WO2003040418A1 - Method for producing titanium material of low oxygen content - Google Patents
Method for producing titanium material of low oxygen content Download PDFInfo
- Publication number
- WO2003040418A1 WO2003040418A1 PCT/JP2002/001824 JP0201824W WO03040418A1 WO 2003040418 A1 WO2003040418 A1 WO 2003040418A1 JP 0201824 W JP0201824 W JP 0201824W WO 03040418 A1 WO03040418 A1 WO 03040418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- sponge
- oxygen
- reaction vessel
- low
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1268—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
- C22B34/1272—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1295—Refining, melting, remelting, working up of titanium
Definitions
- the present invention relates to a method for producing low-oxygen titanium, and more particularly, to a method for producing a high-purity titanium material for forming a thin film useful as a material used when forming a wiring network on a surface of a semiconductor element.
- the present invention relates to a method for producing a titanium material having an oxygen concentration of 200 ppm or less and low oxygen, which is suitable as a material for an evening getter for sputtering manufactured from a high-purity titanium material for forming a thin film.
- high-purity refractory metal materials have been used as wiring materials for semiconductors.
- Specific examples of metal materials used as wiring materials include molybdenum, tungsten, niobium, titanium, and silicides thereof.Titanium has excellent specific strength, workability, and corrosion resistance. It is used.
- titanium chloride by chlorinating titanium oxide and reducing it as an intermediate material to produce pure titanium metal.
- the Kroll method uses titanium tetrachloride (TiCI) as an intermediate material and uses magnesium (Mg) as a reducing agent
- the Hunter method uses sodium (Na) as a reducing agent. Comparing the production methods of these titanium materials, the chlorine method is considered to be an excellent production method from the viewpoint of productivity and energy saving.
- FIG. 1 is a diagram illustrating a production process of titanium sponge obtained as a titanium material by the Kroll method along reduction, vacuum separation, and crushing.
- TiCl 4 is sprayed from nozzle 2 in reduction furnace 1 to react with molten Mg.
- oxygen or the like is mixed in the reaction atmosphere in the reduction furnace 1, the sponge titanium is contaminated, so that the reaction is carried out in the sealed steel reaction vessel 3.
- the Mg required for the reaction is charged into the reaction vessel 3, the inside of the vessel is replaced with an inert gas, and then heated to raise the temperature to melt the Mg.
- TiCL is supplied from the nozzle 2 into the reaction vessel 3 containing the molten Mg, and Ti and MgCl 2 as a by-product are generated.
- MgCl 2 as a by-product is appropriately taken out of the reaction vessel 3, and finally sponge-like titanium containing unreacted Mg and residual MgCl 2 is obtained in the reaction vessel 3.
- the reaction vessel 3 is housed in a vacuum separation furnace 4, and the inside of the reaction vessel 3 is evacuated. Unreacted Mg and residual MgCl 2 contained in the titanium sponge in 3 are evaporated. Evaporated unreacted Mg and residual MgCl 2 are collected by a condenser 5 outside the vacuum separation furnace 4. The sponge titanium after vacuum separation is extruded from the reaction vessel 3 as a cylindrical mass.
- the extruded titanium sponge is cut by the cutting press 6 after its bottom, top and circumference have been removed. Then, it is crushed into fine grains (less than 1/2 inch) with a jaw crusher. The sponge titanium thus crushed to a predetermined particle size is mixed to further maintain the quality evenly, and then stored in a sealed drum filled with argon gas. After that, it is used as a raw material for dissolving titanium materials for semiconductors and wrought titanium materials.
- titanium used for semiconductors is required to have high purity, and further reduction in the concentration of oxygen contained in the titanium is required.
- the oxygen concentration is 250p pm or less is required.
- the oxygen concentration contained is further reduced to 200 ppm or less. Has been required.
- the present invention has been made to solve the problem of producing a low-oxygen titanium material, for example, titanium having an oxygen concentration of 200 ppm or less, and a nitride film is formed on the surface of the sponge titanium in a reaction vessel for cooling the sponge titanium.
- An object of the present invention is to provide a method for producing a low-oxygen titanium material suitable for producing an evening sputtering target by extracting sponge titanium after forming the titanium oxide.
- the present inventor conducted various studies using the method disclosed in the aforementioned Japanese Patent Laid-Open Publication No. 2000-309833 to achieve the above object.
- a thin oxide film is formed on the surface of the titanium sponge taken out of the reaction vessel when cutting and collecting the central part. Will be formed.
- an oxide film is formed on the surface of the sampled titanium sponge, it becomes difficult to supply oxygen to the inside thereof, so that a subsequent increase in the oxygen content can be suppressed.
- the cooling time in the reaction vessel was reduced, and the center temperature was about 150 ° C.
- titanium is taken out, it reacts with oxygen in the atmosphere to form an oxide film on its surface.
- the thickness of the oxide film on the surface of the bond is 100 to 150 A by the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-309833, whereas the nitride film is formed.
- the thickness of the oxide film on the surface of the sponge titanium remains below 100A.
- the present invention has been completed based on the above findings, and has a gist of the following methods (1) and (2) for producing a low-oxygen titanium material.
- a method of producing a low-oxygen titanium material from titanium sponge obtained by the Kroll method in which titanium sponge after vacuum separation is cooled in a reaction vessel. Then, after a nitride film is formed on the surface of the titanium sponge in the reaction vessel, the titanium sponge is taken out of the reaction vessel and cut or / and crushed.
- the formation of the nitride film is performed by introducing a low-oxygen-containing nitrogen gas having a ratio of nitrogen partial pressure / oxygen partial pressure of 20 or more into the reaction vessel. It is desirable to introduce nitrogen gas after the temperature of the center of the titanium sponge in the vessel has dropped below 200 ° C.
- the high-purity titanium material is intended to have a content of Fe, Ni, Cr, A1, and Si as impurities of 10 ppm or less and a content of Na and K of 0.1 ppm or less as impurities. .
- the mass of titanium sponge mass is 6 to 6 depending on the capacity of the reaction vessel used. According to the study of the present inventors, the manufacturing method of the present invention is not limited to 6 to! Oton weight titanium sponge, but other than that, for example, ⁇ ⁇ ! Applicable even for titanium sponge blocks of ⁇ 5 Ton.
- FIG. 1 is a diagram illustrating the steps of producing titanium sponge by the chlorine method in the order of reduction, vacuum separation, and crushing.
- the titanium sponge after the vacuum separation is cooled in the reaction vessel, and then a nitride film is formed on the surface of the titanium sponge in the reaction vessel.
- a nitride film is formed on the surface of the titanium sponge in the reaction vessel.
- nitrogen in the production of low oxygen titanium according to the present invention will be described.
- the cooling time is 70 to 80 hours.
- the cooling time according to the present invention may be 50 to 70 hours (see Examples described later), so that the cooling time can be significantly reduced.
- the formation of the nitride film is performed by introducing nitrogen gas into the reaction vessel.
- the introduction timing may be any time just before taking out the sponge titanium from the reaction vessel.
- the inside of the reaction vessel is evacuated and then filled with nitrogen gas 15 to 20 minutes before the completion of cooling, that is, 15 to 20 minutes before opening the lid of the reaction vessel.
- the argon gas in the container is exhausted by evacuation.This gas is injected from the start of cooling to increase the cooling rate of titanium sponge and to prevent air from leaking into the reaction container. Things.
- the nitrogen gas used for forming the nitrided layer in the present invention it is desirable to use a low oxygen-containing nitrogen gas having a ratio of nitrogen partial pressure / oxygen partial pressure of 20 or more. This is because even when the oxygen gas is contained in the nitrogen gas, by controlling the oxygen at a low partial pressure, that is, at a low concentration, the formation of the nitride film has priority over the formation of the oxide film. is there.
- the oxide film is mainly formed, and the originally necessary nitrogen film may not be formed sufficiently.
- the nitriding gas used may be pure nitrogen gas, the upper limit of the ratio of nitrogen partial pressure / oxygen partial pressure does not need to be particularly defined.
- the low oxygen-containing nitrogen gas be introduced after the temperature of the central part of the titanium sponge cooled in the reaction vessel becomes 200 ° C. or less. More preferably, it should be introduced after the temperature at the center has dropped below 150 ° C.
- nitrogen gas is introduced at a temperature of 200 ° C or more at the center, the thickness of the formed nitride film increases rapidly, and the concentration of nitrogen contained increases, affecting high-purity titanium. Is concerned.
- the temperature control in the central part is controlled by the cooling time after the end of vacuum separation.
- the sponge titanium that has completed the reaction is cooled, drilled from above to insert a thermocouple in the center, and then heated to a temperature at which vacuum separation is performed. After performing vacuum separation, it is cooled, and the relationship between the time from the start of cooling and the temperature at the center is measured.
- the cooling time after vacuum separation is controlled based on the measurement results.
- the sponge titanium is cut, and a cut mass whose measured oxygen concentration satisfies a required concentration is selected and cut and crushed. This is to strictly control the concentration and quality of the titanium produced.
- the content of impurities required for high-purity titanium materials in the sputtering target is less than 30 ppm for nitrogen concentration and less than 250 ppm for oxygen concentration.
- the required nitrogen concentration is not a problem, but the oxygen concentration is shifting to severe conditions, and the oxygen concentration is affecting the yield of high-purity titanium materials. Therefore, the reference oxygen concentration here is 180 ppm.
- the method of the present invention relates to a method for producing a low oxygen titanium material, comprising the steps of: Even when a thin nitride film is formed on the surface of dititanium and then exposed to the atmosphere, the formation of an oxide film can be suppressed. As a result, new equipment and equipment are not particularly required, and oxygen reduction can be achieved. Therefore, the method of the present invention is an effective production method. In addition, this method is not only effective for high-purity titanium material, but also applicable to wrought material, powder production, and titanium production for precision fabrication.
- the cooling time after the completion of the vacuum separation was controlled at 50 to 76 hours, and the inside of the reaction vessel was substantially evacuated for 10 minutes from 15 minutes to 5 minutes before opening the reaction vessel. Then, from 5 minutes before opening the reaction vessel to 5 minutes before the opening, nitrogen gas with a nitrogen partial pressure / oxygen partial pressure ratio of 100 or more was introduced from the vessel lid, and the lid was opened to open the inside of the reaction vessel.
- the sponge titanium mass was taken out into the atmosphere. The removed sponge titanium was sized by cutting and crushing to a particle size of 10 to 30 mm, mixed uniformly, and then the oxygen concentration and nitrogen concentration at the center of the mass were measured.
- the sponge titanium removed from the reaction vessel was cut and crushed to a particle size of 10 to 30 mm without introducing nitrogen gas, with the cooling time after completion of vacuum separation being 50 to 76 hours. After mixing uniformly, the oxygen concentration and the nitrogen concentration at the center of the mass were measured.
- a nitrogen gas is introduced into a reaction vessel of the crawl method, and a nitride film is formed up to the central portion of the cylindrical titanium sponge.
- a low-oxygen titanium material having an oxygen concentration of 200 ppm or less, which is suitable for producing one get, can be produced.
- the cooling time can be greatly reduced, the production efficiency is excellent, and it can be widely used as an industrial method for producing low oxygen titanium materials.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
A method for producing a titanium material of a low oxygen content from a sponge titanium prepared by the kroll method, characterized in that a sponge titanium after separation under vacuum is cooled in a reaction vessel, a nitride film is then formed on the surface of the sponge titanium in the reaction vessel, and thereafter the sponge titanium is taken out of the reaction vessel and is cut or/and crushed. It is desirable that the formation of the nitride film is carried out through the introduction of a low oxygen content nitrogen gas having a ratio of partial pressure of nitrogen/partial pressure of oxygen of 20 or more to the reaction vessel, and that the nitrogen gas is introduced after the sponge titanium is so cooled as for the central portion thereof to have a temperature of 200˚C or lower. The method allows the production of a titanium material of a low oxygen content usable for a semiconductor target according to the Kroll method with a high production efficiency.
Description
明 細 書 Specification
低酸素チタン材の製造方法 技術分野 Manufacturing method of low oxygen titanium material
本発明は、 低酸素チタンの製造方法に関し、 詳しくは、 半導体素子の 表面に配線網を形成する際に用いられる材料として有用な薄膜形成用高 純度チタン材の製造方法に関し、 さらに詳しくは、 前記薄膜形成用高純 度チタン材から作製されるスパッ夕リング用夕一ゲットの材料として適 する、 酸素濃度が 200ppm以下と低酸素であるチタン材を製造する方法に 関するものである。 背景技術 The present invention relates to a method for producing low-oxygen titanium, and more particularly, to a method for producing a high-purity titanium material for forming a thin film useful as a material used when forming a wiring network on a surface of a semiconductor element. The present invention relates to a method for producing a titanium material having an oxygen concentration of 200 ppm or less and low oxygen, which is suitable as a material for an evening getter for sputtering manufactured from a high-purity titanium material for forming a thin film. Background art
従来から、 半導体用配線材料として、 高純度の高融点金属材料が使用 されている。 具体的に配線材料として用いられる金属材料としては、 モ リブデン、 タングステン、 ニオブ、 チタンまたはそれらのシリサイ ドが あげられるが、 中でもチタンは優れた比強度、 加工性および耐食性を有 することから、 広く使用されている。 Conventionally, high-purity refractory metal materials have been used as wiring materials for semiconductors. Specific examples of metal materials used as wiring materials include molybdenum, tungsten, niobium, titanium, and silicides thereof.Titanium has excellent specific strength, workability, and corrosion resistance. It is used.
現在、 工業的に採用されるチタン材の製造方法としては、 チタン酸化 物を塩素化処理によってチタン塩素化合物を作製し、 これを中間原料と して還元し、 純チタン金属を製造する方法がある。 具体的には、 中間原 料として四塩化チタン (TiCI を作製し、 還元剤としてマグネシウム (Mg) を用いるクロ一ル (Kroll) 法と、 還元剤としてナトリウム (Na) を用いるハン夕一 (Hunter) 法とに大別できる。 これらのチタン材の製 造方法を比較すると、 生産性および省エネルギーの観点からは、 クロ一 ル法が優れた製造方法とされている。 At present, as a method of manufacturing titanium materials that are industrially employed, there is a method of producing titanium chloride by chlorinating titanium oxide and reducing it as an intermediate material to produce pure titanium metal. . Specifically, the Kroll method uses titanium tetrachloride (TiCI) as an intermediate material and uses magnesium (Mg) as a reducing agent, and the Hunter method uses sodium (Na) as a reducing agent. Comparing the production methods of these titanium materials, the chlorine method is considered to be an excellent production method from the viewpoint of productivity and energy saving.
図 1は、 クロール法によってチタン材として得られるスポンジチタン の製造工程を還元〜真空分離〜破砕に沿つて説明する図である。
還元工程 (①) では、 還元炉 1内のノズル 2から TiCl4を噴霧させて、 溶融 Mgと反応させる。 このとき還元炉 1内の反応雰囲気中に酸素等の混 入があると、 スポンジチタンを汚染することになるので、 反応は密閉し た鋼製の反応容器 3内で行われる。 FIG. 1 is a diagram illustrating a production process of titanium sponge obtained as a titanium material by the Kroll method along reduction, vacuum separation, and crushing. In the reduction step (①), TiCl 4 is sprayed from nozzle 2 in reduction furnace 1 to react with molten Mg. At this time, if oxygen or the like is mixed in the reaction atmosphere in the reduction furnace 1, the sponge titanium is contaminated, so that the reaction is carried out in the sealed steel reaction vessel 3.
反応に必要な Mgを反応容器 3に装入して、 容器内を不活性ガスで置換 したのち、 加熱昇温して Mgを溶融させる。 溶融 Mgを収容した反応容器 3 内にノズル 2から TiCLが供給され、 Tiと副生物である MgCl2が生成され る。 副生物である MgCl2は適宜反応容器 3の外へ抜き取られ、 最終的には 未反応 Mgおよび残留 MgCl2を含むスポンジ状のチタンが反応容器 3内で得 られる。 The Mg required for the reaction is charged into the reaction vessel 3, the inside of the vessel is replaced with an inert gas, and then heated to raise the temperature to melt the Mg. TiCL is supplied from the nozzle 2 into the reaction vessel 3 containing the molten Mg, and Ti and MgCl 2 as a by-product are generated. MgCl 2 as a by-product is appropriately taken out of the reaction vessel 3, and finally sponge-like titanium containing unreacted Mg and residual MgCl 2 is obtained in the reaction vessel 3.
真空分離工程 (②) では、 反応容器 3を真空分離炉 4内に収納して、 反応容器 3の内部を真空状態とするとともに、 さらに反応容器 3の外部 からその内部を加熱して、 反応容器 3内のスポンジチタンに含まれる未 反応 Mgおよび残留 MgCl 2を蒸発させる。 蒸発した未反応 Mgや残留 MgCl 2は 真空分離炉 4外の凝縮器 5によって回収される。 真空分離を終えたスポ ンジチタンは、 反応容器 3から円筒状の塊として押し出される。 In the vacuum separation step (②), the reaction vessel 3 is housed in a vacuum separation furnace 4, and the inside of the reaction vessel 3 is evacuated. Unreacted Mg and residual MgCl 2 contained in the titanium sponge in 3 are evaporated. Evaporated unreacted Mg and residual MgCl 2 are collected by a condenser 5 outside the vacuum separation furnace 4. The sponge titanium after vacuum separation is extruded from the reaction vessel 3 as a cylindrical mass.
破砕工程 (③) では、 押し出されたスポンジチタンはその底部、 頂部 および円周部を除去されたのち、 切断プレス 6で切断される。 その後、 ジョークラッシャーで細粒 (1/2 インチ以下) に破砕される。 このよう に所定の粒径まで破砕されたスポンジチタンは、 さらに品質を均一に維 持するため混合したのち、 アルゴンガスを充填した密閉ドラム缶に入れ て保管される。 その後、 半導体用チタン材および展伸用チタン材の溶解 原料として使用される。 In the crushing step (③), the extruded titanium sponge is cut by the cutting press 6 after its bottom, top and circumference have been removed. Then, it is crushed into fine grains (less than 1/2 inch) with a jaw crusher. The sponge titanium thus crushed to a predetermined particle size is mixed to further maintain the quality evenly, and then stored in a sealed drum filled with argon gas. After that, it is used as a raw material for dissolving titanium materials for semiconductors and wrought titanium materials.
一方、 最近の L S I素子の高密度化にともない、 さらに半導体用とし て使用されるチタンは高純度であることが要求され、 特に含有される酸 素濃度に関し一層の低減が要請されている。 例えば、 D R A Mの主流で ある 64Mビットの配線材料に使用されるチタン材では、 酸素濃度は 250p
pm以下が要求される。 さらに、 近年、 本格的な生産が検討され始めた 12 8Mビヅト、 あるいは 256Mビットという高い集積度の配線材料に使用さ れるチタン材になると、 含有される酸素濃度はさらに低減させて、 200p pm以下が要求されるに至っている。 On the other hand, with the recent increase in the density of LSI elements, titanium used for semiconductors is required to have high purity, and further reduction in the concentration of oxygen contained in the titanium is required. For example, in the titanium material used for the 64Mbit wiring material, which is the mainstream of DRAM, the oxygen concentration is 250p pm or less is required. Furthermore, in the case of titanium materials used for wiring materials with a high integration density of 128 Mbits or 256 Mbits, for which full-scale production has begun to be considered in recent years, the oxygen concentration contained is further reduced to 200 ppm or less. Has been required.
このような要請に対応して、 各種の低酸素チタン材の製造方法が提案 されている。 例えば、 特開平 10— 259432号公報では、 破砕工程における 湿度条件、 または温度条件を規定することによって、 酸素含有量が 250p pm以下、 さらには 200ppm以下の高品位を有し、 スパッタリング用夕ーゲ ットに適用することができる低酸素チタン材の製造方法が提案されてい る。 ここで提案された方法では、 スポンジケーキに残留する MgCl2が大気 中の水分を吸収することによって、 スポンジケーキに含有される酸素量 が増加することに着目している。 In response to such demands, various methods for producing low oxygen titanium materials have been proposed. For example, in Japanese Patent Application Laid-Open No. H10-259432, by specifying the humidity condition or temperature condition in the crushing step, the oxygen content has a high grade of 250 ppm or less and further 200 ppm or less, There has been proposed a method for producing a low-oxygen titanium material that can be applied to a kit. The method proposed here focuses on the fact that MgCl 2 remaining in the sponge cake absorbs moisture in the atmosphere, thereby increasing the amount of oxygen contained in the sponge cake.
具体的には、 スポンジチタンの切断工程、 特に破砕工程での雰囲気中 の湿度が高いと、 スポンジチタン中の酸素含有量が増加し、 逆に、 破砕 工程での雰囲気中の湿度が低くなると、 スポンジチタンに含有される酸 素が抑制されるとしている。 このため、 クロール法で製造したスポンジ チタンケーキを切断、 選別したスポンジチタンを破砕する際に、 絶対湿 度が「10g-H20/m3以下」 の雰囲気下で、 さらに望ましくは雰囲気温度も 25°C以下に保持して行うようにしている。 Specifically, when the humidity in the atmosphere during the cutting process of the sponge titanium, particularly the crushing process, is high, the oxygen content in the titanium sponge increases, and conversely, when the humidity in the atmosphere during the crushing process decreases, It says that oxygen contained in titanium sponge is suppressed. Thus, cutting the titanium sponge cakes made with Kroll process, when crushing the sorted sponge titanium, in an atmosphere of absolute humidity is "10g-H 2 0 / m 3 or less", more preferably ambient temperature The temperature is kept below 25 ° C.
しかしながら、 上記特開平 10— 259432号公報で提案の方法を実施しよ うとすると、 破砕工程における雰囲気湿度、 さらに雰囲気温度を調整す るための装置が必要となり、 それにともなう費用が高純度チタンの製造 コストを高騰させることになる。 また、 反応容器から取り出されたスポ ンジチタンの吸湿による含有酸素を抑制することができるが、 スポンジ チタンは大気雰囲気中の酸素に対して活性であることから、 酸化による 酸素濃度の上昇に対しては有効な手段とはならない。 However, if the method proposed in Japanese Patent Application Laid-Open No. Hei 10-259432 is to be implemented, a device for adjusting the atmospheric humidity and the atmospheric temperature in the crushing step is required, and the cost involved in the production of high-purity titanium is high. This will increase costs. In addition, oxygen contained in the sponge titanium removed from the reaction vessel due to moisture absorption can be suppressed, but titanium sponge is active against oxygen in the air atmosphere, so that it cannot react to an increase in oxygen concentration due to oxidation. It is not an effective means.
また、 特開 2000— 309833号公報では、 クロール法によって製造された
スポンジチタンを、 真空分離後に中心部分の温度が実質的に 100°C以下に なるまで冷却した後、 スポンジチタンの中心部を切断して、 酸素含有量 が 200ppm以下である低酸素高純度チタン材の製造方法が開示されている。 この方法では、 真空分離後のスポンジチタンの表面は活性であるため大 気雰囲気に曝されると、 酸化膜が表面に形成され、 その酸化膜の厚さは スポンジチタンの温度に依存し、温度が高くなるほど酸化膜が厚くなり、 それに伴ってスポンジチタンに含有される酸素濃度も上昇することに着 目したものである。 Also, in Japanese Patent Application Laid-Open No. 2000-309833, After cooling the sponge titanium until the temperature at the center part becomes substantially 100 ° C or less after vacuum separation, the center part of the sponge titanium is cut, and a low-oxygen high-purity titanium material having an oxygen content of 200 ppm or less. Is disclosed. In this method, when the surface of titanium sponge after vacuum separation is active, an oxide film is formed on the surface when exposed to the atmosphere, and the thickness of the oxide film depends on the temperature of the titanium sponge. The higher the value, the thicker the oxide film and the higher the oxygen concentration in titanium sponge.
ところが、 上記の中心温度を規定する方法では、 真空分離後、 反応容 器内で比較的長時間の冷却を要することになる。 したがって、 低酸素チ 夕ン材の効率生産の観点からは、 冷却時間の短縮に改善の余地がある。 発明の開示 However, the above method of defining the center temperature requires a relatively long cooling time in the reaction vessel after vacuum separation. Therefore, from the viewpoint of efficient production of low-oxygen copper material, there is room for improvement in shortening the cooling time. Disclosure of the invention
本発明は、 低酸素チタン材、 例えば、 酸素濃度が 200ppm以下のチタン を製造する際の問題を解決するためになされたものであり、 スポンジチ タンを冷却する反応容器内でスポンジチタン表面に窒化膜を形成させた 後、 スポンジチタンを取り出すことによって、 スパッタリング用夕一ゲ ットの作製に適する、 低酸素チタン材を製造する方法を提供することを 目的としている。 The present invention has been made to solve the problem of producing a low-oxygen titanium material, for example, titanium having an oxygen concentration of 200 ppm or less, and a nitride film is formed on the surface of the sponge titanium in a reaction vessel for cooling the sponge titanium. An object of the present invention is to provide a method for producing a low-oxygen titanium material suitable for producing an evening sputtering target by extracting sponge titanium after forming the titanium oxide.
本発明者は、 上述の課題を達成するため、 前記特開 2000— 309833号公 報で開示された方法を用いて、 種々の検討を行った。 反応容器内でスポ ンジチタンを実質的に 100°C以下になるまで冷却すると、 反応容器から取 り出したスポンジチタンの中心部分の切断、 採取の際に、 その表面に膜 厚の薄い酸化皮膜が形成されるようになる。 そして、 採取されたスポン ジチタンの表面に酸化皮膜が形成されると、 その内部への酸素供給が困 難になるため、 その後の酸素含有量の上昇を抑制することができる。 次に、 反応容器内の冷却時間を短縮して、 中心温度が 150°C程度でスポ
ンジチタンを取り出すと、 大気中の酸素と反応して、 その表面に酸化皮 膜が形成される。 酸化皮膜の形成にともなう反応熱の影響から、 局所的 に表面温度が上昇しさらに酸化が進行することになり、 スポンジチタン の表面には比較的厚い皮膜が形成される。 さらに、 切断、 破砕を行う際 には、 加工にともなって新たな切断面、 破砕面が現れることから、 加工 にともなう加工熱と、 切断面または破砕面の反応熱とが相まって、 さら にスポンジチタン表面の皮膜形成が促進されて、 酸素含有量が上昇する ことになる。 The present inventor conducted various studies using the method disclosed in the aforementioned Japanese Patent Laid-Open Publication No. 2000-309833 to achieve the above object. When the titanium sponge is cooled down to substantially 100 ° C or less in the reaction vessel, a thin oxide film is formed on the surface of the titanium sponge taken out of the reaction vessel when cutting and collecting the central part. Will be formed. Then, if an oxide film is formed on the surface of the sampled titanium sponge, it becomes difficult to supply oxygen to the inside thereof, so that a subsequent increase in the oxygen content can be suppressed. Next, the cooling time in the reaction vessel was reduced, and the center temperature was about 150 ° C. When titanium is taken out, it reacts with oxygen in the atmosphere to form an oxide film on its surface. Due to the effect of the heat of reaction accompanying the formation of the oxide film, the surface temperature rises locally and oxidation proceeds further, and a relatively thick film is formed on the surface of titanium sponge. In addition, when cutting or crushing, a new cut surface or crushed surface appears with the processing, so the processing heat associated with the processing is combined with the reaction heat of the cut surface or the crushed surface, and the sponge titanium The formation of a film on the surface is promoted, and the oxygen content increases.
反応容器内での冷却時間を短縮しても、 スポンジチタン表面に形成さ れる酸化皮膜を抑制するため、 窒素ガスを反応容器に導入してスポンジ チタン表面に窒化膜を形成させた後、 スポンジチタンを大気中に取り出 すこととした。 スポンジチタンの塊性状はポ一ラスであるため、 窒素ガ スが反応容器内のスポンジチタンの中心部まで浸透するため、 窒化膜の 形成はほぼ全面で行われる。 Even if the cooling time in the reaction vessel is shortened, nitrogen gas is introduced into the reaction vessel to form a nitride film on the sponge titanium surface in order to suppress the oxide film formed on the titanium sponge surface. Was taken out to the atmosphere. Since the bulk properties of titanium sponge are porous, nitrogen gas penetrates to the center of titanium sponge in the reaction vessel, so that the nitride film is formed almost entirely.
窒化膜が形成されたスポンジチタンを大気中に曝しても、 その後の酸 化反応による酸化皮膜の形成は著しく抑制される。 例えば、 本発明者の 調査によれば、 上記特開 2000— 309833号公報で開示された方法によるス ボンジチ夕ン表面の酸化皮膜の厚さは 100〜150Aであるのに対し、 窒化 膜が形成されたスポンジチタン表面の酸化皮膜の厚さは 100A以下に留ま つている。 Even if the sponge titanium on which the nitride film is formed is exposed to the atmosphere, the formation of an oxide film by the subsequent oxidation reaction is significantly suppressed. For example, according to a study by the present inventor, the thickness of the oxide film on the surface of the bond is 100 to 150 A by the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-309833, whereas the nitride film is formed. The thickness of the oxide film on the surface of the sponge titanium remains below 100A.
さらに、 切断、 破砕を行う際には、 加工にともなって新たな切断面、 破砕面が現れ、 温度上昇が生じたとしても、 窒化膜が形成されたスポン ジチタン表面における酸化皮膜の形成は抑制されることになる。 Furthermore, when cutting or crushing, even if a new cut surface or crushed surface appears during processing and the temperature rises, the formation of an oxide film on the titanium sponge surface with a nitride film is suppressed. Will be.
本発明は、 上記知見に基づいて完成されたものであり、 下記(1 )および (2 )の低酸素チタン材の製造方法を要旨としている。 The present invention has been completed based on the above findings, and has a gist of the following methods (1) and (2) for producing a low-oxygen titanium material.
( 1 )クロール法によって得られたスポンジチタンから低酸素チタン材を製 造する方法であって、 真空分離後のスポンジチタンを反応容器内で冷却
し、 次いで反応容器内のスポンジチタン表面に窒化膜を形成させた後、 スポンジチタンを反応容器から取り出して切断または/および破砕する 低酸素チタン材の製造方法である。 (1) A method of producing a low-oxygen titanium material from titanium sponge obtained by the Kroll method, in which titanium sponge after vacuum separation is cooled in a reaction vessel. Then, after a nitride film is formed on the surface of the titanium sponge in the reaction vessel, the titanium sponge is taken out of the reaction vessel and cut or / and crushed.
(2)上記(1 )の製造方法においては、 窒化膜の形成を窒素分圧/酸素分圧 の比が 20以上である低酸素含有窒素ガスを反応容器内に導入して行い、 さらに、 反応容器内でスポンジチタン中心部の温度が 200°C以下になった 後、 窒素ガスを導入するのが望ましい。 (2) In the manufacturing method of the above (1), the formation of the nitride film is performed by introducing a low-oxygen-containing nitrogen gas having a ratio of nitrogen partial pressure / oxygen partial pressure of 20 or more into the reaction vessel. It is desirable to introduce nitrogen gas after the temperature of the center of the titanium sponge in the vessel has dropped below 200 ° C.
上記(1 )および(2)の製造方法を採用すれば、 酸素濃度が 200ppm以下の 低酸素であり、 かつ高純度のチタン材を製造することができる。 本発明 では、 高純度チタン材とは不純物として Fe、 Ni、 Cr、 A1および Siの含有 量が lOppm以下であり、 Naおよび Kの含有量が O. lppm以下であることを意 図している。 By employing the production methods (1) and (2), a titanium material having a low oxygen concentration of 200 ppm or less and a high purity can be produced. In the present invention, the high-purity titanium material is intended to have a content of Fe, Ni, Cr, A1, and Si as impurities of 10 ppm or less and a content of Na and K of 0.1 ppm or less as impurities. .
現状のク口一ル法の製造技術においては、スポンジチタンの塊重量は、 使用される反応容器の容量の応じて 6〜: LOtonが多用されている。 本発明 者の検討によれば、 本発明の製造方法は 6〜; !Oton重量のスポンジチタン に限定されるものではなく、 それ以外、 例えば、 Ι Τοι!〜 5 Tonのスポン ジチタン塊であっても、 適用することができる。 図面の簡単な説明 In the current manufacturing technology of the cup method, the mass of titanium sponge mass is 6 to 6 depending on the capacity of the reaction vessel used. According to the study of the present inventors, the manufacturing method of the present invention is not limited to 6 to! Oton weight titanium sponge, but other than that, for example, Ι Τοι! Applicable even for titanium sponge blocks of ~ 5 Ton. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 クロ一ル法によるスポンジチタンの製造工程を還元〜真空分 離〜破砕に沿って説明する図である。 発明を実施するための最良の形態 FIG. 1 is a diagram illustrating the steps of producing titanium sponge by the chlorine method in the order of reduction, vacuum separation, and crushing. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の製造方法では、 真空分離後のスポンジチタンを反応容器内で 冷却し、 次いで反応容器内のスポンジチタン表面に窒化膜を形成させた 後、 スポンジチタンを反応容器から取り出して切断または破砕すること を特徴としている。 以下、 本発明にかかる低酸素チタン製造における窒
化膜の形成条件、 冷却時間および切断、 破碎の内容について説明する。 通常、 前記特開 2000— 309833号公報で開示された方法を用いて、 反応 容器内でスポンジチタンを実質的に 100°C以下になるまで冷却する場合に は、 冷却時間は 70〜80時間となる。 これに対し、 本発明の冷却時間は 50 ~70時間 (後述する実施例参照) であれば良いから、 冷却時間の大幅な 削減が可能になる。 In the production method of the present invention, the titanium sponge after the vacuum separation is cooled in the reaction vessel, and then a nitride film is formed on the surface of the titanium sponge in the reaction vessel. It is characterized by: Hereinafter, nitrogen in the production of low oxygen titanium according to the present invention will be described. The formation conditions, cooling time, cutting, and crushing of the oxide film are explained. Usually, when cooling the sponge titanium to substantially 100 ° C. or less in the reaction vessel using the method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-309833, the cooling time is 70 to 80 hours. Become. On the other hand, the cooling time according to the present invention may be 50 to 70 hours (see Examples described later), so that the cooling time can be significantly reduced.
窒化膜の形成は、 窒素ガスを反応容器に導入して行われるが、 その導 入タイミングは、 反応容器からスポンジチタンを取り出す直前であれば よい。 例えば、 冷却完了時間、 すなわち、 反応容器の蓋を解放する 15~ 20分前に、反応容器内を真空引きした後窒素ガスを封入する。 このとき、 真空引きにより容器内のアルゴンガスが排出されるが、 これはスポンジ チタンの冷却速度を速めるため、 および反応容器内への大気のリークを 防止するため、 冷却開始時から注入されているものである。 The formation of the nitride film is performed by introducing nitrogen gas into the reaction vessel. The introduction timing may be any time just before taking out the sponge titanium from the reaction vessel. For example, the inside of the reaction vessel is evacuated and then filled with nitrogen gas 15 to 20 minutes before the completion of cooling, that is, 15 to 20 minutes before opening the lid of the reaction vessel. At this time, the argon gas in the container is exhausted by evacuation.This gas is injected from the start of cooling to increase the cooling rate of titanium sponge and to prevent air from leaking into the reaction container. Things.
窒素ガス導入時にアルゴンガスが反応容器内に残留していても、 反応 容器内の窒素が質量比率 (mass% ) で 10%以上であれば、 窒素ガスによ る窒化膜の形成が適正に行われる。 Even if argon gas remains in the reaction vessel when nitrogen gas is introduced, if nitrogen in the reaction vessel is at least 10% by mass (mass%), formation of a nitride film using nitrogen gas can be performed properly. Will be
本発明で窒化層の形成に用いられる窒素ガスは、 窒素分圧/酸素分圧 の比が 20以上である低酸素含有窒素ガスを用いるのが望ましい。 これは 窒素ガス中に酸素ガスを含有する場合であっても、 酸素を低分圧、 すな わち、 低濃度に制御することによって、 酸化膜の形成より窒化膜の形成 を優先させるためである。 As the nitrogen gas used for forming the nitrided layer in the present invention, it is desirable to use a low oxygen-containing nitrogen gas having a ratio of nitrogen partial pressure / oxygen partial pressure of 20 or more. This is because even when the oxygen gas is contained in the nitrogen gas, by controlling the oxygen at a low partial pressure, that is, at a low concentration, the formation of the nitride film has priority over the formation of the oxide film. is there.
したがって、 窒素分圧/酸素分圧の比が 20未満の窒素ガスを用いる場 合には、 酸化膜の形成が主となり、 本来必要な窒素膜の形成が充分にな されないおそれが生じる。 一方、 使用する窒化用ガスは純窒素ガスでも よいことから、窒素分圧/酸素分圧の比の上限は特に定める必要はない。 本発明では、 反応容器内で冷却されたスポンジチタン中心部の温度が 200°C以下になった後、上記低酸素含有窒素ガスを導入するのが望ましい。
さらに望ましくは、 その中心部の温度が 150°C以下になった後に導入する ことである。 中心部の温度が 200°C以上の状態で窒素ガスを導入すると、 形成される窒化皮膜の厚さが急速に厚くなり、 含有される窒素濃度が上 昇し、 高純度チタンに影響を及ぼすことが懸念される。 Therefore, when using a nitrogen gas having a nitrogen partial pressure / oxygen partial pressure ratio of less than 20, the oxide film is mainly formed, and the originally necessary nitrogen film may not be formed sufficiently. On the other hand, since the nitriding gas used may be pure nitrogen gas, the upper limit of the ratio of nitrogen partial pressure / oxygen partial pressure does not need to be particularly defined. In the present invention, it is desirable that the low oxygen-containing nitrogen gas be introduced after the temperature of the central part of the titanium sponge cooled in the reaction vessel becomes 200 ° C. or less. More preferably, it should be introduced after the temperature at the center has dropped below 150 ° C. When nitrogen gas is introduced at a temperature of 200 ° C or more at the center, the thickness of the formed nitride film increases rapidly, and the concentration of nitrogen contained increases, affecting high-purity titanium. Is concerned.
通常、 中心部分の温度コントロールは、 真空分離終了後の冷却時間に よって管理される。そのため、 反応を終了したスポンジチタンを冷却し、 上部からドリルで穿孔して中心部分に熱電対を揷入したのち、 真空分離 を行う温度まで昇温する。 そして、 真空分離を行った後冷却し、 冷却開 始からの時間と中心部分の温度との関係が実測される。 この実測結果に 基づいて、 真空分離後の冷却時間が管理される。 Usually, the temperature control in the central part is controlled by the cooling time after the end of vacuum separation. For this reason, the sponge titanium that has completed the reaction is cooled, drilled from above to insert a thermocouple in the center, and then heated to a temperature at which vacuum separation is performed. After performing vacuum separation, it is cooled, and the relationship between the time from the start of cooling and the temperature at the center is measured. The cooling time after vacuum separation is controlled based on the measurement results.
さらに、 本発明の製造方法では、 反応容器から取り出してのち、 上記 スポンジチタンを切断し、 測定された酸素濃度が要求濃度を満たす切断 塊を選んで切断、破砕するのが望ましい。製造されるチタンの濃度管理、 品質管理を厳密に行うためである。 Further, in the production method of the present invention, it is desirable that after taking out from the reaction vessel, the sponge titanium is cut, and a cut mass whose measured oxygen concentration satisfies a required concentration is selected and cut and crushed. This is to strictly control the concentration and quality of the titanium produced.
現状において、 高純度チタン材の用途であるスパッタリング夕一ゲッ 卜で要求される不純物の含有量は、窒素濃度については 30ppm以下であり、 酸素濃度については 250ppm以下である。 最近において、 要求される窒素 濃度は問題とならないが、 酸素濃度が厳しい条件に移行しつつあり、 酸 素濃度が高純度チタン材の歩留まりに影響を及ぼしている。 したがって、 ここで基準とする酸素濃度は 180ppmである。 At present, the content of impurities required for high-purity titanium materials in the sputtering target is less than 30 ppm for nitrogen concentration and less than 250 ppm for oxygen concentration. Recently, the required nitrogen concentration is not a problem, but the oxygen concentration is shifting to severe conditions, and the oxygen concentration is affecting the yield of high-purity titanium materials. Therefore, the reference oxygen concentration here is 180 ppm.
実際の操業においては、 スポンジチタンの全ての切断塊を測定対象と するのではなく、周辺部の除いた中心部の切断塊を測定対象としている。 例えば、 中心部としては、 スポンジチタン塊の底部から厚さが塊高さの 15 %以上の部分と頂部から厚さが塊高さの 5 %以上の部分とを切断除去 し、 かつ円筒状塊の円周部から厚さが塊直径の 10%以上の円周部分を切 断除去した部分が該当する。 In actual operation, not all the cut pieces of titanium sponge are measured, but the cut pieces at the center except for the peripheral part. For example, as the central part, a part with a thickness of 15% or more of the lump height from the bottom of the titanium sponge mass and a part with a thickness of 5% or more of the lump height from the top are cut and removed, and the cylindrical lump is removed. This corresponds to the part where the circumferential part with a thickness of 10% or more of the lump diameter is cut off from the circumferential part of.
本発明方法は、 低酸素チタン材の製造において、 真空分離後のスポン
ジチタンの表面に薄い窒化皮膜を形成して、 その後、 大気中に暴露させ た場合にも、 酸化皮膜の形成を抑制することができる。 これにより、 新 たな設備、 装置を特に必要とすることもなく、 低酸素化が図れることか ら、 本発明方法は有効な製造方法である。 また、 この方法は、 高純度チ 夕ン材用として有効であるばかりでなく、 展伸材用、 粉末製造用および 精密錡造用のチタン材の製造用としても適用することができる。 The method of the present invention relates to a method for producing a low oxygen titanium material, comprising the steps of: Even when a thin nitride film is formed on the surface of dititanium and then exposed to the atmosphere, the formation of an oxide film can be suppressed. As a result, new equipment and equipment are not particularly required, and oxygen reduction can be achieved. Therefore, the method of the present invention is an effective production method. In addition, this method is not only effective for high-purity titanium material, but also applicable to wrought material, powder production, and titanium production for precision fabrication.
(実施例) (Example)
本発明の製造方法による効果を、 具体的な実施例に基づいて詳細に説 明する。 クロール法によって真空分離後の重量が約 6 Tである円筒状ス ポンジチタンを製造した。 The effects of the manufacturing method of the present invention will be described in detail based on specific examples. Cylindrical sponge titanium with a weight of about 6 T after vacuum separation was produced by the Kroll method.
発明例では、 真空分離終了後からの冷却時間を 50〜76時間で管理し、 反応容器を開放する 15分前から 5分前の 10分間にわたって、 反応容器内 を概ね真空引きした。 その後、 反応容器を開放する 5分前から開放まで の 5分間に、 容器蓋部から窒素分圧/酸素分圧の比が 100以上の窒素ガス を導入し、 蓋部を開放して反応容器内のスポンジチタン塊を大気中に取 り出した。 取り出されたスポンジチタンは、 切断および破砕により粒径 10〜30mmに整粒して均一に混合した後、 塊中心部の酸素濃度および窒素 濃度を測定した。 In the invention example, the cooling time after the completion of the vacuum separation was controlled at 50 to 76 hours, and the inside of the reaction vessel was substantially evacuated for 10 minutes from 15 minutes to 5 minutes before opening the reaction vessel. Then, from 5 minutes before opening the reaction vessel to 5 minutes before the opening, nitrogen gas with a nitrogen partial pressure / oxygen partial pressure ratio of 100 or more was introduced from the vessel lid, and the lid was opened to open the inside of the reaction vessel. The sponge titanium mass was taken out into the atmosphere. The removed sponge titanium was sized by cutting and crushing to a particle size of 10 to 30 mm, mixed uniformly, and then the oxygen concentration and nitrogen concentration at the center of the mass were measured.
比較例では、 真空分離終了後からの冷却時間を 50〜76時間として、 窒 素ガスを導入することなく、 反応容器から取り出されたスポンジチタン は切断および破砕により粒径 10〜30mmに整粒して均一に混合した後、 塊 中心部の酸素濃度および窒素濃度を測定した。 In the comparative example, the sponge titanium removed from the reaction vessel was cut and crushed to a particle size of 10 to 30 mm without introducing nitrogen gas, with the cooling time after completion of vacuum separation being 50 to 76 hours. After mixing uniformly, the oxygen concentration and the nitrogen concentration at the center of the mass were measured.
次頁に示す表 1の結果から明らかなように、 発明例 1では大幅な冷却 時間の短縮を図ったことになるが、 結果は酸素濃度は 200ppffl以下を満足 するものであり、 高純度チタン用として採用できる低酸素チタンが得ら れた。 一方、 発明例 3では、 従来と同様の冷却時間を確保すれば、 従来 得られなかった低酸素チタン材の製造が可能になる。
表 1 As is evident from the results in Table 1 on the next page, Invention Example 1 significantly reduced the cooling time, but the result is that the oxygen concentration satisfies 200 ppffl or less. Thus, low oxygen titanium which can be used as a material was obtained. On the other hand, in Inventive Example 3, if the same cooling time as that of the related art is ensured, it becomes possible to produce a low-oxygen titanium material that could not be obtained conventionally. table 1
本発明の低酸素チタン材の製造方法によれば、 クロール法の反応容器 内に窒素ガスを導入して、 円筒状のスポンジチタンの中心部分まで窒化 膜を形成することによって、 スパッ夕リング用夕一ゲットの作製に適す る、 酸素濃度が 200ppm以下の低酸素チタン材を製造することができる。 しかも、 大幅に冷却時間を短縮することも可能であり、 生産効率にも優 れ、 工業的な低酸素チタン材の製造法として広範囲に利用することがで きる。
According to the method for producing a low-oxygen titanium material of the present invention, a nitrogen gas is introduced into a reaction vessel of the crawl method, and a nitride film is formed up to the central portion of the cylindrical titanium sponge. A low-oxygen titanium material having an oxygen concentration of 200 ppm or less, which is suitable for producing one get, can be produced. Moreover, the cooling time can be greatly reduced, the production efficiency is excellent, and it can be widely used as an industrial method for producing low oxygen titanium materials.
Claims
1 . クロール法によって得られたスポンジチタンから低酸素チタン材を 製造する方法であって、 真空分離後のスポンジチタンを反応容器内で冷 却し、次いで反応容器内のスポンジチタン表面に窒化膜を形成させた後、 )5 スポンジチタンを反応容器から取り出して切断または/および破砕する 低酸素チタン材の製造方法。 1. A method for producing a low-oxygen titanium material from titanium sponge obtained by the Kroll method, in which the sponge titanium after vacuum separation is cooled in a reaction vessel, and then a nitride film is formed on the surface of the titanium sponge in the reaction vessel. 5) A method for producing a low-oxygen titanium material in which titanium sponge is taken out of a reaction vessel and cut or / and crushed.
2 . 上記窒化膜の形成を窒素分圧 酸素分圧の比が 20以上である低酸素 含有窒素ガスを反応容器内に導入することにより行う請求項 1記載の低 酸素チタン材の製造方法。 2. The method for producing a low oxygen titanium material according to claim 1, wherein the formation of the nitride film is performed by introducing a low oxygen-containing nitrogen gas having a nitrogen partial pressure / oxygen partial pressure ratio of 20 or more into the reaction vessel.
L0 3 .反応容器内でスポンジチタン中心部の温度が 200 °C以下になった後、 上記低酸素含有窒素ガスを導入する請求項 1または 2に記載の低酸素チ 夕ン材の製造方法。 L03. The method for producing a low-oxygen titanium material according to claim 1 or 2, wherein the low-oxygen-containing nitrogen gas is introduced after the temperature of the center of the sponge titanium has become 200 ° C or lower in the reaction vessel.
4 . 製造されたチタン材の酸素濃度が 200ppm以下である請求項 1乃至 3のいずれかに記載の低酸素チタン材の製造方法。 4. The method for producing a low oxygen titanium material according to claim 1, wherein the produced titanium material has an oxygen concentration of 200 ppm or less.
L5 5 . 製造されたチタン材の窒素濃度が 30ppm以下である請求項 1乃至 4 のいずれかに記載の低酸素チタン材の製造方法。
L55. The method for producing a low oxygen titanium material according to any one of claims 1 to 4, wherein the produced titanium material has a nitrogen concentration of 30 ppm or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001344212A JP3735060B2 (en) | 2001-11-09 | 2001-11-09 | Method for producing low-oxygen titanium material |
JP2001-344212 | 2001-11-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003040418A1 true WO2003040418A1 (en) | 2003-05-15 |
Family
ID=19157768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/001824 WO2003040418A1 (en) | 2001-11-09 | 2002-02-27 | Method for producing titanium material of low oxygen content |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3735060B2 (en) |
WO (1) | WO2003040418A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108311705A (en) * | 2018-02-07 | 2018-07-24 | 海宁瑞兴材料科技有限公司 | A kind of production equipment for producing titanium valve |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4889379B2 (en) * | 2006-06-12 | 2012-03-07 | 東邦チタニウム株式会社 | Method for producing titanium alloy |
JP6924120B2 (en) * | 2017-11-02 | 2021-08-25 | 東邦チタニウム株式会社 | Manufacturing method of titanium sponge |
US20230166326A1 (en) * | 2020-05-13 | 2023-06-01 | Osaka Titanium Technologies Co., Ltd. | Active metal particle surface modification method, and titanium particles or titanium alloy particles |
JP7354393B1 (en) | 2022-10-20 | 2023-10-02 | 東邦チタニウム株式会社 | Method for manufacturing titanium sponge and method for manufacturing titanium molded products |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4612884B1 (en) * | 1967-11-02 | 1971-04-02 | ||
JPS62196365A (en) * | 1986-02-24 | 1987-08-29 | Ohara:Kk | Surface nitriding method for titanium |
-
2001
- 2001-11-09 JP JP2001344212A patent/JP3735060B2/en not_active Expired - Lifetime
-
2002
- 2002-02-27 WO PCT/JP2002/001824 patent/WO2003040418A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4612884B1 (en) * | 1967-11-02 | 1971-04-02 | ||
JPS62196365A (en) * | 1986-02-24 | 1987-08-29 | Ohara:Kk | Surface nitriding method for titanium |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108311705A (en) * | 2018-02-07 | 2018-07-24 | 海宁瑞兴材料科技有限公司 | A kind of production equipment for producing titanium valve |
Also Published As
Publication number | Publication date |
---|---|
JP3735060B2 (en) | 2006-01-11 |
JP2003147454A (en) | 2003-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5006030B2 (en) | Powder metallurgy sputtering target and manufacturing method thereof | |
US7803235B2 (en) | Passivation of tantalum and other metal powders using oxygen | |
US7585486B2 (en) | Production of high-purity niobium monoxide and capacitor production therefrom | |
CN102046822B (en) | Tungsten sinter sputtering target | |
WO2015127613A1 (en) | High-purity tantalum powder and preparation method therefor | |
WO2003040418A1 (en) | Method for producing titanium material of low oxygen content | |
JP2003535969A (en) | Intermetallic aluminide and silicide sputtering target and method of manufacturing the same | |
JP5266427B1 (en) | Capacitor anode body manufacturing method | |
JP5403825B2 (en) | Method for storing high-purity sponge titanium particles and method for producing high-purity titanium ingot using the same | |
JPH05222525A (en) | Production of tungsten target for semiconductor | |
JP3129709B2 (en) | Method for producing low oxygen high purity titanium material | |
JPH05452B2 (en) | ||
JP2003193111A (en) | Method for manufacturing tungsten sputtering target | |
JPS63259075A (en) | Titanium nitride target and its production | |
JPH11158565A (en) | Production of titanium ingot | |
RU2361699C1 (en) | Method of microcrystalline powder of ittrium receiving | |
JP2006037133A (en) | Method for producing high purity hafnium material, high purity hafnium material obtained by the method, and sputtering target | |
JP2610575B2 (en) | W-Ti alloy target | |
JPH0159971B2 (en) | ||
JPH0711434A (en) | W-ti alloy target | |
JPH01131073A (en) | Target made of high-melting metal silicide and production thereof | |
JPS63179027A (en) | Smelting method | |
JPH0313192B2 (en) | ||
CN117344191A (en) | Production method of aluminum-tungsten-tantalum ternary intermediate alloy | |
JPH0770744A (en) | Ti-w target material and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |