WO1999028967A1 - Box for transferring semiconductor wafer - Google Patents

Box for transferring semiconductor wafer Download PDF

Info

Publication number
WO1999028967A1
WO1999028967A1 PCT/JP1998/005369 JP9805369W WO9928967A1 WO 1999028967 A1 WO1999028967 A1 WO 1999028967A1 JP 9805369 W JP9805369 W JP 9805369W WO 9928967 A1 WO9928967 A1 WO 9928967A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
gas
wafer
power supply
cleaning
Prior art date
Application number
PCT/JP1998/005369
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Fujii
Osamu Horita
Kouji Ohyama
Toshiya Nakayama
Fumio Sakiya
Mineo Kimpara
Sin Yokoyama
Masataka Hirose
Original Assignee
Ebara Corporation
Dainichi, Shoji K.K.
Rorze Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation, Dainichi, Shoji K.K., Rorze Corporation filed Critical Ebara Corporation
Publication of WO1999028967A1 publication Critical patent/WO1999028967A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67389Closed carriers characterised by atmosphere control
    • H01L21/67393Closed carriers characterised by atmosphere control characterised by the presence of atmosphere modifying elements inside or attached to the closed carrierl

Definitions

  • the present invention relates to a transport box for semiconductor substrates, and particularly to a transport box (carrier) for storing and transporting substrates such as Si wafers, glass substrates, and metal-coated substrates in advanced industries such as semiconductors, liquid crystals, and precision machinery. Box) concerning.
  • substrates such as Si wafers, glass substrates, and metal-coated substrates in advanced industries such as semiconductors, liquid crystals, and precision machinery. Box
  • the air cleaning in a conventional clean room will be described with reference to FIG. 14 by taking air cleaning in a semiconductor manufacturing plant as an example.
  • the outside air 1 is first filtered to remove coarse particles by the pre-filter 2, then air-conditioned by the air conditioner 3, and is dust-removed by the medium-performance filter 4.
  • the HEPA filter (high-performance filter) 6 installed on the ceiling of the clean room 5 removes fine particles, and the clean room 5 is maintained in the class 100 to 1,000 (see “Cleaning design”).
  • ⁇ 7 -2 indicates a fan, and arrows indicate the flow of air.
  • the conventional air purifier in a clean room is designed to remove fine particles, so it was configured as shown in Figure 14. Such a configuration is effective for removing fine particles, but is not effective for removing gaseous harmful components.
  • H.C. must be removed because it is a gaseous harmful component that has a very low concentration in normal air (indoor air and outside air) that causes contamination.
  • gaseous substances also pose a problem if they are generated during work in a clean room. That is, as a cause of the gaseous substance, in a normal clean room, the gaseous substance introduced from the outside air (the gaseous substance cannot be removed at the fill in the clean room, so the gaseous substance in the outside air is introduced. In addition, since the gaseous substances generated in the clean room are added, the gaseous substances in the clean room have a higher concentration than the outside air, and contaminate the wafer substrate and the substrate.
  • the concentration of gaseous substances in the clean room is reduced. It is concentrated and has a considerably higher concentration than the outside air. It adheres to the substrate and substrate and contaminates the surface.
  • the degree of this contamination can be represented by the contact angle between the substrate and the substrate. If the contamination is severe, the contact angle is large. Substrate / substrate with a large contact angle, even if formed on the surface, has low adhesion strength of the film (poor adaptability), leading to a decrease in yield.
  • the contact angle is the contact angle of water wetting, and indicates the degree of contamination of the substrate surface. That is, when hydrophobic (oil-based) contaminants adhere to the substrate surface, the surface repels water and becomes less wettable. Then, the contact angle between the substrate surface and the water droplet increases. Therefore, if the contact angle is large, the degree of contamination is high, and if the contact angle is small, the degree of contamination is low.
  • the present inventors have proposed a space cleaning method using photoelectrons or photocatalysts as a local cleaning technology.
  • Photo-electron cleaning method (removal of particulate matter): Japanese Patent Publication No. 3-5 859, Japanese Patent Publication 6-74909, Japanese Patent Publication 8-211, Japanese Patent Publication 7-21 No. 369, 2) Cleaning method using photocatalyst (removal of gaseous harmful components): Japanese Patent Application Laid-Open No. Hei 9-198672, Japanese Patent Application Laid-Open No. Hei 9-205046, 3) Photoelectron and photocatalyst Combination method (simultaneous removal of particles and gas): There is a patent No. 2623290.
  • the present invention provides a mini-environment semiconductor substrate, which is increasingly required in advanced industries such as the semiconductor, liquid crystal, and precision machine industries, as the quality of the product is increased, refined, and miniaturized.
  • An object of the present invention is to provide a transfer box for semiconductor substrates having a practically effective function of removing fine particles and gaseous harmful components as a transfer box.
  • the present invention provides a semiconductor substrate transport box having an opening / closing mechanism that allows a semiconductor substrate to enter and exit, wherein the box uses photoelectrons and photocatalyst by light irradiation for cleaning the inside of the box.
  • This is a semiconductor substrate transfer box having a gas cleaning unit integrated with a gas cleaning device.
  • a semiconductor substrate carrying box having an opening / closing mechanism capable of moving a semiconductor substrate in and out, wherein the box includes a gas purifying device using photoelectrons and a photocatalyst by irradiating light for cleaning the inside of the box.
  • the present invention provides a semiconductor substrate transfer box having a gas purifying unit integrated with a power supply unit having a charging function and a battery for supplying power to the device.
  • the transfer box is preferably made of synthetic resin, and the gas cleaning unit includes a radiator for transmitting heat generated by the power supply device to the gas cleaning device when a power supply device is integrated. Is good.
  • the gas purifying unit does not have a power supply unit integrated, the load port, standby place waiting for the process, stocker, etc. should be provided between the transport boxes (other than transport). It operates by receiving power supply through connection to a power supply device installed in the office.
  • FIG. 1 is a cross-sectional view showing an example of a horizontally-opening integrated transfer box of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the open cassette storage type horizontal opening transport box of the present invention.
  • FIG. 3 is a cross-sectional view showing one example of the open cassette storage type bottom-opening transport box of the present invention.
  • FIG. 4 is a block diagram in which the gas cleaning unit of the present invention and a power supply device are connected.
  • FIG. 5 is a block diagram in which the gas cleaning device of the present invention and a power supply device are integrated.
  • FIG. 6 is an explanatory diagram for utilizing heat generated from a power supply device.
  • FIG. 7 is a cross-sectional view showing another example of the horizontal opening integrated transfer box of the present invention.
  • FIG. 8 is a side view of FIG.
  • FIG. 9 is a cross-sectional view showing an example of the open cassette storage type horizontal opening transfer box of the present invention.
  • FIG. 10 is a cross-sectional view showing an example of the open cassette storage type bottom-opening transport box of the present invention.
  • Fig. 11 is a graph showing the change of contact angle (degree) according to the holding time (day).
  • Fig. 12 is a graph showing the change in contact angle (degree) with the holding time (day).
  • Fig. 13 is a graph showing the change in non-methane hydrocarbon concentration (ppm) with retention time (hour).
  • Figure 14 is a schematic diagram showing air cleaning in a conventional clean room.
  • the semiconductor substrate transport box of the present invention has an opening / closing mechanism that allows a semiconductor substrate to be stored in or taken out of the box, and a gas purifying apparatus using photoelectrons and photocatalysts by irradiating light for cleaning the inside of the box. (Gas purification unit), which can be removed from the box as appropriate.
  • the gas purifier is used between the original use of the box as a transport Power supply device installed in a load port, a stand-by place where a process is waiting, or a stocker, etc., receives power supply and operates, thereby allowing the gas in the box containing the substrate to be stored. Is performed.
  • the semiconductor substrate transport box of the present invention has an opening and closing mechanism for storing and unloading the semiconductor substrate in and out of the box, and performs gas cleaning using photoelectrons and photocatalyst by light irradiation for cleaning the inside of the box.
  • a power supply unit with a battery-equipped charging function to supply power to the device, and they are integrated (gas cleaning unit), and the unit is removed from the box as appropriate. You can do it.
  • the unit may be provided with a radiator for transmitting heat generated from the power supply device to a gas cleaning device using photoelectrons and photocatalysts.
  • boxes of the present invention can house, transport, and / or store a semiconductor substrate, and any box that can be hermetically sealed may be used.
  • it is made of metal or synthetic resin.
  • A1 is preferable because of its light weight.
  • a synthetic resin any material may be used as long as it is excellent in processability, rigidity, and durability, and generates little gas.
  • a transparent material is more preferable.
  • there are general-purpose plastics such as ABS and acryl, engineering plastics such as polycarbonate (PC), and super-engineering plastics such as polyetherimide.
  • the box opening / closing mechanism is any of the above-mentioned hermetically sealable boxes in which a gas purifying device using a photoelectron and a photocatalyst of the present invention described below can be installed, as long as the substrate can be appropriately stored and taken out. good.
  • the box opening / closing mechanism consists of a box door, a wafer presser, and a sealing material, and is integrated.
  • the box door is engaged with a door opener (SEMI standard), and is pulled out of the box body in the horizontal direction. By pulling down in the direction, the box door is opened from the box body.
  • a door opener SEMI standard
  • Examples of such boxes include: 1) a horizontal open integrated transport box, and 2) an open cassette storage type, based on the position of the opening / closing door and the type of board storage (whether or not to store the board in an open cassette).
  • the contaminants in the box are effectively removed by the gas flow (natural circulation) utilizing the heat generated in the device.
  • the cleaning device using photoelectrons is composed of a photoelectron emission material, an ultraviolet lamp, an electrode material for an electric field for photoelectron emission, and a charged particle collection material, and removes fine particles (particulate matter).
  • the photoelectron emitting material may be any material that emits photoelectrons when irradiated with ultraviolet light, and the smaller the photoelectric work function, the better. From the viewpoint of effect and economy, Ba, Sr, Ca, Y, Gd, La, Ce, Nd, Th, Pr, Be, Zr, Fe, Ni, Z n, Cu, Ag, Pt, Cd, Pb, A1, C, Mg, Au, In, Bi, Nb, Si, Ti, Ta, U, B, Eu , Sn, P, or W, or a compound or alloy or a mixture thereof, and these are used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can be used.
  • the oxide as a compound, boride, there is a carbide the oxide B a 0, S R_ ⁇ , C a O, Upsilon 2 ⁇ 5, Gd 2 0 3, N d 2 0 3, T h0 2 , Z R_ ⁇ 2, F e 0 3, Z n O, C uO, A g 2 O, L a 2 0 3, P T_ ⁇ , P b O, A 1 2 Oa, Mg_ ⁇ , I n 2 0 3 , B i O, Nb_ ⁇ , include B e O, the Mataho of compounds ⁇ ⁇ , G d B e, L a B 5, N d B ⁇ , C e B ⁇ , E u B 6, P r B beta, include Z r B 2, still carbides UC, Z r C, T a C, T i C, NbC, WC, etc.
  • the alloy examples include brass, bronze, phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt%), an alloy of Cu and Be (Be is l to 10 wt%). ) And an alloy of Ba and A 1 can be used, and the alloy of Ag and Mg, the alloy of Cu and Be, and the alloy of Ba and A 1 are preferable. Oxides can also be obtained by heating the metal surface alone in air or by oxidizing it with chemicals.
  • an oxide layer on the surface by heating before use to obtain a stable oxide layer over a long period of time.
  • an oxide film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 300 to 400 ° C. It is stable over time.
  • a substance that emits photoelectrons can be used in addition to another substance.
  • a material in which a substance capable of emitting photoelectrons is added to an ultraviolet-transparent substance Japanese Patent Publication No. 7-93098, Japanese Patent Application Laid-Open No. 424/340.
  • the shape and structure of the photoelectron emitting material differ depending on the shape and structure of the device (unit) or the desired effect, and can be determined as appropriate.
  • the irradiation source for emitting photoelectrons from the photoelectron emitting material may be any source that emits photoelectrons upon irradiation, and ultraviolet light is usually preferred.
  • the type of ultraviolet light may be any as long as the photoelectron emitting material emits photoelectrons by irradiation. Any ultraviolet ray source can be used as long as it emits ultraviolet rays, but a mercury lamp, for example, a germicidal lamp is preferable in terms of compactness.
  • the positions and shapes of the ultraviolet light source, the photoelectron emitting material, the electrode, and the charged particle collecting material, which are features of the present invention, will be described. These are characterized in that they are installed around an ultraviolet light source, together with a photocatalyst described later as appropriate, depending on the required performance, and are integrated as a unit (unit) for purifying gases containing harmful gases and fine particles.
  • the position and shape of the photoelectron emitting material may be any as long as they can be installed so as to surround the ultraviolet light emitted from the ultraviolet light source (to increase the irradiation area). Normally, ultraviolet rays from an ultraviolet ray source are radially emitted in the radial direction. Therefore, it is sufficient if the ultraviolet rays can be installed in the circumferential direction so that the ultraviolet rays are emitted.
  • Electrode material and its structure may be those used in a well-known charging device. Any electrode material can be used as long as it is a conductor, examples of which include tungsten, SUS, or Cu-Zn wires, rods, nets, and plates. One or a combination of two or more of these is installed so that an electric field can be formed in the vicinity of the photoelectron emitting material (Japanese Patent Application Laid-Open No. Hei 2-33557).
  • the collection material (dust collection material) for charged fine particles is generally an electrode material such as a dust collection plate and a dust collection electrode in a normal charging device, and an electrostatic filter system.
  • a steel wool electrode and a tungsten wool electrode are used.
  • a wool-like structure such as described above is also effective.
  • Electrec materials can also be suitably used.
  • the photoelectron emission electrode can also serve as a dust collecting material (Japanese Patent Publication No. 8-211), the preferred combination of photoelectron emission material, electrode material, and material for collecting charged fine particles is box shape. It can be determined as appropriate according to the structure, required performance, economics, etc., as long as it can quickly move contaminants such as fine particles present in the cleaning space described later into the purification device by installing in the space. good.
  • the position and shape of the photoelectron emitting material and the electrode surround the ultraviolet light source, the ultraviolet light source, the photoelectron emitting material, the electrode, and the charged particle collecting material can be integrated, and the ultraviolet light emitted from the ultraviolet light source is effectively used, and It can be determined by a preliminary test or the like in consideration of the shape, effect, economy, etc. of the box so that the emission of particles and the charging and collection of the fine particles by the photoelectrons can be performed effectively.
  • a rod-shaped (cylindrical) ultraviolet lamp when a rod-shaped (cylindrical) ultraviolet lamp is used, ultraviolet rays are emitted radially in the radial direction. Therefore, the more the radial radial ultraviolet rays are applied to the photo-emitting material as much as possible, the larger the amount of photoelectron emission. Increase.
  • the photocatalyst removes gaseous harmful components, and is excited by light irradiation from a light source, and causes organic gases (non-methane hydrocarbons, H.C) involved in increasing the contact angle to participate in increasing the contact angle.
  • organic gases non-methane hydrocarbons, H.C
  • Any material may be used as long as it can be decomposed into a form that does not affect it or converted into a stable form that has no effect even if attached.
  • semiconductor materials are preferred because they are effective, readily available, and have good workability.
  • these are used alone or in combination of two or more.
  • the elements are Si, Ge, Se, and the compounds are A1P, A1As, GaP, A1Sb, GaAs, InP, GaSb, I n As, In S b, C d S, C d S e, Z n S, Mo S 2 , WT e 2 , Cr 2 T e 3 , Mo Te, Cu 2 S, WS 2 , the oxide T i ⁇ 2, B i 2 0 3, C u O, C u 2 0, Z n O, Mo_ ⁇ 3, I n Oa, A g O, P b O, S r T i ⁇ 3 , B a T i 0 3, C o 3 ⁇ 4, F e 0 3, N I_ ⁇ the like.
  • the photocatalyst can be formed on the metal surface by firing the metal material.
  • An example of this was calcined for T i material, touch light effect formation of T i ⁇ 2 on the surface thereof There is a medium.
  • the photocatalyst is characterized by being installed around a light source similarly to the photoelectron emitting material, and integrated as a gas cleaning device (unit). Further, depending on the required performance, it can be integrated with the above-described cleaning device using photoelectrons, which is a feature of the present invention.
  • the installation position of the photocatalyst in the gas cleaning device includes a method of installing the photocatalyst emitting material integrally and a method of separately installing the photoelectron emitting material.
  • a method of installing the photocatalyst emitting material integrally includes a method of installing the photocatalyst emitting material integrally and a method of separately installing the photoelectron emitting material.
  • an ultraviolet source is surrounded by a vitreous substance or a glass material and applied to the surface of the vitreous substance, (3) circumferential direction facing the ultraviolet source (4) coating the photocatalyst with a suitable material such as plate, cotton, mesh, honeycomb, membrane, cylinder, or fiber, or wrapping or sandwiching the photocatalyst inside the device It may be used by fixing to.
  • a suitable material such as plate, cotton, mesh, honeycomb, membrane, cylinder, or fiber
  • wrapping or sandwiching the photocatalyst inside the device It may be used by fixing to.
  • An example is
  • Well-known means such as an impregnation method, a photoreduction method, a sputter deposition method, and a kneading method can be appropriately used for the addition method.
  • any light source that emits a wavelength that is absorbed by the photocatalyst material may be used.
  • Light in the visible, ultraviolet, or ultraviolet region is effective, and a known light source can be appropriately used.
  • mercury lamps include germicidal lamps, black lights, fluorescent chemical lamps, and UV-B UV lamps.
  • a visible light source can be used to remove contaminants, but when integrated with the photoelectron device, the ultraviolet lamp, for example, a germicidal lamp is effective. .
  • a germicidal lamp is preferable because it can increase the effective irradiation light amount to the photocatalyst (irradiation in which the photocatalyst absorbs and exerts a photocatalytic action) and accelerates the photocatalytic action.
  • the present invention differs depending on the type and properties of the container (wafer, glass material, etc.) and the thin film on the container. According to their research, the following can be considered.
  • H.C organic gas
  • H.C organic gas
  • H.C organic gas
  • its structure is one CO, one COO Has a bond (has hydrophilicity).
  • This HC can be considered as a hydrophobic substance (a C 1 C 1 part of the basic structure of HC) having a hydrophilic part (one CO, one C ⁇ bond).
  • the organic gases increase the contact angle of the contained object surface such as a glass substrate in the usual clean room, high molecular weight C ie ⁇ C 20 H.
  • C phthalates
  • phthalates For example, higher fatty acid phenol derivative
  • — CO chemical structure of — CO, which has a single C (bond (having hydrophilic character) (Air Purification, Vol. 3, Vol. 1, No. 1, pl 6-21) , 195).
  • the photocatalyst when the photocatalyst is placed in an atmosphere in which an organic gas is present, the photocatalyst has an adsorbing action, so that H.C is the active portion of the photocatalyst and the COC bond is adsorbed on the photocatalyst surface, Acted upon and converted to another stable form.
  • the organic gas is considered to be in a stable form (converted to low molecular substances) and not adhere to the wafer or glass substrate, or not to exhibit hydrophobicity even if adhered.
  • the photocatalyst is effective not only for decomposing and removing H.C but also for removing a basic gas (hazardous gaseous component) such as ammoniaamine.
  • the gas cleaning in this box can be performed by a combination of photoelectrons and photocatalysts depending on required performance, economy, and the like, which is a feature of the present invention. That is, when both the fine particles and the gaseous harmful components are problematic, a cleaning device in which photoelectrons and photocatalysts are integrated can be used.
  • this box is a box having a self-cleaning function.
  • the box of the present invention is integrated with a unitary gas purifying device using the above-mentioned photoelectric and photocatalyst, which can be easily attached or detached, and is operated by being connected to a power supply device for cleaning.
  • the power supply device with a charging function equipped with a battery and the cleaning device are integrated, and mounted and cleaned as a gas cleaning unit, which is a feature of the present invention.
  • FIG. 4 shows a schematic block diagram of the connection between the gas cleaning device of the present invention and the power supply device, which will be described next.
  • the box 10 (corresponding to box 21 described later) of the present invention is provided with a gas cleaning device A -2 using a photoelectron and a photocatalyst.
  • the box 10 is integrated with the gas purifier A- 2 .
  • the box of the present invention is used for transporting substrates (carrier). Since the ratio of the residence time at the load port, the process waiting standby place, and the storage force other than the transport is large, the gas purifier A -2 uses the load port and the process wait other than the transport.
  • the power from the power supply 13 in the power supply device 14 installed at the location and the storage power is supplied, and the gas in the pox 10 is cleaned. That is, the box 10 of the present invention, in which the gas purifying device A -2 is integrated, has a power supply device 14, for example, a mouthpiece of a semiconductor processing device, a process waiting state, during a transfer.
  • the box is cleaned by being installed in a standby place, a stocker, or the like, and receiving power supply as described above.
  • the gas inside the box is cleaned during the standby time of the box (temporary installation, installation at night, etc.) using the aforementioned photoelectrons and photocatalysts. An ultra-clean space is created.
  • the box 10 of the present invention is provided with a power supply device ⁇ - : ⁇ equipped with a battery and a charging function, and a gas cleaning device A -2 using a photoelectron and a photocatalyst.
  • the power supply unit A and the gas purifier A -2 are integrated (gas purifier unit, A :). That is, the power supply device A- : l is composed of a power supply 13 for supplying power to the charging circuit 11, the battery 12, and the gas purifying device A, and a power supply device (power supply station) 14 as appropriate. And the battery 12 is charged via the charging circuit 11.
  • the box of the present invention is used for transportation (carrier), and the gas purifier A- 2 during transportation is provided with the power supply 1 for the power charged in the battery 12 in the power supply A as described above. Continuous operation with supply from 3.
  • the battery-12 may be any battery that can be charged and can appropriately supply power. Examples thereof include a Li-ion battery and a Ni-hydrogen battery.
  • the box 10 of the present invention in which the gas cleaning unit A is integrated, is provided with a power supply device 14, for example, a load port of a semiconductor processing device, or a standby state during a process, during the transportation. It is installed in a place stocker or the like, and receives power from the battery 12 as described above.
  • a power supply device 14 for example, a load port of a semiconductor processing device, or a standby state during a process, during the transportation. It is installed in a place stocker or the like, and receives power from the battery 12 as described above.
  • the gas cleaning using the photoelectrons and the photocatalyst is performed while the box is being transported or in a standby state, that is, continuously, so that an ultra-clean space is maintained in the box.
  • FIG. 6A shows a gas purifier A. 2 wall adjacent to the electronic components and the power supply device disposed in the power supply device A.! In.
  • the heat generated from the electronic components 15 generated by the operation is transmitted to the wall 17 of the gas purifier A- 2 via the radiator plate 16 (the cleaning space of the plate electrode 30 or the light shielding material 35 described later).
  • Reference numeral 18 denotes a heat conductive sheet for efficiently transmitting the heat.
  • the heat conductive grease and epoxy resin adhesive can be used in addition to the sheet.
  • the heat radiating plate 16 may be any material as long as it efficiently transmits heat, and examples thereof include Cu and A1. Usually, A 1 is preferred because of its light weight and relatively low cost.
  • Reference numeral 19 denotes an electronic component which is provided on the printed circuit board 20 and generates little heat. In this way, heat generated from the electronic component 15 that generates a large amount of heat is transmitted to the wall surface of the gas cleaning device A- 2 . By effectively utilizing the heat, the gas circulation in the device A- 2 is accelerated, so that the inside of the box is effectively cleaned.
  • the cleaning of the gas of the present invention is essentially gentle because it is caused by the flow of gas caused by heat generated from a light source such as an ultraviolet lamp. This is effective because the flow of gas is accelerated by utilizing the heat generated from the gas.
  • FIG. 6 (b) will be described.
  • FIG. 6 (b) shows a case where the heat radiating plate 16 is directly installed inside the gas cleaning device via the wall surface 17.
  • the present invention can be similarly used in various gases such as N 2 and Ar, including air in a normal clean room.
  • This box can be used not only for transportation but also as a stock box (storage force) since a clean space can be continuously obtained by power supply, which is a feature of the present invention.
  • a heating source such as a lamp or a lamp inside to accelerate the gas flow. The installation accelerates the removal of pollutants, so that it can be used as appropriate.
  • the gas purifying apparatus or gas purifying unit of the present invention should be integrated into a box by using a well-known joining method such as through a gas-free packing material or by using a magnet (magnetic force). Can be.
  • the wafer transfer box 21 in the semiconductor factory will be described with reference to FIG.
  • Figure 1 shows a horizontal opening integrated transport box.
  • clean room of class 1,000 also contains non-gas due to degassing from clean room components and equipment. Methane hydrocarbons are present at 1.1 to 1.5 ppm. On the other hand, workers also generate contaminants (gaseous substances, fine particles), so the vicinity of people is a dirty environment for wafer 22.
  • the wafer 22 is stored in the wafer transfer box 21 and transferred to each process (eg, a film forming process) to be processed into a high-quality product.
  • the opening / closing mechanism of the box 21 is composed of a box door 23, a wafer holder 24, and a sealing material 25, and is integrated.
  • the box door 23 is engaged with a door opener (not shown, SEMI standard).
  • the box door 23 is released from the box body 21 by pulling it downward after pulling it out horizontally from the box body.
  • the automatic transfer robot for clean room holds the robot flange 26, and is placed on the load port of the semiconductor processing equipment. Each sheet is loaded and unloaded. After the box doors 23 are closed, they are transported again to the next process equipment by the automatic transport robot for clean room.
  • the box 21 includes an ultraviolet lamp 27, a photocatalyst 28, a photoelectron emission material 29, an electrode 30 for emitting photoelectrons from the photoelectron emission material (lattice or net shape), and a material for collecting charged fine particles 31.
  • Gas purifier A is installed.
  • the power supply from the power supply for the operation of the cleaning device A -2 is supplied from an external power supply device as shown in FIG. 4 described above, and the air purification in the box 21 is performed by the device A -2 .
  • the device A -2 Since the device A -2 is supplied with power from the power supply device installed at the outlet port, cleaning is performed for a long time (clean space is maintained).
  • the box 21 contains hydrocarbons (H.C) as gaseous harmful components (hazardous gases) that increase the contact angle of the wafer when attached to the wafer 22 and the wafer. If they adhere, they cause disconnections and short circuits, causing defects and the presence of fine particles that reduce the yield. These contaminants enter the box 21 from the clean room each time the box 21 is opened and closed for storing and removing the wafer 22 from and into the box 21.
  • H.C hydrocarbons
  • hazardous gases gaseous harmful components
  • the H.C is decomposed by the photocatalyst action of the photocatalyst 28 irradiated with ultraviolet rays from the ultraviolet lamp 27, and is converted into a form that does not increase the contact angle.
  • the fine particles are charged by the photoelectrons 33 emitted from the photoelectron emitting material 29 irradiated with the ultraviolet lamp 27 to become charged fine particles, and the charged fine particles serve as a collecting material for the charged fine particles.
  • the cleaning space B which is collected by the electrode 31 and in which the wafer 22 exists, is ultra-cleaned. Movement to H.
  • the box material is made of PC, UV lamp germicidal lamps (2 54 eta m), intended photocatalyst obtained by adding T i ⁇ 2 to A 1 material, as the light emission material obtained by adding Au to A 1 material
  • the electrode for photoelectron emission is reticulated SUS (10 V / cm), and the charged fine particle trapping material is SUS (500 VZcm).
  • reference numeral 35 denotes a light-shielding material, which prevents irradiation of the wafer 21 with ultraviolet rays from the ultraviolet lamp 27.
  • Reference numeral 36 denotes a partition plate for effectively flowing the flow of air 34- : 134-6 due to the irradiation of ultraviolet rays to the vicinity of the wafer. In this way, the harmful gases and particulates in the air in Box 21 are treated, and the air in Box 21 does not increase the contact angle when a substrate such as a wafer is stored, and it is more effective than Class 1. An ultra-clean space is maintained.
  • the gas cleaning device A can be separated from the cleaning space B of the box in which the wafers are stored, and they are joined via packing material.
  • the disconnection is performed at the time of regular maintenance, for example, once a year.
  • Reference numeral 37 denotes a kinematic coupling having a V-groove for box positioning.
  • FIG. 2 shows another type of box of the wafer transfer box 21 shown in FIG. 1 of the first embodiment.
  • FIG. 2 shows an open cassette storage type horizontal opening transfer box in which an open cassette 38 holding a wafer 22 is stored in the box of FIG. In the opening / closing mechanism of this box, since the wafer 22 is held by the open cassette 38, there is no wafer holder (24 in FIG. 1).
  • the same reference numerals as those in FIG. 1 have the same meaning.
  • FIG. 3 shows another type of box of the wafer transfer box shown in FIG. 1 of the first embodiment.
  • FIG. 3 shows an open cassette storage type bottom-opening transport box.
  • the box 21 has a box 21 opening and closing mechanism including a box door 23 and a sealing material 25 at the bottom thereof.
  • the box 21 is a bottom-open box, and the opening / closing mechanism including the box door 23 and the sealing material 25 of the box 21 is lifted to the box door 23 with the box floating.
  • the box door 23 is opened by engaging an orbner with an evening mechanism (not shown) and lowering it vertically.
  • the box 21 accommodates an open cassette 38 holding the wafer 22.
  • a wafer transfer box integrated with a cleaning device for removing harmful gases and fine particles shown in Fig. 1 was installed in a semiconductor factory of class 100, and the following sample gas was charged, and ultraviolet irradiation was performed.
  • the contact angle on the wafer stored in the wafer transfer box, the concentration of fine particles in the box, and the concentration of non-methane hydrocarbon were measured.
  • the power supply to the power supply device was performed by connecting the power supply device to the power supply device of the storage power in the clean room.
  • Transport box size 35 liters, manufactured by P.C.
  • UV light source germicidal lamp 4W.
  • Electrode plate SUS plate, 800 V / cm.
  • Fine particle concentration Class 1, 0 0 0,
  • Non-methane hydrocarbon concentration 1.5 ppm
  • particle concentration shows a 0.1 total number of m or more fine particles contained in 1 ft 3.
  • Figure 11 shows the relationship between the contact angle on the wafer stored in the box and the holding time.
  • each of the samples of the present invention is indicated by an arrow mark, in comparison, an image without an electric field for photoelectron emission is indicated by an arrow mark, an image without a photocatalyst is indicated by an arrow, and a sample without UV irradiation. Shown by- ⁇ -mark.
  • Table 1 shows the particle concentration (class) in the box after 1 hour, 2 hours, 1 day, and 1 week. For comparison, Table 1 shows the one without the electric field for photoelectron emission, the one without the photocatalyst, and the one without UV irradiation.
  • Table 1 Numerical values: class 1 hour after 2 hours after day after week After the present invention ⁇ ⁇ ⁇ Set the electric field for photoemission 1000 900
  • FIGS. 7 and 8 show a horizontal opening integrated type transport box
  • FIG. 8 is a side view of FIG.
  • high-quality products are manufactured in a class 1,000 clean room. Since the wafer 22 is processed (deposited, etc.) into a high-quality (miniaturized, precise) product, it is affected by gaseous substances and fine particulate matter (fine particles).
  • non-methane hydrocarbons caused by degassing from clean room components and equipment are 1.1 as gaseous harmful components in Class 1,000 clean rooms. ⁇ 1.5 ppm is present.
  • pollutants gaseous substances and fine particles
  • the vicinity of a person is a dirty environment for the wafer 22.
  • the wafer 22 is stored in the wafer transfer box 21 and transferred to each process (eg, a film forming process) to be processed into a high-quality product.
  • the opening / closing mechanism of the box 21 is composed of a box door 23, a wafer holder 24, and a sealing material 25, and is integrated.
  • the box door 23 is engaged with a door opener (not shown, SEMI standard).
  • the box door 23 is released from the box body 21 by pulling it downward after pulling it out horizontally from the box body.
  • an automatic transfer robot for a clean room holds the robot flange 26, and is mounted on a load boat of a semiconductor processing apparatus. Mouthpieces are diced and unloaded one by one. After the box doors 23 are closed, they are again transferred to the next-step processing device by the automatic transfer robot for clean room.
  • the box 21 includes a gas cleaner comprising an ultraviolet lamp 27, a photocatalyst 28, a photoelectron emission material 29, an electrode 30 for photoelectron emission from the photoelectron emission material, and a material for collecting charged fine particles 31.
  • a gas purifying unit A (AA- 2 ) comprising a purifying device A- 2 and a power supply unit with a charging function equipped with a battery 12 (see Fig. 5) for supplying power to the gas purifying device A is installed. ing.
  • the power supply device A ⁇ and the gas purifying device A- 2 in the unit A are as shown in FIGS. 5 and 6 above, and the air purification in the box 21 is performed by the unit A.
  • the cleaning (air cleaning) by the gas cleaning device A- 2 is performed continuously for a long time because power is supplied from the power supply device described above.
  • box 21 causes hydrocarbon (H.C) as a gaseous harmful component (hazardous gas) that increases the contact angle of the wafer when attached to wafer 22 and breaks or short-circuits when attached to the wafer. Therefore, there are fine particles that cause defects and lower the yield. These contaminants enter the box 21 from the clean room each time the box 21 is opened and closed for storing and removing the wafer 22 from and into the box 21.
  • H.C hydrocarbon
  • hazardous gas gaseous harmful component
  • the H.C is decomposed by the photocatalyst action of the photocatalyst 28 irradiated with ultraviolet rays from the ultraviolet lamp 27, and is converted into a form that does not increase the contact angle.
  • the fine particles are charged by the photoelectrons 33 emitted from the photoelectron emitting material 29 irradiated with the ultraviolet lamp 27 to become charged fine particles, and the charged fine particles serve as a collecting material for the charged fine particles.
  • the cleaning space B which is collected by the electrode 31 and in which the wafer 22 exists, is ultra-cleaned.
  • the transfer of H.C and fine particles in the box to the gas cleaning device A- 2 is performed by irradiating the ultraviolet lamp 27 in the device A and generating heat from the power supply device in the gas cleaning device A- 2 .
  • flow of air provoked a slight temperature difference between the upper and lower by (in FIG 7 34 34 - ⁇ ).
  • the box material is made of PC, UV lamp germicidal lamps (2 54 ⁇ m), intended photocatalyst obtained by adding T i 0 2 to A 1 material, photoemission material was added to A u to A 1 material
  • the electrode for photoelectron emission is mesh SUS (10 V / cm), charged fine particles
  • the child collecting material is SUS (500 VZ cm).
  • reference numeral 35 denotes a light-shielding material, which prevents irradiation of the wafer 21 with ultraviolet rays from the ultraviolet lamp 27.
  • Reference numeral 36 denotes a partition plate for effectively flowing the air flow 3434- ⁇ due to the ultraviolet irradiation and the heat generated from the power supply device in the vicinity of the wafer.
  • the harmful gases and particulates in the air in Box 21 are treated, and the air in Box 21 does not increase the contact angle when a substrate such as a wafer is stored, and it is more effective than Class 1.
  • An ultra-clean space is maintained. Since the contact angle of a substrate such as a wafer does not increase, it has an effect of forming a film with a strong adhesive force when formed on the surface of the substrate (for example, H.C concentration: 0.1 ppm or less, NH 3 concentration: The result was less than 1 ppm).
  • the gas cleaning unit A can be separated from the cleaning space B of the box containing the wafers, and they are joined via a packing material.
  • the disconnection is performed at the time of regular maintenance, for example, once a year.
  • 37 is a kinematic coupling having a V-groove for box positioning.
  • FIG. 9 shows another type of box of the wafer transfer box 21 shown in FIGS. 7 and 8 of the fifth embodiment.
  • FIG. 9 shows an open cassette storage type horizontal opening transfer box in which an open cassette 38 holding a wafer 22 is stored in the box shown in FIGS. In the opening and closing mechanism of this box, the wafer 22 is held by the open cassette 38, so there is no wafer holder (FIG. 7).
  • FIG. 9 the same symbols as those in FIGS. 7 and 8 have the same meaning.
  • FIG. 10 shows another type of the wafer transfer box shown in FIGS. 7 and 8 of the fifth embodiment.
  • FIG. 10 shows an open cassette storage type bottom-opening transport box.
  • the box 21 has a box door 23 and a box 21 opening / closing mechanism made of a sealing material 25 at the bottom thereof.
  • the box 21 is a bottom-open box, and the opening / closing mechanism including the box door 23 and the sealing material 25 of the box 21 is lifted to the box door 23 with the box floating.
  • the box door 23 is opened by engaging the evening mechanism opener (not shown) and lowering it vertically.
  • the box 21 accommodates an open cassette 38 holding the wafer 22.
  • a wafer transfer box with the configuration shown in Fig. 7 was installed in a semiconductor factory of class 1, 000, and a cleaning device for removing harmful gases and particulates shown in Fig. 7 and a cleaning device shown in Figs.
  • a gas purifying unit consisting of a battery-equipped power supply unit with a charging function for supplying voltage to the device with the above configuration is installed, the following sample gas is charged, ultraviolet irradiation is performed, and the device is stored in the wafer transfer box The contact angle on the wafer, the concentration of fine particles in the box, and the concentration of non-methane hydrocarbons were measured.
  • the power supply to the power supply device was performed from a power supply device with a tough force in the clean room.
  • Transport box size 35 liters, manufactured by P.C.
  • UV source germicidal lamp 4W.
  • Electrode for photoemission lattice-shaped SUS material, 20 VZcm.
  • Collection material for charged fine particles electrode plate; S US plate, SOO VZc nu 3
  • Power supply device
  • Charging circuit A device equipped with a voltage monitor circuit to charge the battery under optimal conditions.
  • DC-DC converter and DC-AC converter to supply AC voltage of 50 kHz, for electrodes for photoemission; DC 100 V, for collecting charged particulates: DC 1, 000 V) The one with.
  • DC-DC converter DC-Power transistor and power FET used in AC converter and charging circuit.
  • Fine particle concentration Class 1, 0 0 0,
  • Non-methane hydrocarbon concentration 1.5 ppm
  • the particle concentration (class) indicates the total number of fine particles of 0.1 Aim or more contained in 1 fta.
  • Figure 12 shows the relationship between the contact angle on the wafer stored in the box and the holding time.
  • the one of the present invention is indicated by an arrow, the comparison is without an electric field for photoelectron emission, and the one without the photocatalyst is the one without bite, and the one without UV irradiation. -Indicated by a sign.
  • Table 3 shows the particle concentration (class) in the box after 1 hour, 2 hours, 1 day, and 1 week. For comparison, Table 3 shows the results without the electric field for photoelectron emission, without the photocatalyst, and without UV irradiation. Table 3 Numbers: Class
  • the wafer was stored in a box under the above conditions, and phthalate esters (DOP, DBP) on the wafer were examined.
  • DOP phthalate esters
  • Measurement method Adhered substances on the wafer exposed to air under the above conditions for 16 hours were removed, and phthalic acid ester was measured by GCMS method.
  • FIG. 13 shows the results of a test performed on the above-described device of the present invention with the heat sink removed.
  • the drawing shows the relationship between non-methane hydrocarbon concentration and retention time.
  • the one according to the present invention is indicated by an eleven-one mark, and the one obtained by removing the heat sink for comparison is indicated by a one-mark. From Fig. 13 it can be seen that the installation of the heat sink accelerates the removal rate of the cleaning device.
  • i indicates a value below the detection limit (0.1 ppm).
  • the box has an opening and closing mechanism, and a gas purifying device that uses photoelectrons and photocatalysts to clean the inside of the box, or a battery mounted charging device that supplies power to the device and the device.
  • the inside of the box was cleaned by a gas cleaning device, and the cleaning was performed continuously for a long time because power was supplied from the power supply device.
  • the residence time of the board storage box is longer than the time required for actual transfer, and is more likely to be at places other than transfer, such as load ports, stockers, and process waiting. Time is quite a lot. Therefore, by installing the power supply device in a place other than the transportation, the purification by the purification device of the present invention was rationally performed for a long time.
  • the gas purifying device can be separated from the purifying space of the box, maintenance and management of the purifying space and the unit are facilitated.
  • the box Since the power is supplied from the power supply unit and the cleaning is performed continuously (maintaining an ultra-clean space), it can be suitably used as a stock box (storage force). (4) The box is practically effective and can be used as a box for transporting substrates in a wide range of fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrostatic Separation (AREA)
  • Packages (AREA)
  • Packaging Frangible Articles (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A box (21) for transferring a semiconductor wafer, having an opening/closing mechanism for putting in/taking out a wafer, characterized by comprising a gas cleaning device A-2 which uses photoelectrons produced by irradiation with light and an optical catalyst for cleaning the interior of the box, or a gas cleaning unit which includes the gas cleaning device and a battery-mounted power source device with a function of charging the battery for supplying electric power to the gas cleaning device. Thus, the box has a practically effective function of removing fine particles and gaseous harmful components.

Description

明細書  Specification
半導体基板用搬送ボックス  Transport box for semiconductor substrates
(技術分野)  (Technical field)
本発明は、 半導体基板用搬送ボックスに係り、 特に半導体、 液晶、 精密機械工 業などの先端産業における S i ウェハ、 ガラス基板、 金属被覆基板等の基板を収 納して搬送する搬送ボックス (キャリアボックス) に関する。  The present invention relates to a transport box for semiconductor substrates, and particularly to a transport box (carrier) for storing and transporting substrates such as Si wafers, glass substrates, and metal-coated substrates in advanced industries such as semiconductors, liquid crystals, and precision machinery. Box) concerning.
(背景技術)  (Background technology)
従来のクリーンルームにおける空気清浄を、 半導体製造工場における空気清浄 を例に、 図 1 4を用いて説明する。  The air cleaning in a conventional clean room will be described with reference to FIG. 14 by taking air cleaning in a semiconductor manufacturing plant as an example.
図 1 4において、 外気 1は先ずプレフィルタ 2で粗粒子が除去され、 次いで空 調機 3で空調され、 中性能フィルタ 4で除塵される。 次に、 クリーンルーム 5の 天井部に設置されている H E P Aフィルタ (高性能フィルタ) 6で微細な粒子が 除去され、 クリーンルーム 5はクラス 1 0 0〜 1 , 0 0 0が維持される (「洗浄 設計」 p . 1 1 - 2 4 , Summer 1 9 8 8 )。 Ί 7 -2はファン、 矢印は空気 の流れを示す。 In FIG. 14, the outside air 1 is first filtered to remove coarse particles by the pre-filter 2, then air-conditioned by the air conditioner 3, and is dust-removed by the medium-performance filter 4. Next, the HEPA filter (high-performance filter) 6 installed on the ceiling of the clean room 5 removes fine particles, and the clean room 5 is maintained in the class 100 to 1,000 (see “Cleaning design”). P. 1 1-2 4, Summer 1 9 8 8). Ί 7 -2 indicates a fan, and arrows indicate the flow of air.
従来のクリーンルームにおける空気清浄は、微粒子除去を目的としているので、 図 1 4のように構成されていた。 このような構成では、 微粒子除去には効果的で あるが、 ガス状有害成分の除去には効果がない。  The conventional air purifier in a clean room is designed to remove fine particles, so it was configured as shown in Figure 14. Such a configuration is effective for removing fine particles, but is not effective for removing gaseous harmful components.
—方、 図 1 4のような大部屋方式のクリーンルームでは超クリーン化に対して コス トがかかり過ぎるという課題がある (B R E AK TH R OU GH, 5号 p . 3 8〜 4 1 、 1 9 9 3 )。  On the other hand, in a large-room clean room as shown in Fig. 14, there is a problem that the cost is too high for ultra-cleaning (BRE AK THROUGH, No. 5, p. 38-41, 19) 9 3).
ところで、 今後半導体産業では製品の高品質化、 精密化が增々進み、 これに伴 レ 微粒子 (粒子状物質) は当然のこと、 微粒子に加えてガス状物質が汚染物と して関与する。 即ち、 従来は微粒子除去のみで十分であったのが、 今後は、 ガス 状物質 (ガス状有害成分) の制御も重要となってくる。 これは、 前記図 1 4に示 した、 従来のクリーンルームのフィルタでは、 微粒子のみしか除去されず、 外気 からのガス状有害成分は、 除去されずにクリーンルームに導入されてしまうので 問題になるためである。 By the way, in the future, in the semiconductor industry, the quality and precision of products are progressing steadily, and accordingly, not only fine particles (particulate matter) but also gaseous substances are involved as pollutants in addition to fine particles. In other words, removal of fine particles was sufficient in the past, but control of gaseous substances (gaseous harmful components) will become important in the future. This is because the conventional clean room filter shown in Fig. 14 only removes only fine particles, This is because gaseous harmful components from methane are introduced into the clean room without being removed, which is a problem.
即ち、 クリーンルームにおいては、 微粒子 (粒子状物質) や、 今までの除塵フ ィル夕 (例、 HE PA、 UL PAフィル夕) では捕集、 除去されず、 クリーンル ーム内に導入されてしまう自動車の排気ガス、 民生品として広く使用されている 高分子樹脂製品からの脱ガスなどに起因する炭化水素 (H. C.) と呼ばれる有 機性ガスや NH3 、 ァミンのような塩基性 (アルカリ性) ガスなどのガス状物 質が、 ガス状有害成分として問題となる。 In other words, in a clean room, fine particles (particulate matter) and dust removal filters (eg, HEPA, UL PA filters) are not collected and removed, but are introduced into the clean room. Organic gas called hydrocarbon (HC) and basic (alkaline) such as NH 3 and amine due to degassing of automobile exhaust gas and degassing from polymer resin products widely used as consumer products Gaseous substances such as gas pose a problem as gaseous harmful components.
この内、 H. C . はガス状有害成分として通常の空気 (室内空気及び外気) 中 の極低濃度のものが汚染をもたらすので、 除去する必要がある。  Of these, H.C. must be removed because it is a gaseous harmful component that has a very low concentration in normal air (indoor air and outside air) that causes contamination.
また、 最近ではクリーンルームの構成材ゃ使用器具 (例、 ウェハ収納ボックス) の高分子樹脂類からの脱ガスが H. C . 発生源として問題となっている ((社) 日本機械工業連合会、 平成 6年度報告書、 平成 7年 3月、 p. 4 1〜49、 1 9 9 5)。  In recent years, degassing from polymer resins in cleanroom components and equipment (eg, wafer storage boxes) has become a problem as a source of H.C. (Japan Machinery Federation, 1994 report, March 1995, p. 41-49, 199 5).
これらのガス状物質は、 クリーンルーム内における作業で発生したものも問題 となる。 即ち、 該ガス状物質の起因として通常のクリーンルームでは、 外気から 導入されたガス状物質 (クリーンルームでのフィル夕では、 ガス状物質は除去で きないので、 外気中のガス状物質は導入されてしまう) に、 前記のクリーンルー ム内で発生したガス状物質が加わるので、 外気に比べてクリーンルーム中のガス 状物質は高濃度となり、 ウェハ基材ゃ基板を汚染する。  These gaseous substances also pose a problem if they are generated during work in a clean room. That is, as a cause of the gaseous substance, in a normal clean room, the gaseous substance introduced from the outside air (the gaseous substance cannot be removed at the fill in the clean room, so the gaseous substance in the outside air is introduced. In addition, since the gaseous substances generated in the clean room are added, the gaseous substances in the clean room have a higher concentration than the outside air, and contaminate the wafer substrate and the substrate.
即ち、 上記の汚染物質 (微粒子、 ガス状有害成分) がウェハ、 半製品、 製品の 基板表面に付着すれば、 微粒子は、 基板表面の回路 (パターン) の断線や短絡を 引き起こし欠陥を生じさせる。 また、 ガス状物質として、 ① H. C . は、 ゥェ 八 (基板) 表面に付着すると、 接触角の増加をもたらし、 H. C . は基板とレジ ス トとの親和性 (なじみ) に影響を与える。 そして、 親和性が悪くなるとレジス 卜の膜厚に悪影響を与えたり、 基板とレジス トとの密着性に悪影響を与える (空 気清浄、 第 3 3巻、 第 1号、 p . 1 6〜 2 1、 1 9 9 5 )。 また、 H. C . はゥ ェ八の酸化膜の耐圧劣化 (信頼性の低下) を引き起こす (第 3 9回応用物理学関 係連合講演会予稿集、 p . 6 8 6、 1 9 9 2 )。 That is, if the above contaminants (fine particles, gaseous harmful components) adhere to the substrate surface of a wafer, semi-finished product, or product, the fine particles cause a disconnection or short circuit of a circuit (pattern) on the substrate surface, causing a defect. In addition, as a gaseous substance, ① H. C. causes an increase in the contact angle when it adheres to the surface of the substrate (substrate), and H. C. increases the affinity (familiarity) between the substrate and the resist. Affect. When the affinity deteriorates, the film thickness of the resist is adversely affected, and the adhesion between the substrate and the resist is adversely affected (empty). Kiyoshi, Vol. 33, No. 1, p. 16-21, 199 5). In addition, H.C. causes deterioration of the breakdown voltage (reliability) of the oxide film in Jehachi (Proceedings of the 39th Joint Lecture Meeting on Applied Physics, p.686, 1992) ).
② NH3 は、 アンモニゥム塩の生成などをもたらし、 ウェハにく もり (解 像不良) を引き起こす (リアライス社、 最新技術講座、 資料集、 半導体プロセス セミナー、 1 9 9 6年 1 0月 2 9 日、 p . 1 5 ~ 2 5、 1 9 9 6 )。 (2) NH 3 causes the formation of ammonium salt and causes clouding (defective resolution) on wafers (Realise, latest technology course, collection of materials, semiconductor process seminar, October 29, 1996) Pp. 15-25, 1996).
このような原因により、 微粒子はもとよりこれらのガス状汚染物質は、 半導体 製品の生産性 (歩留り) を低下させる。  For these reasons, these gaseous contaminants as well as fine particles reduce the productivity (yield) of semiconductor products.
特に、 ガス状有害成分としての上記のガス状物質は上述の発生起因により、 ま た最近では省エネの観点でクリーンルーム空気の循環を多く して用いるので、 ク リーンルーム中のガス状物質の濃度は濃縮され、 外気に比べかなりの高濃度とな つており、 基材ゃ基板に付着し、 該表面を汚染する。 この汚染の程度は、 基材ゃ 基板の接触角で表わすことができ、 汚染が激しいと接触角が大きい。 接触角が大 きい基材ゃ基板は、 その表面に成膜しても膜の付着強度が弱く (なじみが悪い)、 歩留りの低下をまねく。  In particular, since the above gaseous substances as gaseous harmful components are used due to the above-mentioned generation, and more recently, the circulation of clean room air is increased from the viewpoint of energy saving, the concentration of gaseous substances in the clean room is reduced. It is concentrated and has a considerably higher concentration than the outside air. It adheres to the substrate and substrate and contaminates the surface. The degree of this contamination can be represented by the contact angle between the substrate and the substrate. If the contamination is severe, the contact angle is large. Substrate / substrate with a large contact angle, even if formed on the surface, has low adhesion strength of the film (poor adaptability), leading to a decrease in yield.
ここで、 接触角とは水によるぬれの接触角のことであり、 基板表面の汚染の程 度を示すものである。 即ち、 基板表面に疎水性 (油性) の汚染物質が付着すると、 その表面は水をはじき返してぬれにく くなる。 すると基板表面と水滴との接触角 は大きくなる。 従って接触角が大きいと汚染度が高く、 逆に接触角が小さいと汚 染度が低い。  Here, the contact angle is the contact angle of water wetting, and indicates the degree of contamination of the substrate surface. That is, when hydrophobic (oil-based) contaminants adhere to the substrate surface, the surface repels water and becomes less wettable. Then, the contact angle between the substrate surface and the water droplet increases. Therefore, if the contact angle is large, the degree of contamination is high, and if the contact angle is small, the degree of contamination is low.
特に、 最近省エネの点でクリーンルームの空気を循環使用するため、 クリーン ルーム内のガス状有害成分は徐々に高まってしまい、 基材ゃ基板を汚染すること になる。  In particular, since the air in the clean room is recently circulated for energy saving, gaseous harmful components in the clean room gradually increase, and contaminate the substrate and substrate.
このような汚染物質から基板を汚染防止する対策として、 ( 1 ) ロボッ トによ る搬送が有効である。 即ち、 人は発塵 · 発ガス源になっているので、 クリーン度 維持のために人の介在をなくすることが重要である (月刊 Semiconductor worl d、 1月号、 p. 1 1 2〜 1 1 6、 1 9 9 7)。 As a measure to prevent the contamination of the substrate from such contaminants, (1) transport by robot is effective. In other words, since humans are a source of dust and gas, it is important to eliminate human intervention to maintain cleanliness. (Monthly Semiconductor worl d, January issue, p. 112-116, 199 7).
(2) また、 ク リーン化という点では、 今後の空間のクリーン化は清浄空間を 限定 (局所化) する局所クリーン化 (ミニエンバイロメント) が効果的であると 提案されている (① NIKKEI MICRODEVICES、 7月号、 p. 1 3 6〜 1 4 1、 1 9 9 5、 ® Proceedings of IES, p . 3 7 3〜 3 7 8、 1 9 94)。  (2) In terms of cleanliness, it has been proposed that local cleanup (mini-environment), which limits the clean space (localization), will be effective in future cleanliness (① NIKKEI MICRODEVICES) Procedings of IES, p. 373-378, 199), July issue, p.
現在、 このようなミニエンバイロメントとして、 S i ウェハを合成樹脂 (ブラ スチック) 製ボックスに収納し、 搬送する方式が検討されているが、 ひ) 内部か ら突発的に発塵が起きた場合、 かえって粒子汚染が深刻になる、 (2) ボックス材 料からの脱ガス (発ガス) に対する対策が必要、 (3) (1)(2)により、 ポソクス自 身を定期洗浄する工程が増えるので、 煩雑になり、 実用上問題である等の指摘が ある (KANOMAX エアロゾルセミナ一、 p. 1〜 1 0、 1 9 9 6 )。  At present, as such a mini-environment, a method of storing and transporting Si wafers in a box made of synthetic resin (plastic) is being studied, but f) When dust is generated suddenly from inside Instead, particle contamination becomes serious. (2) Measures must be taken against degassing (gas generation) from box materials. (3) Since (1) and (2), the number of processes for regularly cleaning the posox itself increases. It has been pointed out that this is complicated and practically problematic (KANOMAX Aerosol Seminar 1, pp. 1-10, 1996).
このような中にあって、 本発明者らは、 局所クリーン化技術として光電子や光 触媒を用いる空間のクリーン化方式を提案してきた。  Under such circumstances, the present inventors have proposed a space cleaning method using photoelectrons or photocatalysts as a local cleaning technology.
例えば 1) 光電子による清浄方式 (粒子状物質の除去) : 特公平 3— 5 8 5 9号、 特公平 6— 749 0 9号、 特公平 8— 2 1 1号、 特公平 7— 1 2 1 3 6 9 号公報、 2) 光触媒による清浄方式 (ガス状有害成分の除去) : 特開平 9一 1 6 8 7 2 2号、 特開平 9一 2 0 5 046号公報、 3) 光電子と光触媒の併用方式(粒 子とガスの同時除去) : 特許番号第 2 6 2 3 2 9 0号公報がある。  For example: 1) Photo-electron cleaning method (removal of particulate matter): Japanese Patent Publication No. 3-5 859, Japanese Patent Publication 6-74909, Japanese Patent Publication 8-211, Japanese Patent Publication 7-21 No. 369, 2) Cleaning method using photocatalyst (removal of gaseous harmful components): Japanese Patent Application Laid-Open No. Hei 9-198672, Japanese Patent Application Laid-Open No. Hei 9-205046, 3) Photoelectron and photocatalyst Combination method (simultaneous removal of particles and gas): There is a patent No. 2623290.
これらの清浄方式は適用先 (装置の種類) や要求性能によっては、 前記の清浄 方式で効果的であるが、 適用先や要求性能によっては、 使用法を適宜改善する必 要があった。  These cleaning methods are effective in the above-mentioned cleaning methods depending on the application destination (the type of equipment) and the required performance, but depending on the application destination and the required performance, it is necessary to appropriately improve the usage.
この改善においては、 実用上一層効果的になるよう改善するという問題があつ た。 その問題の 1つとして、 前記のこれらの清浄方式は紫外線等の光源による発 熱により気体を流動化させ清浄化を行っている。 即ち、 前記清浄方式の適用先に よっては、 該気体の流動化を如何に効果的に行うかが重要であり、 改善すべき問 題であった。 そこで、 本発明は、 上記従来技術に鑑み、 半導体、 液晶、 精密機械工業などの 先端産業において、 製品の高品質化、 精密化、 微細化が進むにつれ要望が高まる ミニエンバイロメン卜の半導体基板用搬送ボックスとして、 実用上効果的な微粒 子及びガス状有害成分の除去機能を有する半導体基板用搬送ボックスを提供する ことを課題とする。 In this improvement, there was a problem that the improvement was made to be more effective in practical use. One of the problems is that in these cleaning systems, the gas is fluidized by heat generated by a light source such as ultraviolet rays to perform cleaning. That is, depending on the application of the cleaning method, it is important how to effectively fluidize the gas, and this is a problem to be improved. In view of the above prior art, the present invention provides a mini-environment semiconductor substrate, which is increasingly required in advanced industries such as the semiconductor, liquid crystal, and precision machine industries, as the quality of the product is increased, refined, and miniaturized. An object of the present invention is to provide a transfer box for semiconductor substrates having a practically effective function of removing fine particles and gaseous harmful components as a transfer box.
(発明の開示)  (Disclosure of the Invention)
上記課題を解決するために、 本発明では、 半導体基板を出入できる開閉機構を 有する半導体基板用搬送ボックスおいて、 該ボックスには、 ボックス内を清浄化 するための光照射による光電子及び光触媒を用いる気体清浄化装置を一体化した 気体清浄化ュニッ トを有することを特徴とする半導体基板用搬送ボックスとした ものである。  In order to solve the above-mentioned problems, the present invention provides a semiconductor substrate transport box having an opening / closing mechanism that allows a semiconductor substrate to enter and exit, wherein the box uses photoelectrons and photocatalyst by light irradiation for cleaning the inside of the box. This is a semiconductor substrate transfer box having a gas cleaning unit integrated with a gas cleaning device.
また、 本発明では、 半導体基板を出入できる開閉機構を有する半導体基板用搬 送ボックスにおいて、 該ボックスには、 ボックス内を清浄化するための光照射に よる光電子及び光触媒を用いる気体清浄化装置と、 該装置に電力を供給するバッ テリ一搭載充電機能付き電源装置とを一体化した気体清浄化ュニッ トを有するこ とを特徴とする半導体基板用搬送ボックスとしたものである。  Further, according to the present invention, there is provided a semiconductor substrate carrying box having an opening / closing mechanism capable of moving a semiconductor substrate in and out, wherein the box includes a gas purifying device using photoelectrons and a photocatalyst by irradiating light for cleaning the inside of the box. Further, the present invention provides a semiconductor substrate transfer box having a gas purifying unit integrated with a power supply unit having a charging function and a battery for supplying power to the device.
前記搬送ボックスは、 材料を合成樹脂とするのがよく、 また前記気体清浄化ュ ニッ トは、 電源装置を一体化した場合、 電源装置における発熱を気体清浄化装置 に伝えるための放熱体を備えるのがよい。  The transfer box is preferably made of synthetic resin, and the gas cleaning unit includes a radiator for transmitting heat generated by the power supply device to the gas cleaning device when a power supply device is integrated. Is good.
また、 前記気体清浄化ユニッ トが、 電源装置を一体化していない場合は、 本搬 送ボックスの搬送の合い間 (搬送以外のとき) に、 ロードポートや工程待ち中の 待機場所、 ス トッカ等に設置された電力供給装置への接続により電力供給を受け て作動するものである。  If the gas purifying unit does not have a power supply unit integrated, the load port, standby place waiting for the process, stocker, etc. should be provided between the transport boxes (other than transport). It operates by receiving power supply through connection to a power supply device installed in the office.
以下、 本発明を添付図面を参照して説明する。  Hereinafter, the present invention will be described with reference to the accompanying drawings.
(図面の簡単な説明)  (Brief description of drawings)
図 1は、 本発明の横開き一体型搬送ボックスの一例を示す断面図。 図 2は、 本発明のオープンカセッ ト収納型横開き搬送ボックスの一例を示す 断面図。 FIG. 1 is a cross-sectional view showing an example of a horizontally-opening integrated transfer box of the present invention. FIG. 2 is a cross-sectional view showing an example of the open cassette storage type horizontal opening transport box of the present invention.
図 3は、 本発明のオープンカセッ ト収納型底開き搬送ボックスの一例を示す 断面図。  FIG. 3 is a cross-sectional view showing one example of the open cassette storage type bottom-opening transport box of the present invention.
図 4は、 本発明の気体清浄化ユニッ トと電力供給装置とを接続したブロック 図。  FIG. 4 is a block diagram in which the gas cleaning unit of the present invention and a power supply device are connected.
図 5は、 本発明の気体清浄化装置と電源装置を一体化したブロック図。 図 6は、 電源装置からの発熱を利用するための説明図。  FIG. 5 is a block diagram in which the gas cleaning device of the present invention and a power supply device are integrated. FIG. 6 is an explanatory diagram for utilizing heat generated from a power supply device.
図 7は、 本発明の横開き一体型搬送ボックスの別の一例を示す断面図。 図 8は、 図 7の側面図。  FIG. 7 is a cross-sectional view showing another example of the horizontal opening integrated transfer box of the present invention. FIG. 8 is a side view of FIG.
図 9は、 本発明のオープンカセッ ト収納型横開き搬送ボックスの一例を示す 断面図。  FIG. 9 is a cross-sectional view showing an example of the open cassette storage type horizontal opening transfer box of the present invention.
図 1 0は、 本発明のオープンカセッ ト収納型底開き搬送ボックスの一例を示 す断面図。  FIG. 10 is a cross-sectional view showing an example of the open cassette storage type bottom-opening transport box of the present invention.
図 1 1 は、 保持時間 (日) による接触角 (度) の変化を示すグラフ。  Fig. 11 is a graph showing the change of contact angle (degree) according to the holding time (day).
図 1 2は、 保持時間 (日) による接触角 (度) の変化を示すグラフ。  Fig. 12 is a graph showing the change in contact angle (degree) with the holding time (day).
図 1 3は、 保持時間 (時間) による非メタン炭化水素濃度 ( p p m ) の変化 を示すグラフ。  Fig. 13 is a graph showing the change in non-methane hydrocarbon concentration (ppm) with retention time (hour).
図 1 4は、 従来のクリーンルームにおける空気清浄を示す概略図。  Figure 14 is a schematic diagram showing air cleaning in a conventional clean room.
(発明の実施の形態) (Embodiment of the invention)
本発明の半導体基板用搬送ボックスは、 半導体基板をボックス内に収納や搬出 用の出入できる開閉機構を有し、 ボックス内を清浄化するための光照射による光 電子及び光触媒を用いる気体清浄化装置 (気体清浄化ユニッ ト) が一体化されて おり、 該ユニッ トはボックスから適宜取り外しできるものである。  The semiconductor substrate transport box of the present invention has an opening / closing mechanism that allows a semiconductor substrate to be stored in or taken out of the box, and a gas purifying apparatus using photoelectrons and photocatalysts by irradiating light for cleaning the inside of the box. (Gas purification unit), which can be removed from the box as appropriate.
前記気体清浄化装置は、 ボックスの搬送としての本来の利用の合い間 (搬送以 外の間) に、 ロードポートや工程待ち中の待機場所、 ス トッカ等に設置された電 力供給装置への接続により、 電力供給を受け作動し、 これにより基板が収納され たボックス内の気体の清浄化が行われる。 The gas purifier is used between the original use of the box as a transport Power supply device installed in a load port, a stand-by place where a process is waiting, or a stocker, etc., receives power supply and operates, thereby allowing the gas in the box containing the substrate to be stored. Is performed.
また、 本発明の半導体基板用搬送ボックスは、 半導体基板をボックス内に収納 や搬出用の出入できる開閉機構を有し、 ボックス内を清浄化するための光照射に よる光電子及び光触媒を用いる気体清浄化装置と、 該装置に電力を供給するため のバッテリ一搭載充電機能付き電源装置とを有して、 それらは一体化されており (気体清浄化ュニッ ト)、 該ュニッ トはボックスから適宜取り外しできるもので ある。  In addition, the semiconductor substrate transport box of the present invention has an opening and closing mechanism for storing and unloading the semiconductor substrate in and out of the box, and performs gas cleaning using photoelectrons and photocatalyst by light irradiation for cleaning the inside of the box. And a power supply unit with a battery-equipped charging function to supply power to the device, and they are integrated (gas cleaning unit), and the unit is removed from the box as appropriate. You can do it.
更に、 該ユニッ トには、 電源装置からの発熱を光電子及び光触媒を用いる気体 清浄化装置に伝える放熱体を備えることができる。  Further, the unit may be provided with a radiator for transmitting heat generated from the power supply device to a gas cleaning device using photoelectrons and photocatalysts.
これらの本発明のボックスは、 半導体基板を収納し、 搬送及び 又は保管でき るものであり、 密閉可能な容器であれば何れでも良い。 例えば、 金属製、 合成樹 脂製がある。 この内金属製のものでは、 軽量である点で A 1製が好ましい。 また、 合成樹脂の場合は、 加工性、 剛性、 耐久性に優れ、 発ガスが少ない材料であれば 何れでも良いが、 透明性のものであればなお好ましい。 例えば、 A B S、 ァクリ ル等の汎用プラスチック及びポリ力一ボネイ ト (P . C . ) 等のエンジニアリ ン グプラスチック、 更にポリエーテルイミ ド等のスーパ一エンジニアリ ングプラス チックがある。  These boxes of the present invention can house, transport, and / or store a semiconductor substrate, and any box that can be hermetically sealed may be used. For example, it is made of metal or synthetic resin. Of these, A1 is preferable because of its light weight. In the case of a synthetic resin, any material may be used as long as it is excellent in processability, rigidity, and durability, and generates little gas. However, a transparent material is more preferable. For example, there are general-purpose plastics such as ABS and acryl, engineering plastics such as polycarbonate (PC), and super-engineering plastics such as polyetherimide.
ボックスの開閉機構は、 後述の本発明の光電子及び光触媒を用いる気体清浄化 装置が設置できる密閉可能な前記のボックスであって、 基板を適宜に収納及び取 り出しができるものであれば何れでも良い。  The box opening / closing mechanism is any of the above-mentioned hermetically sealable boxes in which a gas purifying device using a photoelectron and a photocatalyst of the present invention described below can be installed, as long as the substrate can be appropriately stored and taken out. good.
例えば、 ボックスの開閉機構は、 ボックス ドアとウェハ一押さえ、 シール材か らなり、 一体化されており、 ボックス ドアをドアオープナー ( S E M I標準) と 係合させ水平方向にボックス本体より引き出した後に下方向に引き下げる事によ り、 ボックス ドアはボックス本体から開放される。 このようなボックスの例としては、 開閉ドアの位置と、 基板の収納形態 (基板 をオープンカセッ トに収納するか否か) から、 1) 横開き一体型搬送ボックス、 2) オープンカセッ ト収納型横開き搬送ボックス、 3) オープンカセッ ト収納型 底開き搬送ボックスがある。 For example, the box opening / closing mechanism consists of a box door, a wafer presser, and a sealing material, and is integrated. The box door is engaged with a door opener (SEMI standard), and is pulled out of the box body in the horizontal direction. By pulling down in the direction, the box door is opened from the box body. Examples of such boxes include: 1) a horizontal open integrated transport box, and 2) an open cassette storage type, based on the position of the opening / closing door and the type of board storage (whether or not to store the board in an open cassette). Side-open transfer box, 3) Open cassette storage type There is a bottom-open transfer box.
次に、 本発明の特徴である前記開閉機構を有するボックスに、 取り外しが適宜 にできる光電子及び光触媒による気体清浄化装置について述べる。  Next, a gas purifier using a photoelectron and a photocatalyst, which can be appropriately removed from a box having the opening and closing mechanism, which is a feature of the present invention, will be described.
該装置は、 ボックス内の 1部に設置することにより、 ボックス内の汚染物質を 装置内での発熱を利用した気体の流れ (自然循環) により、 効果的に除去するも のである。  By installing the device in one part of the box, the contaminants in the box are effectively removed by the gas flow (natural circulation) utilizing the heat generated in the device.
先ず、 光電子による清浄化装置について、 次にその構成を説明する。  First, the structure of the photoelectron cleaning device will be described.
光電子による清浄化装置は、 光電子放出材、 紫外線ランプ、 光電子放出のため の電場用電極材、 荷電微粒子捕集材、 より構成され、 微粒子 (粒子状物質) の除 去を行うものである。  The cleaning device using photoelectrons is composed of a photoelectron emission material, an ultraviolet lamp, an electrode material for an electric field for photoelectron emission, and a charged particle collection material, and removes fine particles (particulate matter).
光電子放出材は、 紫外線の照射により光電子を放出するものであれば何れでも 良く、 光電的な仕事関数が小さなもの程好ましい。 効果や経済性の面から、 B a , S r, C a , Y, G d , L a, C e, N d , T h , P r , B e , Z r , F e, N i , Z n, C u, A g , P t , C d, P b, A 1 , C, Mg, Au, I n , B i, N b, S i, T i , T a, U, B, E u , S n , P, Wのいずれか又はこれらの 化合物又は合金又は混合物が好ましく、 これらは単独で又は二種以上を複合して 用いられる。 複合材としては、 アマルガムの如く物理的な複合材も用いうる。 例えば、 化合物としては酸化物、 ほう化物、 炭化物があり、 酸化物には B a 0, S r〇, C a O , Υ25 , Gd2 03 , N d 2 03 , T h02 , Z r〇2 , F e 03 , Z n O, C uO, A g 2 O , L a 2 03 , P t〇, P b O , A 1 2 Oa , Mg〇, I n2 03 , B i O, Nb〇, B e Oなどがあり、 またほう化 物には ΥΒβ , G d Be , L a B 5 , N d B β , C e B β , E u B6 , P r B β , Z r B2 などがあり、 さらに炭化物としては UC, Z r C, T a C , T i C, N b C , W Cなどがある。 The photoelectron emitting material may be any material that emits photoelectrons when irradiated with ultraviolet light, and the smaller the photoelectric work function, the better. From the viewpoint of effect and economy, Ba, Sr, Ca, Y, Gd, La, Ce, Nd, Th, Pr, Be, Zr, Fe, Ni, Z n, Cu, Ag, Pt, Cd, Pb, A1, C, Mg, Au, In, Bi, Nb, Si, Ti, Ta, U, B, Eu , Sn, P, or W, or a compound or alloy or a mixture thereof, and these are used alone or in combination of two or more. As the composite material, a physical composite material such as amalgam can be used. For example, the oxide as a compound, boride, there is a carbide, the oxide B a 0, S R_〇, C a O, Upsilon 2 5, Gd 2 0 3, N d 2 0 3, T h0 2 , Z R_〇 2, F e 0 3, Z n O, C uO, A g 2 O, L a 2 0 3, P T_〇, P b O, A 1 2 Oa, Mg_〇, I n 2 0 3 , B i O, Nb_〇, include B e O, the Mataho of compounds ΥΒ β, G d B e, L a B 5, N d B β, C e B β, E u B 6, P r B beta, include Z r B 2, still carbides UC, Z r C, T a C, T i C, NbC, WC, etc.
また、 合金としては黄銅、 青銅、 リ ン青銅、 A gと M gとの合金 (Mgが 2〜 2 0 w t % ) , C uと B e との合金 (B eが l〜 1 0 w t %) 及び B aと A 1 と の合金を用いることができ、 上記 A gと M gとの合金、 C uと B e との合金及び B aと A 1 との合金が好ましい。 酸化物は金属表面のみを空気中で加熱したり、 或いは薬品で酸化することによつても得ることができる。  Examples of the alloy include brass, bronze, phosphor bronze, an alloy of Ag and Mg (Mg is 2 to 20 wt%), an alloy of Cu and Be (Be is l to 10 wt%). ) And an alloy of Ba and A 1 can be used, and the alloy of Ag and Mg, the alloy of Cu and Be, and the alloy of Ba and A 1 are preferable. Oxides can also be obtained by heating the metal surface alone in air or by oxidizing it with chemicals.
さらに他の方法としては使用前に加熱し、 表面に酸化層を形成して長期にわた つて安定な酸化層を得ることもできる。 この例としては Mgと A gとの合金を水 蒸気中で 3 0 0〜 4 0 0 °Cの温度の条件下で、 その表面に酸化膜を形成させるこ とができ、 この酸化薄膜は長期間にわたって安定なものである。  As another method, it is possible to form an oxide layer on the surface by heating before use to obtain a stable oxide layer over a long period of time. As an example, an oxide film can be formed on the surface of an alloy of Mg and Ag in water vapor at a temperature of 300 to 400 ° C. It is stable over time.
また、 光電子を放出する物質を別の物質に付加して使用することができる。 こ の例として、 紫外線透過性物質に光電子を放出し得る物質を付加したものがある (特公平 7— 9 3 0 9 8号、 特開平 4一 2 4 3 5 4 0号)。  In addition, a substance that emits photoelectrons can be used in addition to another substance. As an example of this, there is a material in which a substance capable of emitting photoelectrons is added to an ultraviolet-transparent substance (Japanese Patent Publication No. 7-93098, Japanese Patent Application Laid-Open No. 424/340).
後述の紫外線源との一体化、 例えば紫外線ランプ表面への光電子放出材の付加 がある (特開平 4 - 2 4 3 5 4 0号)。 一体化によりコンパク 卜になるので適用 ボックスの種類によっては好ましい。  There is integration with an ultraviolet source described later, for example, addition of a photoelectron emitting material to the surface of an ultraviolet lamp (Japanese Patent Application Laid-Open No. Hei 4-224350). It is preferable depending on the type of application box because it becomes compact by integration.
他の例として、 後述の光触媒との一体化がある (特願平 8 — 1 3 2 5 6 3号)。 一体化により、 微粒子に共存するガス状有害成分の同時除去や、 光電子放出材が セルフクリーニングされることにより安定化し、 特に、 発ガスが多いボックスで の使用で効果的となる。  As another example, there is integration with a photocatalyst described later (Japanese Patent Application No. 8-1332563). The integration stabilizes the simultaneous removal of gaseous harmful components coexisting with the fine particles and the self-cleaning of the photo-emissive material, which is especially effective when used in a box with a large amount of gas.
光電子放出材の形状や構造は後述のごとく、 装置 (ユニッ ト) の形状、 構造あ るいは希望する効果等により異なり、 適宜決めることができる。  As will be described later, the shape and structure of the photoelectron emitting material differ depending on the shape and structure of the device (unit) or the desired effect, and can be determined as appropriate.
光電子放出材からの光電子放出のための照射源は、 照射により光電子を放出す るものであれば何れでも良く、 紫外線が通常好ましい。  The irradiation source for emitting photoelectrons from the photoelectron emitting material may be any source that emits photoelectrons upon irradiation, and ultraviolet light is usually preferred.
紫外線の種類は、 光電子放出材がその照射により、 光電子を放出するものであ れば何れでも良い。 該紫外線源は紫外線を発するものであれば、 何れでも使用できるが、 コンパク ト化の点で水銀灯、 例えば殺菌ランプが好ましい。 The type of ultraviolet light may be any as long as the photoelectron emitting material emits photoelectrons by irradiation. Any ultraviolet ray source can be used as long as it emits ultraviolet rays, but a mercury lamp, for example, a germicidal lamp is preferable in terms of compactness.
次に、 本発明の特徵である紫外線源、 光電子放出材、 電極、 荷電微粒子捕集材、 の位置や形状について述べる。 これらは、 要求性能により適宜後述の光触媒と共 に、 紫外線源を囲み設置され、 有害ガス及び微粒子を含む気体の清浄化装置 (ュ ニッ ト) として一体化していることに特徴がある。  Next, the positions and shapes of the ultraviolet light source, the photoelectron emitting material, the electrode, and the charged particle collecting material, which are features of the present invention, will be described. These are characterized in that they are installed around an ultraviolet light source, together with a photocatalyst described later as appropriate, depending on the required performance, and are integrated as a unit (unit) for purifying gases containing harmful gases and fine particles.
光電子放出材の位置や形状は、紫外線源から放出される紫外線を囲むように(照 射面積が広くできるように) 設置できるものであればいずれでも良い。 通常、 紫 外線源からの紫外線は半径方向に放射状に放出されるため、 この紫外線を aむよ うに円周方向に設置できるものであれば良い。  The position and shape of the photoelectron emitting material may be any as long as they can be installed so as to surround the ultraviolet light emitted from the ultraviolet light source (to increase the irradiation area). Normally, ultraviolet rays from an ultraviolet ray source are radially emitted in the radial direction. Therefore, it is sufficient if the ultraviolet rays can be installed in the circumferential direction so that the ultraviolet rays are emitted.
光電子放出材からの光電子の放出は、 電場下での紫外線照射で行うと効果的で ある。 そのための電極の位置や形状は、 光電子放出材との間に電場 (電界) が形 成できるものであれば何れも使用できる。 電極材料とその構造は、 周知の荷電装 置において使用されているもので良い。電極材料は導体であれば何れも使用でき、 この例としてタングステン、 S U Sあるいは C u— Z nの線、 棒状、 網状、 板状 がある。 これらを 1種類又は 2種類以上組合わせて光電子放出材の近傍に電場が 形成できるように設置する (特開平 2 — 3 0 3 5 5 7号)。  It is effective to emit photoelectrons from the photoelectron emitting material by irradiating with ultraviolet light in an electric field. Any position and shape of the electrode can be used as long as an electric field (electric field) can be formed between the electrode and the photoelectron emitting material. The electrode material and its structure may be those used in a well-known charging device. Any electrode material can be used as long as it is a conductor, examples of which include tungsten, SUS, or Cu-Zn wires, rods, nets, and plates. One or a combination of two or more of these is installed so that an electric field can be formed in the vicinity of the photoelectron emitting material (Japanese Patent Application Laid-Open No. Hei 2-33557).
荷電微粒子の捕集材 (集じん材) は、 通常の荷電装置における集じん板、 集じ ん電極等各種電極材ゃ静電フィルター方式が一般的であるが、 スチールウール電 極、 タングステンウール電極のようなウール状構造のものも有効である。 エレク トレック材も好適に使用できる。  The collection material (dust collection material) for charged fine particles is generally an electrode material such as a dust collection plate and a dust collection electrode in a normal charging device, and an electrostatic filter system. However, a steel wool electrode and a tungsten wool electrode are used. A wool-like structure such as described above is also effective. Electrec materials can also be suitably used.
前記光電子放出用電極は、集塵材を兼ねることもできる (特公平 8 — 2 1 1号), 光電子放出材、 電極材、 荷電微粒子の捕集材の好適な組合わせ方は、 ボックス の形状、 構造、 要求性能、 経済性などにより適宜決めることができ、 空間部への 設置により後述の清浄化空間部に存在する微粒子などの汚染物質が本浄化装置内 に迅速に移動できるものであれば良い。 光電子放出材と電極の位置と形状は、 紫外線源を囲み、 紫外線源、 光電子放出 材、 電極、 荷電微粒子捕集材が一体化でき、 紫外線源から放出された紫外線が有 効利用され、 かつ光電子の放出と該光電子による微粒子の荷電 · 捕集が効果的に 行えるようにボックスの形状、 効果、 経済性等を考慮して予備試験等により、 決 めることができる。 例えば、 棒 (円筒) 状の紫外線ランプを用いる場合は、 紫外 線が半径方向に放射状に放出されるため、 この半径方向の放射状の紫外線を光電 子放出材に出来るだけ多く照射するほど光電子放出量が多くなる。 The photoelectron emission electrode can also serve as a dust collecting material (Japanese Patent Publication No. 8-211), the preferred combination of photoelectron emission material, electrode material, and material for collecting charged fine particles is box shape. It can be determined as appropriate according to the structure, required performance, economics, etc., as long as it can quickly move contaminants such as fine particles present in the cleaning space described later into the purification device by installing in the space. good. The position and shape of the photoelectron emitting material and the electrode surround the ultraviolet light source, the ultraviolet light source, the photoelectron emitting material, the electrode, and the charged particle collecting material can be integrated, and the ultraviolet light emitted from the ultraviolet light source is effectively used, and It can be determined by a preliminary test or the like in consideration of the shape, effect, economy, etc. of the box so that the emission of particles and the charging and collection of the fine particles by the photoelectrons can be performed effectively. For example, when a rod-shaped (cylindrical) ultraviolet lamp is used, ultraviolet rays are emitted radially in the radial direction. Therefore, the more the radial radial ultraviolet rays are applied to the photo-emitting material as much as possible, the larger the amount of photoelectron emission. Increase.
次に、 光触媒による清浄化装置を説明する。  Next, a cleaning device using a photocatalyst will be described.
光触媒は、 ガス状有害成分の除去を行うものであり、 光源からの光照射により 励起され、 接触角増加に関与する有機性ガス (非メタン炭化水素、 H. C) を接 触角の増加に関与しない形態に分解あるいは、 付着しても影響を及ぼさない安定 な形態に変換するものであればいずれでもよい。  The photocatalyst removes gaseous harmful components, and is excited by light irradiation from a light source, and causes organic gases (non-methane hydrocarbons, H.C) involved in increasing the contact angle to participate in increasing the contact angle. Any material may be used as long as it can be decomposed into a form that does not affect it or converted into a stable form that has no effect even if attached.
通常、 半導体材料が効果的であり、 容易に入手出来、 加工性も良いことから好 ましい。 効果や経済性の面から、 S e , G e, S i , T i , Z n , C u , A 1 , S n, G a, I n, P, A s , S b , C, C d , S, T e, N i , F e, C o, A g , Mo, S r , W, C r, B a , P bのいずれか、 又はこれらの化合物、 又 は合金、 又は酸化物が好ましく、 これらは単独で、 また 2種類以上を複合して用 いる。  Generally, semiconductor materials are preferred because they are effective, readily available, and have good workability. In terms of effects and economics, S e, G e, S i, T i, Z n, C u, A 1, S n, G a, In, P, As, S b, C, C d , S, Te, Ni, Fe, Co, Ag, Mo, Sr, W, Cr, Ba, or Pb, or a compound, alloy, or oxide thereof. Preferably, these are used alone or in combination of two or more.
例えば、 元素としては S i, G e, S e、 化合物としては A 1 P, A 1 A s , G a P, A 1 S b , G a A s , I n P, G a S b, I n A s , I n S b , C d S , C d S e , Z n S , M o S 2 , WT e 2 , C r 2 T e 3 , Mo T e , C u 2 S , WS2 、 酸化物としては T i 〇2 , B i 2 03 , C u O, C u2 0, Z n O, Mo〇3 , I n Oa , A g O , P b O, S r T i 〇3 , B a T i 03 , C o 34 , F e 03 , N i〇などがある。 For example, the elements are Si, Ge, Se, and the compounds are A1P, A1As, GaP, A1Sb, GaAs, InP, GaSb, I n As, In S b, C d S, C d S e, Z n S, Mo S 2 , WT e 2 , Cr 2 T e 3 , Mo Te, Cu 2 S, WS 2 , the oxide T i 〇 2, B i 2 0 3, C u O, C u 2 0, Z n O, Mo_〇 3, I n Oa, A g O, P b O, S r T i 〇 3 , B a T i 0 3, C o 3 〇 4, F e 0 3, N I_〇 the like.
適用先によつては、 金属材を焼成し、 金属表面に光触媒の形成を行うことがで きる。 この例として、 T i材を焼成し、 その表面に T i 〇2 の形成を行う光触 媒がある。 Depending on the application destination, the photocatalyst can be formed on the metal surface by firing the metal material. An example of this was calcined for T i material, touch light effect formation of T i 〇 2 on the surface thereof There is a medium.
光触媒は、 前記光電子放出材と同様に光源を囲み設置され、 気体の清浄化装置 (ユニッ ト) として一体化していることに特徴がある。 また、 要求性能によって は前記の光電子を用いる清浄化装置に一体化し行うことができ、 本発明の特徴で ある。  The photocatalyst is characterized by being installed around a light source similarly to the photoelectron emitting material, and integrated as a gas cleaning device (unit). Further, depending on the required performance, it can be integrated with the above-described cleaning device using photoelectrons, which is a feature of the present invention.
即ち、 光触媒の気体清浄化装置における設置位置は、 光電子放出材と一体化し て設置する方法、 光電子放出材と個別に設置する方法がある。 例えば、 ( 1 ) 紫 外線ランプへの直接の付加、 ( 2 ) 紫外線源をガラス状物質あるいはガラス材で 囲み、 該ガラス状物質の表面への付加、 ( 3 ) 紫外線源に対向する円周方向の壁 面への付加、 (4 ) あるいは光触媒を板状、 綿状、 網状、 ハニカム状、 膜、 円筒 状あるいは繊維状などの適宜の材料にコーティ ングしたり、 あるいは包み、 又は 挟み込んで装置内に固定して用いてもよい。 例として、 ゾルゲル法によるガラス 板への二酸化チタンのコーティ ングがある。 光触媒は、 粉体状のままでも用いる ことが出来るが、 焼結、 蒸着、 スパッタリング、 塗布、 焼付け塗装などの周知の 方法で適宜の形状にして用いることが出来る。  That is, the installation position of the photocatalyst in the gas cleaning device includes a method of installing the photocatalyst emitting material integrally and a method of separately installing the photoelectron emitting material. For example, (1) direct addition to an ultraviolet lamp, (2) an ultraviolet source is surrounded by a vitreous substance or a glass material and applied to the surface of the vitreous substance, (3) circumferential direction facing the ultraviolet source (4) coating the photocatalyst with a suitable material such as plate, cotton, mesh, honeycomb, membrane, cylinder, or fiber, or wrapping or sandwiching the photocatalyst inside the device It may be used by fixing to. An example is the coating of titanium dioxide on a glass plate by the sol-gel method. The photocatalyst can be used in the form of a powder, but can be used in an appropriate shape by a known method such as sintering, vapor deposition, sputtering, coating, or baking.
これらは、 ボックスの形状、 光源の種類や形状、 光触媒の種類、 希望する効果、 経済性などにより適宜選択することができる。 また、 光触媒作用の向上のために、 上記光触媒に P t , A g , P d , R u 0 2 , C o 3 0 4 の様な物質を加えて使 用することも出来る。 該物質の添加は、 光触媒作用が加速されるので好ましい。 これらは、 一種類又は複数組合せて用いることができる。 These can be appropriately selected depending on the shape of the box, the type and shape of the light source, the type of the photocatalyst, the desired effect, economy, and the like. Further, in order to improve the photocatalytic activity, in the photocatalyst P t, A g, P d , R u 0 2, C o 3 0 4 of such substances can also be used in addition. The addition of the substance is preferred because the photocatalysis is accelerated. These can be used alone or in combination.
添加の方法は、 含浸法、 光還元法、 スパッタ蒸着法、 混練法など周知手段を適 宜用いることができる。  Well-known means such as an impregnation method, a photoreduction method, a sputter deposition method, and a kneading method can be appropriately used for the addition method.
光照射のための光源としては、 光触媒材が吸収する波長を発するものであれば 何れでも良く、 可視及びノ又は紫外線領域の光が効果的であり、 周知の光源を適 宜用いることが出来る。 例として、 水銀灯として殺菌ランプ、 ブラックライ ト、 蛍光ケミカルランプ、 U V— B紫外線ランプがある。 汚染物質の除去として、 ガス状有害成分のみを除去する場合は可視光の光源が 使用できるが、 前記光電子による装置と一体化して行う場合は、 前記紫外線ラン プ、 例えば殺菌ランプが効果的である。 As a light source for light irradiation, any light source that emits a wavelength that is absorbed by the photocatalyst material may be used. Light in the visible, ultraviolet, or ultraviolet region is effective, and a known light source can be appropriately used. For example, mercury lamps include germicidal lamps, black lights, fluorescent chemical lamps, and UV-B UV lamps. When removing gaseous harmful components only, a visible light source can be used to remove contaminants, but when integrated with the photoelectron device, the ultraviolet lamp, for example, a germicidal lamp is effective. .
殺菌ランプは、 光触媒への有効照射光量 (光触媒が吸収して光触媒作用を発揮 する照射) を強くでき、 光触媒作用が加速されるので、 好ましい。  A germicidal lamp is preferable because it can increase the effective irradiation light amount to the photocatalyst (irradiation in which the photocatalyst absorbs and exerts a photocatalytic action) and accelerates the photocatalytic action.
光触媒によるガス状有害成分の除去機構に関して、 接触角を増加させる有機性 ガスの除去について説明すると、 収容物 (ウェハ、 ガラス材など) や収容物上の 薄膜の種類、 性状によって異なるが、 本発明者らの研究によると次のように考え られる。  Regarding the mechanism of removing gaseous harmful components by the photocatalyst, the removal of organic gas that increases the contact angle will be described. The present invention differs depending on the type and properties of the container (wafer, glass material, etc.) and the thin film on the container. According to their research, the following can be considered.
すなわち、 通常クリーンルーム装置における収容物表面の接触角を増加させる 有機性ガス (H. C) で共通して言えることは、 高分子量の H. Cが主であり、 その構造として一 CO、 一 COO結合 (親水性を有する) を持つことである。 こ の H. Cは親水部 (一 CO、 一 C〇〇結合部) を有する疎水性物質 (H. Cの基 本構造の一 C一 C一の部分) と考えることができる。  In other words, the common fact that organic gas (H.C), which increases the contact angle of the contents of a container in a normal clean room device, is mainly high molecular weight H.C, and its structure is one CO, one COO Has a bond (has hydrophilicity). This HC can be considered as a hydrophobic substance (a C 1 C 1 part of the basic structure of HC) having a hydrophilic part (one CO, one C 一 bond).
具体例で説明すると、 通常のクリーンルームにおけるガラス基板などの収容物 表面の接触角を増加させる有機性ガスは、 C ie〜C20の高分子量 H. C、 例え ばフタル酸エステル、 高級脂肪酸フエノール誘導体であり、 これらの成分に共通 することは化学的構造として、 — CO、 一 C〇〇結合 (親水性を有する) を持つ (空気清浄、 第 3 3巻、 第 1号、 p l 6〜2 1、 1 9 9 5 ) ことである。 To explain in concrete example, the organic gases increase the contact angle of the contained object surface such as a glass substrate in the usual clean room, high molecular weight C ie ~C 20 H. C, phthalates For example, higher fatty acid phenol derivative It is common for these components to have a chemical structure of — CO, which has a single C (bond (having hydrophilic character) (Air Purification, Vol. 3, Vol. 1, No. 1, pl 6-21) , 195).
これらの汚染有機性ガスの起因は、 高分子製品の可塑剤、 離型剤、 酸化防止剤 などであり、 高分子製品の存在する個所が発生源である (「空気清浄」 第 3 3巻、 第 1号、 p l 6〜 2 1、 1 9 9 5 )。  These contaminating organic gases are caused by plasticizers, mold release agents, antioxidants, etc. of polymer products. The locations where polymer products are present are sources (see Air Purification, Vol. 33, No. 1, pl 6-21, 199 5).
光触媒によるこれらの有機性ガスの処理メカニズムの詳細は不明であるが、 次 のように推定できる。 すなわち、 これらの有機性ガスは一 C〇、 一 C〇〇結合の 部分がウェハやガラス表面の OH基と水素結合し、 その上部は疎水面となり、 結 果としてウェハやガラス表面は疎水性になり、 接触角が大きくなり、 その表面に 成膜すると膜の付着力は弱い。 The details of the treatment mechanism of these organic gases by the photocatalyst are unknown, but can be estimated as follows. In other words, in these organic gases, the 1C〇 and 1C〇〇 bonds are hydrogen-bonded to the OH groups on the wafer or glass surface, and the upper surface becomes a hydrophobic surface. As a result, the wafer or glass surface becomes hydrophobic. And the contact angle increases, When formed, the adhesion of the film is weak.
即ち、 有機性ガスが存在する雰囲気に光触媒を設置すると、 光触媒は吸着作用 を有するので、 H . Cはその活性部である一 C〇、 一 C O O結合部が、 光触媒表 面へ吸着し、 光触媒作用を受け別の安定な形態に変換される。 その結果として、 有機性ガスは安定な形態となり (低分子の物質まで変換され)、 ウェハやガラス 基板上には付着しないか、 又は付着しても疎水性を示さないと考えられる。 光触媒は、 前記 H . Cの分解 · 除去の他に、 アンモニアゃァミンのような塩基 性ガス (ガス状有害成分) の除去にも効果的である。  In other words, when the photocatalyst is placed in an atmosphere in which an organic gas is present, the photocatalyst has an adsorbing action, so that H.C is the active portion of the photocatalyst and the COC bond is adsorbed on the photocatalyst surface, Acted upon and converted to another stable form. As a result, the organic gas is considered to be in a stable form (converted to low molecular substances) and not adhere to the wafer or glass substrate, or not to exhibit hydrophobicity even if adhered. The photocatalyst is effective not only for decomposing and removing H.C but also for removing a basic gas (hazardous gaseous component) such as ammoniaamine.
本ボックスにおける気体の清浄化は、 光電子によるもの、 光触媒によるものを 要求性能、 経済性等により組み合せて用いることができ、 本発明の特徴である。 即ち、 微粒子とガス状有害成分の両方が問題となる場合に、 光電子と光触媒を 一体化した清浄化装置を用いることができる。  The gas cleaning in this box can be performed by a combination of photoelectrons and photocatalysts depending on required performance, economy, and the like, which is a feature of the present invention. That is, when both the fine particles and the gaseous harmful components are problematic, a cleaning device in which photoelectrons and photocatalysts are integrated can be used.
本発明では、 ボックス内に前記の清浄化装置 (ユニッ ト) を設置することによ り、 ボックス内で発塵や発ガスがあっても除去される。 即ち、 本ボックスは、 セ ルフクリーニング機能を有するボックスである。  In the present invention, by installing the above-described cleaning device (unit) in the box, dust or gas generated in the box is removed. That is, this box is a box having a self-cleaning function.
本発明のボックスは、 任意に取り付け、 あるいは取り外しが容易な前記の光電 子及び光触媒を用いるュニッ ト状の気体清浄化装置が一体化されており、 電力供 給装置と接続して作動し清浄化されるか、 又は、 バッテリー搭載充電機能付き電 源装置と、 前記清浄化装置とが一体化され、 気体清浄化ユニッ トとして取り付け られて清浄化されており、 本発明の特徴である。  The box of the present invention is integrated with a unitary gas purifying device using the above-mentioned photoelectric and photocatalyst, which can be easily attached or detached, and is operated by being connected to a power supply device for cleaning. Alternatively, the power supply device with a charging function equipped with a battery and the cleaning device are integrated, and mounted and cleaned as a gas cleaning unit, which is a feature of the present invention.
先ず、 本発明の気体清浄化装置と電力供給装置との接続は、 図 4にその概略の ブロック図を示しており、 次に説明する。  First, FIG. 4 shows a schematic block diagram of the connection between the gas cleaning device of the present invention and the power supply device, which will be described next.
本発明のボックス 1 0 (後述するボックス 2 1 に対応) には、 光電子及び光触 媒を用いる気体清浄化装置 A - 2を備えている。 ここで、 ボックス 1 0は気体清 浄化装置 A -2 と一体化されている。 The box 10 (corresponding to box 21 described later) of the present invention is provided with a gas cleaning device A -2 using a photoelectron and a photocatalyst. Here, the box 10 is integrated with the gas purifier A- 2 .
本発明のボックスは、 基板の搬送 (キャリア) に用いるものであるが、 実用に おいては、 搬送以外の例えばロードポート、 工程待ち待機場所、 ス トツ力での滞 留時間の比率が多いことから、 気体清浄化装置 A - 2は搬送以外において、 該ロ —ドポート、 工程待ちの場所、 ス トツ力に設置された電力供給装置 1 4における 電源 1 3からの電力の供給を受け、ポックス 1 0内の気体の清浄化が実施される。 即ち、 気体清浄化装置 A - 2が一体化された本発明のボックス 1 0は、 搬送の 合い間は、 電力供給装置 1 4、 例えば半導体加工装置の口一ドボ一トゃ、 工程待 ち中の待機場所、 ス トッカー等に設置され、 前記のごとく して電力供給を受ける ことにより、 ボックス内は清浄化される。 The box of the present invention is used for transporting substrates (carrier). Since the ratio of the residence time at the load port, the process waiting standby place, and the storage force other than the transport is large, the gas purifier A -2 uses the load port and the process wait other than the transport. The power from the power supply 13 in the power supply device 14 installed at the location and the storage power is supplied, and the gas in the pox 10 is cleaned. That is, the box 10 of the present invention, in which the gas purifying device A -2 is integrated, has a power supply device 14, for example, a mouthpiece of a semiconductor processing device, a process waiting state, during a transfer. The box is cleaned by being installed in a standby place, a stocker, or the like, and receiving power supply as described above.
これにより、 ボックス内は前記の光電子及び光触媒を用いる気体の清浄化が、 ボックスの待機中 (一時的な設置や夜間の設置など) に行われるので、 基板が収 納されたボックス内の空間は超クリーン空間が創出される。  As a result, the gas inside the box is cleaned during the standby time of the box (temporary installation, installation at night, etc.) using the aforementioned photoelectrons and photocatalysts. An ultra-clean space is created.
次に、 本発明の気体清浄化装置と電源装置との一体化については、 図 5にその 概略のブロック図を示しており、 それを用いて説明する。  Next, the integration of the gas cleaning device and the power supply device of the present invention will be described with reference to a schematic block diagram shown in FIG.
本発明のボックス 1 0には、 バッテリー搭載充電機能付き電源装置 Α - :ι と、 光電子及び光触媒を用いる気体清浄化装置 A - 2を備えている。 ここで、 該電源 装置 A と気体清浄化装置 A - 2は一体化されている (気体清浄化ユニッ ト、 A:)。 即ち、 電源装置 A - :lは、 充電回路 1 1 、 バッテリー 1 2、 気体清浄化装置 A に、 電力を供給する電源 1 3より成り、 適宜電力供給装置 (電力供給ステイショ ン) 1 4から電力の供給を受け、 充電回路 1 1 を介してバッテリー 1 2に充電さ れる。 本発明のボックスは、 搬送 (キヤ リャ) に用いるものであり、 搬送中にお ける気体清浄化装置 A -2は、 前記のごとく該電源装置 A におけるバッテリー 1 2に充電された電力の電源 1 3からの供給により、 連続運転される。 バッテリ — 1 2は、 充電でき、 適宜に電力供給できるものであれば何れでも良く、 例えば L iイオン電池、 N i —水素電池がある。 The box 10 of the present invention is provided with a power supply device Α- : ι equipped with a battery and a charging function, and a gas cleaning device A -2 using a photoelectron and a photocatalyst. Here, the power supply unit A and the gas purifier A -2 are integrated (gas purifier unit, A :). That is, the power supply device A- : l is composed of a power supply 13 for supplying power to the charging circuit 11, the battery 12, and the gas purifying device A, and a power supply device (power supply station) 14 as appropriate. And the battery 12 is charged via the charging circuit 11. The box of the present invention is used for transportation (carrier), and the gas purifier A- 2 during transportation is provided with the power supply 1 for the power charged in the battery 12 in the power supply A as described above. Continuous operation with supply from 3. The battery-12 may be any battery that can be charged and can appropriately supply power. Examples thereof include a Li-ion battery and a Ni-hydrogen battery.
気体清浄化ュニッ ト Aが一体化された本発明のボックス 1 0は、搬送の合間は、 電力供給装置 1 4、 例えば半導体加工装置のロードポートや、 工程待ち中に待機 場所ス トッカー等に設置され、 前記のごとく してバッテリー 1 2に電力供給を受 ける。 The box 10 of the present invention, in which the gas cleaning unit A is integrated, is provided with a power supply device 14, for example, a load port of a semiconductor processing device, or a standby state during a process, during the transportation. It is installed in a place stocker or the like, and receives power from the battery 12 as described above.
これにより、 ボックス内は、 前記の光電子及び光触媒を用いる気体の清浄化が、 ボックスの搬送中や待機中、 即ち連続的に行われるので、 ボックス内は超クリー ン空間が維持される。  Thereby, in the box, the gas cleaning using the photoelectrons and the photocatalyst is performed while the box is being transported or in a standby state, that is, continuously, so that an ultra-clean space is maintained in the box.
次に、 本発明の特徴である電源装置 A-:Lからの発熱の利用について説明する。 電源装置 A- 内には、 使用により発熱が多い電子部品 (例、 パワートランジ スター、 パワー F ET) と、 発熱が少ない電子部品があり、 本発明では発熱が多 い電子部品からの熱を、 前記気体清浄化装置 A-2に伝え、 気体の流れを促進さ せるものである。 これを図 6 (a)、 ( b ) により、 説明する。 Next, utilization of heat generated from the power supply device A-: L, which is a feature of the present invention, will be described. In the power supply A-, there are electronic components (eg, power transistors and power FETs) that generate a lot of heat when used, and electronic components that generate a little heat. This is transmitted to the gas purifying device A- 2 to promote the gas flow. This will be described with reference to FIGS. 6 (a) and 6 (b).
先ず、 図 6 (a) について説明する。 図 6 (a) は、 電源装置 A.!内に配置さ れる電子部品と該電源装置に隣接する気体浄化装置 A.2の壁面とを示す。 First, FIG. 6A will be described. 6 (a) shows a gas purifier A. 2 wall adjacent to the electronic components and the power supply device disposed in the power supply device A.! In.
作動により発生する電子部品 1 5からの発熱は、 放熱板 1 6を介して、 気体清 浄化装置 A-2の壁面 1 7 (後述する板状電極 3 0または遮光材 3 5の清浄化空 間部 B側に対応) に伝えられる。 1 8は、 該熱を効率良く伝えるための熱導伝 シートである。 1 8は該シート以外に熱導伝グリース、 エポキシ樹脂接着剤が使 用できる。 The heat generated from the electronic components 15 generated by the operation is transmitted to the wall 17 of the gas purifier A- 2 via the radiator plate 16 (the cleaning space of the plate electrode 30 or the light shielding material 35 described later). (Corresponds to Part B). Reference numeral 18 denotes a heat conductive sheet for efficiently transmitting the heat. For 18, the heat conductive grease and epoxy resin adhesive can be used in addition to the sheet.
ここで、 放熱板 1 6は熱を効率良く伝える材料であれば何れでも良く、 例えば、 C u、 A 1がある。 通常、 重量が軽いこと、 コストが比較的安価なことから A 1 が好ましい。  Here, the heat radiating plate 16 may be any material as long as it efficiently transmits heat, and examples thereof include Cu and A1. Usually, A 1 is preferred because of its light weight and relatively low cost.
1 9はプリ ント配線基板 2 0上に設置された発熱が少ない電子部品である。 このようにして、 発熱の多い電子部品 1 5からの発熱が気体清浄化装置 A-2 の壁面に伝えられる。 該発熱の有効利用により、 該装置 A-2における気体の循 澴量が加速されるので、 ボックス内の清浄化は効果的に実施される。 Reference numeral 19 denotes an electronic component which is provided on the printed circuit board 20 and generates little heat. In this way, heat generated from the electronic component 15 that generates a large amount of heat is transmitted to the wall surface of the gas cleaning device A- 2 . By effectively utilizing the heat, the gas circulation in the device A- 2 is accelerated, so that the inside of the box is effectively cleaned.
本発明の前記気体の清浄化は、 紫外線ランプ等の光源からの発熱によって引き 起こされる気体の流れによるため、 本質的にゆるやかであるが、 前記の電子部品 からの発熱の利用により気体の流れが加速されるので効果的になる。 The cleaning of the gas of the present invention is essentially gentle because it is caused by the flow of gas caused by heat generated from a light source such as an ultraviolet lamp. This is effective because the flow of gas is accelerated by utilizing the heat generated from the gas.
次に、 図 6 ( b ) を説明する。  Next, FIG. 6 (b) will be described.
図 6 ( b ) は、 放熱板 1 6を壁面 1 7を介して、 前記の気体清浄化装置の内部 に直接設置するものである。  FIG. 6 (b) shows a case where the heat radiating plate 16 is directly installed inside the gas cleaning device via the wall surface 17.
図 6 ( b ) において、 図 6 ( a ) と同一符号は同じ意味を表わす。  In FIG. 6 (b), the same symbols as those in FIG. 6 (a) represent the same meanings.
本発明は、 通常のクリーンルームにおける空気中をはじめ各種気体中例えば N 2 、 A r中でも同様に使用できる。 The present invention can be similarly used in various gases such as N 2 and Ar, including air in a normal clean room.
本ボックスは、 電力供給により連続して清浄空間が得られるので、 搬送のみな らずス トックボックス (ス トツ力) としても使用でき、 本発明の特徴である。 ボックスの種類や要求性能によっては、 気体の流れの加速のために、 内部にヒ —夕やランプなどの加熱源の設置を行うことができる。 該設置により、 汚染物質 の除去が加速されるので、 適宜に用いることができる。  This box can be used not only for transportation but also as a stock box (storage force) since a clean space can be continuously obtained by power supply, which is a feature of the present invention. Depending on the type of box and the required performance, it is possible to install a heating source such as a lamp or a lamp inside to accelerate the gas flow. The installation accelerates the removal of pollutants, so that it can be used as appropriate.
本発明の気体清浄化装置又は気体清浄化ュニッ 卜のボックスへの一体化は、 無 発ガス性のパツキン材を介して、 あるいは磁石 (磁力) による等、 周知の接合方 法を用いて行うことができる。  The gas purifying apparatus or gas purifying unit of the present invention should be integrated into a box by using a well-known joining method such as through a gas-free packing material or by using a magnet (magnetic force). Can be.
(実施例)  (Example)
次に、 実施例を示すが、 本発明はこれらの実施例に何ら限定されるものではな い。  Next, examples are shown, but the present invention is not limited to these examples.
実施例 1 Example 1
半導体工場におけるウェハ搬送ボックス 2 1 を図 1 を用いて説明する。  The wafer transfer box 21 in the semiconductor factory will be described with reference to FIG.
図 1 は横開き一体型搬送ボックスである。  Figure 1 shows a horizontal opening integrated transport box.
半導体工場では、 クラス 1 , 0 0 0のクリーンルームで高品質な製品が製造さ れている。 ウェハ 2 2は、 高品質 (微細化、 精密化) な製品に加工 (成膜等) さ れるので、 ガス状物質や微細な粒子状物質 (微粒子) の影響を受ける。  In semiconductor factories, high-quality products are manufactured in class 1,000 clean rooms. Since the wafer 22 is processed (deposited, etc.) into a high-quality (miniaturized, precise) product, it is affected by gaseous substances and fine particulate matter (fine particles).
即ち、 クラス 1, 0 0 0のクリーンルームにはガス状有害成分として、 外気か らの導入 H . Cに加えて、 クリーンルーム構成材、 器具類からの脱ガス起因の非 メタン炭化水素が 1 . 1 ~ 1 . 5 p p m存在する。 一方、 作業者からも汚染物質 (ガス状物質、 微粒子) の発生があるため、 人の近傍はウェハ 2 2にとつて、 ダ —ティな環境である。 In other words, in addition to H.C introduced from the outside air as a gaseous harmful component, clean room of class 1,000 also contains non-gas due to degassing from clean room components and equipment. Methane hydrocarbons are present at 1.1 to 1.5 ppm. On the other hand, workers also generate contaminants (gaseous substances, fine particles), so the vicinity of people is a dirty environment for wafer 22.
このため、 ウェハ 2 2はウェハ搬送ボックス 2 1に収納され、 各プロセス (例、 成膜工程) に搬送し、 高品質製品へと加工される。  For this reason, the wafer 22 is stored in the wafer transfer box 21 and transferred to each process (eg, a film forming process) to be processed into a high-quality product.
該ボックス 2 1の開閉機構は、 ボックス ドア 2 3、 ウェハ押さえ 2 4、 シール 材 2 5から成り、 一体化されており、 ボックス ドア 2 3をドアオープナー (図示 せず、 S E M I標準) と係合させ水平方向にボックス本体より引き出した後に、 下方向に引き下げる事により、 ボックス ドア 2 3はボックス本体 2 1から開放さ れる。  The opening / closing mechanism of the box 21 is composed of a box door 23, a wafer holder 24, and a sealing material 25, and is integrated. The box door 23 is engaged with a door opener (not shown, SEMI standard). The box door 23 is released from the box body 21 by pulling it downward after pulling it out horizontally from the box body.
該ボックス 2 1は、 クリーンルーム用自動搬送ロボッ トがロボッ トフランジ 2 6を保持し、 半導体加工装置のロードポートに載置し、 ボックス ドア 2 3の開放 後にウェハ 2 2をクリーンルーム用スカラーロボッ トにより、 1枚毎にローディ ング及びアンローデイ ングされる。 また、 ボックス ドア 2 3を閉じた後に、 再び クリーンルーム用自動搬送ロボッ トにより、 次工程加工装置に搬送される。  In the box 21, the automatic transfer robot for clean room holds the robot flange 26, and is placed on the load port of the semiconductor processing equipment. Each sheet is loaded and unloaded. After the box doors 23 are closed, they are transported again to the next process equipment by the automatic transport robot for clean room.
該ボックス 2 1 には、 紫外線ランプ 2 7、 光触媒 2 8、 光電子放出材 2 9、 光 電子放出材からの光電子放出用電極 3 0 (格子状または網状)、 荷電微粒子捕集 材 3 1 より成る気体清浄化装置 A が設置されている。  The box 21 includes an ultraviolet lamp 27, a photocatalyst 28, a photoelectron emission material 29, an electrode 30 for emitting photoelectrons from the photoelectron emission material (lattice or net shape), and a material for collecting charged fine particles 31. Gas purifier A is installed.
該清浄化装置 A - 2の作動のための電源からの電力供給は、 前記の図 4のごと く外部の電力供給装置から電力の供給を受け、 ボックス 2 1内の空気清浄は、 該 装置 A -2により実施される。 The power supply from the power supply for the operation of the cleaning device A -2 is supplied from an external power supply device as shown in FIG. 4 described above, and the air purification in the box 21 is performed by the device A -2 .
該装置 A - 2は、 口一ドポートゃス トッ力に設置された電力供給装置からの電 力の供給を受けるので、 長時間にわたり清浄化が実施される (清浄空間が維持さ れる)。 Since the device A -2 is supplied with power from the power supply device installed at the outlet port, cleaning is performed for a long time (clean space is maintained).
すなわち、 ボックス 2 1 には、 ウェハ 2 2に付着すると、 ウェハの接触角を増 加させるガス状有害成分 (有害ガス) としての炭化水素 (H . C ) 及びウェハに 付着すると断線や短絡を起こすことから欠陥を生じ、 歩留まりの低下をもたらす 微粒子が存在する。 これらの汚染物質は、 ウェハ 2 2のボックス 2 1への収納や 取り出しのためのボックス 2 1の開閉毎に、 クリーンルームからボックス 2 1内 に侵入する。 In other words, the box 21 contains hydrocarbons (H.C) as gaseous harmful components (hazardous gases) that increase the contact angle of the wafer when attached to the wafer 22 and the wafer. If they adhere, they cause disconnections and short circuits, causing defects and the presence of fine particles that reduce the yield. These contaminants enter the box 21 from the clean room each time the box 21 is opened and closed for storing and removing the wafer 22 from and into the box 21.
ここで、 該 H. Cは、 紫外線ランプ 2 7からの紫外線が照射された光触媒 2 8 による光触媒作用により分解され、 接触角を増加させない形態に変換される。 ま た、 微粒子 (粒子状物質) は、 紫外線ランプ 2 7が照射された光電子放出材 2 9 から放出される光電子 3 3により荷電され、 荷電微粒子となり、 該荷電微粒子は 荷電微粒子の捕集材として電極 3 1に捕集され、 ウェハ 2 2の存在する清浄化空 間部 Bは超清浄化される。 ボックス中の H. C及び微粒子の気体清浄化装置 A-2 への移動は、 該装置 A-2中の紫外線ランプ 2 7の照射により生ずる気体清浄化 装置 A-2内の上下のわずかな温度差で引き起こされる空気の流れ (図 1中 34 34 -6) による。 Here, the H.C is decomposed by the photocatalyst action of the photocatalyst 28 irradiated with ultraviolet rays from the ultraviolet lamp 27, and is converted into a form that does not increase the contact angle. The fine particles (particulate matter) are charged by the photoelectrons 33 emitted from the photoelectron emitting material 29 irradiated with the ultraviolet lamp 27 to become charged fine particles, and the charged fine particles serve as a collecting material for the charged fine particles. The cleaning space B, which is collected by the electrode 31 and in which the wafer 22 exists, is ultra-cleaned. Movement to H. C and a gas cleaning system A -2 of particles in the box, slight temperature above and below the gas cleaning device A in -2 caused by irradiation of ultraviolet lamps 2 7 in the apparatus A -2 Due to the air flow (34 34 -6 in Fig. 1) caused by the difference.
ここで、 ボックスの材質は P. C. 製、 紫外線ランプは殺菌ランプ ( 2 54 η m)、 光触媒は A 1材に T i 〇2 を付加したもの、 光電子放出材は A 1材に Au を付加したもの、 光電子放出用の電極は網状 S U S ( 1 0 V/ c m), 荷電微粒 子捕集材は S US材 ( 5 0 0 VZc m) である。 Here, the box material is made of PC, UV lamp germicidal lamps (2 54 eta m), intended photocatalyst obtained by adding T i 〇 2 to A 1 material, as the light emission material obtained by adding Au to A 1 material The electrode for photoelectron emission is reticulated SUS (10 V / cm), and the charged fine particle trapping material is SUS (500 VZcm).
図 1中 3 5は、 しゃ光材で、 紫外線ランプ 2 7からの紫外線のウェハ 2 1への 照射を妨ぐものである。 また、 3 6は、 仕切り板であり、 前記の紫外線照射によ る空気の流れ 34 -:1 34 -6を、 ウェハ近傍に効果的に流すためのものである。 このようにして、 ボックス 2 1内の空気中の有害ガス及び微粒子は処理され、 ボックス 2 1内空気は、 ウェハなど基板を収納しておく と、 接触角が増加しない、 かつ、 クラス 1よりも超清浄な空間が保持される。 ウェハなどの基板は、 接触角 が増加しないので、 該基板表面に成膜した場合、 付着力が強く成膜できる効果が ある (一例として H. C濃度 : 0. 1 p p m以下、 NH3 濃度 : 1 p p b以下 の結果が得られた)。 気体清浄化装置 A は、 ウェハが収納されたボックスの清浄化空間部 Bと、 切り離しが可能であり、 それらはパツキン材を介して接合されている。 In FIG. 1, reference numeral 35 denotes a light-shielding material, which prevents irradiation of the wafer 21 with ultraviolet rays from the ultraviolet lamp 27. Reference numeral 36 denotes a partition plate for effectively flowing the flow of air 34- : 134-6 due to the irradiation of ultraviolet rays to the vicinity of the wafer. In this way, the harmful gases and particulates in the air in Box 21 are treated, and the air in Box 21 does not increase the contact angle when a substrate such as a wafer is stored, and it is more effective than Class 1. An ultra-clean space is maintained. Since the contact angle of a substrate such as a wafer does not increase, when the film is formed on the surface of the substrate, there is an effect that a strong adhesive force can be formed (for example, H.C concentration: 0.1 ppm or less, NH 3 concentration: The result was less than 1 ppb). The gas cleaning device A can be separated from the cleaning space B of the box in which the wafers are stored, and they are joined via packing material.
切り離しは、 それぞれ定期保守時、 例えば 1回/年毎に行われる。  The disconnection is performed at the time of regular maintenance, for example, once a year.
これにより、 ボックスにおけるウェハが収納される清浄化空間部 (B ) の容器、 気体清浄化装置 (A - 2) の保守、 管理が容易にできる。 This facilitates maintenance and management of the container in the cleaning space (B) where the wafers are stored in the box and the gas cleaning device (A -2 ).
3 7は、 キネマティ ックカップリ ングであり、 ボックス位置決め用の Vみぞを 有する。  Reference numeral 37 denotes a kinematic coupling having a V-groove for box positioning.
実施例 2 Example 2
実施例 1の図 1 に示したウェハ搬送ボックス 2 1の別のタイプのボックスを図 2に示す。 図 2は、 オープンカセッ ト収納型横開き搬送ボックスであり、 図 1 の ボックス内に、 ウェハ 2 2を保持したオープンカセッ ト 3 8を収納するものであ る。 本ボックスの開閉機構では、 ウェハ 2 2はオープンカセッ ト 3 8 に保持され るのでウェハ押さえ (図 1中 2 4 ) はない。 図 2において、 図 1 と同一符号は同 じ意味を示す。  FIG. 2 shows another type of box of the wafer transfer box 21 shown in FIG. 1 of the first embodiment. FIG. 2 shows an open cassette storage type horizontal opening transfer box in which an open cassette 38 holding a wafer 22 is stored in the box of FIG. In the opening / closing mechanism of this box, since the wafer 22 is held by the open cassette 38, there is no wafer holder (24 in FIG. 1). In FIG. 2, the same reference numerals as those in FIG. 1 have the same meaning.
実施例 3 Example 3
実施例 1の図 1 に示したウェハ搬送ボックスの別のタイプのボックスを図 3に 示す。 図 3は、 オープンカセッ ト収納型底開き搬送ボックスであり、 ボックス 2 1 は、 その底部にボックス ドア 2 3、 シール材 2 5から成るボックス 2 1の開閉 機構を有する。  FIG. 3 shows another type of box of the wafer transfer box shown in FIG. 1 of the first embodiment. FIG. 3 shows an open cassette storage type bottom-opening transport box. The box 21 has a box 21 opening and closing mechanism including a box door 23 and a sealing material 25 at the bottom thereof.
即ち、 該ボックス 2 1 は、 底開きのボックスであり、 ボックス 2 1のボックス ドア 2 3、 シール材 2 5から成る開閉機構は、 ボックスを浮かせた状態でボック ス ドア 2 3 に、 エレべ一夕機構付きオーブナ一 (図示せず) を係合させ、 垂直方 向に下降させる事により作動し、 これよりボックス ドア 2 3は開放される。  That is, the box 21 is a bottom-open box, and the opening / closing mechanism including the box door 23 and the sealing material 25 of the box 21 is lifted to the box door 23 with the box floating. The box door 23 is opened by engaging an orbner with an evening mechanism (not shown) and lowering it vertically.
該ボックス 2 1内は、 ウェハ 2 2を保持したオープンカセッ ト 3 8を収納する ものである。  The box 21 accommodates an open cassette 38 holding the wafer 22.
図 3において、 図 1 と同一符号は同じ意味を示す。 実施例 4 In FIG. 3, the same symbols as those in FIG. 1 have the same meaning. Example 4
図 1に示した有害ガス及び微粒子除去のための清浄化装置を一体化した構成の ウェハ搬送ボックスを、 クラス 1, 0 0 0の半導体工場に設置し、 下記試料ガス を入れ、 紫外線照射を行い、 ウェハ搬送ボックス内に収納したウェハ上の接触角 及び該ボックス内の微粒子濃度、 非メタン炭化水素濃度を測定した。  A wafer transfer box integrated with a cleaning device for removing harmful gases and fine particles shown in Fig. 1 was installed in a semiconductor factory of class 100, and the following sample gas was charged, and ultraviolet irradiation was performed. The contact angle on the wafer stored in the wafer transfer box, the concentration of fine particles in the box, and the concentration of non-methane hydrocarbon were measured.
ここで、 電源装置への電力供給は、 クリーンルームにおけるス トツ力の電力供 給装置に接続することにより行った。  Here, the power supply to the power supply device was performed by connecting the power supply device to the power supply device of the storage power in the clean room.
1 ) 搬送ボックスの大きさ ; 3 5リ ッ トル、 P. C. 製  1) Transport box size: 35 liters, manufactured by P.C.
2) 清浄化装置  2) Cleaning equipment
( 1 ) 紫外線源 ; 殺菌ランプ 4W。  (1) UV light source: germicidal lamp 4W.
( 2 ) 光触媒材 ; A I板上に、 T i 02 をゾルゲル法で付加。 (2) a photocatalyst material; the AI board, adds T i 0 2 by a sol-gel method.
(3 ) 光電子放出材 ; A 1板上に Auを付加。  (3) Photoemission material; Au is added on A1 plate.
(4) 光電子放出用の電極 ; 格子状 S US材、 2 0 V/"c m。  (4) Electrode for photoelectron emission; Lattice S US material, 20 V / "cm.
( 5 ) 荷電微粒子の捕集材 (電極板) ; S US板、 8 0 0 V/c m。  (5) Collector for charged fine particles (electrode plate); SUS plate, 800 V / cm.
3 ) 試料ガス (入口) 3) Sample gas (inlet)
媒体ガス : 空気、  Medium gas: air,
微粒子濃度 : クラス 1, 0 0 0、  Fine particle concentration: Class 1, 0 0 0,
非メタン炭化水素濃度 : 1. 5 p pm  Non-methane hydrocarbon concentration: 1.5 ppm
4) ウェハ ; 1 2インチ 1 3枚 4) Wafer; 1 2 inch 1 3 pieces
5 ) 測定器 5) Measuring instrument
接触角の測定 ; 水滴式接触角計  Contact angle measurement; water drop contact angle meter
微粒子濃度の測定 ; 光散乱式パーティ クルカウン夕一 (〉 0. 1 zrn) 非メタン炭化水素濃度の測定 ; ガスクロマトグラフ  Particle concentration measurement; Light scattering particle counting Yuichi (> 0.1 zrn) Non-methane hydrocarbon concentration measurement; Gas chromatograph
尚、 微粒子濃度 (クラス) は、 1 f t 3 中に含まれる 0. 1 m以上の微粒 子の総個数を示す。 ( 1 ) ウェハ上の接触角 Incidentally, particle concentration (class) shows a 0.1 total number of m or more fine particles contained in 1 ft 3. (1) Contact angle on wafer
ボックスに収納したウェハ上の接触角について、 保持時間との関係を図 1 1 に 示す。 図 1 1 において、 本発明のものを一〇一印、 比較として光電子放出用の電 場を設定しないものを一△一印、 光触媒を取り外したものを一口一印、 紫外線照 射なしのものを—鲁—印で示す。  Figure 11 shows the relationship between the contact angle on the wafer stored in the box and the holding time. In FIG. 11, each of the samples of the present invention is indicated by an arrow mark, in comparison, an image without an electric field for photoelectron emission is indicated by an arrow mark, an image without a photocatalyst is indicated by an arrow, and a sample without UV irradiation. Shown by-鲁-mark.
( 2 ) ボックス内の微粒子濃度 (クラス)  (2) Particle concentration in the box (class)
1時間後、 2時間後、 1 日後、 1週間後のボックス内の微粒子濃度 (クラス) を表 1 に示す。 比較として、 光電子放出用の電場を設定しないもの、 光触媒を取 り外したもの、 紫外線照射なしのものを表 1 に示す。 表 1 数値 : クラス 件 1時間後 2時間後 日後 週間後 本発明のもの < < < < 光電子放出用の電場を設定し 1000 900  Table 1 shows the particle concentration (class) in the box after 1 hour, 2 hours, 1 day, and 1 week. For comparison, Table 1 shows the one without the electric field for photoelectron emission, the one without the photocatalyst, and the one without UV irradiation. Table 1 Numerical values: class 1 hour after 2 hours after day after week After the present invention << <<< <Set the electric field for photoemission 1000 900
ないもの (光触媒のみ) 光触媒を取り外したもの < 1 < < <  None (Photocatalyst only) Photocatalyst removed <1 <<<
(光電子のみ) 紫外線照射なしのもの 1000 900  (Photoelectrons only) Without UV irradiation 1000 900
: 測定せず : Not measured
( 3 ) ボックス内の非メタン炭化水素濃度 ( p p m ) 上記と同時間、 また同じ比較で評価を行い、 表 2に示す < 表 2 数値 : p p m (3) Non-methane hydrocarbon concentration in the box (ppm) The evaluation was performed at the same time and at the same comparison as above, and shown in Table 2 <Table 2 Numerical values: ppm
Figure imgf000025_0001
Figure imgf000025_0001
非メタン炭化水素の空間中における除去効果を、ウェハ上でも確認するために、 前記の条件におけるボックスにウェハを収納し、ウェハ上のフタル酸エステル(D 〇 P :フタル酸ジ一 2—ェチルへキシル、 D B P :フタル酸ジ— n—プチル) を調 ベた。  In order to confirm the effect of removing non-methane hydrocarbons in the space on the wafer, place the wafer in the box under the above conditions and transfer the phthalate ester (D 〇 P: di-2-ethyl phthalate) on the wafer. Xyl, DBP: di-n-butyl phthalate).
測定法 : 前記の条件の空気に 1 6時間暴露したウェハ上の付着物を脱離させ、 G C Z M S法 (ガスクロマトグラフィ /質量分析法) によりフタル酸エステルを 測定。  Measurement method: Adhered material on the wafer exposed to air under the above conditions for 16 hours was desorbed, and the phthalate ester was measured by the GCZMS method (gas chromatography / mass spectrometry).
その結果、 紫外線照射なしのもの、 光触媒を取り外したもの (光電子のみ) は、 いずれもフ夕ル酸エステルを検出した。  As a result, fluoric acid ester was detected in both the case without UV irradiation and the case without photocatalyst (photoelectron only).
これに対し、 本発明のもの、 光電子放出用の電場を設定しないもの (光触媒の み) は、 いずれもフタル酸エステルは不検出であった。 On the other hand, in the case of the present invention, in which the electric field for photoelectron emission is not set (for photocatalyst In any case, no phthalate ester was detected.
実施例 5 Example 5
半導体工場におけるウェハ搬送ポックス 2 1 を図 7、 図 8を用いて説明する。 図 7、 8は横開き一体型搬送ボックスであり、 図 8は図 7のお側面図である。 半導体工場では、 クラス 1, 0 0 0のクリーンルームで高品質な製品が製造さ れている。 ウェハ 2 2は、 高品質 (微細化、 精密化) な製品に加工 (成膜等) さ れるので、 ガス状物質や微細な粒子状物質 (微粒子) の影響を受ける。  The wafer transfer pox 21 in the semiconductor factory will be described with reference to FIGS. 7 and 8 show a horizontal opening integrated type transport box, and FIG. 8 is a side view of FIG. In semiconductor factories, high-quality products are manufactured in a class 1,000 clean room. Since the wafer 22 is processed (deposited, etc.) into a high-quality (miniaturized, precise) product, it is affected by gaseous substances and fine particulate matter (fine particles).
即ち、 クラス 1, 0 0 0のクリーンルームにはガス状有害成分として、 外気か らの導入 H . Cに加えて、 クリーンルーム構成材、 器具類からの脱ガス起因の非 メタン炭化水素が 1 . 1〜 1 . 5 p p m存在する。 一方、 作業者からも汚染物質 (ガス状物質、 微粒子) の発生があるため、 人の近傍はウェハ 2 2にとつて、 ダ 一ティな環境である。  In other words, in addition to H.C introduced from outside air, non-methane hydrocarbons caused by degassing from clean room components and equipment are 1.1 as gaseous harmful components in Class 1,000 clean rooms. ~ 1.5 ppm is present. On the other hand, since pollutants (gaseous substances and fine particles) are also generated from workers, the vicinity of a person is a dirty environment for the wafer 22.
このため、 ウェハ 2 2はウェハ搬送ボックス 2 1 に収納され、 各プロセス (例 成膜工程) に搬送し、 高品質製品へと加工される。  For this reason, the wafer 22 is stored in the wafer transfer box 21 and transferred to each process (eg, a film forming process) to be processed into a high-quality product.
該ボックス 2 1の開閉機構は、 ボックス ドア 2 3、 ウェハ押さえ 2 4、 シール 材 2 5から成り、 一体化されており、 ボックス ドア 2 3をドアオープナー (図示 せず、 S E M I標準) と係合させ水平方向にボックス本体より引き出した後に、 下方向に引き下げる事により、 ボックス ドア 2 3はボックス本体 2 1から開放さ れる。  The opening / closing mechanism of the box 21 is composed of a box door 23, a wafer holder 24, and a sealing material 25, and is integrated. The box door 23 is engaged with a door opener (not shown, SEMI standard). The box door 23 is released from the box body 21 by pulling it downward after pulling it out horizontally from the box body.
該ボックス 2 1 は、 クリーンルーム用自動搬送ロボッ トがロボッ トフランジ 2 6を保持し、 半導体加工装置のロードボートに載置し、 ボックス ドア 2 3の開放 後にウェハ 2 2をクリーンルーム用スカラーロボッ トにより、 1枚毎に口一ディ ング及びアンローデイ ングされる。 また、 ボックスドア 2 3を閉じた後に、 再び クリーンルーム用自動搬送ロボッ トにより、 次工程加工装置に搬送される。 該ボックス 2 1 には、 紫外線ランプ 2 7、 光触媒 2 8、 光電子放出材 2 9、 光 電子放出材からの光電子放出用電極 3 0、 荷電微粒子捕集材 3 1 より成る気体清 浄化装置 A-2 と、 該気体清浄化装置 A に電力を供給するバッテリー 1 2 (図 5参照) を搭載した充電機能付き電源装置 より成る気体清浄化ュニッ ト A ( A A-2) が設置されている。 In the box 21, an automatic transfer robot for a clean room holds the robot flange 26, and is mounted on a load boat of a semiconductor processing apparatus. Mouthpieces are diced and unloaded one by one. After the box doors 23 are closed, they are again transferred to the next-step processing device by the automatic transfer robot for clean room. The box 21 includes a gas cleaner comprising an ultraviolet lamp 27, a photocatalyst 28, a photoelectron emission material 29, an electrode 30 for photoelectron emission from the photoelectron emission material, and a material for collecting charged fine particles 31. A gas purifying unit A (AA- 2 ) comprising a purifying device A- 2 and a power supply unit with a charging function equipped with a battery 12 (see Fig. 5) for supplying power to the gas purifying device A is installed. ing.
該ュニッ ト Aにおける該電源装置 A ^ と該気体清浄化装置 A -2は、 前記の図 5、 6のごとくであり、 ボックス 2 1内の空気清浄は、 該ュニッ ト Aにより実施 される。 The power supply device A ^ and the gas purifying device A- 2 in the unit A are as shown in FIGS. 5 and 6 above, and the air purification in the box 21 is performed by the unit A.
気体清浄化装置 A-2による清浄化 (空気清浄) は、 前記の電源装置 より 電力の供給を受けるので、 長時間にわたり連続して実施される。 The cleaning (air cleaning) by the gas cleaning device A- 2 is performed continuously for a long time because power is supplied from the power supply device described above.
すなわち、 ボックス 2 1には、 ウェハ 2 2に付着すると、 ウェハの接触角を增 加させるガス状有害成分 (有害ガス) としての炭化水素 (H. C) 及びウェハに 付着すると断線や短絡を起こすことから欠陥を生じ、 歩留まりの低下をもたらす 微粒子が存在する。 これらの汚染物質は、 ウェハ 2 2のボックス 2 1への収納や 取り出しのためのボックス 2 1の開閉毎に、 クリーンルームからボックス 2 1内 に侵入する。  In other words, box 21 causes hydrocarbon (H.C) as a gaseous harmful component (hazardous gas) that increases the contact angle of the wafer when attached to wafer 22 and breaks or short-circuits when attached to the wafer. Therefore, there are fine particles that cause defects and lower the yield. These contaminants enter the box 21 from the clean room each time the box 21 is opened and closed for storing and removing the wafer 22 from and into the box 21.
ここで、 該 H. Cは、 紫外線ランプ 2 7からの紫外線が照射された光触媒 2 8 による光触媒作用により分解され、 接触角を増加させない形態に変換される。 ま た、 微粒子 (粒子状物質) は、 紫外線ランプ 2 7が照射された光電子放出材 2 9 から放出される光電子 3 3により荷電され、 荷電微粒子となり、 該荷電微粒子は 荷電微粒子の捕集材として電極 3 1に捕集され、 ウェハ 2 2の存在する清浄化空 間部 Bは超清浄化される。 ボックス中の H. C及び微粒子の気体清浄化装置 A-2 への移動は、 該装置 A 中の紫外線ランプ 2 7の照射、 及び電源装置 から の発熱により生ずる気体清浄化装置 A -2内の上下のわずかな温度差で引き起こ される空気の流れ (図 7中 34 34 ) による。 Here, the H.C is decomposed by the photocatalyst action of the photocatalyst 28 irradiated with ultraviolet rays from the ultraviolet lamp 27, and is converted into a form that does not increase the contact angle. The fine particles (particulate matter) are charged by the photoelectrons 33 emitted from the photoelectron emitting material 29 irradiated with the ultraviolet lamp 27 to become charged fine particles, and the charged fine particles serve as a collecting material for the charged fine particles. The cleaning space B, which is collected by the electrode 31 and in which the wafer 22 exists, is ultra-cleaned. The transfer of H.C and fine particles in the box to the gas cleaning device A- 2 is performed by irradiating the ultraviolet lamp 27 in the device A and generating heat from the power supply device in the gas cleaning device A- 2 . flow of air provoked a slight temperature difference between the upper and lower by (in FIG 7 34 34 -β).
ここで、 ボックスの材質は P. C. 製、 紫外線ランプは殺菌ランプ ( 2 54 η m)、 光触媒は A 1材に T i 02 を付加したもの、 光電子放出材は A 1材に A u を付加したもの、 光電子放出用の電極は網状 S U S ( 1 0 V/ c m), 荷電微粒 子捕集材は S U S材 ( 5 0 0 V Z c m ) である。 Here, the box material is made of PC, UV lamp germicidal lamps (2 54 η m), intended photocatalyst obtained by adding T i 0 2 to A 1 material, photoemission material was added to A u to A 1 material The electrode for photoelectron emission is mesh SUS (10 V / cm), charged fine particles The child collecting material is SUS (500 VZ cm).
図 7中 3 5は、 しゃ光材で、 紫外線ランプ 2 7からの紫外線のウェハ 2 1への 照射を妨ぐものである。 また、 3 6は、 仕切り板であり、 前記の紫外線照射と電 源装置からの発熱による空気の流れ 3 4 3 4 - βを、 ウェハ近傍に効果的に流 すためのものである。 In FIG. 7, reference numeral 35 denotes a light-shielding material, which prevents irradiation of the wafer 21 with ultraviolet rays from the ultraviolet lamp 27. Reference numeral 36 denotes a partition plate for effectively flowing the air flow 3434- β due to the ultraviolet irradiation and the heat generated from the power supply device in the vicinity of the wafer.
このようにして、 ボックス 2 1内の空気中の有害ガス及び微粒子は処理され、 ボックス 2 1内空気は、 ウェハなど基板を収納しておく と、 接触角が増加しない、 かつ、 クラス 1よりも超清浄な空間が保持される。 ウェハなどの基板は、 接触角 が増加しないので、 該基板表面に成膜した場合、 付着力が強く成膜できる効果が ある (一例として H . C濃度 : 0 . 1 p p m以下、 N H 3 濃度 : 1 p p m以下 の結果が得られた)。 In this way, the harmful gases and particulates in the air in Box 21 are treated, and the air in Box 21 does not increase the contact angle when a substrate such as a wafer is stored, and it is more effective than Class 1. An ultra-clean space is maintained. Since the contact angle of a substrate such as a wafer does not increase, it has an effect of forming a film with a strong adhesive force when formed on the surface of the substrate (for example, H.C concentration: 0.1 ppm or less, NH 3 concentration: The result was less than 1 ppm).
気体清浄化ュニッ ト Aは、 ウェハが収納されたボックスの清浄化空間部 Bと、 切り離しが可能であり、 それらはパツキン材を介して接合されている。  The gas cleaning unit A can be separated from the cleaning space B of the box containing the wafers, and they are joined via a packing material.
切り離しは、 それぞれ定期保守時、 例えば 1回 年毎に行われる。  The disconnection is performed at the time of regular maintenance, for example, once a year.
これにより、 ボックスにおける清浄化空間部 (B ) の容器、 気体清诤化ュニッ ト (A ) の保守、 管理が容易にできる。  This facilitates maintenance and management of the container in the cleaning space (B) and the gas cleaning unit (A) in the box.
3 7は、 キネマティ ックカップリングであり、 ボックス位置決め用の Vみぞを 有する。  37 is a kinematic coupling having a V-groove for box positioning.
実施例 6 Example 6
実施例 5の図 7 、 8に示したウェハ搬送ボックス 2 1の別のタイプのボックス を図 9に示す。 図 9は、 オープンカセッ ト収納型横開き搬送ボックスであり、 図 7 、 8のボックス内に、 ウェハ 2 2を保持したオープンカセッ ト 3 8を収納する ものである。 本ボックスの開閉機構では、 ウェハ 2 2はオープンカセッ ト 3 8 に 保持されるのでウェハ押さえ (図 7 ) はない。 図 9において、 図 7 、 8 と同一符 号は同じ意味を示す。  FIG. 9 shows another type of box of the wafer transfer box 21 shown in FIGS. 7 and 8 of the fifth embodiment. FIG. 9 shows an open cassette storage type horizontal opening transfer box in which an open cassette 38 holding a wafer 22 is stored in the box shown in FIGS. In the opening and closing mechanism of this box, the wafer 22 is held by the open cassette 38, so there is no wafer holder (FIG. 7). In FIG. 9, the same symbols as those in FIGS. 7 and 8 have the same meaning.
実施例 7 実施例 5の図 7、 8に示したウェハ搬送ボックスの別のタイプのボックスを図 1 0に示す。 図 1 0は、 オープンカセッ ト収納型底開き搬送ボックスであり、 ボ ックス 2 1は、 その底部にボックス ドア 2 3、 シール材 2 5から成るボックス 2 1の開閉機構を有する。 Example 7 FIG. 10 shows another type of the wafer transfer box shown in FIGS. 7 and 8 of the fifth embodiment. FIG. 10 shows an open cassette storage type bottom-opening transport box. The box 21 has a box door 23 and a box 21 opening / closing mechanism made of a sealing material 25 at the bottom thereof.
即ち、 該ボックス 2 1は、 底開きのボックスであり、 ボックス 2 1のボックス ドア 2 3、 シール材 2 5から成る開閉機構は、 ボックスを浮かせた状態でボック ス ドア 2 3に、 エレべ一夕機構付きオープナー (図示せず) を係合させ、 垂直方 向に下降させる事により作動し、 これよりボックス ドア 2 3は開放される。 該ボックス 2 1内は、 ウェハ 2 2を保持したオープンカセッ ト 3 8を収納する ものである。  That is, the box 21 is a bottom-open box, and the opening / closing mechanism including the box door 23 and the sealing material 25 of the box 21 is lifted to the box door 23 with the box floating. The box door 23 is opened by engaging the evening mechanism opener (not shown) and lowering it vertically. The box 21 accommodates an open cassette 38 holding the wafer 22.
図 1 0において、 図 7、 8と同一符号は同じ意味を示す。  In FIG. 10, the same symbols as those in FIGS. 7 and 8 have the same meaning.
実施例 8 Example 8
図 7に示した構成のウェハ搬送ボックスをクラス 1, 0 0 0の半導体工場に設 置し、 内部に図 7に示した有害ガス及び微粒子除去のための清浄化装置と図 5、 6に示した構成をなす該装置に電圧を供給するためのバッテリ一搭載充電機能付 き電源装置よりなる気体清浄化ユニッ トを設置し、 下記試料ガスを入れ、 紫外線 照射を行い、 ウェハ搬送ボックス内に収納したウェハ上の接触角及び該ボックス 内の微粒子濃度、 非メタン炭化水素濃度を測定した。  A wafer transfer box with the configuration shown in Fig. 7 was installed in a semiconductor factory of class 1, 000, and a cleaning device for removing harmful gases and particulates shown in Fig. 7 and a cleaning device shown in Figs. A gas purifying unit consisting of a battery-equipped power supply unit with a charging function for supplying voltage to the device with the above configuration is installed, the following sample gas is charged, ultraviolet irradiation is performed, and the device is stored in the wafer transfer box The contact angle on the wafer, the concentration of fine particles in the box, and the concentration of non-methane hydrocarbons were measured.
ここで、 電源装置への電力供給は、 クリーンルームにおけるス トツ力の電力供 給装置から行った。  Here, the power supply to the power supply device was performed from a power supply device with a tough force in the clean room.
1 ) 搬送ボックスの大きさ ; 3 5リ ッ トル、 P. C. 製  1) Transport box size: 35 liters, manufactured by P.C.
2 ) 清浄化装置  2) Cleaning equipment
( 1 ) 紫外線源 ; 殺菌ランプ 4 W。  (1) UV source; germicidal lamp 4W.
(2 ) 光触媒材 ; A 1板上に、 T i 〇2 をゾルゲル法で付加。 (2) a photocatalyst material; to A 1 on the plate, adding T i 〇 2 by a sol-gel method.
( 3 ) 光電子放出材 ; A 1板上に Auを付加。  (3) Photoelectron emission material; Au is added on A1 plate.
(4) 光電子放出用の電極 ; 格子状 S US材、 2 0 VZc m。 ( 5 ) 荷電微粒子の捕集材 (電極板) ; S US板、 S O O VZc nu 3 ) 電源装置 (4) Electrode for photoemission; lattice-shaped SUS material, 20 VZcm. (5) Collection material for charged fine particles (electrode plate); S US plate, SOO VZc nu 3) Power supply device
( 1 ) 充電回路 ; バッテリーを最適条件で充電するために、 電圧モニター 回路を備えたもの。  (1) Charging circuit; A device equipped with a voltage monitor circuit to charge the battery under optimal conditions.
(2) ノ、'ッテリ一 ; L iイオン電池。  (2) ノ, ッ テ リ 一; Li-ion battery.
( 3 ) 電源 ; 清浄化装置に必要な種類の電圧 (殺菌ランプ点灯用 : 2 0 ~  (3) Power supply; voltage required for cleaning device (for lighting sterilization lamp: 20 ~
5 0 kH zの A C電圧、 光電子放出用の電極用 ; D C 1 0 0 V、 荷電微粒子の捕集材用 : D C 1 , 00 0 V) を供給する ための D C— D Cコンバータ及び D C— ACコンバータを備 えたもの。  DC-DC converter and DC-AC converter to supply AC voltage of 50 kHz, for electrodes for photoemission; DC 100 V, for collecting charged particulates: DC 1, 000 V) The one with.
(4) 空気循環量の加速に用いた発熱が多い電子部品 ;  (4) Heat-producing electronic components used to accelerate air circulation;
D C— D Cコンバータ、 D C— ACコンバ一夕及び充電回路 に用いたパワートランジスタ一とパワー F E T。  DC-DC converter, DC-Power transistor and power FET used in AC converter and charging circuit.
( 5 ) 放熱板 ; A 1板 (厚さ : 2 mm)o  (5) Heat sink; A1 plate (thickness: 2 mm)
4 ) 試料ガス (入口) 4) Sample gas (inlet)
媒体ガス : 空気、  Medium gas: air,
微粒子濃度 : クラス 1, 0 0 0、  Fine particle concentration: Class 1, 0 0 0,
非メタン炭化水素濃度 : 1. 5 p pm  Non-methane hydrocarbon concentration: 1.5 ppm
5 ) ウェハ ; 1 2インチ 1 3枚 5) Wafer; 12 inch 1 3 pieces
6 ) 測定器 6) Measuring instrument
接触角の測定 ; 水滴式接触角計  Contact angle measurement; water drop contact angle meter
微粒子濃度の測定 ; 光散乱式パーティ クルカウンター (> 0. l m) 非メタン炭化水素濃度の測定 ; ガスクロマトグラフ  Particle concentration measurement; Light scattering particle counter (> 0.1m) Non-methane hydrocarbon concentration measurement; Gas chromatograph
尚、 微粒子濃度 (クラス) は、 1 f t a 中に含まれる 0. 1 Aim以上の微粒 子の総個数を示す。  The particle concentration (class) indicates the total number of fine particles of 0.1 Aim or more contained in 1 fta.
結果 ( 1 ) ウェハ上の接触角 result (1) Contact angle on wafer
ボックスに収納したウェハ上の接触角について、 保持時間との関係を図 1 2 に 示す。 図 1 2において、 本発明のものを一〇一印、 比較として光電子放出用の電 場を設定しないものを一△一印、 光触媒を取り外したものを一口一印、 紫外線照 射なしのものをー參—印で示す。  Figure 12 shows the relationship between the contact angle on the wafer stored in the box and the holding time. In FIG. 12, the one of the present invention is indicated by an arrow, the comparison is without an electric field for photoelectron emission, and the one without the photocatalyst is the one without bite, and the one without UV irradiation. -Indicated by a sign.
( 2 ) ボックス内の微粒子濃度 (クラス)  (2) Particle concentration in the box (class)
1時間後、 2時間後、 1 日後、 1週間後のボックス内の微粒子濃度 (クラス) を表 3に示す。 比較として、 光電子放出用の電場を設定しないもの、 光触媒を取 り外したもの、 紫外線照射なしのものを表 3に示す。 表 3 数値 : クラス  Table 3 shows the particle concentration (class) in the box after 1 hour, 2 hours, 1 day, and 1 week. For comparison, Table 3 shows the results without the electric field for photoelectron emission, without the photocatalyst, and without UV irradiation. Table 3 Numbers: Class
Figure imgf000031_0001
Figure imgf000031_0001
測定せず (3 ) ボックス内の非メタン炭化水素濃度 (p pm) Without measuring (3) Non-methane hydrocarbon concentration in box (p pm)
上記と同時間、 また同じ比較で評価を行い、 表 4に示す < 表 4 数値 : p m  Evaluation was performed at the same time and at the same comparison as shown above.
Figure imgf000032_0001
Figure imgf000032_0001
非メタン炭化水素の空間中における除去効果を、 ウェハ上でも確認す るために、 前記の条件におけるボックスにウェハを収納し、 ウェハ上の フタル酸エステル (DO P、 DB P) を調べた。  In order to confirm the effect of removing non-methane hydrocarbons in the space on the wafer, the wafer was stored in a box under the above conditions, and phthalate esters (DOP, DBP) on the wafer were examined.
測定法 : 前記の条件の空気に 1 6時間暴露したウェハ上の付着物を脱 離させ、 G CZM S法によりフ夕ル酸エステルを測定。  Measurement method: Adhered substances on the wafer exposed to air under the above conditions for 16 hours were removed, and phthalic acid ester was measured by GCMS method.
その結果、 紫外線照射なしのもの、 光触媒を取り外したもの (光電子 のみ) は、 いずれもフタル酸エステルを検出した。  As a result, phthalate was detected in both the case without UV irradiation and the case without photocatalyst (photoelectron only).
これに対し、本発明のもの、光電子放出用の電場を設定しないもの (光 触媒のみ) は、 いずれもフ夕ル酸エステルは不検出であった。 On the other hand, in the case of the present invention, in which the electric field for photoelectron emission is not set (optical In the case of the catalyst only), no fluoric acid ester was detected in any case.
前記における本発明のものにおいて、 放熱板を取り外して試験を行つ た結果を図 1 3に示す。 図面は、 非メタン炭化水素濃度と、 保持時間と の関係を示す。 図 1 3において、 本発明のものを一〇一印、 比較として の放熱板を取り外したものを一▲—印で示す。 図 1 3から、 放熱板の設 置により、 本清浄化装置による除去速度が早くなることが分かる。 図 1 3中 i は、 検出限界 ( 0 . l p p m ) 以下を示す。  FIG. 13 shows the results of a test performed on the above-described device of the present invention with the heat sink removed. The drawing shows the relationship between non-methane hydrocarbon concentration and retention time. In FIG. 13, the one according to the present invention is indicated by an eleven-one mark, and the one obtained by removing the heat sink for comparison is indicated by a one-mark. From Fig. 13 it can be seen that the installation of the heat sink accelerates the removal rate of the cleaning device. In FIG. 13, i indicates a value below the detection limit (0.1 ppm).
(発明の効果)  (The invention's effect)
本発明によれば、 次のような効果を奏することができた。  According to the present invention, the following effects can be obtained.
1 ) 半導体基板用搬送ボックスにおいて、 ボックスは開閉機構を有し、 ボックス内を清浄化するための光電子及び光触媒を用いる気体清浄化装 置、 又は、 該装置と該装置に電力を供給するバッテリー搭載充電機能付 き電源装置を備えることにより、  1) In a semiconductor substrate transport box, the box has an opening and closing mechanism, and a gas purifying device that uses photoelectrons and photocatalysts to clean the inside of the box, or a battery mounted charging device that supplies power to the device and the device. By providing a power supply with functions,
( 1 ) ボックス内は、 気体清浄化装置により清浄化され、 更に、 該清浄 化は電源装置からの電力の供給を受けるので長時間にわたり連続して実 施できた。  (1) The inside of the box was cleaned by a gas cleaning device, and the cleaning was performed continuously for a long time because power was supplied from the power supply device.
( 2 ) 開閉機構により、 ロボッ トによるハンドリングができるボックス となった。  (2) A box that can be handled by a robot due to the opening and closing mechanism.
( 3 ) 該気体清浄化装置の設置においては、 適用ボックスの種類、 要求 性能、 経済性等により、 該光電子と光触媒が一体化 (微粒子とガスの同 時除去) を適宜に選択できた。  (3) In the installation of the gas cleaning device, the integration of the photoelectrons and the photocatalyst (simultaneous removal of fine particles and gas) could be appropriately selected depending on the type of application box, required performance, economy, and the like.
即ち、 実用上効果的な清浄方式となり、 適用範囲が広がった。  In other words, it became a practically effective cleaning system, and its application range was widened.
( 4 ) ボックス (ウェハ収納空間) 中微粒子及びガス状有害成分が効果 的に除去された。 即ち、 微粒子除去ではクラス 1よりも清浄な空間、 ガ ス状有害成分除去では、 接触角が増加しない清浄な空間となり、 これら の微粒子とガス状汚染物質の同時除去ができ、 接触角が増加しないクラ ス 1よりも清浄な超清浄空間が簡便に創出できた。 (4) Box (wafer storage space) Particles and harmful gaseous components in the box were effectively removed. In other words, a space that is cleaner than class 1 for removing particulates, and a clean space that does not increase the contact angle when removing gaseous harmful components.These particles and gaseous pollutants can be removed simultaneously, and the contact angle does not increase. Kula A clean space that is even cleaner than that of the first space could be easily created.
( 5 ) 電源装置を一体化して備えていない場合でも、 基板収納ボックス の滞留時間は、 実際の搬送にかかる時間に比べて、 ロードポート、 ス ト ッカ、 工程待ちなど、 搬送以外の所の時間がかなり多い。 従って、 搬送 以外の場所に電力供給装置を設置することにより、 合理的に本発明の清 浄化装置による清浄化が長時間にわたり実施された。  (5) Even when the power supply unit is not integrated, the residence time of the board storage box is longer than the time required for actual transfer, and is more likely to be at places other than transfer, such as load ports, stockers, and process waiting. Time is quite a lot. Therefore, by installing the power supply device in a place other than the transportation, the purification by the purification device of the present invention was rationally performed for a long time.
2 ) 前記 1 ) における該気体清浄化装置による清浄化において、 該電源 装置における発熱を気体清浄化装置に伝えることにより、 ボックス内の 気体の流れが加速され、 光電子及び光触媒による汚染物質の除去が効果 的となった。  2) In the purifying by the gas purifying apparatus in the above 1), by transmitting heat generated by the power supply unit to the gas purifying apparatus, the flow of gas in the box is accelerated, and contaminants are removed by photoelectrons and photocatalysts. It became effective.
3 ) 前記 1 ) における気体清浄化装置をボックスと一体化し、 気体清浄 化装置をボックスから取り外しができるようにしたことにより、  3) By integrating the gas purifying device in 1) above with the box, so that the gas purifying device can be removed from the box,
( 1 )気体清浄化装置をボックスの清诤化空間部と切り離しできるので、 清浄化空間部ゃ該ュニッ トの保守、 管理が容易となった。  (1) Since the gas purifying device can be separated from the purifying space of the box, maintenance and management of the purifying space and the unit are facilitated.
( 2 ) 本発明のボックスのみならず、 他の適宜のボックスにも取り付け ることができ適用範囲が広がった。  (2) It can be attached not only to the box of the present invention but also to any other appropriate box, and the range of application has been expanded.
4 ) 前記により、  4) By the above,
( 1 ) 基板の収納や搬出に伴うボックス内への侵入汚染物質は当然のこ と、 基板表面からの発ガスや発塵、 ボックス材料からの発ガスや発塵も 除去され、 ボックス内はセルフクリーニング的に超清浄化された。  (1) Naturally, contaminants that enter the box when storing and unloading the board, gas and dust generated from the board surface, and gas and dust generated from the box material are also removed. Ultra-cleaned for cleaning.
( 2 ) ボックス材料として、 発ガスが懸念されるプラスチック材料が使用できる。 プラスチックは軽いので実用上有効となった。  (2) As the box material, a plastic material which is likely to generate gas can be used. Plastic is light and effective in practice.
( 3 ) 電源装置からの電力の供給を受け、 連続的に清浄化が実施される (超清浄 空間を維持) ので、 ス トックボックス (ストツ力) としても好適に使用できる。 ( 4 ) 実用上効果的なボックスとなったので、 広い分野における基板の搬送ボッ クスに使用できるようになった。  (3) Since the power is supplied from the power supply unit and the cleaning is performed continuously (maintaining an ultra-clean space), it can be suitably used as a stock box (storage force). (4) The box is practically effective and can be used as a box for transporting substrates in a wide range of fields.
( 5 ) 適用範囲が広がり、 実用性が向上した。 ( 6 ) 今後、 半導体は高品質化、 微細化、 精密化が増々進むと同時に、 その基板 サイズも大型化していき、 ロボッ トゃ基板収納ボックスの使用は必須になるが、 このようなプロセスにおける基板収納ボックス (搬送、 ス トック用) として好適 に使用できる。 (5) The range of application has been expanded, and practicality has been improved. (6) In the future, semiconductors will continue to increase in quality, miniaturization, and precision, and at the same time, their substrates will increase in size, and the use of robot-to-substrate storage boxes will be indispensable. It can be suitably used as a substrate storage box (for transport and stock).

Claims

請求の範囲 The scope of the claims
1 . 半導体基板を出入できる開閉機構を有する半導体基板用搬送ボックス において、 該ボックスには、 ボックス内を清浄化するための光照射による光電子 及び光触媒を用いる気体清浄化装置を一体化した気体清浄化ュニッ トを有するこ とを特徴とする半導体基板用搬送ボックス。  1. A semiconductor substrate transport box having an opening / closing mechanism that allows a semiconductor substrate to enter and exit, wherein the box includes a gas purifying device that integrates a gas purifying device that uses photoelectrons and photocatalysts by irradiating light to clean the inside of the box. A transfer box for semiconductor substrates, characterized by having a unit.
2 . 半導体基板を出入できる開閉機構を有する半導体基板用搬送ボックス において、 該ボックスには、 ボックス内を清浄化するための光照射による光電子 及び光触媒を用いる気体清浄化装置と、 該装置に電力を供給するバッテリ一搭載 充電機能付き電源装置とを一体化した気体清浄化ュニッ トを有することを特徴と する半導体基板用搬送ボックス。  2. In a semiconductor substrate transport box having an opening / closing mechanism capable of moving a semiconductor substrate in and out, a gas purifying device using photoelectrons and a photocatalyst by irradiating light for cleaning the inside of the box, and a power supply to the device. A transfer box for semiconductor substrates, characterized by having a gas purifying unit that integrates a power supply unit with a charging function with a battery to be supplied.
3 . 前記搬送ボックスは、 材料が合成樹脂であることを特徴とする請求項 1又は 2に記載の半導体基板用搬送ボックス。  3. The transfer box for a semiconductor substrate according to claim 1, wherein the transfer box is made of a synthetic resin.
4 . 前記気体清浄化ユニッ トは、 電源装置における発熱を気体清浄化装置 に伝えるための放熱体を備えることを特徴とする請求項 2に記載の半導体基板用 搬送ボックス。  4. The transfer box for a semiconductor substrate according to claim 2, wherein the gas cleaning unit includes a radiator for transmitting heat generated in a power supply device to the gas cleaning device.
PCT/JP1998/005369 1997-11-28 1998-11-30 Box for transferring semiconductor wafer WO1999028967A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/341893 1997-11-28
JP34189397 1997-11-28
JP10/67625 1998-03-04
JP6762598A JP3305647B2 (en) 1997-11-28 1998-03-04 Transport box for semiconductor substrates

Publications (1)

Publication Number Publication Date
WO1999028967A1 true WO1999028967A1 (en) 1999-06-10

Family

ID=26408835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005369 WO1999028967A1 (en) 1997-11-28 1998-11-30 Box for transferring semiconductor wafer

Country Status (2)

Country Link
JP (1) JP3305647B2 (en)
WO (1) WO1999028967A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1258917A1 (en) * 1999-12-28 2002-11-20 Ebara Corporation Method and device for preventing oxidation on substrate surface
JP3871508B2 (en) 2000-11-15 2007-01-24 株式会社荏原製作所 Power supply device for substrate transfer container
WO2008147379A1 (en) 2006-09-14 2008-12-04 Brooks Automation Inc. Carrier gas system and coupling substrate carrier to a loadport
TWI475627B (en) 2007-05-17 2015-03-01 Brooks Automation Inc Substrate carrier, substrate processing apparatus and system, for reducing particle contamination of substrate during processing and method of interfacing a carrier with a processing tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179146A (en) * 1990-11-09 1992-06-25 Toshiba Ceramics Co Ltd Semiconductor wafer housing case
JPH04218941A (en) * 1990-08-31 1992-08-10 Tadahiro Omi Charged body neutralizing device
JPH0629373A (en) * 1992-03-13 1994-02-04 Ebara Res Co Ltd Stocker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218941A (en) * 1990-08-31 1992-08-10 Tadahiro Omi Charged body neutralizing device
JPH04179146A (en) * 1990-11-09 1992-06-25 Toshiba Ceramics Co Ltd Semiconductor wafer housing case
JPH0629373A (en) * 1992-03-13 1994-02-04 Ebara Res Co Ltd Stocker

Also Published As

Publication number Publication date
JPH11217119A (en) 1999-08-10
JP3305647B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP3939101B2 (en) Substrate transport method and substrate transport container
EP0769322B1 (en) Method of cleaning gases with a photocatalyst
EP0560379B1 (en) Stocker
KR100576758B1 (en) Box for transferring semiconductor wafer
JP3305663B2 (en) Transport box for semiconductor substrates
WO1999028967A1 (en) Box for transferring semiconductor wafer
JP3460500B2 (en) Gas cleaning apparatus, method for cleaning closed space using the same, and closed space
EP1258917A1 (en) Method and device for preventing oxidation on substrate surface
JP3429522B2 (en) Conveying device having gas cleaning means
JP3303125B2 (en) Space cleaning material and space cleaning method using the same
JP3446985B2 (en) Gas cleaning method and apparatus
JPH11147051A (en) Method and device for cleaning storage space
JP2000300936A (en) Method and apparatus for obtaining negative ion- containing clean air for removing static electricity
JP3797635B2 (en) SPACE CLEANING MATERIAL AND SPACE CLEANING METHOD USING THE SAME
JP3827263B2 (en) Storage container for substrate or substrate
JP2722297B2 (en) Gas cleaning method and apparatus
JP2005329406A (en) Sterilization and cleaning method for enclosed space including germs and enclosed space with sterilization and cleaning function
JP3661840B2 (en) GAS CLEANING UNIT DEVICE AND CLEANING METHOD
JP3424778B2 (en) Method and apparatus for cleaning space
JPH11285623A (en) Method and device for purifying gas
JP3696037B2 (en) GAS CLEANING UNIT DEVICE AND CLEANING METHOD
JP3770363B2 (en) Clean space and carrier box
KR100485918B1 (en) Gas purification method and apparatus
JP2000189736A (en) Air filter device
JPH11300232A (en) Apparatus and method for charging particle material and method for utilization thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase