WO1998032247A1 - Systeme de transmission d'impulsions optiques, procede de transmission d'impulsions optiques, et procede de detection d'impulsions optiques - Google Patents

Systeme de transmission d'impulsions optiques, procede de transmission d'impulsions optiques, et procede de detection d'impulsions optiques Download PDF

Info

Publication number
WO1998032247A1
WO1998032247A1 PCT/JP1998/000246 JP9800246W WO9832247A1 WO 1998032247 A1 WO1998032247 A1 WO 1998032247A1 JP 9800246 W JP9800246 W JP 9800246W WO 9832247 A1 WO9832247 A1 WO 9832247A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
timing
pulse
rising
falling
Prior art date
Application number
PCT/JP1998/000246
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Okayasu
Nobuhito Kishi
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE69835259T priority Critical patent/DE69835259T8/de
Priority to EP98900703A priority patent/EP0895368B1/en
Priority to US09/155,163 priority patent/US6381054B1/en
Priority to JP53412598A priority patent/JP3632031B2/ja
Priority to KR1019980707426A priority patent/KR100328618B1/ko
Publication of WO1998032247A1 publication Critical patent/WO1998032247A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver

Definitions

  • the present invention relates to an optical pulse transmission system and an optical pulse transmission method capable of converting an electric signal pulse into an optical pulse and transmitting the pulse at a high speed. Further, the present invention provides a waveform conversion method that is useful when converting an electric signal into an optical pulse on the transmission side, a light intensity modulation device that is useful when applying light, and a reception device. The present invention relates to an optical pulse detection method that is useful when detecting transmitted optical pulses.
  • a semiconductor device tester (generally called an IC tester) for testing various semiconductor devices, including semiconductor integrated circuits (ICs), is transported to test the semiconductor devices, and then tested.
  • a semiconductor device transfer processor (generally called a handler) is connected, which classifies the tested semiconductor devices based on the results.
  • a semiconductor device test device connected to a semiconductor device transfer processing device (hereinafter referred to as a handler) has a test head for applying a test signal of a predetermined pattern to a semiconductor device under test (generally called a DUT). It is separated from the main body of the semiconductor device tester and placed in the test section of the handler.
  • the test head and the test apparatus main body are connected by an electric signal transmission line such as a cable, and a test signal of a predetermined pattern is transmitted from the test apparatus main body side to the test head side through the electric signal transmission path.
  • the test signal is supplied to the semiconductor device under test through the socket mounted on the test head.
  • a response signal from the semiconductor device under test is transmitted from the test head side to the test apparatus main body side through the electric signal transmission path, and the electrical characteristics of the semiconductor device are measured.
  • the transmitting side is equipped with a laser diode capable of high-speed light intensity modulation as a light emitting element
  • the receiving side is equipped with a photodiode with a fast response speed, and has a configuration using optical fiber as a transmission medium.
  • the optical pulse output from the laser diode on the transmitting side is transmitted to the receiving side through an optical fiber, and the optical pulse transmitted by the photodiode is converted into an electric signal.
  • the optical transmission system includes an optical pulse transmitting device 101, an optical pulse receiving device 102, and an optical transmission line 1 such as an optical fiber for coupling between the transmitting device 101 and the receiving device 102.
  • an optical pulse transmitting device 101 includes an optical pulse transmitting device 101, an optical pulse receiving device 102, and an optical transmission line 1 such as an optical fiber for coupling between the transmitting device 101 and the receiving device 102.
  • an optical transmission line 1 such as an optical fiber for coupling between the transmitting device 101 and the receiving device 102.
  • the optical pulse transmitting device 101 has a main circuit 103 for outputting an electric pulse signal to be transmitted to the receiving device side, and an input terminal connected to an output terminal 103 A of the main circuit 103.
  • the light emitting element 105 is a driving circuit 104.
  • the optical pulse is emitted by an electric pulse signal provided from the optical pulse generator, and the optical pulse is transmitted to the optical transmission line 109 via the optical connector 109A. Transmitted to device 102.
  • the optical pulse receiving device 102 includes a light receiving element 106 such as a photodiode, a detection circuit 107 connected to the light receiving element 106 with an input terminal force s ′, and an output of the detection circuit 107.
  • a main circuit 108 having an input terminal connected to the terminal, and an optical pulse transmitted through the optical transmission line 109 is input to the light receiving element 106 via the optical connector 109B.
  • the light-receiving element 106 converts the received light pulse into an electric pulse signal and sends it to the detection circuit 107.
  • the detection circuit (generally constituted by a current-to-voltage conversion amplifier) 107 receives the supplied electric pulse The signal is taken out and given to the main circuit 108.
  • the main circuit 108 executes various processes based on the input electric pulse signal.
  • a laser diode which is used as a light emitting element 105, has a disadvantage that the amount of light emitted from a laser diode fluctuates due to a change in temperature, as is well known.
  • Figure 24 shows the injection current versus output optical power characteristics of the laser diode. Curve A shown in Fig. 24 is the injection current vs. output optical power characteristic at temperature T1 (° C), and curve B is the injection current vs output light at temperature T2 (° C) (TKT2). Shows power characteristics.
  • the current values I 0N1 and I 0N2 that reach the light-emitting state fluctuate depending on the ambient temperature.
  • the temperature of the light emitting element 105 becomes Tl (°) as shown in FIG.
  • the optical pulse of OP1 is output, and in the case of the temperature T2 (° C), the optical pulse OP2 is output.
  • the optical pulse ⁇ P 1 and the optical pulse OP 2 are received by the optical pulse receiver 102, the reception of the optical pulse is detected according to the magnitude of the peak value of the received signal as shown in FIG. ⁇ t 1 and ⁇ t 2 force s occur in the timing of the optical pulse waveform that crosses the threshold voltage EC. That is, the temperature fluctuation causes jitter, which causes an inconvenience s to be transmitted to the receiving apparatus 102.
  • the above-described optical transmission system is applied to, for example, a semiconductor device testing and testing apparatus.
  • the test head equipped with the socket is separate from the test apparatus main body. Is configured.
  • the test head includes a dryno for applying a test signal of a predetermined pattern to the semiconductor device under test, a comparator for receiving a response output signal of the semiconductor device under test and determining a logic level, and Interface operation.
  • a number of signal transmission paths are provided between the test apparatus main body and the test head.
  • the optical transmission line 109 requires multiple channels.
  • the thus constructed a system to receive Professor multi-channel optical signals by the optical transmission path of the multi-channel resulting jitter force s in pulses transmitted by the temperature variation, further variations force the jitter amount for each channel 5 If this occurs, a timing error will occur between the optical signals transmitted through the transmission paths of each channel, and due to the occurrence of this timing error, the semiconductor device (IC) test will be performed normally. The inconvenience of being unable to do so occurs.
  • FIG. 26 shows an example of an optical intensity modulator used in the above optical transmission system.
  • the optical intensity modulator includes an input comparator 200 that receives a signal voltage of a digital input signal (electric pulse signal) and a threshold voltage and compares these voltages, and a comparison between the input comparator 200 and the input comparator 200. It has a current switch circuit 201 that turns on and off according to the result, and a semiconductor laser 202 driven based on a current waveform generated by an on-off switch of the current switch circuit 201.
  • the current switch circuit 201 includes a pair of transistors TR 1 and TR 2 to which an emitter is commonly connected, and a pair of transistors 203 and 205 to which a base is commonly connected. The collectors of the pair of transistors TR 1 and TR 2 are connected to corresponding terminals of the semiconductor laser 202, respectively, and the commonly connected emitters are connected to the collector of the transistor 203.
  • the right transistor TR2 in the drawing of the pair of transistors TR1 and TR2 connected to the emitter constituting the current switch circuit 201 is turned on in advance,
  • the current controlled by the transistor 203 is injected into the semiconductor laser 202, and a level of optical output corresponding to the magnitude of the injected current is obtained from the semiconductor laser 202.
  • the semiconductor laser 202 was driven.
  • the DC noise current required for operation is controlled by a transistor 204 whose collector is connected to the current injection terminal of the semiconductor laser 202.
  • an optical transmission system that transmits the optical pulse at high speed can be realized.
  • pulses having a large number of periods are mixed, and furthermore, when optical modulation is performed, it is very difficult. High timing accuracy is required. Therefore, when the above-described optical transmission system is applied to a semiconductor device test apparatus, the following problems may occur.
  • the level of the light intensity is unstable (the fluctuation force of the f & Jl wave component is large s ). Therefore, as shown in the lower part of Fig. 27, the binary light with a fixed discrimination level at the receiving side is used. If the signal is identified, the data (0, 1) and timing will have errors as shown in the figure.
  • the upper waveform in FIG. 27 shows the electric pulse signal to be transmitted on the transmitting side.
  • the rise time (emission delay time) of a light-emitting element such as a semiconductor laser changes depending on the temperature of the element and generally varies depending on the element
  • the light-emission delay time depends on the temperature change or between elements. The difference shown in Fig. 28 occurs. This difference in the light emission delay time causes the above timing error.
  • temperature control is performed to keep the temperature of the light emitting element constant, or the output of the light emitting element is kept at a constant level by monitoring the light intensity ( The power to be controlled in such a way as to stabilize)
  • the proposed power which requires a large number of transmission lines, such as a semiconductor device test equipment, because the transmission module becomes expensive in any solution.
  • stabilization of light intensity is difficult to achieve when transmitting light pulses at high speed.
  • timing and data errors can be reduced relatively easily.
  • the discrimination level is shifted to the offset data value, resulting in a timing error.
  • the rising and falling edges of the binary electric signal are detected, and a pulse signal having an inverted polarity is generated following the pulse signal corresponding to the detection of each edge. Pulse signal of positive polarity when the rising edge is detected Then, a negative pulse signal with inverted polarity is generated to form a pair of pulses with inverted polarities.When a falling edge is detected, a negative pulse signal is generated followed by a positive pulse signal with inverted polarity to generate polarities with each other.
  • a method is also proposed in which a pair of inverted pulses is used, and a semiconductor laser is driven based on these polarity-reversed pulse pairs to generate an optical noise pair that also reverses polarity in the same way and transmits the pair to the receiving side. Have been.
  • the transmitted optical pulse pair is an optical signal that indicates the rising and falling timings of the binary electrical signal to be transmitted.
  • the rise and fall timing can be identified, and the original binary electrical signal can be reproduced. Therefore, for example, as in the case of transmitting a signal between the test apparatus main body and the test head in a semiconductor device test apparatus, signals having a large number of cycles are mixed, and the data value of the binary signal is one value (0 or 1).
  • the receiving side only receives a pair of optical pulses whose polarities are inverted as the timing signals for the rise and fall, so that the discrimination level is one of the data values. There is no error of data value. It is also possible to accurately identify DC-like data values that have been fixed for a long time.
  • Figure 32 shows an example of a conventional drive circuit that generates a pair of screws and drives a semiconductor laser. .
  • the drive circuit includes an OR (OR) circuit 300 to which a binary electric signal to be transmitted is input to one input terminal, and a first inversion for inverting the polarity of the binary electric signal to be transmitted.
  • the circuit (inverter) 301 and the output signal from the inverting circuit 301 are delayed by a predetermined time so that the other input terminal of the OR circuit 300 and the AND circuit 303
  • a second delay circuit 305 for delaying the output signal of 304 by a predetermined time and supplying it to the other input terminal of the AND circuit 303.
  • the polarity of the output signals of the OR circuit 300 and the AND circuit 303 is inverted, It is supplied to the body laser 312.
  • a positive logic pulse waveform (d) is obtained from the rising and falling edges (a) to (c) of the input binary electric signal.
  • negative logic is a pulse waveform (e) power generation, these pulse waveforms mosquito 3 ⁇ 4 b calculated by the polarity inversion pulse pair polarity is reversed each other (f) force? it forces generated? easily understood.
  • the semiconductor laser 312 is driven on the basis of the polarity inversion pulse pair (f), and an optical node whose polarity is alternately inverted as shown in the lower part of FIG. Lus pairs will be generated.
  • a positive logic pulse waveform (d) and a negative logic pulse waveform (e) generated from the rising and falling edges (a) to (c) of the binary input electric signal are added to generate a polarity inversion pulse.
  • the pair (f) is generated, the polarity inversion portion of the polarity inversion pulse pair becomes a joint between two pulse waveforms of a positive logic pulse waveform (d) and a negative logic pulse waveform (e).
  • the polarity inversion part of the polarity inversion pulse pair requiring high accuracy may become a discontinuous edge, and the timing accuracy may be degraded.
  • a first object of the present invention is to provide an optical transmission system and an optical transmission method that overcome the above-mentioned problems of the prior art.
  • a second object of the present invention is to provide an optical transmission system and an optical transmission method capable of high-speed optical transmission of a signal having a high timing accuracy and a signal having an indeterminate periodic force and having a DC component with high accuracy. It is to be.
  • a third object of the present invention is to provide a semiconductor noise testing device to which the above optical transmission system or optical transmission method is applied.
  • a fourth object of the present invention is to provide an optical pulse signal transmission method in which a signal transmitted to a receiving side does not generate a jitter force s even if there is a temperature fluctuation.
  • a fifth object of the present invention is to provide an optical pulse detection method to which the above optical pulse signal transmission method is applied.
  • a sixth object of the present invention is to provide a transmission waveform conversion method that prevents a polarity inversion section of a pair of polarity inversion pulses whose polarities are inverted from each other from becoming discontinuous edges.
  • a seventh object of the present invention is not polarity inversion of the polarity inversion pulse pair inverting polarity power s' each other a discontinuous edge, and is to provide Hisage high light intensity modulation device of timing accuracy.
  • An eighth object of the present invention is to provide an optical transmission system and a semiconductor device test device using the light intensity modulator.
  • first and second edge detecting means for detecting a rising edge and a falling edge of a signal waveform to be transmitted, respectively, on a transmitting side; Polarity reversal, in which flies are reversed from each other at the rising edge detection timing by the edge detection means.
  • a first pulse generator for generating a first transmission pulse signal composed of a pair of pulses, and a polarity inversion pulse pair that inverts each other at a falling edge detection timing by the second edge detection means.
  • Second transmission pulse generation means for generating a second transmission pulse signal comprising: a first light intensity modulation means for generating a first light intensity modulation signal based on the first transmission pulse signal And a second light intensity modulating means for generating a second light intensity modulated signal based on the second transmission pulse signal, wherein the receiving side receives the first light intensity modulated signal.
  • a first AC-coupled receiving means for obtaining a first received signal from which only the AC component is extracted, and a second receiving means for receiving the second light intensity modulated signal and extracting only the AC component
  • a second AC-coupled receiving means for obtaining a signal
  • a first identification unit that identifies a rising timing from the first received signal
  • a second identification unit that identifies a falling timing from the second reception signal
  • an optical transmission system comprising signal reproducing means for reproducing a rising edge and a falling edge relating to the waveform of the signal to be transmitted based on the falling timing.
  • the first identification means identifies a timing at which the polarity of the first received signal is inverted as a rising timing, and the second identification means sets a timing at which the polarity of the second received signal is inverted. Identify as falling timing.
  • the first identification means includes a rise identification reference level serving as a reference for rise timing identification, and a rise giving a rise timing identification operation start timing.
  • the rising force s ′ of the first reception signal is set to an operation state for a certain period of time from a point in time when the signal crosses the rising discrimination start level.
  • the time when the received signal crosses the rising identification reference level is identified as rising timing
  • the second identification means includes a falling identification reference level serving as a reference for falling timing identification, and identification of falling timing.
  • the fall discrimination start level providing an operation start timing, it is only the operating state falling force? constant from the time of crossing the falling discrimination start level time of the second reception signal, the operating state During this time, the time when the second received signal crosses the falling identification reference level is identified as falling timing.
  • An asynchronous SR flip-flop configured to set a rising timing identified by the first identification unit as a set signal, and set a falling timing identified by the second identification unit as a reset signal; It is composed of a circuit.
  • first and second edge detecting means for respectively detecting a rising edge and a falling edge from a signal waveform to be transmitted, and the first edge detecting means
  • a first transmission pulse generating means for generating a first transmission pulse signal composed of a pair of polarity inversion pulses inverting each other at a rising edge detection timing due to the rising edge detection timing, and a falling edge by the second edge detection means.
  • a second transmission pulse generating means, and a light intensity modulation means for generating a ⁇ degree-variable i-word based on the first and second transmission signals.
  • the light Coupling receiving means for receiving a degree-modulated signal and obtaining a received signal by extracting only the AC component thereof; and the first and second transmission pulses based on the polarity inversion relationship from the received signal.
  • a discriminating means for discriminating a signal related to the signal, a rising timing and a falling timing, and a rising edge and a rising edge related to the waveform of the signal to be transmitted based on the rising timing and the falling timing.
  • An optical transmission system having signal reproducing means for reproducing a falling edge is provided.
  • the identification means relates to the first transmission pulse signal of the reception signal
  • a first identification circuit that identifies a timing at which the polarity of the signal is inverted from positive polarity to negative polarity as a rising timing; and a polarity force of a signal related to the second transmission pulse signal among the received signals.
  • a second discriminating circuit for discriminating the timing of inversion from positive to negative as falling timing.
  • the rising edge is determined based on an identification reference level serving as a reference for timing identification, and a rising identification starting level giving a timing for identifying a rising timing and a falling identification starting level giving a timing for identifying a falling timing.
  • the first identification means is set in an operation state for a certain time, and at the same time, the second identification means is activated.
  • the received signal crosses the identification reference level during the operation state and the first identification means is in the operation disabled state, it is identified as rising timing, and when the falling timing is identified, the reception signal is identified.
  • the second discriminating means operates for a certain period of time.
  • the first discrimination means is disabled while the first discrimination means is operating and the first discrimination means falls when the received signal crosses the discrimination reference level while the first discrimination means is operating. Identify as timing.
  • the signal reproducing means is constituted by an asynchronous SR flip-flop circuit which uses the rising timing and the falling timing identified by the identifying means as a set signal and a reset signal, respectively.
  • the optical transmission system according to any one of claims 1 to 8, a test apparatus main body for transmitting a binary signal, and receiving the binary signal.
  • a semiconductor device test apparatus is provided, wherein the test head is connected by an optical fiber, and optical transmission using the optical transmission system is performed between the test apparatus main body and the test head.
  • a rising edge and a falling edge of a signal to be transmitted are detected, and a timing signal indicating the rising timing and the falling timing is detected at the edge detection timing.
  • An optical transmission method having a receiving step of reproducing a rising edge and a falling edge related to a signal waveform is provided.
  • the polar forces? Mutually inverted as a boundary a first step, the rising edge detection timing for detecting each rise edge ⁇ Pi elevational under rising edge of the signal waveform to be transmitted
  • a first pulse signal for transmission composed of a pair of polarity inversion pulses is generated, and the polarity is inverted with respect to the polarity at the falling edge detection timing.
  • Generating a second transmission pulse signal composed of a pulse pair generating a first light intensity modulation signal based on the first transmission pulse signal, and generating the second transmission pulse signal.
  • the rising timing and the falling timing in the fifth step are identified by the timing at which the polarity of the first reception signal is inverted as the rising timing, and the timing at which the polarity of the second reception signal is inverted is the falling timing. Perform by identifying as. .
  • the first reception signal is determined based on a rising identification reference level serving as a reference of the rising timing identification, and a rising identification start level giving timing to start the identification operation of the rising timing.
  • the rising force s is identified as the rising timing when the first received signal crosses the rising identification reference level within a predetermined time from the time when the rising identification starting level is crossed, and the falling timing is identified.
  • the falling edge of the second reception signal is determined based on a falling edge identification reference level serving as a reference for falling edge timing identification and a falling edge identification start level giving a falling edge identification operation start timing.
  • a falling edge identification reference level serving as a reference for falling edge timing identification
  • a falling edge identification start level giving a falling edge identification operation start timing.
  • a first transmission pulse signal composed of an inverted pulse pair is generated, and the first transmission pulse signal and the first transmission pulse signal have a polarity inverted from each other with respect to the falling edge detection timing. Polarity reversal, in which are reversed.
  • a third step of transmitting the above signal a fourth step of receiving the light intensity modulated signal, and obtaining a received signal obtained by extracting only the AC component thereof, and In addition to distinguishing between the signals related to the first and second transmission pulse signals, a rising timing and a falling timing are identified, and the signal to be transmitted is determined based on the identified rising and falling timings.
  • a fifth step of reproducing a rising edge and a falling edge related to a waveform is provided.
  • the rising timing and the falling timing in the fifth step are identified as rising timing when the polarity of a signal related to the first transmission pulse signal in the received signal is inverted from positive to negative.
  • the timing at which the polarity of the signal related to the second transmission pulse signal is inverted from the negative polarity to the positive polarity is identified as the fall timing.
  • the rising edge is determined based on an identification reference level serving as a reference for timing identification, a rising identification start level that gives rise timing identification operation start timing, and a fall identification start level that gives fall timing identification operation start timing.
  • the rising timing of the received signal 5 ' is set so that the rising timing is identified only for a certain period of time from when the level crosses the rising identification start level, and the falling timing is identified.
  • the received signal power 5 'crosses the identification reference level within this time it is identified as rising timing, and when the falling timing is identified, Falling force 'The falling timing is identified for a certain period of time from the point of crossing the falling identification start level, and at the same time, the rising timing is not identified.
  • the point in time when the signal strength s crosses the identification reference level is identified as the fall timing.
  • an electric pulse is given to the light emitting element provided on the transmitting side, the light emitting element emits an optical pulse by the electric pulse, and the optical pulse is transmitted to the receiving side through the optical transmission path. Then, in a light pulse transmission method in which the light is converted into an electric signal by the light receiving element provided on the receiving side and the electric pulse is captured as a received signal, the electric signal applied to the light emitting element on the transmitting side is reduced.
  • an optical pulse transmission method characterized by a positive / negative symmetrical waveform signal that changes positively and negatively symmetrically with respect to a DC bias current to maintain an average value of light on an optical transmission line at a constant value.
  • the detection point of the positive / negative symmetric waveform signal received on the receiving side is defined as a zero crossing point crossing the bias current value.
  • an electric pulse is applied to the light emitting element provided on the transmitting side, the light emitting element emits a light pulse by the electric pulse, and the optical pulse is transmitted to the receiving side through the optical transmission path. Then, in an optical pulse transmission method in which the light pulse is converted into an electric pulse by a light receiving element provided on the receiving side and the electric pulse is taken in as a received signal, the electric power and the signal given to the light emitting element on the transmitting side are transmitted to the front edge side and On both sides of the trailing edge, a positive / negative symmetrical waveform signal that changes positively and negatively symmetrically around the DC bias current value.
  • the optical pulse transmission method is characterized in that the optical pulse transmission method is maintained.
  • the reception detection point on the reception side is defined by one of the zero-cross points of the positive and negative symmetric waveform signals generated on the leading edge side and the trailing edge side.
  • a smoothing circuit for generating a DC voltage corresponding to the DC bias current value is provided on the receiving side, and the DC voltage generated by the smoothing circuit is supplied as a reference voltage of a voltage comparator having hysteresis characteristics. A potential change that exceeds the hysteresis width of the hysteresis characteristic around the voltage is detected as a received signal and output from the voltage comparator.
  • the digital input signal A transmission waveform conversion method comprising a pair of polarity inversion pulses whose polarities are inverted with each other at a timing of a rising edge or a falling edge, wherein the first digital signal has a waveform equal to the input signal from the digital input signal.
  • a transmission waveform conversion method characterized in that a polarity inversion pulse pair in which the polarities are inverted with each other is generated.
  • the driving means comprises: A first current switch means for forming a first current waveform having a waveform equal to the first waveform, and a delay for a predetermined time with respect to the first waveform, the amplitude being twice the first waveform, and a waveform A second current switch means for forming a second current waveform having a negative logic relationship with respect to the digital input signal; and a delay for a predetermined time with respect to the second waveform, Third current switching means for forming a third current waveform having the same waveform as the first current waveform, wherein the light emitting element is driven by a current waveform obtained by adding the first to third current waveforms A light intensity modulator is provided.
  • Each of the first to third current switch means includes a first transistor having a base connected to an inverting input of the digital input signal, and a second transistor having a base connected to an input force s of the digital input signal. and a transistor, these Emitta force of the first and second transistors? are connected in common to a current source, and the collector of the first transistor constituting the first and third current switching means, wherein The collector of the second transistor constituting the second current switch means is commonly connected to a power supply line to form a first output, and the second transistor constituting the first and third current switch means A second output is formed by being connected in common with the collector of the first transistor and the collector of the first transistor that constitutes the second current switch means.
  • the switch means is arranged such that the current source supplies twice as much current as the current sources of the other current switch means.
  • the second current switch means comprises an input of a collector of the first transistor; A first delay circuit is provided on the line, a second delay circuit is provided on an input line of a collector of the second transistor, and the third current switch means includes an input line of a collector of the first transistor.
  • the first delay circuit and the third delay circuit are provided in series, and the second delay circuit and the second delay circuit are provided in series on the input line of the collector of the second transistor.
  • the current sources of the first to third current switch means each have a current adjusting resistance, and the current sources of the first and third current switch means have the same resistance value of the current adjusting resistance. 2 are 1 and so as to set half the resistance value of the current regulation resistor current source resistance force s other current switching means of the current regulating resistor of the current source of the current switching means.
  • the transmitting side includes the optical intensity modulator according to any one of claims 23 to 26, and the receiving side includes the optical intensity modulator.
  • An AC-coupled receiving means for receiving a signal light-intensity-modulated by the modulation device and obtaining a received signal obtained by extracting only an AC component thereof; and provided an optical transmission system force s; and a signal reproducing means for reproducing the rising Taiminku and falling Ti timing of the input signal.
  • the test apparatus main body and the test head are connected by an optical fiber, and the test apparatus main body side includes any one of claims 23 to 26.
  • a semiconductor device test apparatus comprising: an AC coupling receiving unit; and a signal reproducing unit that reproduces a rising timing and a falling timing of a digital input signal before transmission based on a relationship that the polarity is inverted from the received signal.
  • the test apparatus main body and the test head are connected by an optical fiber, and the test head side is provided with any one of claims 23 to 26
  • Coupling receiving means, and the relationship that the polarity is inverted from the received signal Based on, it is provided a semiconductor device testing apparatus force s; and a signal reproducing means for reproducing the rising timing and falling data Imingu digital input signal before transmission. .
  • a bias current having a constant value even when there is no signal and having a value larger than a threshold value for giving a light emission start point of the light emitting element is applied to the light emitting element, and the light emitting element emits light with a constant light emission amount.
  • a pulse having a polarity opposite to the polarity of the pulse to be transmitted is applied to generate a positive / negative symmetric waveform signal that swings symmetrically in the positive and negative directions around the bias current, and light is emitted by the positive / negative symmetric waveform signal.
  • the present invention also proposes an optical pulse detection method in which ⁇ ⁇ corresponding to a bias current transmitted from the transmission side is used as a signal detection threshold on the reception side. Therefore, by employing the optical pulse transmission method and the optical pulse detection method according to the present invention, even if the injection current of the light emitting element versus the output optical power characteristic fluctuates due to temperature fluctuation on the transmitting side, the bias current flowing through the light emitting element is changed. The fluctuation of the bias current is transmitted to the receiving side as a DC component of light.
  • the DC component of the transmitted light is reproduced as a bias voltage, and this bias voltage is applied to a voltage comparator having a hysteresis characteristic as a reference voltage. Even when the bias voltage fluctuates, the detection point of the positive / negative symmetric waveform signal does not move in the time direction even if the bias voltage fluctuates. .
  • the temperature change is given to the light emitting element on the transmitting side, and the detection point of the pulse detected on the receiving side fluctuates even if the injection current vs. output light power characteristic of the light emitting element fluctuates. do not do. That is, generation of jitter can be prevented. Therefore, by applying the present invention to a device that transmits data using multiple channels, there is obtained an advantage that a timing error does not occur in a signal between each channel and data can be transmitted and received at a correct timing. .
  • FIG. 1 is a block diagram showing a schematic configuration of an optical signal transmission system according to a first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an optical signal transmission system according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of the operation of the circuit shown in FIG.
  • FIG. 3 is a block diagram showing an example of a specific circuit configuration of the optical signal transmission system shown in FIG.
  • FIG. 4 is a block diagram showing a schematic configuration of a semiconductor device test apparatus to which the optical signal transmission system according to the first embodiment of the present invention is applied.
  • FIGS. 5 (a) to 5 (d) are waveform diagrams showing several examples of pulse pairs whose polarities indicating rising timing and falling timing are inverted from each other.
  • FIG. 6 is a block diagram showing a schematic configuration of an optical signal transmission system according to a second embodiment of the present invention.
  • FIG. 7 is a waveform diagram for explaining the circuit operation of the optical signal transmission system shown in FIG.
  • FIG. 8 is a block diagram showing an example of a specific circuit configuration of the optical signal transmission system shown in FIG.
  • FIG. 9 is a block diagram showing a schematic configuration of a semiconductor noise test apparatus to which the optical signal transmission system according to the second embodiment of the present invention is applied.
  • FIG. 10 is a circuit diagram showing a specific example of the optical pulse transmission device according to the third embodiment of the present invention.
  • FIG. 11 is a timing chart for explaining the operation of the optical pulse transmission device of FIG.
  • FIG. 12 is a circuit diagram showing a specific example of the optical pulse detection circuit according to the third embodiment of the present invention.
  • FIG. 13 is a timing chart for explaining the operation of the optical pulse detection circuit of FIG.
  • FIG. 14 is a circuit diagram showing another specific example of the optical pulse transmitting device according to the third embodiment of the present invention.
  • FIG. 15 is a waveform diagram for explaining the operation of the optical pulse transmission device of FIG.
  • FIG. 16 is a circuit diagram showing still another specific example of the optical pulse transmission device according to the third embodiment of the present invention.
  • FIG. 17 is a timing chart for explaining the operation of the optical pulse transmitting apparatus of FIG.
  • FIG. 18 is a circuit diagram showing a specific example of the light intensity modulator according to the fourth embodiment of the present invention.
  • FIG. 19 is a block diagram showing an example of an optical transmission system using the light intensity modulator of FIG.
  • FIG. 20 is a waveform chart for explaining the operation of the optical transmission system of FIG.
  • FIG. 21 is a timing chart for explaining the operation of the light intensity modulator of FIG.
  • FIG. 22 is a circuit diagram showing another specific example of the light intensity modulation device according to the fourth embodiment of the present invention. '
  • FIG. 23 is a block diagram showing a schematic configuration of an example of a conventional optical pulse transmission system.
  • FIG. 24 is a characteristic curve diagram for explaining an example of an injection current vs. output light power characteristic of the light emitting device shown in FIG.
  • FIG. 25 is a waveform diagram for explaining the waveform of a pulse transmitted by the conventional optical pulse transmission system shown in FIG.
  • FIG. 26 is a circuit diagram showing an example of a light intensity modulator used in a conventional optical transmission system.
  • FIG. 27 is a timing chart for explaining an error in data and timing when a binary signal is identified at a fixed identification level.
  • FIG. 28 is a characteristic diagram showing the relationship between the light emission delay time of the light emitting element and the light intensity.
  • FIG. 29 is a waveform diagram for explaining light intensity modulation from offset light.
  • FIG. 30 is a timing chart for explaining the binary signal discriminating operation by the AC coupling method.
  • FIG. 31 is a timing chart for explaining a method of optically transmitting a binary electric signal using a pair of polarity inversion pulses according to the rising and falling edges of the signal.
  • FIG. 32 is a block diagram showing another example of the light intensity modulator used in the conventional optical transmission system.
  • FIG. 33 is a timing chart for explaining the operation of the light intensity modulator shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram schematically showing a configuration of a first embodiment of an optical signal transmission system according to the present invention.
  • This optical signal transmission system includes a transmitting device T, a receiving device, and an optical fiber 6 connecting these two devices T and R.
  • the transmitting device T includes a rising edge detection circuit 1, a transmission pulse generating circuit 2, and a light intensity modulation circuit 3, and the receiving device R includes an AC coupling receiving circuit 4 and an identification circuit 5. I have.
  • the signal transmitted in this optical signal transmission system is not binary data, but the rising edge of the waveform of the binary signal, that is, the amplitude (level) of the rising edge of the transmission signal. ) Is a timing signal that indicates the point beyond.
  • FIG. 1 shows a configuration in which only the rising edge is transmitted for simplicity of description, in actuality, as shown by a dotted line in FIG. It includes a similar circuit configuration for transmitting the falling edge, and has a single circuit configuration for transmitting the rising edge and the falling edge of the waveform, respectively. .
  • FIG. 2 is a timing chart for explaining the operation of the various circuits shown in FIG. 1.
  • a rising edge of a waveform (timing when the amplitude value of the rising edge exceeds 50%) is detected. And shows the waveforms when transmitting.
  • the operation of each circuit will be specifically described with reference to FIG.
  • the rising edge detection circuit 1 is usually composed of a logic circuit, etc.
  • Timing the rising edge of the signal (which means the waveform of the signal to be transmitted) and generates the rising signal (a).
  • the transmission pulse generation circuit 2 generates a corresponding positive pulse signal based on the rising timing of the rising signal (a) output from the rising edge detection circuit 1. Then, a negative polarity pulse signal whose polarity is inverted is generated, and a pair of pulses whose polarity is inverted at the rising timing is generated, and this is output as a transmission pulse signal (b).
  • the transmission pulse signal (b) As the transmission pulse signal (b), it is necessary to use a signal whose shape and pulse width are sufficiently shorter than the minimum pulse interval of the waveform of the original transmission signal. In other words, the minimum pulse interval of the original transmission signal waveform is limited by the pulse width of the transmission pulse signal (b).
  • the transmission pulse signal (b) receives a certain delay when it is generated, and even if it becomes a delayed pulse (e) as shown by the dotted line in FIG. If it is a value, the receiver can use it as a timing signal without any problem.
  • the light intensity modulation circuit 3 is a transmission pulse signal generated by the transmission pulse generation circuit 2.
  • a light emitting element (not shown) is driven by using the modulation method of performing light intensity modulation on offset light, which is driven based on (b), and a rising edge of a transmission pulse signal waveform is used. At the timing when the amplitude value exceeds a predetermined value, a pair of light pulses whose polarities are inverted is output as a light intensity signal (c).
  • This light intensity signal
  • the AC-coupled receiving circuit 4 is a circuit that detects the received light intensity signal (c) by a conventionally used AC-coupling method, and has a signal strength similar to the received signal (d) shown at the bottom of FIG. s is detected.
  • the received light intensity signal (c) is an optical pulse signal modulated on the basis of the transmission signal and the regression signal (b), whose polarities are inverted to each other at the rising edge. bipolar pulse force? exists, therefore, the detected Ru received signal (d) are never as it contains many pulses offset to one polarity.
  • the identification circuit 5 identifies a rising edge (timing exceeding a predetermined amplitude value) from the reception signal (d) detected by the AC coupling reception circuit 4.
  • the discrimination level L1 which is the reference for the timing discrimination
  • the discrimination operation start which has been set in advance to a sufficiently low level that noise and signal can be separated
  • the identification start level L 2 which gives the timing of the following
  • the following identification operation is performed.
  • the discrimination circuit 5 is instantaneously activated at the point A, and the point B crosses the discrimination level L1 within a certain delay time. Generate a timing pulse.
  • the operation state of the identification circuit 5 is maintained for a time corresponding to the pulse width, and the time B when the received signal (d) crosses the identification level L1. Determines identification timing and generates a timing pulse. According to this discriminating operation, the discriminating circuit 5 does not operate when the noise force s does not exist, so that low-level fluctuation due to noise is not erroneously discriminated as a pulse.
  • the timing pulse (rising timing) generated from the rising-side identification circuit is converted into, for example, an asynchronous RS (set-reset) flip-flop setup signal.
  • the falling edge can be reproduced by using the timing pulse (falling timing) similarly generated from the falling-side identification circuit as the reset signal. Therefore, the original binary transmission signal waveform can be reproduced from these reproduced edges.
  • the rising and falling timings of the signal waveform to be transmitted are handled separately, and the pair of pulses inverts each other at each timing based on each timing.
  • the offset light is converted into a transmission pulse signal, the offset light is intensity-modulated based on the transmission pulse signal, and the polarity-reversed optical pulse pair is transmitted to the receiving device as a light intensity signal.
  • Signal is received by AC coupling and the discriminating circuit is operated only when a pulse is present to detect the rise / fall discrimination timing, and the original transmission signal waveform is obtained from the obtained rising / falling timing signal. It is configured to reproduce electrically.
  • circuit configuration described below is an example of a circuit configuration for realizing the present transmission system, and does not limit the configuration of the present invention.
  • FIG. 3 is a block diagram showing an example of a specific circuit configuration of the optical signal transmission system shown in FIG.
  • the transmitting device T includes a first transmitting circuit (rising edge transmitting circuit) including a rising edge detecting circuit 11a, a transmission pulse generating circuit 12a, a fixed bias LD driving circuit 13a, and a falling edge.
  • a second transmission circuit (falling edge transmission circuit) including an edge detection circuit 11b, a transmission pulse generation circuit 12b, and a bias-fixed LD drive circuit 13b is provided.
  • An AC-coupled receiving circuit 14a for receiving an optical signal transmitted from the first transmitting circuit via an optical fiber, and a rising timing based on the AC component of the received signal output from the AC-coupled receiving circuit 14a.
  • a first receiving circuit comprising an identification circuit 15a for detection, and an AC coupling receiving circuit 14b for receiving an optical signal transmitted from the second transmitting circuit via an optical fiber.
  • AC coupling receiver circuit A second receiving circuit (falling edge receiving circuit) comprising an identification circuit 15b for detecting a fall timing from the AC component of the received signal to be detected, and an output of the identification circuit 15a as a set signal, An asynchronous RS flip-flop 16 that uses the output of the identification circuit 15b as a reset signal is provided.
  • Rising and falling edge detection circuits 11a and 11b, transmission pulse generation circuits 12a and 12b, AC-coupled reception circuits 14a and 14b correspond to those shown in Figure 1 above. It has the same circuit configuration as that of the circuit and performs the same duplication, so that the description thereof is omitted here.
  • Bias-fixed LD drive circuits 13a and 13b on the receiving side are circuits that drive laser diodes (not shown) that are light-emitting elements, and generate transmission pulse generation circuits 12a and 12b.
  • the laser diode is driven by using a pair of pulses, which are polarities s mutually inverted at the rising and falling timings, as a drive signal to generate a light intensity modulation signal.
  • a bias current is applied to the laser diode in advance to always emit the laser diode (offset light), and modulation according to the drive signal is applied to the drive current of the laser diode.
  • the conventional method is used.
  • the discriminating circuit 15a is a comparator 150a for timing discrimination, a comparator 151a for discriminating whether or not to operate the comparator 150a, and a delay. It consists of an adjustment circuit 15 2 a, a delay / time constant adjustment circuit 15 3 a and 15 4 a.
  • the identification circuit 15b is a comparator for timing identification 150b, a comparator for determining whether or not to operate the comparator 150b, and a delay adjustment circuit. It consists of 15 2 b, delay and time constant adjustment circuit 15 3 b and 15 4 b. Since the identification circuits 15a and 15b have the same circuit configuration, only the configuration of the identification circuit 15a will be described below, and the description of the identification circuit 15b will be omitted.
  • the output of the AC-coupled receiving circuit 14a is branched, one of which is compared with one input terminal of the comparator 151a and the other via the delay adjusting circuit 152a. Is supplied to one input terminal of the device 150a.
  • the identification start reference voltage is input to the other input terminal of the comparator 15 1 a.
  • the comparator 15 Decide whether to operate 150a.
  • the output of the comparator 15a is input to the enable signal input terminal of the comparator 150a via the delay / time constant adjusting circuit 1553a. 0a operation can be controlled.
  • the other input terminal of the comparator 150a is grounded, and by comparing the ground potential with the input voltage supplied from the AC coupling receiving circuit 14a through the delay adjusting circuit 152a, The rising timing is determined.
  • the output of the comparator 150a is input to the S (set) terminal of the asynchronous RS flip-flop 16 via the delay / time constant adjusting circuit 150a.
  • the R (reset) terminal of the asynchronous RS flip-flop 16 is connected to the output of the comparator 150 b of the discriminating circuit 15 b by the delay and time constant adjusting circuit 15 4 Entered via b.
  • Rising and falling edge detection circuits 11a and 11b binary digital signal waves
  • the rising edge detection circuit 11a detects the rising edge of the input transmission signal waveform
  • the falling edge detection circuit 11b detects the input transmission signal waveform. Detect falling edge.
  • the rising edge of the transmission signal waveform detected by the rising edge detection circuit 11a is supplied to the transmission pulse generation circuit 12a, and the transmission pulse generation circuit 12a receives the timing of the input rising edge. To generate pulse pairs with inverted polarities. Similarly, the transmission pulse generation circuit 12b generates a pair of pulses whose polarities are inverted from each other at the timing of the input falling edge.
  • the bias-fixed LD drive circuit 13a drives the laser diode using the polarity inversion pulse pair supplied from the transmission pulse generation circuit 12a as a drive signal.
  • modulation corresponding to the drive signal is added to the drive current of the laser diode, and a light intensity modulation signal is generated from the laser diode.
  • the bias-fixed LD drive circuit 13b drives the laser diode using the polarity inversion pulse pair supplied from the transmission pulse generation circuit 12b as a drive signal, and generates a light intensity modulation signal from the laser diode. Let it.
  • the light intensity modulation signals generated by driving the corresponding laser diodes by the bias-fixed LD driving circuits 13a and 13b are transmitted to the transmitting device via optical fibers, and the corresponding AC-coupled receiving circuit 1 Received at 4a and 14b, respectively.
  • each of the AC coupling receiving circuits 14a and 14b Upon receiving the light intensity modulated signal, each of the AC coupling receiving circuits 14a and 14b converts only the AC component of the received light intensity modulated signal into an electric signal. As a result, the original polarity inversion pulse pair force s is generated, and this is output as a received signal.
  • the reception signals output from the AC-coupled reception circuits 14a and 14b are input to the identification circuits 15a and 15b.
  • the received signal input to the identification circuit 15a is first input to the comparator 151a.
  • the comparator 15a detects the input of the pulse force by comparing the voltage of the input received signal with the identification start reference voltage, and outputs a pulse signal.
  • This pulse-like output signal is processed into a signal having a sufficiently large pulse width by the delay / time constant adjusting circuit 153a, and is input to the enable signal input terminal of the comparator 150a.
  • the comparator 150a starts operation, identifies the central portion of the polarity inversion pulse pair (received signal), that is, the timing at which the polarity force 5 'is inverted, and this identification is performed. Outputs a pulse signal (timing signal) indicating the timing.
  • the discrimination circuit 15a has a delay so that it moves faster than the polarity inversion pulse pair (received signal) force s reaches one input terminal of the comparator 150a.
  • the delay time of the input path of the polarity inversion pulse pair (received signal) to these comparators 150a and 151a is adjusted by the adjustment circuit 152a and the delay ⁇ time constant adjustment circuit 153a. Have been.
  • the timing signal output from the comparator 150a is processed into a signal with a sufficient pulse width by the delay / time constant adjustment circuit 1504a, and then the S (set ') terminal of the asynchronous RS flip-flop 16 Is input to
  • the received signal when the received signal is input to the identification circuit 15b, the received signal is input to the comparator 151b.
  • the comparator 15 1 b detects the input of the pulse by comparing the input received signal voltage with the identification start reference voltage, and outputs a pulse signal. This pulse-like output signal is delayed by the time constant adjustment circuit 1 5
  • the signal is processed into a signal with sufficient pulse width by 3b, and is input to the enable signal input terminal of comparator 150b.
  • the comparator 150b starts operation, identifies the central portion of the polarity inversion pulse pair (reception signal), that is, the timing at which the polarity is inverted, and this identification is performed. It outputs a pulse-like signal (timing signal) indicating the timing. .
  • the delay time of the input path of the polarity inversion pulse pair (received signal) to these comparators 150b and 151b is adjusted by the adjusting circuit 152b and the delay ⁇ time constant adjusting circuit 153b. ing.
  • the timing signal output from the comparator 150b is a delay / time constant adjustment circuit 15
  • asynchronous RS flip-flop 16 After processing into a signal of sufficient pulse width in 4b, it is input to the R (reset) terminal of asynchronous RS flip-flop 16.
  • -Set and reset signals from identification circuits 15a and 15b as described above Is input to the asynchronous RS flip-flop 16, the asynchronous RS flip-flop 16 rises to logic “1” by the input of the set signal, thereby reproducing the rising edge of the original transmission signal waveform.
  • the signal falls to logic "0", thereby reproducing the falling edge of the original transmission signal waveform.
  • two transmissions one for rising timing transmission and one for falling timing transmission, an unnecessary time difference between the processing paths is delayed.
  • the time constant adjusting circuits 154a and 154b compensate for it.
  • the transmission signal waveform reproduced by the asynchronous RS flip-flop 16 becomes a binary signal having the same polarity and timing as before transmission.
  • the circuit configuration of the optical signal transmission system described above can be applied to a semiconductor device test apparatus. Next, a semiconductor device S test apparatus to which the optical signal transmission system having the above circuit configuration is applied will be specifically described with reference to FIGS.
  • rising and falling edge detection circuits 11a and 11b (not shown), transmission pulse generation circuits 12a and 12b, noise A transmitter consisting of fixed LD driver circuits 13a and 13b is provided.
  • a receiving unit composed of flip-flops 16 is provided, and these transmitting and receiving units are connected using an optical fiber.
  • the binary data transmitted is one of the values (0 or 1).
  • the binary signal generated in the test equipment main body is divided into a rising edge and a falling edge, so as shown in FIG.
  • the falling edge detection circuit 11a and 11b can be omitted, and the cost can be reduced.
  • the polarity inversion pulse pair indicating the timing at which the rising edge and the falling edge of the transmission signal waveform cross the predetermined amplitude value (level) is as described above.
  • the present invention is not limited to those shown in the drawings.
  • a pulse pair for the rising timing and a pulse pair for the falling timing may have a polarity as shown in FIGS. 5 (a) to 5 (d).
  • FIG. 5A is the same as the polarity inversion pulse pair used in the first embodiment.
  • the rising and falling timings of the signal waveform to be transmitted are handled separately, and two transmission paths for transmitting the polarity inversion pulse pairs indicating the respective timings are provided.
  • the polarity inversion pulse pairs indicating the rising timing and the falling timing can be distinguished from each other as pulse pairs whose polarities are inverted as shown in Fig. 5 (b) and (c), respectively.
  • the transmission path between the transmission side and the reception side can be one.
  • FIG. 6 is a block diagram showing a schematic configuration of an optical signal transmission system having a single transmission path according to a second embodiment of the present invention.
  • the optical signal transmission system according to the present embodiment includes a transmitting and receiving apparatus T that includes rising and falling edge detection circuits 21a and 21b, transmission pulse generation circuits 22a and 22b, and an optical intensity modulation circuit 2.
  • the receiving device R is provided with an AC-coupled receiving circuit 24 and identification circuits 25a and 25b.
  • the transmitting device T and the receiving device R are connected by one optical fiber 26.
  • the generation operation of the polarity inversion pulse pair in the transmission pulse generation circuits 22a and 22b, and the rising and falling timings in the identification circuits 25a and 25b The operation is basically the same as that of the system of the above-described first embodiment except that the detection operation is different.
  • FIG. 7 is a waveform chart for explaining the operation of the optical transmission system shown in FIG. Next, the operation of each circuit will be specifically described with reference to FIG.
  • the transmission pulse generation circuits 22a and 22b are bounded by the timing of the rising signal (a) and the falling signal (b) detected by the rising and falling edge detection circuits 21a and 21b. to polarity force? generates a transmission pulse signal consisting of pulse pair for inverting (c) ⁇ Pi (d) from each other.
  • the transmission pulse signal (c) generated by the transmission pulse generation circuit 22a and the transmission pulse signal (d) generated by the transmission pulse generation circuit 22b have polarities mutually. The relationship is reversed so that it is possible to distinguish which indicates the rising timing and which indicates the falling timing.
  • transmission pulse signals have a shape and pulse width independent of the original transmission signal waveform and are fixed, the pulse width is sufficiently shorter than the minimum pulse interval of the original transmission signal waveform, and The transmission pulse waveforms do not overlap each other with respect to the minimum pulse width.
  • the width of each transmission pulse signal limits the minimum pulse width, the minimum pulse interval, and the minimum pulse width of a signal waveform that can be transmitted.
  • the light intensity modulation circuit 23 and the AC coupling reception circuit 24 have the same configuration as that shown in FIG. 1 described above.
  • the light intensity modulation circuit 23 generates a transmission pulse.
  • the pulse signals for transmission from the circuits 22a and 22b are input, and a pair of polarity-reversed optical pulses (light intensity signal (e)) is output based on these inputs. It receives the transmitted light intensity signal and outputs a received signal (f).
  • the identification circuit 25a identifies the rising timing from the reception signal (f) detected by the AC coupling reception circuit 4, and the identification circuit 25b identifies the falling timing from the reception signal (f).
  • the discriminating level L1 which is a reference for timing discrimination
  • the rising discriminating start level L in which the power s amplitude is set sufficiently low that noise and signal can be separated from power s
  • the identification circuit 25a is instantaneously activated at the time A when the rising edge of the received signal (f) crosses the identification start level L2, and the identification circuit 25b is instantaneously activated. Then, the identification circuit 25a identifies a point B at which the waveform of the received signal (f) crosses the identification level L1 within a fixed delay time, and generates a timing pulse at this point B.
  • the identification circuit 25b When identifying the fall timing, the identification circuit 25b is instantaneously activated at the time C when the falling edge of the received signal (f) crosses the identification start level L3, and at the same time, the identification circuit 25a Is instantaneously disabled, the identification circuit 25b identifies the point D when the waveform of the received signal (f) crosses the identification level L1 within a certain delay time, and generates a timing pulse at this point D .
  • the identification circuit 25b is inoperable for a certain period of time from the time A when the rising edge of the received signal (f) crosses the identification start level L2. After identifying the point B when the waveform of the received signal (f) crosses the identification level L1, the identification circuit 25b further incorrectly identifies the point C ′ when the waveform of the received signal (f) crosses the identification level L3. c is not possible to identify Te
  • the identification circuit 2 5 b After identifying the point D when the waveform of the received signal (f) crosses the identification level L3, the identification circuit 2 ⁇ a further increases the point A when the waveform of the received signal (f) crosses the identification level L1. 'Is not misidentified.
  • each of the discriminating circuits 25a and 25b is not in an operating state. There is nothing to do.
  • the timing pulse (rising timing) generated from the identification circuit 25a is used as, for example, a set signal of an asynchronous RS flip-flop circuit, the rising edge can be reproduced.
  • the falling edge can be reproduced by using the timing pulse (falling timing) obtained in the same way from the falling edge identification circuit 25b as the reset signal of the asynchronous RS flip-flop circuit.
  • the original binary transmission signal waveform can be reproduced.
  • circuit configuration described below is an example of a circuit configuration that realizes the present transmission system, and does not limit the configuration of the present invention.
  • FIG. 8 is a block diagram showing an example of a specific circuit configuration of the optical signal transmission system shown in FIG. It is a lock figure.
  • a rising and falling edge detection circuit 31a and 31b for detecting a rising edge and a falling edge of a transmission signal waveform on the transmission side and these edge detection circuits 31a and 31b Pulse generating circuits 32a and 32b to which the output signal of the input is inputted, and a bias-fixed LD driving circuit 333 using both output signals of the transmission pulse generating circuits 32a and 32b as driving signals.
  • an AC-coupled receiving circuit 34 On the receiving side, an AC-coupled receiving circuit 34, an identification circuit 35a and 35b, each receiving the output of the AC-coupled receiving circuit 34, and an output signal of the identifying circuit 35a as a set signal
  • an asynchronous RS flip-flop 36 is provided which uses the output signal of the identification circuit 35b as a reset signal, and the transmission side and the reception side are connected by an optical fiber.
  • the rising and falling edge detection circuits 31a and 31b, the transmission pulse generation circuits 32a and 32b, and the AC coupling reception circuit 34 have the same circuit configuration as that shown in Fig. 6 above. Since they have and perform the same operation, their description is omitted here.
  • the fixed-noise L DJI sleep circuit 33 is a circuit that drives a laser diode ( ⁇ rf shown), which is an element.
  • the transmission pulse generation circuits 32a and 32b generate rising and falling timings. and the boundary of the laser diode is driven as the polar force? drive signal pulses pair of mutually inverted, generating a light intensity modulated signal.
  • a bias current is applied to the laser diode in advance to keep the laser diode in a state of always emitting light, and the drive is performed.
  • a conventional method of adding a modulation current according to a signal to a drive current of a laser diode is used.
  • the identification circuit 35a is a comparator for timing identification 350a, a comparator for determining whether or not to operate the comparator 350a, a delay adjustment circuit 352a, Delay 'Time constant adjustment circuit 35 5 a, 35 4 a, and 35 55 a.
  • the identification circuit 35b is a comparator 350b for timing identification, a comparison 351b for determining whether or not to operate the comparator 350b, and a delay adjustment circuit 35. 2b, delay 'time constant adjustment circuit 35 3b, 35 4b, and 35 5b.
  • the output of the AC coupling receiving circuit 34 is branched into two, Is supplied to one input terminal of the comparator 3501a, and the other is supplied to one input terminal of the comparator 350a via the delay adjustment circuit 3552a.
  • the rising edge identification start reference voltage is input to the other input terminal of the comparator 35 1 a.
  • the comparator 3 51 51a determines whether to operate the comparator 350a.
  • the output signal of the comparator 351a is input to the enable (Enable) signal input terminal of the comparator 150a via the delay and time constant adjustment circuit 353a, and the delay and time constant are adjusted. It is input to the disable signal input terminal of the comparator 35 1 b via the circuit 35 54 a so that the operation of the comparators 350 a and 35 1 b can be controlled. It has become.
  • the other input terminal of the comparator 350a is grounded, and the comparator 350a rises timing by comparing the ground potential with the input signal voltage from the AC coupling receiving circuit 34. Is determined.
  • the output signal of the comparator 350a is input to the S (set) terminal of the asynchronous RS flip-flop 36 via the delay / time constant adjusting circuit 365a.
  • the output of the AC-coupled receiving circuit 34 is also branched into two, one of which is connected to one input terminal of the comparator 351b and the other is connected to the delay adjustment circuit 352b. And supplied to one input terminal of the comparator 350b.
  • the other input terminal of the comparator 35 1 b receives a falling identification start reference voltage, which is compared with the input from the AC coupling receiving circuit 34.
  • the comparator 351b determines whether to operate the comparator 350b.
  • the output signal of the comparator 35 1 b is input to the enable signal input terminal of the comparator 150 b via the delay / time constant adjusting circuit 35 3 b, and the delay / time constant is adjusted.
  • the signal is input to the disable signal input terminal of the comparator 351a via the circuit 354b so that the operation of the comparators 350b and 351a can be controlled. I have.
  • the other input terminal of the comparator 350b is grounded, and by comparing the ground potential with the input signal voltage from the AC coupling receiving circuit 34, the comparator 350b falls timing. Is determined.
  • the output signal of this comparator 350b is delayed Input to the R (reset) terminal of the asynchronous RS flip-flop 36 via the path 355b.
  • Rising and falling edge detection circuit 31a and 31b are identical to the optical signal transmission system according to the second embodiment.
  • the rising edge detection circuit 31a detects the rising edge of the input transmission signal waveform
  • the falling edge detection circuit 31b detects the falling edge of the input transmission signal waveform. Detect edges.
  • the rising edge of the transmission signal waveform detected by the rising edge detection circuit 31a is supplied to the transmission pulse generation circuit 32a, and the transmission pulse generation circuit 32a determines the timing of the supplied rising edge. At the boundary, a pair of polarity inversion pulses are generated that invert each other. Similarly, the transmission pulse generating circuit 32b generates a polarity reversal pair and a reversal pair in which the polarities are reversed with respect to the supplied falling edge timing.
  • the bias-fixed LD drive circuit 33 drives the laser diode using the polarity inversion pulse pairs generated by the transmission pulse generation circuits 32a and 32b as a drive signal, and generates light comprising the polarity inversion light pulse pairs. Generate an intensity modulated signal. This light intensity modulated signal is transmitted to the receiving side via the optical fiber, and is received by the AC coupling receiving circuit 34. Upon receiving the light intensity modulation signal, the AC coupling receiving circuit 34 converts only the AC component of the received light intensity modulation signal into an electric signal. As a result, the original polarity inversion pulse pair is generated and output as a received signal.
  • the reception signal output from the AC coupling reception circuit 34 is branched into two, one of which is input to the identification circuit 35a, and the other is input to the identification circuit 35b.
  • the received signal input to the identification circuit 35a is first input to the comparator 351a.
  • Comparator 3551a detects that a pulse has been input by comparing the voltage of the input received signal with the reference voltage at the start of rising detection, and outputs a pulse-like signal.
  • This pulse-shaped output signal is split into two, one of which is processed by the delay 'time constant adjustment circuit 3 5 3 a, and the other is the delay' time constant adjustment circuit 3 5 4 a, to produce a signal with a sufficient pulse width.
  • the signal is input to the enable signal input terminal of the comparator 350a and the disable signal input terminal of the comparator 351b.
  • the comparator 350a When the enable signal is input, the comparator 350a starts operating, and identifies the central portion of the polarity inversion pulse pair (received signal), that is, the timing at which the polarity is inverted, and this identification is performed. Outputs a pulse signal (timing signal) indicating the timing.
  • the comparator 351b becomes inoperable for a certain period of time, and prevents the comparator 355b from malfunctioning during the inability to operate.
  • the discrimination circuit 35a adjusts the delay so that the comparator 351a operates before the polarity inversion pulse pair (reception signal) reaches the one input terminal of the comparator 350a.
  • the delay time of the input path of the polarity inversion pulse pair (received signal) to these comparators 350a and 3501a is adjusted by the circuit 352a and the delay / time constant adjusting circuit 355a.
  • the delay time of the path is adjusted by the delay / time constant adjusting circuit 354a so that the comparator 351b becomes inoperable. Has been adjusted.
  • the timing signal output from the comparator 350a is processed into a signal with a sufficient pulse width by the delay / time constant adjustment circuit 350a, and then the asynchronous RS flip-flop 36 S (set) Input to the terminal.
  • the received signal is input to the identification circuit 35b.
  • the comparator 35Ib detects that a pulse has been input by comparing the voltage of the input received signal with the reference voltage for starting falling identification, and outputs a pulse-like signal.
  • This pulse-shaped output signal is split into two, one of which is a delay and time constant adjustment circuit 353b, and the other is processed by a delay and time constant adjustment circuit 354b to produce signals with sufficient pulse width.
  • the signal is input to the enable signal input terminal of the comparator 350b and the disable signal input terminal of the comparator 351a.
  • the comparator 350b When the enable signal is input, the comparator 350b starts operating, and identifies the central portion of the polarity inversion pulse pair (received signal), that is, the timing at which the polarity is inverted, and this identification is performed. Outputs a pulse signal (timing signal) indicating the timing.
  • the comparator 351a when the disable signal is input, the comparator 351a is disabled for a certain period of time, and prevents the comparator 355a from malfunctioning during this disabled operation.
  • the discriminating circuit 35b adjusts the delay so that the comparator 3551 operates before the polarity inversion pulse pair (received signal) force s reaches one input terminal of the comparator 350b.
  • the delay time of the input path of the polarity inversion pulse pair (received signal) to these comparators 350b and 351b is adjusted by the 3552ab and the delay ⁇ time constant adjusting circuit 353b. cage, Moreover, the polarity inversion as a pulse pair after the signal is a comparator 3 5 1 a force s inoperative before reaching the delay 'time constant adjustment circuit 3 5 4 delay time by connexion paths b There are 'adjusted.
  • the timing signal output from the comparator 355b is processed into a signal with a sufficient pulse width by the delay / time constant adjustment circuit 355b, and then the R (reset) terminal of the asynchronous RS flip-flop 36 Is input to
  • the asynchronous RS flip-flop 36 receives the set signal.
  • two transmissions, one for the rise timing transmission and the other for the fall timing transmission an unnecessary time difference between the processing paths is delayed.
  • the time constant adjustment circuits 3555a and 3555b compensate for this.
  • the transmission signal waveform reproduced by the asynchronous RS flip-flop 36 becomes a binary signal having the same polarity and timing as before transmission.
  • the comparators and other circuit elements are provided with the comparators used in the case of the electrical transmission method. Further, higher operation performance is required than the other circuit elements and the comparator and other circuit elements used in the first embodiment.
  • the circuit configuration of the optical signal transmission system according to the second embodiment described above can also be applied to a semiconductor noise testing device.
  • a semiconductor device test apparatus to which the optical signal transmission system having the above circuit configuration is applied will be specifically described with reference to FIG.
  • rising and falling edge detection circuits 31a and 31b (not shown), transmission pulse generation circuits 32a and 32b, and bias fixed LD
  • a transmitter consisting of a drive circuit 33
  • a receiver consisting of an AC coupling receiver 34, identification circuits 35a and 35b, and an asynchronous RS flip-flop 36 is provided on the test head side.
  • An optical fiber is used between the transmitter and the receiver. Connect. ⁇
  • the value of the binary data to be transmitted (0 or 1) Is converted to a transmission pulse signal consisting of a pair of polarity inversion pulses indicating the timing at which only the rising edge and the falling edge of the signal waveform cross the predetermined amplitude value (level) in the transmitter. Since the original transmission signal waveform is electrically reproduced from the identified rising and falling timings in the receiving unit, the signal can be reproduced without causing polarity and timing errors.
  • the binary signal generated in the test equipment main body is divided into a rising edge and a falling edge, as shown in FIG.
  • the falling edge detection circuits 31a and 31b can be omitted, and the cost can be reduced.
  • FIG. 10 shows a specific example of the optical pulse transmitting apparatus 101 for implementing the optical signal transmission method according to the present invention.
  • a light emitting element LD like a laser diode 5 'is used, and constant current circuits 110A, 110B, and 110C are connected to the light emitting element LD.
  • the constant current circuits 110A and 110B are connected to the light emitting element LD through the current switches 111A and 111B, respectively, and the constant current circuit 110C is directly connected to the light emitting element LD.
  • the following shows the case. Therefore, the current I c flowing through the constant current circuit 110 C is constantly injected into the light emitting element LD.
  • the current switches 111A and 111B are turned on when H logic (logic high level) is applied as a control voltage, and turned off when L logic (logic low) is applied. .
  • the control terminal of the current switch 1 1 1 A is connected directly to the input terminal IN.
  • the control terminal of the current switch 111B is connected to the input terminal IN through a series circuit composed of the inverter 112 and the delay element 113.
  • a positive pulse P as shown in FIG. 11A is applied to the input terminal IN.
  • the current switch 11A is immediately turned on as shown in Fig. 11B.
  • the polarity of the pulse P is inverted by the inverter 112 and supplied to the current switch 111B with a delay by the delay element 113, so that the current switch 111B is controlled to be always on.
  • the pulse P is controlled to be turned off for the duration of the pulse width Td.
  • the current injected into the light emitting element LD is the sum of the currents Ib and Ic flowing through the constant current circuits 110B and 110C when there is no signal, as shown in FIG. Ca? is injected as Baiasu current pulse P current flows through all of the constant current circuit 1 1 0 A ⁇ 1 1 0 C period is input to the input terminal iN I a, I b, the sum of I c I a + I b + I c power is injected, and at the timing after the pulse P falls, both the current switches 11 A and 11 B are controlled to be in the OFF state. Only the current I (; flowing through 10 C is injected.
  • a bias current injected to the light emitting element LD is next I b + I c, the current I a + I b to swing in positive and negative about the bias current I b + I c + I c and I (:?.. mosquito emitting element is injected into Otsu 0 emission intensity of the light emitting element LD is the same waveform as the current waveform shown in FIG. 1 1 D current I c is shown in FIG. 1 1 D In this manner, the light emitting element has a value larger than the threshold current I ON for starting the LD light emission.
  • FIG. 12 shows a specific example of the detection circuit 107 provided in the receiving device 102.
  • the detection circuit 107 has a current-to-voltage conversion circuit 107A that converts a light-receiving current signal output from the light-receiving element PD into a voltage signal, a smoothing circuit 107B, and hysteresis. This shows a case where the voltage comparator 107 C is used.
  • the current-to-voltage conversion circuit 107 A can be composed of an operational amplifier A and a feedback resistor R.
  • the smoothing circuit 107B can be constituted by a time constant circuit having a time constant sufficiently larger than the pulse width P of the transmitted pulse P.
  • the signal is sent from the transmission side to the non-inverting input terminal of the voltage comparator 107C through this smoothing circuit 107B.
  • a reference voltage corresponding to the bias value The output signal of the current-to-voltage conversion circuit 107 A is directly input to the inverting input terminal of the voltage comparator 107 C.
  • the smoothing circuit 1 0 7 B is given a reference voltage corresponding to the bias current I b + I c transmitted constantly from the transmitting side.
  • the voltage comparator 107C outputs an H logic to the output terminal 107D depending on whether the voltage applied to the inverting input terminal is higher or lower than the reference voltage with respect to the reference voltage applied to the non-inverting input terminal. Either L logic or L logic is output.
  • the voltage comparator 107C has a hysteresis characteristic between the two input terminals, even if the voltage of both input terminals is equal to the reference voltage, the non-inverting input terminal When the signal returns to the same reference voltage from the state of swinging to the negative side from the inverting input terminal, the output terminal 107D is held at L logic and returns to the same reference voltage from the state of swinging to the positive side. In this case, it is kept at H logic.
  • the current-to-voltage conversion circuit 107 A generates the bias voltage V shown in FIG. and it outputs the B and the pulse waveform V P.
  • smoothing circuit 1 0 7 B is input pulse waveform V P is the pulse waveform V P smoothes the reference voltage that matches the bias voltage V B to the non-inverting input terminal of the voltage comparator 1 0 7 C Continue to supply.
  • the output terminal 1 0 7 0 of the voltage comparator 1 0 7 C becomes 1 logic. Accordingly, the output terminal 1 0 7 D of the voltage comparator 1 0 7 C outputs a pulse P V shown in FIG. 1 3 C.
  • This pulse PV has a rising timing whose pulse waveform V p at the inverting input terminal of the voltage comparator 107 C has a positive-side hysteresis width even if the bias current I b + I c of the light-receiving current signal IP fluctuates.
  • FIG. 14 shows another specific example of a device for transmitting an optical pulse.
  • the function of aligning the pulse width of the input pulse to an optical pulse with a constant pulse width This is the case where the circuit configuration has a pulsar.
  • the electric pulse P input to the input terminal IN is supplied directly to one input terminal of the NOR (NOR) gate 114, and the other input terminal is passed through a series circuit consisting of the inverter 112 and the delay element 113.
  • an electric pulse P is supplied to one input terminal of a NAND gate 115 through a series circuit including the inverter 112 and the delay element 113, and the electric pulse P is supplied to the inverter 116 and the delay.
  • the signal delayed by the element 117 is supplied to the other input terminal of the NAND gate 115.
  • the output signal of 115 is given as a control signal of the current switch 111B.
  • Figure 15A shows the pulse P input to the input terminal IN.
  • Fig. 15 B is an inverter
  • FIG. 15C shows the waveform of the pulse PC supplied to the other input terminal of the NAND gate 1 15 through the inverter 1 1-6 and the delay element 1 17.
  • the light emitting element LD flows with a waveform that swings symmetrically in the positive and negative directions around the average current Ib + Ic.
  • the light emitting element is driven without changing the average current value, it is easy to obtain the same operation and effect s ′ as described in FIGS. 10 to 13 in the specific example shown in FIG. You can understand.
  • the pulse waveform of the light pulse emitted by the light emitting element LD Is limited to a fixed pulse width determined by the delay time Td of the delay element. Therefore, even if the input pulse P is long, the output optical pulse is limited to a constant value, and the smoothing circuit 107 B ( This has the advantage of avoiding the inconvenience of fluctuating the reference voltage output by (see Fig. 12).
  • FIG. 16 shows still another specific example of the optical pulse transmitting device 101.
  • An example of transmitting the pulse width of the source to the receiving side That is, a case is shown in which the light emitting element is controlled to emit light by generating a positive / negative symmetric signal swinging to the positive side and the negative side at both the rising timing and the falling timing of the pulse P to be transmitted.
  • a control circuit for the current switch 111 A in this example, it is composed of two AND gates 118, 119 and NOR gate 120, and the AND gate 118 has an input Pulse P (Fig. 17A) and the pulse PB (Fig. 17B) passed through the inverter 1 1 2 and the delay element 1 1 3 are input to the other AND gate 1 1 9 and the inverter 1 1 2 and the pulse PB (Fig. 17B) through the delay element 1 13 and the pulse P C (Fig. 17C) through the inverter 1 16 and the delay element 1 17 are supplied, and each AND gate 1 1 'Output the outputs of 8 and 1 1 9 through NOR gate 1 20.
  • a negative pulse PD shown in FIG. 17D is obtained at the output of the NOR gate 120. Pulse P D of the negative polarity is generated in both the rising timing and the falling timing of the input pulse P, is input to the current switch 1 1 1 A.
  • the current switch 111 A is composed of two AND gates 118, 119 and NOR
  • 11A is controlled to be off for a period equal to the delay time Td at both the rising and falling timings of the input pulse P.
  • the control circuit of the current switch 1 1 1 B is divided into two NOR gates 1 2 1 and 1 in this example.
  • the NOR gate 1 2 1 receives a pulse through the input pulse P (Fig. 17A), the inverter 1 1 2 and the delay element 1 1 3
  • the pulse Pc (Fig. 17C) extracted through 1 17 is supplied to each NOR gate 1
  • Fig. 17 ⁇ shows the voltage output signal of the current-to-voltage converter circuit 107A when the optical pulse driven by the current I shown in Fig. 17F is received by the receiver shown in Fig. 12. Number.
  • the time between each zero-cross point of the received voltage output signal corresponds to the pulse width Pw of the input pulse P on the transmitting side, and the output terminal 107D of the voltage comparator 107C is In this case, the pulse PH of negative polarity shown in Figure 17H is output, and the pulse PH having the same pulse width Pw as the pulse width Pw of the input pulse P on the transmitting side can be received.
  • the pulse width Pw of the received pulse PH is also a positive / negative symmetrical waveform (FIG. 17F) centered on the average current Ib + Ic, as in the case described with reference to FIGS. Since the light is transmitted, the average value of the light on the optical transmission line does not change according to the presence or absence of the signal. Therefore, as described with reference to FIGS. 10 to 13, the smoothed output voltage of the smoothing circuit 107 B provided in the preceding stage of the voltage comparator 107 C fluctuates according to the transmission and reception of the signal. It is kept constant. In addition, even if the injection current of the light emitting element LD versus the output optical power characteristic (see Fig.
  • the pulse width of the received pulse PH exactly matches the pulse width P w of the input pulse P on the transmitting side regardless of the variation in the characteristics of the light emitting element LD because the hysteresis width of the voltage comparator 107 C follows the center of the I do.
  • the transmitting device T includes an optical intensity modulator 460
  • the receiving device includes an AC-coupled receiving device 461, and an identification circuit 462, and the transmitting device T and the receiving device R is connected by an optical fiber 463.
  • FIG. 20 is a timing chart for explaining the operation of the optical transmission system of FIG. 19. As an example, the rising edge of the signal waveform (timing when the amplitude value of the rising edge exceeds 50%) It is shown. Below, each time with reference to Figure 20 The operation of the road will be specifically described.
  • the light intensity modulator 460 generates a pair of polarity inversion pulses (b) whose polarities are inverted with each other at the rising edge of the binary digital input signal (a).
  • the polarity inversion pulse pair (b) one having a pulse shape and pulse width sufficiently shorter than the minimum pulse interval of the original transmission signal waveform may be used. In other words, the minimum pulse interval of the original transmission signal waveform is limited by the pulse width of the polarity inversion pulse pair (b).
  • the polarity inversion pulse pair (b) receives a certain delay when it is generated, and even if it becomes a pulse (e) delayed as shown by the dotted line in FIG. 20, this delay is always constant and known. With this value, the receiver can use it as a timing signal without any problem.
  • the light intensity modulation circuit 460 performs light intensity modulation on the offset light conventionally used based on the polarity inversion pulse pair (b).
  • a light emitting element (not shown) is driven using a modulation method, and a pair of light pulses whose polarities are inverted with respect to each other at a timing where the amplitude value of a rising edge of a transmission pulse signal waveform exceeds a predetermined value. Output as signal (c). This light intensity signal (c) is transmitted to the receiving device R via the optical fiber 463.
  • the AC-coupled receiver circuit 461 is a circuit that detects the received light intensity signal (c) by the conventionally used AC-coupling method, as shown in the received signal (d) shown at the bottom of FIG. Signal power is detected.
  • the received light intensity signal (c) is a light pulse signal modulated based on the polarity inversion pulse pair (b) that inverts each other at the rising edge, so that it is always bipolar. the present pulse power s, therefore, test out the received signal (d) are never as it contains many pulses offset to one polarity.
  • An identification circuit 462 constituting the signal reproduction processing means identifies a rising edge (a timing exceeding a predetermined amplitude value) from the reception signal (d) detected by the AC coupling reception circuit 461.
  • the discrimination level L1 which is a reference for timing discrimination, and the discrimination start timing set in advance to a sufficiently low level that noise and signal strength can be separated.
  • the given identification start level L2 see Fig. 20
  • the following identification operation is performed.
  • the rising edge force of the received signal (d) ?
  • the identification circuit 462 is activated instantaneously when the signal crosses the identification start level L2, and the point when the signal crosses the identification level L1 within a certain delay time is identified. To generate a timing pulse.
  • the operation of the discrimination circuit 462 is maintained for a time corresponding to the pulse width, and the time when the reception signal (d) crosses the discrimination level L1 is determined. Determined as identification timing and generates a timing pulse. Performed signal reproduction processing power s and based on the number of timing pulses. According to this discriminating operation, the discriminating circuit 462 does not operate when the pulse force s does not exist, so that a low-level fluctuation due to noise is not mistakenly discriminated as a pulse.
  • the timing pulse for example, rising timing
  • the identification circuit 462 is used as a set signal of, for example, an asynchronous RS (set-reset) flip-flop circuit
  • the light intensity modulator 460 generates a pair of polarity inversion pulses based on both the rising and falling timings of the transmission signal. (These polarity inversion pulse pairs have their polarities inverted.)
  • detection circuits consisting of logic circuits, etc. for respectively detecting the rising edge and the falling edge of the transmission signal are individually provided, and a light intensity modulator is provided for each of these detection circuits, so that the rising timing and the rising timing are determined.
  • the fall timing is transmitted separately.
  • the receiving side also has two circuit configurations, a rising timing receiving system and a falling timing receiving system, and the timing pulse force related to the rising and falling edges is generated in each transmission system to perform the signal reproduction processing.
  • the rising edge and the falling edge can be reproduced by using the timing pulse generated by each discriminating circuit as the ti # synchronous RS flip-flop times set and reset signals.
  • the original binary transmission signal waveform can be reproduced.
  • the specific circuit configuration and operation of the light intensity modulator 460 will be described in detail. I do. ⁇
  • FIG. 18 is a circuit diagram showing a first specific example of the light intensity modulator according to the third embodiment of the present invention
  • FIG. 21 is a timing chart for explaining the operation.
  • This light intensity modulation device comprises a drive circuit having current switch circuits 401 to 403, and a semiconductor laser 405 connected to output terminals 404a and 404b of the drive circuit. It is configured.
  • the current switch circuit 401 is composed of transistors 4111a to 4111c and a resistor 412 for current adjustment.
  • the transistor 41 ia has its collector connected to the output terminal 404 a line (here, the line connected to this output terminal 404 a is referred to as the V CC line), and its base connected to the digital signal input.
  • the emitter is connected to the terminal 406a, and its emitter is commonly connected to the emitter of the transistor 411b and the collector of the transistor 411c.
  • the transistor 411b has a collector connected to the output terminal 404b, and a base connected to the digital signal input terminal 406b.
  • Transistor 4 1 1 c the Emitta force? Via the resistor 4 1 2 is connected to the ground line, thereby the constant current source is configured.
  • the current switch circuit 402 is composed of transistors 421a to 421c and a resistor 422 for adjusting current.
  • Transistor 4 2 1 a is connected to the digital signal input terminal 4 0 6 a through Sonobe one Ska?
  • Delay circuit 4 0 7 a its collector connected to output terminal 4 0 4 b, its Emitta It is commonly connected to the emitter of the transistor 421 b and the collector of the transistor 421 c.
  • the transistor 421b has its collector connected to the output terminal 404a line (Vcc line), and its base connected to the digital signal input terminal 406b via the delay circuit 407b. is, the transistor 4 2 1 c, the Emitta force?
  • the current switch circuit 4003 includes transistors 431a to 431c and a resistor 432 for current adjustment.
  • Transistor 431a has its collector connected to the output terminal 404a line (Vcc line) and its base connected to digital signal input terminal 404 via delay circuits 407a and 407c. 6a connected to its emitter Commonly connected to the emitter of transistor 4311b and the collector of transistor 4311c.
  • Transistor 4 3 1 b has its collector connected to output terminal 4 0 4 b and connected to digital signal input terminal 4 6 b via its base delay circuit 4 7 b and 4 7 d.
  • the emitter of the transistor 431c is connected to the ground line via the resistor 432, thereby forming a constant current source.
  • the resistance of the resistor 432 is set to the same value as the resistance of the resistor 412 of the current switch circuit 401.
  • the bases of the transistors 411c, 421c, and 431c of the current switch circuits 401 to 4003 are commonly connected to the base of the transistor 408, and the terminals 410 Connected to a.
  • the transistor 408 has its collector connected in common with the base and is connected to the ground line via its emitter resistor 440. Thus, a predetermined current can be supplied to the output terminal 404b for supplying a current to the semiconductor laser 405 in accordance with the current supplied to the terminal 410a.
  • It also has a transistor 410 connected to the ground line via an emitter resistance 441, a base connected to the terminal 410b, and a collector connected to the output terminal 404b.
  • a predetermined bias current can be supplied to the semiconductor laser 405 in accordance with the current supplied to the terminal 410b.
  • differential digital signals whose logic is inverted with respect to each other are input to the digital signal input terminals 406a and 406b.
  • the timing mosquito s caused to change in the signal as shown in a differential digital signal input ( 'This Figure 2 1 (a), accordingly switched first-stage current Suitsuchi circuit 4 0 1 force s A change in current as shown in FIG. 21 (b) occurs in the semiconductor laser 405.
  • the delay circuits 407a and 407b (or the difference between the response speed of the current switching circuit 401 and the response speed of the current switching circuit 402 itself) cause the current to change. a delay of switch circuit 4 0 1 operation than a predetermined time, the second-stage current switching circuit 4 0 2 force? switches, to change the semiconductor laser 4 0 5 of current as shown in (c) of FIG. 4 2 1 Join.
  • the current switch circuits 401 and 402 have inverted logic, and their current adjusting resistors 4122 and 4 2 2 indicates that the resistance value of the resistor 4 2 2 is 1/2 of the resistance value of the resistor 4 1 2, and the change in current by the current switch circuit 4 2 is It is twice the current change due to 0 1.
  • the semiconductor laser 405 By the switching by the current switch circuits 401 to 403 described above, the semiconductor laser 405 generates a current changing force as shown in FIG. 21 (e). As a result, the semiconductor laser 405 is driven by the current waveform as shown in FIG. 21 (e), that is, by the polarity inversion pulse pair, and the rising timing and the falling timing as described above. Optical transmission as a pair of polarity-reversed optical pulses whose polarities are reversed from each other.
  • the resistance value of the resistance 42 2 of the current source of the current switch circuit 402 is set to 1/2 of the resistance value of the resistance 42 1 of the current source of the other switch circuit.
  • the force s is configured so that twice the current is supplied by the current switch circuit 402.
  • the present invention is not limited to this configuration.
  • the current switch circuit 40 The line to which the two current sources are connected may be connected to a line capable of supplying twice as much current as another switch circuit.
  • the input side comparator shown in Fig. 26 is provided on the digital signal input terminal side, and the differential digital signals whose logics are inverted in accordance with the digital input signal.
  • the signal may be generated.
  • the light intensity modulation device of this example it is possible to use various semiconductor laser light emitting means (the light emitting element), it can also be used optical transmission power s possibly other light emitting means (the light source) .
  • the optical transmission system using the above-described light intensity modulation device can be applied to, for example, a semiconductor device test device.
  • a transmission unit consisting of a transmission waveform conversion circuit and a light intensity modulation circuit is provided on the test equipment main body side of the semiconductor device test equipment, and an AC coupling reception circuit, identification circuit, asynchronous RS flip-flop, etc. are provided on the test head side.
  • a receiver is constructed, and a connection between the transmitter and the receiver is made using an optical fiber.
  • the above-described semiconductor device test apparatus has a configuration in which the test apparatus main body side has a transmission section and the test head side has a reception section.
  • the reverse configuration (the test apparatus main body side has a reception section and the test head side has a test section) It is also possible to take the configuration of a transmission unit).
  • Occurring timing as in the conventional discrimination level is biased to one of the data values of the binary signal, also, the length Since time-fixed DC-like data can also be accurately identified, high-precision optical transmission can be performed with high accuracy even for signals with an indefinite period and a DC component.
  • An optical transmission system and method can be provided. There are advantages.
  • a transmission method for transmitting a waveform of an optical pulse transmitted through an optical transmission line from a bias value by an equal amount in the directions of positive and negative polarities and transmitting a positive / negative symmetric waveform that is equal to the bias value on average is possible.
  • a DC component was added to the transmitted pulse waveform, and on the receiving side, a reference voltage was generated by the smoothing circuit 107B on the receiving side, so that the injection current vs. emission light power characteristics of the light emitting element LD fluctuated.
  • the voltage comparator 107 C will maintain a hysteresis width centered on the reference voltage. Therefore, if the hysteresis width is maintained at a constant value, the pulse detection point detected on the receiving side does not move, and the occurrence of jitter is suppressed.
  • the pulse reception detection point is specified as a zero-cross point of a positive / negative symmetric waveform, the pulse crosses the bias point at the highest speed in the received signal. This has the advantage that the most accurate reception point detection can be performed.
  • the edges of both pulse waveforms do not become discontinuous in the polarity inversion part as in the related art, so that high timing accuracy is achieved. in and thus force s can perform optical transmission of signals.
  • an optical transmission system or a semiconductor device test apparatus using an optical intensity modulator exhibiting the above-mentioned effects can increase the signal transmission speed, improve the frequency characteristics, and reduce the weight, Advantages such as higher reliability can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Dc Digital Transmission (AREA)

Description

― 明 細 書 光パルス伝送システム、 光パルス伝送方法、 及ぴ光パルス検出方法 技術分野
この発明は、 電気信号パルスを光パルスに変換して高速で伝送することができ る光パルス伝送システム及び光パルス伝送方法に関する。 さらに、 この発明は、 送信側において、 電気信号ノ、レスを光パルスに変換する際に適用して有益な波形 変換方法、 光を変調する際に適用して有益な光強度変調装置、 並びに受信側にお いて、 伝送されてきた光パルスを検出する際に適用して有益な光パルス検出方法 に関する。 背景技術
例えば、 半導体集積回路 (I C ) を始めとする各種の半導体デバイスを試験す るための半導体デバイス試験装置 (一般に I cテスタと呼ばれる) には、 半導体 デノ イスを試験するために搬送し、 試験結果に基づいて試験済みの半導体デノ ィ スを類別する半導体デバイス搬送処理装置 (一般にハンドラと呼ばれる) を接続 したものが多い。 半導体デバイス搬送処理装置 (以下、 ハンドラと称す) を接続 した形式の半導体デバイス試験装置は、 被試験半導体デバイス (一般に D U Tと 呼ばれる) に所定のパターンの試験信号を印加するためのテストへッ ドが半導体 デバイス試 ^置の本体から分離されて、 ハンドラのテスト部に配置されている。 このテス トヘッ ドと試験装置本体間はケーブルのような電気信号伝送路によって 接続されており、 この電気信号伝送路を通じて試験装置本体側からテストへッ ド 側へ所定のパタ一ンの試験信号を供給し、 このテストヘッドに装着されたソケッ トを通じて被試験半導体デバイスに試験信号を印加している。 また、 被試験半導 体デバイスからの応答信号はテストへッ ド側から上記電気信号伝送路を通じて試 験装置本体側へ伝送され、 半導体デバイスの電気的特性が測定される。
近年、 半導体集積回路 (以下、 I Cと称す) は高速化され、 また、 パッケージ から導出される端子 (ピン) 数も増加しているため、 上述の半導体デバイス試験 装置のように、 ケーブルのような電気信号伝送路を通じて電気信号を伝送したの では次のような欠点力 ?生じる。
( 1 ) ケ一ブルのような電線では伝送する電気信号の周波数に限界があり、 ま た、 信号周波数が高くなると信号波形が劣化する恐れがある。 このため、 信号の 伝送速度が制限され、 高速の I Cを試験することが困難となる。
( 2 ) I Cの端子数の増加に伴ってケーブルの本数を増加させると、 現在のケ —ブルの太さでは試験装置本体とテストへッ ド間のケーブル束が太く、 かつ重く なるため、 非常に扱い難くなる。
上記問題点を解決するために、 最近では、 信号の伝送速度や周波数特性が上記 したような電気的伝送方式よりも優れており、 しかも伝送媒体として細くて軽量 な光ファイバのような光伝送路を使用することができる光伝送方式が採用され始 めている。 次に、 一般的な光伝送システムについて説明する。
光を変調して 2値のディジタル信号 (光パルス) を生成する場合、 変調技術の 簡単さから殆どの場合に情報信号 (変調信号) によって光の強さを変える光強度 変調方式が採用されている。 通常は送信側に発光素子として高速の光の強度変調 が可能なレーザダイォ—ドを備え、 受信側に応答速度の速いホトダイォードを備 え、 力、つ伝送媒体として光ファイバを使用した構成を有しており、 送信側のレー ザダイォ一ドから出力される光パルスを光ファイバを通じて受信側へ伝送し、 ホ トダイオードによって伝送されて来た光パルスを電気信号に変換している。 図 2 3は従来の光伝送路を用いた光伝送システムの一例を示す概略の回路構成 図である。 この光伝送システムは、 光パルス送信装置 1 0 1と、 光パルス受信装 置 1 0 2と、 これら送信装置 1 0 1と受信装置 1 0 2間を結合する光ファイバの ような光伝送路 1 0 9とによって構成されている。
光パルス送信装置 1 0 1は、 受信装置側へ伝送すべき電気パルス信号を出力す る主回路 1 0 3と、 この主回路 1 0 3の出力端子 1 0 3 Aに入力端子が接続され た駆動回路 1 0 4と、 この駆動回路 1 0 4の出力端子と共通導体間に接続された 半導体レーザのような発光素子 1 0 5とを具備し、 発光素子 1 0 5は駆動回路 1 0 4から与えられる電気パルス信号によって発光して光パルスを発生し、 この光 パルスは光コネクタ 1 0 9 Aを介して光伝送路 1 0 9に送られ、 光パルス受信装 置 1 0 2へ伝送される。
光パルス受信装置 1 0 2は、 ホトダイオードのような受光素子 1 0 6と、 この 受光素子 1 0 6に入力端子力 s '接続された検出回路 1 0 7と、 この検出回路 1 0 7 の出力端子に入力端子が接続された主回路 1 0 8とを具備し、 光伝送路 1 0 9を 通じて伝送された光パルスは光コネクタ 1 0 9 Bを介して受光素子 1 0 6に入力 される。 受光素子 1 0 6は受光した光パルスを電気パルス信号に変換して検出回 路 1 0 7へ送り、 検出回路 (一般に電流一電圧変換増幅器によって構成される) 1 0 7は供給された電気パルス信号を取り出して主回路 1 0 8へ与える。 主回路 1 0 8は入力された電気パルス信号に基づいて各種の処理を実行する。
一般に、 発光素子 1 0 5としてレーザダイォード力'使用されている力、 レーザ ダイオードは、 良く知られているように、 温度変化によって発光量が変動する欠 点がある。 図 2 4はレーザダイオードの注入電流対出力光パワー特性を示す。 図 2 4に示す曲線 Aは温度 T 1 (°C) の場合の注入電流対出力光パワーの特性、 曲 線 Bは温度 T 2 (°C) ( T K T 2 ) の場合の注入電流対出力光パワーの特性を 示す。
図 2 4から明らかなように、 発光状態に至る電流値 I 0N1と I 0N2は周囲の温度 によって変動する。 この結果、 駆動回路 1 0 4において同一の尖頭値を持つ駆動 電流 I Dによって発光素子 1 0 5を駆動したとすると、 発光素子 1 0 5は図 2 4 に示すように温度が T l (°C) の場合には O P 1の光パルスを出力し、 温度 T 2 (°C) の場合には光パルス O P 2を出力する。
図 2 4から容易に理解できるように、 従来は周囲の温度力変化すると、 発光素 子 1 0 5から出力される光パルスの光パワーが変化する。 従って、 光パルス〇P 1 と光パルス O P 2を光パルス受信装置 1 0 2で受信した場合、 図 2 5に示すよ うに、 受信信号の尖頭値の大小に応じて光パルスの受信を検出する閾値電圧 E C を横切る光パルス波形のタイミングにずれ Δ t 1, Δ t 2力 s生じる。 即ち、 温度 変動がジッタとなって受信装置 1 0 2に伝送される不都合力 s生じる。
ジッタの発生が不都合となる実用例として、 上述の光伝送方式を例えば半導体 デノ ィス試,験装置に適用した場合を挙げることができる。 上記したように、 半導 体デバイス試験装置は、 ソケッ トを装着したテストへッドが試験装置本体と別体 に構成されている。 テストへッ ドは被試験半導体デバイスに所定のパターンの試 験信号等を印加する ドライノ と、 被試験半導体デバイスの応答出力信号を受信し て論理レベル判定を行なうコンパレータとを含み、 かつ半導体デバイスとのィン タフエース動作を行なう。 また、 これら試験装置本体とテストヘッ ドとの間には 多数の信号伝送路が設けられている。
これら信号伝送路として光ファイバのような光伝送路を使用し、 高速信号 (光 パルス) を伝送できるように構成した場合には、 光伝送路 1 0 9は多チャネルが 必要となる。 このように多チャネルの光伝送路によって多チャネルの光信号を受 授するシステムを構築した場合に、 温度変動によって伝送されるパルスにジッタ 力 s生じ、 さらに各チャネルごとにジッタ量のバラツキ力5'生じた場合には、 各チヤ ネルの伝送路を通じて伝送される光信号の相互間にタイミング誤差が発生し、 こ のタイミング誤差の発生に起因して半導体デバイス (I C ) の試験を正常に実施 できないという不都合が生じる。
上記のような光伝送システムに使用される光強度変調装置の一例を図 2 6に示 す。 この光強度変調装置は、 ディジタル入力信号 (電気パルス信号) の信号電圧 と閾値電圧とを入力としてこれら電圧を比較する入力側比較器 2 0 0と、 この入 力側比較器 2 0 0の比較結果に応じてオン Zオフする電流スィッチ回路 2 0 1と、 この電流スィッチ回路 2 0 1のオンノ才フによって生成される電流波形に基づい て駆動される半導体レーザ 2 0 2とを具備する。 電流スィッチ回路 2 0 1は、 ェ ミッタが共通に接続された一対のトランジスタ T R 1、 T R 2と、 ベースが共通 に接続された一対のトランジスタ 2 0 3、 2 0 5とを含む。 一対のトランジスタ T R 1、 T R 2のコレクタは半導体レーザ 2 0 2の対応する端子にそれぞれ接続 され、 共通接続されたエミッタはトランジスタ 2 0 3のコレクタに接続されてい る。
上記構成の光強度変調装置においては、 電流スィッチ回路 2 0 1を構成するェ ミッタ共通接続の一対のトランジスタ T R 1、 T R 2のうちの図において右側の トランジスタ T R 2がォンのときに、 予めトランジスタ 2 0 3によつて制御され た電流が半導体レーザ 2 0 2に注入され、 この注入電流の大きさに対応したレべ ルの光出力が半導体レーザ 2 0 2から得られる。 なお、 半導体レーザ 2 0 2を駆 動するために必要な直流ノ ィァス電流は、 コレクタが半導体レーザ 2 0 2の電流 注入側端子に接続されている トランジスタ 2 0 4によって制御される。
上記光強度変調装置を使用して 2値の光信号、 即ち、 光パルスを発生させるこ とにより、 光パルスを高速で伝送する光伝送システムを実現することができる。 しかしな力'ら、 例えば前述した半導体デバイス試験装置においては、 試験装置本 体とテストヘッ ド間の光信号伝送路に、 多数の周期のパルスが混在し、 その上、 光変調する際に非常に高いタイミング精度が要求される。 従って、 上述の光伝送 システムを半導体デバイス試験装置に適用する場合には、 次のような問題が生じ る恐れがある。
( 1 ) 光強度は一般的にレベルが不安定である (f&Jl波成分の揺らぎ力 s大きい) ため、 図 2 7の下側に示すように、 受信側において固定の識別レベルで 2値の光 信号を識別した場合にはデータ (0、 1 ) やタイミングに図示するような誤りが 生じてしまう。 なお、 図 2 7の上側の波形は送信側の伝送すべき電気パルス信号 を示す。
( 2 ) 半導体レーザのような発光素子の立上がり時間 (発光遅延時間) は素子 の温度によって変化し、 かつ一般的には素子によって異なるため、 温度変化によ つて、 或いは各素子間において発光遅延時間に図 2 8に示すような差が発生する。 この発光遅延時間の差は上記のタイミング誤差の要因となる。
上記 (1 ) の問題を解決する方法として、 発光素子の温度を一定に保つように 温度制御を行なうことや、 光強度をモニタして発光素子の出力を一定レベルに保 持する (光強度を安定化する) ように制御すること力 是案されている力、 いずれ の解決方法においても伝送モジュ一ルが高価になるので、 半導体デノ ィス試験装 置のように多数の伝送ラインを必要とする装置では実現できても価格の点で問題 がある。 さらに、 光強度の安定化は、 高速で光パルスを伝送する場合には実現が 困難である。
また、 上記 (2 ) の問題を解決する方法として、 2値の光信号を発光素子の発 光と消光によって表わすのではなく、 図 2 9に示すように、 発光素子をあるレべ ルの光 (オフセッ ト光) を発光した状態に常に駆動しておき、 このオフセッ ト光 からの光強度の変化によって 2値の光信号を表わす方法が提案されている。 この 場合には発光素子力 s常時発光—しているので温度変化による影響や各素子間の発光 遅延時間の差が生じ難い。 しかしながら、 2値データ 「1」 と 「0」 間の光強度 の差力 s小さくなるから、 S ZNが低下する。 その上、 2値信号の両データ 「1」 と 「0」 が光強度の変動の影響を受けるので、 上記 (1 ) の問題の解決が益々重 要となる。
なお、 例えば A T M (非同期転送モード) 交換機のように多数の伝送ラインを 必要とする技術分野において用いられている多チャネル伝送モジュールにおいて は、 図 3 0の下側に示すように、 受信側において光信号の適当な交流成分のみを 取り出し (A C結合) 、 識別レベルを 0 Vにおいてこの 2値信号を識別する方法 を採用している。 なお、 図 3 0の上側の波形は送信側の伝送すべき電気パルス信 号を示す。 '
この方法によれば、 確かに、 比較的簡単にタイミングやデータの誤りを少なく することができる。 しかし、 2値データ 「1」 と 「0」 の割合が一方のデータ値 に片寄ると、 識別レベルが片寄ったデータ値の側にずれてしまい、 結果的にタイ ミングの誤り力生じることになる。 また、 長時間固定された D C的なデータを識 別することができないことは勿論であり、 その上、 いずれかのデータ値が長時間 続いているという状態でさえ検出することができないという欠点がある
換言すれば、 上記識別レベルを 0 Vにおいた A C結合方法ではデータ値が一定 の状態 (例えば、 信号のない状態) に放置された場合に、 その間の雑音による低 レベルの揺らぎを誤って 2値信号の一方のデータ値として検出してしまう。 従つ て、 これを防止するために常に 2値信号のデータ値を変化させなくてはならない という欠点がある。 よって、 例えば半導体デバイス試験装置において試験装置本 体とテストへッ ド間に信号を伝送する場合のように、 多数の周期の信号が混在し、 2値信号のデータ値が一方の値 (0又は 1 ) に著しく片寄るような事例には、 即 ち、 直流成分が存在し、 かつタイミング精度を重視するような事例には、 利用で きない。
さらに、 図 3 1に示すように、 2値の電気信号の立上がり及び立下がりェッジ をそれぞれ検出し、 各エツジの検出に対応するパルス信号に続けて極性の反転し たパルス信号を生成し、 即ち、 立上がりエッジの検出時には正極性のパルス信号 に続けて極性の反転した負パルス信号を生成して互いに極性の反転したパルス対 とし、 立下がりエッジの検出時には負極性のパルス信号に続けて極性の反転した 正パルス信号を生成して互いに極性の反転したパルス対とし、 これら極性反転パ ルス対に基づいて半導体レーザを駆動して同様に極性力互レゝに反転する光ノヽ'ルス 対を発生させ、 受信側へ伝送するという方法も提案されている。
この方法によれば、 伝送される光パルス対は伝送すべき 2値の電気信号の立上 がり及び立下がりの個々のタイミングを指示する光信号であるから、 受信側では このタイミングを指示する光信号を受光して立上がり及び立下がりのタイミング を識別し、 元の 2値の電気信号を再現することができる。 従って、 例えば半導体 デバイス試験装置において試験装置本体とテストへッ ド間に信号を伝送する場合 のように、 多数の周期の信号が混在し、 2値信号のデータ値が一方の値 (0又は 1 ) に著しく片寄っているような事例にも、 上首尾に適用することができる。 つまり、 受信側では立上がり及び立下がりに関するタイミング信号として極性 が互いに反転する光パルス対を受光するだけであるので、 識別レベルがデ一タ値 の片.寄つた側にずれてタイミングの誤りが生じたり、 データ値の誤り力発生する ことはない。 また、 長時間固定された D C的なデータ値についても正確に識別す ることができる。
このように、 2値の電気信号の立上がり及び立下がりエッジを検出し、 各エツ ジの検出に対応して極性反転ノ、。ルス対を生成し、 半導体レーザを駆動する従来の 駆動回路の一例を図 3 2に示す。 .
この駆動回路は、 一方の入力端子に伝送すべき 2値の電気信号が入力されるォ ァ (O R ) 回路 3 0 0と、 上記伝送すべき 2値の電気信号を極性反転する第 1の 反転回路 (インバ一タ) 3 0 1と、 この反転回路 3 0 1からの出力信号を所定時 間だけ遅延させて上記 O R回路 3 0 0の他方の入力端子並びにアンド (A N D ) 回路 3 0 3の一方の入力端子にそれぞれ供給する第 1の遅延回路 3 0 2と、 この 遅延回路 3 0 2からの出力信号を極性反転する第 2の反転回路 (インバ—タ) 3 0 4と、 この反転回路 3 0 4の出力信号を所定時間だけ遅延させて上記 A N D回 路 3 0 3の他方の入力端子に供給する第 2の遅延回路 3 0 5とを具 る。 なお、 O R回路 3 0 0と A N D回路 3 0 3の出力信号はそれぞれ極性が反転されて半導 体レーザ 3 1 2に供給される。
上記構成の駆動回路によれば、 図 3 3に示すように、 入力された 2値の電気信 号の立上がり及び立下がりエッジ (a ) 〜 (c ) から、 正論理のパルス波形 (d ) と負論理のパルス波形 (e ) 力生成され、 これらパルス波形カ¾ロ算されて極性が 互いに反転する極性反転パルス対 (f ) 力 ?生成されること力 ?容易に理解できる。 半導体レーザ 3 1 2はこの極性反転パルス対 (f ) に基づいて駆動され、 図 3 1 の下段に示したような極性が互レゝに反転する光ノヽ。ルス対を発生することになる。 しかし、 2値の入力電気信号の立上がり及び立下がりエッジ (a ) 〜 (c ) か ら生成された正論理のパルス波形 (d ) 及び負論理のパルス波形 (e ) を加算し て極性反転パルス対 (f ) を生成する場合、 この極性反転パルス対の極性反転部 は正論理のパルス波形 (d ) 及び負論理のパルス波形 (e ) の 2つのパルス波形 の継ぎ目となる。 このため、 上記従来の駆動回路では、 高い精度が要求される極 性反転パルス対の極性反転部が不連続なェッジとなる場合があり、 タイミング精 度が劣化する恐れがあつた c 発明の開示
この発明の第 1の目的は、 上記従来技術の問題点を克服した光伝送システム及 び光伝送方法を提供することである。
この発明の第 2の目的は、 タイミング精度が高く、 しかも、 周期力不定で直流 成分が存在するような信号をも高い精度で高速に光伝送することができる光伝送 システム及び光伝送方法を提供することである。
この発明の第 3の目的は、 上記光伝送システム又は光伝送方法を適用した半導 体デノ ィス試験装置を提供することである。
この発明の第 4の目的は、 温度変動があっても受信側に伝送される信号にジッ タ力 s発生することのない光パルス信号伝送方法を提供することである。
この発明の第 5の目的は、 上記光パルス信号伝送方法を適用した光パルス検出 方法を提供することである。
この発明の第 6の目的は、 極性が互いに反転する極性反転パルス対の極性反転 部が不連続なエツジとならないようにした伝送波形変換方法を提供することであ る。 ―
この発明の第 7の目的は、 極性力 s '互いに反転する極性反転パルス対の極性反転 部が不連続なエッジとならない、 かつタイミング精度の高い光強度変調装置を提 供することである。
この発明の第 8の目的は、 上記光強度変調装置を用いた光伝送システム及び半 導体デバイス試験装置を提供することである。
この発明の第 1の面によれば、 送信側に、 伝送すべき信号波形の立上がりエツ ジ及ぴ立下がりエツジをそれぞれ検出する第 1及ぴ第 2のエツジ検出手段と、 前 記第 1のェッジ検出手段による立上がりエツジ検出タイミングを境として桎性が 互いに反転する極性反転ノ、。ルス対からなる第 1の伝送用パルス信号を発生する第 1の伝送用バルス発生手段と、 前記第 2のエツジ検出手段による立下がりエツジ 検出タイミングを境として極性力'互いに反転する極性反転パルス対からなる第 2 の伝送用パルス信号を発生する第 2の伝送用パルス発生手段と、 前記第 1の伝送 用パルス信号に基づいて第 1の光強度変調信号を生成する第 1の光強度変調手段 と、 前記第 2の伝送用パルス信号に基づいて第 2の光強度変調信号を生成する第 2の光強度変調手段とを具備し、 受信側に、 前記第 1の光強度変調信号を受信し て、 その交流成分のみを取り出した第 1の受信信号を得る第 1の A C結合受信手 段と、 前記第 2の光強度変調信号を受信して、 その交流成分のみを取り出した第 2の受信信号を得る第 2の A C結合受信手段と、 前記第 1の受信信号から立上が りタイミングを識別する第 1の識別手段と、 前記第 2の受信信号から立下がりタ ィミングを識別する第 2の識別手段と、 前記識別された立上がりタイミング及び 立下がりタイミングに基づいて前記伝送すべき信号の波形に関する立上がりエツ ジ及び立下がりエツジを再現する信号再生手段とを具備する光伝送システム力提 供される。
前記第 1の識別手段は、 前記第 1の受信信号の極性が反転するタイミングを立 上がりタイミングとして識別し、 前記第 2の識別手段は、 前記第 2の受信信号の 極性が反転するタイミングを立下がりタイミングとして識別する。
また、 前記第 1の識別手段は、 立上がりタイミング識別の基準となる立上がり 識別基準レベルと、 立上がりタイミングの識別動作開始タイミングを与える立上 がり識別開始レベルとに基づいて、 前記第 1の受信信号の立上がり力 s '前記立上が り識別開始レベルを横切った時点から一定の時間だけ動作状態とされ、 この動作 状態中に前記第 1の受信信号が前記立上がり識別基準レベルを横切った時点を立 上がりタイミングとして識別し、 前記第 2の識別手段は、 立下がりタイミング識 別の基準となる立下がり識別基準レベルと、 立下がりタイミングの識別動作開始 タイミングを与える立下がり識別開始レベルとに基づいて、 前記第 2の受信信号 の立下がり力 ?前記立下がり識別開始レベルを横切った時点から一定の時間だけ動 作状態とされ、 この動作状態中に前記第 2の受信信号が前記立下がり識別基準レ ベルを横切った時点を立下がりタイミングとして識別する。
前記信号再生手段は、 前記第 1の識別手段にて識別された立上がりタイミング をセッ ト信号とし、 前記第 2の識別手段にて識別された立下がりタイミングをリ セッ ト信号とする非同期 S Rフリップフロップ回路により構成されている。 この発明の第 2の面によれば、 送信側に、 伝送すべき信号波形から立上がり ェッジ及び立下がりエツジをそれぞ 出する第 1及び第 2のェッジ検出手段と、 前記第 1のエッジ検出手段による立上がりエッジ検出タイミングを境として極性 力互いに反転する極性反転パルス対からなる第 1の伝送用パルス信号を発生する 第 1の伝送用パルス発生手段と、 前記第 2のエツジ検出手段による立下がりエツ ジ検出タイミングを境として、 前記第 1の伝送用パルス信号とは互いに極性が反 転した関係にある、 極性が互いに反転する極性反転ノ、°ルス対からなる第 2の伝送 用パルス信号を発生する第 2の伝送用パルス発生手段と、 前記第 1及び第 2の伝 送用ノ、レス信号に基づいて ^^度変 i言号を生成する光強度変調手段とを具備し、 受信側に、 前記光強度変調信号を受信して、 その交流成分のみを取り出した受信 信号を得る A C結合受信手段と、 前記受信信号から、 前記極性反転の関係に基づ いて、 前記第 1及び第 2の伝送用パルス信号に関係する信号を区別するとともに、 立上がりタイミング及び立下がりタイミングを識別する識別手段と、 前記立上が りタイミング及び立下がりタイミングに基づいて、 前記伝送すべき信号の波形に 関係する立上がりエツジ及び立下がりエツジを再現する信号再生手段とを具備す る光伝送システム力提供される。 - 前記識別手段は、 前記受信信号のうち前記第 1の伝送用パルス信号に関係する 信号の極性が正極性から負極性へ反転するタイミングを立上がりタイミングとし て識別する第 1の識別回路と、 前記受信信号のうち前記第 2の伝送用パルス信号 に関係する信号の極性力 s負極性から正極性へ反転するタイミングを立下がりタイ ミングとして識別する第 2の識別回路とからなる。
また、 タイミング識別の基準となる識別基準レベルと、 立上がりタイミングの 識別動作開始タイミングを与える立上がり識別開始レベル及び立下がりタイミン グの識別動作開始タイミングを与える立下がり識別開始レベルとに基づいて、 立 上がりタイミングを識別する際は、 前記受信信号の立上がり力 s前記立上がり識別 開始レベルを横切った時点で前記第 1の識別手段が一定の時間だけ動作状態とさ れると同時に、 前記第 2の識別手段が動作不能状態とされ、 第 1の識別手段が動 作状態中に前記受信信号が前記識別基準レベルを横切った時点を立上がりタイミ ングとして識別し、 立下がりタイミングを識別する際は、 前記受信信号の立下が りが前記立下がり識別開始レベルを横切った時点で前記第 2の識別手段が一定の 時間だけ動 i 態とされると同時に、 前記第 1の識別手段カ¾)1乍不能状態とされ、 第 1の識別手段が動作状態中に前記受信信号が前記識別基準レベルを横切つた時 点を立下がりタイミングとして識別する。
前記信号再生手段は、 前記識別手段にて識別された立上がりタイミング、 立下 がりタイミングをそれぞれセッ ト信号、 リセッ ト信号とする非同期 S Rフリップ フロップ回路により構成されている。
この発明の第 3の面によれば、 請求の範囲 1項乃至第 8項のいずれか 1項に 記載の光伝送システムを備え、 2値信号を送出する試験装置本体と前記 2値信号 を受信するテストへッ ドとが光ファイバにより接続され、 前記試験装置本体と前 記テストへッ ドとの間において前記光伝送システムを用いた光伝送が行われる半 導体デバィス試験装置が提供される。
この発明の第 4の面によれば、 伝送すベき信号波形の立上がりエツジ及び立下 がりエッジを検出し、 これらエッジの検出タイミングを境にして立上がりタイミ ング及び立下がりタイミングを示すタイミング信号を光伝送ライン上に送出する 送信工程と、 前記光伝送ラィン上に送出されたタイミング信号を受信し、 この受 信信号の立上がりタイミング及ぴ立下がりタイミングに基づいて前記伝送すべき 信号波形に関係する立上がりエツジ及び立下がりエツジを再現する受信工程とを 有する光伝送方法が提供される。
この発明の第 5の面によれば、 伝送すべき信号波形の立上がりエツジ及ぴ立下 がりエッジをそれぞれ検出する第 1の工程と、 前記立上がりエツジ検出タイミン グを境として極性力 ?互いに反転する極性反転パルス対からなる第 1の伝送用パル ス信号を発生するとともに、 前記立下がりエツジ検出タイミングを境として極性 力'互いに反転する極性反転ノ、。ルス対からなる第 2の伝送用パルス信号を発生する 第 2の工程と、 前記第 1の伝送用パルス信号に基づいて第 1の光強度変調信号を 生成すると共に、 前記第 2の伝送用パルス信号に基づいて第 2の光強度変調信号 を生成し、 これら変調信号を別々に光伝送ライン上に送出する第 3の工程と、 前 記第 1及び第 2の光強度変調信号をそれぞれ受信して、 それらの交流成分のみを 取り出した第 1及び第 2の受信信号を得る第 4の工程と、 前記第 1の受信信号か ら立上がりタイミングを識別すると共に、 前記第 2の受信信号から立下がりタイ ミングを識別し、 この識別した立上がりタイミング及ぴ立下がりタイミングに基 づいて前記伝送すべき信号波形に関係する立上がりエツジ及び立下がりエツジを 再現する第 5の工程と、 を有する光伝送方法が提供される。
前記第 5の工程における立上がりタイミング及び立下がりタイミングの識別を、 前記第 1の受信信号の極性が反転するタイミングを立上がりタイミングとし、 前 記第 2の受信信号の極性が反転するタイミングを立下がりタイミングとして識別 することにより行う。 .
また、 立上がりタイミングを識別する場合には、 立上がりタイミング識別の基 準となる立上がり識別基準レベルと、 立上がりタイミングの識別動作開始タィミ ングを与える立上がり識別開始レベルとに基づいて、 前記第 1の受信信号の立上 がり力 s前記立上がり識別開始レベルを横切った時点から一定時間内に前記第 1の 受信信号が前記立上がり識別基準レベルを横切った時点を立上がりタイミングと して識別し、 立下がりタイミングを識別する場合には、 立下がりタイミング識別 の基準となる立下がり識別基準レベルと、 立下がりタイミングの識別動作開始タ ィミングを与える立下がり識別開始レベルとに基づいて、 前記第 2の受信信号の 立下がり力前記立下がり識別開始レベルを横切った時点から一定時間内に前記第 2の受信信号が前記立下がり識別基準レベルを横切った時点を立下がりタイミン グとして識別する。
この発明の第 6の面によれば、 伝送すべき信号波形から立上がりエツジ及ぴ立 下がりエッジをそれぞれ検出する第 1の工程と、 前記立上がりエツジ検出タイミ ングを境として極性力'互いに反転する極性反転パルス対からなる第 1の伝送用パ ルス信号を発生すると共に、 前記立下がりエッジ検出タイミングを境として、 前 記第 1の伝送用パルス信号とは互いに極性が反転した関係にある、 桎性が互いに 反転する極性反転ノ、。ルス対からなる第 2の伝送用パルス信号を発生する第 2のェ 程と、 前記第 1及び第 2の伝送用パルス信号に基づいて光強度変調信号を生成し、 この変調信号を光伝送ライン上に送出する第 3の工程と、 前記光強度変調信号を 受信して、 その交流成分のみを取り出した受信信号を得る第 4の工程と、 前記受 信信号から、 前記極性反転の関係に基づいて前記第 1及び第 2の伝送用パルス信 号に関係する信号を区別すると共に、 立上がりタイミング及び立下がりタイミン グを識別し、 この識別した立上がりタイミング及び立下がりタイミングに基づい て前記伝送すべき信号波形に関係する立上がりエツジ及ぴ立下がりエツジを再現 する第 5の工程とを有する光伝送方法が提供される。
前記第 5の工程における立上がりタイミング及び立下がりタイミングの識別を、 前記受信信号のうち前記第 1の伝送用パルス信号に関係する信号の極性が正極性 から負極性へ反転するタイミングを立上がりタイミングとし、 前記受信信号のう ち前記第 2の伝送用パルス信号に関係する信号の極性力'負極性から正極性へ反転 するタイミングを立下がりタイミングとして識別する。
また、 タイミング識別の基準となる識別基準レベルと、 立上がりタイミングの 識別動作開始タィミングを与える立上がり識別開始レベル及び立下がりタイミン グの識別動作開始タイミングを与える立下がり識別開始レベルとに基づいて、 立 上がりタイミングを識別する場合には、 前記受信信号の立上がり力5'前記立上がり 識別開始レベルを横切った時点から一定の時間だけ立上がりタイミングの識別が 行われるようにすると同時に、 立下がりタイミングの識別が行われないようにし、 この時間内に前記受信信号力5'前記識別基準レベルを横切った時点を立上がり夕ィ ミングとして識別し、 立下がりタイミングを識別する場合には、 前記受信信号の 立下がり力'前記立下がり識別開始レベルを横切つた時点から一定の時間だけ立下 がりタイミングの識別が行なわれるようにすると同時に、 立上がりタイミングの 識別が行なわれないようにし、 この時間内に前記受信信号力 s前記識別基準レベル を横切った時点を立ち下がりタイミングとして識別する。
この発明の第 7の面によれば、 送信側に設けた発光素子に電気パルスを与え、 この電気パルスにより発光素子から光パルスを発光させ、 この光パルスを光学伝 送路を通じて受信側に伝送し、 受信側に設けた受光素子によって電気ノ、°ルスに変 換し、 この電気パルスを受信信号として取り込む光パルス伝送方法において、 上 記送信側において、 上記発光素子に与える電気ノ、レスを直流バイアス電流を中心 に正と負に対称に変化する正負対称波形信号とし、 光伝送路上の光の平均値を一 定値に維持させることを特徴とする光パルス伝送方法が提供される。
上記第 7の面においては、 受信側で受信した正負対称波形信号の検出点を上記 バイァス電流値を横切るゼロクロス点に規定する。
この発明の第 8の面によれば、 送信側に設けた発光素子に電気パルスを与え、 この電気パルスにより発光素子から光パルスを発光させ、 この光パルスを光学伝 送路を通じて受信側に伝送し、 受信側に設けた受光素子によって電気パルスに変 換し、 この電気パルスを受信信号として取り込む光パルス伝送方法において、 上 記送信側において、 上記発光素子に与える電気ノ、レスを前縁側及び後縁側の双方 において、 直流バイアス電流値を中心に正と負に対称に変化する正負対称波形信 号とし、 パルス幅が長いパルスを伝送しても上記光伝送路上の光の平均値を一定 値に維持させることを特徴とする光パルス伝送方法が提供される。
上記第 8の面においては、 受信側の受信検出点を上記前縁側及び後縁側で発生 する正負対称波形信号の何れか一方のゼロクロス点によって規定する。
また、 受信側に上記直流バイァス電流値に対応する直流電圧を発生する平滑化 回路を設け、 この平滑化回路で発生する直流電圧をヒステリシス特性を持つ電圧 比較器の基準電圧として供給し、 この基準電圧を中心に上記ヒステリシス特性の ヒステリシス幅を越える電位変化を受信信号として検出し、 上記電圧比較器から 出力させる。 - この発明の第 9の面によれば、 ディジタル入力信号を、 この入力信号の立上が り又は立下がりのタイミング—を境として極性が互いに反転する極性反転パルス対 よりなる伝送波形に変換する伝送波形変換方法であって、 前記ディジタル入力信 号から、 この入力信号と波形が等しい第 1の波形と、 前記第 1の波形より一定時 間分の遅延を有し、 振幅が前記第 1の波形の 2倍で、 波形が前記デジタル入力信 号に対して負論理の関係にある第 2の波形と、 前記第 2の波形より一定時間分の 遅延を有し、 前記第 1の伝送波形と波形が等しい第 3の波形をそれぞれ生成し、 前記第 1乃至第 3の波形を重ね合せることにより前記極性が互いに反転する極性 反転パルス対を生成することを特徴とする伝送波形変換方法が提供される。 この発明の第 1 0の面によれば、 発光手段と、 ディジタル入力信号に応じて前 記発光手段を駆動する駆動手段とを有する光強度変調装置において、 前記駆動手 段は、 前記ディジタル入力信号と波形が等しい第 1の電流波形を形成する第 1の 電流スィッチ手段と、 前記第 1の波形に対して一定時間分の遅延を有し、 振幅が 前記第 1の波形の 2倍で、 波形力'前記デジタル入力信号に対して負論理の関係に ある第 2の電流波形を形成する第 2の電流スィッチ手段と、 前記第 2の波形に対 して一定時間分の遅延を有し、 前記第 1の電流波形と波形が等しい第 3の電流波 形を形成する第 3の電流スィッチ手段とを有し、 前記第 1乃至第 3の電流波形を 加算した電流波形で前記発光素子を駆動する光強度変調装置が提供される。 前記第 1乃至第 3の電流スィッチ手段のそれぞれは、 ベースに前記ディジタル 入力信号の反転入力が接続された第 1のトランジス夕と、 ベースに前記ディジタ ル入力信号の入力力 s接続された第 2のトランジスタとを備え、 これら第 1及び第 2のトランジスタのェミッタ力 ?電流源に共通に接続されており、 前記第 1及び第 3の電流スィッチ手段を構成する第 1のトランジスタのコレクタと、 前記第 2の 電流スィッチ手段を構成する第 2のトランジスタのコレクタとが共通に電源供給 ラインに接続されて第 1の出力が形成され、 前記第 1及び第 3の電流スィッチ手 段を構成する第 2のトランジスタのコレクタと、 前記第 2の電流スイッチ手段を 構成する第 1のトランジスタのコレクタと力共通に接続されて第 2の出力が形成 され、 前記第 2の電流スィッチ手段は、 電流源が他の電流スィッチ手段の電流源 の 2倍の電流を供給するように構成されている。 ― また、 前記第 2の電流スィッチ手段は、 第 1のトランジスタのコレクタの入力 ラインに第 1の遅延回路が設けられ、 第 2のトランジスタのコレクタの入力ライ ンに第 2の遅延回路が設けられ、 前記第 3の電流スィッチ手段は、 第 1のトラン ジスタのコレクタの入力ラインに前記第 1の遅延回路及び第 3の遅延回路が直列 に設けられ、 第 2のトランジスタのコレクタの入力ラインに前記第 2の遅延回路 及び第 の遅延回路が直列に設けられている。
また、 前記第 1乃至第 3の電流スィッチ手段の電流源はそれぞれ電流調整用抵 抗を有し、 第 1及び第 3の電流スィッチ手段の電流源の電流調整用抵抗の抵抗値 が等しく、 第 2の電流スィッチ手段の電流源の電流調整用抵抗の抵抗値力 s他の電 流スィッチ手段の電流源の電流調整用抵抗の抵抗値の 2分の 1となるように設定 されている。
この発明の第 1 1の面によれば、 送信側に、 請求の範囲第 2 3項乃至第 2 6項 のいずれか 1項に記載の光強度変調装置を備え、 受信側に、 前記光強度変調装置 によって光強度変調された信号を受信して、 その交流成分のみを取り出した受信 信号を得る A C結合受信手段と、 前記受信信号から、 前記極性が反転する関係に 基づいて、 伝送前のディジタル入力信号の立上がりタイミンク及び立下がりタィ ミングを再現する信号再生手段とを具備する光伝送システム力 s提供される。 この発明の第 1 2の面によれば、 試験装置本体とテストへッドが光ファィバで 接続され、 前記試験装置本体側に、 請求の範囲第 2 3項乃至第 2 6項のいずれか 1項に記載の光強度変調装置を備え、 前記テストへッド側に、 前記光強度変調装 置によって光強度変調された信号を受信して、 .その交流成分のみを取り出した受 信信号を得る A C結合受信手段と、 前記受信信号から、 前記極性が反転する関係 に基づいて、 伝送前のディジタル入力信号の立上がりタイミング及び立下がりタ ィミングを再現する信号再生手段とを具備する半導体デバイス試験装置が提供さ れる。
この発明の第 1 3の面によれば、 試験装置本体とテストへッドが光ファイバで 接続され、 前記テストへッ ド側に、 請求の範囲第 2 3項乃至第 2 6項のいずれか 1項に記載の光強度変調装置を備え、 前記試験装置本体側に、 前記光強度変調装 置によって光強度変調された信号を受信して、 その交流成分のみを取り出した受 信信号を得る A C結合受信手段と、 前記受信信号から、 前記極性が反転する関係 に基づいて、 伝送前のディジタル入力信号の立上がりタイミング及び立下がりタ ィミングを再現する信号再生手段とを具備する半導体デバイス試験装置力 s提供さ れる。 .
この発明では無信号時でも一定の、 しかも発光素子の発光開始点を与える閾値 より大きい値を持つバイアス電流を発光素子に与え、 発光素子を一定の発光量で 発光させる。 これと共に送り出そうとするパルスの極性とは逆極性のパルスを付 加して、 バイアス電流を中心に正と負に対称に振れる正負対称波形信号を生成さ せ、 この正負対称波形信号によって発光素子を駆動する光パルス伝送方法を提案 するものである。
さらに、 この発明では受信側において、 送信側から送られてくるバイァス電流 に対応する ¾Εを信号の検出閾値として利用する光パルス検出方法をも提案する。 従って、 この発明による光パルス伝送方法及び光パルス検出方法を採用するこ とにより、 送信側で温度変動により発光素子の注入電流対出力光パワー特性が変 動しても、 発光素子に流れるバイアス電流が変動し、 このバイアス電流の変動が 光の直流分として受信側に伝送される。
受信側では送られて来た光の直流分をバイアス電圧として再生し、 さらにこの バイアス電圧を基準電圧としてヒステリシス特性を持つ電圧比較器に与え、 電圧 比較器により正負に振れる正負対称波形信号の立上り及び立下りの変化点を検出 する構成とした力、ら、 バイアス電圧が変動しても正負対称波形信号の検出点は時 間方向に移動することはない。 .
その結果、 この発明によれば、 送信側で ¾光素子に温度変化が与えられ、 発光 素子の注入電流対出力光パワー特性が変動しても受信側で検出されるパルスの検 出点は変動しない。 つまり、 ジッタの発生を阻止することができる。 よって多チ ャネルを使ってデータを伝送する装置にこの発明を適用することにより、 各チヤ ネル間で信号にタイミング誤差が発生することがなく、 正しいタイミングでデー タを受授できる利点が得られる。 図面の簡単な説明
図 1はこの発明の第 1の実施例の光信号伝送システムの概略構成を示すプロッ ク図である。
図 2は図 1に示す回路の動作説明図である。
図 3は図 1に示した光信号伝送システムの具体的な回路構成の一例を示すブ 口ック図である。
図 4はこの発明の第 1の実施例の光信号伝送システムを適用した半導体デバイ ス試験装置の概略構成を示すプロック図である。
図 5 ( a ) 〜 (d ) は、 立上がりタイミング及び立下がりタイミングを示す極 性が互いに反転するパルス対の数例を示す波形図である。
図 6はこの発明の第 2の実施例の光信号伝送システムの概略構成を示すブロッ ク図である。
図 7は図 6に示した光信号伝送システムの回路動作を説明するための波形図で ある。
図 8は図 6に示した光信号伝送システムの具体的な回路構成の一例を示すプロ ック図である。
図 9はこの発明の第 2の実施例の光信号伝送システムを適用した半導体デノ ィ ス試験装置の概略構成を示すプロック図である。
図 1 0はこの発明の第 3の実施例の光パルス送信装置の一具体例を示す回路図 である。
図 1 1は図 1 0の光パルス送信装置の動作を説明するためのタイミングチヤ一 トである。
図 1 2はこの発明の第 3の実施例の光パルス検出回路の一具体例を示す回路図 である。
図 1 3は図 1 2の光パルス検出回路の動作を説明するためのタイミングチヤ一 トである。
図 1 4はこの発明の第 3の実施例の光パルス送信装置の他の具体例を示す回路 図である。
図 1 5は図 1 4の光パルス送信装置の動作を説明するための波形図である。 図 1 6はこの発明の第 3の実施例の光パルス送信装置のさらに他の具体例を示 す回路図である。 図 1 7は図 1 6の光パルス送信装置の動作を説明するためのタイミ
トである。
図 1 8はこの発明の第 4の実施例の光強度変調装置の一具体例を示す回路図で ある。
図 1 9は図 1 8の光強度変調装置を使用した光伝送システムの一例を示すブ 口ック図である。
図 2 0は図 1 9の光伝送システムの動作を説明するための波形図である。 図 2 1は図 1 8の光強度変調装置の動作を説明するためのタイミングチャート である。
図 2 2はこの発明の第 4の実施例の光強度変調装置の他の具体例を示す回路図 である。 '
図 2 3は従来の光パルス伝送システムの一例の概略構成を示すプロック図であ る。
図 2 4は図 2 3に示した発光素子の注入電流対出力光パワー特性の一例を説明 するための特性曲線図である。
図 2 5は図 2 3に示す従来の光パルス伝送システムで伝送されたパルスの波形 を説明するための波形図である。
図 2 6は従来の光伝送システムに使用されている光強度変調装置の一例を示す 回路図である。
図 2 7は固定識別レベルで 2値信号を識別した場合のデータ及びタイミングの 誤りを説明するためのタイミングチヤ一トである。
図 2 8は発光素子の発光遅延時間と光強度の関係を示す特性図である。
図 2 9はオフセッ ト光からの光強度変調を説明するための波形図である。 図 3 0は A C結合方式による 2値信号の識別動作を説明するためのタイミング チヤ一トである。
図 3 1は 2値の電気信号の立上り及び立下がりェッジに応じた極性反転パルス 対でこの信号を光伝送する方法を説明するためのタイミングチャートである。 図 3 2は従来の光伝送システムに使用されている光強度変調装置の他の例を示 すブロック図である。 図 3 3は図 3 2に示す光強度変調装置の動作を説明するためのタイミ トである。 発明を実施するための最良の形態
以下、 この発明の実施例について添付図面を参照して詳細に説明する。
図 1はこの発明による光信号伝送システムの第 1の実施例の構成を概略的に示 すブロック図である。 この光信号伝送システムは、 送信側装置 Tと、 受信側装置 と、 これら両装置 T及び R間を接続する光ファイバ 6とによって構成されてい る。
送信側装置 Tは、 立上がりエッジ検出回路 1と、 伝送用パルス発生回路 2と、 光強度変調回路 3とを備え、 受信側装置 Rは、 A C結合受信回路 4 と、 識別回路 5とを備えている。
この光信号伝送システムにおいて伝送される信号は 2値のデータではなくて 2 値信号の波形の立上がりのエッジ、 即ち、 伝送信号の立上がりの振 ΐϊί直 (レベル) 力予め定められた振幅値 (レベル) を越える時点を指示するタイミング信号であ る。 なお、 図 1に示した実施例では、 説明を簡単化するために、 立上がりエッジ のみが伝送される構成を示したが、 実際には、 図に点線で示すように、 2値信号 の波形の立下がりのエツジを伝送する同様の回路構成を含んでおり、 波形の立上 がりエツジ及び立下がりエッジをそれぞれ伝送する 1系統の回路構成になってい る。 .
図 2は図 1に示す種々の回路の動作を説明するためのタイミングチャートであ り、 一例として波形の立上がりのエツジ (立上がりエツジの振幅値が 5 0 %を越 える時点のタイミング) を検出し、 伝送する場合の波形を示す。 以下、 図 2を参 照して各回路の動作を具体的に説明する。
立上がりエッジ検出回路 1は、 通常、 論理回路等によって構成され、 伝送波形
(伝送しょうとする信号の波形を言う) の立上がりのエッジ (タイミング) を検 出して立上がり信号 (a ) を生成するものである。
伝送用パルス発生回路 2は、 立上がりエツジ検出回路 1から出力される立上が り信号 (a ) の立上がりのタイミングに基づいて、 対応する正極性のパルス信号 に続けて極性の反転した負極性のパルス信号を生成して、 立上がりのタイミング を境にして互いに極性の反転したパルス対を発生し、 これを伝送用パルス信号 ( b ) として出力する。
この伝送用パルス信号 (b ) としては、 その形状やパルス幅が元の伝送信号の 波形の最小のパルス間隔よりも十分に短いものを用いる必要がある。 言い換えれ ば、 この伝送用パルス信号 (b ) のパルス幅によって元の伝送信号の波形の最小 パルス間隔が制限されることになる。 なお、 この伝送用パルス信号 (b ) は、 発 生される際にある遅延を受けて、 図に点線で示すように遅延したパルス (e ) に なっても、 この遅延が常に一定で既知の値であれば、 受信側ではタイミング信号 として問題なく使用できる。
光強度変調回路 3は伝送用パルス発生回路 2から発生された伝送用パルス信号
( b ) に基づいて駆動され、 従来から使用されている、 オフセッ ト光に光強度変 調を行なう変調方法を用いて発光素子 (図示せず) を駆動し、 伝送用パルス信号 波形の立上がりェッジの振幅値が予め定められた値を越えるタイミングで互いに 極性の反転した光パルス対を光強度信号 (c ) として出力する。 この光強度信号
( c ) は光ファイバ 6を介して受信側装置 Rに伝送される。
A C結合受信回路 4は、 受信した光強度信号 (c ) を従来から使用されている A C結合の方法により検出する回路であり、 図 2の最下段に示す受信信号 (d ) のような信号力 s検出される。 ここで、 受信される光強度信号 (c ) は立上がりェ ッジを境にして極性力互いに反転する伝送用ノ、リレス信号 (b ) に基づいて変調さ れた光パルス信号であるので、 常に両極性のパルス力 ?存在し、 従って、 検出され る受信信号 (d ) は片方の極性に片寄ったパルスを多く含むというようなことは ない。
識別回路 5は、 A C結合受信回路 4にて検出された受信信号 (d ) から立上が りエッジ (予め定められた振幅値を越えるタイミング) を識別する。 この立上が りタイミングの識別では、 タイミング識別の基準となる識別レベル L 1 (図 2参 照) と、 予めノイズと信号力 離できる程度の、 十分に低いレベルに設定された、 識別動作開始のタイミングを与える識別開始レベル L 2 (図 2参照) とに基づい て、 次のような識別動作が行われる。 受信信号 (d ) の立上がりエッジが識別開始レベル L 2を横切った時点 Aで瞬 間的に識別回路 5を作動し、 一定の遅延時間内に識別レベル L 1を横切った時点 Bを識別してタイミングパルスを発生する。 つまり、 立上がりェッジが識別開始 レベル L 2を横切った時点 Aからパルス幅に相当する程度の時間だけ識別回路 5 の作動状態を保ち、 受信信号 (d ) が識別レベル L 1を横切った時点 Bを識別タ イミングと決定し、 タイミングパルスを発生する。 この識別動作によれば、 ノヽつレ ス力 s存在しないときには識別回路 5は作動しないから、 ノイズによる低レベルの 揺らぎを誤ってパルスと識別してしまうことはない。
なお、 受信信号 (d ) 力 ら立下がりエッジを識別する動作も同様にして実行で きることは明白であるので、 ここではその説明を省略する。
上記のように構成された光信号伝送システムでは、 立上がり側の識別回路から 発生されたタイミングパルス (立上がりタイミング) を、 例えば非同期 R S (セ ッ ト—リセッ ト) フリツプフ口ップ回路のセッ ト信号として用いれば、 立上がり ェッジが再現でき、 さらに、 立下がり側の識別回路から同様に発生されたタイミ ングパルス (立下がりタイミング) をリセッ ト信号として用いれば、 立下がりェ ッジが再現できる。 よって、 これら再現されたエッジより元の 2値の伝送信号波 形を再現することができる。
以上のように、 第 1の実施例では、 伝送したい信号波形の立上がり '立下がり タイミングをそれぞれ別々に取り扱い、 それぞれのタイミングに基づいて各タイ ミングを境にして極性力互いに反転するパルス対よりなる伝送パルス信号に変換 し、 この伝送パルス信号に基づいてオフセッ ト光を強度変調して極性反転光パル ス対を光強度信号として受信側装置へ伝送し、 受信側装置では、 伝送された光強 度信号を A C結合受信し、 パルスが存在する場合にのみ識別回路を動作させるこ とにより立上がり ·立下がりの識別タイミングを検出し、 得られた立上がり '立 下がりのタイミング信号から元の伝送信号波形を電気的に再現するように構成さ れている。
従って、 例えば半導体デバイス試験装置の試験装置本体とテストへッ ドとの間 において伝送される信号ように、 多数の周期が混在し、 伝送される 2値データ値 がー方の値 (0又は 1 ) に著しく片寄っている信号でも、 信号波形の立上がり · 立下がりタイミングをそれぞれ別々に伝送することで、 高速の、 かつ精度の高い 光伝送が可能となる。
次に、 上述した光信号伝送システムを実現する具体的な回路構成について説明 する。 ただし、 以下に説明する回路構成は、 本伝送システムを実現する回路構成 の一例であり、 本発明の構成を限定するものではない。
図 3は、 図 1に示した光信号伝送システムの具体的な回路構成の一例を示すブ ロック図である。 送信側装置 Tには、 立上がりエッジ検出回路 1 1 a、 伝送用パ ルス発生回路 1 2 a、 バイアス固定 L D駆動回路 1 3 aからなる第 1の送信回路 (立上がりエツジ送信回路) と、 立下がりエツジ検出回路 1 1 b、 伝送用パルス 発生回路 1 2 b、 バイアス固定 L D駆動回路 1 3 bからなる第 2の送信回路 (立 下がりエッジ送信回路) とが設けられ、 受信側装置 Rには、 第 1の送信回路から 光ファイバを介して送出された光信号を受信する A C結合受信回路 1 4 a、 この A C結合受信回路 1 4 aから出力される受信信号の A C成分から立上がりのタイ ミングを検出する識別回路 1 5 aからなる第 1の受信回路 (立上がりエッジ受信 回路) と、 第 2の送信回路から光ファイバを介して送出された光信号を受信する A C結合受信回路 1 4 b、 この A C結合受信回路 1 4 bから出力される受信信号 の A C成分から立下がりのタイミングを検出する識別回路 1 5 bからなる第 2の 受信回路 (立下がりエッジ受信回路) と、 識別回路 1 5 aの出力をセッ ト信号と し、 識別回路 1 5 bの出力をリセッ ト信号とする非同期 R Sフリ ップフロップ 1 6と力設けられている。
立上がり及び立下がりエッジ検出回路 1 1 a及ぴ 1 1 b、 伝送用パルス発生回 路 1 2 a及び 1 2 b、 A C結合受信回路 1 4 a及び 1 4 bは上述の図 1に示した 対応する回路と同様の回路構成を有し、 かつ同様の重 乍を行なうものであるので、 ここではそれらの説明を省略する。
受信側のバイアス固定 L D駆動回路 1 3 a及び 1 3 bは発光素子であるレーザ ダイオード (図示せず) を駆動する回路であり、 伝送用パルス発生回路 1 2 a及 び 1 2 bが発生する、 立上がり及び立下がりのタイミングを境にして極性力 s互い に反転するパルス対を駆動信号としてレーザダイォードを駆動し、 光強度変調信 号を発生させる。 このバイアス固定 L D駆動回路 1 3 a及び 1 3 bを使用して光 強度変調信号を生成する際には、 予めバイアス電流をレーザダイォードに印加し て常にレーザダイオードを発光させておき (オフセッ ト光) 、 駆動信号に応じた 変調をレーザダイオードの駆動電流に加えるといった従来からの手法が用いられ 識別回路 1 5 aはタイミング識別用の比較器 1 5 0 a、 この比較器 1 5 0 aを 動作させるか否かを判別するための比較器 1 5 1 a、 遅延調整回路 1 5 2 a、 遅 延 ·時定数調整回路 1 5 3 a及び 1 5 4 aから構成されている。 同様に、 識別回 路 1 5 bはタイミング識別用の比較器 1 5 0 b、 この比較器 1 5 0 bを動作させ るか否かを判別するための比較器 1 5 1 b、 遅延調整回路 1 5 2 b、 遅延 ·時定 数調整回路 1 5 3 b及び 1 5 4 bから構成されている。 これら識別回路 1 5 a及 ぴ 1 5 bは共に同じ回路構成を有しているので、 以下においては識別回路 1 5 a の構成についてのみ説明し、 識別回路 1 5 bの説明は省略する。
識別回路 1 5 aにおいては、 A C結合受信回路 1 4 aの出力が分岐され、 その 一方が比較器 1 5 1 aの一方の入力端子に、 他方が遅延調整回路 1 5 2 aを介し て比較器 1 5 0 aの一方の入力端子にそれぞれ供給される。 比較器 1 5 1 aの他 方の入力端子には識別開始基準電圧が入力されており、 この識別開始基準電圧と A C結合受信回路 1 4 aからの入力電圧とを比較することにより、 比較器 1 5 0 aを動作させるか否かを決定する。 この比較器 1 5 1 aの出力は遅延 ·時定数調 整回路 1 5 3 aを介して比較器 1 5 0 aのイネ一ブル(Enabl e)信号入力端子に入 力され、 比較器 1 5 0 aの動作を制御できるようになっている。
比較器 1 5 0 aの他方の入力端子は接地されており、 接地電位と A C結合受信 回路 1 4 aから遅延調整回路 1 5 2 aを介して供給される入力電圧とを比較する ことにより、 立上がりのタイミングを判別する。 この比較器 1 5 0 aの出力は遅 延 ·時定数調整回路 1 5 4 aを介して非同期 R Sフリップフロップ 1 6の S (セ ッ ト) 端子に入力される。 なお、 ここでは説明を省略したが、 非同期 R Sフリツ プフロップ 1 6の R (リセッ ト) 端子には、 識別回路 1 5 bの比較器 1 5 0 bの 出力が遅延 ·時定数調整回路 1 5 4 bを介して入力される。
次に、 図 3に示す回路構成の光信号伝送システムの動作について説明する。 立 上がり及び立下がりエッジ検出回路 1 1 a及び 1 1 bに 2値のディジタル信号波 形 (伝送信号波形) が入力されると、 立上がりエッジ検出回路 1 1 aは入力され た伝送信号波形の立上がりエッジを検出し、 立下がりエッジ検出回路 1 1 bは入 力された伝送信号波形の立下がりェッジを検出する。
立上がりエッジ検出回路 1 1 aで検出された伝送信号波形の立上がりエッジは 伝送用パルス発生回路 1 2 aに供給され、 この伝送用パルス発生回路 1 2 aは、 入力された立上がりエッジのタイミングを境にして互いに極性の反転したパルス 対を生成する。 同様に、 伝送用パルス発生回路 1 2 bは、 入力された立下がりェ ッジのタイミングを境にして互いに極性の反転したパルス対を生成する。
バイアス固定 L D駆動回路 1 3 aは、 伝送用パルス発生回路 1 2 aから供給さ れる極性反転パルス対を駆動信号としてレーザダイォ一ドを駆動する。 これによ つて駆動信 に応じた変調がレーザダイォードの駆動電流に加えられ、 レーザダ ィオードから光強度変調信号が発生される。 同様に、 バイアス固定 L D駆動回路 1 3 bは、 伝送用パルス発生回路 1 2 bから供給される極性反転パルス対を駆動 信号としてレーザダイォードを駆動し、 レーザダイォ一ドから光強度変調信号を 発生させる。
バイアス固定 L D駆動回路 1 3 a及び 1 3 bによる対応するレーザダイォード の駆動により発生された光強度変調信号はそれぞれ、 光ファイバを介して送信側 装置へ伝送され、 対応する A C結合受信回路 1 4 a及び 1 4 bにてそれぞれ受信 される。
光強度変調信号を受信すると、 各 A C結合受信回路 1 4 a及び 1 4 bは、 受信 した光強度変調信号の交流成分のみを電気信号に変換する。 これによつて元の極 性反転パルス対力 s生成され、 これ力'受信信号として出力される。 これら A C結合 受信回路 1 4 a及び 1 4 bから出力された受信信号は識別回路 1 5 a及び 1 5 b に入力される。
識別回路 1 5 aに入力された受信信号はまず、 比較器 1 5 1 aに入力される。 比較器 1 5 1 aは入力された受信信号の電圧と識別開始基準電圧とを比較するこ とにより、 パルス力入力されたことを検知し、 パルス状の信号を出力する。 この パルス状の出力信号は、 遅延 ·時定数調整回路 1 5 3 aで十分なパルス幅め信号 に加工され、 比較器 1 5 0 aのィネーブル信号入力端子に入力される。 イネーブ ル信号が入力されると、 比較器 1 5 0 aは動作を開始し、 極性反転パルス対 (受 信信号) の中心部分、 即ち、 極性力5'反転するタイミングを識別し、 この識別され たタイミングを示すパルス状の信号 (タイミング信号) を出力する。
なお、 識別回路 1 5 aは、 比較器 1 5 0 aの一方の入力端子に極性反転パルス 対 (受信信号) 力 s到達するよりも速く比較器 1 5 1 a力 乍動するように、 遅延調 整回路 1 5 2 aと遅延 ·時定数調整回路 1 5 3 aとによってこれら比較器 1 5 0 a及び 1 5 1 aへの極性反転パルス対 (受信信号) の入力経路の遅延時間が調節 されている。
比較器 1 5 0 aから出力されたタイミング信号は、 遅延 ·時定数調整回路 1 5 4 aで十分なパルス幅の信号に加工された後、 非同期 R Sフリツプフロップ 1 6 の S (セッ ト') 端子に入力される。
上記と同様に、 識別回路 1 5 bに受信信号力入力されると、 この受信信号は比 較器 1 5 1 bに入力される。 比較器 1 5 1 bは入力された受信信号の電圧と識別 開始基準電圧とを比較することにより、 パルスが入力されたことを検知し、 パル ス状の信号を出力する。 このパルス状の出力信号は、 遅延 '時定数調整回路 1 5
3 bで十分なパルス幅の信号に加工され、 比較器 1 5 0 bのィネーブル信号入力 端子に入力される。 イネ一ブル信号が入力されると、 比較器 1 5 0 bは動作を開 始し、 極性反転パルス対 (受信信号) の中心部分、 即ち、 極性が反転するタイミ ングを識別し、 この識別されたタイミングを示すパルス状の信号 (タイミング信 号) を出力する。 .
なお、 識別回路 1 5 bは、 比較器 1 5 0 bの一方の入力端子に極性反転パルス 対 (受信信号) 力 ?到達するよりも速く比較器 1 5 1 b力作動するように、 遅延調 整回路 1 5 2 bと遅延 ·時定数調整回路 1 5 3 bとによってこれら比較器 1 5 0 b及び 1 5 1 bへの極性反転パルス対 (受信信号) の入力経路の遅延時間が調節 されている。
比較器 1 5 0 bから出力されたタイミング信号は、 遅延 ·時定数調整回路 1 5
4 bで十分なパルス幅の信号に加工された後、 非同期 R Sフリツプフロップ 1 6 の R (リセッ ト) 端子に入力される。 - 上述のようにして識別回路 1 5 a及び 1 5 bからセッ ト信号及びリセッ ト信号 が非同期 R Sフリップフロップ 1 6に入力されると、 この非同期 R Sフリップフ ロップ 1 6は、 セッ ト信号の入力によって論理 「1」 に立上がり、 これによつて 元の伝送信号波形の立上がりエッジを再現し、 リセッ ト信号の入力によって論理 「0」 に立下がり、 これによつて元の伝送信号波形の立下がりエッジを再現する。 この回路では、 立上がりタイミング伝送用と立下がりタイミング伝送用の 2つの 伝送 ·処理経路の間に生じる不要な時間差を遅延 ·時定数調整回路 1 5 4 a及び 1 5 4 bによって補償しており、 これにより非同期 R Sフリップフロップ 1 6に て再現された伝送信号波形は伝送前と同じ極性及びタイミングの 2値信号となる。 以上説明した光信号伝送システムの回路構成は半導体デバイス試験装置にも適 用することができる。 次に、 上記回路構成の光信号伝送システムを適用した半導 体デノ ィス S 験装置について図 4及び図 5を参照して具体的に説明する。
図 4に示すように、 試験装置本体側に立上がり及び立下がりエッジ検出回路 1 1 a及ぴ 1 1 b (図示せず) 、 伝送用パルス発生回路 1 2 a及び 1 2 b、 ノ ィァ ス固定 L D駆動回路 1 3 a及び 1 3 bから構成される送信部を設け、 テストへッ ド側に A C結合受信回路 1 4 a及び 1 4 b、 識別回路 1 5 a及び 1 5 b、 非同期 R Sフリ ップフロップ 1 6から構成される受信部を設けて、 これら送信部と受信 部の間を光ファイバを用いて接続する。
この構成によれば、 半導体デバイス試験装置の試験装置本体とテストへッ ドと の間において伝送される、 多数の周期が混在し、 かつ伝送される 2値データが一 方の値 (0又は 1 ) に著しく片寄っている信号は、 送信部においてその信号波形 の立上がりエッジ及び立下がりエッジのみ力 s予め定められた振幅値 (レベル) を 横切るタイミングを示す極性反転パルス対よりなる伝送パルス信号に変換されて 伝送され、 受信部では識別した立上がり及ぴ立下がりタイミングから元の伝送信 号波形を電気的に再現するので、 極性及びタイミング誤りを生じることはなく、 信号再生を行うことができる。
なお、 半導体デバイス試験装置では、 試験装置本体において発生される 2値信 号は立上がりエツジと立下がりエツジに分かれているので、 図 4には図示してい ないように、 試験装置本体側から立上がり及び立下がりエツジ検出回路 1 1 a及 び 1 1 bを省くことができ、 低コスト化を図ることができる。 以上説明した第 1の実施例の光信号伝送システムにおいて、 伝送信号波形の立 上がりエツジ及び立下がりエツジが予め定められた振幅値 (レベル) を横切るタ ィミングを示す極性反転パルス対は、 上述し、 かつ図示したものに限定されるも のではない。 例えば立上がりタイミング用のパルス対と立下がりタイミング用の パルス対はそれらの極性が図 5 ( a ) 〜 (d ) に示すような関係にあるものを使 用することができる。 なお、 図 5 ( a ) は上記第 1の実施例で使用された極性反 転パルス対と同じである。
上述した第 1の実施例の光信号伝送システムにおいては、 伝送したい信号波形 の立上がり及び立下がりタイミングをそれぞれ別々に取り扱い、 それぞれのタイ ミングを示す極性反転パルス対を伝送する 2つの伝送経路を設けたが、 立上がり タイミング及び立下がりタイミングを示す極性反転パルス対のそれぞれを、 図 5 ( b ) 及び (c ) に示したような互いに極性が反転関係にあるパルス対として区 別できるようにすれば、 送信側と受信側との間の伝送経路を 1つにすることがで きる。
以下、 送信側と受信側との間の伝送経路を 1つにしたこの発明の第 2の実施例 の光信号伝送システムについて図 6乃至図 8を参照して説明する。
図 6はこの発明の第 2の実施例である、 伝送経路を 1つにした光信号伝送シス テムの概略の構成を示すプロック図である。 本実施例の光信号伝送システムは、 送信側装置 Tに立上がり及び立下がりエッジ検出回路 2 1 a及び 2 1 bと、 伝送 用パルス発生回路 2 2 a及び 2 2 bと、 光強度変調回路 2 3とを備え、 受信側装 置 Rに A C結合受信回路 2 4と、 識別回路 2 5 a及び 2 5 bとを備えている。 そ して、 送信側装置 Tと受信側装置 Rとが 1つの光ファイバ 2 6により接続された 構成となっている。
上記構成の光信号伝送システムは、 伝送用パルス発生回路 2 2 a及び 2 2 bに おける極性反転パルス対の生成動作と、 識別回路 2 5 a及ぴ 2 5 bにおける立上 がり及び立下がりタイミングの検出動作が異なる以外は、 前述の第 1の実施例の システムと基本的に同じ動作をする。
図 7は図 6に示した光信 ^云送システムの動作を説明するための波形図である。 次に、 この図 7を参照して各回路の動作を具体的に説明する。 伝送用パルス発生回路 2 2 a及ぴ 2 2 bは立上がり及び立下がりエッジ検出回 路 2 1 a及び 2 1 bにて検出される立上がり信号 (a ) 及び立下がり信号 (b ) のタイミングを境にして極性力 ?互いに反転するパルス対よりなる伝送用パルス信 号 (c ) 及ぴ (d ) を発生する。 この実施例では、 伝送用パルス発生回路 2 2 a にて発生した伝送用パルス信号 (c ) と伝送用パルス発生回路 2 2 bにて発生し た伝送用パルス信号 (d ) とは互いに極性が反転した関係になっており、 どちら が立上がりタイミングを示し、 どちらが立下がりタイミングを示すかが区別でき るようになっている。
これら伝送用パルス信号は、 その形状やパルス幅が元の伝送信号波形とは独立 の関係にあり、 かつ固定であり、 パルス幅が元の伝送信号波形の最小パルス間隔 より十分に短く、 かつ元の伝送信号波形の最小パルス幅に対して互いが重ならな いようになっている。 言い換えると、 各伝送用パルス信号の幅が、 伝送可能な信 号波形の最小ノ、°ルス間隔及び最小パルス幅を制限することになる。
光強度変調回路 2 3及び A C結合受信回路 2 4は前述の図 1に示したものと同 様の構成のものである力 s、 この実施例では光強度変調回路 2 3は伝送用パルス発 生回路 2 2 a及び 2 2 bからの各伝送用パルス信号を入力とし、 これら入力に基 づいて極性反転光パルス対 (光強度信号 (e ) ) を出力し、 一方、 A C結合受信 回路 4は伝送されて来た光強度信号を受信して受信信号 (f ) を出力する。 識別回路 2 5 aは A C結合受信回路 4にて検出された受信信号 (f ) から立上 がりタイミングを識別し、 識別回路 2 5 bは受信信号 (f ) から立下がりタイミ ングを識別する。 これら識別回路 2 5 a及び 2 5 bでは、 タイミング識別の基準 となる識別レベル L 1と、 ノイズと信号と力 s分離できる程度ではある力 s振幅を十 分に低く設定した立上がり識別開始レベル L 2及び立下がり識別開始レベル L 3 とに基づいて、 次のような識別動作が行われる。
立上がりタイミングを識別する場合には、 受信信号 (f ) の立上がりエッジが 識別開始レベル L 2を横切った時点 Aで識別回路 2 5 aを瞬間的に動作させると 同時に、 識別回路 2 5 bを瞬間的に動作不能にし、 識別回路 2 5 aによって一定 の遅延時間内に受信信号 (f ) の波形が識別レベル L 1を横切った時点 Bを識別 し、 この時点 Bでタィミングパルスを発生させる。 立下がりタイミングを識別する場合には、 受信信号 ( f ) の立下がりェッジが 識別開始レベル L 3を横切った時点 Cで識別回路 2 5 bを瞬間的に動作させると 同時に、 識別回路 2 5 aを瞬間的に動作不能にし、 識別回路 2 5 bによって一定 の遅延時間内に受信信号 (f ) の波形が識別レベル L 1を横切った時点 Dを識別 し、 この時点 Dでタイミングパルスを発生させる。
上記識別動作によれば、 受信信号 (f ) の立上がりエッジが識別開始レベル L 2を横切った時点 Aから一定時間内は識別回路 2 5 bは動作不能状態にあるので、 識別回路 2 5 aによって受信信号 (f ) の波形が識別レベル L 1を横切った時点 Bを識別した後、 識別回路 2 5 bがさらに、 受信信号 (f ) の波形が識別レベル L 3を横切った時点 C ' を誤って識別することはない c
同様に、 受信信号 (f ) の立下がりエッジ力 ?識別開始レベル L 3を横切った時 点 Cから一定時間内は識別回路 2 5 aは動作不能状態にあるので、 識別回路 2 5 bによつて受信信号 ( f ) の波形が識別レベル L 3を横切った時点 Dを識別した 後、 識別回路 2 δ aがさらに、 受信信号 (f ) の波形が識別レベル L 1を横切つ た時点 A' を誤って識別することはない。
なお、 受信信号 (f ) のうちのパルス (交流成分) のない間は、 各識別回路 2 5 a及び 2 5 bは共に動作状態にないから、 ノイズによる低レベルの揺らぎを誤 つてパルスと識別してしまうようなことはない。
上記のように構成された光信号伝送システムにおいては、 識別回路 2 5 aから 発生されるタイミングパルス (立上がりタイミシグ) を例えば非同期 R Sフリツ プフロップ回路のセッ ト信号として用いれば、 立上がりエッジを再現することが でき、 さらに、 立下がり側の識別回路 2 5 bから同様にして得られたタイミング パルス (立下がりタイミング) を非同期 R Sフリップフ口ップ回路のリセッ ト信 号として用いれば、 立下がりエッジを再現することができ、 これにより元の 2値 の伝送信号波形を再現することができる。
次に、 上述した第 2の実施例の光信号伝送システムを実現する具体的な回路構 成について説明する。 ただし、 以下に説明する回路構成は、 本伝送システムを実 現する回路構成の一例であり、 本発明の構成を限定するものではない。
図 8は、 図 6に示した光信号伝送システムの具体的な回路構成の一例を示すブ ロック図である。 この具体例では、 送信側に、 伝送信号波形の立上がりエッジ及 び立下がりエッジを検出する立上がり及び立下がりエッジ検出回路 3 1 a及び 3 1 b、 これらエッジ検出回路 3 1 a及ぴ 3 1 bの出力信号が入力される伝送用パ ルス発生回路 3 2 a及び 3 2 b、 これら伝送用パルス発生回路 3 2 a及び 3 2 b の両出力信号を駆動信号とするバイアス固定 L D駆動回路 3 3が設けられる。 受信側には A C結合受信回路 3 4、 この A C結合受信回路 3 4の出力をそれぞ れ入力とする識別回路 3 5 a及ぴ 3 5 b、 識別回路 3 5 aの出力信号をセッ ト信 号とし、 識別回路 3 5 bの出力信号をリセッ ト信号とする非同期 R Sフリ ップフ ロップ 3 6が設けられ、 これら送信側及び受信側間が光フアイバによつて接続さ れた構成となっている。
立上がり及び立下がりエッジ検出回路 3 1 a及び 3 1 b、 伝送用パルス発生回 路 3 2 a及び 3 2 b、 A C結合受信回路 3 4は上述の図 6に示したものと同様の 回路構成を有し、 かつ同様の動作を行なうので、 ここではそれらの説明は省略す る。
ノ イァス固定 L DJI睡回路 3 3は 素子であるレーザダイオード (図示^ rf) を駆動する回路であり、 伝送用パルス発生回路 3 2 a及ぴ 3 2 ヒカ発生する、 立 上がり及び立下がりタイミングを境にして極性力 ?互いに反転するパルス対を駆動 信号としてレーザダイオードを駆動し、 光強度変調信号を発生させる。 このバイ ァス固定 L D駆動回路 3 3により光強度変調信号を発生させる際には、 予めバイ ァス電流をレーザダイォードに印加してレーザダイォ一ドを常に発光している状 態に保ち、 駆動信号に応じた変調電流をレーザダイォ―ドの駆動電流に加えると いった従来からの手法が用いられる。
識別回路 3 5 aはタイミング識別用の比較器 3 5 0 a、 この比較器 3 5 0 aを 動作させるか否かを判別するための比較器 3 5 1 a , 遅延調整回路 3 5 2 a、 遅 延 '時定数調整回路 3 5 3 a、 3 5 4 a , 3 5 5 aから構成されている。 同様に、 識別回路 3 5 bはタイミング識別用の比較器 3 5 0 b、 この比較器 3 5 0 bを動 作させるか否かを判別するための比較 3 5 1 b , 遅延調整回路 3 5 2 b、 遅延 ' 時定数調整回路 3 5 3 b、 3 5 4 b , 3 5 5 bから構成されている。
識別回路 3 5 aでは、 A C結合受信回路 3 4の出力が 2つに分岐され、 その一 方が比較器 3 5 1 aの一方の入力端子に、 他方が遅延調整回路 3 5 2 aを介して 比較器 3 5 0 aの一方の入力端子にそれぞれ供給される。 比較器 3 5 1 aの他方 の入力端子には立上がり識別開始基準電圧が入力されており、 この識別開始基準 電圧と A C結合受信回路 3 4からの入力電圧とを比較することにより、 比較器 3 5 1 aは比較器 3 5 0 aを動作させるか否かを判別する。
比較器 3 5 1 aの出力信号は遅延,時定数調整回路 3 5 3 aを介して比較器 1 5 0 aのィネーブル (Enabl e)信号入力端子に入力されると共に、 遅延 ·時定数調 整回路 3 5 4 aを介して比較器 3 5 1 bのディスェ一ブル(Di sabl e)信号入力端 子に入力されており、 比較器 3 5 0 a及び 3 5 1 bの動作を制御できるようにな つている。
比較器 3 5 0 aの他方の入力端子は接地されており、 接地電位と A C結合受信 回路 3 4からの入力信号電圧とを比較することにより、 比較器 3 5 0 aは立上が りタイミングを判別する。 この比較器 3 5 0 aの出力信号は遅延 ·時定数調整回 路 3 5 5 aを介して非同期 R Sフリップフロップ 3 6の S (セッ ト) 端子に入力 される。
識別回路 3 5 bでは、 同じく A C結合受信回路 3 4の出力が 2つに分岐され、 その一方が比較器 3 5 1 bの一方の入力端子に、 他方が遅延調整回路 3 5 2 bを 介して比較器 3 5 0 bの一方の入力端子にそれぞれ供給される。 比較器 3 5 1 b の他方の入力端子には立下がり識別開始基準電圧が入力されており、 この識別開 始基準電圧と A C結合受信回路 3 4力 らの入力.電圧とを比較することにより、 比 較器 3 5 1 bは比較器 3 5 0 bを動作させるか否かを判別する。
比較器 3 5 1 bの出力信号は遅延 ·時定数調整回路 3 5 3 bを介して比較器 1 5 0 bのィネーブル(Enab l e)信号入力端子に入力されると共に、 遅延 ·時定数調 整回路 3 5 4 bを介して比較器 3 5 1 aのデイスエーブル(Di sable)信号入力端 子に入力されており、 比較器 3 5 0 b及び 3 5 1 aの動作を制御できるようにな つている。
比較器 3 5 0 bの他方の入力端子は接地されており、 接地電位と A C結合受信 回路 3 4からの入力信号電圧とを比較することにより、 比較器 3 5 0 bは立下が りタイミングを判別する。 この比較器 3 5 0 bの出力信号は遅延 ·時定数調整回 路 3 5 5 bを介して非同期 R Sフリ ップフコップ 3 6の R (リセッ ト) 端子に入 力される。
次に、 この第 2の実施例の光信号伝送システムの動作について説明する。 立上 がり及ぴ立下がりエツジ検出回路 3 1 a及ぴ 3 1 bに 2値のディジタル信号波形
(伝送信号波形) 力入力されると、 立上がりエッジ検出回路 3 1 aは入力された 伝送信号波形の立上がりエッジを検出し、 立下がりエッジ検出回路 3 1 bは入力 された伝送信号波形の立下がりエツジを検出する。
立上がりエツジ検出回路 3 1 aにて検出された伝送信号波形の立上がりエツジ は伝送用パルス発生回路 3 2 aに供給されこの、 伝送用パルス発生回路 3 2 aは、 供給された立上がりエツジのタイミングを境にして極性力'互いに反転する極性反 転パルス対を生成する。 同様に、 伝送用パルス発生回路 3 2 bでは、 供給された 立下がりエッジのタイミングを境にして極性が互いに反転する極性反転ノ、リレス対 を生成する。
バイアス固定 L D駆動回路 3 3は、 伝送用パルス発生回路 3 2 a及び 3 2 bに て生成された極性反転パルス対を駆動信号としてレーザダイォ一ドを駆動し、 極 性反転光パルス対よりなる光強度変調信号を発生させる。 この光強度変調信号は 光ファイバを介して受信側へ伝送され、 A C結合受信回路 3 4で受信される。 光強度変調信号を受信すると、 A C結合受信回路 3 4は、 受信した光強度変調 信号の交流成分のみを電気信号に変換する。 これによつて元の極性反転パルス対 力生成され、 これが受信信号として出力される。 この A C結合受信回路 3 4から 出力された受信信号は 2つに分岐され、 一方は識別回路 3 5 aに入力され、 他方 は識別回路 3 5 bに入力される。
識別回路 3 5 aに入力された受信信号はまず、 比較器 3 5 1 aに入力される。 比較器 3 5 1 aは入力された受信信号の電圧と立上がり識別開始基準電圧とを比 較することにより、 パルスが入力されたことを検知し、 パルス状の信号を出力す る。 このパルス状の出力信号は 2つに分岐され、 一方は遅延 '時定数調整回路 3 5 3 aで、 他方は遅延 '時定数調整回路 3 5 4 aでそれぞれ十分なパルス幅の信 号に加工され、 比較器 3 5 0 aのイネ—ブル信号入力端子及び比較器 3 5 1· bの ディスェ—ブル信号入力端子にそれぞれ入力される。 イネ一ブル信号が入力されると、 比較器 3 5 0 aは動作を開始し、 極性反転パ ルス対 (受信信号) の中心部分、 即ち、 極性が反転するタイミングを識別し、 こ の識別されたタイミングを示すパルス状の信号 (タイミング信号) を出力する。 他方、 比較器 3 5 1 bは、 ディスェ一ブル信号が入力されると、 一定時間動作不 能になり、 この動作不能の間、 比較器 3 5 0 b力'誤動作するのを防止する。 なお、 識別回路 3 5 aは、 比較器 3 5 0 aの一方の入力端子に極性反転パルス 対 (受信信号) 力'到達する前に比較器 3 5 1 a力'作動するように、 遅延調整回路 3 5 2 aと遅延■時定数調整回路 3 5 3 aとによってこれら比較器 3 5 0 a及び 3 5 1 aへの極性反転パルス対 (受信信号) の入力経路の遅延時間が調節されて おり、 その上、 上記極性反転パルス対以降の信号力 s到達する前に比較器 3 5 1 b 力'動作不能どなるように、 遅延 ·時定数調整回路 3 5 4 aによって経路の遅延時 間が調節されている。
比較器 3 5 0 aから出力されたタイミング信号は、 遅延 ·時定数調整回路 3 5 5 aで十分なパルス幅の信号に加工された後、 非同期 R Sフリップフコップ 3 6 の S (セッ ト) 端子に入力される。
上記と同様に、 識別回路 3 5 bに受信信号が入力されると、 この受信信号は比 較器 3 5 1 bに入力される。 比較器 3 5 I bは入力された受信信号の電圧と立下 がり識別開始基準電圧とを比較することにより、 パルスが入力されたことを検知 し、 パルス状の信号を出力する。 このパルス状の出力信号は 2つに分岐され、 一 方は遅延 ·時定数調整回路 3 5 3 bで、 他方は遅延 ·時定数調整回路 3 5 4 bで それぞれ十分なパルス幅の信号に加工され、 比較器 3 5 0 bのィネーブル信号入 力端子及び比較器 3 5 1 aのデイスエーブル信号入力端子にそれぞれ入力される。 イネ—ブル信号が入力されると、 比較器 3 5 0 bは動作を開始し、 極性反転パ ルス対 (受信信号) の中心部分、 即ち、 極性が反転するタイミングを識別し、 こ の識別されたタイミングを示すパルス状の信号 (タイミング信号) を出力する。 他方、 比較器 3 5 1 aは、 デイスエーブル信号が入力されると、 一定時間動作不 能になり、 この動作不能の間、 比較器 3 5 0 a力'誤動作するのを防止する。 なお、 識別回路 3 5 bは、 比較器 3 5 0 bの一方の入力端子に極性反転パルス 対 (受信信号) 力 s到達する前に比較器 3 5 1 ヒカ^'作動するように、 遅延調整回路 3 5 2 a bと遅延 ·時定数調整回路 3 5 3 bとによってこれら比較器 3 5 0 b及 び 3 5 1 bへの極性反転パルス対 (受信信号) の入力経路の遅延時間が調節され ており、 その上、 上記極性反転パルス対以降の信号が到達する前に比較器 3 5 1 a力 s動作不能となるように、 遅延 '時定数調整回路 3 5 4 bによつて経路の遅延 時間が'調節されている。
比較器 3 5 0 bから出力されたタイミング信号は、 遅延 ·時定数調整回路 3 5 5 bで十分なパルス幅の信号に加工された後、 非同期 R Sフリップフロップ 3 6 の R (リセッ ト) 端子に入力される。
上述のようにして識別回路 3 5 a及び 3 5 bからセッ ト信号及びリセッ ト信号 が非同期 R Sフリップフコップ 3 6に入力されると、 この非同期 R Sフリップフ ロップ 3 6ば、 セッ ト信号の入力によって論理 「1」 に立上がり、 これによつて 元の伝送信号波形の立上がりエッジを再現し、 リセッ ト信号の入力によって論理 「0」 に立下がり、 これによつて元の伝送信号波形の立下がりエッジを再現する。 この回路では、 立上がりタイミング伝送用と立下がりタイミング伝送用の 2つの 伝送 ·処理経路の間に生じる不要な時間差を遅延 ·時定数調整回路 3 5 5 a及び 3 5 5 bによつて補償しており、 これにより非同期 R Sフリ ップフロップ 3 6に て再現された伝送信号波形は伝送前と同じ極性及びタイミングの 2値信号となる。 なお、 上記第 2の実施例のシステムを高速の 2値信号の伝送に適用する場合に は、 各比較器及びその他の回路素子に対して、 電気的な伝送方式の場合に使用さ れる比較器及びその他の回路素子や前述の第 1の実施例に使用される比較器及び その他の回路素子よりもさらに高速の動作性能が要求される。
以上説明した第 2の実施例の光信号伝送システムの回路構成は半導体デノ ィス 試験装置にも適用することができる。 次に、 上記回路構成の光信号伝送システム を適用した半導体デバイス試験装置について図 9を参照して具体的に説明する。 図 9に示すように、 試験装置本体側に立上がり及び立下がりエツジ検出回路 3 1 a及び 3 1 b (図示せず) 、 伝送用パルス発生回路 3 2 a及ぴ 3 2 b、 バイァ ス固定 L D駆動回路 3 3から構成される送信部を設け、 テストへッド側に A C結 合受信回路 3 4、 識別回路 3 5 a及び 3 5 b、 非同期 R Sフリ ップフロップ 3 6 から構成される受信部を設けて、 これら送信部と受信部の間を光ファイバを用い て接続する。 ―
この構成によれば、 半導体デバイス試験装置の試験装置本体とテストへッ ドと の間において伝送される、 多数の周期が混在し、 かつ伝送される 2値データ力— 方の値 (0又は 1 ) に著しく片寄っている信号は、 送信部においてその信号波形 の立上がりエツジ及ぴ立下がりエツジのみが予め定められた振幅値 (レベル) を 横切るタイミングを示す極性反転パルス対よりなる伝送パルス信号に変換されて 伝送され、 受信部では識別した立上がり及び立下がりタイミングから元の伝送信 号波形を電気的に再現するので、 極性及ぴタイミング誤りを生じることはなく、 信号再生を行うことができる。
なお、 半導体デバイス試験装置では、 試験装置本体において発生される 2値信 号は立上がりェッジと立下がりエッジに分かれているので、 図 9には図示してい ないように、 試験装置本体側から立上がり及び立下がりエッジ検出回路 3 1 a及 び 3 1 bを省くことができ、 低コスト化を図ることができる。
次に、 この発明の第 3の実施例について図面を参照して説明する。
図 1 0はこの発明による光信号伝送方法を実施する光パルス送信装置 1 0 1の 一具体例を示す。 この例でもレーザ一ダイォ一ドのような発光素子 L D力5'使用さ れ、 この発光素子 L Dに定電流回路 1 1 0 A、 1 1 0 B、 1 1 0 Cを接続する。 また、 定電流回路 1 1 0 Aと 1 1 0 Bは、 それぞれ電流スイッチ 1 1 1 Aと 1 1 1 Bを通じて発光素子 L Dに接続し、 定電流回路 1 1 0 Cは直接発光素子 L Dに 接続した場合を示す。 従って、 発光素子 L Dには常時定電流回路 1 1 0 Cを流れ る電流 I c力 s注入される。
電流スィツチ 1 1 1 Aと 1 1 1 Bは制御電圧として H論理 (論理高レベル) が 与えられるとオンに制御され、 L論理 (論理低れベる) が与えられるとオフに制 御される。 電流スィッチ 1 1 1 Aの制御端子は入力端子 I Nに直接接続される。 電流スィッチ 1 1 1 Bの制御端子はィンバ一タ 1 1 2と遅延素子 1 1 3から成る 直列回路を通じて入力端子 I Nに接続する。
上記構成において、 入力端子 I Nに図 1 1 Aに示すような正極性のパルス Pを 与える。 遅延素子 1 1 3の遅延時間 T dとパルス Pのパルス幅 P wはここでは説 明の都合により P w = T dであるものとして説明する。 パルス Pが入力端子 I Nに入力されると、 電流スィッチ 1 1 1 Aは図 1 1 Bに 示すように直ちにオンの状態に制御される。 電流スィッチ 1 1 1 Bにはパルス P がィンバータ 1 1 2により極性反転され、 さらに、 遅延素子 1 1 3で遅延されて 供給されるから、 電流スィッチ 1 1 1 Bは常時オンの状態に制御され、 入力され たパルス Pの立上りのタイミングでパルス幅 T dの時間だけオフの状態に制御さ れる。
従って、 発光素子 L Dに注入される電流は図 1 1 Dに示すように無信号時は定 電流回路 1 1 0 Bと 1 1 0 Cを流れる電流 I bと I cの和 I b + I cカ?バイァス 電流として注入され、 パルス Pが入力端子 I Nに入力されている期間は全ての定 電流回路 1 1 0 A〜 1 1 0 Cを流れる電流 I a、 I b、 I cの和 I a + I b + I c 力注入され、 パルス Pが立下がつた後のタイミングでは電流スイッチ 1 1 1 Aと 1 1 1 B力共にオフの状態に制御されるから、 このタイミングでは定電流回路 1 1 0 Cを流れる電流 I (;だけが注入される。
電流スィッチ 1 1 1 Bに入力されるパルス力 、'ルス幅 T dを経過すると、 電流 スィッチ 1 1 1 Bはオンの状態に戻される。 従って、 発光素子 L Dに注入される 電流は再び I b + I cの状態に戻る。
従って、 図 1 0に示す具体例では、 発光素子 L Dに注入されるバイアス電流は I b + I cとなり、 このバイアス電流 I b + I cを中心に正と負に振れる電流 I a + I b + I cと I (:カ?発光素子乙0に注入される。 発光素子 L Dの発光強度は図 1 1 Dに示す電流波形と同様の波形となる。 電流 I cは図 1 1 Dに示すように発光 素子 L D力発光を開始する閾値電流 I ONより大きい値であるものとする。
図 1 2に受信装置 1 0 2に設けられる検出回路 1 0 7の一具体例を示す。 この 例では検出回路 1 0 7を、 受光素子 P Dから出力された受光電流信号を電圧信号 に変換する電流—電圧変換回路 1 0 7 Aと、 平滑化回路 1 0 7 Bと、 ヒステリシ スを持った電圧比較器 1 0 7 Cとによって構成した場合を示す。
電流一電圧変換回路 1 0 7 Aは演算増幅器 Aと帰還抵抗器 Rとによって構成す ることができる。 平滑化回路 1 0 7 Bは伝送されるパルス Pのパルス幅 P より 充分大きい時定数を持つ時定数回路によつて構成することができる。 この平滑化 回路 1 0 7 Bを通じて電圧比較器 1 0 7 Cの非反転入力端子に、 送信側から送ら れてくるバイアス値に対応した基準電圧を与える。 また、 電圧比較器 1 0 7 Cの 反転入力端子には電流一電圧変換回路 1 0 7 Aの出力信号をそのまま入力する。 このように構成することにより、 平滑化回路 1 0 7 Bには常時送信側から送ら れてくるバイアス電流 I b + I cに対応する基準電圧が与えられる。 従って、 電 圧比較器 1 0 7 Cは非反転入力端子に与えられる基準電圧を基準に反転入力端子 に与えられる電圧が基準電圧より高いか低いかにより、 出力端子 1 0 7 Dに H論 理か L論理の何れか一方を出力する。 また、 電圧比較器 1 0 7 Cは 2つの入力端 子の間に、 ヒステリシス特性を持っていることから、 両方の入力端子の電圧が基 準電圧に揃ったとしても、 過去に非反転入力端子が反転入力端子より負側に振れ た状態から同一の基準電圧に戻った場合には、.出力端子 1 0 7 Dは L論理に保持 され、 正側に振れた状態から同一の基準電圧に戻った場合には、 H論理に保持さ れる。
ここで、 図 1 2に示した受信装置に、 図 1 3 Aに示す受光電流 I pが受信され るものとすると、 電流一電圧変換回路 1 0 7 Aは図 1 3 Bに示すバイアス電圧 V Bとパルス波形 V Pを出力する。 平滑化回路 1 0 7 Bはパルス波形 V Pが入力 されても、 このパルス波形 V Pを平滑し、 バイアス電圧 V Bに合致した基準電圧 を電圧比較器 1 0 7 Cの非反転入力端子に供給し続ける。 従って、 パルス波形 V Pが電圧比較器 1 0 7 Cの反転入力端子に入力され、 その電圧が正側のヒステ リシス幅を越えると電圧比較器 1 0 7 Cの出力端子 1 0 7 Dは図 1 3 Cに示すよ うに H論理を出力する。
反転入力端子のパルス波形 V p力バイァス電圧 V Bを横切って負側のヒステリ シス幅より負側に振れると、 電圧比較器 1 0 7 Cの出力端子 1 0 7 0は1論理と なる。 従って、 電圧比較器 1 0 7 Cの出力端子 1 0 7 Dは図 1 3 Cに示すパルス P Vを出力する。 このパルス P Vは受光電流信号 I Pのバイアス電流 I b + I cが 変動しても、 その立上りのタイミングは電圧比較器 1 0 7 Cの反転入力端子のパ ルス波形 V pが正側のヒステリシス幅を越えるか否かによって決定されるため、 パルス波形 V Pの立上りのタイミングはバイアス電流 I b + I cの値 (バイアス 電圧 V Bと同じ) が変動しても不動である。 この結果、 送信側において温度変化 により発光素子 L Dの注入電流対出力光パワー特性が変動しても、 伝送されるパ ルス信号の検出タイミングは変化しない。 よって、 ジッタのない信号を受授する ことができる。 なお、 電流—電圧変換回路 1 0 7 Aから出力されるパルス波形 V pの波形中において、 正から負 (又は負から正) に振れるゼロクロス点は最も 高速でバイアス電圧 V Bを横切る部分となる。 従って、 タイミングの検出点とし ては最も時間軸方向に対する変動の少ない位置になるものと考えられる。 この結 果、 現実にはこのゼロクロス点に対応する、 つまり、 電圧比較器 1 0 7 C力'出力 するパルス波形 V Pの後縁位置 T Oを信号の検出点として利用することになる。 図 1 4は光パルスを送信する装置の他の具体例を示す。 この例では図 1 0の例 と同様にバイアス値を中心に正と負に振れる光パルスを発光させる機能に加えて、 入力されるパルスのパルス幅を一定のパルス幅の光パルスに揃える機能 (一般に パルサと呼ばれている) を持たせた回路構成とした場合を示す。
入力端子 I Nに入力された電気パルス Pは直接ノア (N O R ) ゲート 1 1 4の 一方の入力端子に供給されると共に、 インバータ 1 1 2及び遅延素子 1 1 3から 成る直列回路を通じて他方の入力端子に供給される。 さらに、 インバ一タ 1 1 2 と遅延素子 1 1 3から成る直列回路を通じて電気パルス Pをナンド (N A N D ) ゲ一ト 1 1 5の一方の入力端子に供給し、 インバ一タ 1 1 6と遅延素子 1 1 7で 遅延させた信号をナンドゲート 1 1 5の他方の入力端子に供給する。 ノアゲート
1 1 4の出力信号を電流スィツチ 1 1 1 Aに制御信号として与え、 ナンドゲート
1 1 5の出力信号を電流スィッチ 1 1 1 Bの制御信号として与える。
ここで、 入力端子 I Nに入力するパルス Pのパルス幅 P w力遅延素子 1 1 3と
1 1 7の遅延時間 T dより長い P w > T dであるものとして以下にその動作を図
1 5を参照して説明する。
図 1 5 Aは入力端子 I Nに入力されたパルス Pを示す。 図 1 5 Bはインバ一タ
1 1 2と遅延素子 1 1 3を通じてノアゲート 1 1 4とナンドゲ一ト 1 1 5の各一 方の入力端子に供給されるパルス P Bの波形を示す。 ノアゲート 1 1 4の出力に は図 1 5 Dに示すパルス P D力入力され、 このパルス P Dが H論理に立上ってい る期間、 電流スィッチ 1 1 1 Aがオンの状態に制御される。 電流スィッチ 1 1 1 Aがオンの状態に制御される時間は遅延素子 1 1 3の遅延時間 T dに等しい時間 に規定される。 図 1 5 Cはィンバー夕 1 1—6と遅延素子 1 1 7を通じてナンドゲート 1 1 5の 他方の入力端子に供給されるこのパルス P Cの波形を示す。 このナンドゲ—ト 1 1 5には図 1 -5 Bに示したパルス P Bと図 1 5 Cに示したパルス P c力 s供給され るから、 その出力には図 1 5 Eに示すパルス P E?出力される。 つまり、 ナンド ゲート 1 1 5は常時 H論理を出力しており、 電流スィツチ 1 1 1 Bは常時オンの 状態に制御されている。 パルス P Eは L論理に立下る極性のパルス信号で出力さ れるから、 電流スィッチ 1 1 1 Bはパルス P Eが L論理に立下がった期間だけォ フの状態に制御される。
この結果、 発光素子 L Dに流れる電流 Iは図 1 5 Fに示すように、 I b + I c を中心に電流スイッチ 1 1 1 Aがォンの状態で I a + I b + I c力流れ、 電流ス イッチ 1 1 ί Aと 1 1 1 B力'共にオフの状態で I c力流れる。
従って、 図 1 0に示した具体例と同様に、 パルス P力 '入力されるごとに発光素 子 L Dは平均電流 I b + I cを中心に正方向と負方向に対称に振れる波形で流れ、 平均電流値を変動させずに発光素子を駆動するから、 この図 1 4に示した具体例 でも図 1 0乃至図 1 3で説明したのと同様の作用効果力 s '得られることは容易に理 解できよう。
また、 この具体例では入力するパルス Pのパルス幅 P wが遅延素子 1 1 3及び 1 1 7の遅延時間 T dより長いパルス幅であっても、 発光素子 L Dが発光する光 パルスのパルス波形は遅延素子の遅延時間 T dによって決まる一定のパルス幅に 制限される。 よって、 入力されるパルス Pのパルスが長くても、 出力する光パル スを一定値に制限するから、 受信側においてパルス幅が長いパルスが送られてき たことにより平滑化回路 1 0 7 B (図 1 2参照) が出力する基準電圧が変動する ような不都合を回避することができるという利点が得られる。
さらに、 図 1 4に示した具体例では、 伝送すべきパルス Pの後縁側を検出して 光パルスを発生させる構成としたから、 信号の立上りの初期波形部分を利用する 場合と比較して安定した状態で発光素子 L Dを発光させているから、 発光素子 L Dを発光させるタイミング (図 1 5 Fの波形) を正確に規定することができると いう利点も得られる。 — 図 1 6は光パルス送信装置 1 0 1のさらに他の具体例を示す。 この例ではパル スのパルス幅を受信側に伝送 _しようとする場合を示す。 つまり、 伝送しようとす るパルス Pの立上りのタイミングと立下りのタイミングの双方において正側と負 側に振れる正負対称信号を発生させて発光素子を発光制御する構成とした場合を 示す。
このためには電流スィッチ 1 1 1 Aの制御回路として、 この例では 2個のアン ドゲート 1 1 8、 1 1 9とノアゲート 1 2 0とによって構成し、 アンドゲ一ト 1 1 8には、 入力されるパルス P (図 1 7A) と、 インバータ 1 1 2と遅延素子 1 1 3を通過したパルス PB (図 1 7 B) を入力し、 他方のアンドゲート 1 1 9に はインバ一タ 1 1 2と遅延素子 1 1 3を通じたパルス P B (図 1 7 B) とインノ —タ 1 1 6と遅延素子 1 1 7を通じたパルス PC (図 1 7 C) を供給し、 各アン ドゲート 1 1' 8と 1 1 9の出力をノアゲート 1 2 0を通じて出力させる。 この結 果、 ノアゲート 1 2 0の出力に図 1 7 Dに示す負極性のパルス PDを得る。 この 負極性のパルス PDは入力パルス Pの立上りのタイミングと立下りのタイミング の双方に発生し、 電流スィッチ 1 1 1 Aに入力される。 この結果、 電流スィッチ
1 1 1 Aは入力パルス Pの立上りと立下りの双方のタイミングにおいて、 遅延時 間 T dに等しい期間の間、 オフの状態に制御される。
電流スィッチ 1 1 1 Bの制御回路を、 この例では 2個のノアゲート 1 2 1、 1
2 2と 1個のオアゲード 1 2 3とによって構成し、 一方のノアゲ一ト 1 2 1には 入力パルス P (図 1 7A) とインバータ 1 1 2と遅延素子 1 1 3を通じてパルス
PB (図 1 7 B) を入力し、 他方のノアゲー 1: 1 2 2にはィンバ一タ 1 1 2と遅 延素子 1 1 3を通じたパルス PB (図 1 7 B) と、 インバ一タ 1 1 6と遅延素子
1 1 7を通じて取り出されたパルス Pc (図 1 7 C) を供給し、 各ノアゲート 1
2 1と 1 2 2の出力をオアゲ一ト 1 2 3を通じて出力させることにより、 オア ゲート 1 2 3の出力に図 1 7 Eに示す正極性のパルス P Eを得る。
電流スィッチ 1 1 1 Aと 1 1 1 Bがパルス PDと P Eによってオン、 オフ制御 されることにより、 発光素子 LDには図 1 7 Fに示す電流 I力 s注入され、 この電 流 Iの値に対応した光ノ、。ルスが出射される。
図 1 7〇は図1 2に示した受信装置によって図 1 7 Fに示した電流 Iによって 駆動された光パルスを受信した場合の電流一電圧変換回路 1 0 7 Aの電圧出力信 号を示す。 この受信された電圧出力信号の各ゼロクロス点間の時間は送信側の入 力パルス Pのパルス幅 P wに一致し、 電圧比較器 1 0 7 Cの出力端子 1 0 7 Dに は、 この例では図 1 7 Hに示す負極性のパルス P Hが出力され、 送信側の入力パ ルス Pのバルス幅 P wと同じパルス幅 P wを持つパルス P Hを受信することがで
¾ Z.
Ό o
この受信パルス P Hのパルス幅 P wも、 図 1 0乃至図 1 3を参照して説明した 場合と同様に、 平均電流 I b + I cを中心とする正負対称波形 (図 1 7 F ) で伝 送されるから、 光伝送路上の光の平均値は信号の有無に対応して変動することは ない。 従って、 図 1 0乃至図 1 3で説明したのと同様に、 電圧比較器 1 0 7 Cの 前段に設けた平滑化回路 1 0 7 Bの平滑出力電圧は信号の受授に応じて変動する ことはなく一定値に維持される。 また、 温度変動等によって発光素子 L Dの注入 電流対出力光パワー特性 (図 2 4参照) が変化し、 伝送される平均電流値が変動 し、 平滑出力電圧が変動したとしても、 この平滑出力電圧を中心に電圧比較器 1 0 7 Cのヒステリシス幅が追従するから、 受信パルス P Hのパルス幅は発光素子 L Dの特性の変動に関係なく送信側の入力パルス Pのパルス幅 P wに正確に一致 する。
次に、 この発明の第 4の実施例について図面を参照して説明する。
まず、 この発明の第 4の実施例の光強度変調装置を用いた光伝送システムの概 略構成について図 1 9を参照して説明する。 この光伝送システムは、 送信側装置 Tに光強度変調装置 4 6 0を備え、 受信側装 に A C結合受信装置 4 6 1、 識 別回路 4 6 2を備え、 送信側装置 Tと受信側装置 Rとが光ファイバ 4 6 3により 接続された構成を有している。
この光伝送システムでは、 伝送されるのは 2値信号のデータではなく、 2値信 号の波形の立上がり又は立下がりのエッジ、 即ち、 伝送信号の立上がり又は立下 がりの振幅値 (レベル) 力'予め定められた振幅値 (レベル) を越える時点を指示 するタイミング信号である。
図 2 0は、 図 1 9の光伝送システムの動作を説明するためのタイミングチヤ一 トであり、 一例として信号波形の立上がりェッジ (立上がりエツジの振幅値が 5 0 %を越える時点のタイミング) 力示されている。 以下、 図 2 0を参照して各回 路の動作を具体的に説明する。
光強度変調装置 4 6 0は、 2値のディジタル入力信号 ( a ) の立上がりタイミ ングを境にして極性が互いに反転する極性反転パルス対 (b ) を発生する。 この 極性反転パルス対 (b ) としては、 パルスの形状やパルス幅が元の伝送信号波形 の最小パルス間隔より十分に短いものを用いれば良い。 言い換えれば、 この極性 反転パルス対 (b ) のパルス幅によって元の伝送信号波形の最小パルス間隔が制 限されることになる。
なお、 この極性反転パルス対 (b ) は、 発生される際にある遅延を受けて、 図 2 0に点線で示すように遅延したパルス (e ) になっても、 この遅延が常に一定 で既知の値であれば、 受信側ではタイミング信号として問題なく使用できる。 極性反転パルス対 (b ) 力発生されると、 光強度変調回路 4 6 0はこの極性反 転パルス対 (b ) に基づいて、 従来から使用されている、 オフセッ ト光に光強度 変調を行なう変調方法を用いて発光素子 (図示せず) を駆動し、 伝送用パルス信 号波形の立上がりエツジの振幅値が予め定められた値を越えるタィミングで互い に極性の反転した光パルス対を光強度信号 (c ) として出力する。 この光強度信 号 (c ) は光ファイバ 4 6 3を介して受信側装置 Rに伝送される。
A C結合受信回路 4 6 1は、 受信した光強度信号 (c ) を従来から使用されて いる A C結合の方法により検出する回路であり、 図 2 0の最下段に示す受信信号 ( d ) のような信号力検出される。 ここで、 受信される光強度信号 (c ) は立上 がりエッジを境にして極性力?互いに反転する極性反転パルス対 (b ) に基づいて 変調された光パルス信号であるので、 常に両極性のパルス力 s存在し、 従って、 検 出される受信信号 (d ) は片方の極性に片寄ったパルスを多く含むというような ことはない。
信号再生処理手段を構成する識別回路 4 6 2は、 A C結合受信回路 4 6 1にて 検出された受信信号 (d ) から立上がりエッジ (予め定められた振幅値を越える タイミング) を識別する。 この立上がりタイミングの識別では、 タイミング識別 の基準となる識別レベル L 1 (図 2 0参照) と、 予めノイズと信号力分離できる 程度の、 十分に低いレベルに設定された、 識別動作開始のタイミングを与える識 別開始レベル L 2 (図 2 0参照) とに基づいて、 次のような識別動作が行われる。 受信信号 (d ) の立上がりエッジ力 ?識別開始レベル L 2を横切った時点で瞬間 的に識別回路 4 6 2を作動し、 一定の遅延時間内に識別レベル L 1を横切った時 点を識別してタイミングパルスを発生する。 つまり、 立上がりエツジが識別開始 レベル L 2を横切った時点からパルス幅に相当する程度の時間だけ識別回路 4 6 2の作動状態を保ち、 受信信号 (d ) が識別レベル L 1を横切った時点を識別タ イミングと決定し、 タイミングパルスを 生する。 個のタイミングパルスに基づ いて信号再生処理力 s行なわれる。 この識別動作によれば、 パルス力 s存在しないと きには識別回路 4 6 2は作動しないから、 ノイズによる低レベルの揺らぎを誤つ てパルスと識別してしまうことはない。
信号再生処理においては、 識別回路 4 6 2から発生されたタイミングパルス (例えば、 立'上がりタイミング) を、 例えば非同期 R S (セッ ト—リセッ ト) フ リップフ口ップ回路のセッ ト信号として用いれば、 5Lhがりエツジが" S現できる。 なお、 図 1 9に示した構成では、 光強度変調装置 4 6 0は伝送信号の立上がり 及び立下がりの双方のタイミングに基づいて、 それぞれ極性反転パルス対を生成 するようになっている (これら極性反転パルス対はそれらの極性が反転したもの となる) 、 高速に光伝送を行う場合には、 以下に記載するように、 伝送信号の 立上がりエツジ及ぴ立下がりエツジを別々に伝送するような 2系統の伝送系統を 設けること力望ましい。
即ち、 伝送信号の立上がりエツジ及び立下がりエッジをそれぞれ検出する検出 回路 (論理回路などで構成される) を個々に^け、 これら検出回路毎に光強度変 調装置を設げて、 立上がりタイミング及び立下がりタイミングを別々に伝送する。 この場合、 受信側も立上がりタイミング受信系統と立下がりタイミング受信系統 の 2系統の回路構成となり、 個々の伝送系統で立上がり及び立下がりェッジに関 するタイミングパルス力生成されて信号再生処理が行われる。
信号再生処理においては、 各識別回路にて発生されたタイミングパルスをそれ ぞ ti#同期 R Sフリップフ口ップ回 »セット及びリセッ ト信号として用いれば、 立上がりエツジ及び立下がりエツジが再現できる。 これにより元の 2値の伝送信 号波形を再現することができる。 ― 次に、 光強度変調装置 4 6 0の具体的な回路構成及び動作について詳細に説明 する。 ―
図 1 8はこの発明の第 3の実施例の光強度変調装置の第 1の具体例を示す回路 図であり、 図 2 1にその動作を説明するためのタイミングチャートを示す。 この 光強度変調装置は、 電流スィッチ回路 4 0 1〜 4 0 3を備えた駆動回路と、 この 駆動回路の出力端子 4 0 4 a , 4 0 4 bに接続された半導体レーザ 4 0 5とから 構成されている。
電流スィッチ回路 4 0 1は、 トランジスタ 4 1 1 a〜 4 1 1 cと電流調整用の 抵抗 4 1 2とからなる。 トランジスタ 4 1 i aは、 そのコレクタが出力端子 4 0 4 aのライン (ここではこの出力端子 4 0 4 aに接続されたラインを V C Cライ ンとする) に接続され、 そのベースがディジタル信号入力端子 4 0 6 aに接続さ れ、 そのエミ'ッタがトランジスタ 4 1 1 bのェミ ッタ及びトランジスタ 4 1 1 c のコレクタに共通に接続されている。 トランジスタ 4 1 1 bは、 そのコレクタが 出力端子 4 0 4 bに接続され、 そのベースがディジタル信号入力端子 4 0 6 bに 接続されている。 トランジスタ 4 1 1 cは、 そのェミッタ力 ?抵抗4 1 2を介して 接地ラインに接続されており、 これにより定電流源が構成されている。
電流スィツチ回路 4 0 2は、 トランジスタ 4 2 1 a〜 4 2 1 cと電流調整用の 抵抗 4 2 2とからなる。 トランジスタ 4 2 1 aは、 そのべ一スカ ?遅延回路 4 0 7 aを介してディジタル信号入力端子 4 0 6 aに接続され、 そのコレクタが出力端 子 4 0 4 bに接続され、 そのェミッタがトランジスタ 4 2 1 bのェミッタ及びト ランジスタ 4 2 1 cのコレクタに共通に接続されている。 トランジスタ 4 2 1 b は、 そのコレクタが出力端子 4 0 4 aのライン (V c cライン) に接続され、 そ のベースが遅延回路 4 0 7 bを介してディジタル信号入力端子 4 0 6 bに接続さ れ、 トランジスタ 4 2 1 cは、 そのェミッタ力 ?抵抗4 2 2を介して接地ラインに 接続されており、 これにより定電流源が構成されている。 抵抗 4 2 2の抵抗値は 電流スィッチ回路 4 0 1の抵抗 4 1 2の抵抗値の 1 / 2の値になっている。 電流スイッチ回路 4 0 3は、 トランジスタ 4 3 1 a〜 4 3 1 cと電流調整用の 抵抗 4 3 2からなる。 トランジスタ 4 3 1 aは、 そのコレクタが出力端子 4 0 4 aのライン (V c cライン) に接続され、 そのベースが遅延回路 4 0 7 a及び 4 0 7 cを介してディジタル信号入力端子 4 0 6 aに接続され、 そのエミッタがト ランジスタ 4 3 1 bのェミッタ及びトランジスタ 4 3 1 cのコレクタに共通に接 続されている。 トランジスタ 4 3 1 bは、 そのコレクタが出力端子 4 0 4 bに接 続され、 そのベース力遅延回路 4 0 7 b及ぴ 4 0 7 dを介してディジタル信号入 力端子 4 0 6 bに接続され、 トランジスタ 4 3 1 cは、 そのェミッタが抵抗 4 3 2を介して接地ラインに接続されており、 これにより定電流源が構成されている。 抵抗 4 3 2の抵抗値は、 電流スィッチ回路 4 0 1の抵抗 4 1 2の抵抗値と同じ値 に設定されている。
各電流スイッチ回路 4 0 1〜 4 0 3のトランジスタ 4 1 1 c、 4 2 1 c、 4 3 1 cのべ一スはトランジスタ 4 0 8のベースに共通に接続されると共に、 端子 4 1 0 aに接続されている。 トランジスタ 4 0 8は、 そのコレクタがベースと共通 に接続され、 'そのエミッタカ抵抗 4 4 0を介して接地ラインに接続されている。 これにより、 端子 4 1 0 aに供給される電流に応じて、 半導体レーザ 4 0 5へ電 流を供給するための出力端子 4 0 4 bに所定の電流を供給できる。
また、 ェミッタ力抵抗4 4 1を介して接地ラインに接続され、 ベースが端子 4 1 0 bに接続され、 コレクタが出力端子 4 0 4 bに接続されたトランジスタ 4 1 0を備えている。 これにより、 端子 4 1 0 bに供給される電流に応じて、 半導体 レーザ 4 0 5へ所定のバイアス電流を供給できる。
上述のように構成された光強度変調装置では、 ディジタル信号入力端子 4 0 6 a、 4 0 6 bに互いに論理が反転した関係にある差動ディジタル信号が入力され る。 ここで、 入力される差動ディジタル信号 ('こ図 2 1の (a ) に示すような信号 の変化するタイミングカ s生じると、 それに従って 1段目の電流スィツチ回路 4 0 1力 s切り替わって、 図 2 1の (b ) に示すような電流の変化が半導体レーザ 4 0 5に生じる。
電流スィッチ回路 4 0 1力 s切り替わると、 続いて、 遅延回路 4 0 7 a及び 4 0 7 b (又は電流スィツチ回路 4 0 1と電流スィツチ回路 4 0 2自身の応答速度の 差) によって、 電流スィッチ回路 4 0 1の動作より一定時間だけ遅れて、 2段目 の電流スイッチ回路 4 0 2力 ?切り替わり、 図 4 2 1の ( c ) に示すような電流の 変化が半導体レーザ 4 0 5に加わる。 ここで、 電流スィッチ回路 4 0 1及び 4 0 2は論理が反転された構成となっており、 それらの電流調整用の抵抗 4 1 2及び 4 2 2は、 抵抗 4 2 2の抵抗値が抵抗 4 1 2の抵抗値の 1 / 2の値になっている こと力ゝら、 電流スィツチ回路 4 0 2による電流の変化は電流スィッチ回路 4 0 1 による電流の変化の 2倍になる。
電流スィツチ回路 4 0 2力 s切り替わると、 続いて、 遅延回路 4 0 7 c及び 4 0 7 d (又は電流スィッチ回路 4 0 2と電流スィツチ回路 4 0 3自身の応答速度の 差) によって、 電流スィッチ回路 4 0 2の動作より一定時間だけ遅れて、 3段目 の電流スイッチ回路 4 0 3力切り替わり、 図 2 1の ( d ) に示すような電流の変 化が半導体レーザ 4 0 5にさらにに加わる。 ここで、 電流スィッチ回路 4 0 1及 び 4 0 3は論理が等しく、 それらの電流調整用の抵抗 4 1 2及び 4 3 2の抵抗値 が同じ値となっていることから、 電流スィツチ回路 4 0 3による電流の変化は電 流スィッチ回路 4 0 1による電流の変化と等しくなる c
上述した電流スィッチ回路 4 0 1〜4 0 3による切り替えによって、 半導体レ —ザ 4 0 5には、 図 2 1の (e ) のような電流の変化力生じる。 その結果、 半導 体レーザ 4 0 5は、 図 2 1の (e ) に示すような電流波形、 即ち、 極性反転パル ス対で駆動されることとなり、 前述したような立上がりタイミング及び立下がり タイミングをそれぞれ極性が互いに反転する極性反転光パルス対として光伝送す ること力 '可能となる。
以上説明した光強度変調装置では、 電流スィツチ回路 4 0 2の電流源の抵抗 4 2 2の抵抗値を他のスィッチ回路の電流源の抵抗 4 2 1、 4 2 3の抵抗値の 1 / 2に設定することにより、 電流スイッチ回路 4 0 2によって 2倍の電流が供給さ れるように構成されている力 s、 本発明はこの構成に限定されることはなく、 例え ば電流スイッチ回路 4 0 2の電流源が接続されるラインを他のスィッチ回路と別 の、 2倍の電流を供給可能なラインに接続するようにしてもよい。
また、 図 2 2に示すように、 ディジタル信号入力端子側に前述の図 2 6に示し た入力側比較器を設けて、 ディジタル入力信号に応じて互いに論理が反転した関 係にある差動ディジタル信号が生成されるように構成してもよい。
さらに、 この例の光強度変調装置では、 発光手段 (発光素子) に種々の半導体 レーザを用いることができ、 また、 光伝送力 s可能であれば他の発光手段 (光源) を用いることもできる。 また、 上述の光強度変調装置を用いた光伝送システムは、 例えば半導体デバイ ス試験装置に適用することができる。 例えば、 半導体デバイス試験装置の試験装 置本体側に伝送波形変換回路と光強度変調回路などからなる送信部を設け、 テス トヘッ ド側に A C結合受信回路、 識別回路、 非同期 R Sフリップフロップなどか ら構成される受信部を設け、 これら送信部と受信部の間を光ファイバを用いて接 m f O o
この構成によれば、 半導体デバイス試験装置の試験装置本体とテストヘッドと の間において伝送される、 多数の周期が混在し、 かつ伝送される 2値データの値 がー方 (0又は 1 ) に著しく片寄っている信号でも、 その信号波形の立上がり - 立下がりタイミングを示す極性が互いに反転するパルス対よりなる伝送パルス信 号に変換されて伝送され、 受信した立上がり ·立下がりタイミングから元の伝送 信号波形が電気的に再現されるので、 極性及びタイミング誤りを生じることはな く、 信号再生を行うことができる。 これにより、 長時間固定された D C的なデー タをも正確に識別することができる。
上記の半導体デバイス試験装置は、 試験装置本体側を送信部、 テス トヘッド側 を受信部とした構成になっているカ^ この逆の構成 (試験装置本体側を受信部、 テストへッド側を送信部とする構成) を取ることも可能である。
以上の説明で明白なように、 この本発明によれば、 従来のように識別レベルが 2値信号のデータ値の一方に片寄ってタイミングの誤り力 ?生じるといったような 欠点はなく、 また、 長時間固定された D C的なデータをも正確に識別することが できるので、 タイミング精度が高く、 しかも、 周期が不定で直流成分が存在する ような信号についても高い精度で光伝送することができる。
従って、 半導体デバイス試験装置の試験装置本体とテストへッドとの間におい て伝送されるような、 多数の周期が混在し、 2値データが一方の値 (0又は 1 ) に著しく片寄った信号についても正確に、 高い精度で光伝送することができると いう顕著な利点がある。
その上、 データの極性が一定の状態 (信号のない状態) で放置された場合に、 その間のノイズによる低レベルの揺らぎを誤ってデータとして検出してしまうこ とはないので、 信頼性の高い光伝送システム及び方法を提供することができると いう利点がある。
また、 以上のような効果を奏する光伝送システムや方法が適用される半導体デ バイス試験装置においては、 伝送速度や周波数特性が一段と向上し、 信頼性が高 くなり、 かつ軽量であるとレゝぅ利点力得られる。
さらに、 この発明によれば、 光伝送路を伝送する光パルスの波形をバイアス値 から正極性と負極性の向きに等量ずつ振れ、 平均するとバイアス値に等しくなる 正負対称波形で伝送する伝送方法が提供されるから、 信号の伝送密度が変わつて も伝送路上の直流分が変動することはない。 よって、 伝送される信号に含まれる 直流分が変動することに起因するジッタは発生しない。
また、 伝送するパルス波形に直流分を付加し、 受信側ではこの直流分によって 平滑化回路 1 0 7 Bで基準電圧を発生させたから、 仮に発光素子 L Dの注入電流 対発光光パワー特性が変動したことにより、 発光素子 L Dが出力する平均発光量 が変動し、 平滑化回路 1 0 7 Bが発生する基準電圧が変動したとしても、 電圧比 較器 1 0 7 Cは基準電圧を中心にヒステリシス幅を追従させて応動するから、 ヒ ステリシス幅が一定値を維持すれば受信側で検出されるパルスの検出点は不動で あり、 ジッタの発生は抑えられる。
その上、 パルスの受信の検出点を正負対称波形のゼ口クロス点に特定した場合 には、 受信信号中で最も高速でバイアス点を横切るから、 このゼロクロス点で受 信パルスを検出する構成とすることにより、 最も正確な受信点の検出を行うこと ができるという利点が得られる
さらにまた、 この発明によれば、 極性力互いに反転するパルス対を生成する際 に、 従来技術のように、 極性反転部分において両パルス波形のエッジが不連続に なることはないので、 高いタイミング精度で信号の光伝送を行なうこと力 s可能と なる。
従って、 上述のような効果を奏する光強度変調装置を使用した光伝送システム や半導体デバイス試験装置は、 信号の伝送速度を高速にすることができ、 また、 周波数特性が向上し、 かつ軽量で、 信頼性が高くなる等の利点が得られる。

Claims

求 の 範 囲
1 . 送信側に、.
伝送すべき信号波形の立上がりエツジ及び立下がりエツジをそれぞれ検出する 第 1及び第 2のェッジ検出手段と、
前記第 1のエッジ検出手段に一よる立上がりエッジ検出タイミングを境として極 性力 ?互いに反転する極性反転パルス対からなる第 1の伝送用パルス信号を発生す る第 1の伝送用パルス発生手段と、
前記第 2のエッジ検出手段による立下がりエッジ検出タイミングを境として極 性が互いに反転する極性反転パルス対からなる第 2の伝送用パルス信号を発生す る第 2の伝送'用パルス発生手段と、
前記第 1の伝送用パルス信号に基づいて第 1の光強度変調信号を生成する第 1 の光強度変調手段と、
前記第 2の伝送用パルス信号に基づいて第 2の光強度変調信号を生成する第 2 の光強度変調手段
とを具備し、
受信側に、
前記第 1の光強度変調信号を受信して、 その交流成分のみを取り出した第 1の 受信信号を得る第 1の A C結合受信手段と、
前記第 2の光強度変調信号を受信して、 その交流成分のみを取り出した第 2の 受信信号を得る第 2の A C結合受信手段と、
前記第 1の受信信号から立上がりタイミングを識別する第 1の識別手段と、 前記第 2の受信信号から立下がりタイミングを識別する第 2の識別手段と、 前記識別された立上がりタイミング及び立下がりタイミングに基づいて前記伝 送すべき信号の波形に関する立上がりェッジ及び立下がりエツジを再現する信号 再生手段
とを具備することを特徴とする光伝送システム。
2 . 前記第 1の識別手段は、 前記第 1の受信信号の極性が反転するタイミングを 立上がりタイミングとして識別し、 前記第 2の識別手段は、 前記第 2の受信信号 の極性が反転するタイミングを立下がりタイミングとして識別することを特徴と する請求の範囲第 1項に記載の光伝送システム。
3 . 前記第 1の識別手段は、 立上がりタイミング識別の基準となる立上がり識別 基準レベルと、 立上がりタイミングの識別動作開始タイミングを与える立上がり 識別開始レベルとに基づいて、 前記第 1の受信信号の立上がり力前記立上がり識 別開始レベルを横切った時点から一定の時間だけ動作状態とされ、 この動作状態 中に前記第 1の受信信号が前記立上がり識別基準レベルを横切った時点を立上が りタイミングとして識別し、
前記第 1の'識別手段は、 立下がりタイ ミング識別の基準となる立下がり識別基 準レベルと、 立下がりタイミングの識別動作開始タイミングを与える立下がり識 別開始レベルとに基づいて、 前記第 2の受信信号の立下がり力前記立下がり識別 開始レベルを横切った時点から一定の時間だけ動作状態とされ、 この動作状態中 に前記第 2の受信信号が前記立下がり識別基準レベルを横切つた時点を立下がり タイミングとして識別する
ことを特徴とする請求の範囲第 2項に記載の光伝送システム。
4 . 前記信号再生手段は、 前記第 1の識別手段にて識別された立上がりタイミン グをセッ ト信号とし、 前記第 2の識別手段にて識別された立下がりタイミングを リセッ ト信号とする非同期 S Rフリップフロップ回路により構成されていること を特徴とする請求の範囲第 1項に記載の光伝送システム。
5 . 送信側に、
伝送すベき信号波形から立上がりエツジ及び立下がりエッジをそれぞれ検出す る第 1及ぴ第 2のエツジ検出手段と、
前記第 1のエツジ検出手段による立上がりェッジ検出タイミングを境として極 性が互いに反転する極性反転パルス対からなる第 1の伝送用パルス信号を発生す る第 1の伝送用パルス発生手段と、 前記第 2のエッジ検出手段による立下がりエッジ検出タイミングを境として、 前記第 1の伝送用パルス信号とは互いに極性が反転した関係にある、 極性が互い に反転する極性反転ノ、つレス対からなる第 2の伝送用パルス信号を発生する第 2の 伝送用パルス癸生手段と、
前記第 1及び第 2の伝送用パルス信号に基づいて光強度変調信号を生成する光 強度変調手段
とを具備し、
受信側に、
前記光強度変調信号を受信して、 その交流成分のみを取り出した受信信号を得 る A C結合受信手段と、
前記受信信号から、 前記極性反転の関係に基づいて、 前記第 1及び第 2の伝送 用パルス信号に関係する信号を区別するとともに、 立上がりタイミング及び立下 がりタイミングを識別する識別手段と、
前記立上がりタイミング及び立下がりタイミングに基づいて、 前記伝送すべき 信号の波形に関係する立上がりエツジ及び立下がりエツジを再現する信号再生手 段
とを具備することを特徴とする光伝送システム。
6 . 前記識別手段は、 前記受信信号のうち前記第 1の伝送用パルス信号に関係す る信号の極性が正極性から負極性へ反転するタイミングを立上がりタイミングと して識別する第 1の識別回路と、 前記受信信号のうち前記第 2の伝送用パルス信 号に関係する信号の極性力 s負極性から正極性へ反転するタィミングを立下がりタ ィミングとして識別する第 2の識別回路とからなることを特徴とする請求の範囲 第 5項に記載の光伝送システム。
7 . タイミング識別の基準となる識別基準レベルと、 立上がりタイミングの識別 動作開始タィミングを与える立上がり識別開始レベル及び立下がりタイミングの 識別動作開始タイミングを与える立下がり識別開始レベルとに基づいて、 ― 立上がりタイミングを識別する際は、 前記受信信号の立上がり力 s前記立上がり 識別開始レベルを横切った時点で前記第 1の識別手段が一定の時間だけ動作状態 とされると同時に、 前記第 2の識別手段が動作不能状態とされ、 第 1の識別手段 が動作状態中に前記受信信号が前記識別基準レベルを横切つた時点を立上がりタ イミングとして識別し、
立下がりタイミングを識別する際は、 前記受信信号の立下がり力 ?前記立下がり 識別開始レベルを横切つた時点で前記第 2の識別手段が一定の時間だけ動作状態 とされると同時に、 前記第 1の識別手段が動作不能状態とされ、 第 2の識別手段 が動作状態中に前記受信信号が前記識別基準レべルを横切つた時点を立下がりタ ィミングとして識別する
ことを特徴とする請求の範囲第 6項に記載の光伝送システム。
8 . 前記信号再生手段は、 前記識別手段にて識別された立上がりタイミング、 立 下がりタイミングをそれぞれセッ ト信号、 リセッ ト信号とする非同期 S Rフリツ プフロップ回路により構成されていることを特徴とする請求の範囲第 5項に記載 の光伝送システム。
9 . 請求の範囲第 1項乃至第 8項のいずれか; I項に記載の光伝送システムを備え、 2値信号を送出する試験装置本体と前記 2値信号を受信するテストへッドとが光 ファイバにより接続され、 前記試験装置本体と前記テストへッ ドとの間において 前記光伝送システムを用いた光伝送力 ?行われることを特徴とする半導体デノ ^ィス
1 0 . 伝送すベき信号波形の立上がりエツジ及び立下がりエッジを検出し、 これ らエツジの検出タイミングを境にして立上がりタイミング及ぴ立下がりタイミン グを示すタイミング信号を光伝送ライン上に送出する送信工程と、
前記光伝送ライン上に送出されたタイミング信号を受信し、 この受信信号の立 上がりタイミング及び立下がりタイミングに基づいて前記伝送すべき信号波形に 関係する立上がりエツジ及ぴ立下がりエツジを再現する受信工程
とを有することを特徴とする光伝送方法。
1 1 . 伝送すベき信号波形の立上がりェッジ及ぴ立下がりエツジをそれぞれ検出 する第 1の工程と、
前記立上がりエツジ検出タイミングを境として極性力5'互いに反転する極性反転 パルス対からなる第 1の伝送用パルス信号を発生するとともに、 前記立下がり エッジ検出タイミングを境として極性が互いに反転する極性反転パルス対からな る第 2の伝送用パルス信号を発生する第 2の工程と、
前記第 1の伝送用パルス信号に基づいて第 1の光強度変調信号を生成すると共 に、 前記第 2の伝送用パルス信号に基づいて第 2の光強度変調信号を生成し、 こ れら変調信号を別々に光伝送ライン上に送出する第 3の工程と、
前記第 1及び第 2の光強度変調信号をそれぞれ受信して、 それらの交流成分の みを取り出した第 1及び第 2の受信信号を得る第 4の工程と、
前記第 1の受信信号から立上がりタイミングを識別すると共に、 前記第 2の受 信信号から立下がりタイミングを識別し、 この識別した立上がりタイミング及び 立下がりタイミングに基づいて前記伝送すべき信号波形に関係する立上がりエツ ジ及び立下がりエツジを再現する第 5の工程と、
を有することを特徴とする光伝送方法。
1 2 . 前記第 5の工程における立上がり タイミング及び立下がりタイミングの識 別を、 前記第 1の受信信号の極性が反転するタイミングを立上がりタイミングと し、 前記第 2の受信信号の極性が反転するタイミングを立下がりタイミングとし て識別することにより行うことを特徴とする請求の範囲第 1 1項に記載の光伝送 システム。
1 3 . 立上がりタイミングを識別する場合には、 立上がりタイミング識別の基準 となる立上がり識別基準レベルと、 立上がりタイミングの識別動作開始タイミン グを与える立上がり識別開始レベルとに基づいて、 前記第 1の受信信号の立上が りカ?前記立上がり識別開始レベルを横切った時点から一定時間内に前記第 1の受 信信号が前記立上がり識別基準レベルを横切った時点を立上がりタイミングとし て識別し、 ―
立下がりタイミングを識別する場合には、 立下がりタイミング識別の基準とな る立下がり識別基準レベルと、 立下がり タイミングの識別動作開始タイミングを 与える立下がり識別開始レベルとに基づいて、 前記第 2の受信信号の立下がりが 前記立下がり識別開始レベルを横切つた時点から一定時間内に前記第 2の受信信 号が前記立下がり識別基準レベルを横切った時点を立下がりタイミングとして識 別する
ことを特徴とする請求の範囲第 1 2項に記載の光伝送方法。
1 4 . 伝送すベき信号波形から立上がりエツジ及び立下がりエツジをそれぞれ検 出する第 1の工程と、
前記立上がりエツジ検出タイミングを境として極性が互いに反転する極性反転 パルス対からなる第 1の伝送用パルス信号を発生すると共に、 前記立下がりエツ ジ検出タイミングを境として、 前記第 1の伝送用パルス信号とは互いに極性が反 転した関係にある、 極性が互いに反転する極性反転ノ、リレス対からなる第 2の伝送 用パルス信号を発生する第 2の工程と、
前記第 1及び第 2の伝送用パルス信号に基づいて光強度変調信号を生成し、 こ の変調信号を光伝送ライン上に送出する第 3の工程と、
前記光強度変調信号を受信して、 その交流成分のみを取り出した受信信号を得 る第 4の工程と、
前記受信信号から、 前記極性反転の関係に基づいて前記第 1及び第 2の伝送用 パルス信号に関係する信号を区別すると共に、 立上がりタイミング及び立下がり 夕イミングを識別し、 この識別した立上がりタイミング及び立下がりタイミング に基づいて前記伝送すべき信号波形に関係する立上がりェッジ及び立下がりェッ ジを再現する第 5の工程
とを有することを特徴とする光伝送方法。
1 5 . 前記第 5の工程における立上がりタイミング及ぴ立下がりタイミングの識 別を、 前記受信信号のうち前記第 1の伝送用パルス信号に関係する信号の極性が 正極性から負極性へ反転するタイミングを立上がりタイミングとし、 前記受信信 号のうち前記第 2の伝送用パルス信号に関係する信号の極性力負極性から正極性 へ反転するタイミングを立下がりタイミングとして識別することを特徴とする請 求の範囲第 1 4項に記載の光伝送方法。
1 6 . タイミング識別の基準となる識別基準レベルと、 立上がりタイミングの識 別動作開始タイミングを与える立上がり識別開始レベル及び立下がりタイミング の識別動作開始タイミングを与える立下がり識別開始レベルとに基づいて、 立上がりタイミングを識別する場合には、 前記受信信号の立上がり力'前記立上 がり識別開始レベルを横切った時点から一定の時間だけ立上がりタイミングの識 別が行われるようにすると同時に、 立下がりタイミングの識別が行われないよう にし、 この時間内に前記受信信号が前記識別基準レベルを横切った時点を立上が りタイミングとして識別し、
立下がりタイミングを識別する場合には、 前記受信信号の立下がり力前記立下 がり識別開始レベルを横切った時点から一定の時間だけ立下がりタイミングの識 別が行なわれるようにすると同時に、 立上がりタイミングの識別が行なわれない ようにし、 この時間内に前記受信信号が前記識別基準レベルを横切った時点を立 ち下がりタイミングとして識別する
ことを特徴とする請求の範囲第 1 5項に記載の光伝送方法。
1 7 . 送信側に設けた発光素子に電気パルスを与え、 この電気パルスにより発光 素子から光パルスを発光させ、 この光パルスを光学伝送路を通じて受信側に伝送 し、 受信側に設けた受光素子によって電気パルスに変換し、 この電気パルスを受 信信号として取り込む光パルス伝送方法において、
上記送信側において、 上記発光素子に与える電気ノ、'ルスを直流ノ ィァス電流を 中心に正と負に対称に変化する正負対称波形信号とし、 光伝送路上の光の平均値 を一定値に維持させることを特徴とする光パルス伝送方法。
1 8 . 受信側で受信した正負対称波形信号の検出点を上記バイアス電流値を横切 るゼロクロス点に規定することを特徴とする請求の範囲第 1 7項に記載の光パル ス検出方法。
1 9 . 送信側に設けた発光素子に電気パルスを与え、 この電気パルスにより発光 素子から光パルスを発光させ、 この光パルスを光学伝送路を通じて受信側に伝送 し、 受信側に設けた受光素子によって電気パルスに変換し、 この電気パルスを受 信信号として取り込む光パルス伝送方法において、
上記送信側において、 上記発光素子に与える電気パルスを前縁側及び後縁側の 双方において、 直流ノ ィァス電流値を中心に正と負に対称に変化する正負対称波 形信号とし、 パルス幅が長いパルスを伝送しても上記光伝送路上の光の平均値を 一定値に維持させることを特徴とする光パルス伝送方法。
2 0 . 受信側の受信検出点を上記前縁側及び後縁側で発生する正負対称波形信号 の何れか一方のゼロクロス点によって規定することを特徴とする請求の範囲第 1 9項に記載の光パルス検出方法。
2 1 . 受信側に上記直流バイアス電流値に対応する直流電圧を発生する平滑化回 路を設け、 この平滑化回路で発生する直流電圧をヒステリシス特性を持つ電圧比 較器の基準電圧として供給し、 この基準電圧を中心に上記ヒステリシス特性のヒ ステリシス幅を越える電位変化を受信信号と て検出し、 上記電圧比較器から出 力させることを特徴とする請求の範囲第 1 7項乃至第 2 0項のいずれかに記載の 光パルス検出方法。
2 2 . ディジタル入力信号を、 この入力信号の立上がり又は立下がりのタイミン グを境として極性が互いに反転する極性反転パルス対よりなる伝送波形に変換す る伝送波形変換方法であって、
前記ディジタル入力信号から、 この入力信号と波形が等しい第 1の波形と、 前 記第 1の波形より一定時間分の遅延を有し、 振幅が前記第 1の波形の 2倍で、 波 形が前記デジタル入力信号に対して負論理の関係にある第 2の波形と、 前記第 2 の波形より一定時間分の遅延を有し、 前記第 1の伝送波形と波形が等しい第 3の 波形をそれぞれ生成し、 前記第 1乃至第 3の波形を重ね合せることにより前記極 性が互いに反転する極性反転パルス対を生成することを特徴とする伝送波形変換 方法。
2 3 . 発光手段と、 ディジタル入力信号に応じて前記発光手段を駆動する駆動手 段とを有する光強度変調装置において、
前記駆動手段は、
前記ディジタル入力信号と波形が等しい第 1の電流波形を形成する第 1の電流 スィツチ手段と、
前記第 1の波形に対して一定時間分の遅延を有し、 振幅が前記第 1の波形の 2 倍で、 波形が前記デジタル入力信号に対して負論理の関係にある第 2の電流波形 を形成する第 2の電流スィツチ手段と、
前記第 2の波形に対して一定時間分の遅延を有し、 前記第 1の電流波形と波形 が'等しい第 3の電流波形を形成する第 3の電流スイッチ手段
とを有し、
前記第 1乃至第 3の電流波形を加算した電流波形で前記発光素子を駆動するこ とを特徴とする光強度変調装置。
2 4 . 前記第 1乃至第 3の電流スィツチ手段のそれぞれは、 ベースに前記ディジ タル入力信号の反転入力が接続された第 1のトランジスタと、 ベースに前記ディ ジタル入力信号の入力が接続された第 2のトランジスタとを備え、 これら第 1及 び第 2のトランジスタのェミッタ力電流源に共通に接続されており、
前記第 1及び第 3の電流スィッチ手段を構成する第 1のトランジスタのコレク タと、 前記第 2の電流スィツチ手段を構成する第 2のトランジスタのコレクタと が共通に電源供給ラィンに接続されて第 1の出力が形成され、
前記第 1及び第 3の電流スィッチ手段を構成する第 2のトランジスタのコレク 夕と、 前記第 2の電流スィッチ手段を構成する第 1のトランジスタのコレクタと が共通に接続されて第 2の出力が形成され、 前記第 2の電流スィッチ手段は、 電流源が他の電流スィッチ手段の電流源の 2 倍の電流を供給するように構成されていることを特徴とする請求の範囲第 2 3項 に記載の光強度変調装置。
2 5 . 前記第 2の電流スィッチ手段は、 第 1のトランジスタのコレクタの入カラ ィンに第 1の遅延回路が設けられ、 第 2のトランジスタのコレクタの入力ライン に第 2の遅延回路が設けられ、
前記第 3の電流スィッチ手段は、 第 1のトランジスタのコレクタの入力ライン に前記第 1の遅延回路及び第 3の遅延回路が直列に設けられ、 第 2のトランジス 夕のコレクタの入力ラインに前記第 2の遅延回路及び第 4の遅延回路が直列に設 けられていることを特徴とする請求の範囲第 2 4項に記載の光強度変調装置。
2 6 . 前記第 1乃至第 3の電流スィツチ手段の電流源はそれぞれ電流調整用抵抗 を有し、 第 1及ぴ第 3の電流スィッチ手段の電流源の電流調整用抵抗の抵抗値が 等しく、 第 2の電流スィッチ手段の電流源の電流調整用抵抗の抵抗値が他の電流 スイツチ手段の電流源の電流調整用抵抗の抵抗値の 2分の 1となるように設定さ れていることを特徴とする請求の範囲第 2 4項に記載の光強度変調装置。
2 7 . 送信側に、 請求の範囲第 2 3項乃至第 2 6項のいずれか 1項に記載の光強 度変調装置を備え、 .
受信側に、 前記光強度変調装置によって光強度変調された信号を受信して、 そ の交流成分のみを取り出した受信信号を得る A C結合受信手段と、 前記受信信号 から、 前記極性が反転する関係に基づいて、 伝送前のディジタル入力信号の立上 がりタイミンク及び立下がりタイミングを再現する信号再生手段とを具備するこ とを特徴とする光伝送システム。
2 8 . 試験装置本体とテストへッ ドが光ファイバで接続され、 前記試験装置本体 側に、 請求の範囲第 2 3項乃至第 2 6項のいずれか 1項に記載の光強度変調装置 を備ん、 前記テストへッド側に、 前記光強度変調装置によって光強度変調された信号を 受信して、 その交流成分のみを取り出した受信信号を得る A C結合受信手段と、 前記受信信号から、 前記極性が反転する関係に基づいて、 伝送前のディジタル入 力信号の立上がりタイミング及び立下がりタイミングを再現する信号再生手段と を具備することを特徴とする半導体デバイス試験装置。
2 9 . 試験装置本体とテストへッ ドが光ファイバで接続され、 前記テストヘッド 側に、 請求の範囲第 2 3項乃至第 2 6項のいずれか 1項に記載の光強度変調装置 を備え、 前記試験装置本体側に、 前記光強度変調装置によって光強度変調された 信号を受信して、 その交流成分のみを取り出した受信信号を得る A C結合受信手 段と、 前記^:信信号から、 前記極性が反転する関係に基づいて、 伝送前のディジ タル入力信号の立上がりタイミング及び立下がりタイミングを再現する信号再生 手段とを具備することを特徴とする半導体デバィス試験装置。
PCT/JP1998/000246 1997-01-22 1998-01-22 Systeme de transmission d'impulsions optiques, procede de transmission d'impulsions optiques, et procede de detection d'impulsions optiques WO1998032247A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69835259T DE69835259T8 (de) 1997-01-22 1998-01-22 System und verfahren zur optischen pulsübertragung
EP98900703A EP0895368B1 (en) 1997-01-22 1998-01-22 Optical pulse signal transmission and method
US09/155,163 US6381054B1 (en) 1997-01-22 1998-01-22 Optical pulse transmission system, optical pulse transmitting method, and optical pulse detecting method
JP53412598A JP3632031B2 (ja) 1997-01-22 1998-01-22 光パルス伝送システム、これを利用する装置及び光パルス伝送方法
KR1019980707426A KR100328618B1 (ko) 1997-01-22 1998-01-22 광펄스전송시스템,광펄스전송방법및광펄스검출방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP927197 1997-01-22
JP9/9271 1997-01-22
JP1871297 1997-01-31
JP9/18712 1997-01-31
JP23426397 1997-08-29
JP9/234263 1997-08-29

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/155,163 A-371-Of-International US6381054B1 (en) 1997-01-22 1998-01-22 Optical pulse transmission system, optical pulse transmitting method, and optical pulse detecting method
US09/960,153 Division US6819876B2 (en) 1997-01-22 2001-09-20 Optical pulse transmission system, optical pulse transmitting method and optical pulse detection method
US09/957,952 Division US6778783B2 (en) 1997-01-22 2001-09-21 Optical pulse transmission system, optical pulse transmitting method and optical pulse detecting method

Publications (1)

Publication Number Publication Date
WO1998032247A1 true WO1998032247A1 (fr) 1998-07-23

Family

ID=27278411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000246 WO1998032247A1 (fr) 1997-01-22 1998-01-22 Systeme de transmission d'impulsions optiques, procede de transmission d'impulsions optiques, et procede de detection d'impulsions optiques

Country Status (8)

Country Link
US (3) US6381054B1 (ja)
EP (1) EP0895368B1 (ja)
JP (1) JP3632031B2 (ja)
KR (1) KR100328618B1 (ja)
CN (1) CN1153382C (ja)
DE (1) DE69835259T8 (ja)
TW (1) TW399373B (ja)
WO (1) WO1998032247A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023680A (ja) * 2000-07-03 2002-01-23 Mitsubishi Electric Corp 定電流発生回路および表示装置
WO2003043248A1 (en) * 2001-11-11 2003-05-22 Huawei Technologies Co., Ltd. Optical signal modulation method and the optical transmission system
WO2003061160A1 (fr) * 2002-01-09 2003-07-24 Advantest Corporation Circuit de modulation de phase, appareil d'essai, et systeme de communication
JP2010258405A (ja) * 2009-04-03 2010-11-11 Sumitomo Electric Ind Ltd レーザダイオード駆動回路及び光送信器
WO2011033921A1 (ja) * 2009-09-15 2011-03-24 学校法人慶應義塾 集積回路
WO2014057598A1 (ja) * 2012-10-09 2014-04-17 日本電気株式会社 光送信システム、光位相変調器、及び光変調方法
US9966979B2 (en) 2015-01-28 2018-05-08 Kabushiki Kaisha Toshiba Transmission circuit, reception circuit and communication system
KR20200062729A (ko) * 2018-11-27 2020-06-04 현대오트론 주식회사 라이다 장치 및 라이다의 신호 처리 방법

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320470B1 (ko) * 1999-03-05 2002-01-12 구자홍 광 디스크 기록신호 생성 방법 및 장치
US7039320B1 (en) * 1999-11-05 2006-05-02 Fsona Communications Corporation Portable laser transceiver
JP3857099B2 (ja) * 2001-10-09 2006-12-13 株式会社アドバンテスト データ伝送装置、光電変換回路、及び試験装置
US7280574B1 (en) * 2002-05-15 2007-10-09 Cypress Semiconductor Corp. Circuit for driving a laser diode and method
JP4072850B2 (ja) * 2002-11-22 2008-04-09 富士ゼロックス株式会社 光パルスタイミング検出装置、光パルスタイミング検出方法、光パルスタイミング調整装置、及び光パルスタイミング調整方法
US7298792B2 (en) * 2003-02-10 2007-11-20 Mitsubishi Electric Research Laboratories, Inc. Randomly changing pulse polarity and phase in an UWB signal for power spectrum density shaping
US8036539B2 (en) * 2005-06-28 2011-10-11 Finisar Corporation Gigabit ethernet longwave optical transceiver module having amplified bias current
KR100759823B1 (ko) * 2005-12-08 2007-09-18 한국전자통신연구원 제로 복귀 신호 발생 장치 및 그 방법
US7669090B2 (en) * 2006-05-18 2010-02-23 Kabushiki Kaisha Toshiba Apparatus and method for verifying custom IC
DE102007013820A1 (de) * 2007-03-22 2008-09-25 Texas Instruments Deutschland Gmbh VCSEL Treiber
KR100819147B1 (ko) * 2007-10-11 2008-04-03 유호전기공업주식회사 광신호변환기 및 광신호변환방법
US8089996B2 (en) * 2008-06-13 2012-01-03 Xerox Corporation Light intensity boost for subpixel enhancement
US8369713B2 (en) * 2010-03-18 2013-02-05 Nippon Telegraph And Telephone Corporation Bit-rate discrimination method and its apparatus
JP5762943B2 (ja) * 2011-12-27 2015-08-12 株式会社東芝 光送受信回路装置及び受信回路
CN102790606B (zh) * 2012-06-07 2015-11-18 杭州东城图像技术有限公司 数字控制的模拟调制电路
KR102127832B1 (ko) * 2015-04-15 2020-06-29 한국전자통신연구원 광선로 감시 장치를 위한 광원 구동 장치 및 방법
CN105790746B (zh) * 2016-04-13 2019-01-18 华中科技大学 一种数字信号光纤传输触发系统
KR101900467B1 (ko) 2017-02-02 2018-11-02 연세대학교 산학협력단 토글 직렬 변환기를 이용하여 pam-4 신호의 진폭을 변조하는 데이터 송신 장치 및 그 동작 방법
JP6537757B2 (ja) * 2017-03-13 2019-07-03 三菱電機株式会社 信号伝送装置
EP3564702A1 (de) * 2018-04-30 2019-11-06 Lambda: 4 Entwicklungen GmbH Verfahren zur verbesserung der laufzeit- und/oder phasenmessung
JP7119681B2 (ja) * 2018-07-16 2022-08-17 株式会社デンソー 信号伝達装置及び駆動装置
CN112255618B (zh) * 2020-09-29 2024-01-05 中国兵器工业集团第二一四研究所苏州研发中心 一种像元级的时刻鉴别电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114323A (ja) * 1989-09-28 1991-05-15 Asahi Chem Ind Co Ltd 光データリンク装置
JPH0823310A (ja) * 1994-07-11 1996-01-23 Fuji Electric Co Ltd 光信号伝送装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027152A (en) * 1975-11-28 1977-05-31 Hewlett-Packard Company Apparatus and method for transmitting binary-coded information
PL114019B1 (en) 1977-01-24 1981-01-31 Insecticide
JPS55102958A (en) 1979-01-30 1980-08-06 Toshiba Corp Self-synchronous data transmitter
CA1159129A (en) * 1979-11-27 1983-12-20 Kazuo Murano Asynchronous transmission system for binary-coded information
JPS57128089A (en) 1981-01-31 1982-08-09 Nippon Telegr & Teleph Corp <Ntt> Driving circuit for semiconductor laser
JPS59112745A (ja) 1982-12-17 1984-06-29 Fujitsu Ltd 非同期2値信号伝送方式
DE3247120C2 (de) * 1982-12-20 1985-09-12 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren und Schaltungsanordnung zur Umsetzung eines zwischen zwei Pegeln wechselnden Binärsignals in ein Pulscodesignal, das Datenimpulse und Erneuerungsimpulse aufweist
DE3524871A1 (de) * 1985-07-12 1987-01-22 Licentia Gmbh Verfahren zur optischen rbertragung binaerer signale und anordnung zur durchfuehrung des verfahrens
JPS6431741A (en) 1987-07-29 1989-02-02 Tsumura & Co Novel lignan, diuretic and cardiac comprising said lignan as active ingredient
JPH0358532A (ja) * 1989-07-27 1991-03-13 Toshiba Corp 光伝送方式
JP2707837B2 (ja) 1990-12-12 1998-02-04 日本電気株式会社 半導体レーザ駆動回路
JP3223562B2 (ja) * 1992-04-07 2001-10-29 株式会社日立製作所 光送信装置、光伝送装置および光変調器
JP3148430B2 (ja) 1992-12-14 2001-03-19 三菱電機株式会社 光通信装置
US5448629A (en) * 1993-10-14 1995-09-05 At&T Corp. Amplitude detection scheme for optical transmitter control
JP2656734B2 (ja) * 1994-09-12 1997-09-24 宮城日本電気株式会社 光受信回路
CA2166829A1 (en) * 1995-02-02 1996-08-03 Attilio Joseph Rainal System and method for minimizing nonlinear distortion in optical communication systems employing laser intensity modulation
US5625645A (en) * 1995-07-25 1997-04-29 International Business Machines Corporation Differential pulse encoding and decoding for binary data transmissions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114323A (ja) * 1989-09-28 1991-05-15 Asahi Chem Ind Co Ltd 光データリンク装置
JPH0823310A (ja) * 1994-07-11 1996-01-23 Fuji Electric Co Ltd 光信号伝送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0895368A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002023680A (ja) * 2000-07-03 2002-01-23 Mitsubishi Electric Corp 定電流発生回路および表示装置
WO2003043248A1 (en) * 2001-11-11 2003-05-22 Huawei Technologies Co., Ltd. Optical signal modulation method and the optical transmission system
WO2003061160A1 (fr) * 2002-01-09 2003-07-24 Advantest Corporation Circuit de modulation de phase, appareil d'essai, et systeme de communication
JP2010258405A (ja) * 2009-04-03 2010-11-11 Sumitomo Electric Ind Ltd レーザダイオード駆動回路及び光送信器
WO2011033921A1 (ja) * 2009-09-15 2011-03-24 学校法人慶應義塾 集積回路
WO2014057598A1 (ja) * 2012-10-09 2014-04-17 日本電気株式会社 光送信システム、光位相変調器、及び光変調方法
US9425898B2 (en) 2012-10-09 2016-08-23 Nec Corporation Optical transmission system, optical phase modulator, and optical modulation method
US9966979B2 (en) 2015-01-28 2018-05-08 Kabushiki Kaisha Toshiba Transmission circuit, reception circuit and communication system
KR20200062729A (ko) * 2018-11-27 2020-06-04 현대오트론 주식회사 라이다 장치 및 라이다의 신호 처리 방법
KR102283233B1 (ko) * 2018-11-27 2021-07-29 현대모비스 주식회사 라이다 장치 및 라이다의 신호 처리 방법

Also Published As

Publication number Publication date
US20020012145A1 (en) 2002-01-31
DE69835259T2 (de) 2007-07-19
EP0895368A1 (en) 1999-02-03
US20020008892A1 (en) 2002-01-24
DE69835259T8 (de) 2007-10-31
CN1216182A (zh) 1999-05-05
US6381054B1 (en) 2002-04-30
KR20000064702A (ko) 2000-11-06
US6819876B2 (en) 2004-11-16
DE69835259D1 (de) 2006-08-31
CN1153382C (zh) 2004-06-09
TW399373B (en) 2000-07-21
KR100328618B1 (ko) 2002-08-27
US6778783B2 (en) 2004-08-17
EP0895368A4 (en) 2000-05-31
JP3632031B2 (ja) 2005-03-23
EP0895368B1 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
WO1998032247A1 (fr) Systeme de transmission d&#39;impulsions optiques, procede de transmission d&#39;impulsions optiques, et procede de detection d&#39;impulsions optiques
CA2475850A1 (en) Apparatus and method for measurement of dynamic laser signals
US6925264B2 (en) Optical transmitter and optical transmitting apparatus using the same
US6586953B1 (en) Optically driven driver, optical output type voltage sensor, and IC testing equipment using these devices
US6922045B2 (en) Current driver and method of precisely controlling output current
KR100210982B1 (ko) 반도체 레이저 구동회로, 반도체 레이저장치, 화상기록장치 및 광디스크장치
EP0740433A2 (en) Optical transmitter
JP3756905B2 (ja) 光強度変調装置、これを用いたシステム及び装置と光強度変調方法
JP5097962B2 (ja) 多値光パルス列分析・制御装置及び多値光パルス列分析・制御方法
JP4028919B2 (ja) 発光素子駆動回路
JP4571272B2 (ja) 光信号伝送システムの校正方法
JP2005057216A (ja) レーザダイオード駆動回路及び光送信装置
JPH0454029A (ja) 光出力安定化方式
JPS58215837A (ja) 光受信回路
JPH11298080A (ja) 半導体レーザの駆動装置及び駆動方法
JPS5855701Y2 (ja) 二進符号情報伝送装置
WO1992017007A1 (en) Method and control circuit for controlling a laser diode transmitter
GB2373587A (en) Optical output type voltage sensor and IC testing apparatus using it
JPH07193474A (ja) 波形成形回路
JPH07135486A (ja) 光送信回路の自動パワー制御方法及び光送信回路の自動パワー制御回路
JPH0530039A (ja) 光送信回路
JPH06125128A (ja) 光送信回路
JPH02118429A (ja) 光源劣化検出回路
JPS6196785A (ja) 半導体レ−ザの検査装置
JPH08201742A (ja) マッハツェンダ型光強度変調器バイアス電圧制御回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800050.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019980707426

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998900703

Country of ref document: EP

Ref document number: 09155163

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998900703

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707426

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707426

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998900703

Country of ref document: EP