WO1997009928A1 - Verfahren und vorrichtung zur herzzeitvolumenbestimmung - Google Patents
Verfahren und vorrichtung zur herzzeitvolumenbestimmung Download PDFInfo
- Publication number
- WO1997009928A1 WO1997009928A1 PCT/EP1996/003918 EP9603918W WO9709928A1 WO 1997009928 A1 WO1997009928 A1 WO 1997009928A1 EP 9603918 W EP9603918 W EP 9603918W WO 9709928 A1 WO9709928 A1 WO 9709928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measuring
- electrode
- electrodes
- catheter
- measuring electrode
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0535—Impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/029—Measuring or recording blood output from the heart, e.g. minute volume
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/026—Measuring blood flow
- A61B5/0295—Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0538—Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
Definitions
- the invention relates to a method for cardiac output determination by detecting a systolic change in impedance of a tissue with at least one first measuring electrode and at least one second measuring electrode, the first measuring electrode being applied to the skin in the region of an alternating current path through the tissue, and a Device for carrying out the method.
- the size of the cardiac output is a measure of the pumping power of the heart. It is a decisive factor for the assessment of whether the organism of a human (or animal) is likely to withstand the expected increased physical stress (athletes, pilots, astronauts, racehorses). In the operative area too, knowledge of the cardiac output along with other parameters is important for assessing the patient's situation.
- the conventional impedance measurement principle for determining the cardiac output is based on the AC resistance change triggered by the cardiac action in a tissue area to which essential parts of the chest belong.
- the change in volume of the air vessel vessels triggered by the system causes a measurable change in the tissue resistance, with which the cardiac output can be calculated taking into account hematocrit, electrode spacing and thorax volume in the expulsion phase.
- An electrical alternating current of a defined frequency and a strength Im flows between two current electrodes, the one
- Measureasuring electrodes are attached between the two current electrodes.
- the invention is intended to provide a method and a device with which the cardiac output can be recorded more precisely.
- the second measuring electrode is inserted into a vessel which is essentially opposite the heart with respect to the first measuring electrode and is held in a predetermined projection through the heart onto the first measuring electrode.
- the word "vessel” is understood here in the broadest sense to define a hollow organ, which can be one of the blood vessels, the esophagus or the trachea. As far as the invention is applied to humans, this includes the hollow organs in the mediastinum.
- the great advantage of the invention compared to conventional methods for detecting the change in impedance is based first of all on the fact that the change in impedance is detected directly on the heart, that is to say on the actual examination object. Falsifications of the measurement result by other tissue parts are therefore largely excluded. Direct flow through the heart with an alternating current of low current of a few hundred microamperes and a frequency of approximately 10 kHz to approximately 400 kHz is safe for the organ. The invasion continues the second measuring electrode is unproblematic by means of a catheter.
- the placement of the second measuring electrode can be checked and measured by imaging methods such as, for example, X-ray or sonography.
- the second measuring electrode is determined with particular advantage on the basis of the representation of an electrocardiographic vector signal.
- the first measuring electrode is expediently placed on the skin near the tip of the heart.
- a first current electrode, advantageously placed on the skin near the heart, and a second current electrode, which is inserted into the vessel, are expediently used to set up the alternating current path.
- the arrangement of the first and second current electrodes is expediently such that the predetermined projection coincides as far as possible with the alternating current path.
- a device which is particularly suitable for carrying out the method according to the invention has a sufficiently long, flexible vascular catheter of sufficiently small outside diameter, the rest of which is electrically insulating and has at least one second measuring electrode and one second current electrode axially spaced from the second measuring electrode, the second measuring ⁇ electrode are connected to a measuring conductor guided in the interior of the catheter tube and the second current electrode is connected to a current conductor guided in the interior of the catheter tube, and furthermore at least a first measuring electrode to be placed on the skin and a first one to be placed on the skin Current electrode comprises, the current electrodes being connected to an alternating current generator and the measuring electrodes being connected to an electronic evaluation device.
- the catheter tube expediently has an axial suction channel which is open to the outside of the catheter tube via openings provided in the second measuring electrode and in the second current electrode, so that when connected of the suction channel to a pump is ensured by a close connection between the second measuring electrode and the second current electrode and the vessel wall. Furthermore, it is advisable to create an axial working channel in the catheter tube next to the suction channel, through which an endoscope or other instruments (magnetic probes, ultrasound and Doppler sound probes, phonocardiogram microphones) serving to improve catheter placement and measurement accuracy are inserted into the catheter can be.
- an endoscope or other instruments magnetic probes, ultrasound and Doppler sound probes, phonocardiogram microphones
- the evaluation device to which the first measuring electrode (s) and the second measuring electrode (s) are connected, has a frequency filter which contains the low-frequency component of the measuring signal arriving from the measuring electrodes an electrocardiograph and the higher frequency portion representing the detected change in impedance to a processing and display device.
- FIG. 2 shows an enlarged cross section through an esophageal catheter at the level of an electrode
- FIG. 3 shows a schematic block diagram of an evaluation device.
- a first current electrode A is applied to the skin 9 of a subject or patient, and a first measuring electrode B is applied above it.
- An esophagus catheter, generally designated 5, is inserted into the schematically represented esophagus 7, which is equipped with a plurality of axially spaced electrodes C, D, E, F, G, H, I, J, K, L.
- Each of the two uppermost electrodes C and D can be the second current electrode, while each of the electrodes E, ..., L following axially downwards can be second measuring electrodes.
- the projections 10, 12, 14 shown in dashed lines show the measuring path for the change in impedance from the first measuring electrode B to the second measuring electrodes E or F or G. In the upper right part of FIG.
- curve 1 denotes the electrocardiogram, that has been recorded along the projection 10 along the measuring section BE.
- Curve 2 shows the electrocardiogram that was recorded along the measuring section B-F via the projection 12, while curve 3 corresponds to the electrocardiogram that results from the projection 14 corresponding to the measuring section B-G.
- each of the second current or measuring electrodes consists of an outer ring 20 made of electrically conductive material, which has an insulation layer on the inside 22 is lined.
- the ring 20 and the insulation 22 are provided at two diametrically opposed positions, each with an opening 24, 26 through which an axial suction channel 28 formed in the interior of the catheter 5 can communicate with the exterior of the catheter.
- the core of one of the measuring lines 23 is conductively connected to the ring 20 by a solder connection 21 penetrating the insulation 22.
- the further measuring lines and current lines, which are designated as a whole by 23, are electrically connected in a corresponding manner to an associated second measuring electrode or second current electrode. They are guided in a chamber 25 which is separate from the suction channel 28 and extends axially through the catheter 5.
- the evaluation device designated as a whole by 30, contains an alternating current generator 32, the first output contact 34 of which is connected to the first current electrode A and the second output contact 36 of which is connected to one of the second current electrodes C or D.
- the alternating current generator 32 generates an alternating current frequency of 40 kHz.
- the evaluation device 30 also has a first measuring input terminal 42, which is connected to the first measuring electrode B, and a second measuring input terminal 44, which is connected to one of the second measuring electrodes E, ..., L.
- the two measuring input terminals 42 and 44 represent the input for a crossover 40, which supplies the measurement signal received at the measurement input terminals 42 and 44, as far as its fluctuations are in the 1 Hz range, as an electrocardiography signal to an electrocardiograph 41 and feeds the measurement signal, which is in the range of 40 kHz, to a processing and display device 43.
- the heart-time volume determined according to the formula below is determined and displayed graphically. If the measuring input terminal 42 is connected to the first measuring electrode B, one of the number of second measuring electrodes E, ..., L can be provided with the same number of measuring input terminals 44, it being possible to switch to the current measuring input terminal 44 in the crossover 40.
- the cardiac output volume HZV is determined according to the heart rate f of the heart and its stroke volume SV
- HZV f * SV.
- the stroke volume results from the following formula
- dZ L SV ro * - * T * (-) 2 , where ro denotes the specific resistance of the blood, which is normally 135 ohm / cm and is influenced by the value of the hematocrit, dZ / dt the time derivative of the measured impedance Z
- thermodilution The relative changes in cardiac output determined by bioimpedance and thermodilution were well comparable. After infusions, the values determined by thermodilution differed significantly from the values determined by bioimpedance. Thermodilution almost always determined higher cardiac output than with bioimpedance. The impedance curves had a different shape in the expulsion phase between the 1st and 2nd heart sound.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Die Erfindung betrifft: verfahren zur Herzzeitvolumenbestimmung, durch Erfassen einer systolischen Impedanzänderung eines Gewebes mit wenigstens einer ersten Meßelektrode und wenigstens einer zweiten Meßelektrode, wobei die erste Meßelektrode im Bereich eines Wechselstrompfades durch das Gewebe auf die Haut aufgebracht wird, dadurch gekennzeichnet, daß die zweite Meßelektrode in ein dem Herzen bezüglich der ersten Meßelektrode im wesentlichen gegenüberliegendes Gefäß eingeführt und in einer vorgegebenen, das Herz durchlaufenden Projektion auf die erste Meßelektrode gehalten wird.
Description
Verfahren und Vorrichtung zur Herzzeitvolumenbestimmung
BESCHREIBUNG
Die Erfindung betrifft ein Verfahren zur Herzzeitvolu¬ menbestimmung durch Erfassen einer systolischen Impe¬ danzänderung eines Gewebes mit wenigstens einer ersten Meßelektrode und wenigstens einer zweiten Meßelektrode, wobei die erste Meßelektrode im Bereich eines Wechsel- strompfades durch das Gewebe auf die Haut aufgebracht wird, sowie eine Vorrichtung zur Durchführung des Ver¬ fahrens .
Die Größe des Herzzeitvolumens ist ein Maß für die Pump¬ leistung des Herzens. Sie ist ein maßgebender Faktor für die Beurteilung dafür, ob der Organismus eines Men¬ schen (oder Tieres) einer zu erwartenden erhöhten physi¬ schen Belastung (Sportler, Piloten, Astronauten, Renn¬ pferde) voraussichtlich standhalten wird. Auch im opera¬ tiven Bereich ist die Kenntnis des Herzzeitvolumens ne¬ ben anderen Parametern zur Beurteilung der Situation des Patienten wichtig.
Das herkömmliche Impedanz-Meßprinzip der Bestimmung des Herzzeitvolumens insbesondere nach Kubicek beruht auf der durch die Herzaktion ausgelösten Wechselstrom-Wider¬ standsänderung in einem Gewebebereich, zu dem wesentli¬ che Teile des Brustkorbes gehören. Die durch die Systo- le ausgelöste Volumenänderung der Windkesselgefäße be¬ wirkt eine meßbare Änderung des Gewebswiderstandes, mit der unter Berücksichtigung von Hämatokrit, Elektrodenab¬ stand und Thoraxvolumen in der Austreibungsphase das Herzzeitvolumen berechnet werden kann. Ein elektrischer Wechselstrom einer definierten Frequenz und einer Stär¬ ke Im fließt zwischen zwei Stromelektroden, die einen
Wechselstrompfad durch das Gewebe definieren. Zwischen den beiden Stromelektroden werden Meßelektroden ange-
ORIGINAL UNTERLAGEN
bracht und die zwischen ihnen meßbare Spannung Um = Im * Z gemessen. In dieser Gleichung ist Z die Im- pedanz zwischen den beiden Meßelektroden, wobei aus der zeitlichen Änderung dZ/dt auf das Herzzeitvolumen ge¬ schlossen werden kann. Dazu wird an ringförmige Klebee¬ lektroden, die am Hals und am unteren Thorax angebracht werden, ein schwacher Wechselstrom von etwa 100 kHz an¬ gelegt.
Demgegenüber soll mit der Erfindung ein Verfahren und eine Vorrichtung geschaffen werden, mit dem sich das Herzzeitvolumen genauer erfassen läßt .
Bei dem eingangs genannten Verfahren ist dazu erfind¬ ungsgemäß vorgesehen, daß die zweite Meßelektrode in ein dem Herzen bezüglich der ersten Meßelektrode im we¬ sentlichen gegenüberliegendes Gefäß eingeführt und in einer vorgegebenen, das Herz durchlaufenden Projektion auf die erste Meßelektrode gehalten wird. Das Wort "Gefäß" wird hier im weitesten Sinne zur Definition eines Hohlorgans verstanden, das unter anderem eines der Blutgefäße, der Oesophagus oder die Trachea sein kann. Soweit die Erfindung beim Menschen angewandt wird, gehören dazu die Hohlorgane im Mediastinum.
Der große Vorteil der Erfindung gegenüber herkömmlichen Verfahren zur Erfassung der Impedanzänderung beruht zu¬ nächst darauf, daß die Impedanzänderung direkt am Her¬ zen, also am eigentlichen Untersuchungsobjekt erfaßt wird. Verfälschungen des Meßergebnisses durch andere Ge¬ webeteile bleiben daher weitgehend ausgeschlossen. Die direkte Durchströmung des Herzens mit einem Wechsel¬ strom niedriger Stromstärke von einigen Hundert Mikroam¬ pere und einer Frequenz von etwa 10kHz bis etwa 400kHz ist für das Organ gefahrlos. Weiterhin ist die Invasion
der zweiten Meßelektrode mittels eines Katheters unpro¬ blematisch.
In zweckmäßiger Ausgestaltung der Erfindung kann die Plazierung der zweiten Meßelektrode durch bildgebende Verfahren, wie beispielsweise röntgenologisch oder sono- graphisch überprüft und ausgemessen werden.
Mit besonderem Vorteil wird die zweite Meßelektrode anhand der Darstellung eines elektrokardiographischen Vektorsignals festgelegt. Dazu empfiehlt es sich, die erste und die zweite Meßelektrode gleichzeitig zur Er¬ fassung eines Elektrokardiogramms zu verwenden, so daß die gewünschte Lage der zweiten Meßelektrode relativ zur ersten Meßelektrode in einfacher Weise anhand des Auftretens eines für die gewünschte Lage spezifischen Verlaufs der Elektrokardiogrammkurve bestimmt werden kann. Zweckmäßig wird dazu die erste Meßelektrode in der Nähe der Herzspitze auf der Haut plaziert. Weiter¬ hin ist es hierzu vorteilhaft, wenn beispielsweise auf einem Oesophaguskatheter mehrere zweite Meßelektroden in axialem Abstand angeordnet werden, zu jedem Meßelek¬ trodenpaar, bestehend aus der ersten Meßelektrode und jeweils einer der zweiten Meßelektroden, das Elektrokar¬ diogramm aufgenommen und dasjenige Meßelektrodenpaar bestimmt wird, dessen Projektion der Herzachse am näch¬ sten liegt, und an diesem Meßelektrodenpaar die Impe¬ danzänderung erfaßt wird.
Es ist bekannt, in einem der Herzbinnenräume die Druck¬ änderung aufzunehmen. Wenn für den gleichen Herzbinnen¬ raum nach dem erfindungsgemäßen Verfahren das Herz- Zeit-Volumen erfaßt wird, kann aus beiden Angaben ein Druck-Volumen-Diagramm des für den zwischen beiden Meßelektroden liegenden Herzbinnenraum erstellt werden.
Daraus können Schlüsse auf Herzarbeit und Herzleistung gezogen werden.
Zur Einrichtung des Wechselstrompfades dient zweckmäßig eine erste, auf der Haut vorteilhafterweise in Herznähe plazierte Stromelektrode sowie eine zweite Stromelektro¬ de, die in das Gefäß eingeführt wird. Zweckmäßig wird die Anordnung der ersten und zweiten Stromelektrode so getroffen, daß die vorgegebene Projektion mit dem Wech¬ selstrompfad möglichst weitgehend übereinstimmt.
Weitere bevorzugte Ausgestaltungen des erfindungsgemä¬ ßen Verfahrens sind in den Unteransprüchen angegeben.
Eine zur Durchführung des erfindungsgemäßen Verfahrens besonders geeignete Vorrichtung weist einen hinreichend langen, biegsamen Gefäßkatheter hinreichend kleinen Au¬ ßendurchmessers auf, dessen im übrigen elektrisch iso¬ lierender Mantel wenigstens eine zweite Meßelektrode sowie eine zur zweiten Meßelektrode axial beabstandete zweite Stromelektrode aufweist, wobei die zweite Me߬ elektrode mit einem im Innern des Katheterrohres geführ¬ ten Meßleiter und die zweite Stromelektrode mit einem im Innern des Katheterrohres geführten Stromleiter ver¬ bunden sind, und ferner wenigstens eine erste, auf der Haut zu plazierende Meßelektrode sowie eine erste, auf der Haut zu plazierende Stromelektrode umfaßt, wobei die Stromelektroden mit einem Wechselstromgeber und die Meßelektroden mit einer elektronischen Auswerteeinrich¬ tung verbunden sind.
Zweckmäßig besitzt das Katheterrohr einen axialen Saug¬ kanal, der über in der zweiten Meßelektrode sowie in der zweiten Stromelektrode vorgesehene Öffnungen zum Äu¬ ßeren des Katheterrohres offen ist, so daß bei Anschluß
des Saugkanals an eine Pumpe durch Unterdruck eine enge Verbindung zwischen der zweiten Meßelektrode sowie der zweiten Stromelektrode und der Gefäßwand sichergestellt wird. Weiterhin empfiehlt es sich, in dem Katheterrohr neben dem Saugkanal einen axialen Arbeitskanal zu schaf¬ fen, durch den beispielsweise ein Endoskop oder andere der besseren Katheterplazierung und der Meßgenauigkeit dienende Instrumente (Magnetsonden, Ultraschall- und Dopplerschallsonden, Phonokardiogramm-Mikrophone) in den Katheter eingeführt werden können.
Mit besonderem Vorteil sind am Umfang des Katheters meh¬ rere axial beabstandete und gegeneinander elektrisch isolierte zweite Meßelektroden vorgesehen, deren wech¬ selseitiger Abstand gleich sein kann. Es empfiehlt sich ferner, die zweite Stromelelektrode vom Ende des Kathe¬ terrohres aus gesehen oberhalb der zweiten Meßelektro¬ de (n) anzuordnen.
Es empfiehlt sich weiterhin, daß die Auswerteeinrich¬ tung, an die die erste (n) Meßelektrode (n) und die zwei¬ ten Meßelektrode (n) angeschlossenen sind, eine Frequenz¬ weiche aufweist, welche den niederfrequenten Anteil des von den Meßelektroden ankommenden Meßsignals einem Elektrokardiographen und den höherfrequenten Anteil, der die erfaßte Impedanzänderung repräsentiert, einer Verarbeitungs- und Anzeigeeinrichtung zuführt.
Weitere zweckmäßige Ausgestaltungen der erfindungsgemä¬ ßen Vorrichtung sind in den Unteransprüchen angegebe¬ nen.
Die Erfindung wird nachstehend anhand eines Ausführungs- -beispiels im einzelnen erläutert, wobei auf die beige¬ fügte Zeichnung Bezug genommen wird. Es zeigen:
Fig. 1 eine transmediastinale Bioimpedanzmessung in der seitlichen Übersicht;
Fig. 2 einen vergrößerten Querschnitt durch einen Oeso- phaguskatheter in Höhe einer Elektrode; und
Fig. 3 ein schematisches Blockdiagramm einer Auswerte¬ einrichtung.
Gemäß Fig. 1 wird auf die Haut 9 eines Probanten oder Patienten eine erste Stromelektrode A sowie überhalb derselben eine erste Meßelektrode B aufgebracht. In den schematisch dargestellten Oesophagus 7 ist ein im Gan¬ zen mit 5 bezeichneter Oesophaguskatheter eingeführt, welcher mit mehreren axial beabstandeten Elektroden C, D, E, F, G, H, I, J, K, L bestückt ist. Jede der beiden obersten Elektroden C und D kann die zweite Stromelek¬ trode sein, während jede der axial nach unten folgenden Elektroden E, ...,L zweite Meßelektroden sein kann. Die gestrichelt eingetragenen Projektionen 10, 12, 14 zei¬ gen die Meßstrecke für die Impedanzänderung von der ersten Meßelektrode B zu den zweiten Meßelektroden E bzw. F bzw. G. Im rechten oberen Teil der Figur 1 be¬ zeichnet die Kurve 1 dasjenige Elektrokardiogramm, das über die Meßstrecke B-E längs der Projektion 10 aufge¬ nommen worden ist. Die Kurve 2 gibt dasjenige Elektro¬ kardiogramm wieder, das über die Projektion 12 längs der Meßstrecke B-F aufgenommen worden iεt, während die Kurve 3 demjenigen Elektrokardiogramm entspricht, das sich aus der der Meßstrecke B-G entsprechenden Projek¬ tion 14 ergibt.
Gemäß Fig. 2 besteht jede der zweiten Strom-oder Meßel¬ ektroden aus einem äußeren Ring 20 aus elektrisch leit- fähigem Material, der innen mit einer Isolationsschicht
22 ausgekleidet ist. Der Ring 20 und die Isolation 22 ist an zwei diametral einander gegenüberliegenden Stel¬ len mit je einer Öffnung 24, 26 versehen, über welche ein im Innern des Katheters 5 ausgebildeter axialer Saugkanal 28 mit dem Äußeren des Katheters kommuni¬ zieren kann. Durch eine die Isolierung 22 durchdrin¬ gende Lötverbindung 21 ist die Seele einer der Meßlei¬ tungen 23 mit dem Ring 20 leitend verbunden. Die weite¬ ren Meßleitungen sowie Stromleitungen, die im Ganzen mit 23 bezeichnet sind, sind auf entsprechende Weise mit je einer zugehörigen zweiten Meßelektrode bzw. zweiten Stromelektrode elektrisch verbunden. Sie sind in einer gegenüber dem Saugkanal 28 separaten, sich axial durch den Katheter 5 erstreckenden Kammer 25 geführt .
Im Innern des Katheters 5 befindet sich ferner ein sich axial erstreckender Arbeitskanal 27, der gegenüber dem Saugkanal 28 abgetrennt ist und zur Einführung eines Endoskops oder dergleichen Hilfsmittel dient.
Die im Ganzen mit 30 bezeichnete Auswerteeinrichtung enthält einen Wechselstromgeber 32, dessen erster Aus¬ gangskontakt 34 mit der ersten Stromelektrode A und dessen zweiter Ausgangskontakt 36 mit einer der zweiten Stromelektroden C oder D verbunden ist. Der Wechsel¬ stromgeber 32 erzeugt eine Wechselstromfrequenz von 40 kHz.
Die Auswerteeinrichtung 30 weist ferner eine erste Meßeingangsklemme 42, die mit der ersten Meßelektrode B verbunden ist, sowie eine zweite Meßeingangsklemme 44 auf, die mit einer der zweiten Meßelektroden E, ... ,L verbunden ist. Die beiden Meßeingangsklemmen 42 und 44 stellen den Eingang für eine Frequenzweiche 40 dar,
welche das an den Meßeingangsklemmen 42 und 44 aufgenom¬ mene Meßsignal, soweit seine Schwankungen im 1Hz-Be¬ reich liegen, als Elektrokardiσgraphie-Signal einem Elektrokardiographen 41 zuführt und das im Bereich von 40 kHz liegende Meßsignal einer Verarbeitungs- und Anzeigeeinrichtung 43 zuleitet. In der Verarbeitungs¬ und Anzeigeeinrichtung 43 wird das nach der nachstehen¬ den Formel bestimmte Herz-Zeit-Volumen ermittelt und graphisch angezeigt. Wenn die Meßeingangsklemme 42 an die erste Meßelektrode B angeschlossen ist, können eine der Anzahl der zweiten Meßelektroden E, ... ,L gleiche Anzahl an Meßeingangsklemmen 44 vorgesehen sein, wobei in der Frequenzweiche 40 auf die jeweils aktuelle Meßeingangsklemme 44 geschaltet werden kann.
Das Herz-Zeit-Volumen HZV bestimmt sich nach der Schlag¬ frequenz f des Herzens und seinem Schlagvolumen SV nach
HZV = f*SV.
Das Schlagvolumen ergibt sich aus folgender Formel
dZ L SV = ro * -- * T * (--)2 ,
wobei ro den spezifischen Widerstand des Blutes bedeutet, der normalerweise 135 Ohm/cm beträgt und vom Wert des Hämatokrit beeinflußt ist, dZ/dt die zeitliche Ableitung der gemessenen Impedanz Z
(Ohm/s) , Impedanzänderung, T die Austreibungszeit in Sekunden, und Z die mittlere gemessene Impedanz zwischen der ersten und der jeweiligen zweiten Meßelektrode in
Ohm bedeuten.
Die letztgenannte Formel gilt für Beagles. Beim Men¬ schen wäre SV noch mit einem Faktor zu multiplizieren.
Erfahrungen mit der Impedanzbestimmung des Herz-Zeit- Volumens bei Beagles
An splenektomierten Beagles wurden nach der Anordnung nach KUBICEK Impedanzmessungen mit 4 Hautelektroden in der Sagitalebene durchgeführt. In Übereinstimmung mit den Literaturmitteilungen konnten mit Bioimpedanz- und Thermodilutionsmethode, was die absoluten Werte der Herz-Zeit-Volumina betraf, nur bedingt vergleichbare Herz-Zeit-Volumenbestimmungen durchgeführt werden.
Gut vergleichbar waren die durch Bioimpedanz und Thermo- dilution ermittelten relativen Änderungen des Herz- Zeit-Volumens. Nach Infusionen wichen die durch Thermo- dilution bestimmten Werte deutlich von den durch Bioim¬ pedanz ermittelten Werten ab. Fast immer wurden durch Thermodilution höhere Herz-Zeit-Volumina bestimmt als mit der Bioimpedanz . Die Impedanzkurven hatten in der Austreibungsphase zwischen 1. und 2. Herzton eine ande¬ re Form.
Bei der mediastinalen Impedanzkardiographie wurde des¬ halb nicht die Impedanz- bzw. Volumenänderung der thora- kalen Gefäße gemessen, die von der Windkesselfunktion, den Fließeigenschaften des Blutes, dem gesamt-periphe¬ ren Widerstand etc. abhängt, sondern die Volumenände¬ rung des Herzens in der Austreibungsphase selbst .
Bei dem neuentwickelten Verfahren stimmten die durch Thermodilution und Bioimpedanz ermittelten Herz-Zeit- Volumina deutlich besser überein.
Mit der Methode nach KUBICEK wurden die relativen Ände¬ rungen des Herz-Zeit-Volumens im Verhältnis zum Aus¬ gangswert im Vergleich zur Thermodilution gut erfaßt. Bei der Messung von Einzelwerten, zum Beispiel des Ausgangswertes, sind unterschiedliche Ergebnisse er¬ zielt worden. Mit dem neuen Meßverfahren wurden bei der Messung von Einzelwerten mit dem Thermodilutionsver- fahren vergleichbare Ergebnisse erzielt.
Claims
1. Verfahren zur Herzzeitvolumenbestimmung, durch Erfassen einer systolischen Impedanzänderung eines Gewebes mit wenigstens einer ersten Meßelektrode
(B) und wenigstens einer zweiten Meßelektrode (E, ...,L) , wobei die erste Meßelektrode im Bereich eines Wechselstrompfades (AC, AD) durch das Gewebe auf die Haut (9) aufgebracht wird, dadurch gekenn¬ zeichnet, daß die zweite Meßelektrode (E, ...,L) in ein dem Herzen bezüglich der ersten Meßelektrode (B) im wesentlichen gegenüberliegendes Gefäß (7) eingeführt und in einer vorgegebenen, das Herz durchlaufenden Projektion (10, 12, 14) auf die erste Meßelektrode (B) gehalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Plazierung der zweiten Meßelektrode im Gefäß durch bildgebende Verfahren, bspw. röntgenolo- gisch oder sonographisch überprüft wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß die Lage der zweiten Meßelektrode in dem Gefäß anhand der Darstellung eines elektrokar- diographischen Vektorsignals festgelegt wird.
4. Verfahren nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die erste und die zweite Meßelektrode zur Aufnahme eines Elektrokardiogramms (1, 2, 3) benutzt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß beispielsweise auf einem Oesophaguskatheter (5) mehrere zweite Meßelektroden (E, ... ,L) in axialem Abstand angeordnet werden, zu jedem Meßelektroden- paar, bestehend einer ersten Meßelektrode (B) und jeweils einer der zweiten Meßelektroden, ein Elek¬ trokardiogramm aufgenommen und dasjenige Meßelektro¬ denpaar bestimmt wird, dessen Projektion der Herz¬ achse am nächsten liegt, und an diesem Meßelektro¬ denpaar die Impedanzänderung erfaßt wird.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß mehrere erste Meßelek¬ troden auf die Haut aufgebracht und mehrere zweite Meßelektroden in das Gefäß eingeführt werden, wobei jede zweite Meßelektrode entsprechend je einer vorgegebenen Projektion auf je eine der ersten Meßelektroden gehalten wird.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß auf die Haut vorteilhaf¬ terweise in der Nähe der Herzspitze eine erste Stromelektrode sowie in das Gefäß eine zweite Strom¬ elektrode eingeführt wird, wobei die erste und die zweite Stromelektrode an einen Wechselstromgeber angeschlossen werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Anordnung der ersten und der zweiten Strom¬ elektrode so getroffen wird, daß die vorgegebene Projektion mit dem durch die beiden Stromelektroden definierten Wechselstrompfad möglichst überein¬ stimmt .
9. Vorrichtung zur Durchführung des Verfahrens nach einem der vorstehenden Ansprüche, gekennzeichnet durch einen Gefäßkatheter (5) , an dessen Mantel wenigstens eine zweite Meßelektrode (E, ... ,L) , 20) sowie axial beabstandet wenigstens eine zweite Stromelektrode (C, D) ausgebildet und mit einem durch das Innere des Katheters geführten Meßleiter bzw. Stromleiter (23) elektrisch verbunden sind.
10. Vorrichtung nach Anspruch 9, gekennzeichnet durch wenigstens eine erste auf der Haut (9) zu plazie¬ rende Meßelektrode (B) sowie eine erste auf der Haut zu plazierende Stromelektrode (A) , wobei die Stromelektroden mit einem Wechselstromgeber (32) und die Meßelektroden mit einer elektronischen Auswerteeinrichtung (30) verbunden sind.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekenn¬ zeichnet, daß der rohrförmige Katheter einen axia¬ len Saugkanal (28) aufweist, der über in der zwei¬ ten Meßelektrode sowie in der zweiten Stromelektro¬ de vorgesehene Öffnungen (24, 26) zum Äußeren des Katheters offen ist.
12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß in dem Katheter ein axialer Arbeitskanal (27) zur Einführung beispiels¬ weise eines Endoskops vorgesehen ist.
13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß am Umfang des Katheters mehrere axial beabstandete und gegeneinander elek¬ trisch isolierte zweite Meßelektroden vorgesehen sind, deren wechselseitiger Abstand gleich sein kann.
14. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die zweite Stromelektro¬ de vom Ende des Katheters aus gesehen oberhalb der zweiten Meßelektrode (n) angeordnet ist.
15. Vorrichtung nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß die Auswerteeinrich¬ tung, an die die Meßelektroden angeschlossen sind, eine Frequenzweiche (40) aufweist, welche den nie¬ derfrequenten Anteil des von den Meßelektroden gelieferten Meßsignals einem Elektrokardiographen
(41) und den hochfrequenten, die Impedanzänderung repräsentierenden Anteil des Meßsignals einer Verar¬ beitungs- und Anzeigeeinrichtung (43) zuführt.
16. Vorrichtung nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, daß die Auswerteeinrichtung eine Anzeigeeinrichtung für eine mit einem Kathetermeßplatz empfangene Druckkurve aufweist, welche ein im Körper gemessenes Druckkurvenbild gleichzeitig mit der Impedanzmeßkurve darstellt.
17. Vorrichtung nach einem der Ansprüche 9 bis 16, dadurch gekennzeichnet, daß die Auswerteeinrichtung einer Anzeigeeinrichtung für einen mit einem bildgebenden Verfahren beispielsweise sonographisch, dopplersonographisch, röntgenkymographisch ermittelten Parameter für räumliche Veränderungen der Elektroden durch Atmung, Herzaktion und andere Bewegungen aufweist.
18. Verwendung eines Oesophagus-Katheters zur Durchfüh¬ rung des Verfahrens nach einem oder mehreren der vorstehenden Ansprüche.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/041,463 US6102869A (en) | 1995-09-12 | 1998-03-12 | Process and device for determining the cardiac output |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19533663A DE19533663A1 (de) | 1995-09-12 | 1995-09-12 | Verfahren und Vorrichtung zur Herzzeitvolumenbestimmung |
DE19533663.1 | 1995-09-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/041,463 Continuation US6102869A (en) | 1995-09-12 | 1998-03-12 | Process and device for determining the cardiac output |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997009928A1 true WO1997009928A1 (de) | 1997-03-20 |
Family
ID=7771897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1996/003918 WO1997009928A1 (de) | 1995-09-12 | 1996-09-06 | Verfahren und vorrichtung zur herzzeitvolumenbestimmung |
Country Status (3)
Country | Link |
---|---|
US (1) | US6102869A (de) |
DE (1) | DE19533663A1 (de) |
WO (1) | WO1997009928A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6074418A (en) * | 1998-04-20 | 2000-06-13 | St. Jude Medical, Inc. | Driver tool for heart valve prosthesis fasteners |
JP2003527164A (ja) * | 1999-12-08 | 2003-09-16 | イマジン メディカル テクノロジーズ カリフォルニア, インコーポレイテッド | 血流の生体電気インピーダンス分析の装置および方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5782774A (en) * | 1996-04-17 | 1998-07-21 | Imagyn Medical Technologies California, Inc. | Apparatus and method of bioelectrical impedance analysis of blood flow |
US6511438B2 (en) | 2001-04-03 | 2003-01-28 | Osypka Medical Gmbh | Apparatus and method for determining an approximation of the stroke volume and the cardiac output of the heart |
DE10125359B4 (de) * | 2001-05-23 | 2005-07-28 | Osypka Medical Gmbh | Wechselstromquelle zur Erzeugung eines durch den Körper zu sendenden Wechselstroms und Verfahren zur Erzeugung eines stabilen Wechselstroms |
US7822470B2 (en) * | 2001-10-11 | 2010-10-26 | Osypka Medical Gmbh | Method for determining the left-ventricular ejection time TLVE of a heart of a subject |
CA2407579C (en) | 2001-10-11 | 2012-12-11 | Markus J. Osypka | Calibration of a doppler velocimeter for stroke volume determination |
DE10260762A1 (de) | 2002-12-23 | 2004-07-22 | Pulsion Medical Systems Ag | Vorrichtung zur Bestimmung kardiovaskulärer Parameter |
DE10332820B4 (de) * | 2003-07-18 | 2006-07-20 | Osypka Medical Gmbh | Vorrichtung zum potentialgetrennten Umwandeln einer ersten Spannung in eine zweite Spannung zum Messen von Impedanzen und Admittanzen an biologischen Geweben |
US20060008449A1 (en) * | 2004-06-10 | 2006-01-12 | Van Tassel Jason R | Device and methods for treatment of necrotic tissue using stem cells |
US7806830B2 (en) * | 2004-06-16 | 2010-10-05 | Cordeus, Inc. | Apparatus and method for determination of stroke volume using the brachial artery |
US7261697B2 (en) * | 2004-06-16 | 2007-08-28 | Bernstein Donald P | Apparatus for determination of stroke volume using the brachial artery |
US20060005844A1 (en) * | 2004-07-08 | 2006-01-12 | Coulter George G | Rolling tube apparatus and method for treating a wound |
DE602005004282T2 (de) | 2005-08-17 | 2008-11-27 | Osypka Medical Gmbh | Digitale Demodulationsvorrichtung und -verfahren zur Messung der elektrischen Bioimpedanz oder Bioadmittanz |
US8229545B2 (en) | 2005-09-15 | 2012-07-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for mapping complex fractionated electrogram information |
US8038625B2 (en) * | 2005-09-15 | 2011-10-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for three-dimensional mapping of electrophysiology information |
US7988639B2 (en) * | 2006-05-17 | 2011-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for complex geometry modeling of anatomy using multiple surface models |
EA014638B1 (ru) * | 2006-09-05 | 2010-12-30 | Н.И. Медикал Лтд. | Способ и система для неинвазивных измерений параметров работы сердца |
DE102007013367A1 (de) | 2007-03-16 | 2008-09-18 | Meier, Bernd H., Dr. | Vorrichtung zur Messung der thorakalen segmenthalen elektrischen Impedanz (TSIA) |
US20100324404A1 (en) | 2009-06-22 | 2010-12-23 | Analogic Corporation | Icg/ecg monitoring apparatus |
DE102009031232A1 (de) | 2009-06-26 | 2010-12-30 | Universitätsklinikum Jena | Verfahren und Vorrichtung zur transthorakalen, transösophagealen und intrakardialen Impedanzkardiographie, insbesondere für die Stimulation und Ablation des Herzens |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2620285B1 (de) * | 1976-05-07 | 1977-09-15 | Siemens Ag | Medizinisches Geraet zur kontinuierlichen Bestimmung des Herzminutenvolumens und Schlagvolumens des menschlichen Herzens |
USRE30101E (en) * | 1964-08-19 | 1979-09-25 | Regents Of The University Of Minnesota | Impedance plethysmograph |
WO1989012421A1 (en) * | 1988-06-22 | 1989-12-28 | Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements |
WO1992019157A1 (en) * | 1991-05-08 | 1992-11-12 | Brigham And Women's Hospital | Coronary artery imaging system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US30101A (en) * | 1860-09-18 | Folding-case bedstead | ||
GB8431500D0 (en) * | 1984-12-13 | 1985-01-23 | Antec Systems | Measurement of thoracic impedances |
US4852580A (en) * | 1986-09-17 | 1989-08-01 | Axiom Medical, Inc. | Catheter for measuring bioimpedance |
US4836214A (en) * | 1986-12-01 | 1989-06-06 | Bomed Medical Manufacturing, Ltd. | Esophageal electrode array for electrical bioimpedance measurement |
US4951682A (en) * | 1988-06-22 | 1990-08-28 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US5000190A (en) * | 1988-06-22 | 1991-03-19 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US5791349A (en) * | 1996-04-17 | 1998-08-11 | Urohealth, Inc. | Apparatus and method of bioelectrical impedance analysis of blood flow |
-
1995
- 1995-09-12 DE DE19533663A patent/DE19533663A1/de not_active Withdrawn
-
1996
- 1996-09-06 WO PCT/EP1996/003918 patent/WO1997009928A1/de active Application Filing
-
1998
- 1998-03-12 US US09/041,463 patent/US6102869A/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE30101E (en) * | 1964-08-19 | 1979-09-25 | Regents Of The University Of Minnesota | Impedance plethysmograph |
DE2620285B1 (de) * | 1976-05-07 | 1977-09-15 | Siemens Ag | Medizinisches Geraet zur kontinuierlichen Bestimmung des Herzminutenvolumens und Schlagvolumens des menschlichen Herzens |
WO1989012421A1 (en) * | 1988-06-22 | 1989-12-28 | Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements |
WO1992019157A1 (en) * | 1991-05-08 | 1992-11-12 | Brigham And Women's Hospital | Coronary artery imaging system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6074418A (en) * | 1998-04-20 | 2000-06-13 | St. Jude Medical, Inc. | Driver tool for heart valve prosthesis fasteners |
JP2003527164A (ja) * | 1999-12-08 | 2003-09-16 | イマジン メディカル テクノロジーズ カリフォルニア, インコーポレイテッド | 血流の生体電気インピーダンス分析の装置および方法 |
Also Published As
Publication number | Publication date |
---|---|
US6102869A (en) | 2000-08-15 |
DE19533663A1 (de) | 1997-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997009928A1 (de) | Verfahren und vorrichtung zur herzzeitvolumenbestimmung | |
DE60115996T2 (de) | System und Methode zum Erkennen von Kontakt zwischen Gewebe und Elektrode | |
EP1551290B1 (de) | Impedanzbasiertes messverfahren für hämodynamische parameter | |
EP1665983B1 (de) | Vorrichtung zum Bestimmen der Thorax-Impedanz | |
DE69530207T2 (de) | Vorrichtung zur impedanz-kardiographie | |
DE60219905T2 (de) | System und verfahren zum feststellen der loslösung einer implantiebaren medizinischen vorrichtung | |
DE60132033T2 (de) | Vorrichtung zur segmentären Bioimpedanzmessung von einem Dialysepatienten | |
DE69129698T2 (de) | Vorrichtung zur messung der elektrischen impedanz von organischen und biologischen stoffen | |
DE69125517T2 (de) | Änderungen des Herzkammervolumens oder -drucks als Steuerparameter | |
DE60118463T2 (de) | Multi Elektrodenkatheter, System, und Anwendungsmethode | |
EP0669822B1 (de) | Untersuchung eines körpers | |
DE3502913C1 (de) | Messaufnehmer zur nichtinvasiven Erfassung elektrophysiologischer Groessen | |
DE69726447T2 (de) | Implantierbares medizinisches gerät mit beschleunigungssensor | |
DE69728446T2 (de) | Anordnung zur führung von behandlungsinstrumenten in zonen des körperinneren | |
DE3629587C2 (de) | ||
DE69122745T2 (de) | Neutrale Doppelelektrode | |
DE112012003687T5 (de) | Medizinprodukt mit einem Funktionselement zum invasiven Einsatz im Körper eines Patienten | |
EP2364644B1 (de) | Elektromedizinisches Implantat und Überwachungssystem | |
DE2732160A1 (de) | Vorrichtung zur detektion und registrierung der uterustaetigkeit | |
DE2255757A1 (de) | Verfahren und vorrichtung zur untersuchung innerer physiologischer vorgaenge auf der grundlage von messungen der impedanzaenderung an der koerperoberflaeche des koerpers | |
EP1955650B1 (de) | Implantierbares medizinisches Gerät | |
DE102005011769A1 (de) | Atmungsüberwachungssystem und -verfahren | |
DE112011101045B4 (de) | Körperfettmessvorrichtung | |
DE112011101048T5 (de) | Körperfettmessvorrichtung | |
EP2364643B1 (de) | Elektromedizinisches Implantat und Überwachungssystem mit dem elektromedizinischen Implantat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09041463 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |