WO2003065429A1 - GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD - Google Patents

GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD Download PDF

Info

Publication number
WO2003065429A1
WO2003065429A1 PCT/JP2002/011772 JP0211772W WO03065429A1 WO 2003065429 A1 WO2003065429 A1 WO 2003065429A1 JP 0211772 W JP0211772 W JP 0211772W WO 03065429 A1 WO03065429 A1 WO 03065429A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
substrate
compound semiconductor
gan
based compound
Prior art date
Application number
PCT/JP2002/011772
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Sasaki
Masashi Nakamura
Kenji Sato
Original Assignee
Nikko Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co., Ltd. filed Critical Nikko Materials Co., Ltd.
Publication of WO2003065429A1 publication Critical patent/WO2003065429A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Definitions

  • the present invention relates to a method for manufacturing a GaN-based compound semiconductor crystal used for manufacturing a semiconductor device, and relates to a technique for effectively preventing a crack from being generated in a growth step of a GaN-based compound semiconductor crystal.
  • G aN-based compound semiconductors such as G aN, In G a N, A 1 G a N, and In G a A 1 N (In x G a y A 1 ⁇ _ ⁇ _ ⁇ ⁇ where 0 ⁇ x, y; x + y ⁇ l) is expected as a material for semiconductor devices such as light emitting devices and power devices, and is attracting attention as a material that can be applied in various other fields.
  • the need for a substrate having high thermal conductivity and lattice matching with the GaN-based compound semiconductor crystal has further increased, and ELO (Epitaxial lateral overgrowth) using hydride vapor phase epitaxy (hereinafter abbreviated as HVPE).
  • HVPE hydride vapor phase epitaxy
  • the ELO method means that, for example, an insulating film serving as a mask is formed on a sapphire substrate, an opening is provided in a part of the insulating film, the insulating film is used as a mask, and the exposed sapphire substrate surface is epitaxy.
  • G a N-based compound semiconductor crystal with high crystallinity as a seed for growth Is a way to grow.
  • the growth of the GaN-based compound semiconductor crystal starts from the surface of the sapphire substrate inside the opening provided in the mask, and the growth layer spreads on the mask, so that the dislocation density in the crystal is kept low.
  • a GaN-based compound semiconductor crystal with few crystal defects can be obtained.
  • the GaN-based compound semiconductor crystal obtained by the ELO method has a large thermal strain, it is necessary to remove the sapphire substrate by polishing in the wafer manufacturing process to obtain a single GaN-based compound semiconductor crystal wafer.
  • the GaN-based compound semiconductor crystal wafer is distorted.
  • the present inventors used a rare earth 13 (3B) group perovskite crystal as one of the heterocrystalline substrate materials, and used the ⁇ 011 ⁇ plane or the ⁇ 101 ⁇ plane as a growth plane.
  • a method for growing a GaN-based compound semiconductor by heteroepitaxy has been proposed (WO95 / 27815).
  • the ⁇ 0 1 1 ⁇ plane or ⁇ 10 1 ⁇ plane indicates a set of planes equivalent to the (0 1 1) plane and the (1 0 1) plane, respectively.
  • a N d G a 0 3 which is one of the rare earth 1 3 (3 B) Group Bae Robusukai DOO as the substrate, the ⁇ 0 1 1 ⁇ plane or the ⁇ 1 0 1 ⁇
  • lattice mismatch can be reduced to about 1.2%.
  • This lattice mismatch value is extremely small compared to the lattice mismatch value when sapphire or a SiC used as a substitute is used as a substrate. Therefore, since the dislocation density in the crystal is reduced, a GaN-based compound semiconductor crystal with few crystal defects can be grown.
  • An object of the present invention is to provide a method for growing a GaN-based compound semiconductor crystal, which can effectively prevent a GaN crystal thick film from being cracked in a GaN-based compound semiconductor crystal growth step. With the goal. Disclosure of the invention In order to achieve the above object, the present invention provides a GaN-based compound semiconductor crystal on the surface of a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements as a substrate. In the growing method, the thickness of the substrate is 25 ⁇ or less.
  • the amount of expansion on the substrate side during the temperature drop process after the growth of a thick film of a GaN-based compound semiconductor crystal is reduced, and the difference in the coefficient of thermal expansion causes the GaN-based compound to grow.
  • the stress applied to the compound semiconductor crystal from the substrate was reduced. This makes it possible to efficiently manufacture high-quality GaN-based compound semiconductor crystals without cracks. .
  • the amount of expansion can be reduced as the thickness of the substrate is reduced, it is more effective to reduce the thickness of the substrate to prevent the GaN crystal thick film from cracking due to stress.
  • the thickness of the substrate is desirably 100 / m or more, more desirably 120 ⁇ or more, from the viewpoint of ease of handling of the substrate.
  • N d G a 0 3 size of the substrate is 2 inches in diameter, and a thickness of 1 20 ⁇ .
  • the N d G a 0 3 substrate was placed at a predetermined site within hydride VP E device, the substrate temperature while introducing N 2 gas was raised to 6 20 ° C, and G a metal And G a C 1 generated from HC 1 gas is supplied to the N d G a 0 3 on the substrate using the NH 3 gas N 2 carrier gas, forming a G a N protective layer of about 1 0 0 nm did.
  • N d G a 0 3 would generate a Neojiumu compound reacts with NH 3 or H 2 at 8 0 0 ° C over a high temperature
  • the N 2 is used as carrier gas in the present embodiment, 6 2 0 °
  • the protective layer By forming the protective layer at a low temperature of C, neodymium compounds are prevented from being generated.
  • the substrate temperature was raised to 100 ° C., and the G a C 1 generated from the G a metal and the HC 1 gas and the NH 3 gas were N d G a 0 using the N 2 carrier gas. It was supplied on three substrates.
  • a GaN compound semiconductor crystal was grown at a growth rate of ⁇ / h for 300 minutes.
  • the carrier gas is switched from N 2 gas to H 2 gas, the gas partial pressure H 2 9 0%, adjusted to be NH 3 1 0%, was 1 hour heat treatment.
  • the N d G a O 3 substrate having a thickness of 3 5 0 m
  • the Netsusho management could be entirely removed by reductive decomposition.
  • the plane orientation of the GaN thick film crystal obtained in the present example is controlled, and further mirror-finished, for example, processed to a thickness of 350 ⁇ to obtain a substrate for a semiconductor element.
  • a semiconductor device having excellent device characteristics could be manufactured.
  • Group Bae Ropusukai DOO crystals is not limited to N d G a 0 3 crystal, for example, Nd A 10 3 , Nd I n ⁇ 3 and the like can be used.
  • G a The growth conditions for N-based compound semiconductor crystal, 0 & 0 1 partial pressure 1. 0 X 1 0- 3 ⁇ 1. 0 X 1 0- 2 atm, NH 3 partial pressure 1. 0 X 1 0- 1 ⁇ 4. 0 X 1 0 one 1 atm, the growth rate is 3 0 ⁇ : L 0 0 m / li, growth temperature 9 3 0 ⁇ : 1 0 5 0 ° C, the cooling rate is 4-10 . Desirably, CZmin.
  • the rare earth 1 3 comprising one or two or more kinds of rare earth elements (3 B) Group Bae Ropusukai preparative crystals (e.g., NDG a 0 3) a G a N-based compound semiconductor crystal on the surface as the substrate
  • the thickness of the substrate is set to 25 ⁇ or less, and the stress applied to the GaN thick film crystal from the NGO substrate is reduced by the difference in coefficient of thermal expansion. It is possible to prevent the crystal from cracking and to improve the production efficiency.
  • the present invention is not limited to the growth of GaN compound semiconductor crystals, and can be used, for example, when growing other GaN-based compound semiconductor crystals such as InGaN and A1GaN.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

A method for growing a GaN compound semiconductor crystal on the surface of a substrate which is a rare-earth group XIII (IIIB) perovskite crystal containing one or more rare earth elements, wherein the thickness of the substrate is 250 µm or less and the stress exerted by the substrate on the GaN thick-film crystal is decreased by the difference in the coefficient of thermal expansion.

Description

明細書  Specification
G a N系化合物半導体結晶の製造方法 技術分野 Manufacturing method of G a N-based compound semiconductor crystal
本発明は、 半導体素子の製造に用いられる G a N系化合物半導体結晶の製造方 法に関し、 G a N系化合物半導体結晶の成長工程において割れが発生するのを有 効に防止する技術に関する。 背景技術  The present invention relates to a method for manufacturing a GaN-based compound semiconductor crystal used for manufacturing a semiconductor device, and relates to a technique for effectively preventing a crack from being generated in a growth step of a GaN-based compound semiconductor crystal. Background art
G aN、 I n G a N、 A 1 G a N、 I n G a A 1 N等の G a N系化合物半導体 ( I n XG a yA 1 χ_χ_γΝ 但し 0≤ x, y ; x + y≤ l) は、 発光デバイス やパワーデバイスなどの半導体デバイスの材料として期待され、 またその他種々 の分野で応用可能な材料として注目されている。 G aN-based compound semiconductors such as G aN, In G a N, A 1 G a N, and In G a A 1 N (In x G a y A 1 χ _ χ _ γ Ν where 0≤ x, y; x + y ≤ l) is expected as a material for semiconductor devices such as light emitting devices and power devices, and is attracting attention as a material that can be applied in various other fields.
従来、 G a N系化合物半導体のバルタ結晶を成長させるのは困難であったため、 上記電子デバイスには、 例えばサファイア等の異種結晶上へのヘテロェピタキ シ一によつて G a N等の薄膜単結晶を形成した基板が用いられていた。  Conventionally, it has been difficult to grow a balun crystal of a GaN-based compound semiconductor. Was used.
ところが、 サフアイァ結晶と G a N系化合物半導体結晶とは格子不整合性が大 きいので、 サファイア結晶上に成長させた G a N系化合物半導体結晶の転位密度 が大きくなり結晶欠陥が発生してしまうという問題があった。 さらに、 サフアイ ァは熱伝導率が小さく放熱しにくいので、 サファイア結晶上に G a N系化合物半 導体結晶を成長させた基板を消費電力の大きい電子デバイス等に用いると高温に なりやすいという問題があった。  However, since the lattice mismatch between the sapphire crystal and the GaN-based compound semiconductor crystal is large, the dislocation density of the GaN-based compound semiconductor crystal grown on the sapphire crystal increases and crystal defects occur. There was a problem. Furthermore, sapphire has low thermal conductivity and is difficult to radiate heat. there were.
そこで、 熱伝導率が大きく G a N系化合物半導体結晶と格子整合する基板の必 要性が一層高まり、 ハイドライド気相成長法 (以下、 HVPEと略する) を利用 した ELO (Epitaxial lateral overgrowth) 法等の研究が急速に進められた。 ここで E LO法とは、 例えばサファイア基板上にマスクとなる絶縁膜を形成し、 該絶縁膜の一部に開口部を設けて絶縁膜をマスクとし、 露出しているサファイア 基板面をェピタキシャル成長の種として結晶性の高い G a N系化合物半導体結晶 を成長させる方法である。 この方法によれば、 マスクに設けられた開口部内側の サファイア基板表面から G a N系化合物半導体結晶の成長が始まりマスク上に成 長層が広がっていくので、 結晶中の転位密度を小さく抑えることができ、 結晶欠 陥の少ない G a N系化合物半導体結晶を得ることができる。 Therefore, the need for a substrate having high thermal conductivity and lattice matching with the GaN-based compound semiconductor crystal has further increased, and ELO (Epitaxial lateral overgrowth) using hydride vapor phase epitaxy (hereinafter abbreviated as HVPE). Research was rapidly advanced. Here, the ELO method means that, for example, an insulating film serving as a mask is formed on a sapphire substrate, an opening is provided in a part of the insulating film, the insulating film is used as a mask, and the exposed sapphire substrate surface is epitaxy. G a N-based compound semiconductor crystal with high crystallinity as a seed for growth Is a way to grow. According to this method, the growth of the GaN-based compound semiconductor crystal starts from the surface of the sapphire substrate inside the opening provided in the mask, and the growth layer spreads on the mask, so that the dislocation density in the crystal is kept low. As a result, a GaN-based compound semiconductor crystal with few crystal defects can be obtained.
しかし、 E LO法により得られた G a N系化合物半導体結晶は熱歪みが大きい ため、 ウェハ製造工程のポリッシングによりサファイア基板を除去して単体の G a N系化合物半導体結晶ウェハを得ようとすると、 G a N系化合物半導体結晶 ウェハが歪んでしまうという問題があった。  However, because the GaN-based compound semiconductor crystal obtained by the ELO method has a large thermal strain, it is necessary to remove the sapphire substrate by polishing in the wafer manufacturing process to obtain a single GaN-based compound semiconductor crystal wafer. However, there has been a problem that the GaN-based compound semiconductor crystal wafer is distorted.
そこで本発明者等は、 異種結晶基板材料の一つとして希土類 1 3 (3 B) 族べ ロブスカイト結晶を用い、 且つその {0 1 1 } 面または { 1 0 1 } 面を成長面と して G a N系化合物半導体をへテロエピタキシーによって成長させる方法を提案 した (WO 9 5ノ278 1 5号) 。 なお、 ここでいう {0 1 1 } 面または { 10 1 } 面とは、 それぞれ (0 1 1) 面、 (1 0 1) 面と等価な面の組を表す。  Therefore, the present inventors used a rare earth 13 (3B) group perovskite crystal as one of the heterocrystalline substrate materials, and used the {011} plane or the {101} plane as a growth plane. A method for growing a GaN-based compound semiconductor by heteroepitaxy has been proposed (WO95 / 27815). Here, the {0 1 1} plane or {10 1} plane indicates a set of planes equivalent to the (0 1 1) plane and the (1 0 1) plane, respectively.
前記先願の成長技術によれば、 例えば希土類 1 3 (3 B) 族ぺロブスカイ トの 一つである N d G a 03を基板として、 その {0 1 1 } 面または { 1 0 1 } 面に G a Nを成長させた場合、 格子不整合を 1. 2%程度とすることができる。 この 格子不整合の値はサファイアやその代替品として用いられる S i Cを基板とした 場合の格子不整合の値に比較して極めて小さい。 したがって、 結晶中の転位密度 が低くなるので結晶欠陥の少ない G a N系化合物半導体結晶を成長させることが できる。 According to growth technique of the prior application, for example, a N d G a 0 3, which is one of the rare earth 1 3 (3 B) Group Bae Robusukai DOO as the substrate, the {0 1 1} plane or the {1 0 1} When GaN is grown on the surface, lattice mismatch can be reduced to about 1.2%. This lattice mismatch value is extremely small compared to the lattice mismatch value when sapphire or a SiC used as a substitute is used as a substrate. Therefore, since the dislocation density in the crystal is reduced, a GaN-based compound semiconductor crystal with few crystal defects can be grown.
しかしながら、 前記先願の成長方法を利用して N d G a 03基板上に G a N結 晶厚膜を成長させた場合、 G a N結晶を成長させた後の降温過程において、 Nd G a 03基板と G a N結晶厚膜との熱膨張率の差により G a N結晶中に割れが生 じるおそれがあるという問題が明らかになつた。 However, when grown to G a N sintered AkiraAtsumaku the N d G a 0 3 substrate by using the growth method of the prior application, the temperature lowering process after growing the G a N crystal, Nd G a 0 3 substrate and G a N by the difference in thermal expansion coefficient between crystal thick film cracking in G a N crystal is a problem that there is arising a possibility it found that the alien.
本発明は、 G a N系化合物半導体結晶の成長工程において G a N結晶厚膜に割 れが生じるのを有効に防止することができる G a N系化合物半導体結晶の成長方 法を提供することを目的とする。 発明の開示 本発明は、 上記目的を達成するために、 1または 2種類以上の希土類元素を含 む希土類 1 3 (3 B) 族ぺロプスカイト結晶を基板としてその表面に G a N系化 合物半導体結晶を成長させる方法において、 前記基板の厚さを 25 Ο μιτα以下と したものである。 すなわち、 基板の厚さを薄くすることにより、 G aN系化合物 半導体結晶の厚膜を成長させた後の降温過程における基板側の膨張量を小さくし て、 熱膨張率の差により G a N系化合物半導体結晶が基板から受ける応力が小さ くなるようにした。 これにより、 割れのない高品質な GaN系化合物半導体結晶 を効率的に製造することができる。 . An object of the present invention is to provide a method for growing a GaN-based compound semiconductor crystal, which can effectively prevent a GaN crystal thick film from being cracked in a GaN-based compound semiconductor crystal growth step. With the goal. Disclosure of the invention In order to achieve the above object, the present invention provides a GaN-based compound semiconductor crystal on the surface of a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements as a substrate. In the growing method, the thickness of the substrate is 25 μμτα or less. In other words, by reducing the thickness of the substrate, the amount of expansion on the substrate side during the temperature drop process after the growth of a thick film of a GaN-based compound semiconductor crystal is reduced, and the difference in the coefficient of thermal expansion causes the GaN-based compound to grow. The stress applied to the compound semiconductor crystal from the substrate was reduced. This makes it possible to efficiently manufacture high-quality GaN-based compound semiconductor crystals without cracks. .
例えば、 N d G a 03を基板として、 その表面に G a N結晶を成長させる場合、 厚さが 250 m以下の NGO基板を用いたときは、 G a N結晶厚膜に割れが生 じる確率は 50%以下にすることができる。 For example, a N d G a 0 3 as the substrate, when growing the G a N crystal on the surface, when the thickness is used the following NGO substrate 250 m is, G a N crystal thick film cracking Ji live Probability can be less than 50%.
また、 基板の厚さを薄くするほど膨張量を小さくできるので、 基板の厚さを薄 くした方が G a N結晶厚膜に応力による割れが生じるのを防止するのに有効であ る。 例えば、 厚さが 1 20 μιηの基板を用いることにより、 G a Ν厚膜に割れが 生じる確率をほぼ 0%にすることができる。 ただし、 基板の扱い安さの面から基 板の厚さは 1 00 / m以上とするのが望ましく、 さらに望ましくは 1 20 μπι以 上とするのがよい。 発明を実施するための最良の形態  Also, since the amount of expansion can be reduced as the thickness of the substrate is reduced, it is more effective to reduce the thickness of the substrate to prevent the GaN crystal thick film from cracking due to stress. For example, by using a substrate having a thickness of 120 μιη, the probability that cracks occur in the Ga a thick film can be reduced to almost 0%. However, the thickness of the substrate is desirably 100 / m or more, more desirably 120 μπι or more, from the viewpoint of ease of handling of the substrate. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態を、 N d G a 03結晶を基板として G a Ν化 合物半導体結晶を成長させる場合について説明する。 Hereinafter, a preferred embodiment of the present invention, the case of growing a G a New reduction compound semiconductor crystals N d G a 0 3 crystal as a substrate.
まず、 N d G a 03のインゴットをスライスして結晶成長用の基板とした。 こ のとき、 N d G a 03基板の大きさは 2インチ径で、 厚さを 1 20 μηιとした。 次に、 鏡面研磨した N d G a 03基板をァセトン中で 5分間超音波洗浄を行い、 続けてメタノールで 5分間超音波洗浄を行った。 その後、 N2ガスでプロ一して 液滴を吹き飛ばしてから自然乾燥させた。 次に、 洗浄した N d G a 03基板を硫 酸系エツチャント (燐酸:硫酸 = 1 : 3、 80°C) で 5分間エッチングした。 次に、 この N d G a 03基板をハイドライド VP E装置内の所定の部位に配置 した後、 N2ガスを導入しながら基板温度を 6 20°Cまで昇温し、 G aメタルと HC 1ガスから生成された G a C 1 と、 NH3ガスとを N2キャリアガスを用い て N d G a 03基板上に供給し、 約 1 0 0 nmの G a N保護層を形成した。 N d G a 03は 8 0 0°C以上の高温で NH3や H2と反応してネオジゥム化合物を生成 してしまうので、 本実施形態ではキャリアガスとして N2を用い、 6 2 0°Cの低 温で保護層を形成することによりネオジゥム化合物が生成されないようにしてい る。 First, a substrate for crystal growth by slicing an ingot of N d G a 0 3. At this time, N d G a 0 3 size of the substrate is 2 inches in diameter, and a thickness of 1 20 μηι. Next, the 5 minutes ultrasonic cleaning N d G a 0 3 substrate was mirror-polished in Aseton was performed for 5 minutes ultrasonic cleaning in methanol followed. Thereafter, the droplets were blown off by blowing with N 2 gas and air-dried. Then, it washed N d G a 0 3 substrate sulfuric acid Etsuchanto (phosphoric acid: sulfuric acid = 1: 3, 80 ° C ) for 5 minutes etching at. Then, the N d G a 0 3 substrate was placed at a predetermined site within hydride VP E device, the substrate temperature while introducing N 2 gas was raised to 6 20 ° C, and G a metal And G a C 1 generated from HC 1 gas is supplied to the N d G a 0 3 on the substrate using the NH 3 gas N 2 carrier gas, forming a G a N protective layer of about 1 0 0 nm did. Since N d G a 0 3 would generate a Neojiumu compound reacts with NH 3 or H 2 at 8 0 0 ° C over a high temperature, the N 2 is used as carrier gas in the present embodiment, 6 2 0 ° By forming the protective layer at a low temperature of C, neodymium compounds are prevented from being generated.
次に、 基板温度を 1 0 0 0°Cに昇温し、 G aメタルと HC 1ガスから生成され た G a C 1 と、 NH3ガスとを N2キヤリァガスを用いて N d G a 03基板上に供 給した。 このとき、 G a C l分圧が 5. 0 X 1 0_3 a t m、 NH3分圧が 3. 0 X 1 0— 1 a t mとなるようにそれぞれのガス導入量を制御しながら約 4 0 μ ΐη /hの成長速度で 3 0 0分間 G a N化合物半導体結晶を成長させた。 Next, the substrate temperature was raised to 100 ° C., and the G a C 1 generated from the G a metal and the HC 1 gas and the NH 3 gas were N d G a 0 using the N 2 carrier gas. It was supplied on three substrates. At this time, G a C l partial pressure 5. 0 X 1 0_ 3 atm, NH 3 partial pressure 3. 0 X 1 0- 1 atm become as about 4 0 mu while controlling the respective gas introduction rate A GaN compound semiconductor crystal was grown at a growth rate of ΐη / h for 300 minutes.
その後、 キャリアガスを N2ガスから H2ガスに切り替え、 ガス分圧が H2 9 0 %、 NH3 1 0 %となるように調整して、 1 1時間熱処理を行った。 この熱処 理により厚さ 3 5 0 mの N d G a O 3基板を還元分解してすべて除去すること ができた。 Thereafter, the carrier gas is switched from N 2 gas to H 2 gas, the gas partial pressure H 2 9 0%, adjusted to be NH 3 1 0%, was 1 hour heat treatment. The N d G a O 3 substrate having a thickness of 3 5 0 m The Netsusho management could be entirely removed by reductive decomposition.
その後、 冷却速度 5. 3°CZm i nで 9 0分間冷却して、 、 2インチ径で、 膜 厚約 6 0 0 x mの割れのない G a N厚膜結晶を得ることができた。  Thereafter, cooling was performed at a cooling rate of 5.3 ° C. Z min for 90 minutes to obtain a crack-free GaN thick film crystal having a diameter of 2 inches and a film thickness of about 600 × m.
さらに、 2インチ径で、 厚さ 1 2 0 μ mの N d G a 03基板を用いて、 繰り返 し G a N厚膜結晶を成長させたところ、 結晶成長後の冷却工程における割れの発 生確率はほぼ 0 %であった。 Further, 2 inch diameter, with a N d G a 0 3 substrate having a thickness of 1 2 0 mu m, was grown Repetition rate G a N thick crystal, the cracks in the cooling step after the crystal growth The probability of occurrence was almost 0%.
一方、 従来の G a N厚膜結晶の製造に用いられていた 2インチ径で、 厚さ 3 7 0 111の (10 & 03基板を用ぃて0 & 1^厚膜結晶を成長させた場合は、 結晶成 長後の冷却工程にける割れの発生確率は約 9 0 %であった。 On the other hand, was a two-inch diameter which has been used in the manufacture of conventional G a N thick crystal, grown use Ite 0 & 1 ^ thick crystal thickness 3 7 0 111 (10 & 0 3 substrate In this case, the probability of occurrence of cracks in the cooling process after crystal growth was about 90%.
また、 本実施例で得られた G a N厚膜結晶の面方位を制御し、 さらに鏡面加工 を施して、 例えば厚さ 3 5 0 μ ΐηに加工して半導体素子用の基板とすることによ り、 素子特性に優れた半導体素子を製造することができた。  In addition, the plane orientation of the GaN thick film crystal obtained in the present example is controlled, and further mirror-finished, for example, processed to a thickness of 350 μηη to obtain a substrate for a semiconductor element. As a result, a semiconductor device having excellent device characteristics could be manufactured.
以上、 本発明者によってなされた発明を実施形態に基づき具体的に説明した力 S、 本発明は上記実施の形態に限定されるものではない。 基板として用いられる希土 類 1 3 ( 3 B) 族ぺロプスカイ ト結晶は N d G a 03結晶に制限されず、 例えば、 N d A 103, Nd I n〇3等を用いることができる。 As described above, the force S specifically describing the invention made by the inventor based on the embodiment, the present invention is not limited to the above embodiment. Rare-earth 1 3 which is used as a substrate (3 B) Group Bae Ropusukai DOO crystals is not limited to N d G a 0 3 crystal, for example, Nd A 10 3 , Nd I n〇 3 and the like can be used.
また、 G a N系化合物半導体結晶の成長条件としては、 0 & 0 1分圧が1. 0 X 1 0— 3〜 1. 0 X 1 0— 2 a t m、 NH3分圧が 1. 0 X 1 0―1〜 4. 0 X 1 0一1 a t m、 成長速度が 3 0〜: L 0 0 m/li、 成長温度が 9 3 0〜: 1 0 5 0°C、 冷却速度が 4〜10。CZm i nであることが望ましい。 Also, G a The growth conditions for N-based compound semiconductor crystal, 0 & 0 1 partial pressure 1. 0 X 1 0- 3 ~ 1. 0 X 1 0- 2 atm, NH 3 partial pressure 1. 0 X 1 0- 1 ~ 4. 0 X 1 0 one 1 atm, the growth rate is 3 0~: L 0 0 m / li, growth temperature 9 3 0~: 1 0 5 0 ° C, the cooling rate is 4-10 . Desirably, CZmin.
本発明によれば、 1または 2種類以上の希土類元素を含む希土類 1 3 (3 B) 族ぺロプスカイ ト結晶 (例えば、 NdG a 03) を基板としてその表面に G a N 系化合物半導体結晶を成長させる方法において、 前記基板の厚さを 25 Ο μπι以 下として、 熱膨張率の差により G a N厚膜結晶が NGO基板から受ける応力を小 さくなるようにしたので、 G a N厚膜結晶に割れが生じるのを防止でき、 生産効 率が向上するという効果を奏する。 産業上の利用可能性 According to the present invention, the rare earth 1 3 comprising one or two or more kinds of rare earth elements (3 B) Group Bae Ropusukai preparative crystals (e.g., NDG a 0 3) a G a N-based compound semiconductor crystal on the surface as the substrate In the growing method, the thickness of the substrate is set to 25 μμπι or less, and the stress applied to the GaN thick film crystal from the NGO substrate is reduced by the difference in coefficient of thermal expansion. It is possible to prevent the crystal from cracking and to improve the production efficiency. Industrial applicability
本発明は、 G a N化合物半導体結晶の成長に制限されず、 例えば、 I n G a N、 A 1 Ga N等のその他の G a N系化合物半導体結晶を成長させる場合に利用でき る。  The present invention is not limited to the growth of GaN compound semiconductor crystals, and can be used, for example, when growing other GaN-based compound semiconductor crystals such as InGaN and A1GaN.

Claims

請求の範囲 The scope of the claims
1. 1または 2種類以上の希土類元素を含む希土類 1 3 (3 B) 族ぺロブスカイ ト結晶を基板としてその表面に G a N系化合物半導体結晶を成長させる方法にお いて、 1. A method for growing a GaN-based compound semiconductor crystal on a surface of a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements,
前記基板の厚さを 250 zm以下とすることを特徴とする G a N系化合物半導 体結晶の製造方法。  A method for producing a GaN-based compound semiconductor crystal, wherein the thickness of the substrate is 250 zm or less.
2. 前記希土類 1 3 (3 B) 族ぺロプスカイト結晶基板は、 NdGa 03結晶で あることを特徴とする請求項 1に記載の G a N系化合物半導体結晶の製造方法。 2. The rare earth 1 3 (3 B) Group Bae Ropusukaito crystal substrate manufacturing method of G a N-based compound semiconductor crystal according to claim 1, characterized in that the NDGA 0 3 crystal.
PCT/JP2002/011772 2002-01-28 2002-11-12 GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD WO2003065429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-17929 2002-01-28
JP2002017929A JP2003218043A (en) 2002-01-28 2002-01-28 METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL

Publications (1)

Publication Number Publication Date
WO2003065429A1 true WO2003065429A1 (en) 2003-08-07

Family

ID=27653455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011772 WO2003065429A1 (en) 2002-01-28 2002-11-12 GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD

Country Status (2)

Country Link
JP (1) JP2003218043A (en)
WO (1) WO2003065429A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488545B1 (en) * 2007-05-17 2015-02-02 미쓰비시 가가꾸 가부시키가이샤 Method for manufacturing semiconductor crystal of nitride of element belonging to group-iii, semiconductor substrate formed of nitride of element belonging to group-iii, and semiconductor light emission device
JP5303941B2 (en) * 2008-01-31 2013-10-02 住友電気工業株式会社 Method of growing AlxGa1-xN single crystal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208385A (en) * 1995-01-27 1996-08-13 Japan Energy Corp Method for growing gallium nitride semiconductor crystal
US5716450A (en) * 1994-04-08 1998-02-10 Japan Energy Corporation Growing method of gallium nitride related compound semiconductor crystal and gallium nitride related compound semiconductor device
JP2000004045A (en) * 1998-06-15 2000-01-07 Japan Energy Corp Growth method for gallium nitride compound semiconductor single crystal
JP2000012901A (en) * 1998-06-25 2000-01-14 Japan Energy Corp Manufacture of gallium nitride-based compound semiconductor single crystal
JP2000269143A (en) * 1999-03-17 2000-09-29 Japan Energy Corp Manufacture of gallium nitride-based compound semiconductor crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716450A (en) * 1994-04-08 1998-02-10 Japan Energy Corporation Growing method of gallium nitride related compound semiconductor crystal and gallium nitride related compound semiconductor device
JPH08208385A (en) * 1995-01-27 1996-08-13 Japan Energy Corp Method for growing gallium nitride semiconductor crystal
JP2000004045A (en) * 1998-06-15 2000-01-07 Japan Energy Corp Growth method for gallium nitride compound semiconductor single crystal
JP2000012901A (en) * 1998-06-25 2000-01-14 Japan Energy Corp Manufacture of gallium nitride-based compound semiconductor single crystal
JP2000269143A (en) * 1999-03-17 2000-09-29 Japan Energy Corp Manufacture of gallium nitride-based compound semiconductor crystal

Also Published As

Publication number Publication date
JP2003218043A (en) 2003-07-31

Similar Documents

Publication Publication Date Title
EP1593760B1 (en) Method for preparing non-polar single crystalline A-plane nitride semiconductor wafer
US7811902B2 (en) Method for manufacturing nitride based single crystal substrate and method for manufacturing nitride based light emitting diode using the same
JP4597259B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same
TWI437637B (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
WO2011132654A1 (en) Method for producing composite substrate
KR20090093887A (en) Method of prepairing a substrate having near perfect crystal thin layers
JP4150527B2 (en) Crystal production method
JP2004319711A (en) Porous substrate for epitaxial growth and its manufacturing method, and method of manufacturing group iii nitride semiconductor substrate
JP2009067658A (en) Nitride semiconductor ground substrate, nitride semiconductor-stacked substrate, nitride semiconductor self-standing substrate and method for producing nitride semiconductor ground substrate
JP2002305155A (en) CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
US20030027407A1 (en) Method for producing group III nitride compound semiconductor
US6875272B2 (en) Method for preparing GaN based compound semiconductor crystal
WO2003065429A1 (en) GaN COMPOUND SEMICONDUCTOR CRYSTAL MAKING METHOD
JP4233894B2 (en) Manufacturing method of semiconductor single crystal
JP2010251743A (en) Substrate for growing group-iii nitride semiconductor, group-iii nitride semiconductor device, free-standing substrate for group-iii nitride semiconductor, and method for manufacturing the same
JP2010278470A (en) Substrate for growing group-iii nitride semiconductor, epitaxial substrate for group-iii nitride semiconductor, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductor, and methods for manufacturing the same
JP4355232B2 (en) GaN compound semiconductor crystal manufacturing method and GaN compound semiconductor crystal
JP4673514B2 (en) GaN compound semiconductor crystal manufacturing method
JP2002211999A (en) Method of producing crystal growth substrate of group iii nitride-based compound semiconductor
JP2002313741A (en) GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD
JP2011184226A (en) Epitaxial growth substrate, nitride-based compound semiconductor substrate and nitride-based compound semiconductor self-supporting substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase