WO1999028380A1 - Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse - Google Patents

Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse Download PDF

Info

Publication number
WO1999028380A1
WO1999028380A1 PCT/EP1998/007679 EP9807679W WO9928380A1 WO 1999028380 A1 WO1999028380 A1 WO 1999028380A1 EP 9807679 W EP9807679 W EP 9807679W WO 9928380 A1 WO9928380 A1 WO 9928380A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
carbon black
butadiene
filler
rubber
Prior art date
Application number
PCT/EP1998/007679
Other languages
English (en)
Inventor
Emmanuel Custodero
Laure Simonot
Jean-Claude Tardivat
Original Assignee
Compagnie Generale Des Etablissements Michelin - Michelin & Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin - Michelin & Cie filed Critical Compagnie Generale Des Etablissements Michelin - Michelin & Cie
Priority to EP98963524A priority Critical patent/EP1034215A1/fr
Priority to AU18761/99A priority patent/AU1876199A/en
Priority to KR1020007005783A priority patent/KR20010032540A/ko
Priority to JP2000523268A priority patent/JP2001525436A/ja
Priority to BR9814910-5A priority patent/BR9814910A/pt
Priority to CA002310131A priority patent/CA2310131A1/fr
Publication of WO1999028380A1 publication Critical patent/WO1999028380A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to diene rubber compositions which can be used for the manufacture of tires or semi-finished products for tires, in particular treads for these tires, as well as to reinforcing fillers capable of reinforcing such rubber compositions.
  • compositions reinforced with silica Since the publication of this application EP-A-0 501 227, the interest in compositions reinforced with silica has been very largely revived. However, silicas are generally more difficult to disperse than carbon blacks. On the other hand, the compositions loaded with silica, compared with those loaded with carbon black, have in known manner the drawback of having on the one hand an implementation (ie an aptitude for transformation or "processabihty") in the more difficult raw state, on the other hand a very high electrical resistance.
  • compositions having both improved hysteresis and adhesion properties, but also easy processing in the raw state, a high level of reinforcement, and therefore of wear resistance, as well as conductivity high electric power were therefore highly desirable for tire manufacturers.
  • the Applicant discovered during its research a new composition which, thanks to a particular reinforcing filler, makes it possible, unexpectedly, to meet these different contradictory requirements.
  • a first subject of the invention relates to a sulfur-vulcanizable rubber composition which can be used for the manufacture of tires, comprising at least one diene elastomer, a reinforcing filler and a coupling agent ensuring the connection between the reinforcing filler and the elastomer, this composition being characterized in that said reinforcing filler consists entirely or partly of a so-called "modified" carbon black having the following characteristics:
  • compositions of the invention thanks to this modified black and to its specific combination of characteristics, in particular its particular surface properties, have not only improved hysteresis and adhesion properties, but also a high electrical conductivity.
  • Rubber compositions comprising as reinforcing filler carbon blacks with modified surface, covered with a siliceous layer, have certainly been described in recent patent applications (see for example EP-A-0 711 805, EP-A -0 799 854, EP-A-0 799 867, WO96 / 037547); these new compositions and their potential for application in tires are still poorly understood by tire manufacturers.
  • the compositions of the invention have at least the notable advantage that the aluminous surface layer deposited on the surface of their reinforcing filler, made of oxides and / or aluminum hydroxides which, in known manner, are more stable and chemically more reactive than silicon oxides, will therefore be more adherent to black particles and more reactive than a siliceous layer can be.
  • the compositions of the invention have the advantage of having an implementation in the raw state which is facilitated.
  • Patent application WO97 / 42256 describes diene rubber compositions which can incorporate, as reinforcing filler, carbon blacks treated directly in the reactor for synthesizing carbon black with various metal compounds, especially in the form of '' oxides, hydroxides or carbides of different metals (e.g. aluminum, zinc, magnesium, calcium, titanium, vanadium, cobalt, nickel, zirconium, tin, antimony, chromium, neodymium, lead, tellurium, barium, cesium, iron , molybdenum).
  • metal compounds especially in the form of '' oxides, hydroxides or carbides of different metals (e.g. aluminum, zinc, magnesium, calcium, titanium, vanadium, cobalt, nickel, zirconium, tin, antimony, chromium, neodymium, lead, tellurium, barium, cesium, iron , molybdenum).
  • the blacks thus treated at very high temperature in the synthesis reactor consist in fact of aggregates or hybrid particles in two phases, formed by an intimate mixture of carbon black and metallic compound, the metallic compound being located both inside and near the surface of the aggregates; it is specified in particular that the metal atom content can reach 50% or even 99% of the mass of the final aggregate (% by mass).
  • hybrid charges if they were released by any means from their fraction of metallic compound, for example by an appropriate chemical treatment, would have neither the morphology nor the properties of a conventional carbon black, but those of carbonaceous residues with high porosity.
  • the treated carbon blacks described in WO97 / 42256 should not be confused with carbon blacks only coated with a layer of metallic compound which, after elimination of such a coating, would find their initial structure.
  • a subject of the invention is also the use of a rubber composition in accordance with the invention for the manufacture of rubber articles, in particular tires or semi-finished rubber products intended for these tires, these semi articles -finishes being chosen in particular from the group consisting of treads, underlayments intended for example to be placed under these treads, crown plies, sides, carcass plies, heels, protectors, chambers air or waterproof inner rubber for tubeless tires.
  • the invention relates more particularly to the use of such a rubber composition for the manufacture of sidewalls or treads, due to its good hysteretic properties.
  • the subject of the invention is also these tires and these rubber articles themselves when they comprise a rubber composition in accordance with the invention.
  • composition in accordance with the invention is particularly suitable for making tire treads intended to equip passenger vehicles, vans, two wheels and heavy goods vehicles, airplanes, civil engineering, agrarian or handling vehicles, these treads which can be used in the manufacture of new tires or for retreading used tires.
  • FIG. 1 a diagram of a device capable of measuring the ultrasonic disaggregation speed ( ⁇ ) of a charge in the form of agglomerates (fig. 1);
  • the reinforcing fillers used are characterized as indicated below.
  • the BET specific surface is determined in a known manner, according to the method of Brunauer-Emmet-Teller described in "The Journal of the American Chemical Society” Vol. 60, page 309, February 1938 and corresponding to standard AFNOR-NF-T45-007 (November 1987).
  • the average size (by mass) of the particles is conventionally measured after dispersion, by ultrasonic deagglomeration, of the feed to be analyzed in an aqueous solution containing 15% ethanol and 0.05% of a nonionic surfactant (% by volume).
  • particle used in the present application must be understood in its usual generic sense of aggregate, and not in that of any elementary particle which may form part of this aggregate (by aggregate, we must understand in a known manner an indivisible whole of elementary particles, produced during the synthesis of the charge).
  • the deagglomeration speed noted ⁇ is measured in the test called “ultrasonic deagglomeration test", at 10% power of a 600 watt probe.
  • This test makes it possible to continuously measure the change in the size of the particle agglomerates during a sonification, according to the indications below.
  • the assembly used consists of a laser granulometer (type “Mastersizer S”, sold by Malvern Instruments - He-Ne laser source emitting in the red, wavelength 632.8 nm) and its preparer ("Malvern Small Sample Unit MSX1 "), between which was inserted a continuous flow treatment cell (Bioblock M72410) fitted with an ultrasound probe (1/2 inch sonicator type Vibracell of 600 watts sold by the company Bioblock).
  • a small amount (15 mg) of filler to be analyzed is introduced into the preparer with 160 ml of an aqueous solution containing 20% by mass of ethanol, the circulation speed being fixed at its maximum. At least three consecutive measurements are made to determine according to the known Fraunhofer calculation method (Malvern calculation matrix 3 $$ D) the initial mean diameter (by volume) of the agglomerates, denoted d v [0]. The sonication is then established at a power of 10% (ie 10% of the maximum position of the "tip amplitude") and the evolution of the mean diameter in volume d v [t] as a function of time is followed for approximately 8 minutes " t "at a rate of approximately every 10 seconds.
  • Fraunhofer calculation matrix 3 $$ D the initial mean diameter (by volume) of the agglomerates
  • FIG. 1 shows schematically an example of mounting of the measuring device usable for carrying out this ultrasonic disaggregation test.
  • This device consists of a closed circuit 1 in which a flow 2 of agglomerates of particles in suspension in a liquid can circulate.
  • This device essentially comprises a sample preparer 10, a laser granulometer 20 and a processing cell 30.
  • the sample processor 10 (“Malvern Small Sample Unit MSX1”) is intended to receive the charge sample to be tested (as it is or already in suspension in the liquid 3) and to send it through the circuit 1 to a speed set (potentiometer 17), in the form of a flow 2 of liquid suspension.
  • This preparer 10 simply consists of a receiving tank which contains, and through which circulates, the suspension to be analyzed.
  • the preparer 10 is connected to a laser granulometer 20 ("Mastersizer S") whose function is to continuously measure, at regular time intervals, the average size "d v " of the agglomerates, as flow 2 passes, using a cell 23 to which are coupled the automatic recording and calculation means of the particle size analyzer 20.
  • Mastersizer S a laser granulometer 20
  • laser particle size analyzers exploit, in known manner, the principle of light diffraction by solid objects suspended in a medium whose refractive index is different from that of the solid. According to Fraunhofer's theory, there is a relationship between the size of the object and the angle of diffraction of light (the smaller the object, the larger the angle of diffraction).
  • a treatment cell 30 Interposed between the preparer 10 and the laser granulometer 20 is finally a treatment cell 30 equipped with an ultrasonic probe 35 (converter 34 and probe head 36) intended to continuously break up the agglomerates of particles as flow 2 passes.
  • an ultrasonic probe 35 (converter 34 and probe head 36) intended to continuously break up the agglomerates of particles as flow 2 passes.
  • the treatment cell 30 is placed between the outlet 22 of the particle sizer 20 and the inlet 11 of the preparer 10, in such a way that, in operation, the flow 2 of particles leaving the preparer 10 first passes through the laser granulometer 20 before entering the treatment cell 30.
  • This arrangement has two major advantages for the measurements: on the one hand, the air bubbles due to the action of the ultrasonic probe are eliminated on passing through the preparer 10 (which is in the open air), that is to say before entering the granulometer 20; they therefore do not disturb the measurement of laser diffraction; on the other hand, the homogeneity of the suspension is improved by prior passage through the preparer 10.
  • the treatment cell 30 is preferably arranged in such a way that the flow 2 of particles which enters it, via an inlet 31, passes first in front of the head 36 of the ultrasonic probe 35;
  • this unconventional arrangement (flow 2 enters from the bottom 31 of the cell, and not from the top 32) has the following advantages: on the one hand, all of the circulating suspension 2 is forced to pass in front of the end 36 of the ultrasound probe 35, the most active area in terms of deagglomeration; on the other hand, this arrangement allows a first degassing after sonification in the body of the treatment cell 30 itself, the surface of the suspension 2 then being in contact with the atmosphere by means of a pipe 33 of small diameter .
  • the flow 2 is preferably thermostatically controlled by means of a cooling circuit 40 disposed, at the level of the cell 30, in a double envelope surrounding the probe 35, the temperature being controlled for example by a temperature probe 14 immersed in the liquid 3 at the level of the preparer 10.
  • the arrangement of the various elements of the measuring device is optimized so as to limit as much as possible the circulating volume, that is to say the length of the connection pipes (for example flexible pipes ). 1-2. Characterization of rubber compositions
  • Hysteretic losses are measured by rebound at 60 ° C on the 6th shock, and expressed in% according to the following relationship:
  • PH (%) 100 [(W 0 -Wt) / W 0 ], with W 0 : energy supplied; Wt: energy returned.
  • the dynamic properties, noted ⁇ G * and tan ( ⁇ ) max , measured as a function of the deformation, are carried out at 10 Hertz with a peak-peak deformation ranging from 0.15% to 50%.
  • the non-linearity ⁇ G * is the difference in shear modulus between 0.15% and 50% of deformation, expressed in MPa.
  • the hysteresis is expressed by the measurement of tan ( ⁇ ) max which corresponds to the maximum of tan ( ⁇ ).
  • compositions according to the invention comprise as basic constituents at least one diene elastomer, a reinforcing filler and an agent. coupling between the reinforcing filler and the elastomer, said reinforcing filler being made up wholly or partly of a modified carbon black as described in detail below.
  • iene elastomer or rubber in known manner an elastomer derived at least in part (i.e. a homopolymer or a copolymer) from diene monomers (monomers carrying two carbon-carbon double bonds, conjugated or not).
  • diene elastomer a diene elastomer derived at least in part from conjugated diene monomers, having a rate of units or units of diene origin (conjugated dienes) which is greater than 15% (% in moles).
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not enter into the preceding definition and can be qualified in particular as "essentially saturated diene elastomers". "(rate of motifs of diene origin low or very low, always less than 15%).
  • the expression “highly unsaturated” diene elastomer is understood in particular to mean a diene elastomer having a content of units of diene origin (conjugated dienes) which is greater than 50%.
  • 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di (C1-C5 alkyl) -1,3-butadienes such as, for example, are suitable.
  • Suitable vinyl-aromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, the commercial "vinyl-toluene" mixture, para-tertiobutylstyrene, methoxystyrenes, chlorostyrenes, vinyl mesitylene, divinylbenzene. , vinylnaphthalene.
  • the copolymers can contain between 99% and 20% by weight of diene units and from 1% to 80% by weight of vinyl aromatic units.
  • the elastomers can have any microstructure which is a function of the polymerization conditions used, in particular the presence or absence of a modifying and / or randomizing agent and the quantities of modifying and / or randomizing agent used.
  • the elastomers can be, for example, block, statistics, sequences, microsequences, be prepared in dispersion or in solution.
  • polybutadienes are suitable and in particular those having a content of -1,2 units between 4% and 80% or those having a cis-1.4 content greater than 80%, polyisoprenes, butadiene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and more particularly between 20% and 40%, a content of -1,2 bonds in the butadiene part of between 4% and 65%, a content of trans-1,4 bonds between 20% and 80%, butadiene-isoprene copolymers and in particular those having an isoprene content between 5% and 90% by weight and a glass transition temperature (Tg) between -40 ° C and -80 ° C, isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight and a Tg of between -25 ° C and -50 ° C.
  • Tg glass transition temperature
  • butadiene-styrene-isoprene copolymers especially those having a styrene content of between 5% and 50% by weight and more particularly between 10% and 40%, an isoprene content of between 15% and 60% are suitable.
  • the elastomer can be coupled and / or star or functionalized with a coupling agent and / or star or functionalization.
  • the elastomer can also be natural rubber or a blend based on natural rubber with any elastomer, especially diene, synthetic.
  • the diene elastomer of the composition in accordance with the invention is chosen from the group of highly unsaturated diene elastomers constituted by polybutadienes, polyisoprenes or natural rubber, butadiene-styrene copolymers, butadiene copolymers -isoprene, isoprene-styrene copolymers, butadiene-styrene-isoprene copolymers, or a mixture of two or more of these compounds.
  • the diene elastomer is preferably a butadiene-styrene copolymer prepared in solution having a styrene content of between 20% and 30% by weight, a content of vinyl bonds in the butadiene part of between 15% and 65%, a content of trans-1,4 bonds between 20% and 75% and a glass transition temperature between -20 ° C and -55 ° C, this butadiene-styrene copolymer being optionally used in admixture with a polybutadiene preferably having more than 90% of cis-1,4 bonds.
  • composition according to the invention is reinforced, at least in part, with a carbon black with modified surface, called “modified carbon black” or “modified black”, having the following characteristics:
  • aluminum oxide and / or hydroxide any aluminum compound corresponding, apart from impurities and water of hydration, to the general formula (I) which follows (a and b real numbers):
  • This formula is given with the exception of impurities, it being understood that the aluminum oxides and / or hydroxides present on the surface of the modified carbon black may contain a certain proportion of impurities linked to the process used for the manufacture of the filler.
  • the intrinsic dispersibility of a charge can be evaluated using the so-called ultrasonic disagglomeration test described in chapter I above, by measuring its disagglomeration speed ⁇ .
  • the modified black has good dispersibility. That is to say that few micron agglomerates are observed by reflection under optical microscopy on a section of prepared rubber composition. according to the rules of art.
  • the deagglomeration speed ⁇ is particularly advantageous in particular when the invention is used for the manufacture of treads having low rolling resistance.
  • the compositions certainly exhibit easier processing and reduced hysteresis, but there is a decline in the breaking properties and resistance to wear in tires; for BET surfaces greater than 400 m 2 / g, processing in the raw state becomes more difficult (higher Mooney plasticity) and the dispersion of the charge is degraded.
  • BET surfaces greater than 400 m 2 / g processing in the raw state becomes more difficult (higher Mooney plasticity) and the dispersion of the charge is degraded.
  • sizes d w greater than 400 nm, the particles behave like defects which localize the stresses and are detrimental to wear; sizes d w that are too small, less than 20 nm, on the other hand, will penalize the implementation in the raw state and the dispersion of the charge during this implementation.
  • the BET surface is preferably within a range from 50 to 300 m 2 / g and the particle size d w is preferably within a range from 30 to 200 nm.
  • the modified carbon black thanks to its aluminous surface layer, also exhibits a high surface reactivity, ie a high rate of reactive surface functions (Al-OH), vis-à-vis the coupling agent, which is particularly favorable to the mechanical properties of the rubber compositions of the invention, that is to say to the reinforcement function fulfilled by the filler.
  • a high surface reactivity ie a high rate of reactive surface functions (Al-OH), vis-à-vis the coupling agent, which is particularly favorable to the mechanical properties of the rubber compositions of the invention, that is to say to the reinforcement function fulfilled by the filler.
  • the aluminum content (of element Al) present on the surface of the modified carbon black is greater than 0.25%, more preferably greater than 0.5%, even more preferably adjusted in a range between 0.5% and 5% (% by mass of modified black, determined by chemical analysis).
  • the effect of lowering the hysteresis may be insufficient, depending on the nature of the compositions used, in particular that of the elastomer, while beyond the maximum recommended rate, it is generally observed more improvement of the hysteresis whereas one is exposed to the risk of leading on the one hand to a too low dispersibility of the modified black, known drawback of white charges compared to carbon black, on the other hand a decrease in adhesion of the aluminous layer to the surface of the carbon black.
  • a rate greater than 5% would also require larger quantities of precursor product (aluminum alkoxide) or even longer impregnation times during manufacture, which is economically less advantageous.
  • the aluminum content be adjusted between 0.5% and 3%.
  • the black modified above can be used alone or combined with another reinforcing filler, for example with a reinforcing silica; in such a case, a highly dispersible precipitated silica is preferably used, in particular when the invention is implemented for the manufacture of tires having a low rolling resistance.
  • a highly dispersible precipitated silica is preferably used, in particular when the invention is implemented for the manufacture of tires having a low rolling resistance.
  • preferred highly dispersible silicas mention may be made of Perkasil KS 430 silica from Akzo, BV3380 silica from Degussa, Zeosil 1165MP and 1115MP silica from Rhône-Poulenc, Hi-Silica 2000 from PPG, Zeopol 8741 or 8745 from Huber.
  • modified black alone or possibly combined with silica, can also be used in cutting, i.e. in admixture, with conventional carbon black.
  • the modified black constitutes the majority, i.e. more than 50% by weight, of the total reinforcing filler; it can advantageously constitute the entire reinforcing filler.
  • the rate of total reinforcing filler in the compositions of the invention is within a range ranging from 20 to 300 phr, more preferably from 30 to 150 phr. the optimum being different depending on the intended applications: in known manner, the level of reinforcement expected on a bicycle tire, for example, is much lower than that required on a tire for a passenger vehicle or for a utility vehicle such as a heavy vehicle.
  • the modified carbon black can be obtained according to the following process:
  • the reinforcing carbon blacks conventionally used in tires are suitable, particularly in the treads of these tires, in particular blacks of the HAF ("High Abrasion Furnace"), ISAF ("Intermediate Super Abrasion Furnace”) type. “), SAF ("Super Abrasion Furnace ").
  • HAF High Abrasion Furnace
  • ISAF Intermediate Super Abrasion Furnace
  • SAF Super Abrasion Furnace
  • the reinforcing carbon blacks of the 100, 200 or 300 series ASTM grades.
  • these starting carbon blacks have the following characteristics:
  • BET surface area between 20 and 200 m 2 / g, more preferably between 50 and 170 m 2 / g;
  • an average size (by mass) of particles d w of between 20 and 400 nm, more preferably between 30 and 200 nm.
  • colloidal suspension in known manner a suspension of solid phase in a liquid whose size of solid objects is less than one micrometer.
  • the aluminum alkoxide is dissolved, with stirring and at temperature, in the selected alcohol, for example methanol, ethanol, (iso) propanol, the various isomers of butanol. , then the whole is hydrolyzed by adding water.
  • the aluminum alkoxide used is preferably an aluminum alkoxide having from 1 to 6 carbon atoms, for example a methoxide, an ethoxide, an (iso) propoxide or aluminum butoxides, or a mixture of two or more of these compounds.
  • the impregnation step can be carried out at room temperature (20 ° C) or at a higher temperature, for example between 30 ° C and 65 ° C depending on the nature of the alcohol or alcohols used, of course below the boiling point of the suspension, it being understood that the chosen temperature may be close to this boiling point.
  • the duration of impregnation is chosen to be sufficiently long, from a few minutes to a few hours depending on the case, in order to create sufficient physicochemical interactions between the surface of the carbon black and the aluminum-based compound.
  • the colloidal impregnation suspension comprises nitric acid used both as a catalyst for hydrolysis of the alkoxide solution and as a peptizing agent for the colloidal suspension.
  • nitric acid used both as a catalyst for hydrolysis of the alkoxide solution and as a peptizing agent for the colloidal suspension.
  • the nitric acid will be removed by washing the impregnated black with water.
  • the elimination of the alcoholic solvent, after impregnation of the carbon black can be carried out by any suitable means, for example by evacuation under vacuum, with stirring.
  • the heat treatment step is preferably carried out under inert gas, for example under argon, the treatment temperature preferably being between 100 ° C. and 900 ° C., more preferably between 150 ° C. and 850 ° C.
  • the higher this treatment temperature the more the formula (I) defined above "moves" from the hydroxide to the oxide (decrease in a and increase in b); treatment at a temperature of 800-850 ° C, for example, will lead to an aluminous layer essentially consisting of alumina (Al 2 O 3 ).
  • a coupling agent (silica / elastomer), also called bonding agent, which has the function of ensuring the bond between the white filler and the elastomer, while facilitating the dispersion of this white filler within the elastomeric matrix.
  • Modified black because of its aluminous surface layer, also requires the use of such a coupling agent to fully ensure its function of reinforcing filler in the rubber composition according to the invention.
  • coupling agent filler / elastomer
  • a coupling agent is meant more precisely an agent capable of establishing a sufficient connection, of chemical and / or physical nature, between the filler considered and the elastomer, while facilitating the dispersion of this filler within the elastomeric matrix;
  • a coupling agent at least bifunctional, has for example as simplified general formula "Y-T-X", in which:
  • Y represents a functional group ("Y" function) which is capable of physically and / or chemically binding to the white charge, such a bond being able to be established, for example, between a silicon atom of the coupling agent and the hydroxyl (OH) groups on the surface of the filler (for example surface silanols when it is silica);
  • X represents a functional group ("X" function) capable of binding physically and / or chemically to the elastomer, for example via a sulfur atom;
  • T represents a hydrocarbon group making it possible to link Y and X.
  • Coupling agents should in particular not be confused with simple agents for recovering the charge considered which, of known mother, comprise the active Y function with respect to the charge but are devoid of the active X function vis- against the elastomer.
  • any coupling agent known to effectively can be used in diene rubber compositions which can be used for the manufacture of tires the bond or coupling between silica and diene elastomer, such as organosilanes, in particular polysulphurized alkoxysilanes such as polysulphides , in particular tetrasulfides, of bis (trialkoxyl (C 1 -C) -silylpropyl), in particular of bis (3-trimethoxysilylpropyl) or of bis (3-triethoxysilylpropyl).
  • organosilanes in particular polysulphurized alkoxysilanes such as polysulphides , in particular tetrasulfides, of bis (trialkoxyl (C 1 -C) -silylpropyl), in particular of bis (3-trimethoxysilylpropyl) or of bis (3-triethoxysilylpropyl).
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • Si69 bis (3-triethoxysilylpropyl) tetrasulfide
  • the optimal level of coupling agent, for the modified black in moles per square meter of modified black, calculated from the weight ratio [coupling agent / modified black], of the BET surface area of the modified black and of the molar mass of the coupling agent (noted below), according to the following relation:
  • silica if it is used as additional reinforcing white filler, to also determine the optimal rate of additional coupling agent for this silica, in moles per square meter of this filler white.
  • the (total) amount of coupling agent used in the compositions in accordance with the invention is between 10 -7 and 10 " 5 moles per square meter of [modified carbon black plus, if appropriate, associated reinforcing white filler More preferably still, the amount of coupling agent is between 5.10 ' 7 and 5.10 " 6 moles per square meter of [modified carbon black plus, if necessary, associated reinforcing white filler].
  • compositions in accordance with the invention contain, in addition to the compounds already described, all or part of the constituents usually used in diene rubber compositions intended for the manufacture of tires, such as for example plasticizers, pigments, antioxidants, antiozonants, a cross-linking system based either on sulfur or on donors of sulfur and / or peroxide and / or bismaleimides, vulcanization accelerators, extension oils, etc.
  • compositions in accordance with the invention could also contain, in addition to the coupling agents described above, covering agents for white filler, such as for example alkylalkoxysilanes, polyols, amines.
  • covering agents for white filler such as for example alkylalkoxysilanes, polyols, amines.
  • the rubber compositions are prepared using the diene polymers according to quite known techniques, for example by thermomechanical work in one or two stages in an internal paddle mixer, followed by mixing on an external mixer.
  • a conventional one-step process all the necessary constituents, with the exception of the vulcanization system, are introduced into a conventional internal mixer, for example.
  • the result of this first mixing step is then taken up on an external mixer, generally a roller mixer, and the vulcanization system is then added to it.
  • a second step can be added to the internal mixer, essentially for the purpose of subjecting the mixture to an additional heat treatment.
  • the carbon black is then placed in a tabular oven (Carbolite CTF 15/75 610 type sold by the company Osi), under a flow of argon (200 ml / min), then subjected to the following thermal cycle: 30 min at 200 ° C, then 1 hour at 800 ° C; the temperature ramps are set at 10 ° C / min.
  • a tabular oven Carbolite CTF 15/75 610 type sold by the company Osi
  • the disagglomeration speed ⁇ is much higher than the fixed lower limit of 1.10 -3 ⁇ Os (i.e. 2/3 of ⁇ 0 ).
  • a speed ⁇ of 3.1.10- 3 ⁇ nr 1 / s should be considered here as particularly high, since it is approximately 100% higher than the speed ⁇ 0 recorded on a highly dispersible control silica (Zeosil 1165MP).
  • compositions tested below are prepared in a known manner in laboratory mixers, as follows: the diene elastomer is introduced into an internal mixer filled to 75% and whose temperature is about 70 ° C, then after an appropriate mixing time, for example of the order of 1 minute, all the other ingredients are added, including the filler and, if appropriate, the associated coupling agent, with the exception of the vulcanization system. Thermomechanical work is then carried out for a duration of approximately 5.5 minutes, with an average speed of the pallets of 70 revolutions / min, until a drop temperature of approximately 140 ° C. is obtained. The mixture thus obtained is recovered and then the vulcanization system is added on an external mixer (homo-finisher) at 30 ° C. Vulcanization is carried out at 150 ° C (40 min).
  • the SBR elastomer (styrene-butadiene copolymer) is prepared in solution and comprises 25% of styrene, 58% of 1-2 polybutadiene units and 23% of 1-4 trans polybutadiene units.
  • compositions are identical except for the following differences:
  • composition Nol composition (control) conventional reinforcing filler constituted by a carbon black type N234
  • - composition No2 in accordance with the invention: reinforcing filler constituted exclusively by carbon black N234 modified, with which the coupling agent Si69 (TESPT) is associated.
  • the Si69 coupling agent was introduced at a rate corresponding to a surface coverage of approximately 9.6 ⁇ 10 -7 mole / m 2 of modified carbon black.
  • Tables 2 and 3 successively give the formulation of the different compositions (Table 2 - rate of the different products expressed in phr), their properties before and after cooking at 150 ° C for 40 minutes (Table 3).
  • the Mooney plasticity value appears lower on the composition in accordance with the invention than on the control composition, a result which in any case reveals a very good ability to process the composition of the invention raw;
  • the composition according to the invention has values of modules, in particular of modules M 100 and M300 indicators in a known manner of the quality of reinforcement, which are at least equal if not greater than those obtained on the control composition;
  • composition in accordance with the invention also has very advantageous hysteretic properties, compared to those offered by conventional carbon black, with a very significant reduction in rebound losses (PH), non-linearity ⁇ G * and tan ( ⁇ ) max .
  • compositions of the invention unexpectedly exhibit significantly improved hysteresis properties, without their properties of processing in the raw state and of reinforcement after cooking being affected.
  • the specific process for preparing the modified black makes it possible to deposit, on the surface of the carbon black particles or aggregates, a fine, stable, highly adherent and distributed aluminous layer of relatively homogeneously (average particle size little modified but strong increase in the BET surface).
  • Such a coating quality of its reinforcing filler could explain the unexpected performance of the rubber composition according to the invention, improved both compared to compositions reinforced with conventional carbon black (reduction in hysteresis) and compared to compositions reinforced with precipitated silica even highly dispersible (increased dispersibility; high electrical conductivity).
  • compositions of the invention thus offer an interesting alternative to the use of conventional compositions loaded with carbon blacks or highly dispersible silicas, or even carbon blacks coated with a siliceous layer.
  • Table 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Composition de caoutchouc vulcanisable au soufre, utilisable pour la fabrication de pneumatiques, comportant au moins un élastomère diénique, une charge renforçante et un agent de couplage assurant la liaison entre la charge renforçante et l'élastomère, caractérisée en ce que ladite charge renforçante est constituée en tout ou partie d'un noir de carbone modifié ayant les caractéristiques suivantes: (i) il est revêtu au moins en partie d'une couche d'oxyde et/ou hydroxyde d'aluminium; (ii) sa surface spécifique BET est comprise entre 30 et 400 m2/g; (iii) sa taille moyenne (en masse) de particules, notée d¿w?, est comprise entre 20 et 400 nm; (iv) sa vitesse de désagglomération, notée α, mesurée au test dit de désagglomération aux ultrasons, à 10 % de puissance d'une sonde ultrasons de 600 watts, est supérieure à 1.10?-3 νm-1¿/s.

