WO2002060982A1 - Surface treatment method and corona discharge treatment device - Google Patents

Surface treatment method and corona discharge treatment device Download PDF

Info

Publication number
WO2002060982A1
WO2002060982A1 PCT/JP2002/000576 JP0200576W WO02060982A1 WO 2002060982 A1 WO2002060982 A1 WO 2002060982A1 JP 0200576 W JP0200576 W JP 0200576W WO 02060982 A1 WO02060982 A1 WO 02060982A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
corona discharge
electrodes
treated
treatment method
Prior art date
Application number
PCT/JP2002/000576
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Takizawa
Original Assignee
Kabushiki Kaisha Bridgestone
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Bridgestone filed Critical Kabushiki Kaisha Bridgestone
Publication of WO2002060982A1 publication Critical patent/WO2002060982A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/106Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment the electrodes being placed on the same side of the material to be treated

Definitions

  • the present invention relates to a method for performing surface treatment on a large non-conductive and thick object to be treated, and a corona discharge treatment apparatus used for the surface treatment.
  • a method has been known in which the surface of a resin film such as polypropylene / polyethylene is subjected to a corona discharge treatment to improve the wettability of the surface of the resin film, thereby improving the coating property and adhesiveness.
  • a corona discharge treatment as shown in Fig. 3, a pair of electrodes consisting of a discharge electrode 1 and a counter electrode 2 are arranged facing each other at a distance of several mm According to (3), a high-frequency voltage of several tens of kV is applied between the electrodes (1) and (2) to generate corona discharge between the electrodes (1) and (2) and a resin film between the electrodes (1) and (2).
  • the object 50 to be treated is disposed, and the surface of the object to be treated is subjected to corona discharge treatment for reforming.
  • a highly reactive active group is generated on the surface of the object 50 due to the collision of electrons due to the corona discharge and the action of ozone and ultraviolet rays generated secondarily. Surface wetting characteristics and reactivity can be improved.
  • the surface of one of the electrodes 1 and 2 (discharge electrode 1 in FIG. 3) is usually covered with a coating made of an insulating material such as vinyl chloride or Teflon. It is covered with member 4.
  • the corona discharge treatment is not limited to the above resin film, but is used only for surface treatment of non-conductive materials such as resin molded products, film surfaces of resin film laminate products, and resin painted surfaces of wood and the like. It is also used for surface treatment of metal such as photosensitive drums in developing devices.
  • the object to be processed is a conductive material, generally, the object to be processed is often used as a counter electrode.
  • the workpieces 50 are paired with each other. It is effective when the object 50 is an extremely thin material such as the resin film described above, since it is installed between the opposite discharge electrode 1 and the opposite electrode 2. In the case of a material that has a problem, it is necessary to increase the distance between the electrodes, so that even when a high voltage is applied, no discharge may occur.
  • a film surface or resin-coated surface of a non-conductive and thick material such as a polyvinyl fluoride film laminated wood or a fluorinated resin-coated wood should be subjected to corner discharge treatment.
  • a non-conductive and thick material such as a polyvinyl fluoride film laminated wood or a fluorinated resin-coated wood should be subjected to corner discharge treatment.
  • the present invention has been made in view of the conventional problems, and provides a method for efficiently performing surface treatment even on a large non-conductive and thick material, and a corona discharge suitable for the surface treatment. It is an object to provide a processing device.
  • the surface treatment method according to claim 2 wherein the first and second electrodes are moved in association with each other on the processing surface of the object to be processed, and corona discharge processing is performed on the processing surface of the object. This makes it possible to easily perform the surface treatment on the treated surface without moving the object to be treated.
  • a surface treatment method according to claim 3 is characterized in that a distance between the first electrode and the second electrode is set to 5 mm or less.
  • a surface treatment method according to claim 5 is characterized in that the treated surface of the object to be treated is a resin or a painted surface.
  • the treated surface is a surface containing a fluororesin.
  • the corona discharge treatment device wherein the first electrode is coated with a roll-shaped insulating material, and is disposed in close proximity to a treatment surface of the treatment object.
  • a high-frequency high-frequency voltage is applied between the second electrode provided at a predetermined distance from the first electrode and the first and second electrodes, and a corona discharge is applied between the two electrodes.
  • the processing surface is sequentially modified.
  • FIG. 1 is a diagram showing a configuration of a corona discharge treatment apparatus according to the best mode of the present invention.
  • FIG. 2 is a diagram showing an example of an electrode configuration in a corona discharge treatment device according to the best mode of the present invention.
  • FIG. 3 is a diagram showing a configuration of a conventional corona discharge treatment device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing a configuration of a corona discharge treatment apparatus according to the present embodiment, where 10 is a first electrode provided in close proximity to a treatment surface 50 S of a workpiece 50, 2
  • Reference numeral 0 denotes a second electrode provided in the vicinity of the first electrode 10 described above, and the second electrode is on the same side as the first electrode 10 and the object 50, that is, It is installed on the processing surface 50 S side of the object 50.
  • Reference numeral 30 denotes a high-frequency oscillator 31 and a high-voltage transformer 32.
  • a high-frequency high-frequency voltage is applied between the first electrode 10 and the second electrode 20, and the electrodes 10 and 2 are applied.
  • ⁇ A high voltage generator for generating a corona discharge between them, 40 is made of an insulating material, and is a roll-shaped coating for coating the surface of the second electrode 20 It is a member.
  • the first electrode 10 includes a roll-shaped covering member 40 made of a silicon tube in which a portion including a portion 10T facing the processing surface 5OS of the processing object 50 is formed of a silicon tube. Consists of a 3 mm diameter stainless steel rod covered with. At this time, a slight gap was provided between the stainless steel rod and the covering member 40 so that the covering member 40 could rotate on the processing surface.
  • the second electrode 20 is made of a stainless steel flat plate having a thickness of 0.5 mm, a width of 10 mm, and a length of 80 mm, and the opposed portion 10T of the first electrode 10 and the second electrode 20 are formed.
  • the first electrode 10 and the second electrode 20 are arranged such that the side surface 20T in the length direction is parallel to each other at a predetermined distance. .
  • the object 50 to be subjected to corona discharge treatment is made of a non-conductive, thick, large-sized material such as a fluororesin-coated wood.
  • a corona discharge is applied between the first and second electrodes 10 and 20 (actually, between the side surface 40T of the covering member 40 facing the second electrode 20 and the side surface 20T of the second electrode 20).
  • the discharge area of this corona discharge comes into contact with the processing surface (fluorine-based resin-coated surface) 5 OS located immediately below the first and second electrodes 10 and 20.
  • the fluororesin-coated surface is modified by corona discharge and activated.
  • the first electrode 10 and the second electrode 20 are integrated by, for example, disposing them in one housing, and the roll-shaped covering member 40 is attached to the processing surface of the workpiece 50. 5 By rotating on the OS, the first and second electrodes 10 and 20 are moved to perform a corona discharge treatment on the entire processing surface 50S of the workpiece 50. I'm trying.
  • the shapes and materials of the first electrode 10 and the second electrode 20 are not limited to the above examples, and may be appropriately determined by the shape and material of the processing surface 50S of the workpiece 50. I can do it.
  • the covering member 40 is made of silicon rubber. However, natural rubber or ceramic may be used.
  • the conditions of the corona discharge treatment such as the electrode spacing are appropriately determined by the shape and material of the treated surface 50 S of the object 50 to be treated and the processing specifications.
  • the electrode distance d with the second electrode 20 is desirably set to 5 mm or less, the applied voltage V is 5 kV or more and 25 kV or less, and the frequency is 20 kHz to 4 kHz. It is desirable that ⁇
  • the object 50 to be treated is made of a fluorine-based resin-coated wood.
  • the corona discharge treatment apparatus of the present invention may be a polyvinyl fluoride film or ethylene-tetrafluoroethylene.
  • Resin film such as copolymer film, polyvinyl fluoride film laminated paper, polyethylene tetrafluoroethylene copolymer film laminated paper or laminated material such as polyvinyl fluoride film laminated wood, polyethylene sheet and propylene It can be applied to the surface treatment of sheet materials such as sheets, as well as painted building materials such as fluorinated resin-coated concrete extruded plates and fluorinated resin-painted ceramic siding boards. .
  • a 1-part silicone sealing material (SH780) manufactured by Toray Dow Corning Co., Ltd. was applied to the treated surface with a width of 10 mm and a thickness of 5 mm. Table 1 shows the results of 90-degree tensile test and evaluation of the adhesiveness.
  • Comparative Example 1 the results for a sample without corona discharge treatment are also shown.
  • Table 2 below shows the results of corona discharge treatment performed in the same manner as in Experimental Example 1 above, with the electrode voltage fixed at 14 kV and the frequency fixed at 4 OkHz, and with the electrode spacing varied.
  • one of the first and second electrodes arranged close to each other is covered with an insulating material, and both the first and second electrodes are A corona discharge generated by applying a high-frequency high voltage between the two electrodes is brought into contact with the processing surface of the object to be processed, and is disposed close to the processing surface of the object to be processed. Since corona discharge treatment is conventionally performed, corona discharge treatment can be efficiently performed even with a large, non-conductive and thick material, which has conventionally been difficult to perform corona discharge treatment.
  • the insulating material is formed in a roll shape, and the port is moved on the processing surface of the object to be processed so that the processing surface is sequentially reformed, so that the processing surface of the object is efficiently processed. Corona discharge treatment can be performed well.

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

A surface treatment method, comprising the steps of covering either of first and second electrodes disposed close to each other with an insulator, and installing the first and second electrodes close to the treated surface of a treated material so that even a non-conductive thick large material can be surface-treated efficiently, whereby the treated surface can be modified by bringing a corona discharge generated by applying a high-frequency high-voltage across the electrodes into contact with the treated surface of the treated material.

Description

明 細 書 表面処理方法及びコ口ナ放電処理装置 技術分野  Description Surface treatment method and corner discharge treatment equipment
本発明は、 非導電性でかつ厚みのある大型の被処理物の表面処理を行う方法と 上記表面処理に用いられるコロナ放電処理装置に関するものである。 背景技術  The present invention relates to a method for performing surface treatment on a large non-conductive and thick object to be treated, and a corona discharge treatment apparatus used for the surface treatment. Background art
従来、 ポリプロピレンゃポリェチレンなどの樹脂フィルム表面にコロナ放電処 理を施して上記樹脂フィルム表面のぬれ特性を改善し、 塗装性や接着性を向上さ せる方法が知られている。 コロナ放電処理は、 第 3図に示すように、 放電電極 1 と対向電極 2とから成る一対の電極を、 空気中に数 mm〜数十 mmの間隔で対向 して配置し、 高電圧発生装置 3により、 上記電極 1, 2間に数十 k Vの高電圧の 高周波電圧を印可して上記電極 1 , 2間にコロナ放電を発生させるとともに、 上 記両電極 1 , 2間に樹脂フィルムなどの被処理物 5 0を配置して、 この被処理物 の表面をコロナ放電処理して改質するものである。  Conventionally, a method has been known in which the surface of a resin film such as polypropylene / polyethylene is subjected to a corona discharge treatment to improve the wettability of the surface of the resin film, thereby improving the coating property and adhesiveness. In the corona discharge treatment, as shown in Fig. 3, a pair of electrodes consisting of a discharge electrode 1 and a counter electrode 2 are arranged facing each other at a distance of several mm According to (3), a high-frequency voltage of several tens of kV is applied between the electrodes (1) and (2) to generate corona discharge between the electrodes (1) and (2) and a resin film between the electrodes (1) and (2). The object 50 to be treated is disposed, and the surface of the object to be treated is subjected to corona discharge treatment for reforming.
上記被処理物 5 0の表面には、 上記コロナ放電による電子の衝突や二次的に発 生するオゾンや紫外線の作用により、 反応性の高い活性基が発生するので、 上記 被処理物 5 0表面のぬれ特性や反応性を向上させることができる。 なお、 コロナ 放電処理を有効に行うため、 通常は、 上記電極 1 , 2のいずれか一方の電極 (第 3図では放電電極 1 ) の表面を、 塩化ビニルやテフロン等の絶縁物質から成る被 覆部材 4で被覆するようにしている。  A highly reactive active group is generated on the surface of the object 50 due to the collision of electrons due to the corona discharge and the action of ozone and ultraviolet rays generated secondarily. Surface wetting characteristics and reactivity can be improved. In order to effectively perform the corona discharge treatment, the surface of one of the electrodes 1 and 2 (discharge electrode 1 in FIG. 3) is usually covered with a coating made of an insulating material such as vinyl chloride or Teflon. It is covered with member 4.
上記コロナ放電処理は、 上記樹脂フィルムに限らず、 樹脂成型品などの非導電 性材料の表面、 樹脂フィルムラミネート品のフィルム面、 木材等の樹脂塗装面な どの表面処理に用いられているだけでなく、 現像装置の感光ドラムなどの金属の 表面処理にも用いられている。 なお、 被処理物が導電性材料である場合には、 一 般に、 被処理物自身を対向電極とする場合が多い。  The corona discharge treatment is not limited to the above resin film, but is used only for surface treatment of non-conductive materials such as resin molded products, film surfaces of resin film laminate products, and resin painted surfaces of wood and the like. It is also used for surface treatment of metal such as photosensitive drums in developing devices. When the object to be processed is a conductive material, generally, the object to be processed is often used as a counter electrode.
しかしながら、 コロナ放電処理は、 上述したように、 被処理物 5 0を互いに対 向する放電電極 1と対向電極 2との間に設置して行うために、 被処理物 5 0が上 記樹脂フィルムのように厚みの極めて薄い材料である場合には有効であるが、 厚 みのある材料の場合には、 電極間隔を広げる必要があるため、 高電圧を印可して も放電が発生しない場合があった。 However, in the corona discharge treatment, as described above, the workpieces 50 are paired with each other. It is effective when the object 50 is an extremely thin material such as the resin film described above, since it is installed between the opposite discharge electrode 1 and the opposite electrode 2. In the case of a material that has a problem, it is necessary to increase the distance between the electrodes, so that even when a high voltage is applied, no discharge may occur.
したがつて、 例えば、 ポリフッ化ビニルフィルムラミネート木材やフヅ素系樹 脂塗装木材などのような、 非導電性でかつ厚みのある材料のフィルム面あるいは 樹脂塗装面をコ口ナ放電処理することが困難であつた。 本発明は、 従来の問題点に鑑みてなされたもので、 非導電性でかつ厚みのある 大型の材料であっても効率よく表面処理を行う方法と、 上記表面処理に適したコ' ロナ放電処理装置を提供することを目的とする。 · 発明の開示  Therefore, for example, a film surface or resin-coated surface of a non-conductive and thick material such as a polyvinyl fluoride film laminated wood or a fluorinated resin-coated wood should be subjected to corner discharge treatment. Was difficult. The present invention has been made in view of the conventional problems, and provides a method for efficiently performing surface treatment even on a large non-conductive and thick material, and a corona discharge suitable for the surface treatment. It is an object to provide a processing device. · Disclosure of the invention
請求の範囲 1に記載の表面処理方法は、 互いに近接して配置された第 1及び第 2の電極の、 いずれか 方を絶縁物質で被覆するとともに、 上記第 1及び第 2の 電極を、 ともに、 被処理物の処理面側に近接して設置し、 上記両電極間に高電圧 の高周波電圧を印可して発生させたコロナ放電を、 上記被処理物の処理面に接触 させて上記処理面を改質するようにしたことを特徴とするもので、 上記第 1及び 第 2の電極とを被処理物の処理面側に設置することにより、 非導電性でかつ厚み のある大型の材料であっても効率よく表面処理を行うことが可能となる。  The surface treatment method according to claim 1, wherein one of the first and second electrodes arranged close to each other is covered with an insulating material, and both the first and second electrodes are A corona discharge generated by applying a high-frequency high voltage between the two electrodes is brought into contact with the processing surface of the object to be processed, and is disposed close to the processing surface of the object to be processed. By installing the first and second electrodes on the processing surface side of the object to be processed, a large non-conductive and thick material can be used. Even if there is, surface treatment can be performed efficiently.
請求の範囲 2に記載の表面処理方法は、 上記第 1及び第 2の電極を、 被処理物 の処理面上を連動して移動させて、 上記被処理物の処理面をコロナ放電処理する ようにしたことを特徴とするもので、 これにより上記被処理物を移動させること なく、 上記処理面を容易に表面処理することが可能となる。  The surface treatment method according to claim 2, wherein the first and second electrodes are moved in association with each other on the processing surface of the object to be processed, and corona discharge processing is performed on the processing surface of the object. This makes it possible to easily perform the surface treatment on the treated surface without moving the object to be treated.
請求の範囲 3に記載の表面処理方法は、 上記第 1の電極と第 2の電極との電極 間距離を、 5 mm以下に設定したことを特徴とする。  A surface treatment method according to claim 3 is characterized in that a distance between the first electrode and the second electrode is set to 5 mm or less.
また、 請求の範囲 4に記載の表面処理方法は、 上記上記第 1の電極と第 2の電 極間に、 周波数が 1 5 k H z以上 5 0 k H z以下である、 5 kV以上 2 5 kV以 下の高周波電圧を印可したことを特徴とする。 請求の範囲 5に記載の表面処理方法は、 上記被処理物の処理面を、 樹脂あるい は樹 S旨塗装面としたことを特徴とする。 The surface treatment method according to claim 4, wherein the frequency is between 15 kHz and 50 kHz between the first electrode and the second electrode; A high-frequency voltage of 5 kV or less is applied. A surface treatment method according to claim 5 is characterized in that the treated surface of the object to be treated is a resin or a painted surface.
また、 請求の範囲 6に記載の表面処理方法は、 上記処理面を、 フッ素樹脂を含 む面としたものである。  In the surface treatment method according to claim 6, the treated surface is a surface containing a fluororesin.
請求の範囲 Ίに記載のコロナ放電処理装置は、 ロール状の絶縁物質で被覆され 、 被処理物の処理面に近接して設置された第 1の電極と、 被処理物の上記処理面 と上記第 1の電極と所定の間隔を保持して設置された第 2の電極と、 上記第 1及 び第 2の電極との間に高電圧の高周波電圧を印可して上記両電極間にコロナ放電 を発生させる高電圧発生装置とを備え、 上記被処理物の処理面に上記コロナ放電 を接触させながら、 上記第 1の電極を絶縁物質で被覆したロールを上記被処理物 の処理面上を移動させて上記処理面を順次改質するように構成したものである。 図面の簡単な説明  The corona discharge treatment device according to claim 1, wherein the first electrode is coated with a roll-shaped insulating material, and is disposed in close proximity to a treatment surface of the treatment object. A high-frequency high-frequency voltage is applied between the second electrode provided at a predetermined distance from the first electrode and the first and second electrodes, and a corona discharge is applied between the two electrodes. A high-voltage generator for generating an electric field, and moving a roll having the first electrode coated with an insulating material on the processing surface of the processing object while bringing the corona discharge into contact with the processing surface of the processing object. Thus, the processing surface is sequentially modified. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の最良の形態に係わるコロナ放電処理装置の構成を示す図で ある。  FIG. 1 is a diagram showing a configuration of a corona discharge treatment apparatus according to the best mode of the present invention.
第 2図は、 本発明の最良の形態に係わるコロナ放電処理装置における電極構成 の一例を示す図である。  FIG. 2 is a diagram showing an example of an electrode configuration in a corona discharge treatment device according to the best mode of the present invention.
第 3図は、 従来のコロナ放電処理装置の構成を示す図である。 発明を実施するための最良の形態  FIG. 3 is a diagram showing a configuration of a conventional corona discharge treatment device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の最良の形態について、 図面に基づき説明する。  Hereinafter, the best mode of the present invention will be described with reference to the drawings.
第 1図は、 本実施の形態に係わるコロナ放電処理装置の構成を示す模式図で、 1 0は被処理物 5 0の処理面 5 0 Sに近接して設置された第 1の電極、 2 0は上 記第 1の電極 1 0に近接して設置された第 2の電極で、 この第 2の電極は上記第 1の電極 1 0と上記被処理物 5 0に対して同じ側、 すなわち、 上記被処理物 5 0 の処理面 5 0 S側に設置される。 3 0は高周波発振器 3 1と高圧トランス 3 2と を備え、 上記第 1の電極 1 0と第 2の電極 2 0との間に高電圧の高周波電圧を印 可して上記電極 1 0, 2◦間にコロナ放電を発生させるための高電圧発生装置、 4 0は絶縁物質から成り、 上記第 2の電極 2 0の表面を被覆するロール状の被覆 部材である。 FIG. 1 is a schematic diagram showing a configuration of a corona discharge treatment apparatus according to the present embodiment, where 10 is a first electrode provided in close proximity to a treatment surface 50 S of a workpiece 50, 2 Reference numeral 0 denotes a second electrode provided in the vicinity of the first electrode 10 described above, and the second electrode is on the same side as the first electrode 10 and the object 50, that is, It is installed on the processing surface 50 S side of the object 50. Reference numeral 30 denotes a high-frequency oscillator 31 and a high-voltage transformer 32. A high-frequency high-frequency voltage is applied between the first electrode 10 and the second electrode 20, and the electrodes 10 and 2 are applied. ◦A high voltage generator for generating a corona discharge between them, 40 is made of an insulating material, and is a roll-shaped coating for coating the surface of the second electrode 20 It is a member.
上記第 1の電極 10は、 例えば、 第 2図に示すように、 上記被処理物 50の処 理面 5 OSと対向する部分 10Tを含む部分が、 シリコンチューブから成るロー ル状の被覆部材 40で被覆された直径 3 mmのステンレス製棒から構成される。 このとき、 上記被覆部材 40が処理面上で回転できるようにするため、 上記ステ ンレス製棒と被覆部材 40との間に若干の隙間を設けた。 また、 第 2の電極 20 を、 厚さ 0. 5mm、 幅 10mm、 長さ 80 mmのステンレス製の平板から構成 して、 上記第 1の電極 10の対向部 10Tと上記第 2の電極 20の長さ方向の側 面 20Tとが、 所定の距離を隔てて、 互いに平行になるように、 上記第 1の電極 10と上記第 2の電極 20とを配置する。.  For example, as shown in FIG. 2, the first electrode 10 includes a roll-shaped covering member 40 made of a silicon tube in which a portion including a portion 10T facing the processing surface 5OS of the processing object 50 is formed of a silicon tube. Consists of a 3 mm diameter stainless steel rod covered with. At this time, a slight gap was provided between the stainless steel rod and the covering member 40 so that the covering member 40 could rotate on the processing surface. The second electrode 20 is made of a stainless steel flat plate having a thickness of 0.5 mm, a width of 10 mm, and a length of 80 mm, and the opposed portion 10T of the first electrode 10 and the second electrode 20 are formed. The first electrode 10 and the second electrode 20 are arranged such that the side surface 20T in the length direction is parallel to each other at a predetermined distance. .
次に、 上記構成の装置によるコロナ放電処理について説明する。  Next, the corona discharge treatment performed by the apparatus having the above-described configuration will be described.
本最良の形態では、 コロナ放電処理する被処理物 50を、 非導電性でかつ厚み のある大型の材料であるフヅ素系樹脂塗装木材とした。  In the present best mode, the object 50 to be subjected to corona discharge treatment is made of a non-conductive, thick, large-sized material such as a fluororesin-coated wood.
まず、 上記被処理物 50の処理面 50 Sであるフッ素系樹脂塗装面に、 上記被 覆部材 40で被覆された第 1の電極 10を配置するとともに、 第 2の電極 20を 、 上記処理面 50 S側で上記第 1の電極 10の近傍に配置する。 このとき、 上記 第 1及び第 2の電極 10, 20の電極間隔を d = 1 mn!〜 5 mmに設定する。 次に、 高電圧発生装置 30により、 上記電極 10, 20間に、 周波数が f = 2 0kHz〜40kHz、 電圧が V= 5 k V~ 20 k V、 出力が P=10W〜10 00Wの高周波電圧を印可し、 上記第 1及び第 2の電極 10, 20間 (実際には 、 被覆部材 40の第 2の電極 20と対向する側面 40 Tと第 2の電極 20の側面 20T間) にコロナ放電を発生させる。 このコロナ放電の放電領域は、 第 1図に 示すように、 上記第 1及び第 2の電極 10, 20の直下に位置された処理面 (フ ッ素系樹脂塗装面) 5 OSに接触するので、 上記フッ素系樹脂塗装面はコロナ放 電により改質され活性ィ匕される。  First, the first electrode 10 covered with the covering member 40 is disposed on the fluororesin-coated surface, which is the treated surface 50S of the workpiece 50, and the second electrode 20 is placed on the treated surface. It is placed near the first electrode 10 on the 50S side. At this time, the distance between the first and second electrodes 10 and 20 is set to d = 1 mn! Set to ~ 5 mm. Next, the high-voltage generator 30 applies a high-frequency voltage between the electrodes 10 and 20 at a frequency f = 20 kHz to 40 kHz, a voltage V = 5 kV to 20 kV, and an output P = 10 W to 1000 W. And a corona discharge is applied between the first and second electrodes 10 and 20 (actually, between the side surface 40T of the covering member 40 facing the second electrode 20 and the side surface 20T of the second electrode 20). Generate. As shown in FIG. 1, the discharge area of this corona discharge comes into contact with the processing surface (fluorine-based resin-coated surface) 5 OS located immediately below the first and second electrodes 10 and 20. The fluororesin-coated surface is modified by corona discharge and activated.
本例では、 上記第 1の電極 10と第 2の電極 20とを 1つの筐体内に配設する などして一体化するとともに、 上記ロール状の被覆部材 40を上記被処理物 50 の処理面 5 OS上で回転させることにより、 上記第 1及び第 2の電極 10, 20 を移動させて、 上記被処理物 50の処理面 50 S全体にコロナ放電処理を施すよ うにしている。 In this example, the first electrode 10 and the second electrode 20 are integrated by, for example, disposing them in one housing, and the roll-shaped covering member 40 is attached to the processing surface of the workpiece 50. 5 By rotating on the OS, the first and second electrodes 10 and 20 are moved to perform a corona discharge treatment on the entire processing surface 50S of the workpiece 50. I'm trying.
なお、 第 1の電極 1 0と第 2の電極 2 0の形状や材質は上記例に限るものでは なく、 被処理物 5 0の処理面 5 0 Sの形状や材質等により適宜決定されるもので める。  The shapes and materials of the first electrode 10 and the second electrode 20 are not limited to the above examples, and may be appropriately determined by the shape and material of the processing surface 50S of the workpiece 50. I can do it.
また、 上記最良の形態では、 被覆部材 4 0をシリコンゴムで構成したが、 天然 ゴムあるいはセラミックを用いてもよい。  In the above-described best mode, the covering member 40 is made of silicon rubber. However, natural rubber or ceramic may be used.
また、 電極間隔等のコロナ放電処理の条件も、 被処理物 5 0の処理面 ·5 0 Sの 形状や材質あるいは処理仕様等により適宜決定されるものであるが、 第 1の電極 1 0と第 2の電極 2 0との電極間隔 dは 5 mm以下に設定することが望ましく、 印可する電圧 Vは 5 kV以上 2 5 kV以下、 周波数: Πま 2 0 k H z〜4ひ k H z とすることが望ましい。 ·  Also, the conditions of the corona discharge treatment such as the electrode spacing are appropriately determined by the shape and material of the treated surface 50 S of the object 50 to be treated and the processing specifications. The electrode distance d with the second electrode 20 is desirably set to 5 mm or less, the applied voltage V is 5 kV or more and 25 kV or less, and the frequency is 20 kHz to 4 kHz. It is desirable that ·
また、 上記例では、 被処理物 5 0をフッ素系樹脂塗装木材としたが、 これに限 るものではなく、 本発明のコロナ放電処理装置は、 ポリフッ化ビニルフィルムや エチレン一 4フヅ化工チレン共重合体フイルムなどの樹脂フイルムや、 ポリフッ 化ビニルフィルムラミネ一ト紙ゃェチレン一 4フッ化エチレン共重合体フィルム ラミネート紙あるいはポリフヅ化ビニルフィルムラミネ一ト木材などのラミネ ト部材、 ポリエチレンシートやプロピレンシートのようなシート材、 更には、 フ ッ素系樹脂塗装コンクリート押出し成型板ゃフヅ素系樹脂塗装窯業系サイディン グボ一ドなどの塗装された建築材などの表面処理にも適用可能である。  Further, in the above example, the object 50 to be treated is made of a fluorine-based resin-coated wood. However, the present invention is not limited to this, and the corona discharge treatment apparatus of the present invention may be a polyvinyl fluoride film or ethylene-tetrafluoroethylene. Resin film such as copolymer film, polyvinyl fluoride film laminated paper, polyethylene tetrafluoroethylene copolymer film laminated paper or laminated material such as polyvinyl fluoride film laminated wood, polyethylene sheet and propylene It can be applied to the surface treatment of sheet materials such as sheets, as well as painted building materials such as fluorinated resin-coated concrete extruded plates and fluorinated resin-painted ceramic siding boards. .
<実験例 1 > <Experimental example 1>
ポリフヅィ匕ビニルフ'ィルムラミネ一ト紙を貼り付けた厚さ 1 0 mmの木製板を 、 電極間隔を l mmとして、 電極間電圧及ぴ周波数を様々に変ィ匕させ、 電極を 1 メートル/分の速さで上記ラミネート紙上を移動させてコロナ放電処理を行った 後、 処理面に東レダウコ一ニング社製の 1液型シリコーンシーリング材 ( S H 7 8 0 ) を、 幅 1 0 mm、 厚さ 5 mmで打設して、 室温にて 2週間養生させた後、 9 0度引張試験を行って接着性の評価を行った結果を以下の表 1に示す。  A 10 mm thick wooden plate on which polyvinylidene vinyl paper is stuck, the electrode spacing is lmm, the voltage between electrodes and the frequency are varied in various ways, and the electrodes are 1 meter / min. After performing corona discharge treatment by moving on the laminated paper at a high speed, a 1-part silicone sealing material (SH780) manufactured by Toray Dow Corning Co., Ltd. was applied to the treated surface with a width of 10 mm and a thickness of 5 mm. Table 1 shows the results of 90-degree tensile test and evaluation of the adhesiveness.
また、 比較例 1として、 コロナ放電処理を行わなかった試料についての結果を 合わせて示した。  Also, as Comparative Example 1, the results for a sample without corona discharge treatment are also shown.
[表 1 ] ah油 j ^能 [table 1 ] ah oil j ^ ability
mL m)± 接着 比較例 1 処理) フィルム一シリコーンシ一ラント界面破壞 不良 mL m) ± Adhesion Comparative Example 1 Treatment) Film-silicone sealant interface fracture failure
£t戰例 ά 3 kV 40 rl Z フィ レム一シりコ一ンシ一ラン Y^ Ws £ t Battle ά 3 kV 40 rl Z File Run Y Y Ws
不良 本発明 1 7kV 4 OkHz シリコーンシ一ラント材料破壞 良好 本発明 2 7kV 40kHz シリコーンシーラント材料破壤 良好 本発明 3 2 OkV 4 OkHz シリコーンシ一ラント材料破壞 良好 本発明 4 7kV 20kHz シリコーンシ一ラント材料敏 ¾ 良好 表 1から明らかなように、 上記比較例 1ではシリコーンシ一ラントが、 ポリフ ヅ化ビニルフィルムラミネート紙との界面から剥離してしまうのに対して、 本発 明 1〜4の試料では、 シリコ一ンシ一ラント材が破壊されることから、 シリコ一 ンシ一ラントとポリフッ化ビニルフイルムラミネ一ト紙との接着が強固であるこ とが確認された。  Poor Invention 1 7kV 4 OkHz Silicone sealant material destruction good Invention 2 7kV 40kHz Silicone sealant material destruction good Invention 3 2 OkV 4 OkHz Silicone sealant material destruction Good Invention 4 7kV 20kHz Silicone sealant material良好 Good As is clear from Table 1, in Comparative Example 1 above, the silicone sealant was peeled off from the interface with the polyvinyl fluoride film laminated paper, whereas in the samples of the present invention 1 to 4, However, since the silicone material was destroyed, it was confirmed that the adhesive between the silicone material and the polyvinyl fluoride film was strong.
なお、 比較例 2に示した、 放電電圧が 5 kV未満の低い電圧である場合には、 コロナ放電処理が十分に行われないため、 接着性が改善されていなかった。 . く実験例 2 >  When the discharge voltage was as low as less than 5 kV as shown in Comparative Example 2, the adhesiveness was not improved because the corona discharge treatment was not sufficiently performed. Experimental example 2>
次に、 電極間電圧を 14kV、 周波数を 4 OkHzに固定し、 電極間隔を様々 に変化させて、 上記実験例 1と同様のコロナ放電処理を行った結果を以下の表 2 に示す。  Next, Table 2 below shows the results of corona discharge treatment performed in the same manner as in Experimental Example 1 above, with the electrode voltage fixed at 14 kV and the frequency fixed at 4 OkHz, and with the electrode spacing varied.
[表 2]  [Table 2]
Figure imgf000008_0001
Figure imgf000008_0001
表 2から明らかなように、 本発明 5, 6, 7のように、 電極間隔が 5mm以下 の条件下にてコロナ放電処理されたラミネ一ト紙は、 シリコ一ンシ一ラント材が 破壊されることから、 接着性が良好であることが確認された。 一方、 比較例 3に 示した、 電極間隔が 5 mmを越えた条件下で処理したラミネート紙は、 コロナ放 電処理が十分に行われないため、 接着性が改善されなかった。 産業上の利用可能性 As is clear from Table 2, as in the present inventions 5, 6, and 7, the laminating paper subjected to the corona discharge treatment under the condition that the electrode interval is 5 mm or less, the silicone material is broken. From this, it was confirmed that the adhesiveness was good. On the other hand, in Comparative Example 3 As shown, the laminated paper treated under the condition that the electrode interval exceeded 5 mm did not improve the adhesiveness because the corona discharge treatment was not performed sufficiently. Industrial applicability
以上説明したように、 本発明によれば、 互いに近接して配置された第 1及び第 2の電極の、 いずれか一方を絶縁物質で被覆するとともに、 上記第 1及び第 2の 電極を、 ともに、 被処理物の処理面側に近接して設置し、 上記両電極間に高電圧 の高周波電圧を印可して発生させたコロナ放電を、 上記被処理物の処理面に接触 させて上記処理面を改質するようにしたので、 従来コロナ放電処理が困難であつ た、 非導電性でかつ厚みのある大型の材料であっても効率よくコロナ放電処理を 行うことができる。  As described above, according to the present invention, one of the first and second electrodes arranged close to each other is covered with an insulating material, and both the first and second electrodes are A corona discharge generated by applying a high-frequency high voltage between the two electrodes is brought into contact with the processing surface of the object to be processed, and is disposed close to the processing surface of the object to be processed. Since corona discharge treatment is conventionally performed, corona discharge treatment can be efficiently performed even with a large, non-conductive and thick material, which has conventionally been difficult to perform corona discharge treatment.
また、 上記絶縁物質をロール状に形成し、 上記口一ルを上記被処理物の処理面 上を移動させて上記処理面を順次改質するようにしたので、 被処理物の処理面を 効率よくコロナ放電処理することができる。  In addition, the insulating material is formed in a roll shape, and the port is moved on the processing surface of the object to be processed so that the processing surface is sequentially reformed, so that the processing surface of the object is efficiently processed. Corona discharge treatment can be performed well.

Claims

請 求 の 範 囲 The scope of the claims
互いに近接して配置された第 1及び第 2の電極の、 いずれか一方を絶縁物 質で被覆するとともに、 上記第 1及び第 2の電極を、 ともに、 被処理物の 処理面側に近接して設置し、 上記両電極間に高電圧の高周波電圧を印可し て発生させたコロナ放電を、 上記被処理物の処理面に接触させて上記処理 面を改質するようにしたことを特徴とする表面処理方法。 One of the first and second electrodes arranged close to each other is covered with an insulating material, and both the first and second electrodes are close to the processing surface side of the object to be processed. The corona discharge generated by applying a high-frequency high voltage between the two electrodes is brought into contact with the treated surface of the workpiece to modify the treated surface. Surface treatment method.
上記第 1及び第 2の電極を、 被処理物の処理面上を連動して移動させて、 上記被処理物の表面をコロナ放電処理するようにしたことを特徴とする請 求の範囲 1に記載の表面処理方法。 The claim 1 is characterized in that the first and second electrodes are moved in conjunction with each other on the processing surface of the object to be processed, so that the surface of the object is subjected to corona discharge treatment. The surface treatment method described.
上記第 1の電極と第 2の電極との電極間距離を、 5 mm以下に設定したこ とを特徴とする請求の範囲 1または請求の範囲 2に記載の表面処理方法。 上記上記第 1の電極と第 2の電極間に、 周波数が 1 5 k H z以上 5 0 k H z以下である、 5 kV以上 2 5 kV以下の高周波電圧を印可したことを特 徴とする請求の範囲 1〜請求の範囲 3のいずれかに記載の表面処理方法。 上記被処理物の処理面を、 樹脂あるいは樹脂塗装面としたことを特徴とす る請求の範囲 1〜請求の範囲 4のいずれかに記載の表面処理方法。 3. The surface treatment method according to claim 1, wherein an inter-electrode distance between the first electrode and the second electrode is set to 5 mm or less. A high frequency voltage of 5 kV or more and 25 kV or less having a frequency of 15 kHz or more and 50 kHz or less is applied between the first electrode and the second electrode. The surface treatment method according to any one of claims 1 to 3. The surface treatment method according to any one of claims 1 to 4, wherein the treated surface of the object is a resin or a resin-coated surface.
上記処理面はフッ素樹脂を含むことを特徴とする請求の範囲 5に記載の表 面処理方法。 6. The surface treatment method according to claim 5, wherein the treated surface contains a fluororesin.
ロール状の絶縁物質で被覆され、 被処理物の処理面に近接して設置された た第 1の電極と、 被処理物の上記処理面と上記第 1の電極と所定の間隔を 保持して設置され第 2の電極と、 上記第 1及び第 2の電極との間に高電圧 の高周波電圧を印可して上記両電極間にコロナ放電を発生させる高電圧発 生装置とを備えたことを特徴とするコロナ放電処理装置。 A first electrode that is covered with a roll-shaped insulating material and that is disposed close to the processing surface of the processing object, and that a predetermined distance is maintained between the processing surface of the processing object and the first electrode. And a high-voltage generator for applying a high-frequency high voltage between the first and second electrodes and generating a corona discharge between the two electrodes. Characteristic corona discharge treatment device.
PCT/JP2002/000576 2001-01-30 2002-01-25 Surface treatment method and corona discharge treatment device WO2002060982A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001022462A JP2002226614A (en) 2001-01-30 2001-01-30 Surface finishing method and device of corona discharge treatment
JP2001-22462 2001-01-30

Publications (1)

Publication Number Publication Date
WO2002060982A1 true WO2002060982A1 (en) 2002-08-08

Family

ID=18887875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000576 WO2002060982A1 (en) 2001-01-30 2002-01-25 Surface treatment method and corona discharge treatment device

Country Status (2)

Country Link
JP (1) JP2002226614A (en)
WO (1) WO2002060982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088980A1 (en) 2005-02-17 2006-08-24 The Procter & Gamble Company Fabric care composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7393050B2 (en) * 2020-04-06 2023-12-06 アートビーム株式会社 discharge electrode plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163743A (en) * 1986-01-11 1987-07-20 Nippon Paint Co Ltd Surface treatment
JPH0231835A (en) * 1988-07-19 1990-02-01 Nippon Paint Co Ltd Corona discharge treatment device
US5038036A (en) * 1989-12-19 1991-08-06 Nippon Paint Co., Ltd. Corona discharge processing apparatus
JPH0559198A (en) * 1991-02-02 1993-03-09 Softal Elektron Gmbh Indirect corona treatment device for conductive and nonconductive materials with various shapes and thicknesses
JPH08155292A (en) * 1994-12-01 1996-06-18 Shimada Phys & Chem Ind Co Ltd Electrode for discharge treatment and discharge treatment apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163743A (en) * 1986-01-11 1987-07-20 Nippon Paint Co Ltd Surface treatment
JPH0231835A (en) * 1988-07-19 1990-02-01 Nippon Paint Co Ltd Corona discharge treatment device
US5038036A (en) * 1989-12-19 1991-08-06 Nippon Paint Co., Ltd. Corona discharge processing apparatus
JPH0559198A (en) * 1991-02-02 1993-03-09 Softal Elektron Gmbh Indirect corona treatment device for conductive and nonconductive materials with various shapes and thicknesses
JPH08155292A (en) * 1994-12-01 1996-06-18 Shimada Phys & Chem Ind Co Ltd Electrode for discharge treatment and discharge treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088980A1 (en) 2005-02-17 2006-08-24 The Procter & Gamble Company Fabric care composition

Also Published As

Publication number Publication date
JP2002226614A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
Meiners et al. Surface modification of polymer materials by transient gas discharges at atmospheric pressure
JPS5986634A (en) Method for modifying surface of plastic molding
JP5616657B2 (en) Surface treatment method
TW200516690A (en) Electrode sheet for electrostatic chucking device, electrostatic chucking device and method of adsorption
EP0219149B1 (en) System for determining the pressure in the nip between two rollers
WO2002060982A1 (en) Surface treatment method and corona discharge treatment device
WO2005084393A3 (en) Glass-modified stress waves for separation of ultra thin films and nanoelectronics device fabrication
JPS58215429A (en) Electrical pretreating device for non-conductive foil
JP2019512033A (en) Peeling force increase by selective plasma pretreatment
JP2002219395A (en) Corona discharge treatment apparatus
JP2004207145A (en) Discharge plasma processing device
JP3511439B2 (en) Method for treating surface of non-conductive porous body surface
JP2006196255A (en) Discharge treatment device of sheet, discharge treatment method thereof and porous polyester film
JP3558320B2 (en) Pattern forming method and pattern forming apparatus
WO2005009076A1 (en) Material for heat-resistant electret and heat-resistant electret
JP3526681B2 (en) Film surface treatment method and surface treatment device
JP2003323964A (en) Apparatus for generating ion
JP3852009B2 (en) RESIN MOLDED BODY, LAMINATE, AND METHOD FOR PRODUCING THEM
JP4232309B2 (en) Sealing material construction method
CN101712851A (en) Method for processing coiled BOPP film adhesive tape
JPH09202496A (en) Method and device for treating charging of polymer film and winding method, and polymer film provided after the treatment and winding
JPS61210686A (en) Piezoelectric element
JP3592872B2 (en) Total surface treatment method and total surface treatment device
JP3159151B2 (en) Sealing material construction method and electric discharge treatment device
JP4117338B1 (en) Vacuum bonding apparatus and vacuum bonding method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase