Coriolis forces of the centrifugal forces applied to the melt can also act in a targeted manner and act on the melt in a similar way to a pressure ram and thus force the melt completely and homogeneously into the casting mold, that is to say fill it completely and without voids. without a damaging stall of the melt and a different solidification of the boundary layer. By heating the cast component in the mold, the cooling rate is kept low in a controlled manner, so that the residual stresses in the components that result from uncontrolled cooling and the resulting cracks, breaks, etc. are avoided.

Claims

Patentansprüche claims
1. Verfahren zur maßgenauen Feingussherstellung von Bauteilen aus NE- Metalllegierungen, insbesondere zur Verwendung im Turbomaschinenbau, mit der Außenform der jeweils herzustellenden Bauteile korrespondierenden, aus beheizten Formschalen bestehenden Gussformen, denen die Schmelze über eine beheizte drehbar gelagerte Eingussvorrichtung derart zugeführt wird, dass ein vollständiges Füllen der Gussformen über Beschleunigungskräfte einschließlich der Coriolis-Kräfte der der Schmelze aufgeprägten Zentrifugalkräfte erfolgt.1.Procedure for the precision investment casting of components made of non-ferrous metal alloys, in particular for use in turbomachinery, with molds corresponding to the outer shape of the components to be produced and consisting of heated mold shells, to which the melt is fed via a heated rotatably mounted pouring device such that a complete The molds are filled via acceleration forces including the Coriolis forces of the centrifugal forces applied to the melt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schmelze für den Gießvorgang in der Eingussvorrichtung mittels der Zentrifugalkräfte entgegen der durch die Schwerkraft bestimmten Fließrichtung um annähernd 30° bis 180° umgelenkt und beim Einfließen in die Gussformen durch die Beschleunigungskräfte einschließlich der Coriolis-Kräfte zur homogenen Füllung der Gussformen gezwungen wird.2. The method according to claim 1, characterized in that the melt for the casting process in the pouring device by means of the centrifugal forces against the flow direction determined by gravity by approximately 30 ° to 180 ° and when flowing into the molds by the acceleration forces including the Coriolis Forces to homogeneous filling of the molds is forced.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die beheizte drehbar gelagerte Eingussvorrichtung und die beheizten Gussformen auf vorbestimmten, mit den für die Feingussherstellung verwendeten NE-Metalllegierung korrespondierenden, deren Fließfähigkeit aufrechterhaltenden, vorzugsweise 10° bis 200° C über dem Schmelzpunkt der NE-Metalllegierung liegende Verfahrenstemperaturen gehalten werden.3. The method according to claims 1 and 2, characterized in that the heated rotatably mounted pouring device and the heated molds on predetermined, corresponding to the non-ferrous metal alloy used for the investment casting, their fluidity maintaining, preferably 10 ° to 200 ° C above the Melting point of the non-ferrous metal alloy process temperatures are kept.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Schmelze außerhalb oder innerhalb der Eingussvorrichtung erzeugt wird.4. The method according to claims 1 to 3, characterized in that the melt is generated outside or inside the pouring device.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass zwecks gesteuerter Minderung der Abkühlungsrate der noch in den Gussformen befindlichen Feinguss- Bauteilen diese auf 100° bis 900° C aufgeheizt werden. 5. The method according to claims 1 to 4, characterized in that for the controlled reduction of the cooling rate of the investment cast components still in the molds, these are heated to 100 ° to 900 ° C.
6. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass als Eingussvorrichtung (1 1) ein senkrecht stehender drehbar gelagerter napfförmiger Behälter ( 15) mit strömungsgünstig ausgebildeter Bodenfläche verwendet ist, mit dem die an seiner Mantelfläche (Seitenwandung 16) angeordneten, im vorbestimmten Abstand (a) zur Bodenfläche (18) angeordneten aus Formschalen bestehenden Gussformen (22) kommunizieren, deren räumlicher Anstellwinkel (sr) in Bezug auf die jeweils zugeordnete strömungsgünstig ausgebildete Austrittsöffnung (19) im Behälter (15) einstellbar ist, dies alles in derartiger Anordnung, dass eine homogene Gussformfüllung ohne Strömungsabrisse der Schmelze erfolgt.6. Device for performing the method according to claims 1 to 5, characterized in that a vertically standing rotatably mounted cup-shaped container (15) with a streamlined bottom surface is used as a pouring device (1 1) with which the on its lateral surface (side wall 16 ) arranged, at a predetermined distance (a) from the bottom surface (18) arranged from molded shells (22) communicate, whose spatial angle of attack (sr) can be adjusted in relation to the respectively assigned aerodynamically designed outlet opening (19) in the container (15), all in such an arrangement that a homogeneous mold filling takes place without stalling of the melt.
7. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Behälter (15) in der Eingussvorrichtung (40) relativ zu den einstellbar (Raumwinkel sr) angeordneten Gussformen (22) drehbar gelagert und zur Aufnahme eines aus NE-Metalllegierungen bestehenden mit den Innendurchmesser des Behälters korrespondierenden Ingots mit einem verschließbaren Deckel (44) versehen ist.7. Device for performing the method according to claims 1 to 6, characterized in that the container (15) in the pouring device (40) rotatably mounted relative to the adjustable (solid angle sr) arranged molds (22) and for receiving one made of NE -Metal alloys existing ingots corresponding to the inside diameter of the container are provided with a closable cover (44).
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Gussformen (22) nahe dem oberen Rand des Behälters (15) angeordnet sind, deren Eintrittsöffnungen einem Behälter (15) angeordnetem düsenwirkungentfaltender Verteiler (42) zugeordnet ist.8. The device according to claim 7, characterized in that the molds (22) are arranged near the upper edge of the container (15), the inlet openings of which are assigned to a container (15) arranged nozzle-unfolding distributor (42).
9. Vorrichtung nach den Ansprüchen 6 bis 8, dadurch gekennzeichnet, dass Behälter (15) und Gussformen (22) aus gegenüber der Schmelze reaktionsarmer Keramik mit eingelagerten Metallpartikeln bestehen.9. Device according to claims 6 to 8, characterized in that the container (15) and casting molds (22) consist of ceramic with little reaction to the melt with embedded metal particles.
10. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass eine der Zuführung der Schmelze dienende Gießrinne (14) in Bezug auf die Schmelze strömungsgünstig ausgebildet und ebenfalls aus gegenüber der Schmelze reaktionsarmer Keramik mit eingelagerten Metallpartikeln besteht. 10. The device according to claim 6, characterized in that a casting trough (14) serving to supply the melt is aerodynamically designed with respect to the melt and also consists of ceramic with low reaction to the melt with embedded metal particles.
1 1. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass Behälter und Gießformen aus beschichtetem Stahl, beschichtetem Graphit, aus Tantal, aus Titan oder aus Niob bestehen.1 1. Device according to claim 6, characterized in that containers and molds made of coated steel, coated graphite, tantalum, titanium or niobium.
12. Vorrichtung nach den Ansprüchen 6 bis 1 1, dadurch gekennzeichnet, dass das Beheizen der Eingussvorrichtung (10) und der Gussformen (22) induktiv oder durch Mikrowellen erfolgt.12. The device according to claims 6 to 1 1, characterized in that the heating of the pouring device (10) and the molds (22) is carried out inductively or by microwaves.
13. NE-Metalllegierung für die Durchführung des Verfahrens nach Anspruch 1, auf der Basis einer TiAI-Metalllegierung mit 30 bis 33 Gew.% AI, 4 bis 6 Gew.% Nb, 0,5 bis 3 Gew.% Mn und 0, 1 bis 0,5 Gew.% B, Rest Ti.13. non-ferrous metal alloy for carrying out the method according to claim 1, based on a TiAl metal alloy with 30 to 33 wt.% Al, 4 to 6 wt.% Nb, 0.5 to 3 wt.% Mn and 0, 1 to 0.5% by weight B, balance Ti.
14. NE-Metalllegierung nach Anspruch 13, auf der Basis einer TiAI-Metalllegierung mit einem Sauerstoffgehalt von 0 bis 2000 ppm, einem Kohlenstoffgehalt von 0 bis 2000 ppm, vorzugsweise 800 bis 1200 ppm, einem Ni-Gehalt von 100 bis 2000 ppm und einem N-Gehalt von 0 bis 2000 ppm. 14. non-ferrous metal alloy according to claim 13, based on a TiAl metal alloy with an oxygen content of 0 to 2000 ppm, a carbon content of 0 to 2000 ppm, preferably 800 to 1200 ppm, a Ni content of 100 to 2000 ppm and one N content from 0 to 2000 ppm.
PCT/DE2003/000661 2002-03-07 2003-03-03 Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method WO2003074210A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03722201A EP1480770B1 (en) 2002-03-07 2003-03-03 Method and device for producing precision investment-cast ne metal alloy members
US10/506,982 US20050279481A1 (en) 2002-03-07 2003-03-03 Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method
JP2003572710A JP2005527375A (en) 2002-03-07 2003-03-03 Dimensionally high precision casting method and apparatus for parts from non-ferrous metal alloys and non-ferrous metal alloys for carrying out this method
DE50301746T DE50301746D1 (en) 2002-03-07 2003-03-03 METHOD AND DEVICE FOR MADE-TO-MEASURE FINISHING OF COMPONENTS OF NON-METAL ALLOYS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10210001A DE10210001A1 (en) 2002-03-07 2002-03-07 Method and device for the precision investment casting of components made of non-ferrous metal alloys and non-ferrous metal alloys for carrying out the method
DE10210001.2 2002-03-07

Publications (2)

Publication Number Publication Date
WO2003074210A2 true WO2003074210A2 (en) 2003-09-12
WO2003074210A3 WO2003074210A3 (en) 2004-04-29

Family

ID=27771077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/000661 WO2003074210A2 (en) 2002-03-07 2003-03-03 Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method

Country Status (5)

Country Link
US (1) US20050279481A1 (en)
EP (1) EP1480770B1 (en)
JP (1) JP2005527375A (en)
DE (2) DE10210001A1 (en)
WO (1) WO2003074210A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8136572B2 (en) * 2006-10-23 2012-03-20 Manfred Renkel Method for production of precision castings by centrifugal casting
CN113695525A (en) * 2021-08-20 2021-11-26 宁波开发区安德鲁精铸有限公司 Pump cover production equipment and production process thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302993B1 (en) * 2006-09-28 2007-12-04 Ethicon Endo-Surgery, Inc. Cast parts with improved surface properties and methods for their production
ATE508820T1 (en) * 2007-04-11 2011-05-15 Manfred Renkel METHOD FOR PRODUCING INVESTMENT CASTINGS BY CENTRIFUL CASTING
DE102007020638B4 (en) * 2007-04-30 2017-02-09 Rolls-Royce Deutschland Ltd & Co Kg Centrifugal casting method and arrangement for a centrifugal casting apparatus
DE102009052835A1 (en) * 2009-11-13 2011-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a component from a fiber-reinforced material
CN103028715B (en) * 2011-09-29 2015-01-28 郑州电力机械厂 Centrifugal casting method of double suction type impeller
CN102756083A (en) * 2012-08-13 2012-10-31 鹰普航空零部件(无锡)有限公司 Production method for fired mold aviation casting
WO2014057208A2 (en) * 2012-10-09 2014-04-17 Snecma Method for manufacturing metal parts for a turbine machine
DE102013010739B4 (en) * 2013-06-27 2019-08-08 Audi Ag Method for producing an impeller of an exhaust gas turbocharger
JP6344034B2 (en) * 2014-04-22 2018-06-20 株式会社Ihi Casting method of TiAl alloy
US10493523B1 (en) 2016-02-04 2019-12-03 Williams International Co., L.L.C. Method of producing a cast component
CN106180581B (en) * 2016-07-28 2018-01-05 巢湖市聚源机械有限公司 A kind of bearing block G. Iron Castings produce frock
KR102183487B1 (en) * 2019-07-08 2020-11-26 성보공업주식회사 Continuous vertical type centrifugal casting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE544821C (en) * 1932-02-25 Leopold Rado Device for cleaning and casting metals and metal alloys by centrifugal force
DE1052069B (en) * 1952-05-06 1959-03-05 Sulzer Ag Pouring funnel for centrifugal molds
WO1993008942A1 (en) * 1991-10-31 1993-05-13 Conley Casting Supply Corp. Multi-mold centrifugal casting apparatus
EP1052298A1 (en) * 1999-05-10 2000-11-15 Howmet Research Corporation Creep resistant gamma titanium aluminide
US20010045267A1 (en) * 1996-09-26 2001-11-29 Ald Vacuum Technologies Ag Method and apparatus for the production of precision castings by centrifugal casting with controlled solidification

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE715260C (en) * 1934-08-02 1941-12-18 Peter Eyermann Machine for casting blocks on a turntable
DE723482C (en) * 1936-05-20 1942-08-05 Schoeller Bleckmann Stahlwerke Centrifugal casting machine
DE1106931B (en) * 1952-06-12 1961-05-18 Max Adolphe Bunford Process for filling centrifugal molds
CS225775B1 (en) * 1982-02-01 1984-02-13 Jiri Ing Csc Andras The equipment for high frequency or medium frequency metal melting and the following centrifugal casting
DE4105080C1 (en) * 1991-01-26 1992-10-08 Cerox Technische Keramik Gmbh, 8443 Bogen, De Centrifugal casting device with reduced alloy loss - has inductively heated crucible at an acute angle with horizontal centrifuging plane
JP2663392B2 (en) * 1992-06-19 1997-10-15 工業技術院長 Core for casting titanium and its alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE544821C (en) * 1932-02-25 Leopold Rado Device for cleaning and casting metals and metal alloys by centrifugal force
DE1052069B (en) * 1952-05-06 1959-03-05 Sulzer Ag Pouring funnel for centrifugal molds
WO1993008942A1 (en) * 1991-10-31 1993-05-13 Conley Casting Supply Corp. Multi-mold centrifugal casting apparatus
US20010045267A1 (en) * 1996-09-26 2001-11-29 Ald Vacuum Technologies Ag Method and apparatus for the production of precision castings by centrifugal casting with controlled solidification
EP1052298A1 (en) * 1999-05-10 2000-11-15 Howmet Research Corporation Creep resistant gamma titanium aluminide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8136572B2 (en) * 2006-10-23 2012-03-20 Manfred Renkel Method for production of precision castings by centrifugal casting
US8136573B2 (en) * 2006-10-23 2012-03-20 Manfred Renkel Method for production of turbine blades by centrifugal casting
CN113695525A (en) * 2021-08-20 2021-11-26 宁波开发区安德鲁精铸有限公司 Pump cover production equipment and production process thereof

Also Published As

Publication number Publication date
DE50301746D1 (en) 2005-12-29
JP2005527375A (en) 2005-09-15
EP1480770A2 (en) 2004-12-01
WO2003074210A3 (en) 2004-04-29
DE10210001A1 (en) 2003-10-02
US20050279481A1 (en) 2005-12-22
EP1480770B1 (en) 2005-11-23

Similar Documents

Publication Publication Date Title
EP0835705B1 (en) Method and apparatus for production of controlled solidified precision casting by centrifugal casting
WO2003074210A2 (en) Method and device for producing precision investment-cast ne metal alloy members and ne metal alloys for carrying out said method
DE3018290C2 (en) Method and device for producing fine-grain castings
EP1742752B1 (en) Method for casting components from light alloys according to the tilt pouring concept
DE102007011253B4 (en) Production of castings by direct mold filling
WO2010058003A1 (en) Method and device for casting a cast part from a metal melt
DE1558507A1 (en) New nickel alloy and process for its manufacture
DE60319533T2 (en) INJECTION METHOD IN HALF-RESISTANT CONDITION
DE69812522T2 (en) Process for the manufacture of products from light metal materials by shaping in the semi-solid state
DE2952150C2 (en) Method and device for the production of ingots from directionally solidified alloys
DE2440042A1 (en) ARRANGEMENT FOR FILLING METAL MELT
DE2531571B2 (en) Process for feeding aggregates in wire form to a metal melt and device for carrying out the process
DE2929845C2 (en)
WO2018103789A1 (en) Casting device, press and method for casting a component and component
DE3247535A1 (en) WEAR-RESISTANT ALUMINUM-BASED COMPOSITE MATERIAL FOR THE CASTING AND METHOD FOR THE PRODUCTION THEREOF
EP2187194B1 (en) Device for taking a sample from metal melts
DE3231316A1 (en) METHOD AND DEVICE FOR CONTROLLING THE POURING OF A MEL FROM A MELT CONTAINER WITH A BOTTOM OPENING
EP1786576B1 (en) Method and device for casting molten metal
DE10212349C1 (en) Production of an alloy melt for casting comprises placing the melt having a temperature lying above the liquidus temperature of the alloy in a crystallization vessel, adding an alloy as a powder, and mixing the melt and powder
DE3873994T2 (en) METHOD AND METHOD FOR METAL CASTING.
DE102007020638B4 (en) Centrifugal casting method and arrangement for a centrifugal casting apparatus
DE3401354A1 (en) Process for the casting of grey cast-iron parts
WO2015176799A1 (en) Low-pressure casting device and method for the operation thereof
WO2001055464A1 (en) Diecasting method and device for carrying out the same
DE19505689C2 (en) Casting mold for the production of castings from reactive metals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003722201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003572710

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003722201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10506982

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003722201

Country of ref document: EP