Description

COMPOSITION DE CAOUTCHOUC POUR PNEUMATIQUES,
RENFORCEE D'UN NODl DE CARBONE REVETU D'UNE COUCHE ALUMINEUSE
La présente invention est relative aux compositions de caoutchoucs diéniques utilisables pour la fabrication de pneumatiques ou de produits semi-finis pour pneumatiques, en particulier de bandes de roulement de ces pneumatiques, ainsi qu'aux charges renforçantes susceptibles de renforcer de telles compositions de caoutchouc.
De façon à réduire la consommation de carburant et les nuisances émises par les véhicules à moteur, des efforts importants ont été réalisés par les concepteurs de pneumatiques afin d'obtenir des pneumatiques présentant à la fois une très faible résistance au roulement, une adhérence améliorée tant sur sol sec que sur sol humide ou enneigé et une très bonne résistance à l'usure.
De nombreuses solutions ont ainsi été proposées pour abaisser la résistance au roulement et améliorer l'adhérence des pneumatiques, mais celles-ci se traduisent en général par une déchéance très importante de la résistance à l'usure. Il est bien connu notamment que l'incorporation de charges blanches conventionnelles comme par exemple la silice (SiO2), l'alumine (AI2O3), l'oxyde de titane (TiÛ2), la craie, le talc, des argiles telles que la bentonite ou le kaolin par exemple, dans des compositions de caoutchouc utilisées pour la fabrication de pneumatiques et notamment de bandes de roulement, se traduit certes par un abaissement de la résistance au roulement et par une amélioration de l'adhérence sur sol mouillé, enneigé ou verglacé, mais aussi par une déchéance inacceptable de la résistance à l'usure liée au fait que ces charges blanches conventionnelles n'ont pas de capacité de renforcement suffisante vis-à- vis de telles compositions de caoutchouc ; on qualifie généralement ces charges blanches, pour cette raison, de charges non renforçantes encore appelées charges inertes.
Une solution efficace à ce problème a été décrite dans la demande de brevet EP-A-0 501 227 qui divulgue une composition de caoutchouc diénique particulière renforcée d'une silice précipitée hautement dispersible. Cette composition permet de fabriquer un pneumatique ayant une résistance au roulement nettement améliorée, sans affecter les autres propriétés, en particulier celles d'adhérence, d'endurance et surtout de résistance à l'usure.
Depuis la publication de cette demande EP-A-0 501 227, l'intérêt pour les compositions renforcées de silice a été très largement relancé. Cependant, les silices sont de manière générale plus difficilement dispersibles que les noirs de carbone. D'autre part, les compositions chargées en silice, comparativement à celles chargées en noir de carbone, présentent de manière connue l'inconvénient d'avoir d'une part une mise en oeuvre (i.e. une aptitude à la transformation ou "processabihty") à l'état cru plus difficile, d'autre part une très haute résistance électrique.
Des compositions présentant à la fois des propriétés d'hystérèse et d'adhérence améliorées, mais encore une mise en oeuvre aisée à l'état cru, un haut niveau de renforcement, et donc de résistance à l'usure, ainsi qu'une conductivité électrique élevée étaient donc tout à fait souhaitables pour les fabricants de pneumatiques. La Demanderesse a découvert lors de ses recherches une composition nouvelle qui, grâce à une charge renforçante particulière, permet de manière inattendue de répondre à ces différentes exigences contradictoires.
En conséquence, un premier objet de l'invention concerne une composition de caoutchouc vulcanisable au soufre, utilisable pour la fabrication de pneumatiques, comportant au moins un élastomère diénique, une charge renforçante et un agent de couplage assurant la liaison entre la charge renforçante et l'élastomère, cette composition étant caractérisée en ce que ladite charge renforçante est constituée en tout ou partie d'un noir de carbone dit "modifié" ayant les caractéristiques suivantes:
- (i) il est revêtu au moins en partie d'une couche d'oxyde et/ou hydroxyde d'aluminium;
- (ii) sa surface spécifique BET est comprise entre 30 et 400 m2/g; - (iii) sa taille moyenne (en masse) de particules, notée dw, est comprise entre 20 et
400 nm;
- (iv) sa vitesse de désagglomération, notée α, mesurée au test dit de désagglomération aux ultrasons, à 10% de puissance d'une sonde ultrasons de 600 watts, est supérieure à 1.10-3 μm-Vs.
Les compositions de l'invention, grâce à ce noir modifié et à sa combinaison spécifique de caractéristiques, notamment ses propriétés de surface particulières, possèdent non seulement des propriétés d'hystérèse et d'adhérence améliorées, mais encore une conductivité électrique élevée.
Des compositions de caoutchouc comportant à titre de charge renforçante des noirs de carbone à surface modifiée, recouverts d'une couche siliceuse, ont certes été décrits dans des demandes de brevet récentes (voir par exemple EP-A-0 711 805, EP-A-0 799 854, EP-A-0 799 867, WO96/037547) ; ces nouvelles compositions et leur potentiel d'application en pneumatiques sont encore mal connus des fabricants de pneumatiques. Comparés à ces compositions chargées en noirs de carbone recouverts d'une couche siliceuse, les compositions de l'invention présentent au moins l'avantage notable que la couche alumineuse de surface déposée à la surface de leur charge renforçante, faite d'oxydes et/ou hydroxydes d'aluminium qui de manière connue sont plus stables et chimiquement plus réactifs que les oxydes de silicium, sera par conséquent plus adhérente aux particules de noir et plus réactive que ne peut l'être une couche siliceuse. En outre, comparées à des compositions chargées en silice, même en silice hautement dispersible, les compositions de l'invention présentent l'avantage de posséder une mise en oeuvre à l'état cru qui est facilitée.
La demande de brevet WO97/42256 décrit quant à elle des compositions de caoutchouc diénique pouvant incorporer, à titre de charge renforçante, des noirs de carbone traités directement dans le réacteur de synthèse du noir de carbone par divers composés métalliques se présentant notamment sous forme d'oxydes, d'hydroxydes ou de carbures de différents métaux (par exemple aluminium, zinc, magnésium, calcium, titane, vanadium, cobalt, nickel, zirconium, étain, antimoine, chrome, néodyme, plomb, tellure, barium, césium, fer, molybdène). Les noirs ainsi traités à très haute température dans le réacteur de synthèse consistent en fait en des agrégats ou particules hybrides à deux phases, formés par un mélange intime de noir de carbone et de composé métallique, le composé métallique étant localisé tant à l'intérieur que près de la surface des agrégats ; il est précisé notamment que la teneur en atome métallique peut atteindre 50% voire même 99% de la masse de l'agrégat final (% en masse). On comprend bien que de telles charges hybrides, si elles étaient libérées par un moyen quelconque de leur fraction de composé métallique, par exemple par un traitement chimique approprié, n'auraient ni la morphologie ni les propriétés d'un noir de carbone conventionnel, mais celles de résidus carbonés à forte porosité. En cela, les noirs de carbone traités décrits dans WO97/42256 ne doivent par être confondus avec des noirs de carbone uniquement revêtus d'une couche de composé métallique qui, après élimination d'un tel revêtement, retrouveraient quant à eux leur structure initiale.
Rien n'est dit en outre dans WO97/42256 sur une composition de caoutchouc selon l'invention, chargée d'un noir de carbone modifié ayant les caractéristiques spécifiques de surface BET. de taille de particules dw et de vitesse de désagglomération α précitées.
L'invention a également pour objet l'utilisation d'une composition de caoutchouc conforme à l'invention pour la fabrication d'articles en caoutchouc, en particulier de pneumatiques ou de produits semi-finis en caoutchouc destinés à ces pneumatiques, ces articles semi-finis étant notamment choisis dans le groupe constitué par les bandes de roulement, les sous-couches destinées par exemple à être placées sous ces bandes de roulement, les nappes sommet, les flancs, les nappes carcasse, les talons, les protecteurs, les chambres à air ou les gommes intérieures étanches pour pneu sans chambre. L'invention concerne plus particulièrement l'utilisation d'une telle composition de caoutchouc pour la fabrication des flancs ou des bandes de roulement, en raison de ses bonnes propriétés hystérétiques.
L'invention a également pour objet ces pneumatiques et ces articles en caoutchouc eux-mêmes lorsqu'ils comportent une composition de caoutchouc conforme à l'invention.
La composition conforme à l'invention est particulièrement adaptée à la confection de bandes de roulement de pneumatiques destinés à équiper des véhicules de tourisme, camionnette, deux roues et poids-lourds, avions, engins de génie civil, agraire, ou de manutention, ces bandes de roulement pouvant être utilisées lors de la fabrication de pneumatiques neufs ou pour le rechapage de pneumatiques usagés.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que des figures 1 à 3 relatives à ces exemples qui représentent:
- un schéma de dispositif apte à mesurer la vitesse de désagglomération aux ultrasons (α) d'une charge se présentant sous la forme d'agglomérats (fig. 1);
des courbes d'évolution de la taille des agglomérats au cours d'une sonification à l'aide du dispositif de la figure 1, pour des charges conformes on non à l'invention, courbes à partir desquelles sont déterminées les vitesses de désagglomération α (fig. 2 et fig. 3). I. MESURES ET TESTS UTILISES
1-1. Caractérisation des charges renforçantes
Les charges renforçantes utilisées sont caractérisées comme indiqué ci-après.
a." surface spécifique BET:
La surface spécifique BET est déterminée de manière connue, selon la méthode de Brunauer- Emmet-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938 et correspondant à la norme AFNOR-NF-T45-007 (novembre 1987).
b) taille moyenne des particules dw :
La taille moyenne (en masse) des particules, notée dw, est mesurée de manière classique après dispersion, par désagglomération aux ultrasons, de la charge à analyser dans une solution aqueuse à 15% d'éthanol et 0,05% d'un agent tensioactif non ionique (% en volume).
Le terme "particule" utilisé dans la présente demande doit être compris dans son sens générique habituel d'agrégat, et non dans celui de particule élémentaire éventuelle pouvant former une partie de cet agrégat (par agrégat, il faut entendre de manière connue un ensemble insécable de particules élémentaires, produit lors de la synthèse de la charge).
La détermination a lieu au moyen d'un photosédimentomètre centrifuge type "DCP" ("Disk Centrifuge Photosedimentometer" commercialisé par la société Brookhaven Instruments). Une suspension de 10 mg de noir de carbone est préalablement réalisée dans 40 ml d'une solution aqueuse à 15% d'éthanol et 0,05% d'un agent tensioactif non ionique (% en volume), par action durant 10 minutes à 60% de puissance (soit 60 % de la position maxi du "tip amplitude") d'une sonde ultrasons de 600 watts (Sonificateur Vibracell 1/2 pouce commercialisé par la société Bioblock). Pendant la sonification, un gradient composé de 15 ml d'eau (à 0,05% d'un tensioactif non ionique) et de 1 ml d'éthanol est injecté dans le disque du sédimentomètre en rotation à 8000 tours/min afin de constituer un "step gradient". Ensuite, 0,3 ml de la suspension de noir de carbone est injecté à la surface du gradient ; après sédimentation durant 120 min, la distribution en masse des tailles de particule et la taille moyenne en masse dw (dw = ∑(nj dj5) / ∑(nj d;4) avec nombre d'objets de la classe de taille d,) sont calculées par le logiciel du sédimentomètre.
c) vitesse de désagglomération α:
La vitesse de désagglomération notée α est mesurée au test dit "test de désagglomération aux ultrasons", à 10% de puissance d'une sonde de 600 watts. Ce test permet de mesurer en continu l'évolution de la taille des agglomérats de particules durant une sonification, selon les indications ci-après. Le montage utilisé est constitué d'un granulomètre laser (type "Mastersizer S", commercialisé par Malvern Instruments - source laser He-Ne émettant dans le rouge, longueur d'onde 632,8 nm) et de son préparateur ("Malvern Small Sample Unit MSX1"), entre lesquels a été intercalée une cellule de traitement en flux continu (Bioblock M72410) munie d'une sonde ultrasons (Sonificateur 1/2 pouce type Vibracell de 600 watts commercialisé par la société Bioblock).
Une faible quantité (15 mg) de charge à analyser est introduite dans le préparateur avec 160 ml d'une solution aqueuse contenant 20 % en masse d'éthanol, la vitesse de circulation étant fixée à son maximum. Au moins trois mesures consécutives sont réalisées pour déterminer selon la méthode de calcul connue de Fraunhofer (matrice de calcul Malvern 3$$D) le diamètre initial moyen (en volume) des agglomérats, noté dv[0]. La sonification est ensuite établie à une puissance de 10% (soit 10% de la position maxi du "tip amplitude") et on suit durant 8 minutes environ l'évolution du diamètre moyen en volume dv[t] en fonction du temps "t" à raison d'une mesure toutes les 10 secondes environ. Après une période d'induction d'environ 3 minutes, il est observé que l'inverse du diamètre moyen en volume l/dv[t] varie linéairement avec le temps "t" (régime stable de désagglomération). La vitesse de désagglomération α est calculée par régression linéaire de la courbe d'évolution de l/dv[t] en fonction du temps "t", dans la zone de régime stable de désagglomération. Elle est exprimée en μπrVs.
A titre d'exemple et de référence, le test de désagglomération aux ultrasons ci-dessus, appliqué à une silice témoin bien connue de l'homme du métier pour sa très haute dispersibilité (silice commercialisée par la société Rhône-Poulenc sous la référence Zeosil 1165MP), conduit à une vitesse de désagglomération, notée α0, d'environ 1,5.10-3 μπrVs.
La figure 1 schématise un exemple de montage du dispositif de mesure utilisable pour la réalisation de ce test de désagglomération aux ultrasons. Ce dispositif consiste en un circuit fermé 1 dans lequel peut circuler un flux 2 d'agglomérats de particules en suspension dans un liquide 3. Ce dispositif comporte essentiellement un préparateur d'échantillon 10, un granulomètre laser 20 et une cellule de traitement 30. Une mise à la pression atmosphérique (13, 33), au niveau du préparateur d'échantillon 10 et de la cellule de traitement 30 elle-même, permet l'élimination en continu des bulles d'air qui se forment durant la sonification (i.e. l'action de la sonde ultrasons).
Le préparateur d'échantillon 10 ("Malvern Small Sample Unit MSX1") est destiné à recevoir l'échantillon de charge à tester (telle quelle ou déjà en suspension dans le liquide 3) et à l'envoyer à travers le circuit 1 à une vitesse réglée (potentiomètre 17), sous la forme d'un flux 2 de suspension liquide. Ce préparateur 10 consiste simplement en une cuve de réception qui contient, et à travers laquelle circule, la suspension à analyser. Il est équipé d'un moteur d'agitation 15, à vitesse modulable, afin d'éviter une sédimentation des agglomérats de particules de la suspension ; une mini-pompe centrifuge 16 est destinée à assurer la circulation de la suspension 2 dans le circuit 1 ; l'entrée 11 du préparateur 10 est reliée à l'air libre via une ouverture 13 destinée à recevoir l'échantillon de charge à tester et/ou le liquide 3 utilisé pour la suspension. Au préparateur 10 est connecté un granulomètre laser 20 ("Mastersizer S") dont la fonction est de mesurer en continu, à intervalles de temps réguliers, la taille moyenne "dv" des agglomérats, au passage du flux 2, grâce à une cellule de mesure 23 à laquelle sont couplés les moyens d'enregistrement et de calcul automatiques du granulomètre 20. On rappelle ici brièvement que les granulomètres laser exploitent, de manière connue, le principe de la diffraction de la lumière par des objets solides mis en suspension dans un milieu dont l'indice de réfraction est différent de celui du solide. Selon la théorie de Fraunhofer, il existe une relation entre la taille de l'objet et l'angle de diffraction de la lumière (plus l'objet est petit et plus l'angle de diffraction sera élevé). Pratiquement, il suffit de mesurer la quantité de lumière diffractée pour différents angles de diffraction pour pouvoir déterminer la distribution de taille (en volume) de l'échantillon, dv correspondant à la moyenne de cette distribution (dv = ∑(n; dj ) / ∑(nj dj 3) avec ns nombre d'objets de la classe de taille dj).
Intercalée entre le préparateur 10 et le granulomètre laser 20 se trouve enfin une cellule de traitement 30 équipée d'une sonde ultrasons 35 (convertisseur 34 et tête de sonde 36) destinée à casser en continu les agglomérats de particules au passage du flux 2.
On préfère que la cellule de traitement 30 soit disposée entre la sortie 22 du granulomètre 20 et l'entrée 11 du préparateur 10, de telle manière que, en fonctionnement, le flux 2 de particules sortant du préparateur 10 traverse d'abord le granulomètre laser 20 avant d'entrer dans la cellule de traitement 30. Cette disposition a deux avantages majeurs pour les mesures : d'une part, les bulles d'air dues à l'action de la sonde ultrasons sont éliminées à la traversée du préparateur 10 (qui est à l'air libre), c'est-à-dire avant l'entrée dans le granulomètre 20 ; elles ne perturbent donc pas la mesure de diffraction laser ; d'autre part, l'homogénéité de la suspension est améliorée par un passage préalable dans le préparateur 10.
La cellule de traitement 30 est de préférence agencée de telle manière que le flux 2 de particules qui y pénètre, par une entrée 31, passe d'abord devant la tête 36 de la sonde ultrasons 35 ; cette disposition non conventionnelle (le flux 2 entre par le bas 31 de la cellule, et non par le haut 32) présente les avantages suivants: d'une part, toute la suspension circulante 2 est forcée de passer devant l'extrémité 36 de la sonde ultrasons 35, zone la plus active en termes de désagglomération ; d'autre part, cette disposition permet un premier dégazage après sonification dans le corps de la cellule de traitement 30 elle-même, la surface de la suspension 2 étant alors en contact avec l'atmosphère au moyen d'un tuyau 33 de faible diamètre.
Le flux 2 est de préférence thermostaté par l'intermédiaire d'un circuit de refroidissement 40 disposé, au niveau de la cellule 30, dans une double enveloppe entourant la sonde 35, la température étant contrôlée par exemple par une sonde de température 14 plongeant dans le liquide 3 au niveau du préparateur 10. La disposition des différents éléments du dispositif de mesure est optimisée de façon à limiter autant que possible le volume circulant, c'est-à-dire la longueur des tuyaux de raccordement (par exemple des tuyaux souples). 1-2. Caractérisation des compositions de caoutchouc
Les compositions de caoutchouc sont caractérisées, avant et après cuisson, comme indiqué ci- après. a) plasticité Mooney:
On utilise un consistomètre oscillant tel que décrit dans la norme AFNOR-NF-T43-005 (Novembre 1980). La mesure de plasticité Mooney se fait selon le principe suivant : la composition à l'état cru est moulée dans une enceinte cylindrique chauffée à 100°C. Après une minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de rotation. La plasticité Mooney (ML 1+4) est exprimée en "unités Mooney" (UM).
b) essais de traction:
Ces essais permettent de déterminer les contraintes d'élasticité et les propriétés à la rupture. Ils sont effectués, sauf indications différentes, conformément à la norme AFNOR-NF-T46-002 de septembre 1988.
On mesure en seconde élongation (i.e. après un cycle d'accommodation) les modules sécants à 10 % d'allongement (M 10), 100 % d'allongement (M 100) et 300 % d'allongement (M300), calculés en se ramenant à la section réelle de l'éprouvette. Toutes ces mesures de traction sont effectuées dans les conditions normales de température et d'hygrométrie selon la norme AFNOR-NF-T40-101 (décembre 1979). c) pertes hystérétiques:
Les pertes hystérétiques (PH) sont mesurées par rebond à 60°C au 6ème choc, et exprimées en % selon la relation suivante:
PH (%) = 100 [ (W0 -Wt) / W0 ] , avec W0 : énergie fournie ; Wt : énergie restituée.
d) propriétés dynamiques:
Les propriétés dynamiques, notées ΔG* et tan(δ)max, mesurées en fonction de la déformation, sont effectuées à 10 Hertz avec une déformation crête-crête allant de 0,15% à 50%. La non- linéarité ΔG* est la différence de module de cisaillement entre 0,15% et 50% de déformation, exprimée en MPa. L'hystérèse est exprimée par la mesure de tan(δ)max qui correspond au maximum de tan(δ). II. CONDITIONS DE REALISATION DE L'INVENTION
Outre les additifs habituels ou ceux susceptibles d'être utilisés dans une composition de caoutchouc vulcanisable au soufre et utilisable pour la fabrication de pneumatiques, les compositions selon l'invention comportent comme constituants de base au moins un élastomère diénique, une charge renforçante et un agent de couplage entre la charge renforçante et l'élastomère, ladite charge renforçante étant constituée en tout ou partie d'un noir de carbone modifié tel que décrit en détail plus loin.
II- 1. Elastomère diénique
Par élastomère ou caoutchouc "diénique", on entend de manière connue un élastomère issu au moins en partie (i.e. un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
De manière générale, on entend ici par élastomère diénique "essentiellement insaturé" un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles).
C'est ainsi, par exemple, que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfines type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15%).
Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%.
Ces définitions étant données, on entend en particulier par élastomère diénique susceptible d'être mis en oeuvre dans les compositions conformes à l'invention:
(a) - tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
(b) - tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle aromatique ayant de 8 à 20 atomes de carbone;
(c) - tout copolymère ternaire obtenu par copolymérisation d'éthylène, d'une α-oléfine ayant 3 à 6 atomes de carbone avec un monomère diène non conjugué ayant de 6 à 12 atomes de carbone, comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité tel que notamment l'hexadiène-1,4, l'éthylidène norbornène, le dicyclopentadiène;
(d) - tout copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère. Bien qu'elle s'applique à tout type d'élastomère diénique, l'homme du métier du pneumatique comprendra que la présente invention est en premier lieu mise en oeuvre avec des élastomères diéniques essentiellement insaturés, en particulier du type (a) ou (b) ci-dessus.
A titre de diènes conjugués conviennent notamment le butadiène-1,3, le 2-méthyl-l,3- butadiène, les 2,3-di(alkyle en Cl à C5)-l,3-butadiènes tels que par exemple le 2,3-diméthyl- 1,3-butadiène, le 2,3-diéthyl-l,3-butadiène, le 2-méthyl-3-éthyl-l,3-butadiène, le 2-méthyl-3- isopropyl-l,3-butadiène, un aryl-l,3-butadiène, le 1,3-pentadiène, le 2,4-hexadiène.
A titre de composés vinyle-aromatiques conviennent par exemple le styrène, l'ortho-, meta-, para-méthylstyrène, le mélange commercial "vinyle-toluène", le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène.
Les copolymères peuvent contenir entre 99 % et 20 % en poids d'unités diéniques et de 1 % à 80 % en poids d'unités vinylaromatiques. Les élastomères peuvent avoir toute microstructure qui est fonction des conditions de polymérisation utilisées, notamment de la présence ou non d'un agent modifiant et/ou randomisant et des quantités d'agent modifiant et/ou randomisant employées. Les élastomères peuvent être par exemple à blocs, statistiques, séquences, microséquencés, être préparés en dispersion ou en solution.
A titre préférentiel conviennent les polybutadiènes et en particulier ceux ayant une teneur en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur en cis-1.4 supérieure à 80%, les polyisoprènes, les copolymères de butadiène-styrène et en particulier ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement entre 20% et 40%, une teneur en liaisons -1,2 de la partie butadiénique comprise entre 4% et 65% , une teneur en liaisons trans- 1,4 comprise entre 20% et 80%, les copolymères de butadiène- isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une température de transition vitreuse (Tg) entre -40°C et -80°C, les copolymères isoprène- styrène et notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et une Tg comprise entre -25°C et -50°C.
Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 10% et 40%, une teneur en isoprène comprise entre 15% et 60% en poids et plus particulièrement entre 20% et 50%, une teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 20% et 40%, une teneur en unités -1,2 de la partie butadiénique comprise entre 4% et 85%, une teneur en unités trans -1,4 de la partie butadiénique comprise entre 6% et 80%, une teneur en unités -1,2 plus -3,4 de la partie isoprénique comprise entre 5% et 70% et une teneur en unités trans -1,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement tout copolymère butadiène- styrène-isoprène ayant une Tg comprise entre -20°C et -70°C.
Bien entendu, l'élastomère peut être couplé et/ou étoile ou encore fonctionnalisé avec un agent de couplage et ou d'étoilage ou de fonctionnalisation. L'élastomère peut également être du caoutchouc naturel ou un coupage à base de caoutchouc naturel avec tout élastomère, notamment diénique, synthétique.
De manière particulièrement préférentielle, l'élastomère diénique de la composition conforme à l'invention est choisi dans le groupe des élastomères diéniques fortement insaturés constitué par les polybutadiènes, les polyisoprènes ou du caoutchouc naturel, les copolymères de butadiène-styrène, les copolymères de butadiène-isoprène, les copolymères d'isoprène- styrène, les copolymères de butadiène-styrène-isoprène, ou un mélange de deux ou plus de ces composés.
Lorsque la composition conforme à l'invention est destinée à une bande de roulement pour pneumatique, l'élastomère diénique est de préférence un copolymère de butadiène-styrène préparé en solution ayant une teneur en styrène comprise entre 20% et 30% en poids, une teneur en liaisons vinyliques de la partie butadiénique comprise entre 15% et 65%, une teneur en liaisons trans- 1,4 comprise entre 20% et 75% et une température de transition vitreuse comprise entre -20°C et -55°C, ce copolymère de butadiène-styrène étant éventuellement utilisé en mélange avec un polybutadiène possédant de préférence plus de 90 % de liaisons cis-1 ,4.
II-2. Charge renforçante
La composition conforme à l'invention est renforcée, aμ moins en partie, d'un noir de carbone à surface modifiée, dénommé "noir de carbone modifié" ou "noir modifié", ayant les caractéristiques suivantes:
- (i) il est revêtu au moins en partie d'une couche d'oxyde et ou hydroxyde d'aluminium;
- (ii) sa surface spécifique BET est comprise entre 30 et 400 m2/g;
- (iii) sa taille moyenne (en masse) de particules, notée dw, est comprise entre 20 et 400 nm;
- (iv) sa vitesse de désagglomération, notée α, mesurée au test dit de désagglomération aux ultrasons, à 10% de puissance d'une sonde ultrasons de 600 watts, est supérieure à 1.10-3 μm"1 /s.
Par oxyde et/ou hydroxyde d'aluminium, on entend tout composé d'aluminium répondant, aux impuretés et à l'eau d'hydratation près, à la formule générale (I) qui suit (a et b nombres réels):
(I) Al (OH) a O b , avec: 0 < a ≤ 3 et b = (3-a) / 2 .
Une telle formule englobe les oxydes d'aluminium purs ou alumines AI2O3 (a=0), les tri- hydroxydes d'aluminium Al(OH)3 (a=3), les oxyde-hydroxydes intermédiaires (0<a<3), ainsi que leurs formes hydratées éventuelles, ou un mélange de tri-hydroxydes et/ou oxyde- hydroxydes d'aluminium. Cette formule est donnée aux impuretés près étant entendu que les oxydes et/ou hydroxydes d'aluminium présents à la surface du noir de carbone modifié peuvent comporter une certaine proportion d'impuretés liées au procédé mis en oeuvre pour la fabrication de la charge. On sait de manière générale que pour obtenir les propriétés de renforcement optimales conférées par une charge, il convient notamment que cette dernière soit présente dans la matrice caoutchouteuse sous une forme finale qui soit à la fois la plus finement divisée possible et répartie de la façon la plus homogène possible. Or, de telles conditions ne peuvent être réalisées que dans la mesure où la charge présente une très bonne aptitude, d'une part à s'incorporer dans la matrice lors du mélange avec l'élastomère et à d'autre part à se désagglomérer afin de se disperser de façon homogène dans l'élastomère.
La dispersibilité intrinsèque d'une charge peut être évaluée à l'aide du test dit de désagglomération aux ultrasons décrit au chapitre I précédent, par mesure de sa vitesse de désagglomération α.
On a constaté que pour une vitesse α supérieure à 1.10"3 μmOs, le noir modifié présente une bonne dispersibilité. c'est-à-dire que peu d'agglomérats microniques sont observés par réflexion en microscopie optique sur une coupe de composition caoutchouteuse préparée selon les règles de l'art.
Pour une dispersion encore meilleure du noir modifié dans la matrice de caoutchouc diénique, et donc pour un renforcement optimal, on préfère que la vitesse de désagglomération α soit supérieure à 1,5 10"3 μnrVs. Ceci est particulièrement avantageux notamment lorsque l'invention est mise en oeuvre pour la fabrication de bandes de roulement présentant une faible résistance au roulement.
Pour une surface BET inférieure à 30 m2/g, les compositions présentent certes une mise en oeuvre facilitée et une hystérèse réduite, mais on observe une déchéance des propriétés de rupture et de résistance à l'usure en pneumatique ; pour des surfaces BET supérieures à 400 m2/g, la mise en oeuvre à l'état cru devient plus difficile (plasticité Mooney plus élevée) et la dispersion de la charge s'en trouve dégradée. Pour des tailles dw trop élevées, supérieures à 400 nm, les particules se comportent comme des défauts qui localisent les contraintes et sont préjudiciables à l'usure ; des tailles dw trop petites, inférieures à 20 nm, vont par contre pénaliser la mise en oeuvre à l'état cru et la dispersion de la charge au cours de cette mise en oeuvre.
Pour toutes les raisons exposées ci-dessus, la surface BET est de préférence comprise dans un domaine allant de 50 à 300 m2/g et la taille de particules dw est de préférence comprise dans un domaine allant de 30 à 200 nm.
Le noir de carbone modifié, grâce à sa couche alumineuse de surface, présente en outre une réactivité de surface élevée, i.e. un taux élevé de fonctions réactives de surface (Al-OH), vis- à-vis de l'agent de couplage, ce qui est particulièrement favorable aux propriétés mécaniques des compositions de caoutchouc de l'invention, c'est-à-dire à la fonction de renforcement remplie par la charge.
De préférence, le taux d'aluminium (de l'élément Al) présent à la surface du noir de carbone modifié est supérieur à 0,25%, plus préférentiellement supérieur à 0,5%, encore plus préférentiellement ajusté dans un domaine compris entre 0,5% et 5% (% en masse de noir modifié, déterminé par analyse chimique).
En dessous des minima indiqués, l'effet d'abaissement de l'hystérèse peut être insuffisant, selon la nature des compositions utilisées notamment de celle de l'élastomère, alors qu'au-delà du taux maximal préconisé, on n'observe généralement plus d'amélioration de l'hystérèse alors que l'on s'expose au risque d'aboutir d'une part à une dispersibilité trop faible du noir modifié, inconvénient connu des charges blanches par rapport au noir de carbone, d'autre part à une diminution d'adhérence de la couche alumineuse à la surface du noir de carbone. Un taux supérieur à 5% nécessiterait par ailleurs des quantités plus importantes de produit précurseur (alkoxyde d'aluminium) voire des temps d'imprégnation plus longs lors de la fabrication, ce qui est économiquement moins intéressant.
Pour une optimisation de l'adhérence de la couche alumineuse à la surface du noir ainsi que la dispersibilité de la charge dans la composition de caoutchouc, en particulier lorsque cette composition est destinée à une bande de roulement de pneumatique à faible résistance au roulement, on préfère que le taux d'aluminium soit ajusté entre 0,5% et 3%.
Le noir modifié ci-dessus peut être utilisé seul ou associé à une autre charge renforçante, par exemple à une silice renforçante ; dans un tel cas, on utilise de préférence une silice précipitée hautement dispersible, en particulier lorsque l'invention est mise en oeuvre pour la fabrication de pneumatiques présentant une faible résistance au roulement. Comme exemples non limitatifs de telles silices hautement dispersibles préférentielles, on peut citer la silice Perkasil KS 430 de la société Akzo, la silice BV3380 de la société Degussa, les silices Zeosil 1165MP et 1115MP de la société Rhône-Poulenc, la silice Hi-Sil 2000 de la société PPG, les silices Zeopol 8741 ou 8745 de la Société Huber.
Le noir modifié, seul ou éventuellement associé à de la silice, peut également être utilisé en coupage, i.e. en mélange, avec du noir de carbone conventionnel.
De préférence, dans les compositions conformes à l'invention, le noir modifié constitue la majorité, i.e. plus de 50 % en poids, de la charge renforçante totale ; il peut avantageusement constituer la totalité de la charge renforçante.
De manière préférentielle, le taux de charge renforçante totale dans les compositions de l'invention, est compris dans un domaine allant de 20 à 300 pce, plus préférentiellement de 30 à 150 pce. l'optimum étant différent selon les applications visées : de manière connue, le niveau de renforcement attendu sur un pneumatique vélo, par exemple, est nettement inférieur à celui exigé sur un pneumatique pour véhicule de tourisme ou pour véhicule utilitaire tel que poids lourd.
Synthèse du noir modifié
Le noir de carbone modifié peut être obtenu selon le procédé qui suit:
a) - on part d'un noir de carbone de grade pneumatique; b) - on imprègne le noir de carbone de départ d'une suspension colloïdale formée par hydrolyse d'une solution d'alkoxyde d'aluminium dans un solvant alcoolique; c) - on élimine le solvant alcoolique par évaporation; d) - on traite thermiquement le noir ainsi imprégné de manière à transformer la couche alumineuse présente à sa surface en une couche adhérente d'oxyde et/ou hydroxyde d'aluminium.
Comme noir de carbone de départ conviennent tous les noirs de carbone renforçants conventionnellement utilisé dans les pneumatiques, particulièrement dans les bandes de roulement de ces pneumatiques, notamment des noirs du type HAF ("High Abrasion Furnace"), ISAF ("Intermediate Super Abrasion Furnace"), SAF ("Super Abrasion Furnace"). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200 ou 300 (grades ASTM).
De préférence, ces noirs de carbone de départ ont les caractéristiques suivantes:
- une surface BET comprise entre 20 et 200 m2/g, plus préférentiellement comprise entre 50 et 170 m2/g;
- une taille moyenne (en masse) de particules dw comprise entre 20 et 400 nm, plus préférentiellement comprise entre 30 et 200 nm.
A titre d'exemples non limitatifs de tels noirs de départ préférentiels, on citera les noirs NI 15,
N134, N234, N339, N347, N375.
Par suspension colloïdale, on entend de manière connue une suspension de phase solide dans un liquide dont la taille des objets solides est inférieure au micromètre. Pour la formation de la suspension colloïdale d'imprégnation, on dissout sous agitation et température l'alkoxyde d'aluminium dans l'alcool sélectionné, par exemple le méthanol, l'éthanol, l'(iso)propanol, les différents isomères du butanol, puis on hydrolyse le tout par addition d'eau. L'alkoxyde d'aluminium utilisé est de préférence un alkoxyde d'aluminium comportant de 1 à 6 atomes de carbone, par exemple un méthoxyde, un éthoxyde, un (iso)propoxyde ou les butoxydes d'aluminium, ou un mélange de deux ou plus de ces composés.
L'étape d'imprégnation peut être conduite à la température ambiante (20°C) ou à une température supérieure, par exemple entre 30°C et 65°C selon la nature de l'alcool ou des alcools utilisés, bien sûr inférieure à la température d'ébullition de la suspension, étant entendu que la température choisie peut être proche de cette température d'ébullition. La durée d'imprégnation est choisie suffisamment longue, de quelques minutes à quelques heures selon les cas, afin de créer des interactions physico-chimiques suffisantes entre la surface du noir de carbone et le composé à base d'aluminium.
De préférence, la suspension colloïdale d'imprégnation comporte de l'acide nitrique utilisé à la fois en tant que catalyseur d'hydrolyse de la solution d'alkoxyde et en tant qu'agent peptisant pour la suspension colloïdale. Après réaction, l'acide nitrique sera éliminé par lavage à l'eau du noir imprégné. L'élimination du solvant alcoolique, après imprégnation du noir de carbone, peut être réalisée par tout moyen approprié, par exemple par évacuation sous vide, sous agitation.
L'étape de traitement thermique est conduite de préférence sous gaz inerte, par exemple sous argon, la température de traitement étant de préférence comprise entre 100°C et 900°C, plus préférentiellement entre 150°C et 850°C. De manière générale, plus cette température de traitement est élevée, plus la formule (I) définie précédemment "se déplace" de l'hydroxyde vers l'oxyde (diminution de a et augmentation de b) ; un traitement à une température de 800- 850°C, par exemple, conduira à une couche alumineuse essentiellement constituée d'alumine (Al2O3).
II-3. Agent de couplage
Il est bien connu de l'homme du métier qu'il est nécessaire d'utiliser, pour une silice renforçante, un agent de couplage (silice/élastomère), encore appelé agent de liaison, qui a pour fonction d'assurer la liaison entre la charge blanche et l'élastomère, tout en facilitant la dispersion de cette charge blanche au sein de la matrice élastomérique.
Le noir modifié, en raison de sa couche alumineuse de surface, nécessite lui aussi l'emploi d'un tel agent de couplage pour assurer pleinement sa fonction de charge renforçante dans la composition de caoutchouc conforme à l'invention.
Par agent de "couplage" (charge/élastomère), on entend plus précisément un agent apte à établir une connexion suffisante, de nature chimique et/ou physique, entre la charge considérée et l'élastomère, tout en facilitant la dispersion de cette charge au sein de la matrice élastomérique ; un tel agent de couplage, au moins bifonctionnel, a par exemple comme formule générale simplifiée « Y-T-X », dans laquelle:
Y représente un groupe fonctionnel (fonction "Y") qui est capable de se lier physiquement et/ou chimiquement à la charge blanche, une telle liaison pouvant être établie, par exemple, entre un atome de silicium de l'agent de couplage et les groupes hydroxyle (OH) de surface de la charge (par exemple les silanols de surface lorsqu'il s'agit de silice);
X représente un groupe fonctionnel (fonction "X") capable de se lier physiquement et/ou chimiquement à l'élastomère, par exemple par l'intermédiaire d'un atome de soufre;
T représente un groupe hydrocarboné permettant de relier Y et X.
Les agents de couplage ne doivent en particulier pas être confondus avec de simples agents de recouvrement de la charge considérée qui, de mamère connue, comportent la fonction Y active vis-à-vis de la charge mais sont dépourvus de la fonction X active vis-à-vis de l'élastomère.
De tels agents de couplage, d'efficacité variable, ont été décrits dans un très grand nombre de documents ; on se reportera par exemple aux brevets US-A-3 842 111, US-A-3 873 489, US-
A-3 978 103, US-A-3 997 581, US-A-4 002 594 ou aux brevets plus récents US-A-5 580 919, US-A-5 583 245, US-A-5 663 396, US-A-5 684 171, US-A-5 684 172, US-A-5 696 197, qui décrivent en détail de tels composés connus.
On peut utiliser en fait tout agent de couplage connu pour assurer efficacement, dans les compositions de caoutchouc diénique utilisables pour la fabrication de pneumatiques, la liaison ou couplage entre silice et élastomère diénique, tels que des organosilanes, en particulier des alkoxysilanes polysulfurés comme les polysulfures, notamment les tétrasulfures, de bis(trialkoxyl(C1-C )-silylpropyl), en particulier de bis(3- triméthoxysilylpropyl) ou de bis(3-triéthoxysilylpropyl). On utilise en particulier le tétrasulfure de bis(3-triéthoxysilylpropyl), en abrégé TESPT, de formule [(C2H5θ)3Si(CH2)3S2]2; commercialisé par exemple par la société Degussa sous la dénomination Si69.
L'homme du métier saura ajuster la teneur en agent de couplage dans les compositions de l'invention, en fonction de l'application visée, de la nature du polymère mis en oeuvre, et de la quantité de noir modifié utilisé, complétée le cas échéant de toute charge blanche renforçante utilisée à titre de charge complémentaire.
De manière à tenir compte des différences de surface spécifique et de densité des charges renforçantes susceptibles d'être utilisées, ainsi que des masses molaires des agents de couplage, il est préférable de déterminer le taux optimal d'agent de couplage, pour le noir modifié, en moles par mètre carré de noir modifié, calculé à partir du rapport pondéral [agent de couplage/noir modifié], de la surface BET du noir modifié et de la masse molaire de l'agent de couplage (notée ci-après), selon la relation suivante:
(moles/m2 noir modifié) = [agent de couplage/ noir modifié] (1/BET) (MM)
Bien entendu, une relation équivalente sera appliquée par exemple à de la silice si elle est utilisée à titre de charge blanche renforçante complémentaire, pour déterminer également le taux optimal d'agent de couplage supplémentaire pour cette silice, en moles par mètre carré de cette charge blanche.
Préférentiellement, la quantité (totale) d'agent de couplage utilisée dans les compositions conformes à l'invention est comprise entre 10-7 et 10"5 moles par mètre carré de [noir de carbone modifié plus le cas échéant de charge blanche renforçante associée]. Plus préférentiellement encore, la quantité d'agent de couplage est comprise entre 5.10 '7 et 5.10 "6 moles par mètre carré de [noir de carbone modifié plus le cas échéant de charge blanche renforçante associée].
II-4. Additifs divers
Bien entendu, les compositions conformes à l'invention contiennent, outre les composés déjà décrits, tout ou partie des constituants habituellement utilisés dans les compositions de caoutchouc diénique destinées à la fabrication de pneumatiques, comme par exemple des plastifiants, des pigments, des antioxydants, des antiozonants, un système de réticulation à base soit de soufre, soit de donneurs de soufre et/ou de peroxyde et/ou de bismaléimides, des accélérateurs de vulcanisation, des huiles d'extension, etc..
Les compositions conformes à l'invention pourraient également contenir, en complément des agents de couplage décrits précédemment, des agents de recouvrement pour charge blanche, tels que par exemple des alkylalkoxysilanes, des polyols, des aminés. Ces compositions conformes à l'invention peuvent être utilisées seules ou en coupage avec toute autre composition de caoutchouc utilisable pour la fabrication de pneumatiques.
II-5. Préparation des compositions
Les compositions de caoutchouc sont préparées en mettant en oeuvre les polymères diéniques selon des techniques tout à fait connues, par exemple par travail thermomécanique en une ou deux étapes dans un mélangeur interne à palettes, suivi d'un mélangeage sur mélangeur externe.
Selon un procédé classique en une étape, on introduit par exemple dans un mélangeur interne usuel tous les constituants nécessaires à l'exception du système de vulcanisation. Le résultat de cette première étape de mélangeage est repris ensuite sur un mélangeur externe, généralement un mélangeur à cylindres, et on y ajoute alors le système de vulcanisation. Une seconde étape peut être ajoutée dans le mélangeur interne, essentiellement dans le but de faire subir au mélange un traitement thermique complémentaire.
III. EXEMPLES DE REALISATION DE L'INVENTION
III- 1. Synthèse du noir modifié
La synthèse est réalisée conformément aux indications données au paragraphe II-2 du chapitre II précédent, selon les conditions particulières qui suivent.
a) préparation de la solution d'imprégnation;
Dans un premier temps, 8,0 g d'isopropoxyde d'aluminium (Al(OCH(CH3)2)3 à 98% commercialisé par la société Sigma) sont dissous dans 200 ml d'éthanol anhydre par agitation magnétique à 500 tours/min à une température de 60°C ; au bout d'une heure, on ajoute 42,4 g d'eau déminéralisée et on maintient l'agitation à 60°C ; deux heures plus tard, on ajoute 10 ml d'acide nitrique concentré (à 53%) et on abaisse progressivement la température jusqu'à température ambiante, en laissant ainsi l'agitation pendant 12h. On obtient ainsi une suspension colloïdale par hydrolyse de la solution alcoolique d'isopropoxyde d'aluminium. b) imprégnation du noir de carbone:
40 g de noir de carbone N234 sont placés dans le ballon d'un évaporateur rotatif (Rotavapor R-124 de Bϋchi commercialisé par la société Bioblock). La température du bain est fixée à 50°C et la vitesse de rotation à 80 tours/min (temps "t" = 0). Après 55 min d'agitation (soit t=55min), on ajoute un tiers de la solution d'imprégnation, un autre tiers à t=85 min, et enfin le dernier tiers à t=l 15 min. On maintient ainsi l'agitation durant environ trois heures, puis on fait le vide (t=5h) pour évacuer l'excès de solvant alcoolique; après 30 minutes, la température du bain est fixée à 60°C et on poursuit ainsi l'agitation sous vide jusqu'à t=7h, pour une évacuation complète du solvant. Le noir de carbone ainsi imprégné est alors retiré du ballon, placé dans une étuve sous vide (200 mm de Hg) et séché à 100°C pendant une nuit. Le noir ainsi traité est ensuite extrait par l'eau durant 48 heures au Soxhlet, puis séché à nouveau dans les mêmes conditions.
c) traitement thermique:
Le noir de carbone est ensuite placé dans un four tabulaire (type Carbolite CTF 15/75 610 commercialisé par la société Osi), sous flux d'argon (200 ml/min), puis soumis au cycle thermique suivant: 30 min à 200°C, puis 1 heure à 800°C ; les rampes de montée en température sont fixées à 10°C/min.
Les caractéristiques du noir de carbone ainsi obtenu sont résumées dans le tableau 1. On note que la taille des particules dw n'est pas signifïcativement modifiée par rapport au noir de départ, mais que sa surface BET est par contre fortement augmentée, de plus de 50%. Le taux d'aluminium est élevé, d'environ 1,5%, résultat bien corrélé au taux de cendres mesuré.
D'autre part, la vitesse de désagglomération α est nettement supérieure à la limite inférieure fixée de 1.10-3 μπOs (soit 2/3 de α0). Une vitesse α de 3.1.10-3 μnr1/s doit être considérée ici comme particulièrement élevée, puisque supérieure de 100% environ à la vitesse α0 enregistrée sur une silice témoin hautement dispersible (Zeosil 1165MP).
Les figures 2 et 3 reproduisent les courbes d'évolution [ 1 /dv(t) = f(l)] de la taille des agglomérats, enregistrées au test de désagglomération aux ultrasons, respectivement pour le noir modifié et pour cette silice témoin hautement dispersible (Zeosil 1165MP), la vitesse α déterminée étant la pente de la droite [l/dv(t) =/(t)].
On voit bien sur ces figures 2 et 3 que les premiers points enregistrés ("t" variant de 0 à 30 s environ) correspondent à la mesure du diamètre initial dv[0], suivie (après mise en action de la sonde ultrasons) d'un passage progressif (ici, "t" de 30 s à 3 min environ) à un régime stable de désagglomération pendant lequel l'inverse de "dv" varie bien linéairement avec le temps "t" ; l'enregistrement des données est stoppé ici au bout de 8 minutes environ. On en déduit par un calcul élémentaire de régression linéaire, pris en charge par le calculateur du granulomètre, la vitesse de désagglomération α dans la zone de régime stable de désagglomération.
Le noir de carbone N234 de départ présente quant à lui. au même test de désagglomération aux ultrasons, une vitesse α particulièrement élevée (17.10-3 μπr s - non représenté sur les figures), ce qui était bien sûr attendu compte tenu de la très haute dispersibilité connue des noirs de carbone pour pneumatiques, de manière générale.
III-2. Préparation des compositions
Les compositions testées ci-après sont préparées de manière connue dans des mélangeurs de laboratoire, de la manière suivante : on introduit l'élastomère diénique dans un mélangeur interne rempli à 75 % et dont la température est d'environ 70°C, puis après un temps approprié de malaxage, par exemple de l'ordre de 1 minute, on ajoute tous les autres ingrédients, y compris la charge et le cas échéant l'agent de couplage associé, à l'exception du système de vulcanisation. On conduit alors un travail thermomécanique d'une durée de 5,5 minutes environ, avec une vitesse moyenne des palettes de 70 tours/min, jusqu'à obtenir une température de tombée d'environ 140°C. On récupère le mélange ainsi obtenu puis on ajoute le système de vulcanisation sur un mélangeur externe (homo-finisseur) à 30°C. La vulcanisation est effectuée à 150°C (40 min).
III-3. Essais
On compare ci-après 2 compositions de caoutchouc diénique destinées à la fabrication de pneumatiques ou de bandes de roulement pour pneumatiques. L'élastomère SBR (copolymère de styrène-butadiène) est préparé en solution et comprend 25% de styrène, 58% de motifs polybutadiène 1-2 et 23 % de motifs polybutadiène 1-4 trans.
Ces 2 compositions sont identiques aux différences près qui suivent:
- composition Nol (témoin): charge renforçante conventionnelle constituée par un noir de carbone type N234; - composition No2 (conforme à l'invention): charge renforçante constituée exclusivement par le noir de carbone N234 modifié, auquel est associé l'agent de couplage Si69 (TESPT).
L'agent de couplage Si69 a été introduit à un taux correspondant à une couverture de surface d'environ 9,6.10-7 mole/m2 de noir de carbone modifié.
Les tableaux 2 et 3 donnent successivement la formulation des différentes compositions (tableau 2 - taux des différents produits exprimés en pce), leurs propriétés avant et après cuisson à 150°C pendant 40 minutes (tableau 3).
L'étude de ces différents résultats conduit aux observations suivantes:
la valeur de plasticité Mooney apparaît plus basse sur la composition conforme à l'invention que sur la composition témoin, résultat en tout cas révélateur d'une très bonne aptitude à la mise en oeuvre à cru de la composition de l'invention; la composition conforme à l'invention présente des valeurs de modules, notamment de modules M 100 et M300 indicateurs de manière connue de la qualité de renforcement, qui sont au moins égaux sinon supérieurs à ceux obtenus sur la composition témoin;
la composition conforme à l'invention présente en outre des propriétés hystérétiques très avantageuses, comparées à celles offertes par le noir de carbone conventionnel, avec une diminution très sensible des pertes par rebond (PH), de la non- linéarité ΔG* et de tan(δ)max.
En résumé, les compositions de l'invention présentent de manière inattendue des propriétés d'hystérèse sensiblement améliorées, sans que leurs propriétés de mise en oeuvre à l'état cru et de renforcement après cuisson soient affectées.
Ces résultats laissent présager à la fois une bonne aptitude de résistance à l'usure et une résistance au roulement particulièrement basse pour des bandes de roulement de pneumatiques, tout en garantissant à ces bandes de roulement une conductivité électrique satisfaisante, suffisante pour dissiper par exemple des charges électrostatiques qui peuvent se former par frottement, en particulier lors du roulage des pneumatiques.
On pense que le procédé spécifique de préparation du noir modifié (imprégnation à froid suivie d'un traitement thermique) permet de déposer, à la surface des particules ou agrégats de noir de carbone, une couche alumineuse fine, stable, fortement adhérente et répartie de manière relativement homogène (taille moyenne des particules peu modifiée mais forte augmentation de la surface BET).
Une telle qualité de revêtement de sa charge renforçante pourrait expliquer les performances inattendues de la composition de caoutchouc selon l'invention, améliorées à la fois par rapport à des compositions renforcées de noir de carbone conventionnel (baisse de l'hystérèse) et par rapport à des compositions renforcées d'une silice précipitée même hautement dispersible (augmentation de la dispersibilité ; conductivité électrique élevée).
Les compositions de l'invention offrent ainsi une alternative intéressante à l'emploi de compositions conventionnelles chargées de noirs de carbone ou de silices hautement dispersibles, voire de noirs de carbone revêtus d'une couche siliceuse. Tableau 1
Figure imgf000022_0001
Tableau 2
Figure imgf000022_0002
( 1 ) Copolymère de butadiène styrène
(2) N- 1,3 diméthylbutyl N-phénylparaphénylènediamine
(3) Diphénylguanidine
(4) N-cyclohexyl-2-benzothiazylsulfénamide
Tableau 3
Figure imgf000022_0003

Claims

REVENDICATIONS
1. Composition de caoutchouc vulcanisable au soufre, utilisable pour la fabrication de pneumatiques, comportant au moins un élastomère diénique, une charge renforçante et un agent de couplage assurant la liaison entre la charge renforçante et l'élastomère, caractérisée en ce que ladite charge renforçante est constituée en tout ou partie d'un noir de carbone dit "modifié" ayant les caractéristiques suivantes:
- (i) il est revêtu au moins en partie d'une couche d'oxyde et/ou hydroxyde d'aluminium;
- (ii) sa surface spécifique BET est comprise entre 30 et 400 m2/g;
- (iii) sa taille moyenne (en masse) de particules, notée dw, est comprise entre 20 et 400 nm;
- (iv) sa vitesse de désagglomération, notée α, mesurée au test dit de désagglomération aux ultrasons, à 10% de puissance d'une sonde ultrasons de 600 watts, est supérieure à 1.10-3 μm-Vs.
2. Composition selon la revendication 1, caractérisée en ce que la vitesse de désagglomération α est supérieure à 1,5.10-3 μm-Vs.
3. Composition selon les revendications 1 ou 2, caractérisée en ce que le taux d'aluminium de surface du noir de carbone modifié est supérieur à 0,25% (% en masse).
4. Composition selon la revendication 3, caractérisée en ce que le taux d'aluminium de surface du noir de carbone modifié est compris entre 0,5% et 5%.
5. Composition selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le noir de carbone modifié représente plus de 50 % en poids de la charge renforçante totale.
6. Composition selon la revendication 5, caractérisée en ce que le noir de carbone modifié représente la totalité de la charge renforçante.
7. Composition selon l'une quelconque des revendications 1 à 6, caractérisée en ce qu'elle comporte, outre le noir de carbone modifié, de la silice à titre de charge blanche renforçante.
8. Composition selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la charge renforçante totale est présente à raison de 20 à 300 pce (parties en poids pour cent parties d'élastomère).
9. Composition selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la quantité d'agent de couplage est comprise entre 10"7 et 10'5 mole par mètre carré de noir de carbone modifié et le cas échéant de charge blanche renforçante associée.
10. Composition selon la revendication 9, caractérisée en ce que la quantité d'agent de couplage est comprise entre 5.10-7 et 5.10"6 mole par mètre carré de noir de carbone modifié et le cas échéant de charge blanche renforçante associée.
11. Composition selon l'une quelconque des revendications 1 à 10, caractérisée en ce que l'élastomère diénique est choisi dans le groupe constitué par les polybutadiènes, les polyisoprènes ou du caoutchouc naturel, les copolymères de butadiène-styrène, les copolymères de butadiène-isoprène, les copolymères d'isoprène-styrène, les copolymères de butadiène-styrène-isoprène, ou un mélange de deux ou plus de ces composés.
12. Composition selon la revendication 11, caractérisée en ce que l'élastomère diénique est un copolymère de butadiène-styrène préparé en solution ayant une teneur en styrène comprise entre 20% et 30 % en poids, une teneur en liaisons vinyliques de la partie butadiénique comprise entre 15% et 65%, une teneur en liaisons trans- 1,4 comprise entre 20% et 75% et une température de transition vitreuse comprise entre -20°C et -55°C, ce copolymère de butadiène-styrène étant éventuellement utilisé en mélange avec un polybutadiène possédant de préférence plus de 90% de liaisons cis-1,4.
13. Utilisation d'une composition de caoutchouc conforme à l'une quelconque des revendications 1 à 12 pour la fabrication d'articles en caoutchouc.
14. Utilisation d'une composition de caoutchouc conforme à l'une quelconque des revendications 1 à 12, pour la fabrication de pneumatiques ou de produits semi-finis en caoutchouc destinés à de tels pneumatiques, ces produits semi-finis étant choisis dans le groupe constitué les bandes de roulement, les sous-couches de bandes de roulement, les nappes sommet, les flancs, les nappes carcasse, les talons, les protecteurs, les chambres à air ou les gommes intérieures étanches pour pneumatique sans chambre.
15. Article en caoutchouc comportant une composition selon l'une quelconque des revendications 1 à 12.
16. Pneumatique comportant une composition selon l'une quelconque des revendications 1 à
12.
17. Bande de roulement de pneumatique à base d'une composition selon l'une quelconque des revendications 1 à 12.
PCT/EP1998/007679 1997-11-28 1998-11-27 Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse WO1999028380A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP98963524A EP1034215A1 (fr) 1997-11-28 1998-11-27 Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse
AU18761/99A AU1876199A (en) 1997-11-28 1998-11-27 Rubber composition for tyres, reinforced with a carbon black coated with an aluminous layer
KR1020007005783A KR20010032540A (ko) 1997-11-28 1998-11-27 알루미늄 층으로 피복된 카본 블랙이 보강된 타이어용고무 조성물
JP2000523268A JP2001525436A (ja) 1997-11-28 1998-11-27 アルミナ層で被覆されたカーボンブラックで補強したタイヤ用ゴム組成物
BR9814910-5A BR9814910A (pt) 1997-11-28 1998-11-27 Composição de borracha vulcanizável com enxofre, utilização da mesma, artigo de borracha, pneumático, e, banda de rodagem.
CA002310131A CA2310131A1 (fr) 1997-11-28 1998-11-27 Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9715130 1997-11-28
FR97/15130 1997-11-28

Publications (1)

Publication Number Publication Date
WO1999028380A1 true WO1999028380A1 (fr) 1999-06-10

Family

ID=9514035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/007679 WO1999028380A1 (fr) 1997-11-28 1998-11-27 Composition de caoutchouc pour pneumatiques, renforcee d'un noir de carbone revetu d'une couche alumineuse

Country Status (8)

Country Link
EP (1) EP1034215A1 (fr)
JP (1) JP2001525436A (fr)
KR (1) KR20010032540A (fr)
CN (1) CN1284099A (fr)
AU (1) AU1876199A (fr)
BR (1) BR9814910A (fr)
CA (1) CA2310131A1 (fr)
WO (1) WO1999028380A1 (fr)

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010149580A1 (fr) 2009-06-24 2010-12-29 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un composé acétylacétonate
EP2336231A1 (fr) 2009-12-18 2011-06-22 The Goodyear Tire & Rubber Company Composition de caoutchouc et pneu avec composant contenant une combinaison de silice à faible structure et silice à forte structure
WO2011076619A1 (fr) 2009-12-22 2011-06-30 Societe De Technologie Michelin Article notamment pneumatique avec melange de caoutchouc externe comportant un sel de lanthanide
WO2011147713A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Bandage pneumatique dont la ceinture est pourvue d'une gomme d'enrobage reduisant les bruits de roulage
WO2011147712A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
WO2011147710A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Renfort filaire composite pour pneumatique, enrobe d'un caoutchouc a propriete de barriere a l'eau amelioree
WO2011147711A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
WO2012069565A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique neige
WO2012069585A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique a adherence amelioree sur sol mouille
WO2012069567A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique
WO2012084847A1 (fr) 2010-12-23 2012-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte une resine poly(alkylene-ester)
WO2012152702A1 (fr) 2011-05-06 2012-11-15 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un sbr emulsion a haut taux de trans.
WO2012152696A1 (fr) 2011-05-06 2012-11-15 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un sbr emulsion a haut taux de trans.
WO2013041151A1 (fr) 2010-12-23 2013-03-28 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un copolymere bloc polyurethane thermoplastique
WO2013045482A1 (fr) 2011-09-26 2013-04-04 Compagnie Generale Des Etablissements Michelin Pneumatique a adherence amelioree sur sol mouille
WO2013045483A1 (fr) 2011-09-26 2013-04-04 Compagnie Generale Des Etablissements Michelin Pneumatique a adherence amelioree sur sol mouille
WO2013174709A1 (fr) 2012-05-22 2013-11-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2013189820A1 (fr) 2012-06-18 2013-12-27 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule a forte charge
WO2014016340A1 (fr) 2012-07-25 2014-01-30 Compagnie Generale Des Etablissements Michelin Pneumatique ayant une adherence sur sol mouille amelioree
WO2014075958A1 (fr) 2012-11-15 2014-05-22 Compagnie Generale Des Etablissements Michelin Bandage pneumatique avec une bande de roulement comprenant un materiau degradable a base d'alcool polyvinylique
WO2015007575A1 (fr) 2013-07-15 2015-01-22 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique
WO2015007576A1 (fr) 2013-07-15 2015-01-22 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique
WO2015007577A1 (fr) 2013-07-15 2015-01-22 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique
WO2015044225A1 (fr) 2013-09-27 2015-04-02 Compagnie Generale Des Etablissements Michelin Elastomère diénique tribloc dont le bloc central est un bloc polyéther et fonctionnalisé amine en extrémité de chaîne
WO2015052131A1 (fr) 2013-10-08 2015-04-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc pour bande de roulement comprenant une polynitrone
WO2015059271A1 (fr) 2013-10-25 2015-04-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique portant des fonctions imidazole reparties de façon aléatoire le long de la chaîne
WO2015059274A1 (fr) 2013-10-25 2015-04-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un additif compose 1,3-dipolaire portant une fonction imidazole
WO2015063161A1 (fr) 2013-10-30 2015-05-07 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié comprenant majoritairement un élastomère diénique couplé par un composé alcoxysilane portant un groupe époxyde et fonctionnalisé amine en extrémité de chaîne
WO2015091929A1 (fr) 2013-12-20 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicules destines a porter de lourdes charges
WO2015177104A1 (fr) 2014-05-23 2015-11-26 Compagnie Generale Des Etablissements Michelin Compose 1,3-dipolaire portant une fonction ester d'acide carboxylique et composition de caoutchouc le contenant
FR3021588A1 (fr) * 2014-05-27 2015-12-04 Michelin & Cie Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique et une charge conductrice
WO2015185395A1 (fr) 2014-06-05 2015-12-10 Compagnie Generale Des Etablissements Michelin Pneumatique à faible résistance au roulement
WO2015189365A1 (fr) 2014-06-13 2015-12-17 Compagnie Generale Des Etablissements Michelin Procédé de préparation d'un caoutchouc naturel
WO2016087247A1 (fr) 2014-12-02 2016-06-09 Compagnie Generale Des Etablissements Michelin Stratifié élastomère comprenant 3 couches
WO2016131704A1 (fr) 2015-02-17 2016-08-25 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un compose phenolique
EP3078634A1 (fr) 2001-08-13 2016-10-12 Rhodia Chimie Nouveau procédé de préparation de silices, silices a distribution granulométrique et/ou répartition poreuse particulières et leurs utilisations, notamment pour le renforcement de polymère
WO2016195050A1 (fr) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016195053A1 (fr) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016195052A1 (fr) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016202970A1 (fr) 2015-06-18 2016-12-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicules destines a porter de lourdes charges
WO2017001684A1 (fr) 2015-07-02 2017-01-05 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié à ip réduit et composition de caoutchouc le contenant
WO2017001683A1 (fr) 2015-07-02 2017-01-05 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié à ip réduit et composition le contenant
WO2017060395A1 (fr) 2015-10-08 2017-04-13 Compagnie Generale Des Etablissements Michelin Elastomère diénique possédant une fonction en milieu de chaîne et composition de caoutchouc le contenant
WO2017085109A1 (fr) 2015-11-17 2017-05-26 Compagnie Generale Des Etablissements Michelin Procédé de préparation d'un caoutchouc naturel stabilisé
WO2017213204A1 (fr) 2016-06-09 2017-12-14 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018007768A1 (fr) 2016-07-07 2018-01-11 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique
WO2018079802A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079803A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079800A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079804A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079801A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018110684A1 (fr) 2016-12-15 2018-06-21 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018115748A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour véhicule portant des lourdes charges comprenant une nouvelle bande de roulement
WO2018115220A1 (fr) 2016-12-22 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc renforcée
WO2018115761A1 (fr) 2016-12-22 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc avec une bonne dispersion de quantites elevees de charge inorganique renforçante
WO2018115747A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
WO2018115722A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique modifié
WO2018115758A1 (fr) 2016-12-22 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc renforcee
US10035904B2 (en) 2013-12-18 2018-07-31 Compagnie Generale Des Etablissements Michelin Bicycle tire
WO2018143223A1 (fr) 2017-01-31 2018-08-09 Compagnie Generale Des Etablissements Michelin Pneu comprenant une composition de caoutchouc
WO2018151305A1 (fr) 2017-02-20 2018-08-23 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
US10081723B2 (en) 2013-12-20 2018-09-25 Compagnie Generale Des Etablissements Michelin Tire tread comprising a thermoplastic elastomer
WO2018182042A1 (fr) 2017-03-31 2018-10-04 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
US10093750B2 (en) 2013-08-09 2018-10-09 Compagnie Generale Des Etablissements Michelin Modified diene elastomer comprising a diene elastomer coupled by an aminoalkoxysilane compound and having an amine function at the chain end, and rubber composition comprising same
WO2018189475A1 (fr) 2017-04-11 2018-10-18 Compagnie Generale Des Etablissements Michelin Élastomère diénique modifié par un groupement comprenant un atome de silicium, procédé pour sa synthèse et composition de caoutchouc le contenant
WO2018221630A1 (fr) 2017-05-31 2018-12-06 Compagnie Generale Des Etablissements Michelin Pneu comprenant une bande de roulement
WO2018224776A1 (fr) 2017-06-08 2018-12-13 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2018234701A1 (fr) 2017-06-22 2018-12-27 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
WO2019004411A1 (fr) 2017-06-30 2019-01-03 Compagnie Generale Des Etablissements Michelin Pneu comprenant une bande de roulement
US10189978B2 (en) 2013-01-22 2019-01-29 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a highly saturated diene elastomer
US10189914B2 (en) 2013-08-09 2019-01-29 Compagnie Generale Des Etablissements Michelin Coupled diene elastomer having a silanol function in the middle of the chain and having an amine function at the chain end, and rubber composition comprising same
US10202471B2 (en) 2013-10-25 2019-02-12 Compagnie Generale Des Etablissments Michelin 1,3-dipolar compound bearing an imidazole functional group
WO2019073145A1 (fr) 2017-10-09 2019-04-18 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'une bande de roulement comportant au moins un caoutchouc butyl et un copolymere a base de butadiene et de styrene
WO2019110924A1 (fr) 2017-12-06 2019-06-13 Compagnie Generale Des Etablissements Michelin Stratifié élastomère
WO2019110926A1 (fr) 2017-12-06 2019-06-13 Compagnie Generale Des Etablissements Michelin Stratifie elastomere
WO2019122750A1 (fr) 2017-12-22 2019-06-27 Compagnie Generale Des Etablissements Michelin Composé comprenant au moins deux groupements trialcoxysilyles, son utilisation à titre d'agent de fonctionnalisation d'élastomère diénique, élastomère diénique modifié et composition le contenant
US10364335B2 (en) 2012-11-29 2019-07-30 Compagnie Generale Des Etablissements Michelin Rubber composition containing a highly saturated diene elastomer
WO2020039536A1 (fr) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020039535A1 (fr) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3085954A1 (fr) 2018-09-17 2020-03-20 Compagnie Generale Des Etablissements Michelin Pneumatique avec bourrelets comprenant une composition de caoutchouc specifique
WO2020084235A1 (fr) 2018-10-23 2020-04-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020094989A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d'un élastomère diénique modifié
WO2020096027A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Article, en particulier un pneu
WO2020094990A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d'un élastomère diénique modifié
WO2020096026A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Article, en particulier pneu
WO2020094988A2 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d'un élastomère diénique modifié
US10654992B2 (en) 2014-08-29 2020-05-19 Compagnie Generale Des Establissements Michelin Rubber composition comprising silicone oil
WO2020122255A1 (fr) 2018-12-14 2020-06-18 Compagnie Generale Des Etablissements Michelin Article, en particulier pneumatique
WO2020122256A1 (fr) 2018-12-14 2020-06-18 Compagnie Generale Des Etablissements Michelin Article, en particulier pneumatique
US10711071B2 (en) 2016-01-11 2020-07-14 Compagnie Generale Des Etablissements Michelin Method for modifying a natural rubber, and modified natural rubber
US10723814B2 (en) 2015-12-22 2020-07-28 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition including a substituted diene elastomer
WO2020158695A1 (fr) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin Stratifié
WO2020158694A1 (fr) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin Article
WO2020218601A1 (fr) 2019-04-25 2020-10-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020217370A1 (fr) 2019-04-25 2020-10-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021005718A1 (fr) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin Stratifié
WO2021005720A1 (fr) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021019708A1 (fr) 2019-07-31 2021-02-04 Compagnie Generale Des Etablissements Michelin Stratifié
WO2021019709A1 (fr) 2019-07-31 2021-02-04 Compagnie Generale Des Etablissements Michelin Stratifié
FR3100811A1 (fr) 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin Copolymères d’éthylène et de 1,3-diène fonctionnels
FR3100812A1 (fr) 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin Copolymères d’éthylène et de 1,3-diène fonctionnels
WO2021166165A1 (fr) 2020-02-20 2021-08-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021166166A1 (fr) 2020-02-20 2021-08-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021193901A1 (fr) 2020-03-27 2021-09-30 Compagnie Generale Des Etablissements Michelin Article destiné à venir en contact avec le sol, en particulier un pneu
WO2022008818A1 (fr) 2020-07-07 2022-01-13 Compagnie Generale Des Etablissements Michelin Pneumatique presentant des proprietes d'endurance et de resistance au roulement ameliorees
WO2022008817A1 (fr) 2020-07-07 2022-01-13 Compagnie Generale Des Etablissements Michelin Pneumatique presentant des proprietes de resistance au roulement ameliorees
WO2022162823A1 (fr) 2021-01-28 2022-08-04 Compagnie Generale Des Etablissements Michelin Article, en particulier un pneu
WO2023041889A1 (fr) 2021-09-20 2023-03-23 Compagnie Generale Des Etablissements Michelin Procédé d'obtention par extrusion d'une composition élastomérique renforcée
US11685821B2 (en) 2018-06-15 2023-06-27 Compagnie Generale Des Etablissements Michelin Rubber composition for a tire tread
US11767417B2 (en) 2018-03-30 2023-09-26 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
FR3141179A1 (fr) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3141178A1 (fr) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024223564A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223572A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223567A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223562A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223566A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223571A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223560A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223565A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909517B2 (ja) * 2005-02-03 2012-04-04 株式会社ブリヂストン タイヤ用ゴム組成物
CA2882515C (fr) 2012-08-31 2016-10-18 Soucy Techno Inc. Compositions de caoutchouc renforcees de fibres et structures filamentaires nanometriques, et leurs utilisations
CA2925928C (fr) 2013-10-18 2018-06-19 Soucy Techno Inc. Compositions de caoutchouc et leurs utilisations
US9663640B2 (en) 2013-12-19 2017-05-30 Soucy Techno Inc. Rubber compositions and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735088A1 (fr) * 1995-03-29 1996-10-02 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc destinée à la fabrication d'enveloppes de pneumatiques à base de silices précipitées "dopées" à l'aluminium
WO1997042256A1 (fr) * 1996-05-03 1997-11-13 Cabot Corporation Compositions d'elastomere et procedes
EP0829511A1 (fr) * 1996-09-13 1998-03-18 The Goodyear Tire & Rubber Company Composition de caoutchouc et pneu avec bande de roulement à base de cette composition
WO1998042778A1 (fr) * 1997-03-27 1998-10-01 Cabot Corporation Compositions elastomeres comprenant des noirs de carbone traites avec des metaux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735088A1 (fr) * 1995-03-29 1996-10-02 Compagnie Generale Des Etablissements Michelin-Michelin & Cie Composition de caoutchouc destinée à la fabrication d'enveloppes de pneumatiques à base de silices précipitées "dopées" à l'aluminium
WO1997042256A1 (fr) * 1996-05-03 1997-11-13 Cabot Corporation Compositions d'elastomere et procedes
EP0829511A1 (fr) * 1996-09-13 1998-03-18 The Goodyear Tire & Rubber Company Composition de caoutchouc et pneu avec bande de roulement à base de cette composition
WO1998042778A1 (fr) * 1997-03-27 1998-10-01 Cabot Corporation Compositions elastomeres comprenant des noirs de carbone traites avec des metaux

Cited By (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078634A1 (fr) 2001-08-13 2016-10-12 Rhodia Chimie Nouveau procédé de préparation de silices, silices a distribution granulométrique et/ou répartition poreuse particulières et leurs utilisations, notamment pour le renforcement de polymère
WO2010149580A1 (fr) 2009-06-24 2010-12-29 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un composé acétylacétonate
EP2336231A1 (fr) 2009-12-18 2011-06-22 The Goodyear Tire & Rubber Company Composition de caoutchouc et pneu avec composant contenant une combinaison de silice à faible structure et silice à forte structure
WO2011076619A1 (fr) 2009-12-22 2011-06-30 Societe De Technologie Michelin Article notamment pneumatique avec melange de caoutchouc externe comportant un sel de lanthanide
WO2011147711A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
WO2011147710A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Renfort filaire composite pour pneumatique, enrobe d'un caoutchouc a propriete de barriere a l'eau amelioree
WO2011147712A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Bandage pneumatique dont la zone sommet est pourvue d'une couche interne reduisant les bruits de roulage
WO2011147713A1 (fr) 2010-05-27 2011-12-01 Societe De Technologie Michelin Bandage pneumatique dont la ceinture est pourvue d'une gomme d'enrobage reduisant les bruits de roulage
WO2012069565A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique neige
WO2012069585A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique a adherence amelioree sur sol mouille
WO2012069567A1 (fr) 2010-11-26 2012-05-31 Societe De Technologie Michelin Bande de roulement de pneumatique
US10160847B2 (en) 2010-11-26 2018-12-25 Compagnie Generale Des Etablissments Michelin Tyre tread
WO2012084847A1 (fr) 2010-12-23 2012-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte une resine poly(alkylene-ester)
WO2013041151A1 (fr) 2010-12-23 2013-03-28 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un copolymere bloc polyurethane thermoplastique
WO2012152696A1 (fr) 2011-05-06 2012-11-15 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un sbr emulsion a haut taux de trans.
WO2012152702A1 (fr) 2011-05-06 2012-11-15 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un sbr emulsion a haut taux de trans.
WO2013045482A1 (fr) 2011-09-26 2013-04-04 Compagnie Generale Des Etablissements Michelin Pneumatique a adherence amelioree sur sol mouille
WO2013045483A1 (fr) 2011-09-26 2013-04-04 Compagnie Generale Des Etablissements Michelin Pneumatique a adherence amelioree sur sol mouille
WO2013174709A1 (fr) 2012-05-22 2013-11-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2013189820A1 (fr) 2012-06-18 2013-12-27 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule a forte charge
WO2014016340A1 (fr) 2012-07-25 2014-01-30 Compagnie Generale Des Etablissements Michelin Pneumatique ayant une adherence sur sol mouille amelioree
WO2014075958A1 (fr) 2012-11-15 2014-05-22 Compagnie Generale Des Etablissements Michelin Bandage pneumatique avec une bande de roulement comprenant un materiau degradable a base d'alcool polyvinylique
US10364335B2 (en) 2012-11-29 2019-07-30 Compagnie Generale Des Etablissements Michelin Rubber composition containing a highly saturated diene elastomer
US10189978B2 (en) 2013-01-22 2019-01-29 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a highly saturated diene elastomer
WO2015007576A1 (fr) 2013-07-15 2015-01-22 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique
WO2015007577A1 (fr) 2013-07-15 2015-01-22 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique
WO2015007575A1 (fr) 2013-07-15 2015-01-22 Compagnie Generale Des Etablissements Michelin Bande de roulement de pneumatique
US10093750B2 (en) 2013-08-09 2018-10-09 Compagnie Generale Des Etablissements Michelin Modified diene elastomer comprising a diene elastomer coupled by an aminoalkoxysilane compound and having an amine function at the chain end, and rubber composition comprising same
US10189914B2 (en) 2013-08-09 2019-01-29 Compagnie Generale Des Etablissements Michelin Coupled diene elastomer having a silanol function in the middle of the chain and having an amine function at the chain end, and rubber composition comprising same
WO2015044225A1 (fr) 2013-09-27 2015-04-02 Compagnie Generale Des Etablissements Michelin Elastomère diénique tribloc dont le bloc central est un bloc polyéther et fonctionnalisé amine en extrémité de chaîne
WO2015052131A1 (fr) 2013-10-08 2015-04-16 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc pour bande de roulement comprenant une polynitrone
US10202471B2 (en) 2013-10-25 2019-02-12 Compagnie Generale Des Etablissments Michelin 1,3-dipolar compound bearing an imidazole functional group
US10137734B2 (en) 2013-10-25 2018-11-27 Compagnie Generale Des Etablissements Michelin Rubber composition comprising a 1,3-dipolar compound additive bearing an imidazole functional group
WO2015059271A1 (fr) 2013-10-25 2015-04-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique portant des fonctions imidazole reparties de façon aléatoire le long de la chaîne
WO2015059274A1 (fr) 2013-10-25 2015-04-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un additif compose 1,3-dipolaire portant une fonction imidazole
US10030116B2 (en) 2013-10-25 2018-07-24 Compagnie General Des Etablissements Michelin Rubber composition comprising a diene elastomer bearing imidazole functional groups randomly distributed along the chain
US11034780B2 (en) 2013-10-25 2021-06-15 Compagnie Generale Des Etablissements Michelin 1,3-dipolar compound bearing an imidazole functional group
WO2015063161A1 (fr) 2013-10-30 2015-05-07 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié comprenant majoritairement un élastomère diénique couplé par un composé alcoxysilane portant un groupe époxyde et fonctionnalisé amine en extrémité de chaîne
US10035904B2 (en) 2013-12-18 2018-07-31 Compagnie Generale Des Etablissements Michelin Bicycle tire
WO2015091929A1 (fr) 2013-12-20 2015-06-25 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicules destines a porter de lourdes charges
US10081723B2 (en) 2013-12-20 2018-09-25 Compagnie Generale Des Etablissements Michelin Tire tread comprising a thermoplastic elastomer
WO2015177104A1 (fr) 2014-05-23 2015-11-26 Compagnie Generale Des Etablissements Michelin Compose 1,3-dipolaire portant une fonction ester d'acide carboxylique et composition de caoutchouc le contenant
FR3021588A1 (fr) * 2014-05-27 2015-12-04 Michelin & Cie Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique et une charge conductrice
WO2015185395A1 (fr) 2014-06-05 2015-12-10 Compagnie Generale Des Etablissements Michelin Pneumatique à faible résistance au roulement
WO2015189365A1 (fr) 2014-06-13 2015-12-17 Compagnie Generale Des Etablissements Michelin Procédé de préparation d'un caoutchouc naturel
US10654992B2 (en) 2014-08-29 2020-05-19 Compagnie Generale Des Establissements Michelin Rubber composition comprising silicone oil
WO2016087247A1 (fr) 2014-12-02 2016-06-09 Compagnie Generale Des Etablissements Michelin Stratifié élastomère comprenant 3 couches
WO2016131704A1 (fr) 2015-02-17 2016-08-25 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement comporte un compose phenolique
WO2016195050A1 (fr) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016195053A1 (fr) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016195052A1 (fr) 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2016202970A1 (fr) 2015-06-18 2016-12-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicules destines a porter de lourdes charges
WO2017001684A1 (fr) 2015-07-02 2017-01-05 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié à ip réduit et composition de caoutchouc le contenant
WO2017001683A1 (fr) 2015-07-02 2017-01-05 Compagnie Generale Des Etablissements Michelin Elastomère diénique modifié à ip réduit et composition le contenant
WO2017060395A1 (fr) 2015-10-08 2017-04-13 Compagnie Generale Des Etablissements Michelin Elastomère diénique possédant une fonction en milieu de chaîne et composition de caoutchouc le contenant
WO2017085109A1 (fr) 2015-11-17 2017-05-26 Compagnie Generale Des Etablissements Michelin Procédé de préparation d'un caoutchouc naturel stabilisé
US10723814B2 (en) 2015-12-22 2020-07-28 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition including a substituted diene elastomer
US10711071B2 (en) 2016-01-11 2020-07-14 Compagnie Generale Des Etablissements Michelin Method for modifying a natural rubber, and modified natural rubber
WO2017213204A1 (fr) 2016-06-09 2017-12-14 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018007768A1 (fr) 2016-07-07 2018-01-11 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un coupage de caoutchoucs naturels ayant une distribution de masse moléculaire, vue en sec-mals, respectivement unimodale ou bimodale, procédé de préparation et composant de pneumatique
WO2018079803A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
US11254164B2 (en) 2016-10-31 2022-02-22 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
WO2018079801A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079802A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079800A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018079804A1 (fr) 2016-10-31 2018-05-03 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018110684A1 (fr) 2016-12-15 2018-06-21 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018115722A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère diénique modifié
WO2018115747A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
WO2018115748A1 (fr) 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour véhicule portant des lourdes charges comprenant une nouvelle bande de roulement
US11292896B2 (en) 2016-12-22 2022-04-05 Compagnie Generale Des Etablissements Michelin Reinforced rubber composition
WO2018115758A1 (fr) 2016-12-22 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc renforcee
US11492470B2 (en) 2016-12-22 2022-11-08 Compagnie Generale Des Etablissements Michelin Reinforced rubber composition
US10961374B2 (en) 2016-12-22 2021-03-30 Compagnie Generale Des Etablissements Michelin Rubber composition with a good dispersion of large amounts of reinforcing inorganic filler
WO2018115761A1 (fr) 2016-12-22 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc avec une bonne dispersion de quantites elevees de charge inorganique renforçante
WO2018115220A1 (fr) 2016-12-22 2018-06-28 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc renforcée
US11390117B2 (en) 2017-01-31 2022-07-19 Compagnie Generale Des Etablissements Michelin Tire comprising a rubber composition
WO2018143223A1 (fr) 2017-01-31 2018-08-09 Compagnie Generale Des Etablissements Michelin Pneu comprenant une composition de caoutchouc
WO2018151305A1 (fr) 2017-02-20 2018-08-23 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
US11241912B2 (en) 2017-03-21 2022-02-08 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
WO2018182042A1 (fr) 2017-03-31 2018-10-04 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement
WO2018189475A1 (fr) 2017-04-11 2018-10-18 Compagnie Generale Des Etablissements Michelin Élastomère diénique modifié par un groupement comprenant un atome de silicium, procédé pour sa synthèse et composition de caoutchouc le contenant
WO2018221630A1 (fr) 2017-05-31 2018-12-06 Compagnie Generale Des Etablissements Michelin Pneu comprenant une bande de roulement
US11724545B2 (en) 2017-05-31 2023-08-15 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
WO2018224776A1 (fr) 2017-06-08 2018-12-13 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2018234701A1 (fr) 2017-06-22 2018-12-27 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
WO2019004411A1 (fr) 2017-06-30 2019-01-03 Compagnie Generale Des Etablissements Michelin Pneu comprenant une bande de roulement
US12017481B2 (en) 2017-06-30 2024-06-25 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
WO2019073145A1 (fr) 2017-10-09 2019-04-18 Compagnie Generale Des Etablissements Michelin Pneumatique pourvu d'une bande de roulement comportant au moins un caoutchouc butyl et un copolymere a base de butadiene et de styrene
WO2019110926A1 (fr) 2017-12-06 2019-06-13 Compagnie Generale Des Etablissements Michelin Stratifie elastomere
WO2019110924A1 (fr) 2017-12-06 2019-06-13 Compagnie Generale Des Etablissements Michelin Stratifié élastomère
WO2019122750A1 (fr) 2017-12-22 2019-06-27 Compagnie Generale Des Etablissements Michelin Composé comprenant au moins deux groupements trialcoxysilyles, son utilisation à titre d'agent de fonctionnalisation d'élastomère diénique, élastomère diénique modifié et composition le contenant
US11767417B2 (en) 2018-03-30 2023-09-26 Compagnie Generale Des Etablissements Michelin Tire comprising a tread
US11685821B2 (en) 2018-06-15 2023-06-27 Compagnie Generale Des Etablissements Michelin Rubber composition for a tire tread
WO2020039535A1 (fr) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020039536A1 (fr) 2018-08-23 2020-02-27 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020058611A1 (fr) 2018-09-17 2020-03-26 Compagnie Generale Des Etablissements Michelin Pneumatique avec bourrelets comprenant une composition de caoutchouc specifique
FR3085954A1 (fr) 2018-09-17 2020-03-20 Compagnie Generale Des Etablissements Michelin Pneumatique avec bourrelets comprenant une composition de caoutchouc specifique
WO2020084235A1 (fr) 2018-10-23 2020-04-30 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020094989A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d'un élastomère diénique modifié
FR3088332A1 (fr) 2018-11-08 2020-05-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d’un élastomère diénique modifié
FR3088337A1 (fr) 2018-11-08 2020-05-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d’un élastomère diénique modifié
FR3088334A1 (fr) 2018-11-08 2020-05-15 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d’un élastomère diénique modifié
WO2020096026A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Article, en particulier pneu
WO2020096027A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Article, en particulier un pneu
WO2020094990A1 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d'un élastomère diénique modifié
WO2020094988A2 (fr) 2018-11-08 2020-05-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc à base d'un élastomère diénique modifié
WO2020122256A1 (fr) 2018-12-14 2020-06-18 Compagnie Generale Des Etablissements Michelin Article, en particulier pneumatique
WO2020122255A1 (fr) 2018-12-14 2020-06-18 Compagnie Generale Des Etablissements Michelin Article, en particulier pneumatique
WO2020158694A1 (fr) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin Article
WO2020158695A1 (fr) 2019-01-28 2020-08-06 Compagnie Generale Des Etablissements Michelin Stratifié
WO2020217370A1 (fr) 2019-04-25 2020-10-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020218601A1 (fr) 2019-04-25 2020-10-29 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
US11999854B2 (en) 2019-04-25 2024-06-04 Compagnie Generale Des Etablissements Michelin Rubber composition
WO2021005720A1 (fr) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021005718A1 (fr) 2019-07-09 2021-01-14 Compagnie Generale Des Etablissements Michelin Stratifié
WO2021019709A1 (fr) 2019-07-31 2021-02-04 Compagnie Generale Des Etablissements Michelin Stratifié
WO2021019708A1 (fr) 2019-07-31 2021-02-04 Compagnie Generale Des Etablissements Michelin Stratifié
WO2021053294A1 (fr) 2019-09-18 2021-03-25 Compagnie Generale Des Etablissements Michelin Copolymeres d'ethylene et de 1,3-diene fonctionnels
WO2021053295A1 (fr) 2019-09-18 2021-03-25 Compagnie Generale Des Etablissements Michelin Copolymeres d'ethylene et de 1,3-diene fonctionnels
FR3100812A1 (fr) 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin Copolymères d’éthylène et de 1,3-diène fonctionnels
FR3100811A1 (fr) 2019-09-18 2021-03-19 Compagnie Generale Des Etablissements Michelin Copolymères d’éthylène et de 1,3-diène fonctionnels
WO2021166165A1 (fr) 2020-02-20 2021-08-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021166166A1 (fr) 2020-02-20 2021-08-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2021193901A1 (fr) 2020-03-27 2021-09-30 Compagnie Generale Des Etablissements Michelin Article destiné à venir en contact avec le sol, en particulier un pneu
WO2022008817A1 (fr) 2020-07-07 2022-01-13 Compagnie Generale Des Etablissements Michelin Pneumatique presentant des proprietes de resistance au roulement ameliorees
FR3112310A1 (fr) 2020-07-07 2022-01-14 Compagnie Generale Des Etablissements Michelin Pneumatique presentant des proprietes de resistance au roulement ameliorees
WO2022008818A1 (fr) 2020-07-07 2022-01-13 Compagnie Generale Des Etablissements Michelin Pneumatique presentant des proprietes d'endurance et de resistance au roulement ameliorees
FR3112309A1 (fr) 2020-07-07 2022-01-14 Compagnie Generale Des Etablissements Michelin Pneumatique presentant des proprietes d’endurance et de resistance au roulement ameliorees
WO2022162823A1 (fr) 2021-01-28 2022-08-04 Compagnie Generale Des Etablissements Michelin Article, en particulier un pneu
FR3127223A1 (fr) 2021-09-20 2023-03-24 Compagnie Generale Des Etablissements Michelin Procédé d’obtention par extrusion d’une composition élastomérique renforcée.
WO2023041889A1 (fr) 2021-09-20 2023-03-23 Compagnie Generale Des Etablissements Michelin Procédé d'obtention par extrusion d'une composition élastomérique renforcée
WO2024088776A1 (fr) 2022-10-25 2024-05-02 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024088772A1 (fr) 2022-10-25 2024-05-02 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3141178A1 (fr) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3141179A1 (fr) 2022-10-25 2024-04-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2024223562A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223572A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223567A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223564A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223566A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223571A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223560A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
WO2024223565A1 (fr) 2023-04-27 2024-10-31 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d'endurance ameliorees
FR3148167A1 (fr) 2023-04-27 2024-11-01 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d’endurance ameliorees
FR3148166A1 (fr) 2023-04-27 2024-11-01 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d’endurance ameliorees
FR3148165A1 (fr) 2023-04-27 2024-11-01 Compagnie Generale Des Etablissements Michelin Pneumatique dont la bande de roulement presente des proprietes d’endurance ameliorees

Also Published As

Publication number Publication date
AU1876199A (en) 1999-06-16
JP2001525436A (ja) 2001-12-11
KR20010032540A (ko) 2001-04-25
BR9814910A (pt) 2000-10-03
CA2310131A1 (fr) 1999-06-10
CN1284099A (zh) 2001-02-14
EP1034215A1 (fr) 2000-09-13

Similar Documents

Publication Publication Date Title
EP1034215A1 (fr) Composition de caoutchouc pour pneumatiques, renforcee d&#39;un noir de carbone revetu d&#39;une couche alumineuse
EP1595847B1 (fr) Charge alumineuse renforcante et composition de caoutchouc comportant une telle charge
EP1912802B1 (fr) Composition de caoutchouc pour pneumatique renforcee de plaquettes d hydroxyde de magnesium
EP1576043B1 (fr) Composition de caoutchouc pour pneumatique a base d un aluminosilicate renforcant
EP1360227B1 (fr) Composition de caoutchouc a base d&#39;elastomere dienique et d&#39;un carbure de silicium renforcant
EP1114093B1 (fr) Composition de caoutchouc pour pneumatique, a base d&#39;elastomere dienique et d&#39;un oxyde de titane renfor ant
EP1765924B1 (fr) Composition de caoutchouc pour pneumatique a base d&#39;un hydroxyde metallique renforçant
EP1423459B1 (fr) Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
EP2268491B1 (fr) Composition de caoutchouc dienique pour pneumatique comprenant une silice en tant que charge renforcante
WO2000073373A1 (fr) Composition de caoutchouc pour pneumatique, a base d&#39;elastomere dienique et d&#39;un oxyde de titane renforcant
FR2841560A1 (fr) Composition de caoutchouc a base d&#39;elastomere dienique et d&#39;un nitrure de silicium renforcant
EP1404755A1 (fr) Bande de roulement pour pneumatique renforcee d&#39;une silice a tres basse surface specifique
EP3317346B1 (fr) Composition de caoutchouc comprénant une silice de très haute surface spécifique et une résine hydrocarbonée de faible température de transition vitreuse
EP1034222B1 (fr) Noir de carbone revetu d&#39;une couche alumineuse et procede pour l&#39;obtenir
CA2875626C (fr) Composition elastomerique presentant une conductivite thermique amelioree
WO2014147160A2 (fr) Composition de caoutchouc comportant des particules hybrides

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98813247.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2310131

Country of ref document: CA

Ref document number: 2310131

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998963524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007005783

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09580279

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998963524

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007005783

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998963524

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020007005783

Country of ref document: KR