WO2002086612A1 - Electrophoretic color display device - Google Patents
Electrophoretic color display device Download PDFInfo
- Publication number
- WO2002086612A1 WO2002086612A1 PCT/IB2002/001315 IB0201315W WO02086612A1 WO 2002086612 A1 WO2002086612 A1 WO 2002086612A1 IB 0201315 W IB0201315 W IB 0201315W WO 02086612 A1 WO02086612 A1 WO 02086612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrophoretic
- display device
- color display
- pixel
- electrodes
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/37—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
- G09F9/372—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the positions of the elements being controlled by the application of an electric field
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
Definitions
- the invention relates to an electrophoretic multi-color display device comprising at least a pixel with an electrophoretic medium, and two switching electrodes and drive means via which the pixel can be brought to different optical states.
- a switching electrode is referred to in this application, it may be divided, if desired, into a plurality of sub-electrodes which are supplied with one and the same voltage externally or via switching elements.
- Electrophoretic display devices are based on the motion of charged, usually colored particles under the influence of an electric field between two extreme states having a different light transmissivity or light reflectivity. Dark (colored) characters can be imaged on a light (colored) background, and vice versa.
- Electrophoretic display devices are therefore notably used in display devices taking over the function of paper, referred to as the "paper white” applications (electronic newspapers, electronic diaries).
- the switching electrodes are supplied with drive voltages.
- the pixel can be exclusively brought to two extreme optical states.
- One of the switching electrodes is then realized, for example, as two mutually interconnected narrow conducting strips on the upper side of a display element.
- particles which are negatively charged in this example
- the (negatively) charged particles are then distributed across the front face of the display element (pixel) which then assumes the color of the charged particles.
- the (negatively) charged particles move across the bottom face so that the display element (pixel) assumes the color of the liquid.
- grey values In practice, there is an ever increasing need of displaying intermediate optical states (referred to as grey values).
- Known methods of introducing grey values are usually not satisfactory. For example, electrophoretic display devices are too slow to introduce grey values via time-weighted drive periods (time ratio grey scale).
- a division of the pixel into different surfaces (area ratio grey scale) usually requires barriers between the different sub- pixels so as to prevent mutual crosstalk.
- grey values are realized by providing the pixel with at least one further electrode and drive means for realizing intermediate optical states via electric voltages.
- the invention is based on the recognition that the electric field within a display cell can be influenced by means of electric voltages on the further electrode or electrodes in such a way that, in the example described above, the electric field lines are disturbed at a positive voltage across the switching electrode relative to the bottom electrode, such that the negatively charged particles move only partly towards the surface between the two electrodes.
- the color display device may be provided with, for example, a color filter, but a pixel may also consist of a plurality of separate electrophoretic sub-pixels. In that case, it may be advantageous to form a sub-pixel as a microcapsule as described in, for example, "Micro encapsulated Electrophoretic Materials for Electronic Paper Displays", 20 th IDRC Conference, pp. 84-87 (2000).
- microcapsules may also be obtained by creating barriers, for example, polymer walls (for example, Axially Symmetric Aligned Microcells, see SID 898 Digest, pp. 1089).
- the invention is further based on the recognition that different intermediate optical states can be obtained for each of the composite colors when using electrophoretic particles with a different mobility and a suitable pulse pattern on the further electrodes. Usually, it is then sufficient to use a smaller number of electrodes.
- the electrophoretic medium is present between two substrates which are each provided with a switching electrode, while at least one of the substrates is provided with the further electrode or electrodes.
- the charged particles may be present in a liquid between the substrates, but it is alternatively possible for the electrophoretic medium to be present in a microcapsule.
- the pixels may be mutually separated by a barrier.
- the electrophoretic medium is present between two substrates, in which one of the substrates comprises the switching electrodes and the further electrode or electrodes, notably when use is made of a lateral effect.
- the switching electrodes are comb-shaped and interdigital and parts of the (insulated) further electrode or electrodes are situated between the teeth of the two switching electrodes.
- the electrophoretic medium may be alternatively present in a prismatic structure as described in "New Reflective Display Based on Total Internal Reflection in Prismatic Microstructures" Proc. 20 th IDRC Conference, pp. 311-314 (2000).
- Fig. 1 shows diagrammatically a color display device
- Fig. 2 shows a pixel of an electrophoretic color display device according to the invention, in which different grey values (intermediate optical states) have been realized
- Fig. 3 shows an electrophoretic color display device according to the invention, in which different grey values (intermediate optical states) have been realized,
- Fig. 4 shows a variant of Fig. 3
- Fig. 5 shows a further electrophoretic color display device according to the invention, in which different grey values (intermediate optical states) can be realized
- Fig. 6 shows how different colors are realized in a known color display device
- Fig. 7 shows how different grey values can be realized in the color display device of Fig. 6 according to the invention
- Fig. 8 is a plan view of a part of a further electrophoretic color display device according to the invention.
- Fig. 9 is a cross-section taken on the line IX-IX in Fig. 8,
- Fig. 10 shows another electrophoretic color display device according to the invention, while Fig. 11 shows how different grey values (intermediate optical states) have been realized in the display device shown in Fig. 10.
- Fig. 1 shows an electrical equivalent of a part of a color display device 1 to which the invention is applicable. It comprises a matrix of pixels 3 at the area of crossings of row or selection electrodes 7 and column or data electrodes 6.
- the row electrodes 1 to m are consecutively selected by means of a row driver 4, while the column electrodes 1 to n are provided with data via a data register 5.
- the pixels in columns 1, 4, 7, ..., n-2 constitute red pixels
- the pixels in columns 2, 5, 8, ..., n-1 constitute blue pixels
- the pixels in columns 3, 6, 9, ..., n constitute green pixels.
- incoming data 2 are first processed, if necessary, in a processor 10.
- Mutual synchronization between the row driver 4 and the data register 5 takes place via drive lines 8.
- a column electrode 6 receives such a voltage with respect to a row electrode 7 that the pixel at the area of the crossing is in at least one of two extreme states (for example, black or colored, dependent on the colors of the liquid and the electrophoretic particles).
- drive signals from the row driver 4 can select the picture electrodes via thin-film transistors (TFTs) 9 which have their gate electrodes electrically connected to the row electrodes 7 and their source electrodes 21 to the column electrodes 6 (referred to as active drive).
- TFTs thin-film transistors
- the signal at the column electrode 6 is transferred via the TFT to a picture electrode of a pixel 10, coupled to the drain electrode.
- the other picture electrodes of the pixel 10 are connected to, for example, ground by means of, for example, one (or more) common counter electrode or electrodes.
- TFT 9 is shown diagrammatically for only one pixel 10.
- each pixel is provided with a further electrode and drive means for supplying the further electrode with electric voltages.
- Fig. 2 is a cross-section of such a pixel provided with a third electrode 6'.
- the drive means comprise, for example, the data register 5 (and possibly a part of the driver), and extra column electrodes 6' (and an extra TFT in the case of active drive).
- a pixel 10 (Fig. 2) comprises a first substrate 11 of, for example, glass or a synthetic material, provided with a switching electrode 7, and a second transparent substrate 12 provided with a switching electrode 6.
- the pixel is filled with an electrophoretic medium, for example, a white liquid 13 in which particles 14 are present, in this example colored, positively charged particles 14.
- the pixel is provided with a third electrode 6' (and, as described hereinbefore, if necessary with drive means which are not shown in Fig. 2) for realizing intermediate optical states via electric voltages on the third electrode.
- the third electrode 6' also influences the switching behavior between the two extreme states.
- the switching electrode 7 is connected to ground, while both electrodes 6, 6' are connected to a voltage +N.
- the particles 14 (which are positively charged in this example) move towards the electrode at the lowest potential, in this case the electrode 7. Viewed from the viewing direction 15, the pixel now has the color of the liquid 13 (white in this case).
- the switching electrode 7 is connected to ground, while both electrodes 6, 6' are connected to a voltage -N.
- the positively charged particles 14 move towards the lowest potential, in this case towards the potential plane defined by the electrodes 6, 6', parallel to and just along the substrate 12. Viewed from the viewing direction 15, the pixel now has the color of the particles 14.
- the switching electrode 7 is also connected to ground in Fig. 2C.
- the electrode 6 is connected to a voltage -N again.
- the third electrode 6' is connected to ground, similarly as electrode 7.
- the positively charged particles 14 move towards the lowest potential, in this case an area around electrodes 6. This is even more strongly the case if the third electrode 6' is connected to a voltage +V, as is shown in Fig. 2D.
- the pixel Viewed from the viewing direction 15, the pixel now only partly has the color of the particles 14 and partly the color of the white liquid. This results in an intermediate reflection level (grey value) (dark in the case of Fig. 2C and light in the case of Fig. 2D).
- a color display device is obtained by forming the (sub-)pixels, for example, as shown in Fig. 2 and by providing the whole with a color filter 16 as is shown in Fig. 3.
- the columns 1, 4, 7, ..., n-2 are then covered (see Fig. 3) with red color filter portions 16R, the columns 2, 5, 8, ..., n-1 are covered with blue color filter portions 16B and the columns 3, 6, 9, ..., n are covered with green color filter portions 16G.
- the reference numerals in Fig. 3 denote the same components as in Fig. 2.
- the color filter may be omitted when, as shown in Fig. 4 for the particles 14, particles of the desired color are used in each column, namely red particles 14R for the red (sub-)pixels, blue particles 14B for the blue (sub-)pixels and green particles 14G for the green (sub-)pixels.
- microcapsules as described in "Micro Encapsulated Electrophoretic Materials for Electronic Paper Displays", 20 th IDRC Conference, pp. 84-87 (2000).
- the electrophoretic medium, a liquid 13 with positively charged particles 14 is now present in microcapsules 17 in a transparent substrate 18 (see Fig. 5).
- the switching electrode 7 is again connected to ground (0 V), while, in this example, the electrodes 6, 6' are connected to a voltage -V and ground (0 V), respectively.
- the positively charged (black) particles 14 move towards the lowest potential, in this case in the direction of electrode 6 and are ultimately present for the greater part in the upper part of the microcapsule 17. Viewed from the viewing direction 15, the pixel now has an intermediate color (dark grey for black particles).
- a color display device can be obtained by applying black particles and a white liquid in all microcapsules and by providing the display device with a color filter (diagrammatically denoted by means of the broken line 16 in Fig. 5).
- each microcapsule 17 is coupled to one color, as shown in Fig. 5, by mixing a suitable liquid with red particles 14R, blue particles 14B and green particles 14G, respectively.
- a suitable liquid with red particles 14R, blue particles 14B and green particles 14G, respectively.
- Further reference numerals in Fig. 3 are identical to those in the other Figures.
- Fig. 6 shows a color display device as described in US 6,017,584.
- a pixel is filled again with an electrophoretic medium, for example, a white liquid 13 comprising particles 14, colored, positively charged particles 14 in this example, consisting of red particles 14R, green particles 14G and blue particles 14B.
- the particles do not only have a different color but also a difference of mobility. For example, the red particles move faster in an electric field than the green ones and these, in turn, move faster than the blue ones.
- the red particles 14R again move in the direction of the electrode 7 and only green particles 14G are present at the area of the electrode 6.
- the pixel now has a green appearance.
- a third electrode 6' conveying voltages of 0 V, -V and +V, respectively, and described similarly as with reference to Fig. 2.
- electrode 6 again with similar pulse patterns, as described with reference to Fig. 6, the particles 14 move towards the electrode 6 in a different way due to the difference of mobility, so that different transmission values are possible for each color. It is thereby achieved that particles of only one color are simultaneously visible, which leads to brighter colors (more color saturation).
- Electrode 6 with pulse patterns. Mixing of particles of different colors can thereby be obtained on the visible surface. It is therefore not always necessary, as in US 6,017,584, to impose the requirement on the particles 14 that they should not overlap one another as far as their (mobility) properties are concerned. Dependent on the (extent of overlap of the) (mobility) properties, the desired color variations can be obtained by varying the pulse patterns 20, 21.
- the color display devices of Fig. 8 comprise several electrodes 6, 6' on one and the same substrate.
- the switching electrodes 6, 6' are connected to four voltage sources (configurations A, B, C) or five voltage sources (configuration D) which supply pulse patterns.
- configurations A, B, C four voltage sources
- configuration D five voltage sources
- colors having different transmission values can be generated again on different parts of the upper surface, as is shown in Fig. 9 by way of example for configuration B.
- the reference numerals in Fig. 9 have the same significance as those in the other Figures.
- An advantage of the embodiment shown in Fig. 9 is that it comprises two electrodes 6, 6' less per color triplet.
- the electrophoretic medium may also be present in a prismatic structure, as described in "New Reflective Display Based on Total Internal Reflection in Prismatic Microstructures" Proc. 20 th IDRC Conference, pp. 311-314 (2000). This is shown in Figs. 10, 11.
- the known device (Fig. 10) comprises a prismatic structure of (in this example) a repetitive structure of hollow (for example, glass) triangles comprising a liquid 13 containing positively charged particles.
- the positively charged particles are present on the (bottom) electrode 7 of metal or on the ITO (top) electrode 6.
- an incident beam is totally reflected on the glass-liquid interfaces and is reflected (arrow a).
- an incident beam is absorbed on the glass- liquid interfaces (arrow b).
- Colors can be obtained again by means of color filters, or in a manner similarly as described with reference to the previous examples.
- the invention is of course not limited to the examples described hereinbefore.
- the examples described hereinbefore always refer to red, green and blue colors for the sub-pixels, whereas eminent results can also be obtained with the colors yellow, cyan and magenta, while a fourth (for example, black) element can be added.
- the invention is also applicable to display devices with two colors (monochrome, for example, black and white).
- the color patterns do not need to be provided as stripes; notably, zigzag patterns may be used alternatively.
- the shape of the prismatic structure of Fig. 10 may also be varied in several ways, such as roof-shaped, spherical or cylindrical.
- the substrate 12 may be provided with an extra (transparent) electrode, for example, for the above-mentioned reset function or, in contrast, for limiting the motion of the particles 14 in the direction of the substrate 12.
- an extra (transparent) electrode for example, for the above-mentioned reset function or, in contrast, for limiting the motion of the particles 14 in the direction of the substrate 12.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02720396A EP1388024A1 (en) | 2001-04-25 | 2002-04-11 | Electrophoretic color display device |
JP2002584078A JP2004520621A (en) | 2001-04-25 | 2002-04-11 | Electrophoretic color display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01201495 | 2001-04-25 | ||
EP01201495.7 | 2001-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002086612A1 true WO2002086612A1 (en) | 2002-10-31 |
Family
ID=8180201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2002/001315 WO2002086612A1 (en) | 2001-04-25 | 2002-04-11 | Electrophoretic color display device |
Country Status (6)
Country | Link |
---|---|
US (1) | US20020167480A1 (en) |
EP (1) | EP1388024A1 (en) |
JP (1) | JP2004520621A (en) |
KR (1) | KR20030011098A (en) |
CN (1) | CN1462377A (en) |
WO (1) | WO2002086612A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004066023A1 (en) * | 2003-01-17 | 2004-08-05 | Koninklijke Philips Electronics N.V. | Electrophoretic display |
WO2005029171A1 (en) * | 2003-09-23 | 2005-03-31 | Koninklijke Philips Electronics N.V. | Display device with suspended anisometric particles |
JP2010033081A (en) * | 2001-07-25 | 2010-02-12 | Seiko Epson Corp | Electro-optical device, electronic apparatus, method for forming colored layer, and method for manufacturing the electro-optical device |
US7894118B2 (en) | 2008-03-11 | 2011-02-22 | Ricoh Company, Ltd. | Electrochromic compound, electrochromic composition and display device |
US8080683B2 (en) | 2008-03-11 | 2011-12-20 | Ricoh Company, Ltd. | Electrochromic compound and electrochromic display device using the same |
US8629863B2 (en) | 2006-11-28 | 2014-01-14 | Koninklijke Philips N.V. | Electronic device using movement of particles |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7038655B2 (en) * | 1999-05-03 | 2006-05-02 | E Ink Corporation | Electrophoretic ink composed of particles with field dependent mobilities |
US8115729B2 (en) | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
DE10032220A1 (en) * | 2000-07-03 | 2002-01-24 | Sanatis Gmbh | Magnesium ammonium phosphate cements, their manufacture and use |
JP4265149B2 (en) * | 2001-07-25 | 2009-05-20 | セイコーエプソン株式会社 | Electro-optical device and method for manufacturing electro-optical device |
US6819471B2 (en) * | 2001-08-16 | 2004-11-16 | E Ink Corporation | Light modulation by frustration of total internal reflection |
US7273523B2 (en) | 2002-06-07 | 2007-09-25 | Kyphon Inc. | Strontium-apatite-cement-preparations, cements formed therefrom, and uses thereof |
JP4176452B2 (en) * | 2002-11-14 | 2008-11-05 | 株式会社日立製作所 | Electrophoretic display device |
US20050287071A1 (en) * | 2002-12-03 | 2005-12-29 | Kyphon Inc. | Formulation for a cement preparation as bone substitute |
WO2004074921A1 (en) * | 2003-02-20 | 2004-09-02 | Koninklijke Philips Electronics N.V. | Electrophoretic multi-color display device |
CN1286655C (en) * | 2003-02-21 | 2006-11-29 | 精工爱普生株式会社 | Color electric paper writing apparatus |
JP4787981B2 (en) * | 2004-03-01 | 2011-10-05 | アドレア エルエルシー | Electrophoresis display |
ES2396133T3 (en) | 2004-04-27 | 2013-02-19 | Kyphon SÀRl | Bone replacement compositions and method of use |
KR101143002B1 (en) | 2005-04-11 | 2012-05-08 | 삼성전자주식회사 | Electrophoretic display |
US7651701B2 (en) * | 2005-08-29 | 2010-01-26 | Sanatis Gmbh | Bone cement composition and method of making the same |
US7754005B2 (en) * | 2006-05-02 | 2010-07-13 | Kyphon Sarl | Bone cement compositions comprising an indicator agent and related methods thereof |
US7652656B2 (en) * | 2006-05-19 | 2010-01-26 | Xerox Corporation | Electrophoretic display and method of displaying images |
US7507286B2 (en) * | 2006-06-08 | 2009-03-24 | Sanatis Gmbh | Self-foaming cement for void filling and/or delivery systems |
JPWO2008012934A1 (en) * | 2006-07-24 | 2009-12-17 | 太田 勲夫 | Display device and manufacturing method thereof |
US20080075788A1 (en) * | 2006-09-21 | 2008-03-27 | Samuel Lee | Diammonium phosphate and other ammonium salts and their use in preventing clotting |
KR101432804B1 (en) * | 2006-12-13 | 2014-08-27 | 엘지디스플레이 주식회사 | Electrophoresis display and driving method thereof |
EP1950729B1 (en) * | 2007-01-29 | 2012-12-26 | Seiko Epson Corporation | Drive method for display device, drive device, display device, and electronic device |
DE102007022002A1 (en) | 2007-05-08 | 2008-11-13 | Moeller Gmbh | Display device for a switching device |
US7968616B2 (en) * | 2008-04-22 | 2011-06-28 | Kyphon Sarl | Bone cement composition and method |
CN101645239B (en) * | 2008-08-06 | 2011-09-07 | 元太科技工业股份有限公司 | Display method applied to electrophoretic display device |
JP5481839B2 (en) * | 2008-11-13 | 2014-04-23 | 株式会社リコー | Electrochromic compound, electrochromic composition carrying the same, and display device having these |
KR100932365B1 (en) * | 2008-12-26 | 2009-12-16 | 에스케이 텔레콤주식회사 | Color display device and manufacturing method thereof |
JP5471497B2 (en) * | 2009-07-30 | 2014-04-16 | セイコーエプソン株式会社 | Electrophoretic display body, electrophoretic display device, and electronic apparatus |
US8593715B2 (en) | 2009-10-16 | 2013-11-26 | Ricoh Company, Ltd. | Electrochromic compound, electrochromic composition, and display element |
JP5381671B2 (en) * | 2009-12-11 | 2014-01-08 | 富士ゼロックス株式会社 | Display device |
DE102010013153A1 (en) * | 2010-03-27 | 2011-09-29 | Advanced Display Technology Ag | Multi-colored display device |
JP4882020B1 (en) * | 2010-10-27 | 2012-02-22 | 株式会社サクラクレパス | Electrophoretic display device |
KR20130022479A (en) | 2011-08-24 | 2013-03-07 | 삼성디스플레이 주식회사 | Electrophoretic display device |
JP6085914B2 (en) | 2011-11-28 | 2017-03-01 | 株式会社リコー | Electrochromic compound, electrochromic composition, and display element |
JP6255711B2 (en) | 2012-11-01 | 2018-01-10 | 株式会社リコー | Electrochromic compound, electrochromic composition, and display element |
US20180267350A1 (en) * | 2014-11-17 | 2018-09-20 | Sharp Kabushiki Kaisha | Liquid crystal display device |
JP6728628B2 (en) | 2015-03-13 | 2020-07-22 | 株式会社リコー | Electrochromic compound, electrochromic composition, and electrochromic device and electrochromic dimming device |
CN105223726B (en) * | 2015-10-27 | 2019-09-10 | 昆山龙腾光电有限公司 | Colored filter substrate and production method and liquid crystal display device and driving method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01137240A (en) * | 1987-11-25 | 1989-05-30 | Kinseki Ltd | Electrophoretic display device |
WO1999053373A1 (en) * | 1998-04-10 | 1999-10-21 | E-Ink Corporation | Full color reflective display with multichromatic sub-pixels |
US6172798B1 (en) * | 1998-04-27 | 2001-01-09 | E Ink Corporation | Shutter mode microencapsulated electrophoretic display |
JP2001125512A (en) * | 1999-10-29 | 2001-05-11 | Canon Inc | Display device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833464A (en) * | 1987-09-14 | 1989-05-23 | Copytele, Inc. | Electrophoretic information display (EPID) apparatus employing grey scale capability |
US5254981A (en) * | 1989-09-15 | 1993-10-19 | Copytele, Inc. | Electrophoretic display employing gray scale capability utilizing area modulation |
US6017584A (en) * | 1995-07-20 | 2000-01-25 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
US6664944B1 (en) * | 1995-07-20 | 2003-12-16 | E-Ink Corporation | Rear electrode structures for electrophoretic displays |
US6639580B1 (en) * | 1999-11-08 | 2003-10-28 | Canon Kabushiki Kaisha | Electrophoretic display device and method for addressing display device |
JP3667242B2 (en) * | 2000-04-13 | 2005-07-06 | キヤノン株式会社 | Electrophoretic display method and electrophoretic display device |
-
2002
- 2002-04-11 WO PCT/IB2002/001315 patent/WO2002086612A1/en not_active Application Discontinuation
- 2002-04-11 EP EP02720396A patent/EP1388024A1/en not_active Withdrawn
- 2002-04-11 CN CN02801399A patent/CN1462377A/en active Pending
- 2002-04-11 KR KR1020027017363A patent/KR20030011098A/en not_active Application Discontinuation
- 2002-04-11 JP JP2002584078A patent/JP2004520621A/en not_active Withdrawn
- 2002-04-23 US US10/128,638 patent/US20020167480A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01137240A (en) * | 1987-11-25 | 1989-05-30 | Kinseki Ltd | Electrophoretic display device |
WO1999053373A1 (en) * | 1998-04-10 | 1999-10-21 | E-Ink Corporation | Full color reflective display with multichromatic sub-pixels |
US6172798B1 (en) * | 1998-04-27 | 2001-01-09 | E Ink Corporation | Shutter mode microencapsulated electrophoretic display |
JP2001125512A (en) * | 1999-10-29 | 2001-05-11 | Canon Inc | Display device |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 013, no. 389 (P - 925) 29 August 1989 (1989-08-29) * |
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 22 9 March 2001 (2001-03-09) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010033081A (en) * | 2001-07-25 | 2010-02-12 | Seiko Epson Corp | Electro-optical device, electronic apparatus, method for forming colored layer, and method for manufacturing the electro-optical device |
WO2004066023A1 (en) * | 2003-01-17 | 2004-08-05 | Koninklijke Philips Electronics N.V. | Electrophoretic display |
CN100354742C (en) * | 2003-01-17 | 2007-12-12 | 皇家飞利浦电子股份有限公司 | Electrophoretic display |
WO2005029171A1 (en) * | 2003-09-23 | 2005-03-31 | Koninklijke Philips Electronics N.V. | Display device with suspended anisometric particles |
US8629863B2 (en) | 2006-11-28 | 2014-01-14 | Koninklijke Philips N.V. | Electronic device using movement of particles |
US7894118B2 (en) | 2008-03-11 | 2011-02-22 | Ricoh Company, Ltd. | Electrochromic compound, electrochromic composition and display device |
US8080683B2 (en) | 2008-03-11 | 2011-12-20 | Ricoh Company, Ltd. | Electrochromic compound and electrochromic display device using the same |
Also Published As
Publication number | Publication date |
---|---|
KR20030011098A (en) | 2003-02-06 |
EP1388024A1 (en) | 2004-02-11 |
US20020167480A1 (en) | 2002-11-14 |
CN1462377A (en) | 2003-12-17 |
JP2004520621A (en) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020167480A1 (en) | Electrophoretic color display device | |
US7439948B2 (en) | Electrophoretic display device | |
KR100956569B1 (en) | Electrophoretic display device | |
US8797634B2 (en) | Multi-color electrophoretic displays | |
US8649084B2 (en) | Color display devices | |
US8976444B2 (en) | Color display devices | |
US8355196B2 (en) | Electrophoretic display device | |
KR20090073903A (en) | Method for arranging pixel in color electronic paper display device | |
KR100593490B1 (en) | LCD Display | |
EP0485216A2 (en) | Liquid-crystal colour display | |
KR20120004841A (en) | Reflective display device | |
CN101344668B (en) | Liquid crystal display device and method of fabricating the same | |
JP2005031345A (en) | Electrophoretic display | |
JPH03174514A (en) | Ferroelectric liquid crystal display element | |
KR20020010209A (en) | a structure of a pixel array and a panel for a liquid crystal display including the same | |
CN114779519A (en) | Time sequence liquid crystal display panel and display device | |
KR19990011943A (en) | Gradient liquid crystal display element | |
JPS6259924A (en) | Matrix type liquid crystal display device | |
JPS6298329A (en) | Liquid crystal display element | |
JPH0922020A (en) | Color liquid crystal display panel and color liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP KR |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027017363 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 028013999 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002720396 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027017363 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2002720396 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002720396 Country of ref document: EP |