WO2002004853A1 - Infinite power generating device - Google Patents
Infinite power generating device Download PDFInfo
- Publication number
- WO2002004853A1 WO2002004853A1 PCT/JP2001/003604 JP0103604W WO0204853A1 WO 2002004853 A1 WO2002004853 A1 WO 2002004853A1 JP 0103604 W JP0103604 W JP 0103604W WO 0204853 A1 WO0204853 A1 WO 0204853A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- rotation
- center
- rotating
- amplifying
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/10—Alleged perpetua mobilia
Definitions
- the present invention constructs a rotating body mainly composed of gears, combining large and small rotating gears, by applying the dynamics of the principle of the balance and the principle of the pulley between two large and small fixed gears of concentric circles.
- the possibility of becoming a permanent engine based on the principle of perpetual motion was realized by drawing out the amplification function inherently possessed by the circle due to the difference between the circular motion that leads to Structural rotating body "Permanent engine” rotates by itself [permanent motion] to produce and provide infinite kinetic energy.
- It is a permanent engine based on the principle of eternal movement, taking a completely new perspective that is not bound by existing knowledge and technical ideas, uses fossil fuels, consumes any heat source materials, and uses any energy. Not a permanent institution. They deny eternal movement, are not familiar with the first law of thermodynamics, the second law, and are not familiar with [the law of nature]. Background art
- the present invention relates to a basic, amplifying permanent engine structure in which a rotating gear group that connects and links two large and small fixed gears of concentric circles constructs a rotating body [permanent engine] and produces and provides infinite kinetic energy. And reveal the principle of eternal movement.
- Circular motion has the basic structural function of rotating in the direction in which thrust works, and infinitely continuing rotational motion as long as the thrust continues.
- the basic structure of the amplifying structure and the permanent engine was obtained with the constant length of the circumference and the constant length of the circumference of the lamination, which differ in radius from the center of the circle to the outer circumference.
- the two large and small fixed gears are concentric circles, and the large fixed gears [plural] are inter-gears and are inscribed and fixed to the body frame [frame].
- the small fixed gears that are fixed to both side walls that are integrally fixed to the frame are out gears, and are fixed gears that operate according to the instruction of the operation rod that is integrally fixed.
- the large rotating gear [designated as input gear] is inscribed in the large fixed gear [designated as gear] and rotates in mesh with it. I do.
- the small rotating gear [drive gear] fixed to both ends of the common axle is fixed to both side walls, connected to the center gear, and meshes and rotates.
- the input gear and amplifying gear which have the same rotational momentum (40) are connected and rotated, the input gear that rotates freely on the common axle and rotates inscribedly on the inter-gear is pushed in the leftward traveling direction of the common axle. Then, go to the left while turning right.
- the amplifying gear has a reduction gear structure in which a common axle to be connected and fixed and a drive gear are engaged with a center gear and travel leftward and left.
- the input gear and the amplifying gear rotate and interlock, rotate in opposite directions, and simultaneously advance in the same direction to form a rotating gear group.
- the amplifying gear and drive gear are connected to form a [4: 1] reduction gear, and the center gear is connected and rotated. Therefore, the inter gear and the amplifying gear cannot be connected and rotated, so the inter The inner diameter of the gear is enlarged to make it idle. If the momentum (40) of the input gear is rotationally linked to the amplifying gear, the propulsive force of the common axle increases by four times and the input gear is propelled, so the rotational force of the input gear increases and the amplifying gear In addition to the rotation interlock, the propulsion of the common axle is added, it acts on the input gear, increases the torque, repeats the amplification process, becomes an amplification cycle and amplifies, and becomes a permanent engine basic structure.
- the amplifying structure, the main gear of the permanent engine, the input gear, and the functional structure that connects and interlocks the amplifying gear are the most important parts of the permanent engine, and the various connection structures disclosed here are the size of the rotating gear.
- the common axles, 8 ⁇ , 8 ⁇ are equidistant from the center of the fixed gear 1 K, Draw the same trajectory and proceed.
- the rotation amount of the gear 11 is a reduction gear structure of 4Q.
- the partition wall rotation structure requires free and stable rotation function retention independent of the frame.
- the operating rod which is fixed to both side walls, is fixed to the center gear, is integrated in the frame. It works in a sealed frame, extracts and provides the kinetic energy produced by the infinitely powered rotating body, [permanent engine], Together with the power transmission shaft, it is the only operation instruction function structure that cooperates with the outside of the frame and serves as an input function.
- the operation rods of both center gears which are fixed together, are required to work equally at all times. Therefore, the tip of operation 2 is fixedly connected by an arm, and the center of the arm is used to operate the operation instruction mechanism.
- the control rod moves left and right,
- the rotation of the center gear is a small rotation, and the rotation width is 10 to 15 degrees.
- the rotation of the rotating body becomes the rotation instruction function.
- the center gear does not operate unless the rotation of the operation rod is instructed. It becomes a fixed structure.
- the center gear rotates slightly to the left and right according to the rotation instruction of the operating rod, and the rotational pressure is applied to the drive gear that is connected and connected, and the input function is performed.
- the rotational pressure of the drive gear acts on the amplification cycle and becomes the starting force, so the infinitely powered rotating body [permanent engine] starts.
- the center gear with the shaft fixed to the center of the main partition at different positions, and fixed to both side walls by the connection rotation structure, such as the center partition wall or the partition walls located at both ends. Through the center, it protrudes out of the frame, and the rotating gears are fixed together to create a power transmission shaft that extracts and provides kinetic energy produced by infinite power [permanent engine].
- the input gear is inscribed and interlocked with the inter-gear, interlocks with the inter-gear, freely rotates on the common axle, and is pushed forward for rotation.
- the amplification gear is connected and fixed to the drive gear and the common axle to form —Proceed to connect to the gear and rotate.
- the gear part of the amplification gear is cut and the structure is designed to run idle to the inter-gear.
- Amplification structure is achieved by connecting and rotating to the center gear to form a deceleration structure.
- the condition is that the gear and the input gear rotate and interlock.
- common axle 8 A, 8 B, Attaching a shaft holding ring to both, penetrating the cap gear, freely rotating shaft, connecting and fixing the holding ring, input gear and amplifying gear, slope If it is connected to a gear and connected with a cog-shaped gear and rotated, the common axle can be used together.
- the input gear and the amplifying gear in opposite rotation directions can be connected in the same direction between the inter gear and the center gear.
- a gear group [A group] that rotates simultaneously.
- a [B group] having exactly the same structure is formed around the common axle 8B, and a pair is formed, which is a permanent plan of the amplification structure.
- the cog-shaped gear uses the gear shaft as the rotation axis, and the input gear and the amplifying gear, which are in opposite directions of rotation, engage with each other and connect and rotate.
- the rotational force of the input gear is applied to the amplifying gear of the reduction structure. Since the connection and rotation are linked, the traveling force of the common axle increases according to the [pulley principle], and the amplified propulsive force increases the torque of the input gear and rotates with the amplified gear.
- the power becomes the amplification cycle function that increases more and more, and becomes the infinite power [permanent engine] that amplifies.
- FIG. 11 Schematic diagram of force distribution structure, C, A, B,
- FIG. 1 2 Schematic diagram of force distribution structure, E, B, D,
- the intergear 1 is fixed to the frame 30, and the input gear is inscribed, rotates and interlocks, freely rotates on the common axle 8B, and is pushed forward to rotate.
- the amplifying gear is a common axle 8B, which is connected and fixed to the drive gear, connected to the center gear 3 and linked to rotation.
- the penetrating shaft 66 is secured by a retaining ring 68 through which the common axle, 8A, 8B, penetrates.
- the bevel gear which rotates freely on the shaft 66, is constructed as a pair of gear groups [A, B, D-loop] that rotate and link the input gear and amplification gear, which rotate in different directions, and link and rotate. A rotating body that becomes the amplification cycle.
- the operation rod 62 which is integrally fixed to the center gear 3, is connected to the cylinder shaft 29 of the rotation operation instructing mechanism at the center of the distal end arm with the rotation shaft of the cylinder shaft 29, and interlocks the rotation instruction of the rotation operation instructing mechanism.
- the rotating shaft is integrally fixed to the center of both the partition walls located at both ends, which is the main force.
- the transmission gear, which protrudes out of the frame through the center of the center gear, is fixed integrally, and the infinite power [Permanent engine] is a power transmission structure that extracts and provides the kinetic energy it produces.
- the cooperative gear structure of the input gear and the amplification gear using the cog-shaped gear is a coaxial gear structure [3.2: 1 to 4.6: 1], realizing a radius ratio, reducing the number of gears, and simplifying the structure.
- This embodiment is effective.
- the radius ratio of the fixed large and small gears is [4.3: 13].
- (B) is a schematic diagram of the front of the bevel gear, connecting structure, which is fixed to the center gear, the rightward thrust W acts on the operating rod, the center gear 3 rotates left, and the common axle 8A propells left, Set the input gear 5 to rotate right and left.
- Fig. (A) is a bird's-eye view of D-D section of Fig. (B).
- (B) shows that when a rotational pressure W4.3 in the left direction is applied to the drive gear 6, the gear becomes a reduction gear.Amplifying gear 11, a rotational force W1 and a common axle 8A, a left traveling W3.
- W3.3 is also the reaction force P3.3
- the amplification gear 11 is also the clockwise reaction force P1.
- (C) is the inscribed rotation interlocking with the intergear 1.
- the input gear 5 is driven by W3.3 of the common axle 8A, and the right turning force W1.65 is applied to the cog gear 67 [connecting gear].
- FIG. 8 Exploded structure diagram of force distribution, C, A, B,
- the input gear 5 is rotatably mounted on the common axle, 8A, 8B.
- the amplifying gear 11 is connected to and fixed to the drive gear 6 and 8A and 8B, respectively, and is integrated.
- the amplifying gear 11 is integrally fixed to the frame 30 and is fixed to both side walls 31.
- the reduction gear structure of [4: 3: 1] is adopted, and the center gear 3 has a fixed structure that does not operate unless there is a rotation instruction.
- the intergear 1 is connected to the amplifying gear 11, and the part connected to the amplifying gear 11 has a larger radius and cannot be rotated. It has a C1 cut structure that cannot rotate.
- the radius ratio of the intergear 1 and the center gear 3 is [4 3: 1].
- This structure has the same basic structure as the permanent engine basic structure, and two shafts are fixed around the center of the center of the partition wall 19 among the plurality of partition walls. , Connecting and rotating, W connecting gear 61 is attached to both sides of partition wall 19, common axle 8A, common gear 14A and common axle 8B, common gear 15B are connected Rotate and link.
- common gear axle 8B, common gear 15B and the common axle 8A common gear 14A are connected and linked to rotate, so that the 8A input gear 5 and 8B amplification gear 11
- the input gear 5 of 8B and the amplifying gear 11 of 8A are rotated and linked, and the other input gear 5 and the amplifying gear 11 functioning on a common axle cooperate with each other.
- the other shaft gear connection rotation structure is obtained.
- FIG. 8 An exploded structural view of the power distribution will be described.
- (A) shows the conduction direction of W when the thrust W of the operating rod 62 operates on the center gear 3.
- (B) is a schematic diagram of the structure in which the amplification gear 11 has a drive gear 6 and a reduction gear structure of [4.3: 1], and is connected to the center gear 3 for rotation. The left side of the center gear 3 is shown. If the torque is set to W4.3, the drive gear 6 will be distributed to the common axle 8A thrust W3.3 and the amplifying gear 11 to the torque W1, but with the static force of the common axle 8A. The amplifying gear 11 rotates clockwise to generate a reaction force P1.
- the radius of the main structure gear, input gear and amplifying gear of the rotating structure will be enlarged, and the connection rotation will be difficult and the number of gears will increase.
- the radius ratio of the reduction gear can be set freely.
- the radius ratio of the center gear, the inter gear, the radius ratio of the drive gear and the amplification gear can be set to [1: 3]. 3-1: 8] can be selected and set.
- This structure is an output-first structure that first selects and determines the amplification structure gear ratio according to the purpose and scale of the output, and determines the radius of the drive gear, amplification gear, and input gear. .
- the input gear and the amplifying gear are separated from the common axle, 8A, 8B, respectively.
- the main gear of both amplifying cycle structures is directly connected and rotationally driven, and has another shaft gear rotating structure, eliminating the need for connecting gears and common gears, reducing the number of gears and reducing output. Produced an increasing effect.
- the center gear 3 is inscribed by an inter-gear and is circumscribed by an out-gear to the drive gear.
- the input gear 5 and the amplifying gear 11 are separated into common axles, 8A and 8B, and both are directly connected and rotated, so that there is no connected gear and common gear, and the rotation is interlocked. .
- (B) shows the connection rotation of the input gear 5 of 8A and the amplification gear 11 of 8B.
- (C) connects the center gear 3 indicating the connection rotation of the 8A amplification gear 11 and 8B input gear 5 with the internal gear, and the eccentric gear 16A is the external gear and drives 8 A Connect and rotate to gear 6.
- Both the eccentric gears 16A and 16B have a structure in which the internal gear is connected to the center gear 3 and connected, but does not rotate, and the drive gear 6 is meshed and connected to the external gear and rotated. proceed.
- the drive gear 6 is a distant and peripheral contact point of the eccentric satellite gear 16 and is always in constant contact. Connection rotation is required, and the match of rotation speed is an absolute condition.
- Inter gear 1 (60), input gear 5 (32), amplifying gear 11 (24) driving gear 6 (4.2), [amplifying gear 1 1 driving gear 6 radius ratio is (5: 1) center gear 3 ( 7.5), eccentric gear 16 (external teeth ⁇ ; 17.6, internal teeth 13.1), internal / external difference ⁇ 4.5 (wall thickness) eccentric difference ⁇ (5.6)
- An amplification cycle structure is formed in conjunction with rotation.
- the contact point between the eccentric gear 16 and the drive gear 6 becomes the far outer peripheral portion (23.2).
- the drive gear 16 (4.8) is added, the center of the center gear 3 and the drive gear 6 Distance (28).
- the eccentric gear 16 fills the enlarged distance interval, does not rotate by being connected to the center gear, serves as a fixed gear function, and is connected to the running and drive gear 6.
- the input gear 5 is connected to the drive gear 6 and the amplifying gear 11 to form a reduction gear, and the input gear 5 is connected and rotated.
- the eccentric gear 16 is connected to the center gear 3 and the internal gear is meshed with the center gear 3. In the outer peripheral part of the, the drive gear, the constant connection contact, and the same momentum [rotation amount] are maintained, forming an amplification cycle structure.
- the rotating structure has a reduction gear structure.
- the radius ratio of the amplifying gear 11 and the driving gear 6 can be freely selected up to the radius ratio [3.3; 1-8: 1]. Therefore, the output priority is given and the following calculation method is established.
- the radius ratio between the amplifying gear 11 and the driving gear 6 in the reduction gear structure is set according to the output, with the objective of adopting 5: 1 in this embodiment.
- the input gear 5 (60) is connected and interlocked with the intergear 1 (60), and the input gear 5 is interlocked with the input gear 5.
- the amplifying gear 11 (60) also has the same amount of rotation. Therefore, the amount of rotation [momentum] (12) of the drive gear 6, which is a radial ratio of the amplification gear 11 (60) and [5: 1], is obtained. 2) means greater.
- the eccentric satellite gear 16 has a functional structure for adjusting a portion that rotates and rotates.
- the eccentric gear 16 has a double structure, a ring structure without a rotating shaft, is held by a partition wall, rotates freely, and is connected to the center gear 3 to rotate.
- the inner surface of the eccentric gear 16 is an inter-gear [internal gear]
- the outer surface is an out-gear [spur gear]
- the difference in the amount of rotation between the inner and outer surfaces is the main body of the eccentric gear 16.
- the fixed center single gear 3 and the internal gear [inter single gear] are mating connection contacts, and the eccentric gear 16 has a fixed function that does not rotate.
- the radius of the center gear 3 (7.5) and the difference between the inside and outside of the eccentric gear 16 (4.5) The numerical value (12) obtained by adding the thickness becomes the near and outer contact distance of the eccentric gear 16, and the contact connected to the drive gear 6 becomes the far and outer contact distance (23.2). From this distance, the near and outer contact
- the value obtained by subtracting the contact distance (12) is the amount of rotation of the flowing part (11.2), and if it is divided into two, the eccentricity difference (5.6) is obtained.
- FIG.15 Schematic diagrams of the eccentric satellite gear connection and force distribution structure B, A, C are explained.
- the eccentric gear 16 is a distant and peripheral contact point, and the 8 A drive gear 16 has a rotational pressure of a left rotation W5, and W5 is a left advancing force W4 of the common axle 8A and a right rotational force W of the amplifying gear 11. Distribute to 1.
- the common axle 8B acts on the common axle 8B, with the propulsion force W4, connects and rotates to the inter-gear 1, the input gear 5 applies the propulsion force of the W4, the right-hand rotation to the left, and the torque W2 amplifies. Since the gear 11 is superior to the clockwise rotation W1 of the gear 11, the amplifying gear 11 reverses and reverses: the counterclockwise rotation proceeds to the left and the propulsion force W4 is added [see (B)]. Rotating gear group A group.
- (D) is an eccentric satellite gear body, L-L, front, a double-structured ring gear with an inner surface as an inter-gear and an outer surface as a flat gear.
- the gear body has no rotating shaft.
- (C) M—M is a functional structure of a rotating shaft that is fitted, held, and freely rotates in the partition wall.
- P--P section shows the center gear 3 connected and rotated by the inner inter-gear, two eccentric gears 16 are the far and outer contacts, 8 A drive gear 6 and 8 B The gears are engaged with the drive gear 6 and connected to the rotation.
- M-M is fitted into the partition walls 20 and 21 and held and rotated freely, and the inner inter-gear is linked to the center gear 3 for inscribed rotation. Then, the outer and outer peripheral contacts are connected to the drive gear 6 for rotation.
- the 8 B input gear 5 and 8 A amplification gear 11 are connected to the connection rotation to form an amplification cycle, and two eccentric gears 1
- the rotational pressure transmitted by 6 acts as a starting force for both amplification cycles, and the rotational pressure of the center gear, followed by permanent rotation, is connected to an eccentric satellite gear infinite power [permanent engine].
- the infinite power [permanent engine] of 5 items which has already been patented, aims to increase the output, and if the diameter ratio of the large and small fixed gears is increased, the radius of the fixed center-gear is small, The radius of the amplifying gear and the input gear are enlarged, so that one common axle is centered around [manual] [coaxial or other axle].
- the amplifying cycle group has one manifold [one pole]. Met.
- connection rotation structure By connecting the U gear to the connection rotation, the connection rotation structure has been simplified, reducing the number of gears and increasing the output, and achieving a one-manifold two-pole structure.
- the one-manifold two-pole structure is a basic structure that opens the way to multi-pole structures such as the two-manifold four-pole structure.
- the frame 30 has 2 types of inter gears, 1K gear fixed on the inner surface, 1Y gear which operates slightly, and the center of the frame 30
- 1K gear fixed on the inner surface 1K gear fixed on the inner surface
- 1Y gear which operates slightly
- the unified common gear 16 through which the transmission shaft 25 penetrates and the shaft 25 penetrates is mounted.
- Planetary intergear (U gear), the main reason for adoption, is that the rotating gear group that composes the amplifying structure rotating body is not controlled by the diameter ratio of the large and small fixed gears, but depends on the purpose and scale.
- the output-priority structure rotator can freely select and set the diameter ratio [3: 1-8: 1].
- the input gear 5 which rotates freely on the common axles 8A and 8B, respectively, is inscribed and rotates with the 1K gear, and is connected and rotates with the common gear 16, respectively.
- the amplifying gear 11 is integrally connected with a common axle.
- the drive gear 6 and the reduction gear structure have a reduction gear structure.
- the amplifying gear 11 freely rotates on a shaft 25.
- the integral U gear 57 inscribes the center gear 3 and the drive gear 6 so as to interlock and flow.
- the amplifying gear 11 is rotatably connected. 1 or several projections 58 are fixed on the outer periphery of the 1Y gear, and the projections are operated left and right on the frame 30.
- a compression body [spring, hard rubber, cylinder, etc.] is attached to the guide shaft 60 that penetrates the working chamber and holds the shaft 60 in the working chamber, and the rotational pressure of the amplifying gear 11 is accumulated to convert it into repulsive force.
- the worm gear V71 which is integrally fixed to the center gear 3 and is fixed to the tip of the operation rod 62, rotates to the ohm gear 7, and the ohm gear shaft 72 to be connected is linked to the rotation operation instruction device.
- FIG.20 shows the left-hand flow progression pressure of 1Y gear, inscribed rotation, amplifying gear 11 and reduction gear structure, drive gear 6 and planetary intergear 57 Then, drive the gear 3 to the left.
- the left rotation force of W3 of the amplification gear 1 1 is the rotation force W3 of 1 Y gear, and the protrusion 58 of 1 Y gear compresses the spring [compressor] 59 and converts it into repulsive force. Therefore, the amplifying gear 11 reverses the left rotation to the right rotational force W3 and reversely rotates the unified common gear 16 to the left.
- the rotation interlocking of the U gear 57 realizes a power transmission shaft 25 that penetrates the center of the rotating body, freely rotates on the shaft 25, common gear 16 on the common axle, 8A, 8B, All the input gears 5 and the amplifying gears 11 are connected in parallel, and the rotating gears that are connected and rotated in conjunction with each other constitute a rotating body having an amplifying cycle function.
- the U gear 57 engages with the drive gear 6, and the contact point of the connection and rotation is used as the point of contact.
- the drive pressure of the drive gear 6 becomes the propulsion pressure. It becomes an infinite power [permanent engine] that amplifies and rotates forever, and the thrust of operation (1), which can be freely increased or decreased, becomes all the rotation output.
- the thrust of the operating rod can be freely and artificially, mechanically, and freely operated, so it becomes an infinite power [permanent engine] that increases the output up to the limit of the mechanical structure's strength.
- FIG. 21]; (E) is a unitary figure in which the U gear 57 and the partition wall 56 are united, and freely rotates on the frame 30, and rotates with the other structural partition walls 19 and 20.
- the center gear 3 and the near-inner contact do not rotate and are connected in a connected manner, and the far-internal contact is connected to the drive gear 6 and interlocked and rotate with the eccentricity.
- FIG. 4 is a single view of a U gear 57.
- (F) is a structural partition wall, 19, 20, which inscribes and freely rotates with the frame, and a through-port 24, with a washer for maintaining spacing, penetrates and fixes to build a rotating body, all rotating gears and common
- (D) is a structural overall diagram in which the planetary intergear 57, the partition wall 56, and the structural partition walls 19, 20 function in combination.
- FIG.22] (K) shows when the amplifying gear is in-turn interlocked with the fixed inter-gear, the amplifying gear and the drive gear of the reduction structure are rotated leftward with the in-plane interlocking of the planetary inter-gear.
- the left rotation W1 is distributed in a ratio of 4: 1 according to the principle of the balance, and the propulsion force of the common axle is W0.75.
- (L) and (M) show the common axle direction and the propulsion force according to the direction and the propulsion contact that acts on the amplification gear when the drive gear of the reduction gear is connected to the fixed center gear and rotates. (L) and (M) are different.
- the connection structure of the reduced planetary inter-gear (U gear) is the main structure of the amplifying structure, and the input gear and the amplifying gear both function on the same common axle.
- the distance between the center gear shaft and the common axle is short, the center gear and the drive gear are inscribed, and the rotation is conducted, the radius of the U gear is reduced, and the effect is produced.
- the reduced U-gear rotation pressure is more powerful than the U-gear rotation pressure.
- the radius of the amplifying gear is determined freely according to the calculation method in accordance with the radius of the common gear, which is freely selected and determined.
- the diameter ratio of the amplifying gear and the drive gear, which is connected and fixed to form a reduction gear structure, 5: 1 is used [Diameter ratio can be selected from 3: 1 to 8: 1].
- the radius ratio of 1 Y gear and center gear is set to 5: 1, U gear drives with fixed center gear.
- the gears are inscribed and linked, and run down to produce rotational pressure on the drive gears.
- the drive gear that inscribes and rotates in the U gear is fixedly connected to the common axle and the amplification gear.
- the amplification gear is inscribed and linked to the 1 Y gear.
- the input gear rotates freely on the common axle, and is connected to the 1K gear for rotation.
- the input gear and the amplifying gear function on the same common axle, and on the other common axle, the fixed gear from the inter gear to the center gear in parallel with the freely rotating common gear Amplification cycle structure rotating body, which progresses in the same direction and simultaneously, forms a group A, forms a rotating body B having exactly the same structure, and forms a pair to form a structural rotating body [permanent engine].
- FIG. 30 reduced U gear connection rotation structure, radius ratio force distribution, and exploded structure schematic diagrams [Fig. 27] and [Fig. 28] will be described.
- thrust acts on the operation rod 62 that is fixed together, it becomes a starting force in the amplification cycle structure.
- the radius of the connecting gear 16 is first determined, and the main force of the amplification structure, the radius of the input gear 5 and the amplification gear 11 are determined according to the calculation method, and then the radius of the amplification gear 11 and the drive gear 6 are determined. Determine the diameter ratio. Finally, the fixed gear [1Y, 1K,] and the center gear 3 determine the diameter ratio. Since the number of free choices increases, the U gear multipole structure and the reduced U gear structure Both have an output priority structure that enables a wide variety of responses.
- the U-gear multi-pole structure is suitable for large-scale, high-power engines, and the reduced U-gear structure is suitable for small-scale engines that are operated by humans and frequently switch output.
- the left rotation W30 acting on the drive gear 6 is distributed to the left advancing W24 of the common axle 8A and the left rotation W6 of the amplification gear 11.
- the rotation pressure of W6 of the amplifying gear 11 is linked with the 1Y gear, and the fixing body 60 compresses and accumulates the compressing body 59 [spring, hard rubber, cylinder] and converts it into repulsive force. It reverses to the repulsion, reverses the left rotation, turns right and advances left, and rotates in conjunction with the common gear 16 on the common axle 8B.
- (B) is the 1K gear, which is interlocked with the inscribed rotation.
- the input gear 5 freely rotates on the common axle 8A, travels to the left traveling W24, is pushed to the right, rotates left, and travels to the common gear 16 of 8B. Since the right rotation W12 and the rotation are interlocked, the common gear 16 of 8B rotates left and travels left [travels left about the center of the rotating body as the rotation axis].
- the left-hand flow pressure W 30 of the U gear 57 acts on the amplification gear 11 and the drive gear 6 of the reduction gear structure, and the left rotation W 6 of the amplification gear 11 reverses to the compression repulsion force of the 1Y gear, It does not rotate and flows along the common axle 8 A for the spring compression distance.
- the small idle running distance of the common axle 8 A causes the freely rotating input gear 5 to rotate mechanically without rest.
- A, B, C see Rotating right and traveling left.
- the input gear 5 rotates the common gear 16 of the common axle 8B to the left, rotates in conjunction with the amplifying gear 11, and the right rotation pressure W It becomes 12.
- the amplifying gear 11 is a reduction gear that is integrally connected to the drive gear 6, the drive gear 6 rotates clockwise, and is connected to the U gear 57 for rotation.
- Drive gear 6, W60, U gear 57, left, running pressure W30, pushing Using the rotational force point as a support, the right rotation pressure W12 of the input gear 5 and the amplifying gear 11 with the common axle 8A, together with the common axle 8A W 7 2], the input gear 5 increases the rotational force to W 36, and serves as an amplification cycle function that repeats the amplification process repeatedly.
- the amplification cycle process [U gear rotation W. 30-common axle, propulsion W. 24-input gear rotation W. 12-amplification W. 60 —Amplification output W. 7 2] Using the rotational propulsion force, which is increased by the amplification structure, as the basic thrust based on W. 24, the extra power of the amplification part W48 is provided and provided as kinetic energy. Is maintained and energy can be continuously provided.
- Rotational operation instruction mechanism [Rotary camshaft-distribution rotary car structure]
- a multi-purpose and multi-purpose operation instruction mechanism is devised and adopted as the operation instruction mechanism, such as rotating camshaft distribution and rotating vehicle operation instruction mechanism.
- the functions of the operation instructing mechanism such as start, stop, left and right rotation, speed, speed, strength, etc., operate on the rotating body [permanent engine], and start, stop, forward, reverse, pause, long-term continuous [permanent movement], etc. It is a pointing mechanism that can be operated freely and slowly. [Brief description of drawings]
- FIG. 31 Schematic diagram, explanation of rotating camshaft distribution, and rotating car operation instruction mechanism.
- Rotating car operation indicating mechanism [abbreviated as indicating mechanism], body frame 8 1 [referred to as frame 8 1], divided into rotating car room 103, and key distribution room 87, pressure pipe 90 Then, the pressure layer is supplied to the distribution room 87 through the layer supply port 88.
- the pressure chamber that fills the distribution room 87 is integrally fixed to the rotating cam valve 92.
- the operating lever 85 is distributed to the left and right, and when it is tilted to the left, the right air outlet 94 opens and the right. To the left, the left air outlet 93 opens, [Fig. 11], and in the N-N section, the operation lever 85 falls to the left, and when the right air outlet 94 opens, the intake air vent opening / closing vent opens and closes.
- 84 is normally closed by a spring, but is supplied with pressure, so that the open / close vent 84 opens and the right exhaust port closes.
- the pressure chamber blows through the rotating car room 103, turns the rotating car 82 clockwise, is opened, is discharged to the outside from the exhaust port, and tilts the operating lever 85 to the right. Since the structure is exactly the same on the left, the pressure from the left supply port turns the rotating car 82 to the left and the right exhaust port blows through.
- the rotating wheel 82 is integrated with the rotating shaft 83, which is fixed to the tip of the rotary shaft 83, and the ohm gear 28, and the operating rod 62, which is fixed to the center of the tip, and the ohm gear 78, which is connected.
- the rotating wheel 8 2 rotates
- the operating rod 63 rotates left and right as the rotating wheel 8 2 rotates, and the function works. It becomes an input function to start.
- the rotating wheel 82 rotates and the operating rod 62 is propelled to the left and right, resulting in rotational pressure. Therefore, the rotational pressure is applied to the center gear 3, which is linked to the rotation, and the rotational pressure is applied to the drive gear 6, and the starting force of the amplification cycle is generated.
- a rotating camshaft distribution rotating vehicle operation support mechanism that starts and operates the rotating body [permanent engine].
- FIG. 4A is a front view of the whole, in which the pressure pipe 38 is blown from the supply port 37 to the distribution chamber 108.
- the pressure pipe is in the normal position when the pulp operation lever 43 is in the normal position.
- the rotary cam pulp 111 closes the air outlets 40 and 41, and the air outlets 114 and 115 close the air outlets 40 and 41 and the air outlets 114 and 115.
- the cylinder head 33 pushed to the left also pushes the integral shaft 29 to the left, and pushes and pushes the operating rod 62, which is integrated and fixed to the center gear, to the left. And the rotating body starts rotating clockwise.
- valve operating lever 43 When the valve operating lever 43 is swung to the left, the cam valve 111 is tilted to the left to supply the dispenser to the left atrium 44, to propel the cylinder head 33 to the right and to add the operating rod 62 to the right. Pressure, and move center gear 3 clockwise to input. Therefore, the rotating body starts counterclockwise rotation.
- the intake and exhaust ports of the air distribution valve chamber are all closed, so the cylinder head 33 stops, the operating rod 62 and the rotating body to be connected also stop, and Since the operation lever 43 can be freely operated left / right, strong / slow / fast, and freely, the cylinder head 33 can be operated at the left end, right end, middle, middle and stop / start to maintain a constant slow / fast rotation.
- the cylinder operation instructing function is exactly the same for the left and right, so if you move forward on the left and reverse on the right, you only need to shake the operating lever, and it will be the forward / reverse switching operation instructing function.
- the infinite power rotating body also has completely the same functional structure on the left and right, so the cylinder — the operation instruction mechanism transmission shaft and the rotating body operating rod 62 are connected and linked with the rotating pin 28 to reciprocate the cylinder head.
- the thrust for operating the control rod 62 left and right acts as a rotation operation instruction function, and an instruction mechanism that operates the rotation start, stop, forward, reverse, continuous rotation [permanent movement], etc. freely and quickly.
- the operation instruction mechanism requires the supply of pressure
- the compressor and the pressure tank that use surplus energy of infinite power are used as auxiliary equipment, and the pressure is supplied.
- the compressor is equipped with a pressure adjustment function and a high-pressure low-pressure keyer is supplied, the function capacity of the rotary operation instruction mechanism will be improved, and the output function capacity of the infinitely powered rotating body [permanent engine] will be further enhanced. Structure.
- the rotating camshaft-distributed rotary vehicle instruction structure is a form of infinite power [permanent machine open] rotation operation instruction structure, such as power generation, ships, spacecraft, etc., which requires huge, high output for a long period of time with limited form. Suitable.
- the rotating camshaft-distribution cylinder structure is suitable for infinite power [permanent engine] of various kinds of automobiles, work vehicles, small aircraft, boats, etc., which can be operated promptly and promptly by human beings, and is small and small output.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Retarders (AREA)
Abstract
Issues: The modern society, being dependent on enormous amounts of energy consumption, is in pressing need of resolving two issues, that is, a dearth of dependent fossil fuels and a global environment disruption due to air pollution. Solution: A permanent engine , a rotary body mainly consisting of gears capable of self-operated rotation that revolutionizes an energy concept, will resolve the issues by producing and offering a clean, safe, infinite kinetic energy.
Description
明 細 書 無限動力発生装置 技術分野 Description Infinite power generator Technical field
当発明は同心円の、 大小二つの固定ギヤ間を、 [天秤の原理] [滑車の 原理] の力学応用により、 大小の回転ギヤを組合せた、 ギヤ群が主体の回 転体を構築、 永久運動に繋がる円運動と、 半径により異なる、 積層する円 の円周の差に、 円が本質的に保有する増幅機能を引出し、 永久運動原理に 基づく、 永久機関となる可能性を発見し、 実現した構造回転体 「永久機関 ] が自力回転 [永久運動」 して、 無限の運動エネルギーを生産提供する。 既存の知識や、 技術思想に捉われない、 全く異なる新しい観点に立つ、 永 久運動原理に基づく永久機関で、 化石燃料を初め、 消耗する如何なる熱原 材料及び、 全ての如何なるエネルギーも、 一切使用しない永久機関となる。 永久運動を否定する、 熱力学第一法則、 第二法則、 [自然の法則」 には 馴染まない、 異なる範疇に属する、 永久機開であると思考する。 背景技術 The present invention constructs a rotating body mainly composed of gears, combining large and small rotating gears, by applying the dynamics of the principle of the balance and the principle of the pulley between two large and small fixed gears of concentric circles. The possibility of becoming a permanent engine based on the principle of perpetual motion was realized by drawing out the amplification function inherently possessed by the circle due to the difference between the circular motion that leads to Structural rotating body "Permanent engine" rotates by itself [permanent motion] to produce and provide infinite kinetic energy. It is a permanent engine based on the principle of eternal movement, taking a completely new perspective that is not bound by existing knowledge and technical ideas, uses fossil fuels, consumes any heat source materials, and uses any energy. Not a permanent institution. They deny eternal movement, are not familiar with the first law of thermodynamics, the second law, and are not familiar with [the law of nature]. Background art
高度に発展する近代社会は、 留まる処を知らず、 是に続く後進国の、 近 代化指向が追随する、 世界的風潮の流れの中で、 益々増大するエネルギー の消耗量に、 資源枯渴の危惧と、 平行して進行する、 大気汚染による地球 環境の破壊、 此の二つの課題を理解しつつも、 解決して進展する道筋を、 見いだせない混迷の中に、 現代社会がある。 A highly developed modern society is unaware of where it will stay, and in the tide of globalization following the trend of modernization of the least developed nations, the increasing amount of energy consumption and the depletion of resources Modern societies are in a confusion in which, while understanding these two issues, whilst understanding these two issues, worries, and progressing in parallel, destruction of the global environment due to air pollution, there is no way to solve them.
近年、 化石燃料依存から脱却し、 無公害 「水力, 風力, 波動力」 等の、 運 動エネルギーを収集して、 電力に変換使用、 又、 低公害 「水素エンジン, 燃料電池」 等、 代替エネルキーの開発発見に、 産業界は努力を惜しま 、 懸命の努力が続けられている。 In recent years, we have moved away from dependence on fossil fuels and have collected non-polluting operating energy, such as "hydropower, wind, and wave power", and converted them into electric power. We also used low-pollution "hydrogen engines, fuel cells," and other alternative energy sources. The industry has spared no effort in discovering the development, and has been working hard.
此等の技術が、 安価で安易に使用されてきた、 化石燃料の代替エネルギ —となるには程遠く、 又、 エネルギー消耗の、 全体構図は変化しない。
自然の運動エネルギー 「風力, 波動力」 は、 採算を無視しても、 ェネル ギ—消耗全体量の、 1 %に過ぎず、 原子燃料依存には、 危険が伴う。 クリーンで、 安全で、 安価なエネルギーの供給こそ、 人類社会発展の唯 一のアプローチと考える。 These technologies have been used inexpensively and easily, are far from being an alternative energy to fossil fuels, and the overall composition of energy consumption remains unchanged. Natural kinetic energy “wind, wave power” accounts for only 1% of the total energy consumption, even if profitability is ignored, and the dependence on nuclear fuel is dangerous. We believe that providing clean, safe and cheap energy is the only approach to the development of human society.
永久運動原理を確立し、 物理的力学機械構造の、 永久機関を提供する事 が、 化石燃料依存から脱却する、 最短距離との考察から、 エネルギー保存 の法則による、 熱力学第一法則、 及び第二の法則は、 人類が越えねばなら ないハードルで、 ハードルの向こうにこそ、 人類発展の道があるものと、 考える。 発明の開示 The establishment of the principle of perpetual motion and the provision of a perpetual engine of physical mechanical structure, which will break away from dependence on fossil fuels, and considering the shortest distance, the first law of thermodynamics based on the law of conservation of energy, and The second law is the hurdle that mankind must overcome, and we believe that there is a way for humanity to develop beyond the hurdle. Disclosure of the invention
当発明は、 同心円の大小二つの固定ギヤ間を、 接続連動する回転ギヤ群 が、 回転体 [永久機関] を構築して、 無限の運動エネルギーを生産し提供 する、 基本的、 増幅永久機関構造と、 永久運動原理を開陳する。 The present invention relates to a basic, amplifying permanent engine structure in which a rotating gear group that connects and links two large and small fixed gears of concentric circles constructs a rotating body [permanent engine] and produces and provides infinite kinetic energy. And reveal the principle of eternal movement.
円運動は、 推力の働く方向に、 回転し、 推力が続く限り、 無限に回転運 動を雜続する、 基本構造機能を有する。 Circular motion has the basic structural function of rotating in the direction in which thrust works, and infinitely continuing rotational motion as long as the thrust continues.
又、 円心から外周円迄、 半径で異なる、 積層する円周の長さと一定不変 の円周率に、 増幅構造と永久機関の、 基本構造となる事を発見した。 同心円の、 大小二つの固定ギヤは、 大の固定ギヤ [複数」 は、 インター ギヤとし、 本体枠 [フレームと呼称] に内接固着する。 In addition, we found out that the basic structure of the amplifying structure and the permanent engine was obtained with the constant length of the circumference and the constant length of the circumference of the lamination, which differ in radius from the center of the circle to the outer circumference. The two large and small fixed gears are concentric circles, and the large fixed gears [plural] are inter-gears and are inscribed and fixed to the body frame [frame].
フレームに一体固定の両側壁に、 固着する小の固定ギヤは、 アウトギ ャとし、 一体固定する操作竿の指示により、 作動する固定ギヤにする。 大固定ギヤ [イン夕—ギヤと呼称] に内接し、 嚙み合い回転する、 大回 転ギヤ [入力ギヤと呼称] は、 貫通する共通車軸に、 自在に回転し、 推さ れて回転進行する。 The small fixed gears that are fixed to both side walls that are integrally fixed to the frame are out gears, and are fixed gears that operate according to the instruction of the operation rod that is integrally fixed. The large rotating gear [designated as input gear] is inscribed in the large fixed gear [designated as gear] and rotates in mesh with it. I do.
共通車軸の両端に、 一体固定する小回転ギヤ [駆動ギヤ] は、 両側壁に 固定する、 センタ—ギヤに接続、 嚙み合い回転進行する。 The small rotating gear [drive gear] fixed to both ends of the common axle is fixed to both side walls, connected to the center gear, and meshes and rotates.
インターギヤとセンターギヤの、 大小半径比率を説明上 [4 : 1 ] に設 定する。 [大小固定ギヤ半径比率は 3 : 1〜8 ; 1迄、 選択可能]
永久機関基礎構造 Set the large / small radius ratio of the inter gear and the center gear to [4: 1] for explanation. [Ratio of large and small fixed gear radius is 3: 1 to 8; selectable up to 1] Permanent engine foundation structure
センターギヤに、 接続回転する駆動ギヤの、 回転進行運動量を (1 0 ) に仮定すると、 インターギヤに接続回転する、 入力ギヤの回転進行運動量 は (4 0 ) となる。 [図 AX] 、 A, B , C , 参照。 Assuming that the rotational momentum of the drive gear connected to the center gear is (10), the rotational momentum of the input gear connected to the intergear is (40). See [Fig. AX], A, B, C,.
駆動ギヤ半径の、 4倍の大回転ギヤ [増幅ギヤと呼称] を、 共通車軸に 連結固定すれば、 増幅ギヤの回転運動量は (4 0 ) となり、 入力ギヤの回 転運動量 (4 0 ) に合致する。 If a large rotating gear [named amplifying gear] that is four times the drive gear radius is connected and fixed to the common axle, the rotational momentum of the amplifying gear will be (40), which matches the rotational momentum (40) of the input gear. I do.
同じ回転運動量 (4 0 ) となる、 入力ギヤと増幅ギヤを、 接続回転連動 すれば、 共通車軸に自在回転し、 インタ—ギヤに内接回転する入力ギヤは、 共通車軸の左進行方向に推されて、 右回転しつつ左方向に進行する。 If the input gear and amplifying gear, which have the same rotational momentum (40), are connected and rotated, the input gear that rotates freely on the common axle and rotates inscribedly on the inter-gear is pushed in the leftward traveling direction of the common axle. Then, go to the left while turning right.
増幅ギヤは、 連結固定する共通車軸と、 駆動ギヤが、 センタ—ギヤに嚙 み合い、 左方向に、 左回転して進行する、 減速ギヤ構造となる。 The amplifying gear has a reduction gear structure in which a common axle to be connected and fixed and a drive gear are engaged with a center gear and travel leftward and left.
入力ギヤと、 増幅ギヤは、 回転連動し、 相互に反対方向に回転しつつ、 同一方向に同時に進行する、 回転ギヤ郡となる。 The input gear and the amplifying gear rotate and interlock, rotate in opposite directions, and simultaneously advance in the same direction to form a rotating gear group.
増幅ギヤと駆動ギヤは、 連結して [4 : 1 ] の減速ギヤになり、 センタ 一ギヤに接続回転連動するから、 インターギヤと増幅ギヤは、 接続回転連 動は不可能となるから、 インターギヤの内径を拡大、 空転構造にする。 入力ギヤの運動量 (4 0 ) を、 増幅ギヤに回転連動すれば、 共通車軸の 推進力は、 4倍に増大して、 入力ギヤを推進するから、 入力ギヤの回転力 は増大し、 増幅ギヤに回転連動、 共通車軸の推進力を加算、 入力ギヤに働 き、 回転力を増大する、 増幅過程を反復繰返す、 増幅サイクルとなり、 増 幅する、 永久機関基礎構造となる。 The amplifying gear and drive gear are connected to form a [4: 1] reduction gear, and the center gear is connected and rotated. Therefore, the inter gear and the amplifying gear cannot be connected and rotated, so the inter The inner diameter of the gear is enlarged to make it idle. If the momentum (40) of the input gear is rotationally linked to the amplifying gear, the propulsive force of the common axle increases by four times and the input gear is propelled, so the rotational force of the input gear increases and the amplifying gear In addition to the rotation interlock, the propulsion of the common axle is added, it acts on the input gear, increases the torque, repeats the amplification process, becomes an amplification cycle and amplifies, and becomes a permanent engine basic structure.
[図, B X] A, B , C, D, E, F , 参照。 永久運動 [Figure, B X] See A, B, C, D, E, F. Perpetual exercise
回転連動する増幅構造の主力、 入力ギヤと、 増幅ギヤの、 増幅サイクル が成立しても、 共通車軸に、 推進力が働かねば、 増幅構造は機能しない。 永久機関構造も、 増幅サイクル機能に、 起動力が働かねば稼働しない。
インターギヤと、 センターギヤが、 中立の位置にあって、 静止していれ ば、 其々に接続回転連動する、 入力ギヤ、 増幅ギヤの接点位置間隔に変化 はなく、 回転始動はしない。 [図, CX] 、 A, B, C, 参照。 Even if the main cycle of the amplifying structure that rotates and the amplification gear of the input gear and the amplifying gear is established, the amplifying structure does not function unless propulsion works on the common axle. The permanent engine structure will not operate unless the starting force is applied to the amplification cycle function. If the inter-gear and the center gear are in the neutral position and are stationary, there is no change in the contact positions between the input gear and the amplifying gear that are connected and rotated in conjunction with each other, and rotation is not started. See [Figure, CX], A, B, C.
インターギヤに、 外圧推力か、 又はセンターギヤに、 回転圧力か、 何れ かに、 圧力が加わると、 固定ギヤは僅少回転移動し、 入力ギヤと増幅ギヤ の回転接続接点 [力点] 距離に、 変化が生うじ其々相反する方向の回転力 となり、 其々が機能する車軸 [同軸、 又は他軸」 に、 押し合う推進力とな り、 力の原則に従い、 推進力の勝る方向に進行する、 起動力となる。 起動力が増幅サイクルに作動すると、 永久機関構造が稼働し、 固定ギヤ を加圧する推力を解除しない限り、 永久に回転を継続する、 永久運動とな り、 永久運動原理が成立する。 図面の簡単な説明 [永久機関] When pressure is applied to either the inter-gear, external pressure thrust, or the center gear, rotational pressure, the fixed gear moves slightly and changes to the distance between the input gear and the amplifying gear. The resulting torque will be opposite to each other, and will be the propulsive force that will push each axle (coaxial or other axle) that functions, and will proceed in the direction of the propulsive force according to the principle of force. It becomes the starting force. When the starting force operates in the amplification cycle, the permanent engine structure operates, and unless the thrust to pressurize the fixed gear is released, the rotation continues forever, resulting in a permanent motion, and the principle of permanent motion is established. Brief description of drawings [Permanent organization]
増幅構造、 永久機関の主力ギヤ、 入力ギヤと、 増幅ギヤを、 接続連動する 機能構造は、 永久機関の、 最重要部分であり、 此処に開陳する、 種々異な る接続構造は、 回転ギヤの大小, ギヤ数の増減、 構造の単純化, 機能の充 実により、 操作を簡単、 機能能力を充実し、 出力増大を実現した。 The amplifying structure, the main gear of the permanent engine, the input gear, and the functional structure that connects and interlocks the amplifying gear are the most important parts of the permanent engine, and the various connection structures disclosed here are the size of the rotating gear. By increasing or decreasing the number of gears, simplifying the structure, and enhancing the functions, the operation was simplified, the functional capabilities were enhanced, and the output was increased.
永久機関構造を、 分解略図で説明し、 併せて永久運動原理を開陳すると共 に、 異なる接続構造の無限動力 [永久機関] を、 略図で逐条説明する。 既に公開された、 平成 1 1年特許願第 0 6 8 8 1 6号を除き、 [説明上— 部使用する部分もある] 今回出願する、 6項目とする。 The structure of the permanent engine will be explained in an exploded schematic view, the principle of the permanent motion will be disclosed, and the infinite power [permanent engine] of the different connection structures will be explained step by step in a schematic diagram. Except for Patent Application No. 068881, which has already been published, [Some parts are used for explanation] There are six items to be filed in this application.
永久機関、 構造分解略図 [図 B X] 、 A, B , C, D, E, F, を詳細に 説明する。 [此の参照図の、 大小固定ギヤの半径比率を、 4 : 1とする]Permanent engine, structural exploded view [Fig. BX], A, B, C, D, E, F, are explained in detail. [The radius ratio of the large and small fixed gears in this reference figure is 4: 1]
(B) 固定ギヤ 1 Y、 [フレームに僅少移動] に接続せず、 空転するギ ャ 1 1は、 共通車軸 8 Αと、 小回転ギヤ 6を、 連結固定し、 両側壁に固着 する、 センターギヤに嚙み合い接続連動し、 一体になり回転進行する。(B) Fixed gear 1 Y, gear 11 that does not connect to [slightly move to the frame] and idles, has a common axle 8 mm and small rotating gear 6 connected and fixed, and fixed to both side walls. Interlocked with the gears, they are linked and rotate together.
(C) 固定ギヤ 1 Κ、 [フレームに一体固定] に内接、 嚙み合い回転連 動するギヤ 5は、 共通車軸 8 Βに自在回転、 推されて回転進行す。 (C) Fixed gear 1 Κ, gear 5 which is inscribed in [integrally fixed to the frame] and interlocks and rotates, freely rotates on the common axle 8 、 and is pushed forward to rotate.
共通車軸、 8 Α, 8 Β , は、 固定ギヤ 1 Kの円心に、 等距離にあり、 共に
同一の回周軌跡を画き進行する。 The common axles, 8Α, 8Β, are equidistant from the center of the fixed gear 1 K, Draw the same trajectory and proceed.
(B) ギヤ 11と、 ギヤ 6は、 共通車軸 8Aで連結固定し、 センターギ ャ 3に接続回転し、 減速構造ギヤとなる。 (B) The gear 11 and the gear 6 are connected and fixed by the common axle 8A, and are connected to the center gear 3 and rotated to form a reduction gear.
(C) ギヤ 5は、 ギヤ 1Kに、 嚙み合い接続回転し、 共通車軸 8 Bに空 転し、 推されて進行する回転力を、 (F) の W2段接続ギヤ 27により、 (C) The gear 5 meshes with the gear 1K, rotates in a meshing manner, idles on the common axle 8B, and advances the rotating force by the W2-stage connecting gear 27 in (F).
(A) ギヤ 11に回転連動する、 他軸一極増幅構造、 [Aグループ] とな り共通車軸 8Bに、 連結固定する、 ギヤ 11とギヤ 6は、 ギヤ 3に接続回 転又、 共通車軸 8 Aに、 空転し、 ギヤ 1Kに接続回転するギヤ 5が、 W2 段ギヤ 27で、 ギヤ 11に、 回転連動する、 [Bグループ] を形成して、 [ Aグループ] と、 一対になり、 (D) 、 はギヤ 5が、 ギヤ 27を介入し てギヤ 11に、 回転連動する、 運動量を示し、 (E) 、 はギヤ 11が、 回 転連動する運動量示し、 増幅して永久機関構造となる、 過程を示す。 永久運動原理 (A) One-pole amplifying structure for other shafts that rotates and interlocks with gear 11, becomes [A group] and is connected and fixed to common axle 8B. Gears 11 and 6 are connected to gear 3 and rotated or shared. 8 A, idle gear, gear 5 that is connected and rotated to gear 1K, W2 stage gear 27, gear 11 rotates and interlocks with gear 11, forms [Group B], and forms a pair with [A group] (D) shows the momentum that gear 5 rotates and interlocks with gear 11 through gear 27, and (E) shows the momentum that gear 11 rotates and interlocks, and amplifies the momentum with the permanent engine structure. No, show the process. Perpetual motion principle
永久機関となり、 増幅サイクルとなっても、 起動力がなければ、 回転運動 は、 始動しない。 [図 AX] 、 A, B, C, を説明する。 Even if it becomes a permanent engine and becomes an amplification cycle, if there is no starting force, the rotary motion will not start. [Figure AX], A, B, C, will be explained.
(C) 、 センターギヤ 3に、 一体固定の操作竿に、 右方向推力 W4が働く と、 [センターギヤ半径 X 4倍 =操作竿の長さを設定] センターギヤ 3の の回転圧力が W20となり、 [Aグループを A、 Bグループを B] と表示 、 Aギヤ 6に W 10、 Bギヤ 6に W10の回転圧力が、 夫々働く。 (C) When the right thrust W4 is applied to the center gear 3 and the operation rod that is fixed integrally, [center gear radius X 4 times = set the operation rod length] The rotation pressure of the center gear 3 becomes W20. , [A group is displayed as A, B group is displayed as B], The rotation pressure of W10 on A gear 6 and W10 on B gear 6, respectively.
(A) 、 Aギヤ 6に働く W10は、 共通車軸 8Aの、 左進行推力 W7. 8 と、 ギヤ 11の右回転力 W2. 2に配分する。 (A), W10 acting on the A gear 6 is distributed to the left advancing thrust W7.8 of the common axle 8A and the right turning force W2.2 of the gear 11.
ギヤ 6が、 ギヤ 3を、 1回転する回転量を、 1Qとすると、 ギヤ 11の回 転量は、 4 Qとなる減速ギヤ構造になる。 Assuming that the rotation amount of one rotation of the gear 6 with respect to the gear 3 is 1Q, the rotation amount of the gear 11 is a reduction gear structure of 4Q.
(B) (A) 、 は 1Kギヤに内接連動し、 8Bに空転するギヤ 5が、 推さ れて進行し、 回転量は、 ギヤ 11の回転量と等しくなる。 (B) (A), the gear 5 is inscribed and linked to the 1K gear, and the gear 5 that idles to 8B is pushed forward and the rotation amount is equal to the rotation amount of the gear 11.
8Aに連結する、 ギヤ 11の、 右回転力 W2. 2と、 8Bに空転し、 ギヤ 1Kに、 接続回転するギヤ 5は、 SBo i . 8の推進力で、 右回転力 W 3. 9を、 8Aのギヤ 11に、 接続 2段ギヤ 27で、 回転連動するから、
8 Aのギヤ 1 1の、 右回転力 W2. 2と、 8 Bのギヤ 5の W 3. 9が、 相 互に押し合う力が、 起動力となり、 8 Bのギヤ 5の、 W 3. 9の回転力が 勝り、 ギヤ 1 1は反転して、 減速ギヤ機能が働き、 8八の推進カが 1 1 . 7に増幅するから、 8 Aのギヤ 5の回転力が、 W5. 8に増大する、 増 幅サイクル機能となる。 [図 CX] A, B , C, 参照。 8A, the right rotational force W2.2 of gear 11 and the idle rotation to 8B, the gear 5 which rotates and connects to gear 1K, the right rotational force W3.9 of the SBo i.8 thrust , Connected to gear 11 of 8A, connected with 2nd gear 27, The force that mutually presses the right rotational force W2.2 of 8A gear 11 and the W3.9 of 8B gear 5 becomes the starting force, and the W3 of 8B gear 5 The torque of 9 wins, the gear 11 reverses, the reduction gear function works, and the propulsion force of 8 8 is amplified to 11.7, so the torque of 8 A gear 5 becomes W5.8. It becomes an increasing amplification cycle function. [Fig. CX] See A, B, C.
Aグループ, Bグループの、 増幅サイクル機能が、 相互に働き増幅構造と なる、 永久機関となり、 永久運動原理が成立する。 間仕切壁構造 The amplification cycle functions of Group A and Group B work together to form an amplification structure, become a permanent engine, and the principle of permanent motion is established. Partition wall structure
フレーム内に固定する、 インタ—ギヤと、 両側壁に固着するセンターギヤ に、 接続して回転連動する、 A, B , 両グループの、 全ての回転ギヤ群と 、 共通車軸の、 安定回転を図る為、 フレームに、 内接自在回転し、 共通車 軸が、 貫通する、 数個の間仕切り壁と、 間隔保持の変形座金, とリング座 金を装着、 数本の通しポルトが貫通、 締結固定して、 一体となる、 回転体 を構築 A, B , 両グループ、 全ての回転ギヤが、 同一方向に、 同時に回転 進行する、 間仕切壁構造回転体を構築する。 Connected to the inter-gear fixed to the frame and the center gear fixed to both side walls and rotationally linked. All the rotating gear groups of A, B and both groups, and the common axle, ensure stable rotation. For this reason, the frame is rotatably inscribed and the common axle penetrates, several partition walls, spacing washer, and ring washer are attached, and several through ports are penetrated and fastened and fixed. Then, build a rotating body to be integrated A, B, both groups, and all rotating gears simultaneously rotate in the same direction to build a partition wall rotating body.
間仕切壁は、 主力、 入力ギヤと増幅ギヤの、 接続連動構造の、 相違により 、 間仕切壁の間隔、 個数は夫々異なるものの、 大小固定ギヤに、 接続回転 する、 増幅構造回転体、 [永久機関] を、 フレームに独立して、 自在に安 定した回転機能保持が、 要求される、 間仕切壁回転構造。 操作竿 The partition wall, the main gear, the input gear and the amplifying gear, the connection interlocking structure, due to the difference, the spacing and number of the partition walls are different, respectively, the large and small fixed gear, connected rotating, amplifying structure rotor, [permanent engine] The partition wall rotation structure requires free and stable rotation function retention independent of the frame. Control rod
両側壁に、 固着する、 センターギヤに、 一体固定する操作竿は、 密閉する フレームの中で機能する、 無限動力回転体、 [永久機関] の、 生産する運 動エネルギーを、 取出して提供する、 動力伝達シャフトと共に、 フレーム 外と連携する、 唯一の操作指示機能構造で入力機能となる。 The operating rod, which is fixed to both side walls, is fixed to the center gear, is integrated in the frame. It works in a sealed frame, extracts and provides the kinetic energy produced by the infinitely powered rotating body, [permanent engine], Together with the power transmission shaft, it is the only operation instruction function structure that cooperates with the outside of the frame and serves as an input function.
一体固定する、 両センタ—ギヤの操作竿は、 常に均等に働く事が、 要求さ れるから、 操作芊の、 先端部を、 アームで連結固定し、 アームの中央部で、 操作指示機構の、 伝導シャフトに連携し、 操作竿は、 左右に移動して、 セ
ンターギヤを、 僅少回転、 [回転幅は、 角度にして 1 0〜1 5度] して、 回転体の、 回転指示機能となり、 センターギヤは、 操作竿の回転指示がな ければ、 作動しない、 固定構造となる。 The operation rods of both center gears, which are fixed together, are required to work equally at all times. Therefore, the tip of operation ② is fixedly connected by an arm, and the center of the arm is used to operate the operation instruction mechanism. In conjunction with the transmission shaft, the control rod moves left and right, The rotation of the center gear is a small rotation, and the rotation width is 10 to 15 degrees. The rotation of the rotating body becomes the rotation instruction function. The center gear does not operate unless the rotation of the operation rod is instructed. It becomes a fixed structure.
操作竿の、 回転指示により、 センタ—ギヤは左右に僅少回転し、 接続連動 する駆動ギヤに、 回転圧力となり入力機能となる。 The center gear rotates slightly to the left and right according to the rotation instruction of the operating rod, and the rotational pressure is applied to the drive gear that is connected and connected, and the input function is performed.
駆動ギヤの、 回転圧力は、 増幅サイクルに働き、 起動力となるから、 無限 動力回転体 [永久機関] が始動する。 The rotational pressure of the drive gear acts on the amplification cycle and becomes the starting force, so the infinitely powered rotating body [permanent engine] starts.
操作竿に右方向の、 推力が作動すると、 回転体は左回転し、 操作竿に左方 向の、 推力が作動すれば、 右回転するから、 お回転を前進に、 左回転を後 進に、 振り当てれば、 前進後進の切り替が、 緩急強弱自在に、 操作可能と なる操作竿の、 操作指示により、 回転始動, 停止, 前進, 後進, 長期継続 [永久運動] 等の回転運動を、 緩急自在に操作する、 操作竿構造。 動力伝導構造 When thrust is applied to the operating rod in the right direction, the rotator rotates to the left.When thrust is applied to the operating rod in the left direction, the rotating body rotates to the right. If it is applied, the forward / backward switching can be operated slowly and rapidly. The operation of the operating rod is controlled by the operation instruction, and the rotational movement such as rotation start, stop, forward, reverse, long-term [permanent movement], etc. Operation rod structure that can be operated freely. Power transmission structure
中央に位置する間仕切壁、 又は、 両端に位置する間仕切壁など、 接続回転 構造により、 異なる位置の、 主力間仕切壁の円心に、 シャフトを、 一体固 定し、 両側壁に固着する、 センターギヤの、 中心を貫通して、 フレームの 外に突出し、 回転ギヤを一体固定して、 無限動力 [永久機関] が生産する、 運動エネルギーを取出し提供する、 動力伝導シャフトととなる。 The center gear, with the shaft fixed to the center of the main partition at different positions, and fixed to both side walls by the connection rotation structure, such as the center partition wall or the partition walls located at both ends. Through the center, it protrudes out of the frame, and the rotating gears are fixed together to create a power transmission shaft that extracts and provides kinetic energy produced by infinite power [permanent engine].
密閉するフレーム内で、 自力回転する、 永久機関の、 入力機能構造の、 操 作竿と同じく、 フレームの外に連携する、 唯一の出力、 動力伝導構造。 笠形ギヤ接続同軸回転連動構造 The only power and power transmission structure that cooperates with the outside of the frame, as well as the operating rod of the input function structure of the permanent engine, which rotates by itself in the sealed frame. Shaft gear connection coaxial rotation interlocking structure
入力ギヤは、 インターギヤに、 内接して回転連動し、 共通車軸に自在回転 して、 推されて回転進行し、 増幅ギヤは駆動ギヤと、 共通車軸で、 連結固 定して一体となり、 センタ—ギヤに接続回転進行する。 The input gear is inscribed and interlocked with the inter-gear, interlocks with the inter-gear, freely rotates on the common axle, and is pushed forward for rotation. The amplification gear is connected and fixed to the drive gear and the common axle to form —Proceed to connect to the gear and rotate.
増幅ギヤは、 インタ—ギヤに、 接続回転連動は、 できないから、 増幅ギヤ の、 ギヤの部分をカットして、 インターギヤに空転する構造にする。 Since the amplification gear cannot be connected to the inter-gear and connected to the rotation, the gear part of the amplification gear is cut and the structure is designed to run idle to the inter-gear.
増幅構造とするには、 センターギヤに接続回転し、 減速構造となる、 増幅
ギヤと、 入力ギヤを、 回転連動する事が、 条件となる。 Amplification structure is achieved by connecting and rotating to the center gear to form a deceleration structure. The condition is that the gear and the input gear rotate and interlock.
相対する、 共通車軸、 8 A, 8 B , 双方に、 シャフト保持リングを、 装着、 笠形ギヤを貫通して、 自在回転するシャフトが、 保持リングを連結固定、 入力ギヤと、 増幅ギヤを、 斜面ギヤに施工して、 笠形ギヤで接続、 回転連 動すれば、 共通車軸を共にする、 相反する回転方向の、 入力ギヤと、 増幅 ギヤは、 インタ—ギヤと、 センターギヤ間を、 同一方向に、 同時に回転進 行する、 ギヤ群 [Aグループ] を構成する。 Opposite, common axle, 8 A, 8 B, Attaching a shaft holding ring to both, penetrating the cap gear, freely rotating shaft, connecting and fixing the holding ring, input gear and amplifying gear, slope If it is connected to a gear and connected with a cog-shaped gear and rotated, the common axle can be used together. The input gear and the amplifying gear in opposite rotation directions can be connected in the same direction between the inter gear and the center gear. A gear group [A group] that rotates simultaneously.
又、 共通車軸 8 Bを中心に、 全く同一構造の、 [Bグループ] を構成して、 一対となり、 増幅構造の永久機閧となる。 In addition, a [B group] having exactly the same structure is formed around the common axle 8B, and a pair is formed, which is a permanent plan of the amplification structure.
笠形ギヤは、 ギヤシャフトを、 回転軸にして、 回転方向の相反する、 入力 ギヤと増幅ギヤを、 嚙み合い、 接続回転連動させると、 入力ギヤの回転力 は、 減速構造の増幅ギヤに、 接続回転連動するから、 共通車軸の、 進行力 は [滑車の原理] で増大、 増幅した推進力で、 入力ギヤの回転力は増大し て、 増幅ギヤに、 回転連動するから、 共通車軸の推進力が、 益々増大する 増幅サイクル機能となり、 増幅する無限動力 [永久機関] となる。 図面の簡単な説明 The cog-shaped gear uses the gear shaft as the rotation axis, and the input gear and the amplifying gear, which are in opposite directions of rotation, engage with each other and connect and rotate.The rotational force of the input gear is applied to the amplifying gear of the reduction structure. Since the connection and rotation are linked, the traveling force of the common axle increases according to the [pulley principle], and the amplified propulsive force increases the torque of the input gear and rotates with the amplified gear. The power becomes the amplification cycle function that increases more and more, and becomes the infinite power [permanent engine] that amplifies. BRIEF DESCRIPTION OF THE FIGURES
[図 1 ] 笠形ギヤ接続同軸回転連動構造、 無限動力正面全体図 [Figure 1] Coaxial rotation interlocking structure with cog-shaped gear, front view of infinite power
[図 2 ] 笠形ギヤ接続同軸回転連動構造、 無限動力側面全体図 [Figure 2] Coaxial rotation interlocking structure with cog-shaped gear, infinite power side overall view
[図 3 ] 笠形ギヤ接続同軸回転連動構造略図 [Figure 3] Schematic diagram of coaxial rotation interlocking structure with cog-shaped gear connection
[図 1 1 ] 力の配分構造略図, C, A, B, [Fig. 11] Schematic diagram of force distribution structure, C, A, B,
[図 1 2 ] 力の配分構造略図, E, B , D, [Fig. 1 2] Schematic diagram of force distribution structure, E, B, D,
[図 1 ] 正面全体図、 [図 2 ] 側面全体図を、 併せて説明する。 [Figure 1] Front view and [Figure 2] Side view are also explained.
フレーム 3 0に、 インターギヤ 1を固定し、 入力ギヤが、 内接して、 回転 連動し、 共通車軸 8 Bに、 自在に回転し、 推されて回転進行する。 The intergear 1 is fixed to the frame 30, and the input gear is inscribed, rotates and interlocks, freely rotates on the common axle 8B, and is pushed forward to rotate.
増幅ギヤは、 共通車軸 8 Bで、 駆動ギヤに、 連結固定し、 センターギヤ 3 に接続回転連動し、 イン一夕ギヤには、 接続連動せず、 空転して回転進行、 笠形ギヤ 6 5を、 貫通する、 シャフト 6 6は、 共通車軸, 8 A, 8 B , が 貫通する保持リング 6 8で、 固定される。
シャフト 66に、 自在回転する、 笠形ギヤは、 回転方向の異なる、 入力ギ ャと増幅ギヤを、 回転連動し、 接続回転連動する、 ギヤ群 [A, B, ダル —プ] を一対として構築し、 増幅サイクルとなる回転体となる。 The amplifying gear is a common axle 8B, which is connected and fixed to the drive gear, connected to the center gear 3 and linked to rotation. The penetrating shaft 66 is secured by a retaining ring 68 through which the common axle, 8A, 8B, penetrates. The bevel gear, which rotates freely on the shaft 66, is constructed as a pair of gear groups [A, B, D-loop] that rotate and link the input gear and amplification gear, which rotate in different directions, and link and rotate. A rotating body that becomes the amplification cycle.
センターギヤ 3に、 一体固定する、 操作竿 62は、 先端アーム中央部で、 回転操作指示機構の、 シリンダーシャフト 29に、 回転ピンで、 接続連携 し回転操作指示機構の、 回転指示を連動する。 The operation rod 62, which is integrally fixed to the center gear 3, is connected to the cylinder shaft 29 of the rotation operation instructing mechanism at the center of the distal end arm with the rotation shaft of the cylinder shaft 29, and interlocks the rotation instruction of the rotation operation instructing mechanism.
回転体の、 間仕切り壁, 18, 19, 20, は、 座金 48と共に、 通しボ ルト 24が、 貫通して固定し、 一体となる回転体を構築、 全ての回転ギヤ の安定回転と、 中心となる共通車軸 8 A, 8B, の回転を保持する。 両端に位置する、 主力となる、 間仕切り壁の双方に、 中心に回転シャフト を一体固定し、 センタ一ギヤの、 中心を貫通して、 フレームの外に突出し 伝導ギヤ、 を一体固定し、 無限動力 [永久機関] が、 生産する運動エネル ギーを取出し提供する、 動力伝達構造とする。 The partition wall of the rotating body, 18, 19, 20, and the washer 48 together with the washer 48, the through bolt 24 penetrates and is fixed to form an integral rotating body, and stable rotation of all rotating gears and the center The rotation of the common axles 8 A, 8B, is maintained. The rotating shaft is integrally fixed to the center of both the partition walls located at both ends, which is the main force.The transmission gear, which protrudes out of the frame through the center of the center gear, is fixed integrally, and the infinite power [Permanent engine] is a power transmission structure that extracts and provides the kinetic energy it produces.
笠形ギヤによる、 入力ギヤと増幅ギヤの、 回転連動は、 同軸ギヤ構造で、 [3. 2 : 1〜4. 6 : 1] 、 半径比率を実現し、 ギヤ数を減少し、 構造 簡素にする効果となる、 当実施例は、 大小固定ギヤの、 半径比率を、 [4 . 3 : 13 を採用する。 The cooperative gear structure of the input gear and the amplification gear using the cog-shaped gear is a coaxial gear structure [3.2: 1 to 4.6: 1], realizing a radius ratio, reducing the number of gears, and simplifying the structure. This embodiment is effective. The radius ratio of the fixed large and small gears is [4.3: 13].
[図 3] を説明する。 [Fig. 3] is explained.
(B) は、 笠形ギヤ、 接続構造正面略図で、 センタ—ギヤに固定する、 操作竿に、 右方向の、 推力 Wがはたらき、 センターギヤ 3が左回転、 共通 車軸 8 Aを左に推進、 入力ギヤ 5を、 右回転左進行にる。 (B) is a schematic diagram of the front of the bevel gear, connecting structure, which is fixed to the center gear, the rightward thrust W acts on the operating rod, the center gear 3 rotates left, and the common axle 8A propells left, Set the input gear 5 to rotate right and left.
増幅ギヤは、 センターギヤ 3の、 回転圧力で、 右回転となるが、 減速ギヤ のため、 笠形ギヤで回転連動する、 入力ギヤの、 回転力に負けて、 逆転し て左回転し、 減速ギヤ機能が働き、 共通車軸 8 Aの、 進行力が、 増大する 増幅サイクルの、 分解略図で、 図 (A) は、 図 (B) の、 D— D断面の鳥 瞰図である。 The amplifying gear rotates clockwise due to the rotational pressure of the center gear 3, but because of the reduction gear, it rotates counterclockwise with the cog-shaped gear. The function works and the axle axle 8A increases the advancing power. It is an exploded schematic view of the amplification cycle. Fig. (A) is a bird's-eye view of D-D section of Fig. (B).
[図 11] , C, A, B, [図 12] , E, B, D, を説明する。 [FIG. 11], C, A, B, [FIG. 12], E, B, D, will be described.
[図 11] , C, A, B, 分解略図の内 Aは、 センターギヤ 3に、 操作芊 62がー体固定し、 駆動ギヤ 6が接続連動し、 共通車軸 8 Aと、 8B夫々
0 の駆動ギヤ 6に、 回転圧力 W4. 3が、 設定されているから、 操作竿の長 さは、 推力を W1にすると、 W4. 3X2=W8. 6が、 回転圧力になり センタ—ギヤ半径の、 8. 6倍を操作竿の長さとする、 必要となる。[Fig.11], C, A, B, A in the exploded schematic diagram, A is the center gear 3, operation 芊 62 is fixed to the body, drive gear 6 is connected and interlocked, and common axles 8A and 8B Since the rotational pressure W4.3 is set to the drive gear 6 of 0, if the thrust is W1, the length of the operating rod is W4.3X2 = W8.6. 8.6 times the length of the control rod is required.
(B) は、 駆動ギヤ 6に、 左方向の、 回転圧力 W4. 3が働けば、 減速ギ ャとなる、 増幅ギヤ 11に、 回転力 W1と共通車軸 8 Aの、 左進行 W3.(B) shows that when a rotational pressure W4.3 in the left direction is applied to the drive gear 6, the gear becomes a reduction gear.Amplifying gear 11, a rotational force W1 and a common axle 8A, a left traveling W3.
3となるが、 W3. 3は反力 P 3. 3にもなり、 増幅ギヤ 11の、 右回転 反力 P 1ともなる。 W3.3 is also the reaction force P3.3, and the amplification gear 11 is also the clockwise reaction force P1.
(C) は、 インターギヤ 1に、 内接回転連動する、 入力ギヤ 5は、 共通車 軸 8Aの、 W3. 3に推されて、 右回転力 W1. 65を、 笠形ギヤ 67 [ 接続ギヤ] に回転連動する。 (C) is the inscribed rotation interlocking with the intergear 1. The input gear 5 is driven by W3.3 of the common axle 8A, and the right turning force W1.65 is applied to the cog gear 67 [connecting gear]. The rotation interlocks.
[図 12] (D) 増幅ギヤ 11は、 笠形ギヤ 67の連動する、 W1. 6 5に、 右回転 P1は、 押し返されて反転し、 左回転左進行し、 共通車軸 8 Aを、 左回転進行 W5. 45にする。 [Fig.12] (D) The amplifying gear 11 is interlocked with the cog-shaped gear 67. At W1.65, the clockwise rotation P1 is pushed back and flipped, turns left and left, and the common axle 8A Rotation progress W5.
(E) 入力ギヤ 5は、 W5. 45の、 共通車軸 8 Aの推進力に、 推され て回転力は W2. 75に増大し、 増幅ギヤ 11に回転連動するから、 共通 車軸 8 Aの、 推進力を、 W9. 1に増幅する、 増幅サイクルとなり、 又、 共通車軸 8 Bで、 機能するギヤ郡も、 同一機能構造だから、 出力は加算さ れ倍増となる、 増幅構造の無限動力回転体 [永久機関] となる。 Wギヤ接続他軸回転連動構造 (E) The input gear 5 is driven by the propulsive force of the common axle 8 A of W5.45, and the rotational force is increased to W2.75 by the rotation. The propulsion force is amplified to W9.1 and becomes an amplification cycle. The common axle 8B and the functioning gear group also have the same function structure, so the output is added and doubled. [Permanent organization]. W gear connection other shaft rotation interlocking structure
Wギヤ接続構造を、 図面の説明と共に開陳する。 The W gear connection structure will be disclosed together with the description of the drawings.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
[図 4] Wギヤ接続他軸回転連動構造正面全体図 [Figure 4] W gear connected other shaft rotation interlocking structure front overall view
[図 5 ] Wギヤ接続他軸回転連動構造側面全体図 [Fig. 5] W gear connected other shaft rotation interlocking structure side overall view
[図 8] 力の配分分解構造図, C, A, B, [Fig. 8] Exploded structure diagram of force distribution, C, A, B,
[図 9] 力の配分分解構造図, D, E, F, [Fig. 9] Exploded structure diagram of force distribution, D, E, F,
[図 10] 力の配分分解構造図, G, B, [Fig.10] Exploded structure diagram of force distribution, G, B,
[図 4] [図 5] を説明する。 [Fig. 4] [Fig. 5] will be described.
本体フレーム 30に、 固定する、 インタ—ギヤ 1に、 内接回転連動する、
入力ギヤ 5は、 共通車軸、 8A, 8B、 に夫々回転自在に装着する。 To be fixed to the body frame 30, to intergear 1 The input gear 5 is rotatably mounted on the common axle, 8A, 8B.
増幅ギヤ 11は、 駆動ギヤ 6と, 8A, 8B, で、 夫々、 連結固定して、 一体となり、 フレーム 30に、 一体となる、 両側壁 31に固定する、 セン ターギヤ 3に、 接続回転連動し、 [4. 3: 1] の、 減速ギヤ構造となり、 センターギヤ 3は、 回転指示が無ければ作動しない、 固定構造とする。 インターギヤ 1は、 増幅ギヤ 11に、 接続する部分は、 半径を拡大し接続 回転出来ない、 空転する、 C1カット構造とし、 インタ一ギヤ 1と、 セン タ—ギヤ 3の半径比率は、 [4. 3 : 1] を採用する。 The amplifying gear 11 is connected to and fixed to the drive gear 6 and 8A and 8B, respectively, and is integrated. The amplifying gear 11 is integrally fixed to the frame 30 and is fixed to both side walls 31. The reduction gear structure of [4: 3: 1] is adopted, and the center gear 3 has a fixed structure that does not operate unless there is a rotation instruction. The intergear 1 is connected to the amplifying gear 11, and the part connected to the amplifying gear 11 has a larger radius and cannot be rotated. It has a C1 cut structure that cannot rotate. The radius ratio of the intergear 1 and the center gear 3 is [4 3: 1].
此の構造は、 永久機関基礎構造と、 同一基本構造で、 複数の、 間仕切り壁 の内、 中央の、 間仕切り壁 19の、 円心を中心に、 二本のシャフトを固着 し、 シャフトを回転軸に、 2個 1組となり、 接続回転する、 W接続ギヤ 6 1を、 間仕切り壁 19の、 両面に装着、 共通車軸 8Aの、 共通ギヤ 14A と、 共通車軸 8Bの、 共通ギヤ、 15Bを、 接続回転連動させる。 This structure has the same basic structure as the permanent engine basic structure, and two shafts are fixed around the center of the center of the partition wall 19 among the plurality of partition walls. , Connecting and rotating, W connecting gear 61 is attached to both sides of partition wall 19, common axle 8A, common gear 14A and common axle 8B, common gear 15B are connected Rotate and link.
又、 共通車軸 8 Bの、 共通ギヤ、 15Bと、 共通車軸 8 Aの、 共通ギヤ 1 4 Aを、 接続回転連動、 させる事により、 8 Aの入力ギヤ 5と、 8Bの増 幅ギヤ 11が、 回転連動し、 8 Bの入力ギヤ 5と、 8 Aの、 増幅ギヤ 11 が回転連動し、 他方の、 共通車軸で機能する、 入力ギヤ 5と、 増幅ギヤ 1 1が連携して、 増幅構造となる、 他軸ギヤ接続回転構造となる。 Also, the common gear axle 8B, common gear 15B and the common axle 8A common gear 14A are connected and linked to rotate, so that the 8A input gear 5 and 8B amplification gear 11 The input gear 5 of 8B and the amplifying gear 11 of 8A are rotated and linked, and the other input gear 5 and the amplifying gear 11 functioning on a common axle cooperate with each other. The other shaft gear connection rotation structure is obtained.
[図 8] 力配分分解構造図、 を説明する。 [FIG. 8] An exploded structural view of the power distribution will be described.
(A) は、 センターギヤ 3に、 操作竿 62の推力 Wが、 作動したときの、 Wの伝導方向をしめす。 (A) shows the conduction direction of W when the thrust W of the operating rod 62 operates on the center gear 3.
(B) は、 増幅ギヤ 11が、 [4. 3: 1] の、 駆動ギヤ 6と、 減速ギヤ 構造となり、 センタ—ギヤ 3に、 接続回転する、 構造略図で、 センタ—ギ ャ 3の左回転力、 W4. 3に設定すれば、 駆動ギヤ 6は、 共通車軸 8 A推 進力 W3. 3と、 増幅ギヤ 11の、 回転力 W1に、 配分するが、 共通車軸 8 Aの静止力で、 増幅ギヤ 11は、 右回転し反力 P 1が生じる。 (B) is a schematic diagram of the structure in which the amplification gear 11 has a drive gear 6 and a reduction gear structure of [4.3: 1], and is connected to the center gear 3 for rotation. The left side of the center gear 3 is shown. If the torque is set to W4.3, the drive gear 6 will be distributed to the common axle 8A thrust W3.3 and the amplifying gear 11 to the torque W1, but with the static force of the common axle 8A. The amplifying gear 11 rotates clockwise to generate a reaction force P1.
(C) は、 インターギヤ 1に、 内接回転連動する、 入力ギヤ 5が、 共通車 軸 8 Aの、 W3. 3に推されて、 右回転、 左進行し、 回転力 W1. 65を、 共通ギヤ 15 Bに、 回転連動して、 W接続ギヤ 61が、 共通ギヤ 14 Aに、
[図 9 ] (D) 、 で接続回転連動し、 共通ギヤ 1 4 A回転力 W l . 6 5を、 (E) で、 共通車軸 8 Bで連結する、 減速ギヤの、 増幅ギヤ 1 1に回転連 動、 駆動ギヤ 6は、 センタ—ギヤ 3に接続、 回転進行するから、 減速機能 が働き、 共通車軸 8 Bの推進力を、 W5. 4 5に増大する。 (C) shows that the input gear 5, which is in-rotated with the inter-gear 1, is driven to the right axle, W3.3 of the common axle 8A, and proceeds rightward and leftward to generate the torque W1.65. Rotationally linked to common gear 15 B, W connection gear 61 becomes common gear 14 A, [Fig. 9] (D), the connection and rotation are linked, and the common gear 14 A rotational force W l.65 is connected with the common axle 8 B in (E). The rotation linkage and the drive gear 6 are connected to the center gear 3 and rotate, so that the deceleration function works, and the propulsive force of the common axle 8B is increased to W5.45.
(F) の、 インターギヤ 1に、 内接回転連動し、 共通車軸 8 Bに、 自在回 転する、 入力ギヤ 5は、 増大した W 5. 4 5の、 推進力に推されて、 回転 進行し、 回転力 W2. 7を、 共通ギヤ 1 4 Aに回転連動する。 (F), the input gear 5 that rotates indirectly with the inter-axle 1 and interlocks with the intergear 1 and rotates freely on the common axle 8B, is driven by the increased propulsion force of W5.45 Then, the rotational force W2.7 is rotationally linked to the common gear 14A.
[図 1 0 ] (G) 、 共通車軸 8 Aで機能する、 共通ギヤ 1 4 Aは、 W接続 ギヤ 6 1を連動、 共通ギヤ 1 5 Bに、 W2 . 7の、 回転圧力となり、 接続 回転する、 共通車軸 8 Aに、 連結固定して、 減速ギヤ構造となる、 増幅ギ ャ 1 1を、 接続回転するから、 共通車軸 8 Aの、 回転推進力は、 W9. 0 7に増幅する、 共通車軸 8 Aを、 中心とするギヤ群の、 増幅サイクルを分 解して説明したが、 共通車軸 8 Bを、 中心として、 回転連動するギヤ群も、 全く同一の、 機能構造だから、 共通車軸、 8 A, 8 Bの、 回転推進力は加 算、 出力数値は倍増する、 Wギヤ接続連動回転体 [永久機関] となる。 偏心衛星ギヤ接続回転連動構造 [Fig. 10] (G), common gear axle 8 A functioning, common gear 14 A interlocks W connection gear 61, common gear 15 B has W2.7 rotation pressure, connection rotation Connected to the common axle 8A and fixed and connected to the amplifying gear 11 which forms a reduction gear structure.The rotation propulsion of the common axle 8A is amplified to W9.07. Although the amplification cycle of the gear group centered on the common axle 8A has been described, the gear group that rotates and interlocks with the common axle 8B as the center has exactly the same functional structure. , 8 A, 8 B, the rotational propulsion is added, and the output value is doubled. Eccentric satellite gear connection rotation interlocking structure
既に開陳した、 笠形ギヤ接続同軸構造及び、 Wギヤ接続他軸構造は、 共 に大小固定ギヤの半径比率が、 回転体構造を支配し、 回転ギヤの大小が、 決定されてきた。 In the coaxial structure with a gear-shape connection and the other shaft structure with a W gear, which have already been disclosed, the radius ratio of the large and small fixed gears dominate the structure of the rotating body, and the size of the rotating gear has been determined.
回転出力の、 増大を望めば、 回転構造の主力ギヤ、 入力ギヤと、 増幅ギヤ の半径が拡大し、 接続回転は困難で、 ギヤ数が増える構造となる。 If it is desired to increase the rotational output, the radius of the main structure gear, input gear and amplifying gear of the rotating structure will be enlarged, and the connection rotation will be difficult and the number of gears will increase.
偏心衛星ギヤの、 考案採用により、 減速ギヤの、 半径比率を、 自由に設定 センタ—ギヤと、 インターギヤの、 半径比率、 駆動ギヤと、 増幅ギヤの、 半径比率を、 夫々, [ 1 : 3. 3〜1 : 8 ] に選択設定可能となる。 By devising the eccentric satellite gear, the radius ratio of the reduction gear can be set freely. The radius ratio of the center gear, the inter gear, the radius ratio of the drive gear and the amplification gear can be set to [1: 3]. 3-1: 8] can be selected and set.
此の構造は、 出力の、 目的、 規模に合せて、 増幅構造ギヤ比率を、 最初に 選択決定し、 駆動ギヤ, 増幅ギヤ, 入力ギヤ、 夫々の半径を、 決定する、 出力優先の構造となる。 This structure is an output-first structure that first selects and determines the amplification structure gear ratio according to the purpose and scale of the output, and determines the radius of the drive gear, amplification gear, and input gear. .
他方の、 共通車軸、 8 A, 8 B , に入力ギヤと、 増幅ギヤが、 夫々分離し
て機能する、 双方の、 増幅サイクル構造の、 主力ギヤが、 直接接続回転連 動する、 他軸ギヤ回転構造となり、 接続ギヤ, 共通ギヤの、 必要がなく、 ギヤの数が減少し、 出力を増大する効果を生じた。 図面の簡単な説明 On the other hand, the input gear and the amplifying gear are separated from the common axle, 8A, 8B, respectively. The main gear of both amplifying cycle structures is directly connected and rotationally driven, and has another shaft gear rotating structure, eliminating the need for connecting gears and common gears, reducing the number of gears and reducing output. Produced an increasing effect. BRIEF DESCRIPTION OF THE FIGURES
[図 13] 偏心衛星ギヤ接続他軸回転連動構造、 正面図 [Figure 13] Eccentric satellite gear connection and other shaft rotation interlocking structure, front view
[図 14 ] 偏心衛星ギヤ接続他軸回転連動構造、 側面図 [Figure 14] Eccentric satellite gear connection and other shaft rotation interlocking structure, side view
[図 15] 偏心衛星ギヤ接続構造、 力配分構造略図、 B, A, C, [図 16] 偏心衛星ギヤ分解構造略図 D, C, B, A, [Fig.15] Eccentric satellite gear connection structure, schematic diagram of force distribution structure, B, A, C, [Fig.16] Eccentric satellite gear disassembly schematic diagram D, C, B, A,
[図 17] 偏心衛星ギヤ接続回転連動略図 [Fig.17] Schematic diagram of eccentric satellite gear connection rotation
[図 13] , [図 14] は、 フレーム 30に固定する、 インタ一ギヤ 1、 センターギヤ 3は、 永久機関の基本構造と同一である。 [Fig. 13] and [Fig. 14] are fixed to the frame 30, and the inter-gear 1 and the center gear 3 are the same as the basic structure of the permanent engine.
センターギヤ 3を、 インタ—ギヤで内接し、 アウトギヤで駆動ギヤに外接 する、 二重構造となる、 偏心衛星ギヤの、 接続回転により、 機能構造は大 きく変化する。 The center gear 3 is inscribed by an inter-gear and is circumscribed by an out-gear to the drive gear.
入力ギヤ 5と、 増幅ギヤ 11が、 8A, 8Bの、 共通車軸に分離して、 双 方が直接、 接続回転連動するから、 接続ギヤ、 共通ギヤがなく、 回転連動 する、 増幅サイクル構造となる。 The input gear 5 and the amplifying gear 11 are separated into common axles, 8A and 8B, and both are directly connected and rotated, so that there is no connected gear and common gear, and the rotation is interlocked. .
[図 15] (A) は, 8 Bの入力ギヤ 5と、 8 Aの増幅ギヤ 11、 が接続 回転して、 増幅サイクル構造となり、 8 Aの、 入力ギヤ 5と、 8Bの増幅 ギヤ 11が接続回転して、 増幅サイクル構造となる。 [Fig.15] In (A), the input gear 5 of 8 B and the amplification gear 11 of 8 A are connected and rotated to form an amplification cycle structure, and the input gear 5 of 8 A and the amplification gear 11 of 8B are connected. The connection is rotated to form an amplification cycle structure.
(B) は、 8Aの入力ギヤ 5と、 8Bの増幅ギヤ 11の、 接続回転を示し (B) shows the connection rotation of the input gear 5 of 8A and the amplification gear 11 of 8B.
(C) は、 8Aの増幅ギヤ 11と、 8Bの入力ギヤ 5の、 接続回転を示す センターギヤ 3を、 内歯ギヤで、 接続する、 偏心ギヤ 16Aは、 外歯ギヤ で、 8 Aの駆動ギヤ 6に、 接続回転する。 (C) connects the center gear 3 indicating the connection rotation of the 8A amplification gear 11 and 8B input gear 5 with the internal gear, and the eccentric gear 16A is the external gear and drives 8 A Connect and rotate to gear 6.
偏心ギヤ 16A, 16Bは共に、 内歯ギヤが、 センタ—ギヤ 3に、 嚙合い 接続流転するが、 回転連動はしない構造となり、 駆動ギヤ 6は、 外歯ギヤ に、 嚙み合い接続して回転進行する。 Both the eccentric gears 16A and 16B have a structure in which the internal gear is connected to the center gear 3 and connected, but does not rotate, and the drive gear 6 is meshed and connected to the external gear and rotated. proceed.
駆動ギヤ 6は、 偏心衛星ギヤ 16の、 遠外周接点で、 常に一定して嚙合い
接続回転する事が要求され、 回転数の合致が、 絶対条件となる。 The drive gear 6 is a distant and peripheral contact point of the eccentric satellite gear 16 and is always in constant contact. Connection rotation is required, and the match of rotation speed is an absolute condition.
偏心ギヤ 16は、 間仕切り壁に嵌め込まれ、 保持され空転して、 共に進行 するから、 構造上変化しないが、 インタ一ギヤ 1から、 入力ギヤ 5〜増幅 ギヤ 1 1〜偏心ギヤ 16の、 回転数が不一致は、 回転不能となる。 Since the eccentric gear 16 is fitted into the partition wall, held, idles, and advances together, the structure does not change, but the rotational speed of the inter-gear 1, the input gear 5, the amplification gear 11, and the eccentric gear 16 is not changed. If they do not match, rotation is impossible.
[実施例は大小固定ギヤの半径比率、 5 1を採用] し、 半径を運動量、 (回転量数値) で表す] [図一 17] 参照。 [In the embodiment, the radius ratio of the large and small fixed gears, 51, is used], and the radius is expressed by the momentum, (the amount of rotation). [See Fig. 17]
インターギヤ 1 (60) , 入力ギヤ 5 (32) , 増幅ギヤ 11 (24) 駆動ギヤ 6 (4. 2) , [増幅ギヤ 1 1 駆動ギヤ 6半径比率は、 (5 : 1) センターギヤ 3 (7. 5) , 偏心ギヤ 16 (外歯〜; 17. 6、 内歯 1 3. 1) 、 内外差〜 4. 5 (肉厚 } 偏心差〜 (5. 6) Inter gear 1 (60), input gear 5 (32), amplifying gear 11 (24) driving gear 6 (4.2), [amplifying gear 1 1 driving gear 6 radius ratio is (5: 1) center gear 3 ( 7.5), eccentric gear 16 (external teeth ~; 17.6, internal teeth 13.1), internal / external difference ~ 4.5 (wall thickness) eccentric difference ~ (5.6)
入力ギヤ一回転数 1. 875回 32X 1, 875 = 60 増幅ギヤ、 回転数 2. 5回 24X2. 5 = 60 Input gear 1 revolution 1.875 times 32X 1, 875 = 60 Amplification gear, number of revolutions 2.5 5 24X2.5 = 60
駆動ギヤ、 回転数 2. 5回 4. 8X2. 5=12 共通車軸、 センタ—ギヤ心、 心距離 60— 32 = 28 Drive gear, number of rotations 2.5 times 4.8 x 2.5 = 12 Common axle, center gear center, center distance 60-32 = 28
偏心ギヤ遠外周接点 (対駆動ギヤ) 28— 4. 8 = 23. 2 偏心差 +アウトギヤ (外周ギヤ) 5. 6 + 17. 6 = 23. 2 アウトギヤ (外周部) —偏心差 17. 6-5. 6 = 12 近外周接点一センターギヤ +偏心ギヤ一内外差 · 7. 5 + 4. 5 = 12 偏心ギヤ 16は、 センターギヤ 3を、 接続、 回転せず流転して、 外歯ギヤ が、 駆動ギヤ 6に外接連動し、 回転量 [センターギヤ (7. 5) + (4. 5) 偏心ギヤ肉厚] は、 (12) となる。 Eccentric gear outer / outer contact point (to drive gear) 28—4.8 = 23.2 Eccentricity difference + Out gear (outer peripheral gear) 5.6 + 17.6 = 23.2 Out gear (outer peripheral part) —Eccentricity difference 17.6- 5.6 = 12 Near and outer peripheral contact one center gear + eccentric gear one inner and outer difference7.5 + 4.5 = 12 Eccentric gear 16 connects the center gear 3 and flows without rotating, and the external gear The rotation amount [center gear (7.5) + (4.5) eccentric gear thickness] is circumscribed to the drive gear 6 and becomes (12).
駆動ギヤ 6 (4. 8) X2. 5回転 = (12) となり、 連結する増幅ギヤ 1 1 (24) X2. 5回転 = (60) 、 回転量比率 1 : 5となる。 Drive gear 6 (4.8) X2.5 rotations = (12), and the connected amplifying gear 1 1 (24) X2.5 rotations = (60), and the rotation amount ratio 1: 5.
インターギヤ 1 (60) に、 回転連動する、 入力ギヤ 5 (32) は、 1. 875回転して、 一周するから、 運動量は (60) となり、 増幅ギヤ 1 1 の運動量 (60) に合致、 回転連動して増幅サイクル構造となる。 The input gear 5 (32), which rotates and interlocks with the intergear 1 (60), rotates 1.875 revolutions and makes one revolution, so the momentum becomes (60), which matches the momentum (60) of the amplification gear 11 An amplification cycle structure is formed in conjunction with rotation.
偏心ギヤ 16と、 駆動ギヤ 6との接点が、 遠外周部分 (23. 2) となり、 駆動ギヤ 16 (4. 8) を、 加えると、 センターギヤ 3と、 駆動ギヤ 6の、 心、 心、 距離 (28) となる。
偏心ギヤ 16は、 拡大した距離間隔を埋め、 センタ—ギヤに、 接続して回 転せず、 固定ギヤ機能となり流転、 駆動ギヤ 6に嚙合い接続する。 The contact point between the eccentric gear 16 and the drive gear 6 becomes the far outer peripheral portion (23.2). When the drive gear 16 (4.8) is added, the center of the center gear 3 and the drive gear 6 Distance (28). The eccentric gear 16 fills the enlarged distance interval, does not rotate by being connected to the center gear, serves as a fixed gear function, and is connected to the running and drive gear 6.
減速構造となる、 駆動ギヤ 6と、 増幅ギヤ 11に、 入力ギヤ 5が接続回転 連動し、 間仕切り壁に保持され、 センターギヤ 3に、 内歯ギヤが、 嚙み合 い接続する、 偏心ギヤ 16の遠外周部分で、 駆動ギヤと、 常に一定の接続 接点、 同じ運動量 [回転量] を保持し、 増幅サイクル構造となる。 The input gear 5 is connected to the drive gear 6 and the amplifying gear 11 to form a reduction gear, and the input gear 5 is connected and rotated.The eccentric gear 16 is connected to the center gear 3 and the internal gear is meshed with the center gear 3. In the outer peripheral part of the, the drive gear, the constant connection contact, and the same momentum [rotation amount] are maintained, forming an amplification cycle structure.
此の、 回転構造は、 実施例が示す様に、 減速ギヤ構造となる、 増幅ギヤ 1 1と、 駆動ギヤ 6の、 半径比率 [3. 3; 1—8: 1] 迄を、 自由に選択 する、 出力優先の構造となり、 次の様な算出方式が成立する。 Here, as shown in the embodiment, the rotating structure has a reduction gear structure. The radius ratio of the amplifying gear 11 and the driving gear 6 can be freely selected up to the radius ratio [3.3; 1-8: 1]. Therefore, the output priority is given and the following calculation method is established.
フレームに固定する、 インタ—ギヤに、 同一共通車軸で、 共に機能して、 接続回転連動の、 回転ギヤ [入力ギヤ] と、 接続連動しない、 若干小半径 の [増幅ギヤ] は、 連結固定する、 共通車軸と、 両端の駆動ギヤが一体と、 なる、 減速ギヤ構造となり、 駆動ギヤが、 両側壁に固定する、 センタ—ギ ャに接続回転連動する。 To be fixed to the frame, to the inter-gear, to the same common axle, to work together, to connect and rotate the rotating gear [input gear], which is connected and linked, and the [amplifying gear] with a slightly smaller radius that is not connected and linked The common axle and the drive gears at both ends are integrated into a single reduction gear structure. The drive gears are fixed to both side walls and connected to the center gear for rotation.
最初に、 減速ギヤ構造の、 増幅ギヤ 11と、 駆動ギヤ 6の半径比率、 [当 実施例では 5: 1を採用] を目的、 出力により設定する。 First, the radius ratio between the amplifying gear 11 and the driving gear 6 in the reduction gear structure is set according to the output, with the objective of adopting 5: 1 in this embodiment.
インターギヤ 1 (60) に、 入力ギヤ 5 (60) が、 接続、 回転連動して、 入力ギヤ 5に連動する、 増幅ギヤ 11 (60) も、 同じ回転量となる。 従って、 増幅ギヤ 11 (60) と、 [5: 1] の、 半径比率となる、 駆動 ギヤ 6の、 回転量 [運動量] (12) となり、 駆動ギヤ 6は、 流動回転す る部分 (11. 2) が大きい事を意味する。 The input gear 5 (60) is connected and interlocked with the intergear 1 (60), and the input gear 5 is interlocked with the input gear 5. The amplifying gear 11 (60) also has the same amount of rotation. Therefore, the amount of rotation [momentum] (12) of the drive gear 6, which is a radial ratio of the amplification gear 11 (60) and [5: 1], is obtained. 2) means greater.
偏心衛星ギヤ 16は、 流動回転する部分を調整する機能構造となる。 The eccentric satellite gear 16 has a functional structure for adjusting a portion that rotates and rotates.
偏心ギヤ 16は、 回転軸のない、 二重構造の、 リング構造となり、 間仕切 り壁に保持され、 自在に回転して、 センタ—ギヤ 3に、 接続流転する。 偏心ギヤ 16は、 内面を、 インタ—ギヤ [内歯ギヤ] とし、 外面をアウト ギヤ [平ギヤ] とし、 内面, 外面, の回転量の差が、 偏心ギヤ 16の本体The eccentric gear 16 has a double structure, a ring structure without a rotating shaft, is held by a partition wall, rotates freely, and is connected to the center gear 3 to rotate. The inner surface of the eccentric gear 16 is an inter-gear [internal gear], the outer surface is an out-gear [spur gear], and the difference in the amount of rotation between the inner and outer surfaces is the main body of the eccentric gear 16.
[肉厚] となり、 固定センタ一ギヤ 3と、 内歯ギヤ [インタ一ギヤ] が、 嚙合う接続接点で、 偏心ギヤ 16は、 回転しない固定機能となる。 [Thickness], the fixed center single gear 3 and the internal gear [inter single gear] are mating connection contacts, and the eccentric gear 16 has a fixed function that does not rotate.
センタ—ギヤ 3 (7. 5) の半径と、 偏心ギヤ 16の内外差 (4. 5) 肉
厚を、 加算した数値 (12) が、 偏心ギヤ 16の、 近外周接点距離となり、 駆動ギヤ 6と、 接続する接点が、 遠外周接点距離 (23. 2) となり、 此 の距離から、 近外周接点距離 (12) を、 差引く数値が、 流動部分 (11 . 2) の回転量となり、 2分すると、 偏心差 (5. 6) になる。 The radius of the center gear 3 (7.5) and the difference between the inside and outside of the eccentric gear 16 (4.5) The numerical value (12) obtained by adding the thickness becomes the near and outer contact distance of the eccentric gear 16, and the contact connected to the drive gear 6 becomes the far and outer contact distance (23.2). From this distance, the near and outer contact The value obtained by subtracting the contact distance (12) is the amount of rotation of the flowing part (11.2), and if it is divided into two, the eccentricity difference (5.6) is obtained.
[図 15] 偏心衛星ギヤ接続、 力配分構造略図 B, A, C, を説明する。 [Fig.15] Schematic diagrams of the eccentric satellite gear connection and force distribution structure B, A, C are explained.
(A) は、 センターギヤ 3の、 半径 X I 0倍の、 一体固定する、 操作竿に、 右方向 W 3の推力が働くと、 センタ—ギヤの、 左回転 W 30になり、 2個 の偏心ギヤに、 夫々左回転 W15の回転圧力ににする。 (A): When the thrust in the right direction W3 is applied to the control rod, which is integrally fixed to the center gear 3 and has a radius of XI 0 times, the right rotation W30 of the center gear, the center gear 3 turns W30 and two eccentrics The gears are rotated counterclockwise to W15 respectively.
偏心ギヤ 16は、 遠外周接点で、 8 A駆動ギヤ 16に、 左回転 W5となる 回転圧力となり、 W5は、 共通車軸 8 Aの、 左進行力 W4と、 増幅ギヤ 1 1の右回転力 W 1に配分する。 The eccentric gear 16 is a distant and peripheral contact point, and the 8 A drive gear 16 has a rotational pressure of a left rotation W5, and W5 is a left advancing force W4 of the common axle 8A and a right rotational force W of the amplifying gear 11. Distribute to 1.
又、 同時に、 共通車軸 8 Bに働く、 推進力 W4で、 インターギヤ 1に、 接 続、 回転する、 入力ギヤ 5は、 W4の推進力に、 右回転左進行、 回転力 W 2が、 増幅ギヤ 11の、 右回転 W1に、 勝るから、 増幅ギヤ 11は逆転、 反転し :、 左回転左進行して、 推進力 W4を加算 [ (B) 参照] する、 増 幅サイクル構造となり、 接続連動する回転ギヤ群 Aグループとなる。 At the same time, the common axle 8B acts on the common axle 8B, with the propulsion force W4, connects and rotates to the inter-gear 1, the input gear 5 applies the propulsion force of the W4, the right-hand rotation to the left, and the torque W2 amplifies. Since the gear 11 is superior to the clockwise rotation W1 of the gear 11, the amplifying gear 11 reverses and reverses: the counterclockwise rotation proceeds to the left and the propulsion force W4 is added [see (B)]. Rotating gear group A group.
(B) 全く同一構造の、 回転ギヤ群、 Bグループが、 共通車軸 8 Bを中心 に、 増幅サイクル構造の、 A, B, 両グループが相互に働き増幅する。 (B) The rotating gear group and the B group, which have exactly the same structure, amplify and work together with the amplifying cycle structure, A and B, around the common axle 8B.
(C) 8Bの、 増幅ギヤ 11で、 増幅した推進力 W 8で、 入力ギヤ 5を推 進するから、 入力ギヤの、 回転力が増大して、 再度 8Aの増幅ギヤに働く、 増幅過程を反復繰返す増幅構造 [永久機関] となる。 (C) Since the input gear 5 is propelled by the amplified propulsive force W 8 by the amplification gear 11 of 8B, the torque of the input gear is increased, and the amplification process that acts on the amplification gear of 8A again is performed. It becomes an amplifying structure [permanent engine] that repeats repeatedly.
[図 16] 偏心衛星ギヤ構造分解略図、 D, C, B, A, を説明する。 [Fig.16] The exploded schematic diagram of the eccentric satellite gear structure, D, C, B, A, is explained.
(D) は、 偏心衛星ギヤ本体部分、 L一 L, 正面で、 内面をインターギヤ 外面を平ギヤの、 二重構造リングギヤで、 ギヤ本体に回転軸がない。 (D) is an eccentric satellite gear body, L-L, front, a double-structured ring gear with an inner surface as an inter-gear and an outer surface as a flat gear. The gear body has no rotating shaft.
(C) M— Mは、 間仕切り壁に嵌め込まれ、 保持され、 自在回転する回転 軸の機能構造になる。 (C) M—M is a functional structure of a rotating shaft that is fitted, held, and freely rotates in the partition wall.
(B) 、 P— P断面は、 センタ—ギヤ 3を、 内周インターギヤで、 接続回 転する、 二個の偏心ギヤ 16が、 遠外周接点で、 8 Aの駆動ギヤ 6と、 8 Bの駆動ギヤ 6に、 夫々嚙み合い、 接続回転連動する、 構造となる。
(A) 、 O— O断面で、 間仕切り壁 2 0, 2 1, に、 M— Mが嵌め込まれ 保持されて自在に回転し、 内面インタ—ギヤが、 センタ—ギヤ 3に夫々 内接回転連動し、 遠外周接点で、 駆動ギヤ 6に夫々接続回転連動する。 センターギヤ 3を内接し、 共通車軸 8 A, 8 B, の、 駆動ギヤ 6に外接 する二個の偏心ギヤ 1 6は、 回転圧力を伝達、 8 Aの入力ギヤ 5と 8 B の増幅ギヤ 1 1が、 接続回転連動して、 増幅サイクル構造となり、 同時 に 8 Bの入力ギヤ 5と、 8 Aの増幅ギヤ 1 1が、 接続回転連動して、 増 幅サイクルとなり、 二個の偏心ギヤ 1 6が伝達する、 回転圧力は、 双方 の増幅サイクルに起動力となって働き、 センタ—ギヤの回転圧力を、 続 ければ永久回転する、 偏心衛星ギヤ接続無限動力 [永久機関] 。 遊星インタ—ギヤ (Uギヤ) 接続回転構造 (B), P--P section shows the center gear 3 connected and rotated by the inner inter-gear, two eccentric gears 16 are the far and outer contacts, 8 A drive gear 6 and 8 B The gears are engaged with the drive gear 6 and connected to the rotation. (A) In the O-O cross section, M-M is fitted into the partition walls 20 and 21 and held and rotated freely, and the inner inter-gear is linked to the center gear 3 for inscribed rotation. Then, the outer and outer peripheral contacts are connected to the drive gear 6 for rotation. The two eccentric gears 16 that inscribe the center gear 3 and circumscribe the drive gear 6 of the common axles 8 A and 8 B transmit rotational pressure, the input gear 5 of 8 A and the amplification gear 1 of 8 B 1 is connected to the connection rotation to form an amplification cycle structure. At the same time, the 8 B input gear 5 and 8 A amplification gear 11 are connected to the connection rotation to form an amplification cycle, and two eccentric gears 1 The rotational pressure transmitted by 6 acts as a starting force for both amplification cycles, and the rotational pressure of the center gear, followed by permanent rotation, is connected to an eccentric satellite gear infinite power [permanent engine]. Planetary gear (U gear) connection rotation structure
既に特許申請した、 5項目の、 無限動力 [永久機関] は、 出力の増大を図 り、 大小固定ギヤの、 直径比率を高めれば、 固定センタ—ギヤの半径は小 さく、 増幅構造の主力、 増幅ギヤと、 入力ギヤの半径は拡大、 為に一本の 共通車軸を、 中心に、 構成 [マニアル] [同軸又は他軸] する、 増幅サイ クルグループは、一マニアルー [一極] が、 原則であった。 The infinite power [permanent engine] of 5 items, which has already been patented, aims to increase the output, and if the diameter ratio of the large and small fixed gears is increased, the radius of the fixed center-gear is small, The radius of the amplifying gear and the input gear are enlarged, so that one common axle is centered around [manual] [coaxial or other axle]. In principle, the amplifying cycle group has one manifold [one pole]. Met.
遊星インターギヤ (Uギヤ) の採用は、 回転体の、 中心を貫通する、 動力 伝導シャフト [Aシャフト] と、 Aシャフトが、 貫通する、 空転統一共通 ギヤを実現、 増幅ギヤと、 入力ギヤの半径を、 著しく縮小可能にした。The adoption of planetary intergear (U gear) realizes the power transmission shaft [A shaft] that penetrates the center of the rotating body, and the A shaft penetrates, realizes unified idling common gear, amplification gear, and input gear The radius has been significantly reduced.
Uギヤの、 接続回転連動により、 接続回転構造を単純にして、 ギヤ数を減 少、 出力を増大する効果と、 1マニアルー 2極構造を実現した。 By connecting the U gear to the connection rotation, the connection rotation structure has been simplified, reducing the number of gears and increasing the output, and achieving a one-manifold two-pole structure.
1マニアルー 2極構造は、 2マニアルー 4極構造等、 多極構造の、 道を拓 く、 基礎構造となる。 図面の簡単な説明 The one-manifold two-pole structure is a basic structure that opens the way to multi-pole structures such as the two-manifold four-pole structure. BRIEF DESCRIPTION OF THE FIGURES
[図 1 8 ] 、 [E— E断面図] 遊星インターギヤ (Uギヤ) 4極正面図 [図 1 9 ] 、 [F— F断面図] 遊星インタ—ギヤ (Uギヤ) 4極側面図 [図 2 0 ] 、 遊星インタ—ギヤ (Uギヤ) 力配分構造略図、 A, B , C,
[図 21] 、 遊星インターギヤ (Uギヤ) 組合せ構造略図、 D, E, F, [図 22] 、 ギヤ接続回転力配分分解略図 [Fig. 18], [E-E cross-section] Planetary intergear (U gear) 4 pole front view [Fig. 19], [FF-F cross-section] Planetary intergear (U gear) 4 pole side view [ [Fig. 20], Schematic diagram of planetary intergear (U gear) force distribution structure, A, B, C, [Fig.21], Schematic diagram of planetary inter-gear (U gear) combination structure, D, E, F, [Fig.22], Exploded schematic diagram of gear connection torque distribution
[図 18, 図 19] から、 説明、 フレーム 30には、 内面に、 固定する 1 Kギヤと、 僅少作動する 1Yギヤと、 2種類の、 インターギヤがあり、 フ レーム 30の中心を、 動力伝導シャフト 25が、 貫通し、 シャフト 25が 貫通する、 統一共通ギヤ 16が装着される。 From [Fig. 18 and Fig. 19], the explanation, The frame 30 has 2 types of inter gears, 1K gear fixed on the inner surface, 1Y gear which operates slightly, and the center of the frame 30 The unified common gear 16 through which the transmission shaft 25 penetrates and the shaft 25 penetrates is mounted.
遊星インターギヤ (Uギヤ) 、 採ほの、 最大の理由は、 増幅構造回転体を 構成する、 回転ギヤ群が、 大小固定ギヤの、 直径比率に、 支配される事な く目的、 規模により、 自由に直径比率 [3: 1-8: 1] を、 選択設定す る出力優先構造回転体となることにある。 Planetary intergear (U gear), the main reason for adoption, is that the rotating gear group that composes the amplifying structure rotating body is not controlled by the diameter ratio of the large and small fixed gears, but depends on the purpose and scale. The output-priority structure rotator can freely select and set the diameter ratio [3: 1-8: 1].
自由に、 統一共通ギヤの直径を決定、 [1Kギヤ, 1Yギヤ, の直径一共 通ギヤ直径 ÷ 2 =入力ギヤ又は増幅ギヤの直径] の算定方式となる。 共通車軸 8A, 8Bに、 夫々、 自在回転する入力ギヤ 5は、 1Kギヤに内 接、 回転連動し、 共通ギヤ 16に、 夫々接続回転連動する。 Freely determine the diameter of the unified common gear, and calculate the diameter of [1K gear, 1Y gear, diameter of common gear ÷ 2 = diameter of input gear or amplification gear]. The input gear 5, which rotates freely on the common axles 8A and 8B, respectively, is inscribed and rotates with the 1K gear, and is connected and rotates with the common gear 16, respectively.
増幅ギヤ 11は、 共通車軸で連結一体となる、 駆動ギヤ 6と、 減速ギヤ構 造となり、 シャフト 25に自在回転する、 共通ギヤ 16に、 接続回転連動 し、 フレーム 30に空転する、 間仕切り壁 56に、 一体の、 Uギヤ 57は センターギヤ 3と、 駆動ギヤ 6を、 内接して嚙合い連動流転する。 The amplifying gear 11 is integrally connected with a common axle. The drive gear 6 and the reduction gear structure have a reduction gear structure. The amplifying gear 11 freely rotates on a shaft 25. In addition, the integral U gear 57 inscribes the center gear 3 and the drive gear 6 so as to interlock and flow.
センターギヤ 3の近内周接点では、 固定し、 遠内周部分は流転する。 増幅ギヤ 11が、 回転接続する、 1Yギヤの外周に、 1又は、 数個の突起 体 58を固定し、 フレーム 30に、 突起体が、 左右に作動する、 作動室空 間を構築、 突起体を誘導シャフト 60が貫通し、 作動室にシャフト 60が 保持する、 圧縮体 [スプリング, 硬質ゴム, シリンダー等] を装着し、 増 幅ギヤ 11の、 回転圧力を蓄積して、 反発力に換える構造となる。 At the near inner peripheral contact point of the center gear 3, it is fixed, and the far inner peripheral part flows. The amplifying gear 11 is rotatably connected. 1 or several projections 58 are fixed on the outer periphery of the 1Y gear, and the projections are operated left and right on the frame 30. A compression body [spring, hard rubber, cylinder, etc.] is attached to the guide shaft 60 that penetrates the working chamber and holds the shaft 60 in the working chamber, and the rotational pressure of the amplifying gear 11 is accumulated to convert it into repulsive force. Becomes
センターギヤ 3に、 一体固定する、 操作竿 62の、 先端部に固着する、 ォ ームギヤ V71が、 オームギヤ 7に、 回転作動し、 連結するオームギ ヤシャフト 72が、 回転操作指示装置に連動する。 The worm gear V71, which is integrally fixed to the center gear 3 and is fixed to the tip of the operation rod 62, rotates to the ohm gear 7, and the ohm gear shaft 72 to be connected is linked to the rotation operation instruction device.
[図 20] (A) は、 1Yギヤに、 内接回転する、 増幅ギヤ 11と、 減速 ギヤ構造となる、 駆動ギヤ 6に、 遊星インターギヤ 57の、 左流転進行圧
で、 駆動ギヤ 3を左方向に、 推進する。 [Fig.20] (A) shows the left-hand flow progression pressure of 1Y gear, inscribed rotation, amplifying gear 11 and reduction gear structure, drive gear 6 and planetary intergear 57 Then, drive the gear 3 to the left.
センターギヤ 3の半径、 X 5倍の、 長さの操作竿を、 一体固定して、 回転 圧力 W2 0の、 右方向の推力を加えると、 センタ—ギヤ 3、 の回転力は、 W 1 0 0となり、 双方の、 遊星インターギヤ 3 [Uギヤ 3と呼称] の、 夫 々に働く回転圧力 W5 0は、 各々駆動ギヤ 6に、 回転圧力 W 1 5となる。 駆動ギヤ 6に働く、 Uギヤ 3の、 回転圧力 W 1 5は、 増幅ギヤ 1 1に左回 転力 W3と、 共通車軸 8 Aの、 左推進力 W 1 2に配分される。 When a control rod with a radius X 5 times the length of the center gear 3 is fixed together and a thrust in the right direction with a rotational pressure of W20 is applied, the rotational force of the center gear 3 becomes W10. The rotation pressure W50 of each of the planetary intergear 3 [referred to as the U gear 3] becomes 0 and the rotation pressure W15 of the drive gear 6 respectively. The rotational pressure W 15 of the U gear 3 acting on the drive gear 6 is distributed to the left rotation force W 3 of the amplification gear 11 and the left propulsion force W 12 of the common axle 8 A.
増幅ギヤ 1 1の、 W 3の左回転力は、 1 Yギヤに回転力 W3が働き、 1 Y ギヤの突起体 5 8が、 スプリング [圧縮体] 5 9を 圧縮し、 反発力に変 換するから、 増幅ギヤ 1 1は、 左回転を、 右回転力 W 3に反転、 逆回転し て、 統一共通ギヤ 1 6を左回転にする。 The left rotation force of W3 of the amplification gear 1 1 is the rotation force W3 of 1 Y gear, and the protrusion 58 of 1 Y gear compresses the spring [compressor] 59 and converts it into repulsive force. Therefore, the amplifying gear 11 reverses the left rotation to the right rotational force W3 and reversely rotates the unified common gear 16 to the left.
(B) 、 1 Kギヤに、 接続回転する、 入力ギヤ 5は、 共通車軸 8 Aの左進 行力、 W 1 2に推されて、 右回転左進行して、 統一共通ギヤ 1 6を、 左回 転力 W 6にし、 共通車軸 8 Bの、 入力ギヤ 5と、 増幅ギヤ 1 1が、 共に右 回転して、 統一共通ギヤ 1 6の左回転を増大する。 (B), 1 K gear, connected rotation, input gear 5 is driven by the left advancing force of common axle 8 A, W 12 With the left turning force W6, the input gear 5 and the amplifying gear 11 of the common axle 8B are both rotated clockwise to increase the left rotation of the unified common gear 16.
(C) 入力ギヤの、 右回転 W6で、 共通ギヤ 1 6を左回転して、 増幅ギヤ 1 1に W 6が、 回転連動するから、 増幅ギヤ 1 1と駆動ギヤ 6は、 減速ギ ャ構造で、 Uギヤ 5 7に、 接続する接点が、 力点となり、 共通ギヤ 1 6左 回転、 W 6の回転圧力に、 増幅ギヤ 1 1は、 右回転左進行し、 進行力を W 3 0に増幅して、 入力ギヤ 5を推進する、 増幅サイクル構造とる。 (C) With the input gear rotating right W6, the common gear 16 rotates counterclockwise, and W6 rotates with the amplifying gear 11 so that the amplifying gear 11 and the drive gear 6 have a reduction gear structure. The contact point connected to the U gear 57 becomes the point of power, the common gear 16 rotates leftward, the rotational pressure of W6 increases, and the amplifying gear 11 advances clockwise to the left and amplifies the traveling force to W30 Then, the input gear 5 is propelled to form an amplification cycle structure.
Uギヤ 5 7の回転連動は、 回転体の、 中心を貫通する、 動力伝導シャフト 2 5を実現、 シャフト 2 5に、 自在回転する、 共通ギヤ 1 6に、 共通車軸, 8 A, 8 B, の、 全ての入力ギヤ 5 , 増幅ギヤ 1 1が、 並列して、 接続回 転連動する回転ギヤが、 全て増幅サイクル機能の、 回転体を構成する。 Uギヤ 5 7が、 駆動ギヤ 6に嚙合い、 接続回転連動の、 接点を力点として、 駆動ギヤ 6の、 推進圧力となる、 Uギヤの、 流転進行圧力が、 増幅サイク ル機能の起動力となり、 増幅して永久に回転する、 無限動力 [永久機関] となり、 自由に増減できる操作芊の推力が、 全て回転出力となる。 The rotation interlocking of the U gear 57 realizes a power transmission shaft 25 that penetrates the center of the rotating body, freely rotates on the shaft 25, common gear 16 on the common axle, 8A, 8B, All the input gears 5 and the amplifying gears 11 are connected in parallel, and the rotating gears that are connected and rotated in conjunction with each other constitute a rotating body having an amplifying cycle function. The U gear 57 engages with the drive gear 6, and the contact point of the connection and rotation is used as the point of contact. The drive pressure of the drive gear 6 becomes the propulsion pressure. It becomes an infinite power [permanent engine] that amplifies and rotates forever, and the thrust of operation (1), which can be freely increased or decreased, becomes all the rotation output.
Uギヤ 5 7接続回転による、 増幅過程を表にすると、 次の様にになる。
共通車軸推進力初期値一 Wl 2 Uギヤ回転圧力初期値一 W15 車軸推進力 ÷ 2=回転力 X (4 + 1) 増幅率 [固定ギヤ直径比 4: 1] 入力ギヤ回転力 共通車軸推進力 操作竿加圧推力 初期値 W12÷2 = 6 X (4 + 1) =30 Wl 0 The following table shows the amplification process by the U gear 57 connection rotation. Common axle propulsion force initial value – Wl 2 U Gear rotational pressure initial value – W15 Axle propulsion force = 2 = Rotation force X (4 + 1) Gain [fixed gear diameter ratio 4: 1] Input gear rotation force Common axle propulsion force Control rod pressure thrust Initial value W12 ÷ 2 = 6 X (4 + 1) = 30 Wl 0
30÷2 =15 X (4 + 1) =75 30 ÷ 2 = 15 X (4 + 1) = 75
75÷2 = 37. 5 X (4 + 1) =187. 5 75 ÷ 2 = 37.5 X (4 + 1) = 187.5
187. 5÷2 = 93. 8 X (4 + 1) =468. 7 187.5 ÷ 2 = 93.8 X (4 + 1) = 468.7
上記、 表の数値は、 機械的に、 計算する数値だから、 取出し提供する運動 量、 摩擦抵抗、 運動静止力、 等を機械的、 感覚的、 に対応して、 操作竿の 推力を量り乍ら、 回転操作をする必要がある。 The values in the above table are calculated mechanically, so the amount of momentum to be taken out, frictional resistance, kinetic static force, etc. are measured mechanically and intuitively, while the thrust of the operating rod is measured while corresponding to It is necessary to rotate.
操作竿の、 推力増減は、 人為的、 機械的、 に自由に操作可能だから、 機械 構造の強度の限界まで、 出力を増大する無限動力 [永久機関] となる。 The thrust of the operating rod can be freely and artificially, mechanically, and freely operated, so it becomes an infinite power [permanent engine] that increases the output up to the limit of the mechanical structure's strength.
[図 21]; (E) は、 Uギヤ 57と、 間仕切り壁 56が、 合体した、 一体 の単体図で、 フレーム 30に自在回転し、 他の、 構造間仕切り壁 19, 2 0と共に、 回転体を構築し、 偏心の儘、 接続連動流転する、 センターギヤ 3と、 近内接点では回転せず、 嚙合い接続し、 遠内接点では、 駆動ギヤ 6 に接続流転、 嚙み合い回転連動する、 Uギヤ 57の単体図である。 [FIG. 21]; (E) is a unitary figure in which the U gear 57 and the partition wall 56 are united, and freely rotates on the frame 30, and rotates with the other structural partition walls 19 and 20. The center gear 3 and the near-inner contact do not rotate and are connected in a connected manner, and the far-internal contact is connected to the drive gear 6 and interlocked and rotate with the eccentricity. FIG. 4 is a single view of a U gear 57.
(F) は、 構造間仕切り壁、 19, 20, が、 フレームに内接、 自在回転 し、 間隔保持の座金と共に、 通しポルト 24が、 貫通固定して回転体を構 築、 全回転ギヤ及び共通車軸、 安定回転保持の、 構造間仕切り壁単体図。 (F) is a structural partition wall, 19, 20, which inscribes and freely rotates with the frame, and a through-port 24, with a washer for maintaining spacing, penetrates and fixes to build a rotating body, all rotating gears and common A single view of a structural partition wall with axles and stable rotation.
(D) は、 遊星インターギヤ 57と、 間仕切り壁 56と、 構造間仕切り 壁 19, 20, が合体して機能する、 構造総体図である。 (D) is a structural overall diagram in which the planetary intergear 57, the partition wall 56, and the structural partition walls 19, 20 function in combination.
[図 22] (K) は、 増幅ギヤが、 固定インターギヤに、 内接連動し、 増 幅ギヤと減速構造の駆動ギヤを、 遊星インタ—ギヤが、 内接連動して左回 転したとき、 左回転 W1は、 天秤の原理で、 4: 1に配分され、 共通車軸 の推進力 W0. 75にする。 [Fig.22] (K) shows when the amplifying gear is in-turn interlocked with the fixed inter-gear, the amplifying gear and the drive gear of the reduction structure are rotated leftward with the in-plane interlocking of the planetary inter-gear. The left rotation W1 is distributed in a ratio of 4: 1 according to the principle of the balance, and the propulsion force of the common axle is W0.75.
(L) と、 (M) は、 減速構造の、 駆動ギヤが、 固定センタ—ギヤに、 接続回転したとき、 増幅ギヤに働く、 推進接点と、 方向により、 共通車軸 方向と、 推進力が、 (L) と (M) 夫々ことなる。
2 (L) and (M) show the common axle direction and the propulsion force according to the direction and the propulsion contact that acts on the amplification gear when the drive gear of the reduction gear is connected to the fixed center gear and rotates. (L) and (M) are different. Two
(L) は、 左方向 W lの、 推進力に対し、 共通車軸はお方向の、 推進力 W 3になり、 (M) は左方向 W 1の、 推進力に対し、 共通車軸は、 左方向の 推進力は W 5となる。 遊星インターギヤ接続回転連動多極構造 (L) is the propulsion force W3 in the left direction, the common axle is the propulsion force W3 in the direction, and (M) is the propulsion force in the left direction W1, the propulsion force is the left direction. The propulsion of this will be W5. Planetary inter-gear connection rotation interlocking multi-pole structure
無限動力 [永久機関] は、 1極の、 出力増大を図る事も、 重要な課題であ るが、 極数を数倍増やす事は、 出力を数倍増大する、 有効な手段である。 Uギヤの、 接続回転連動により、 入力ギヤ、 増幅ギヤの半径の、 増大縮小 が可能となり、 回転体の、 中心を貫通する、 伝導シャフトと、 自在回転す る、 統一共通ギヤが、 実現した結果、 多数の共通車軸増設による、 マニア ルの増加と、 1マ二アルに、 多数の極数増加が、 見込まれ、 1マニアル、 4極にすると、 6マニアル、 2 4極構造が実現し、 回転体の、 強度の限界 迄、 極数の増設が可能となる、 基本構造は、 Uギヤ 4極構造と、 全く同一 構造となり、 増設した極数だけ、 回転出力も増大する多極構造となり、 強 大な、 出力を要求する、 発電, 船舶, 宇宙船等の動力機関に対応する。 実施例参考図 For infinite power [permanent engine], increasing the output of one pole is also an important issue, but increasing the number of poles several times is an effective means of increasing the output several times. By connecting and rotating the U gear, the radius of the input gear and amplifying gear can be increased or decreased, and the result is the unified common gear that rotates freely and has a transmission shaft that penetrates the center and a free rotating shaft. The number of poles is expected to increase due to the addition of a large number of common axles, and the number of poles is expected to increase in one manual. Up to the limit of the strength of the body, the number of poles can be increased.The basic structure is exactly the same as the U-gear 4-pole structure, and the multi-pole structure increases the rotation output by the number of added poles. Applicable to power generators that require large output, such as power generation, ships, and spacecraft. Example reference diagram
[図 2 3 ] 、 遊星インタ—ギヤ接続回転連動 6極構造、 G— G断面図 [図 2 4 ] 、 遊星インタ—ギヤ接続回転連動 6極構造、 H— H断面図 [図 2 5 ] 、 ( J ) 遊星インターギヤ 8極構造略図、 K一 K断面図 [Fig. 23], planetary inter-gear connection rotation interlocking 6-pole structure, G-G cross-section [Fig. 24], planetary inter-gear connection rotation interlocking 6-pole structure, H-H cross-section [Fig. 25], (J) Planetary intergear 8 pole structure schematic, K-K cross section
(K) 遊星インターギヤ 8極構造略図、 J一 J断面図 (K) Planetary Intergear 8 pole structure schematic, J-J cross section
[図 2 6 ] 、 (L) 遊星インタ—ギヤ 1 2極構造略図、 M— M断面図 [Fig.26], (L) Planetary intergear 1 2-pole structure schematic, M-M sectional view
(M) 遊星インターギヤ 1 2極構造略図、 L— L断面図 縮小遊星インターギヤ (Uギヤ) 接続回転連動構造 (M) Planetary intergear 1 2-pole structure schematic, L-L sectional view Reduced planetary intergear (U gear) Connection rotation interlocking structure
多極 Uギヤ構造は、 回転体の中心に、 主力伝導シャフトが、 貫通して、 自在回転する、 統一共通ギヤの、 直径を決定、 [インターギヤ直径一共通 ギヤ直径] ÷ 2 =入力ギヤ直径又は、 増幅ギヤ直径となる方式となる。 縮小遊星インターギヤ (Uギヤ) の、 接続構造は、 増幅構造の主力、 入力 ギヤ, 増幅ギヤが、 共に、 同一共通車軸で機能し、 相対する他方の、 共通
車軸に自在回転する、 共通ギヤの、 半径を決定すると、 [インタ—ギヤ直 径ー共通ギヤ半径] ÷ 3 = [入力ギヤ半径又は、 増幅ギヤ半径] となる、 算定方式となる。 In the multi-pole U gear structure, the main power transmission shaft penetrates and rotates freely at the center of the rotating body, determines the diameter of the unified common gear, [inter-gear diameter-common gear diameter] ÷ 2 = input gear diameter Or, it becomes a method that becomes the amplification gear diameter. The connection structure of the reduced planetary inter-gear (U gear) is the main structure of the amplifying structure, and the input gear and the amplifying gear both function on the same common axle. When the radius of the common gear that freely rotates on the axle is determined, the calculation method is as follows: [inter-gear diameter-common gear radius] ÷ 3 = [input gear radius or amplification gear radius].
此の構造は、 センターギヤシャフトと、 共通車軸の、 距離が接近、 セン ターギヤと、 駆動ギヤを内接して、 回転伝導する、 Uギヤの半径が縮小す る、 効果が生まれ、 伝導回転圧力は、 Uギヤ回転圧力よりも、 縮小 Uギヤ 回転圧力の方が依り強力 [天秤の原理] になる。 With this structure, the distance between the center gear shaft and the common axle is short, the center gear and the drive gear are inscribed, and the rotation is conducted, the radius of the U gear is reduced, and the effect is produced. The reduced U-gear rotation pressure is more powerful than the U-gear rotation pressure.
自由に選択決定する、 共通ギヤの、 半径に合せて、 算定方式に従い、 増 幅ギヤの半径を割り出し、 連結固定して、 減速ギヤ構造となる、 増幅ギヤ と駆動ギヤの、 直径比率、 5 : 1を採用 [直径比率 3 : 1— 8 : 1迄選択 可能] 、 同様に、 1 Yギヤとセンターギヤの、 半径比率を 5 : 1に、 設定 すれば、 Uギヤは、 固定センターギヤと駆動ギヤを、 内接連動し、 流転 して駆動ギヤに回転圧力となる。 The radius of the amplifying gear is determined freely according to the calculation method in accordance with the radius of the common gear, which is freely selected and determined. The diameter ratio of the amplifying gear and the drive gear, which is connected and fixed to form a reduction gear structure, 5: 1 is used [Diameter ratio can be selected from 3: 1 to 8: 1]. Similarly, if the radius ratio of 1 Y gear and center gear is set to 5: 1, U gear drives with fixed center gear. The gears are inscribed and linked, and run down to produce rotational pressure on the drive gears.
Uギヤに内接、 回転進行する駆動ギヤは、 共通車軸、 増幅ギヤと連結固 定、 増幅ギヤは 1 Yギヤに内接回転連動する。 The drive gear that inscribes and rotates in the U gear is fixedly connected to the common axle and the amplification gear. The amplification gear is inscribed and linked to the 1 Y gear.
入力ギヤは、 共通車軸に自在回転し、 1 Kギヤに接続回転進行する。 入力ギヤと、 増幅ギヤは、 同一共通車軸で機能し、 他方の共通車軸で、 自在回転する共通ギヤに、 並列して、 接続回転連動して、 インターギヤか ら、 センターギヤ迄、 固定ギヤ間を、 同一方向に、 同時に進行する、 増幅 サイクル構造回転体、 Aグループ形成し、 全く同一構造の回転体 B、 ダル ープを形成して一対となる、 構造回転体 [永久機関] となる。 図面の簡単な説明 The input gear rotates freely on the common axle, and is connected to the 1K gear for rotation. The input gear and the amplifying gear function on the same common axle, and on the other common axle, the fixed gear from the inter gear to the center gear in parallel with the freely rotating common gear Amplification cycle structure rotating body, which progresses in the same direction and simultaneously, forms a group A, forms a rotating body B having exactly the same structure, and forms a pair to form a structural rotating body [permanent engine]. BRIEF DESCRIPTION OF THE FIGURES
[図 2 7 ] 、 縮小 Uギヤ接続回転構造、 [T— T断面図] [Fig.27], Reduced U gear connection rotating structure, [TT cross section]
[図 2 8 ] 、 縮小 Uギヤ接続回転構造、 [ S— S断面図] [Fig.28], Reduced U gear connection rotating structure, [S-S cross section]
[図 2 9 ] 、 力配分、 分解構造略図 [Fig.29], Power distribution, exploded structure schematic
[図 3 0 ] 、 縮小 Uギヤ接続回転構造、 半径比率力配分、 分解構造略図 [図 2 7 ] 、 [図 2 8 ] を説明する。 [Fig. 30], reduced U gear connection rotation structure, radius ratio force distribution, and exploded structure schematic diagrams [Fig. 27] and [Fig. 28] will be described.
左右、 両側壁 3 1 , 3 2、 と一体固定する、 本体フレーム 3 0の、 内面に、
完全固定の IKギヤに、 内接回転連動する、 入力ギヤ 5と、 僅少作動して スプリング 59を、 圧縮する 1Yギヤに、 内接回転連動の増幅ギヤ 11が 共通車軸 8A, 8Bに、 夫々機能し、 入力ギヤ 5は自在回転し、 増幅ギヤ 11は、 駆動ギヤ 6と共に、 連結固定して、 減速ギヤ構造となり、 駆動ギ ャ 6は、 センタ—ギヤ 3に、 嚙み合い接続流転する、 Uギヤ 57に、 内接 回転連動する。 Left and right, side walls 3 1, 3 2, fixed together, inside the body frame 30, A fully fixed IK gear, an input gear 5 that is in-rotationally linked, an input gear 5 that slightly operates to compress the spring 59, a 1Y gear that compresses, and an amplification gear 11 that is in-rotationally linked to the common axles 8A and 8B. The input gear 5 rotates freely, the amplifying gear 11 is connected and fixed together with the drive gear 6 to form a reduction gear structure, and the drive gear 6 meshes with the center gear 3 so that the connection gear rotates. Internally linked to gear 57.
共通車軸 8 A, 8Bで、 夫々、 並立して機能する、 入力ギヤ 5, 増幅ギ ャ 11は、 相対する、 他方の共通車軸 8 A, 8B, に、 自在回転する、 共 通ギヤ 16に、 並立して接続、 共に回転連動し、 インタ—ギヤとセンター ギヤ間を、 8A, 8B, の、 ギャグループが、 相互に作用、 増幅サイクル 機能となる、 回転体を構築、 センタ—ギヤ 3に、 一体固定する、 操作竿 6 2に推力が働けば、 増幅サイクル構造に、 起動力となる。 The input gear 5 and the amplifying gear 11, which function in parallel with the common axles 8A and 8B, respectively, are opposed to the other common axle 8A, 8B, and freely rotate. The gear groups of 8A, 8B, between the inter-gear and the center gear, interact with each other, rotate and link together, and build a rotating body that acts as an amplification cycle function. When thrust acts on the operation rod 62 that is fixed together, it becomes a starting force in the amplification cycle structure.
増幅サイクルに、 起動力が働くと、 回転始動し、 操作竿の、 推力を解除し なければ、 無限に回転運動を続ける、 回転構造 [永久機開] となる。 When the starting force is applied to the amplification cycle, the rotation starts, and unless the thrust of the control rod is released, the rotation continues indefinitely.
此の構造は、 最初に接続ギヤ 16の、 半径を決定し、 算定方式に従い、 増 幅構造の主力、 入力ギヤ 5、 増幅ギヤ 11の、 半径を決定、 次に増幅ギヤ 11と駆動ギヤ 6の、 直径比率決定、 最後に、 固定ギヤ [1Y, 1K, ] ギヤと、 センタ—ギヤ 3の、 直径比率を決定する、 自由選択部分が、 増加 するから、 Uギヤ多極構造、 縮小 Uギヤ構造、 共に、 多種多様の、 対応が 可能となる、 出力優先構造となる。 In this structure, the radius of the connecting gear 16 is first determined, and the main force of the amplification structure, the radius of the input gear 5 and the amplification gear 11 are determined according to the calculation method, and then the radius of the amplification gear 11 and the drive gear 6 are determined. Determine the diameter ratio. Finally, the fixed gear [1Y, 1K,] and the center gear 3 determine the diameter ratio. Since the number of free choices increases, the U gear multipole structure and the reduced U gear structure Both have an output priority structure that enables a wide variety of responses.
Uギヤ多極構造が、 大規模、 大出力の、 機関に対応し、 縮小 Uギヤ構造 は、 人間が操作し、 出力を頻繁に切り替える、 小規模機関に適する。 The U-gear multi-pole structure is suitable for large-scale, high-power engines, and the reduced U-gear structure is suitable for small-scale engines that are operated by humans and frequently switch output.
[図 29] Α, Β, C, を説明し、 [図 21] D, Ε, F, 参照提示] 間仕切り壁 56に、 一体の Uギヤ 57は、 偏心の儘フレーム 30に、 自在 回転して、 センタ—ギヤ 3に、 嚙み合い回転せず、 流転して、 駆動ギヤに 接続連動推進する、 回転圧力になる。 [図 30] 半径比率力配分参考図 (Α) 、 センターギヤ 3に、 固定する操作竿 62に、 右方向に、 推力 W1 0を加えれば、 [センターギヤ 3の半径 (1) : (9) 操作芊長] に設定、 偏心の儘回転 Uギヤ 57に内接する、 センタ—ギヤ 3が、 左回転圧力 W9
0となり、 近内接点で、 嚙み合連動し、 遠内接点で駆動ギヤ 6に、 接続連 動して、 左回転 W30の、 回転圧力となる。 [Fig.29] Explain Α, Β, C, [Fig.21] D, Ε, F, reference presentation] On the partition wall 56, the integral U gear 57 rotates freely on the frame 30 with eccentricity. The center gear 3 does not engage and rotate, but instead of rotating, it is connected to the drive gear and interlockingly propelled, resulting in rotational pressure. [Fig. 30] Radius ratio force distribution reference diagram (Α), When thrust W10 is applied to the center gear 3 and the operating rod 62 to be fixed in the right direction, the radius of the center gear 3 (1): (9) Operation length], Rotation with eccentricity Inscribed in U gear 57, Center gear 3 is left rotation pressure W9 It becomes 0, and it is engaged with the drive gear 6 at the near-internal contact, and is connected to the drive gear 6 at the far-internal contact, and the rotational pressure becomes the left rotation W30.
駆動ギヤ 6に働く、 左回転 W 30は、 共通車軸 8 Aの、 左進行 W24と 増幅ギヤ 11の左回転 W 6に配分する。 The left rotation W30 acting on the drive gear 6 is distributed to the left advancing W24 of the common axle 8A and the left rotation W6 of the amplification gear 11.
増幅ギヤ 11の、 W6回転圧力は、 1Yギヤに連動し、 固定する突起体 60が、 圧縮体 59 [スプリング、 硬質ゴム、 シリンダー] を圧縮、 蓄積 して反発力に変換、 増幅ギヤ 11は、 反発力に反転、 左回転を逆転し、 右 回転左進行し、 共通車軸 8 Bの、 共通ギヤ 16に回転連動する。 The rotation pressure of W6 of the amplifying gear 11 is linked with the 1Y gear, and the fixing body 60 compresses and accumulates the compressing body 59 [spring, hard rubber, cylinder] and converts it into repulsive force. It reverses to the repulsion, reverses the left rotation, turns right and advances left, and rotates in conjunction with the common gear 16 on the common axle 8B.
(B) は、 1Kギヤに、 内接回転連動する、 入力ギヤ 5は、 共通車軸 8 A に自在回転し、 左進行 W24に、 推されて、 右回転左進行し、 8Bの共通 ギヤ 16に、 右回転 W12を、 回転連動するから、 8Bの共通ギヤ 16は 、 左回転し、 左進行 [回転体の中心を回転軸に左回転進行] する。 (B) is the 1K gear, which is interlocked with the inscribed rotation.The input gear 5 freely rotates on the common axle 8A, travels to the left traveling W24, is pushed to the right, rotates left, and travels to the common gear 16 of 8B. Since the right rotation W12 and the rotation are interlocked, the common gear 16 of 8B rotates left and travels left [travels left about the center of the rotating body as the rotation axis].
Uギヤ 57の、 左進行流転圧力 W 30が、 減速ギヤ構造の、 増幅ギヤ 11と、 駆動ギヤ 6に働き、 増幅ギヤ 11の左回転 W 6は、 1Yギヤの圧 縮反発力に反転し、 回転せず、 共通車軸 8 Aを、 スプリング圧縮距離だけ 流動進行する。 The left-hand flow pressure W 30 of the U gear 57 acts on the amplification gear 11 and the drive gear 6 of the reduction gear structure, and the left rotation W 6 of the amplification gear 11 reverses to the compression repulsion force of the 1Y gear, It does not rotate and flows along the common axle 8 A for the spring compression distance.
Uギヤ 57の円心と、 センターギヤ 3の、 円心には、 半径の大小差によ る偏心差があり、 駆動ギヤ 6と、 Uギヤ 57の、 遠内接点では、 流転進行 するから、 スプリングの、 圧縮距離を、 増幅ギヤ 11は空転し、 共通車軸 8 Aを、 左方向に、 推進進行する、 僅少の距離が、 偏心ギヤ [衛星ギヤ, 遊星ギヤ] 採用の、 目的で、 起動力機能の原点となる。 There is an eccentricity difference between the center of the U gear 57 and the center of the center gear 3 due to the difference between the radii and the center of the drive gear 6 and the U gear 57. The compression distance of the spring, the amplifying gear 11 idles, and the common axle 8 A propells to the left. The slightest distance is the eccentric gear [satellite gear, planetary gear]. It is the origin of the function.
共通車軸 8 Aの流転する、 僅少の空転距離は、 自在回転する入力ギヤ 5 を、 休む事なく、 機械的に、 回転進行する。 [図 29] A, B, C, 参照 右回転し、 左進行する、 入力ギヤ 5は、 共通車軸 8Bの、 共通ギヤ 16を 左回転して、 増幅ギヤ 11に回転連動し、 右回転圧力 W 12になる。 The small idle running distance of the common axle 8 A causes the freely rotating input gear 5 to rotate mechanically without rest. [Fig.29] A, B, C, see Rotating right and traveling left. The input gear 5 rotates the common gear 16 of the common axle 8B to the left, rotates in conjunction with the amplifying gear 11, and the right rotation pressure W It becomes 12.
増幅ギヤ 11は、 駆動ギヤ 6と、 一体連結する、 減速ギヤだから、 駆動 ギヤ 6が右回転し、 Uギヤ 57に回転接続、 接続接点が、 回転力点となり、 増幅ギヤ 11の右回転力 [W12X5=W60] を力点に回転力となる。 駆動ギヤ 6の、 W60は、 Uギヤ 57の、 左、 流転圧力 W30と、 押し合
う回転力点を、 支えに、 入力ギヤ 5の右回転圧力 W 1 2で、 増幅ギヤ 1 1 は、 共通車軸 8 Aと、 共に右回転、 左進行、 推進力を [W 6 0 +W 1 2 = W 7 2 ] に増大するから、 入力ギヤ 5は、 回転力をに W 3 6に増大する、 増幅過程を反復繰返す、 増幅サイクル機能となる。 Since the amplifying gear 11 is a reduction gear that is integrally connected to the drive gear 6, the drive gear 6 rotates clockwise, and is connected to the U gear 57 for rotation. The connection point is the point of torque, and the right rotational force of the amplifying gear 11 [W12X5 = W60] as the power point. Drive gear 6, W60, U gear 57, left, running pressure W30, pushing Using the rotational force point as a support, the right rotation pressure W12 of the input gear 5 and the amplifying gear 11 with the common axle 8A, together with the common axle 8A = W 7 2], the input gear 5 increases the rotational force to W 36, and serves as an amplification cycle function that repeats the amplification process repeatedly.
回転出力増幅過程は、 次の様な表になる。 [半径比率 5 : 1を採用] 力配分初期 操作竿推力 センタ—ギヤ圧力 Uギヤ圧力 車軸推進力 The following table shows the rotational output amplification process. [Radius ratio 5: 1 is adopted] Initial force distribution Operating rod thrust Center gear pressure U gear pressure Axle propulsion
W. 1 0 W. 9 0 W. 3 0 W. 2 4 一天秤の原理一 一滑車の原理一 W. 10 W. 90 W. 30 W. 2 4 Balance principle 1 Pulley principle 1
車軸推進力 入力ギヤ回転力 増幅率 増幅力 Uギヤ圧力 操作推力 W. 2 4 ÷ 2 = X 5 + 1 W. 3 0 W. 1 0Axle propulsion force Input gear rotation force Amplification rate Amplification force U gear pressure Operating thrust W. 2 4 ÷ 2 = X 5 + 1 W. 30 W. 10
W. 2 4 W. 1 2 W. 6 0 W. 7 2 W. 3 0 W. 1 0 W. 7 2 W. 3 6 W. 1 8 0 W. 2 1 6W. 9 0 W. 3 0 W. 2 1 6 W. 1 0 8 W. 5 4 0 W. 6 4 8W. 2 7 0W. 9 0 W. 6 4 8 W. 3 2 4W. 1 6 2 0 W. 1 9 4 4W. 8 1 0 W. 270 表が、 示す様に、 増幅サイクル過程 [Uギヤ回転庄カ W. 3 0—共通車軸 、 推進力 W. 2 4—入力ギヤ回転力 W. 1 2—増幅率 W. 6 0—増幅出力 W. 7 2 ] 増幅構造で増大の、 回転推進力を、 W. 2 4を基礎推力にして、 増幅部分 W4 8の、 余力を取出し、 運動エネルギーとして提供、 消耗して も、 回転は維持され、 エネルギーも継続して提供可能となる。 W. 24 W. 12 W. 60 W. 72 W. 30 W. 10 W. 72 W. 36 W. 180 W. 21 W. 90 W. 30 W 2 16 W. 10 8 W. 5 4 0 W. 6 4 8 W. 2 7 0 W. 9 0 W. 6 4 8 W. 3 2 4 W. 1 6 2 0 W. 1 9 4 4 W. 8 1 0 W. 270 As shown in the table, the amplification cycle process [U gear rotation W. 30-common axle, propulsion W. 24-input gear rotation W. 12-amplification W. 60 —Amplification output W. 7 2] Using the rotational propulsion force, which is increased by the amplification structure, as the basic thrust based on W. 24, the extra power of the amplification part W48 is provided and provided as kinetic energy. Is maintained and energy can be continuously provided.
出力増大が必要となれば、 操作竿の推力を、 増強すば、 容易に解決になる 回転構造で、 操作竿推力増強が、 其儘出力増大の構造となる。 回転操作指示機構 [回転カムェャ—配分回転車構造] If the output needs to be increased, the thrust of the operating rod can be easily increased by increasing the thrust of the operating rod. Rotational operation instruction mechanism [Rotary camshaft-distribution rotary car structure]
人間が直接関与し、 操作する、 小規模、 小出力の無限動力機関 [各種自動 車, 作業者, 小型航空機、 及びポート等] 簡単操作で、 俊敏、 迅速な反応 を必要とする機能と、 高出力、 長期継続回転に対応機能が、 要求される、 多用多目的に対応する、 操作指示機構として、 回転カムェャ—配分、 回転 車操作指示機構を、 考案し採用する。 A small-scale, low-power infinitely powered engine that is directly involved and operated by humans [various automobiles, workers, small aircraft, and ports, etc.] Easy operation, agility and quick reaction A function to support output and long-term continuous rotation is required. A multi-purpose and multi-purpose operation instruction mechanism is devised and adopted as the operation instruction mechanism, such as rotating camshaft distribution and rotating vehicle operation instruction mechanism.
指示機構の伝導シャフトと、 操作竿を、 オームギヤで連携すれば、 回転操
作指示機構の、 始動、 停止、 左右回転、 緩急、 強弱、 等の機能が、 回転体 [永久機関] に働き、 回転始動, 停止, 前進, 後進, 一時停止, 長期継続 [永久運動] 等を、 強弱緩急自在に操作する、 指示機構となる。 [図面の簡単な説明] If the transmission shaft of the indicating mechanism and the operating rod are linked by an ohm gear, The functions of the operation instructing mechanism, such as start, stop, left and right rotation, speed, speed, strength, etc., operate on the rotating body [permanent engine], and start, stop, forward, reverse, pause, long-term continuous [permanent movement], etc. It is a pointing mechanism that can be operated freely and slowly. [Brief description of drawings]
[図 3 1 ] 構造略図、 回転カムェヤー配分、 回転車操作指示機構を説明。 回転車操作指示機構 [指示機構と略称] 、 本体フレーム 8 1 [フレーム 8 1と呼称] を、 回転車ルーム 1 0 3と、 ェャ—配分ルーム 8 7に分割、 圧力ェャ—パイプ 9 0から、 ェヤー供給口 8 8を通り、 ェャ—配分ルーム 8 7に、 圧力ェヤーが供給される。 [Fig. 31] Schematic diagram, explanation of rotating camshaft distribution, and rotating car operation instruction mechanism. Rotating car operation indicating mechanism [abbreviated as indicating mechanism], body frame 8 1 [referred to as frame 8 1], divided into rotating car room 103, and key distribution room 87, pressure pipe 90 Then, the pressure layer is supplied to the distribution room 87 through the layer supply port 88.
ェャ—配分ルーム 8 7に、 充満する圧力ェャ—は、 回転カムバルブ 9 2 に、 一体固定する、 操作レバー 8 5が、 左右に振り分け、 左に倒すと右送 風口 9 4が開き、 右に倒すと、 左送風口 9 3が開く、 [図 1 1 ] 、 N— N 断面では、 操作レバ— 8 5が、 左に倒れ、 右送風口 9 4が開くと、 吸入排 気口開閉ベン 8 4は、 通常はスプリングで、 閉鎖しているが、 圧力ェヤー の供給で、 開閉ベン 8 4は開き、 右排気口は閉じる。 The pressure chamber that fills the distribution room 87 is integrally fixed to the rotating cam valve 92.The operating lever 85 is distributed to the left and right, and when it is tilted to the left, the right air outlet 94 opens and the right. To the left, the left air outlet 93 opens, [Fig. 11], and in the N-N section, the operation lever 85 falls to the left, and when the right air outlet 94 opens, the intake air vent opening / closing vent opens and closes. 84 is normally closed by a spring, but is supplied with pressure, so that the open / close vent 84 opens and the right exhaust port closes.
圧力ェャ一は、 回転車ルーム 1 0 3を、 吹き抜け、 回転車 8 2を右回転し、 開いている、 排気口より、 外部に排出され、 操作レバ— 8 5を、 右に倒す と、 左お全く同一構造だから、 左供給口より入る、 圧力ェャ—は、 回転車 8 2を左回転し、 右排気口え吹き抜ける、 回転車構造になる。 The pressure chamber blows through the rotating car room 103, turns the rotating car 82 clockwise, is opened, is discharged to the outside from the exhaust port, and tilts the operating lever 85 to the right. Since the structure is exactly the same on the left, the pressure from the left supply port turns the rotating car 82 to the left and the right exhaust port blows through.
回転車 8 2は、 一体となる、 回転シャフト 8 3の、 先端部分に固定する、 オーム Δギヤ 2 8と、 操作竿 6 2の、 先端中央部に固定する、 オーム ▽ギヤ 7 8が、 接続回転連動して、 万力構造となり、 回転車 8 2の、 回転 に伴い、 操作竿 6 3は、 左右に回転進行する、 機能が働き、 センターギヤ 3を、 左右に僅少作動回転圧力となり、 回転始動する入力機能となる。 回転車 8 2は回転して、 操作竿 6 2を、 左右に推進する、 回転圧力となる から、 センターギヤ 3に、 回転連動する、 駆動ギヤ 6に、 回転圧力となり、 増幅サイクルの、 起動力となって、 回転体 [永久機関] を始動し操作する 回転カムェヤー配分回転車操作支持機構。
回転カムェャ—配分シリンダ—操作指示機構 The rotating wheel 82 is integrated with the rotating shaft 83, which is fixed to the tip of the rotary shaft 83, and the ohm gear 28, and the operating rod 62, which is fixed to the center of the tip, and the ohm gear 78, which is connected. As the rotating wheel 8 2 rotates, the operating rod 63 rotates left and right as the rotating wheel 8 2 rotates, and the function works. It becomes an input function to start. The rotating wheel 82 rotates and the operating rod 62 is propelled to the left and right, resulting in rotational pressure. Therefore, the rotational pressure is applied to the center gear 3, which is linked to the rotation, and the rotational pressure is applied to the drive gear 6, and the starting force of the amplification cycle is generated. As a result, a rotating camshaft distribution rotating vehicle operation support mechanism that starts and operates the rotating body [permanent engine]. Rotary Camer-Distribution Cylinder-Operation Instruction Mechanism
人間が、 直接運転操作し、 頻繁に切り替える、 貨客自動車、 作業者、 小型 航空機等、 俊敏な対応が要求される、 小出力の無限動力 [永久機閧] 操作 指示機構を、 考案採用し、 実施例として、 図面と共に説明する。 図面の簡単な説明 Indirect power operation with small output that requires agile response such as passenger cars, workers, small aircraft, etc. An example will be described with reference to the drawings. BRIEF DESCRIPTION OF THE FIGURES
[図 6] 、 ェャ—配分回転カムシリンダー構造分解図 [Fig.6] Exploded view of the rotary cam cylinder structure
(図 4A) , (図 4A— 1) , (図 4B— 3) , (Fig. 4A), (Fig. 4A-1), (Fig. 4B-3),
[図 7] 、 ェャ—配分回転カムシリンダー構造分解図 [Fig.7] Exploded view of the rotary cam cylinder structure
(図 4A— 2) , (図 4B— 1) , (図 4B— 2) (Fig. 4A-2), (Fig. 4B-1), (Fig. 4B-2)
(図 4A) は、 全体の正面図で、 圧力ェヤーパイプ 38で、 供給口 37よ り、 ェャ—配分室 108に、 送風する、 圧力ェャ一は、 パルプ操作レバ一 43が、 正常な位置にある時は、 回転カムパルプ 111は、 送風口 40, 41、 排気口 114, 115は、 送風口 40, 41, 排気口 114, 11 5、 を全て閉じている。 (Fig. 4A) is a front view of the whole, in which the pressure pipe 38 is blown from the supply port 37 to the distribution chamber 108. The pressure pipe is in the normal position when the pulp operation lever 43 is in the normal position. , The rotary cam pulp 111 closes the air outlets 40 and 41, and the air outlets 114 and 115 close the air outlets 40 and 41 and the air outlets 114 and 115.
バルブ操作レバ— 43を右に回すと、 カムパルプ 117が、 右に傾斜する から、 配分ェヤー右送風口 40は開き、 配分ェヤー右送風パイプ 46を通 り、 シリンダー右吸気口 112より、 右心房 45に供給する。 When the valve operating lever 43 is turned clockwise, the cam pulp 117 tilts to the right, so that the distribution air right vent 40 opens, passes through the distribution air right ventilation pipe 46, and from the cylinder right intake 112, the right atrium 45 To supply.
充満した、 圧力ェャ一は、 お心房 45のェャ一圧力 0あげるから、 シリン ダ一へッド 33が押されて、 左心房 44の、 残留ェヤーを、 開いた排気口 36がら左排気パイプ 106を通り、 排気口 115から、 再び配分 108 に入り、 排気口 42から排出される。 When the pressure is full, the pressure in the atrium 45 is increased by 0, so the cylinder head 33 is pushed, the residual aerial in the left atrium 44 is exhausted, and the left exhaust port 36 is exhausted through the open exhaust port 36. Through pipe 106, it exits at outlet 115, re-enters distribution 108, and exits through outlet 42.
左に押されたシリンダーヘッド 33は、 一体となるシャフト 29も左推進 し、 センターギヤに、 一体となり固定する操作竿 62を、 左に推進加圧す ると、 センターギヤ 3が、 右回転移動して入力となり、 回転体は、 右回転 始動する。 The cylinder head 33 pushed to the left also pushes the integral shaft 29 to the left, and pushes and pushes the operating rod 62, which is integrated and fixed to the center gear, to the left. And the rotating body starts rotating clockwise.
バルブ操作レバ— 43を左に振ると、 カムバルブ 111が左傾斜して、 配 分ェャ—を左心房 44に供給して、 シリンダーヘッド 33を、 右に推進し、 操作竿 62を右に加圧して、 センタ—ギヤ 3を、 右回転移動して、 入力す
るから、 回転体は左回転始動する。 When the valve operating lever 43 is swung to the left, the cam valve 111 is tilted to the left to supply the dispenser to the left atrium 44, to propel the cylinder head 33 to the right and to add the operating rod 62 to the right. Pressure, and move center gear 3 clockwise to input. Therefore, the rotating body starts counterclockwise rotation.
操作レバー 4 3を、 垂直に立てると、 ェヤー配分バルブ室の、 吸入、 排気 口を全て閉じるから、 シリンダーヘッド 3 3が停止し、 連結する操作竿 6 2も、 回転体も停止する、 又、 操作レバー 4 3は、 左右に、 強弱、 緩急、 自在の操作が可能だから、 シリンダーヘッド 3 3を、 左端, 右端, 真中, 中間と、 停止始動を操作し、 緩急一定回転を、 継続保持する。 When the operating lever 43 is set up vertically, the intake and exhaust ports of the air distribution valve chamber are all closed, so the cylinder head 33 stops, the operating rod 62 and the rotating body to be connected also stop, and Since the operation lever 43 can be freely operated left / right, strong / slow / fast, and freely, the cylinder head 33 can be operated at the left end, right end, middle, middle and stop / start to maintain a constant slow / fast rotation.
シリンダー操作指示機能は、 左右全く同一構造だから、 左を前進右を後進 にすれば、 操作レバ—を、 振るだけで、 前進、 後進の、 切換え操作指示機 能となる。 The cylinder operation instructing function is exactly the same for the left and right, so if you move forward on the left and reverse on the right, you only need to shake the operating lever, and it will be the forward / reverse switching operation instructing function.
無限動力回転体 [永久機関」 も、 左右全く同一機能構造だから、 シリンダ —操作指示機構伝導シャフトと、 回転体操作竿 6 2を 回転ピン 2 8で、 連結連動し、 シリンダーヘッドの往復運動が、 操作竿 6 2を左右作動する 推力が、 回転操作指示機能となり、 回転始動, 停止, 前進, 後進, 維続回 転 [永久運動] 等を、 緩急自在に回転操作する、 指示機構となる。 The infinite power rotating body [permanent engine] also has completely the same functional structure on the left and right, so the cylinder — the operation instruction mechanism transmission shaft and the rotating body operating rod 62 are connected and linked with the rotating pin 28 to reciprocate the cylinder head. The thrust for operating the control rod 62 left and right acts as a rotation operation instruction function, and an instruction mechanism that operates the rotation start, stop, forward, reverse, continuous rotation [permanent movement], etc. freely and quickly.
操作指示機構には、 圧力ェャ—の供給を、 必要とするから、 無限動力の 余剰エネルギーを使用する、 コンプレッサーと、 圧力タンクを、 付帯設備 とし、 圧力ェャ一を供給する。 Since the operation instruction mechanism requires the supply of pressure, the compressor and the pressure tank that use surplus energy of infinite power are used as auxiliary equipment, and the pressure is supplied.
コンプレッサーに、 圧力調整機能を装着し、 高圧力低圧カェヤーを、 供給 すれば、 回転操作指示機構の、 機能能力は向上し、 無限動力回転体 [永久 機関] の、 出力機能能力を、 依り一層高める構造となる。 If the compressor is equipped with a pressure adjustment function and a high-pressure low-pressure keyer is supplied, the function capacity of the rotary operation instruction mechanism will be improved, and the output function capacity of the infinitely powered rotating body [permanent engine] will be further enhanced. Structure.
回転カムェヤー配分回転車指示構造は、 形態制限の伴う、 巨大な高出力を 、 長期継続して必要とする、 発電, 船舶, 宇宙船、 等の、 無限動力 [永久 機開] 回転操作指示構造に適する。 The rotating camshaft-distributed rotary vehicle instruction structure is a form of infinite power [permanent machine open] rotation operation instruction structure, such as power generation, ships, spacecraft, etc., which requires huge, high output for a long period of time with limited form. Suitable.
回転カムェャ—配分シリンダー構造は、 人間が直接操作して、 俊敏、 迅速 に対応する、 小規模小出力の、 各種自動車, 作業車, 小型航空機, ボート 等の無限動力 [永久機関] に適する。 The rotating camshaft-distribution cylinder structure is suitable for infinite power [permanent engine] of various kinds of automobiles, work vehicles, small aircraft, boats, etc., which can be operated promptly and promptly by human beings, and is small and small output.
この二つの回転操作指示機構は、 固定指示構造、 手動指示構造も加えて、 無限動力形態規模の大小、 出力規模の、 大小を際限なく、 拡張、 拡大して、 無限の運動エネルギーを提供する無限動力 [永久機関] となる。
産業上の利用可能性 In addition to the fixed instruction structure and the manual instruction structure, these two rotation operation instructing mechanisms are infinitely large and small in terms of infinite power form scale and output scale, and can be expanded and expanded infinitely to provide infinite kinetic energy. Power [permanent engine]. Industrial applicability
永久運動や、 永久機関は、 人類永年の夢であり、 実現に努力したが、 全て 徒労に終わり、 現在では実現は愚か、 可能性すら否定されている。 The perpetual movement and the perpetual institution are the dreams of humankind for many years, and they have worked hard to realize them, but they have all gone without labor, and their realization is now stupid and even the possibility is denied.
過去に、 蒸気機関の、 発明があり、 内燃機関の、 発明があり、 電気の発見 があり、 原子力の発見に繋がる。 In the past, there was an invention of a steam engine, an invention of an internal combustion engine, an invention of electricity, and a discovery of nuclear power.
人類は、 此等の発明、 発見を、 ステップに、 社会構造を変え、 社会整備を しつつ、 一時代を画し、 進展して現代社会を建設した。 Human beings have taken a step of these inventions and discoveries, changed the social structure, and improved the society.
然し乍ら、 現在、 エネルギーを中心課題にして、 大きな転機を、 余儀なく されていて、 此等の発明、 発見の功罪は、 人類の選択で、 左右された結果 に、 基づくものと、 言わざるをえない。 However, at present, a major turning point is being made with energy as the central issue, and it must be said that these inventions, the merits and demerits of discovery, are based on the results of the choice and choice of human beings. .
当、 発明が、 動力革命となり、 社会環境を変え、 地球環境を保全し、 人類 の社会生活、 文化の向上に、 より豊かに貢献するであろうと、 考える事は、 疑う余地もない。 There is no doubt that the invention will be a power revolution, change the social environment, conserve the global environment, and contribute more to the improvement of the social life and culture of mankind.
無限動力 [永久機関」 の発明が、 現代社会の、 機能構造改革に、 繋ぐのか 、 生活圏を宇宙迄、 拡大する夢が実現するのか、 満ち足りて、 堕落するの かは、 人類の選択に懸かっていて、 其の功罪を予見することは、 難しい。 此の発明は、 只単に、 技術の改善や、 改良に結びつける物ではなく、 人類 が進むべき方向を、 模索する、 一里塚と考える。
Whether the invention of infinite power [permanent institution] will be connected to the reform of the functional structure of modern society, whether the dream of expanding the living sphere to the universe will be realized, or whether it will be fulfilled and depraved will depend on human choice. And it is difficult to foresee the merits and demerits. This invention is not merely an improvement of technology or a thing that leads to improvement, but it is considered as a milestone that seeks the direction that humanity should proceed.
Claims
1、 円運動は、 本質的な円の機能で、 無限運動 [永久運動] に繋がる。 又、 円心から外周円迄、 半径により異なる、 円周の長さと、 一定不変の円 周率は、 円の基本構造であり、 此の機能と構造に、 増幅機能と、 永久機関 構造となる、 永久運動原理を発見し、 無限動力 [永久機関] を発明した。 同心円の、 大小二つの固定ギヤ間を、 物理的基礎力学を応用して、 組合わ せた回転ギヤ群を、 接続回転連動すれば、 自力回転し、 増幅サイクル構造 となる回転体、 無限動力 [永久機関] の基礎構造。 1. Circular motion is an essential function of a circle, which leads to infinite motion [permanent motion]. Also, from the center of the circle to the outer circle, the length of the circumference, which varies depending on the radius, and the constant constant pi are the basic structure of the circle, and this function and structure have the amplification function and the permanent engine structure. He discovered the principle of eternal motion and invented infinite power [permanent engine]. The concentric circles, large and small fixed gears, apply the basic physical mechanics to connect the rotating gears that have been combined, and when they are connected and rotated, the rotating body that rotates on its own and has an amplification cycle structure, infinite power [ Permanent Agency] basic structure.
2、 増幅サイクル構造となっても、 起動力が無ければ、 始動はしない。 インターギヤに推力を加えるか、 センターギヤに回転圧力か、 何れか一方 に、 回転圧力を加えて、 増幅構造の入力ギヤ、 駆動ギヤが接続する、 大小 固定ギヤの接点 (力点) 間隔を、 縮小すると、 入力ギヤと、 増幅ギヤが、 相反する、 逆方向に回転する、 押し合う力が働き、 減速ギヤの増幅ギヤが 反転進行する、 増幅サイクル機能の、 起動力となり、 無限動力 [永久機関] は、 回転始動し、 センタ—ギヤの回転圧力を、 解除しなければ、 永久に回 転する永久運動となり、 操作竿の推力による、 回転指示が、 増幅サイクル 機能に起動力となる、 永久に自力回転を続ける、 永久運動原理。 2. Even if it has an amplification cycle structure, it does not start if there is no starting force. Apply thrust to the inter-gear or rotational pressure to the center gear, or apply rotational pressure to either of them to reduce the distance between the large and small fixed gear contact points (points of force) to which the input and drive gears of the amplification structure are connected. Then, the input gear and the amplifying gear oppose each other, rotate in the opposite direction, and the pushing force works. The amplifying gear of the reduction gear reverses. The amplifying cycle function becomes the starting force, and the infinite power [permanent engine] If the rotation start is started and the rotation pressure of the center gear is not released, it will be a permanent motion to rotate forever if not released, and the rotation instruction by the thrust of the operating rod will be the starting force for the amplification cycle function, forever self-powered The principle of perpetual motion that keeps rotating.
3、 フレームに、 自在回転する、 数個の間仕切り壁は、 間隔保持のリング 座金、 変形座金と共に、 数本の通しボルトで、 連結固定、 全ての回転ギヤ と、 通しボルトで、 構成する、 増幅構造回転体 [永久機関] を、 フレーム に独立して自在回転する、 安定回転保持を目的の、 間仕切り壁構造。 3.Several partition walls that rotate freely on the frame.Several partition walls, with ring washers and deformed washers for maintaining spacing, are connected and fixed with several through bolts, all rotating gears, and through bolts. Structural rotating body [Permanent engine] The partition wall structure that rotates freely independently of the frame to maintain stable rotation.
4、 センタ—ギヤに、 一体固定する操作竿は、 先端部のアームで、 回転操 作指示機構に連携して、 密閉したフレームの中で、 自力回転する、 回転体4. The operating rod, which is integrally fixed to the center gear, is a rotating body that rotates by itself in a sealed frame in cooperation with the rotating operation instruction mechanism with the arm at the tip.
[永久機関] に、 フレーム外から伝達連携する、 唯一の回転操作を指示す る、 機能構造となる。
3 回転始動, 停止, 左右回転, 出力増減, 長期継続 [永久回転] 等、 を緩急 強弱自在に回転体 [永久機関] を操作指示する、 操作竿連携指示機構。 It is a functional structure that instructs [permanent engine] to transmit and link from outside the frame, and to instruct the only rotation operation. An operation rod linkage instructing mechanism that gives instructions for operating the rotating body [permanent engine] freely, such as rotation start, stop, left / right rotation, output increase / decrease, and long-term continuous [permanent rotation].
5、 中央部又は両端の、 間仕切り壁に固定し、 両側壁で僅少作動する、 固 定センタ—ギヤの、 中心部を貫通して、 フレーム外に突出する、 動力伝導 シャフトが、 間仕切り壁と共に、 回転する構造にして、 シャフトの先端に、 動力伝達ギヤを、 一体固定して、 無限動力 [永久機関] が生産する、 運動 エネルギーを、 取出し提供する。 5.Fixed to the partition wall at the center or both ends, work slightly on both side walls, fixed center gear, penetrate through the center part and protrude out of the frame, the power transmission shaft, together with the partition wall, With a rotating structure, a power transmission gear is integrally fixed to the tip of the shaft to extract and provide kinetic energy produced by infinite power [permanent engine].
密閉するフレームの中で、 自力回転する、 無限動力回転体 [永久機関] が フレーム外に連結する、 唯一の構造機能となる、 動力伝導構造。 A power transmission structure that becomes the only structural function in which an infinitely powered rotating body [permanent engine] that rotates on its own in a closed frame is connected to the outside of the frame.
6、 同心円の、 大小二つの固定ギヤの内、 小のギヤ [センターギヤ] に、 接続回転する駆動ギヤは、 増幅ギヤと共通車軸で、 連結固定して減速ギヤ となり、 増幅ギヤは、 イン夕一ギヤには、 接続回転しない。 6. Of the two large and small concentric fixed gears, the small gear [center gear] is connected to the drive gear that rotates by using an amplifying gear and a common axle. The axle is connected and fixed to become a reduction gear. One gear does not rotate.
他方、 インターギヤに接続回転し、 共通車軸に、 自在回転する入力ギヤは、 増幅ギヤと同一の、 共通車軸で機能し、 左回転、 右回転と、 相反する回転 方向に回転しつつ、 共に同一方向に、 同時に回転進行する。 On the other hand, the input gear that is connected to the inter-gear and rotates freely on the common axle functions as the same axle as the amplifying gear, and is the same while rotating in opposite directions to the left and right. In the same direction.
インターギヤとセンターギヤの、 直径比率と、 減速ギヤとなる、 増幅ギヤ と駆動ギヤの直径比率を、 同一比率 [4 . 3 : 1当実施例採用] にすれば、 入力ギヤと、 増幅ギヤの運動量 [回転量] は、 同一になる。 If the diameter ratio between the inter gear and the center gear and the diameter ratio between the amplification gear and the drive gear, which is the reduction gear, are the same ratio [4.3: 1 this embodiment], the input gear and the amplification gear Momentum [rotation amount] becomes the same.
同一運動量の、 相反する回転方向の、 入力ギヤと、 増幅ギヤを、 笠形ギヤ で、 直接回転連動すれば、 互いに反対回転しつつ、 同一方向に回転進行す る、 増幅サイクル構造回転体 [永久機関] となる。 If the input gear and amplifying gear with the same momentum and opposite rotation directions are directly rotated and interlocked with a cog-shaped gear, they rotate in the same direction while rotating in opposite directions. ].
増幅サイクル機能に、 起動力を与えれば、 永久運動をする、 同一共通車軸 で機能する、 入力ギヤと、 増幅ギヤを、 直接回転連動する、 同軸回転ギヤ 接続笠形ギヤを、 特徴とする、 増幅構造無限動力 [永久機関 J 。 Amplifying structure that performs permanent motion when a starting force is given to the amplifying cycle function, functions on the same common axle, and coaxially rotates with the input gear and amplifying gear directly rotating. Infinite power [Permanent engine J.
7、 インターギヤに接続、 回転連動し、 共通車軸に、 自在回転の入力ギヤ と、 センタ—ギヤに接続回転する、 駆動ギヤは、 共通車軸で、 連携固定し
、 減速ギヤとなる増幅ギヤが、 インターギヤに接続せず、 空転する構造は 前の請求項 6と、 同じであるが、 Wギヤ接続回転のギヤ構造は、 接続連動 する、 構造が異なり、 入力ギヤと、 増幅ギヤが、 互いに他方の、 共通車軸 で機能する、 他軸ギヤ構造となる。 [基本構造と、 直径比率は同一] 。 回転体中央の、 主力問仕切り壁に、 円心で接点となる、 2個一組の W接続 ギヤを、 間仕切り壁の両面に装着、 夫々他方の A, B, 共通車軸で、 自在 回転する共通ギヤを、 W接続ギヤで回転連動し、 Aの増幅ギヤに、 Bの入 力ギヤが、 接続回転連動して、 増幅サイクル構造となり、 Bの増幅ギヤに Aの入力ギヤが、 接続回転連動して、 増幅サイクル構造となる。 7. Connected to the intergear, linked to rotation, and connected to the common axle, freely rotating input gear, and connected to the center gear for rotation. The drive gear is a common axle, fixed and linked. The structure in which the amplifying gear serving as the reduction gear does not connect to the inter-gear and runs idle is the same as in the previous claim 6, but the gear structure of the W gear connection rotation is connected and interlocked. The gear and the amplifying gear have another shaft gear structure that functions on the other common axle. [The diameter ratio is the same as the basic structure]. A set of two W-connection gears, which form a point of contact at the center, is mounted on both sides of the partition wall at the center of the rotating body at the main interrogate, and freely rotates on the other A, B, and common axles, respectively. The gear is rotationally linked by the W connection gear, the input gear of B is connected to the amplification gear of A, and the connection rotation is linked to form an amplification cycle structure. The input gear of A is connected to the amplification gear of B by the connection rotation. Thus, an amplification cycle structure is obtained.
A, B , 共通車軸夫々に、 分離して機能する、 他軸ギヤ構造の入力ギヤ と、 増幅ギヤを、 回転連動する、 W接続ギヤを、 特徴とする増幅構造無限 動力 [永久機関] 。 Amplification structure infinite power [Permanent engine] characterized by a separate axle function for each of A, B, and common axles.
8、 インターギヤに接続する入力ギヤと、 接続しない増幅ギヤは、 他軸構 造で、 双方互に直接連動するから、 共通車軸の周回軌道は遠くなる。 8. The input gear connected to the inter-gear and the amplifying gear not connected are directly connected to each other with a different shaft structure, so the orbit of the common axle is far.
偏心衛星ギヤは、 離れた、 センタ—ギヤと、 駆動ギヤを内接外接し、 連動 する、 自由に設定する二重構造だから、 出力計画に従い、 増幅ギヤと駆動 ギヤの直径比率を最初に決定、 比率に従い、 偏心衛星ギヤの [内外差] を 計算してセンターギヤ半径を割り出し、 センターギヤを内接、 駆動ギヤを 外接して、 接続連動するから、 増幅サイクル構造となる。 Since the eccentric satellite gear has a dual structure in which the center gear and the drive gear are separated and circumscribed and interlocked with each other, the diameter ratio of the amplification gear and the drive gear is determined first according to the output plan. According to the ratio, the [inside / outside difference] of the eccentric satellite gear is calculated to determine the center gear radius, and the center gear is inscribed and the drive gear is circumscribed, and the connection is interlocked, resulting in an amplification cycle structure.
此の構造は、 入力ギヤと増幅ギヤが、 夫々他方の共通車軸に、 分離して機 能する、 他軸ギヤ構造となり、 偏心衛星ギヤの接続連動で、 入力ギヤと増 幅ギヤが、 直接回転連動するから、 ギヤ数を削減して、 高出力を出現する、 他軸偏心衛星ギヤ接続連動による、 無限動力 [永久機関] 。 In this structure, the input gear and the amplifying gear function separately from each other on the other common axle.This is a multi-shaft gear structure, and the input gear and the amplifying gear rotate directly when the eccentric satellite gear is connected. Since the gears are linked, the number of gears is reduced and a high output appears. Infinite power [permanent engine] by linking gears connected to other eccentric satellites.
9、 既に、 特許申請した、 5項目の、 夫々異なるタイプの、 無限動力 [永 久機関] は、 主力回転ギヤの、 組合せにより決定される、 共通車軸の回転 周遊軌道と、 回転体中心迄の距離は、 5項目の回転接続構造では、 P良界が あり、 主力回転ギヤの直径にも、 限度があった。
遊星インターギヤ (Uギヤ) は、 間仕切り壁に一体形成し、 フレームに内 接空転する、 間仕切り壁と共に、 一体固定して、 偏心の儘自在に流転して、 センタ—ギヤと、 駆動ギヤを、 共に内接連動する。 9, already applied for patent, 5 items, each of different types, infinite power [permanent engine] is determined by the combination of the main rotating gear, rotation of the common axle For the five-point rotary connection structure, there is a P good field, and the diameter of the main rotary gear was also limited. The planetary inter-gear (U gear) is formed integrally with the partition wall and inscribed idly in the frame. It is fixed together with the partition wall, and flows freely with eccentricity. They are inscribed together.
(Uギヤ) の内径は、 自由な設定が可能だから、 両側壁、 センターギヤと 共に、 回転体の中心を貫通する、 動力伝導シャフトを実現した。 Since the inner diameter of the (U gear) can be freely set, a power transmission shaft that penetrates the center of the rotating body with both side walls and the center gear has been realized.
動力伝導シャフトに、 自在回転する、 統一共通ギヤを装着して、 入力ギヤ 、 増幅ギヤを、 共に並列し回転連動させれば、 A, B , 共通車軸で、 夫々機能する、 入力ギヤと増幅ギヤの全てが、 統一共通ギヤて、 接続回転 連動する構造に成るが、 増幅サイクルには成らない。 Attaching a unified common gear that can rotate freely to the power transmission shaft, and input gear and amplifying gear in parallel and rotating and linking them together, A, B and common axles function as input gear and amplifying gear, respectively. All of them have a unified common gear and a connected rotation linked structure, but not an amplification cycle.
入力ギヤは、 1 Kギヤに接続回転し、 共通車軸に自在回転して、 統一共通 ギヤに回転連動する。 The input gear rotates connected to the 1K gear, rotates freely on the common axle, and rotates and interlocks with the unified common gear.
増幅ギヤと、 駆動ギヤを、 共通車軸が、 連結固定して、 減速ギヤとなり、 1 Yギヤに接続回転し、 1 Yギヤの突起体が、 回転圧力を、 [圧縮体] に 蓄積、 回転力を反発力に変え、 反転して統一共通ギヤに回転連動する。 センタ—ギヤの直径を、 出力計画に従い、 自由に設定、 1 Kギヤとの直径 比率を、 減速ギヤの、 増幅ギヤと駆動ギヤの、 直径比率にすると、 センタ 一ギヤと駆動ギヤを、 (Uギヤ) が接続連動する、 増幅サイクル機能とな り、 自力回転して増幅する、 無限動力回転体 [永久機関] となる。 The amplifying gear and the drive gear are connected and fixed by a common axle to form a reduction gear, which is connected to the 1 Y gear and rotated. Is changed to repulsive force, which is reversed and linked to the unified common gear. The diameter of the center gear can be set freely according to the output plan. If the diameter ratio of the 1 K gear is the diameter ratio of the reduction gear, the amplification gear and the drive gear, then the center gear and the drive gear are (U Gear) is connected and interlocked, and becomes an amplification cycle function. It becomes an infinitely powered rotating body [permanent engine] that rotates by itself and amplifies.
此の (Uギヤ) 接続回転構造は、 中心に貫通する、 伝導シャフトを実現し、 回転体ギヤ構造を、 合理化してギヤ数を削減し、 多極構造の道を開いた。 反面、 共通車軸の周回軌道が、 円中心より遠く離れ、 センタ一ギヤと、 駆 動ギヤを接続連動する、 (Uギヤ) の直径も、 拡大するから、 操作竿の推 力を増大する、 必要が生ずるが、 (Uギヤ) の推進圧力が、 全て回転出力 機能となる、 遊星ギヤ接続回転構造の、 無限動力 [永久機関] 。 This (U gear) connection rotating structure realizes a conduction shaft that penetrates the center, streamlines the rotating body gear structure, reduces the number of gears, and opens the way to a multi-pole structure. On the other hand, the orbit of the common axle is farther from the center of the circle, and the center gear and the driving gear are connected and linked. The diameter of the (U gear) also increases, so the thrust of the operating rod must be increased. However, the propulsion pressure of (U gear) becomes the rotation output function, and the planetary gear connection rotation structure, infinite power [permanent engine].
1 0、 入力ギヤ, 共通車軸, 駆動ギヤ, 増幅ギヤの一群を、 増幅構造の基 礎単位 [ 1極と呼称する] として、 出力を増大する事も、 重要な課題であ るが、 1極を倍増する事は、 出力倍増の有効手段となる。 It is also important to increase output by using a group of input gear, common axle, drive gear, and amplifying gear as the basic unit of the amplifying structure [referred to as one pole]. Doubling is an effective means of doubling the output.
(Uギヤ) の採用は、 貫通シャフトを実現し、 主力ギヤ [入力ギヤ, 増幅
ギヤ, ] の直径を、 縮小増大する事を、 可能にした結果、 共通車軸の回遊 軌道を拡大し、 競合する事無く、 共通車軸を増やし、 マニアル数を増やし、(U gear) realizes the penetrating shaft, the main gear [input gear, amplification The diameter of the gear,] can be reduced and increased, and as a result, the trajectory of the common axle is expanded, and without competing, the common axle is increased, the number of manuals is increased,
3マニアルー 6極構造、 4マニアルー 8極構造、 6マニアルー 1 2極構造 が実現した。 A 3-pole 6-pole structure, a 4-pole 8-pole structure, and a 6-pole 1-pole structure have been realized.
又、 貫通シャフトと、 統一共通ギヤの実現は、 共通車軸に、 入力ギヤと、 増幅ギヤを増やすだけで、 極数を増やす、 手段となるから、 1マ二アルに 数極増加すれば、 2 0極構造, 3 0曲構造の、 強大な出力増大となる、 無 限動力 [永久機関] を実現する、 多極構造方式。 Also, the penetration shaft and the unified common gear can be realized by increasing the number of poles by simply increasing the input gear and amplifying gear on the common axle. A multi-pole structure with a zero-pole structure and a 30-song structure, which realizes infinite power [permanent engine] with a powerful output increase.
1 1、 遊星縮小インターギヤ (縮小 Uギヤ) 構造は、 9、 (Uギヤ) 接続 回転連動構造、 及び、 1 0、 多極構造方式、 が貫通シャフトと、 統一共通 ギヤを採用して、 多極構造としたのに対し、 縮小 Uギヤ構造は、 1 Kギヤ に接続回転し、 共通車軸に、 自在回転する入力ギヤと、 共通車軸で連結し て、 一体固定の、 増幅ギヤは、 駆動ギヤと 減速ギヤになり、 1 Yギヤに 接続回転して、 同一の、 共通車軸で機能し、 同一方向に進行する、 基本構 造は、 9 , 1 0, の請求項、 (Uギヤ) 接続連動構造に変らない。 1 1, planetary reduction inter-gear (reduction U-gear) structure, 9, (U-gear) connection rotation interlocking structure, and 10, multi-pole structure type, adopt through shaft and unified common gear, In contrast to the pole structure, the reduced U gear structure is connected to the 1K gear and connected to the common axle by a freely rotating input gear and the common axle. And reduction gear, connected and rotated to 1 Y gear, functioning on the same, common axle, and traveling in the same direction. The basic structure is as claimed in claims 9, 10, (U gear) The structure does not change.
然し、 縮小 Uギヤ接続構造には、 貫通シャフトはなく、 他方の共通車軸で 自在回転する、 共通ギヤに、 入力ギヤと、 増幅ギヤが並列して、 接続回転 連動するが、 増幅サイクル機能には成らない。 However, the reduced U gear connection structure does not have a through shaft, but freely rotates on the other common axle. The input gear and the amplification gear are connected in parallel to the common gear, and the connection rotation is linked. It does not become.
出力計画により、 自由に設定した、 センターギヤの直径と、 1 Kギヤの直 径比率で、 減速ギヤの、 増幅ギヤと駆動ギヤの、 直径を割り出し決定、 セ ンタ—ギヤと駆動ギヤを、 縮小 Uギヤで、 接続連動すれば、 増幅サイクル 機能となる。 The diameter of the reduction gear, the amplification gear and the drive gear is determined based on the center gear diameter and the diameter ratio of the 1K gear freely set according to the output plan, and the center gear and drive gear are reduced. If connected with the U gear, it becomes an amplification cycle function.
入力ギヤと、 増幅ギヤの、 接続連動する、 共通ギヤは、 (Uギヤ) 構造と 縮小 Uギヤ構造では、 回転シャフト [車軸] が、 異なるから、 夫々の共通 車軸の、 回遊軌道半径は、 縮小 Uギヤ構造の方が小さくなる。 The common gear that is connected and linked to the input gear and the amplification gear is (U gear) structure and reduced. In the U gear structure, the rotating shaft [axle] is different, so the trajectory radius of each common axle is reduced. U gear structure is smaller.
センターギヤと、 駆動ギヤを、 接続連動する、 縮小 Uギヤの方が流動距離 は短く、 従ってギヤの直径は小さく、 逆に接続連動圧力は、 大きくなり、 回転出力が、 増大する、 縮小 Uギヤ接続構造無限動力 [永久機関]
The reduced U gear, which connects and links the center gear and the drive gear, has a shorter flow distance, so the gear diameter is smaller, and conversely, the connection interlocking pressure increases, the rotational output increases, and the reduced U gear Connection structure infinite power [Permanent engine]
1 2、 センタ—ギヤに一体固定する操作竿は、 無限動力回転体 [永久機関 ] が、 自力回転する回転体を、 外部から操作する、 唯一の指示構造である。 回転カムェャ—配分、 回転車操作指示機構と、 操作竿の先端中央部で連結 する伝導シャフトは、 指示機構の回転車ルームに直結し、 回転カムェヤー 配分ルームの、 供給圧力ェャ—で働く回転車の圧力が、 回転始動、 維続回 転、 回転停止、 左右回転、 強弱、 緩急自在の、 回転指示機能となる。 1 2. The operating rod, which is fixed to the center gear, is the only instruction structure in which the infinitely powered rotating body [permanent engine] operates the rotating body that rotates by itself from the outside. The rotating shaft is connected to the rotating and car operating instruction mechanism, and the transmission shaft connected at the center of the tip of the operating rod is directly connected to the rotating car room of the indicating mechanism. Is the rotation instruction function of rotation start, continuous rotation, rotation stop, left and right rotation, strong and weak, free and fast.
伝動シャフトに、 オーム△ギヤを一体固定し、 操作竿のオーム▽ギヤに 連動すれば、 操作竿を、 左右に作動する推力は、 センタ—ギヤの回転圧力 となり、 増幅サイクルの、 起動力となり、 回転体が始動する。 If the ohm gear is fixed to the transmission shaft and linked with the ohm gear of the operating rod, the thrust that moves the operating rod left and right will be the rotational pressure of the center gear, and will be the starting force of the amplification cycle, The rotating body starts.
附帯装備として、 高圧低圧調整の、 ェャ—コンプレッサーとェャ—タンク で、 高圧カェヤーを供給すれば、 オームギヤ、 接続回転構造と相俟って、 強力な高出力の、 回転カムェャ—配分回転車、 操作指示機構。 As ancillary equipment, high-pressure low-pressure adjustment, a high-pressure car is supplied by a high-pressure car with a compressor and a low-pressure tank. , Operation instruction mechanism.
1 3、 回転カムェヤー配分、 シリンダー構造、 操作指示機構は、 前項 1 2 請求項の、 回転車操作指示機能は、 回転車の伝動シャフトが、 万力構造の13. The rotating camshaft distribution, the cylinder structure, and the operation instruction mechanism are the same as those described in the preceding clause 12. The rotating car operation instruction function is that the transmission shaft of the rotating car has a vise structure
、 オームギヤを回転して、 操作竿に推力となるから、 操作反応は遅いが、 推力は大きい。 The rotation of the ohm gear produces thrust on the operating rod, so the operation response is slow, but the thrust is large.
シリンダー操作指示機能は、 伝動シャフトのピストン運動で、 操作竿に、 直接推力となるから、 操作反応は早いが、 推力は小さい。 The cylinder operation instructing function is based on the piston movement of the power transmission shaft, and the thrust is directly applied to the operation rod. Therefore, the operation response is fast, but the thrust is small.
同じ様に、 回転カムェヤー配分機能を採用するが、 出力構造が異なるから 、 働く能力も異なる。 Similarly, the function of rotating camshaft distribution is adopted, but the working capacity is different because the output structure is different.
回転車操作指示機能は、 高出力で、 操作反応が遅いから、 大規模、 高出力 の多極構造等の、 無限動力 [永久機関] に適する。 The rotating car operation instruction function is suitable for infinite power [permanent engine] such as large-scale, high-output multi-pole structure because of high output and slow operation response.
シリンダー操作指示機構は、 小規模、 低出力だが、 操作反応が早く、 俊敏 で頻繁な、 切り替え操作が、 要求される、 小型、 小規模、 小出力の自動車 作業車, 小型航空機, ポート等、 人間が直接操作する、 動力機関に対応す る、 回転カムェヤー配分、 シリンダー構造操作指示機構、 無限動力 [永久 機関]
Although the cylinder operation instructing mechanism is small-scale, low-output, it is quick to respond to operation, agile and frequent, requires switching operation, small, small-scale, small-output automobile work vehicle, small aircraft, port, etc. Directly operated, corresponding to power engine, rotating camshaft distribution, cylinder structure operation instruction mechanism, infinite power [permanent engine]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001252590A AU2001252590A1 (en) | 2000-07-07 | 2001-04-25 | Infinite power generating device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-245280 | 2000-07-07 | ||
JP2000245280 | 2000-07-07 | ||
JP2000-320053 | 2000-09-13 | ||
JP2000320053 | 2000-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002004853A1 true WO2002004853A1 (en) | 2002-01-17 |
Family
ID=26597912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/003604 WO2002004853A1 (en) | 2000-07-07 | 2001-04-25 | Infinite power generating device |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2001252590A1 (en) |
WO (1) | WO2002004853A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006041522A1 (en) * | 2006-09-05 | 2008-03-06 | Ford Global Technologies, LLC, Dearborn | Internal combustion engine, has cooling device with suction line which partly encloses such that cooling agent located in cooling device surrounds, suction line, in form of cooling agent layer |
WO2008068878A1 (en) * | 2006-12-08 | 2008-06-12 | Motoichi Sugimoto | Infinite power generator |
EP2042517A1 (en) | 2002-09-27 | 2009-04-01 | Xencor, Inc. | Optimized FC variants and methods for their generation |
EP2053062A1 (en) | 2004-03-24 | 2009-04-29 | Xencor, Inc. | Immunoglobin variants outside the Fc region |
EP2221315A1 (en) | 2003-12-04 | 2010-08-25 | Xencor, Inc. | Methods of generating variant proteins with increased host string content and compositions thereof |
EP2325207A2 (en) | 2004-11-12 | 2011-05-25 | Xencor, Inc. | FC variants with altered binding to FCRN |
EP2368911A1 (en) | 2003-05-02 | 2011-09-28 | Xencor Inc. | Optimized Fc variants and methods for their generation |
EP2471813A1 (en) | 2004-07-15 | 2012-07-04 | Xencor Inc. | Optimized Fc variants |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230475A (en) * | 1999-02-08 | 2000-08-22 | Genichi Sugimoto | Infinite power generating device |
-
2001
- 2001-04-25 WO PCT/JP2001/003604 patent/WO2002004853A1/en active Application Filing
- 2001-04-25 AU AU2001252590A patent/AU2001252590A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000230475A (en) * | 1999-02-08 | 2000-08-22 | Genichi Sugimoto | Infinite power generating device |
Non-Patent Citations (1)
Title |
---|
MUNEHARU MOROZUMI ET AL.: "Yuusei haguruma to sadou haguruma no riron to sekkei keisan-hou", NIKKAN SHINBUNSHA, 27 April 1989 (1989-04-27), pages 145, XP002944784 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3150630A1 (en) | 2002-09-27 | 2017-04-05 | Xencor Inc. | Optimized fc variants and methods for their generation |
EP2364996A1 (en) | 2002-09-27 | 2011-09-14 | Xencor Inc. | Optimized FC variants and methods for their generation |
EP2042517A1 (en) | 2002-09-27 | 2009-04-01 | Xencor, Inc. | Optimized FC variants and methods for their generation |
EP3502133A1 (en) | 2002-09-27 | 2019-06-26 | Xencor, Inc. | Optimized fc variants and methods for their generation |
EP2298805A2 (en) | 2002-09-27 | 2011-03-23 | Xencor, Inc. | Optimized Fc variants and methods for their generation |
EP2345671A1 (en) | 2002-09-27 | 2011-07-20 | Xencor Inc. | Optimized fc variants and methods for their generation |
EP3321282A1 (en) | 2002-09-27 | 2018-05-16 | Xencor, Inc. | Optimized fc variants and methods for their generation |
EP3838920A1 (en) | 2003-05-02 | 2021-06-23 | Xencor, Inc. | Optimized fc variants and methods for their generation |
EP2368911A1 (en) | 2003-05-02 | 2011-09-28 | Xencor Inc. | Optimized Fc variants and methods for their generation |
EP2221315A1 (en) | 2003-12-04 | 2010-08-25 | Xencor, Inc. | Methods of generating variant proteins with increased host string content and compositions thereof |
EP2053062A1 (en) | 2004-03-24 | 2009-04-29 | Xencor, Inc. | Immunoglobin variants outside the Fc region |
EP3342782A1 (en) | 2004-07-15 | 2018-07-04 | Xencor, Inc. | Optimized fc variants |
EP2471813A1 (en) | 2004-07-15 | 2012-07-04 | Xencor Inc. | Optimized Fc variants |
EP2325207A2 (en) | 2004-11-12 | 2011-05-25 | Xencor, Inc. | FC variants with altered binding to FCRN |
EP2845865A1 (en) | 2004-11-12 | 2015-03-11 | Xencor Inc. | Fc variants with altered binding to FcRn |
EP2332985A2 (en) | 2004-11-12 | 2011-06-15 | Xencor, Inc. | Fc variants with altered binding to FcRn |
EP2325206A2 (en) | 2004-11-12 | 2011-05-25 | Xencor, Inc. | FC variants with altered binding to FCRN |
DE102006041522A1 (en) * | 2006-09-05 | 2008-03-06 | Ford Global Technologies, LLC, Dearborn | Internal combustion engine, has cooling device with suction line which partly encloses such that cooling agent located in cooling device surrounds, suction line, in form of cooling agent layer |
WO2008068878A1 (en) * | 2006-12-08 | 2008-06-12 | Motoichi Sugimoto | Infinite power generator |
JPWO2008068878A1 (en) * | 2006-12-08 | 2010-03-18 | 元一 杉本 | Infinite power generator |
Also Published As
Publication number | Publication date |
---|---|
AU2001252590A1 (en) | 2002-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002004853A1 (en) | Infinite power generating device | |
KR900700314A (en) | Automobile power unit and vehicle with the power unit | |
RU2011130604A (en) | DRIVE MECHANISM FOR SELECTIVE SWITCHING THE DRIVE BETWEEN THROUGH MODE AND TORQUE VECTORIZATION MODE | |
JP2012147665A (en) | Speed-increasing gear and power generator including the same | |
JPS63300131A (en) | Electric power shovel | |
CN103759061B (en) | A kind of electric valve quick closing valve device | |
US4624110A (en) | Fluid powered turbine | |
KR20220159048A (en) | Rotary motion device using eccentric gravity | |
WO2005010359A2 (en) | Infinite power generation apparatus | |
JP2009505019A (en) | Power transmission device | |
CN113719590B (en) | Manual and electric two-drive gearbox | |
CN2303978Y (en) | Vector-resultant type epicyclic-gear stepless speed-changer | |
JP2000230475A (en) | Infinite power generating device | |
JPS60138282A (en) | Water pressure drive generator | |
CN201041054Y (en) | Rotor engine with boosting flywheel | |
KR20240149183A (en) | Ship rudder and ship having the same | |
CN215059237U (en) | Micro-structure gear reducer | |
US20240010316A1 (en) | Propeller drive arrangement | |
US20230027337A1 (en) | Power tool | |
WO2008068878A1 (en) | Infinite power generator | |
KR20230009782A (en) | Rotary motion device using eccentric gravity by double crank module | |
KR950002468Y1 (en) | Driving mechanisms of toys | |
CN201176883Y (en) | Electric motor boosted rotor engine | |
KR20060081872A (en) | An floatage electric ship using hydraulic lift power turbine | |
US3298662A (en) | Hydraulic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BG BR CA CN CO CR CU CZ DE DK DM DZ EE ES FI GB GE GH HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LT LU LV MA MD MG MK MN MX MZ NO NZ PL PT RO RU SE SG SK TJ TR TZ UA US UZ VN YU ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase |