WO1995003491A1 - Continuous conveying process and device for shear-sensitive fluids - Google Patents

Continuous conveying process and device for shear-sensitive fluids Download PDF

Info

Publication number
WO1995003491A1
WO1995003491A1 PCT/EP1994/002267 EP9402267W WO9503491A1 WO 1995003491 A1 WO1995003491 A1 WO 1995003491A1 EP 9402267 W EP9402267 W EP 9402267W WO 9503491 A1 WO9503491 A1 WO 9503491A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
piston
stroke
pump
piston pump
Prior art date
Application number
PCT/EP1994/002267
Other languages
German (de)
French (fr)
Inventor
Peter Jähn
Otto Schmid
Adolf Schmidt
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to JP7504903A priority Critical patent/JPH10508073A/en
Priority to EP94924738A priority patent/EP0710328B1/en
Priority to DE59404484T priority patent/DE59404484D1/en
Publication of WO1995003491A1 publication Critical patent/WO1995003491A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/111Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers with two mechanically connected pumping members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/02Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/02Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0019Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers

Definitions

  • the invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, a device for carrying out the method and a new double-length reciprocating piston pump.
  • polymer latices or plastic dispersions e.g. can easily coagulate during funding, i.e. Solid materials (coagulate) separate out from the finely dispersed fluids and can occupy or clog conveying organs and pipelines.
  • This coagulum can also settle on sensors of all kinds that dip into latex or come into contact with latex and falsify or prevent ongoing measurements.
  • latexes which have to be produced with a minimum of emuigator out of product quality, tend to coagulate very easily.
  • centrifugal pumps consist of a stator (housing) and a rotor (impeller). Due to the high speed of the impeller, the product to be conveyed is radially accelerated from the center of the rotor (fulcrum) and pressed by the corresponding centrifugal forces on the outer diameter of the impeller through the pressure port of the housing. As a rule, centrifugal pumps need a speed of more than 500 / min. At lower speeds, this system no longer delivers products. Due to the design features, centrifugal pumps have large dead space volumes and are not self-priming.
  • Diaphragm and piston pumps are positive displacement pumps that operate at lower frequencies than centrifugal pumps. The lowest frequency is 30 strokes min.
  • the conveying movement of the piston or the membrane, the the drive side is also moved by a piston, is jerky, pulsations occur, so that one cannot speak of a continuous product conveyance or transport in the short-term view.
  • the pulsation is pressure-dependent and affects the delivery consistency and dosing accuracy.
  • centrifugal pumps can only deliver and build up pressure at high speed. Due to the high peripheral speeds on the rotor, product particles are very strongly sheared at the pump head gaps, so that a particle change takes place. Due to the high dead space volume, a centrifugal pump is unsuitable for conveying small quantities of products with subsequent sampling. For example, it is not possible to take a representative sample amount of, for example, 10 ml from a reactor and to infer reaction conditions in the actual reactor. Piston or diaphragm pumps operate at too high stroke frequencies and, due to their design features, have many narrow gaps in which product or particle shear occurs. The non-constant speed of the displacement elements also has a product-changing effect.
  • the non-uniform conveying speed causes different frictional forces on pipelines or pump head parts in contact with the product, which cause product shear in the microparticle range.
  • the residence time of the product in the pump head is not finite or not precisely defined in the known pump designs, since all pump heads have a high dead space volume. Large portions of a suction stroke volume remain in the pump head for a long time, with each new suction stroke only partial mixing with the old product takes place, so that product particles are subjected to shear stress for a long time.
  • Another disadvantage is that the piston or diaphragm pumps have no positively controlled valves (ball valves) that open a large, free cross-section depending on the suction or pressure process.
  • Another disadvantage is the fact that the suction and pressure processes are not synchronized.
  • Single-piston pumps are very large, are very expensive and do not work continuously.
  • the constructions do not allow self-priming, so that pumps are also required on the suction side. Their large dead space volume makes them e.g. not suitable for sampling. Even with conceivable twin piston pumps, synchronous operation of the suction and pressure processes is not possible.
  • the invention has for its object to promote shear-sensitive fluids, in particular polymer dispersions, continuously, with little pulsation and gently, so that the fluids remain unaffected in their phase state by the promotion, and in particular with dispersions there is no phase separation or coagulation.
  • shear-sensitive fluids in particular polymer dispersions
  • the invention is also based on the object of providing a device which enables this support to be carried out gently and over a long period of time without malfunction and reliably.
  • the device should enable the fluid to be gently transferred back and forth between different parts of the system, for example a reactor and a measuring loop with different pressure ratios.
  • This object is achieved in that the fluid is sucked in and pumped by means of a dead space-free, low-pulsation double-length reciprocating piston pump and dead space-free valves are used in the through-flow line system.
  • This double-length reciprocating piston pump sits, for example, in a pressure loop, whereby through a Lock or an overflow valve, which serves as a connecting element to a parallel measuring circuit with a different pressure level, a defined amount of sample is transferred and is fed to the actual on-line measuring devices in the parallel measuring circuit by a second long-stroke piston pump of the same type.
  • the invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, with a viscosity of up to 100,000 mPa.s at a delivery rate of 10 ml / h to 100 l / h, characterized in that the fluid is above At least one dead space-free valve is sucked in by a piston of a double-long stroke piston pump, while synchronously fluid from the second piston space is also released to the delivery side via at least one further dead space-free valve and, after the second piston space has been completely emptied, the first valve is opened on the delivery side and closed on the suction side , while the second valve is closed on the discharge side and opened on the suction side and the direction of movement of the pistons is reversed synchronously.
  • a preferred embodiment is characterized in that the fluid is conveyed in a pumping loop which is coupled to a reactor.
  • Sensors or sensors or internals can be located in this pumping loop or parallel to it. Examples of such sensors are temperature sensors, pH electrodes, conductivity electrodes, NIR light guide probes, vibrating U-tubes for density measurements, refractometers, ultrasonic measuring heads or devices for calorimetry.
  • the sensors or measuring devices mentioned are not occupied or blocked by the circulating fluid (for example a latex). In principle, it is possible to incorporate further mixing devices, such as static mixers or heat exchangers, into the pumping loop, which are not occupied or blocked due to the continuous, pulsation-free and low-shear conveying device.
  • a further preferred variant of the method is characterized in that the fluid is passed through an overflow valve or a lock into a region of reduced pressure (for example a secondary pump loop).
  • a variant of this method is particularly preferred, in which the overflow valve or the lock is connected as a coupling between the primary and secondary pump circuit. With this variant it is possible to branch off defined sample volumes of the fluid from the main flow line or a primary pumping circuit and, for example, to conduct a measurement under reduced pressure.
  • FIG. 2 schematic illustration of the delivery process as part of a pumping loop and for coupling out polymer.
  • FIG. 3 construction of the double-long stroke piston pump according to the invention in a side view.
  • FIG. 4 double-length lift piston pump according to the invention in plan view.
  • a pumping loop 2 which contains a new double-length reciprocating piston pump 3 with positive-controlled inlet and outlet valves 4, 5 as a conveying device and an overflow valve 6, which the primary circuit 2 connects to the secondary circuit 7.
  • the newly developed double long-stroke piston pump is shown in FIGS. 3 and 4. Its two pistons 8 and 9 are driven by an angular stroke gear 10 with an upstream control gear 11.
  • the stroke volume of the pump heads can be adjusted by means of a ring 12, which at the same time assumes the task of actuating a contact switch 13 for changing the direction of rotation and for switching the fittings.
  • Double seals and support rings are placed on the top of each piston to seal the housing.
  • the head seal of the pistons enables the design of a low dead space pump head regardless of the stroke volume.
  • the aspirated product volume is displaced quantitatively from the pump head during conveying. While on the one hand the reaction mixture is slowly sucked in by the piston 23, for example, the opposite piston 24, which is guided over the same spindle 14 as the piston 23, presses the previously sucked reaction mixture quantitatively out of the Pump head.
  • the double-long stroke piston pump according to the invention is self-priming and self-venting at a pulsation frequency of less than 10 strokes per minute.
  • the dead space of the pump is less than 1% of the pump head volume.
  • the pump It is possible to work with the pump at a pressure of up to 300 bar and a temperature of -100 to + 250 ° C. With the aid of the pump according to the invention, fluids containing solids can also be pumped if the sedimentation time of the solid is greater than the residence time of the fluid in the pump head.
  • the spindle of the pump has an additional anti-rotation device.
  • the double-length reciprocating piston pump 3 enables a partial flow of the reaction volume from the reactor 1 to be pumped around in a manner that is gentle on the product.
  • 100 ml / h of butadiene polymer were pumped over over 100 h at a pressure of 5 bar and a temperature of 50 ° C. without deposition or coagulum formation.
  • the pumping loop 2 is connected to a vacuum vessel 13 via an overflow valve 6.
  • the overflow valve 6 prevents spontaneous expansion of the liquid monomers contained in the sample amount. This prevents uncontrolled foaming.
  • the vacuum vessel 13 has a defined volume and is evacuated to a preselected negative pressure, for example 50 mbar, via a control. When the negative pressure is reached, the control switches a valve 25 in the pumping loop into delivery, so that the double-long stroke piston pump 3 pumps the defined volume against the valve 25 in delivery and increases the system pressure in the pumping loop.
  • the overflow valve 6 allows the sample amount to pass into the vacuum vessel at a previously set pressure which is above the reactor pressure.
  • the control gives the command to open the valve 25 so that the pumping circuit is put into operation again.
  • the injected sample produces a pressure increase in the vacuum vessel, which consists of a calibrated, cylindrical measuring vessel 13 and an expansion vessel 15.
  • the expansion tank is preferably designed so that when a low-boiling component of the multiphase fluid is released, the max. resulting pressure does not exceed 1 bar absolutely.
  • the pressure increase is in turn increased by evaporating components of the sample.
  • the pressure in the measuring vessel no longer changes after a certain time (eg ⁇ 30 min)
  • the pressure difference is calculated and, together with the temperature, the volume of the sample and the volume of the vacuum container, the monomer concentration is determined and thus conclusions can be drawn about the current one Product composition hit in the reactor.
  • the pressure-generating component of the reactor sample is isolated, the remaining, non-evaporated sample amount is automatically compared with the specified target sample amount. If the measured sample volume is below the setpoint, the vacuum vessel is evacuated again and a further sample is requested from the double-length reciprocating piston pump. This sub-process is repeated until the sufficient amount of sample is reached.
  • the vacuum vessel 13 is then aerated with inert gas and the rest of the sample is pumped into a measuring loop.
  • the measuring circuit 7 is equipped with a single long-stroke piston pump 16 in order to supply measuring sensors with product.
  • the single long-stroke piston pump like the double-long stroke piston pump, is equipped with positively controlled valves 17 and 18, respectively. If the isolated sample is sucked out of the vacuum vessel, the valves 17, 18 switch over to the actual measuring circuit. As a result, the vacuum vessel between valve 6 and valve 17 is temporarily excluded from the rest of the process. Now a cleaning process of the degassing cell, consisting of a rinsing and drying process, can run automatically in parallel to the other automated process. The rinsing process is necessary in the case of upstream sample preparation processes in order to clean parts wetted by the product so that there are no falsifications of measurements during subsequent measurements.
  • the rinsing and drying process is initiated by valves 20 and 21, respectively.
  • the valve 22 opens in order to allow the amount of detergent introduced to flow away into a coupled collecting vessel.
  • the rinsing process can optionally be repeated several times depending on the product properties.
  • a drying process takes place, which is initiated by valve 21. The drying process is only necessary if the remaining amount of rinsing liquid, which adheres to the inner walls, does not evaporate due to the subsequent evacuation and thereby falsifies the initial measured value for the determination of the low boiler. In this measuring loop more Analysis or measuring devices are installed to determine different properties of the degassed sample.
  • the measured sample residue can be fed from the measuring loop into the pumping loop 2 via a further three-way valve and can thus be returned to the reactor as a seed polymer.
  • the polymer is preferably conveyed in the measuring loop with the aid of a further conveying device according to the invention, in particular with the aid of a second pump according to the invention.
  • the aid of the method according to the invention it is possible to achieve a fully automatic sampling and determination of the current monomer concentration during a pressure polymerization by means of the pressure difference measurement mentioned.
  • the monomer concentration determined here can be used as a control variable for the metering of monomer or initiator addition. It proves to be a particular advantage that the measured polymer due to the gentle conveyance and further treatment, e.g.
  • reaction mixture in the measuring loop, can be fed back into the reactor without impairing the product quality.
  • a variant for transferring polymer into the measuring loop is to shut off a defined volume of the pumping loop 2 filled with reaction mixture and to open a loop at the same time so that the product flow in the pumping loop is not interrupted.
  • the pressurized amount of reaction mixture in the lock is then emptied spontaneously into the vacuum vessel.
  • the lock is then switched back into the reaction mixture stream and the loop bypass is closed.
  • the lock replaces the overflow valve 6.
  • Typical measurements e.g. on demonomerized latex in the course of the measuring loop are density, refractive index, NIR, ultrasound, pH and conductivity measurements.
  • the invention also relates to a low-pulsation, dead space-free, double long-stroke piston pump with a delivery rate of 10 ml / h to 100 1 / h for conveying shear-sensitive fluids with a viscosity of up to 100,000 mPas, comprising two pistons 8, 9 on a common drive spindle 14 and an angular stroke gear 10 with an upstream control gear 11 or a hydraulic gear for driving the pistons 8, 9, a ring 12 for adjusting the stroke volume of the pump heads 23, 24, a contact switch 26 for changing the direction of rotation of an initiator disk 27 and double seals on the head of the piston chambers.
  • the pump is driven, for example, via a reduction gear with an angular stroke gear connected in series, which converts the rotary movement into a rotation-free stroke movement of the pistons 8, 9.
  • This has the advantage that the suction and pressure piston head can be mounted on a spindle and the double piston pump can continuously deliver. With this arrangement, the pressure and suction pistons run absolutely synchronously.
  • the side of the respective suction piston head facing away from the product triggers the switch in order to switch from the printing process to the suction process.
  • the design can also be designed so that the print head triggers the switchover instead of the suction head. In this case, the switch sensor would not have to be placed on the transmission side but on the pump head side.
  • the lifting rod which is a threaded rod (piston rod) on which the two piston heads are seated, is provided, for example, with an axially extending groove, into which an anti-rotation lock preferably engages in order to avoid rotation of the lifting rod.
  • the piston head is provided to the piston housing with at least one elastic seal and at least one guide ring, so that the sucked-in product can also be completely displaced from the piston head housing during the printing process.
  • Suction and pressure chambers are connected to one another, for example, via two xapillaries in which two positively controlled three-way valves (ball valves) (4, 5) are placed. The three-way valves separate the two chambers. Instead of the two three-way valves, four individual valves can also be provided.
  • the valves preferably consist of ball valves in order to ensure a shear-free passage of the product.
  • Each piston has a product inlet opening and an outlet opening, they are arranged vertically one below the other, the inlet at the bottom and the outlet at the top to enable self-ventilation and self-priming of the pump.
  • a telescopic spindle (length-adjustable spindle) is used in order to be able to generate a pump circuit with the smallest stroke volume and to keep the remaining volume small.
  • the double-length reciprocating piston pump can completely empty the pump head regardless of the flow rate. Due to the extremely low stroke frequency (e.g. max.
  • the pump can deliver small quantities, continuously from 10 ml / h, or can also suck in defined quantities in the ml range and be used as a sampler in discontinuous or continuous processes.
  • the pump can act as a sluice because the pressure and suction sides are separate, it can transfer product quantities from a vacuum or pressure range to a vacuum or pressure range. Due to the dead space-free design, there is no backmixing with older product quantities.
  • a particular advantage of the method with the double-long stroke piston pump is that with the set sample quantity of, for example, 10 ml, a defined product quantity per stroke is conveyed and can be transferred to a measuring circuit at any time, for example. This sample amount or the max.
  • the stroke can be adjusted with an adjusting nut on the piston spindle inside the piston housing.
  • the piston heads and pump housings can consist of suitable metallic and / or non-metallic materials.
  • the piston housing can also be lined with glass or ceramic sleeves.
  • the piston housing can be easily heated or cooled.
  • the pump can be operated at a temperature of -100 ° C to + 200 ° C. It is common to use the pump in a temperature range from around -20 to + 150 ° C, in the case of latices in the range from +2 to + 100 ° C.
  • the ratio of stroke volume to residual volume in the pump head is preferably less than 1%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

A process is disclosed for continuously conveying shear-sensitive fluids, in particular polymer lattices or plastic dispersions when sampling, processing and measuring samples. Also disclosed is a device for carrying out the process, as well as a new double-long-stroke reciprocating piston pump.

Description

Verfahren und Vorrichtung zum kontinuierlichen Fördern scherempfindlicher FluideMethod and device for the continuous delivery of shear sensitive fluids
Die Erfindung betrifft ein Verfahren zum kontinuierlichen Fördern scherem- pfmdlicher Fluide, insbesondere von Polymerlatices bzw. Kunststoffdispersionen, eine Vorrichtung zur Durchfuhrung des Verfahrens sowie eine neue Doppellang¬ hubkolbenpumpe.The invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, a device for carrying out the method and a new double-length reciprocating piston pump.
Es ist bekannt, daß Polymerlatices bzw. Kunststoffdispersionen bei Scherbe¬ anspruchung z.B. bei der Förderung leicht koagulieren können, d.h. aus den feindispersen Fluiden scheiden sich feste Massen (Koagulat) aus, welche För¬ derorgane und Rohrleitungen belegen oder verstopfen können. An Meßfühlern aller Art, die in den Latex tauchen oder mit Latex in Berührung kommen, kann sich dieses Koagulat ebenfalls absetzen und laufende Messungen verfälschen oder verhindern. Besonders Latices, welche aus Rücksicht auf die Produktqualität mit einem Minimum an Emuigator hergestellt werden müssen, neigen sehr leicht zur Koagulatbildung.It is known that polymer latices or plastic dispersions e.g. can easily coagulate during funding, i.e. Solid materials (coagulate) separate out from the finely dispersed fluids and can occupy or clog conveying organs and pipelines. This coagulum can also settle on sensors of all kinds that dip into latex or come into contact with latex and falsify or prevent ongoing measurements. Especially latexes, which have to be produced with a minimum of emuigator out of product quality, tend to coagulate very easily.
Bekannte Fördereinrichtungen sind Kreisel-, Membran- oder Kolbenpumpen, Kreiselpumpen bestehen aus Stator (Gehäuse) und Rotor (Laufrad). Durch die hohe Drehzahl des Laufrades wird das zu fördernde Produkt von der Rotormitte (Drehpunkt) radial beschleunigt und durch die entsprechenden Zentrifugalkräfte am äußeren Durchmesser des Laufrades durch den Druckstutzen des Gehäuses gedrückt. In der Regel benötigen Kreiselpumpen eine Drehzahl von größer 500/Min. Bei kleinerer Drehzahl erfolgt mit diesem System keine Produkt¬ förderung mehr. Aufgrund der Konstruktionsmerkmale besitzen Kreiselpumpen große Totraumvolumina und sind nicht selbstansaugend.Known conveyors are centrifugal, diaphragm or piston pumps, centrifugal pumps consist of a stator (housing) and a rotor (impeller). Due to the high speed of the impeller, the product to be conveyed is radially accelerated from the center of the rotor (fulcrum) and pressed by the corresponding centrifugal forces on the outer diameter of the impeller through the pressure port of the housing. As a rule, centrifugal pumps need a speed of more than 500 / min. At lower speeds, this system no longer delivers products. Due to the design features, centrifugal pumps have large dead space volumes and are not self-priming.
Membran- und Kolbenpumpen sind Verdrängerpumpen, die bei niedrigeren Frequenzen arbeiten als Kreiselpumpen. Die niedrigste Frequenz liegt bei 30 Hüben Min. Die Förderbewegung des Kolbens bzw. der Membran, die an- triebsseitig auch durch einen Kolben bewegt wird, ist stoßartig, es kommt zu Pulsationen, so daß man bei der Kurzzeitbetrachtung nicht von einer konti¬ nuierlichen Produktförderung bzw. -transport sprechen kann. Die Pulsation ist druckabhängig und wirkt sich auf die Förderkonstanz und Dosiergenauigkeit aus.Diaphragm and piston pumps are positive displacement pumps that operate at lower frequencies than centrifugal pumps. The lowest frequency is 30 strokes min. The conveying movement of the piston or the membrane, the the drive side is also moved by a piston, is jerky, pulsations occur, so that one cannot speak of a continuous product conveyance or transport in the short-term view. The pulsation is pressure-dependent and affects the delivery consistency and dosing accuracy.
Langhubkolbenpumpen sind als Einhubkolbenpumpen bekannt, aber für das kontinuierliche Dosieren von kleinen Mengen ungeeignet und zu teuer. (Siehe Menges, Recker, Carl-Hanser- Verlag; München, Wien; 1986, Automatisieren in der Kunststoffverarbeitung S. 318-320).Long-stroke piston pumps are known as single-stroke piston pumps, but are unsuitable and too expensive for the continuous metering of small quantities. (See Menges, Recker, Carl-Hanser-Verlag; Munich, Vienna; 1986, Automation in plastics processing, pp. 318-320).
Nachteilig bei diesen Fördergeräten ist, daß z.B. Kreiselpumpen nur bei hoher Drehzahl fördern und Druck aufbauen können. Durch die hohen Umfangs¬ geschwindigkeiten am Rotor werden an den Pumpenkopfspalten Produktteilchen sehr stark geschert, so daß eine Teilchenveränderung erfolgt. Durch ein hohes Totraumvolumen ist eine Kreiselpumpe zum Fördern von kleinen Produktmengen mit anschließender Probennahme ungeeignet. Es ist z.B. nicht möglich, eine repräsentative Probenmenge von z.B. 10 ml aus einem Reaktor zu entnehmen und daraus auf Reaktionsverhältnisse im eigentlichen Reaktor zu schließen. Kolben¬ bzw. Membranpumpen arbeiten bei zu hohen Hubfrequenzen und haben aufgrund ihrer Konstruktionsmerkmale viele enge Spalten, in denen es zu Produkt- oder Teilchenscherung kommt. Zusätzlich produktverändernd wirkt auch die nicht konstante Geschwindigkeit der Verdrängerelemente. Die ungleichmäßige Förderge¬ schwindigkeit verursacht an produktberührten Rohrleitungen bzw. Pumpen- kopfteilen unterschiedliche Reibungskräfte, die im Mikroteilchenb ereich Produkt- scherung verursachen. Die Verweilzeit des Produkts im Pumpenkopf ist bei den bekannten Pumpenkonstruktionen nicht endlich bzw. nicht genau definiert, da alle Pumpenköpfe ein hohes Totraumvolumen besitzen. Es bleiben große Anteile eines Saughubvolumens lange Zeit im Pumpenkopf, mit jedem neuen Saughub erfolgt nur eine Teilvermischung mit altem Produkt, so daß Produktteilchen über lange Zeit einer Scherbeanspruchung unterworfen werden. Ein weiterer Nachteil ist, daß die Kolben- bzw. Membranpumpen keine zwangsgesteuerten Ventile (Kugelhähne) besitzen, die je nach Saug- oder Druckvorgang einen großen, freien Querschnitt öffnen. Weiter nachteilig wirkt sich das nicht Synchronlaufen von Saug- und Druckvorgang aus. Bei diesen Pumpenkonstruktionen ist ein absolutes synchrones Arbeiten von Saug- und Druckseite nicht möglich, selbst wenn eine Besserung in der Förderung durch Mehrfachköpfe teilweise erreicht werden kann. Die Einzelvorgänge, die im einzelnen Pumpenkopf betrachtet werden müssen, sind aufgrund der Rotationsbeschleunigung des Steuergetriebes und der damit verbun- denen Umsetzung von Rotation- in Hubbewegung immer ungleichmäßig und Grund für die primäre Pulsation im Förderstrom.A disadvantage of these conveyors is that, for example, centrifugal pumps can only deliver and build up pressure at high speed. Due to the high peripheral speeds on the rotor, product particles are very strongly sheared at the pump head gaps, so that a particle change takes place. Due to the high dead space volume, a centrifugal pump is unsuitable for conveying small quantities of products with subsequent sampling. For example, it is not possible to take a representative sample amount of, for example, 10 ml from a reactor and to infer reaction conditions in the actual reactor. Piston or diaphragm pumps operate at too high stroke frequencies and, due to their design features, have many narrow gaps in which product or particle shear occurs. The non-constant speed of the displacement elements also has a product-changing effect. The non-uniform conveying speed causes different frictional forces on pipelines or pump head parts in contact with the product, which cause product shear in the microparticle range. The residence time of the product in the pump head is not finite or not precisely defined in the known pump designs, since all pump heads have a high dead space volume. Large portions of a suction stroke volume remain in the pump head for a long time, with each new suction stroke only partial mixing with the old product takes place, so that product particles are subjected to shear stress for a long time. Another disadvantage is that the piston or diaphragm pumps have no positively controlled valves (ball valves) that open a large, free cross-section depending on the suction or pressure process. Another disadvantage is the fact that the suction and pressure processes are not synchronized. With these pump designs there is an absolute synchronous Working from the suction and pressure side is not possible, even if an improvement in the conveyance can be achieved by multiple heads. The individual processes that have to be considered in the individual pump head are always uneven due to the rotational acceleration of the control gear and the associated conversion of rotation into stroke movement and the reason for the primary pulsation in the delivery flow.
Ein weiterer Nachteil bei bekannten Pumpenkonstruktionen ist, daß bei kleiner werdenden Volumenstrom der Totraum im Pumpenkopf größer wird. Das heißt, daß der eigentliche fördernde Verdrängerkörper seinen Arbeitsweg proportional der Fördermenge verändert.Another disadvantage of known pump designs is that the dead space in the pump head increases as the volume flow becomes smaller. This means that the actual promoting displacement body changes its way of work in proportion to the delivery rate.
Einkolbenpumpen bauen sehr groß, sind sehr teuer und arbeiten nicht konti¬ nuierlich. Die Konstruktionen lassen ein Selbstansaugen nicht zu, so daß zusätzlich saugseitig Pumpen benötigt werden. Ihr großes Totraumvolumen macht sie z.B. für Probennahmen nicht tauglich. Selbst bei denkbaren Zwillingskolbenpumpen ist ein synchrones Arbeiten von Saug- und Druckvorgang nicht möglich.Single-piston pumps are very large, are very expensive and do not work continuously. The constructions do not allow self-priming, so that pumps are also required on the suction side. Their large dead space volume makes them e.g. not suitable for sampling. Even with conceivable twin piston pumps, synchronous operation of the suction and pressure processes is not possible.
Der Erfindung liegt die Aufgabe zugrunde, scherempfindliche Fluide, insbesondere Polymerdispersionen, kontinuierlich, pulsationsarm und schonend zu fördern, so daß die Fluide in ihrem Phasenzustand durch die Förderung unbeeinflußt bleiben, und insbesondere bei Dispersionen keine Phasentrennung oder Koagulation erfolgt. Insbesondere soll ermöglicht werden, einen Polymerlatex aus einem Reaktor in eine Umpumpschleife und zurück zu fördern, wobei die Bildung von Koagulat oder Teilchenneubildung vermieden wird. Der Erfindung liegt ferner die Aufgabe zugrunde, eine Vorrichtung bereitzustellen, die diese Förderung schonend und über einen langen Zeitraum störungsfrei und betriebssicher ermöglicht. Insbesondere soll die Vorrichtung ermöglichen, das Fluid zwischen verschiedenen Anlagenteilen, z.B. einem Reaktor und einer Meßschleife mit unterschiedlichen Druckverhältnissen, schonend hin und her zu überführen. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Fluid mittels einer totraumfreien, pulsationsarmen Doppellanghubkolbenpumpe angesaugt und gepumpt wird und im durchflossenen Leitungssystem totraumfreie Ventile zum Einsatz kommen. Diese Doppellanghubkolbenpumpe sitzt z.B. in einer Druckschleife, wobei durch eine Schleuse oder ein Überströmventil, welches als verbindendes Element zu einem parallel angeordneten Meßkreis mit anderem Druckniveau dient, eine definierte Probenmenge überführt wird und im parallelen Meßkreis von einer zweiten Lang¬ hubkolbenpumpe gleicher Bauart den eigentlichen On-line-Meßgeräten zugeführt wird.The invention has for its object to promote shear-sensitive fluids, in particular polymer dispersions, continuously, with little pulsation and gently, so that the fluids remain unaffected in their phase state by the promotion, and in particular with dispersions there is no phase separation or coagulation. In particular, it should be possible to convey a polymer latex from a reactor into a pumping loop and back, avoiding the formation of coagulate or new particle formation. The invention is also based on the object of providing a device which enables this support to be carried out gently and over a long period of time without malfunction and reliably. In particular, the device should enable the fluid to be gently transferred back and forth between different parts of the system, for example a reactor and a measuring loop with different pressure ratios. This object is achieved in that the fluid is sucked in and pumped by means of a dead space-free, low-pulsation double-length reciprocating piston pump and dead space-free valves are used in the through-flow line system. This double-length reciprocating piston pump sits, for example, in a pressure loop, whereby through a Lock or an overflow valve, which serves as a connecting element to a parallel measuring circuit with a different pressure level, a defined amount of sample is transferred and is fed to the actual on-line measuring devices in the parallel measuring circuit by a second long-stroke piston pump of the same type.
Gegenstand der Erfindung ist ein Verfahren zum kontinuierlichen Fördern scherempfindlicher Fluide, insbesondere von Polymerlatices bzw. Kunststoff¬ dispersionen, mit einer Viskostität bis 100.000 mPa.s bei einer Förderleistung von 10 ml/h bis 100 1/h, dadurch gekennzeichnet, daß das Fluid über wenigstens ein totraumfreies Ventil von einem Kolben einer Doppellanghubkolbenpumpe ange¬ saugt wird, während synchron Fluid aus dem zweiten Kolbenraum ebenfalls über wenigstens ein weiteres totraumfreies Ventil zur Förderseite abgegeben wird und nach vollständiger Entleerung des zweiten Kolbenraumes das erste Ventil abgabe¬ seitig geöffnet und ansaugseitig geschlossen wird, während das zweite Ventil abgabeseitig geschlossen und ansaugseitig geöffnet wird und synchron die Bewegungsrichtung der Kolben umgekehrt wird. Eine bevorzugte Ausführungs¬ form ist dadurch gekennzeichnet, daß das Fluid in einer Umpumpschleife gefördert wird, die an einen Reaktor angekoppelt ist. In dieser Umpumpschleife oder parallell zu dieser können sich Meßfühler bzw. Sensoren oder Einbauten befinden. Beispiele für solche Meßfühler sind Temperaturmeßfühler, pH-Elektroden, Leit¬ fähigkeitselektroden, NIR-Lichtleitersonden, schwingende U-Rohre für Dichte¬ messungen, Refraktometer, Ultraschallmeßköpfe oder Vorrichtungen zur Kalori- metrie. Die genannten Meßfühler bzw. Meßgeräte werden durch das im Kreis geführte Fluid (z.B. ein Latex) nicht belegt oder verstopft. Es ist grundsätzlich möglich, in die Umpumpschleife weiter Vorrichtungen zur Durchmischung, wie Statikmischer oder Wärmetauscher, einzubringen, welche aufgrund der stetigen pulsationsfreien und gering scherbeanspruchenden Fördervorrichtung nicht belegt oder verstopft werden. Eine weitere bevorzugte Variante des Verfahrens ist dadurch gekennzeichnet, daß das Fluid durch ein Überströmventil oder eine Schleuse in einen Bereich verminderten Drucks (z.B. eine sekundäre Umpump¬ schleife) geleitet wird. Besonders bevorzugt ist eine Variante dieses Verfahrens, bei der das Überströmventil bzw. die Schleuse als Kopplung zwischen Primär- und Sekundärumpumpkreislauf geschaltet ist. Mit dieser Variante ist es möglich, definierte Probenvolumina des Fluids aus der Hauptfließleitung bzw. einem primären Umpumpkreislauf abzuzweigen und z.B. einer Messung unter vermin¬ dertem Druck zuzuführen.The invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, with a viscosity of up to 100,000 mPa.s at a delivery rate of 10 ml / h to 100 l / h, characterized in that the fluid is above At least one dead space-free valve is sucked in by a piston of a double-long stroke piston pump, while synchronously fluid from the second piston space is also released to the delivery side via at least one further dead space-free valve and, after the second piston space has been completely emptied, the first valve is opened on the delivery side and closed on the suction side , while the second valve is closed on the discharge side and opened on the suction side and the direction of movement of the pistons is reversed synchronously. A preferred embodiment is characterized in that the fluid is conveyed in a pumping loop which is coupled to a reactor. Sensors or sensors or internals can be located in this pumping loop or parallel to it. Examples of such sensors are temperature sensors, pH electrodes, conductivity electrodes, NIR light guide probes, vibrating U-tubes for density measurements, refractometers, ultrasonic measuring heads or devices for calorimetry. The sensors or measuring devices mentioned are not occupied or blocked by the circulating fluid (for example a latex). In principle, it is possible to incorporate further mixing devices, such as static mixers or heat exchangers, into the pumping loop, which are not occupied or blocked due to the continuous, pulsation-free and low-shear conveying device. A further preferred variant of the method is characterized in that the fluid is passed through an overflow valve or a lock into a region of reduced pressure (for example a secondary pump loop). A variant of this method is particularly preferred, in which the overflow valve or the lock is connected as a coupling between the primary and secondary pump circuit. With this variant it is possible to branch off defined sample volumes of the fluid from the main flow line or a primary pumping circuit and, for example, to conduct a measurement under reduced pressure.
Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles beispielhaft näher erläutert.The invention is explained in more detail below by way of example using an exemplary embodiment illustrated in the drawings.
Es zeigenShow it
Fig. 1 Schema der erfindungsgemäßen Förderung von scherempfindlichen Fluiden Fig. 2 schematische Abbildung des Förderverfahrens als Teil einer Umpump¬ schleife und zum Auskoppeln von Polymerisat Fig. 3 Aufbau der erfindungsgemäßen Doppellanghubkolbenpumpe in einer Sei¬ tenansicht Fig. 4 erfindungsgemäße Doppellanghubkolbenpumpe in Draufsicht.1 Scheme of the delivery of shear-sensitive fluids according to the invention. FIG. 2 schematic illustration of the delivery process as part of a pumping loop and for coupling out polymer. FIG. 3 construction of the double-long stroke piston pump according to the invention in a side view. FIG. 4 double-length lift piston pump according to the invention in plan view.
An einen Reaktor 1 zur Emulsionspolymerisation von Butadien, der unter einem Druck von > 5 bar arbeitet, ist eine Umpumpschleife 2 geschaltet, die eine neue Doppellanghubkolbenpumpe 3 mit zwangsgesteuerten Ein- bzw. Ausgangsventilen 4, 5 als Fördervorrichtung enthält sowie ein Überströmventil 6, welches den primären Kreislauf 2 mit dem sekundären Kreislauf 7 verbindet. Die neu ent¬ wickelte Doppellanghubkolbenpumpe ist in den Figuren 3 und 4 abgebildet. Ihre beiden Kolben 8 und 9 werden über ein Winkelhubgetriebe 10 mit vorge- schaltetem Regelgetriebe 11 angetrieben. Das Hubvolumen der Pumpenköpfe läßt sich durch einen Ring 12 einstellen, der gleichzeitig die Aufgabe übernimmt, einen Kontaktschalter 13 für die Drehrichtungsänderung und für die Umschaltung der Armaturen zu betätigen. Doppelte Dichtungen und Stützringe sind am Kopf jedes Kolbens zum Gehäuse abdichtend plaziert. Die Kopfdichtung der Kolben ermöglicht die Gestaltung eines totraumarmen Pumpenkopfes unabhängig von der Hubvolumenmenge. Das angesaugte Produktvolumen wird quantitativ aus dem Pumpenkopf während des Förderns verdrängt. Während einerseits das Reaktionsgemisch durch den Kolben 23 beispielsweise langsam angesaugt wird, drückt der entgegengesetzte Kolben 24, der über die gleiche Spindel 14 geführt ist wie Kolben 23, vorher angesaugtes Reaktionsgemisch quantitativ aus dem Pumpenkopf. Die erfindungsgemäße Doppellanghubkolbenpumpe ist selbstan¬ saugend und selbstbelüftend bei einer Pulsationsfrequenz von weniger als 10 Hub pro Minute. Der Totraum der Pumpe beträgt weniger als 1 % des Pumpen- kopfvolumens. Es ist möglich, mit der Pumpe bei einem Druck bis 300 bar und einer Temperatur von -100 bis +250° C zu arbeiten. Mit Hilfe der erfindungs¬ gemäßen Pumpe können auch feststoffhaltige Fluide gepumpt werden, wenn die Sedimentationszeit des Feststoffs größer ist als die Verweilzeit des Fluids im Pumpenkopf. In einer bevorzugten Ausführung weist die Spindel der Pumpe eine zusätzliche Verdrehsicherung auf.To a reactor 1 for the emulsion polymerization of butadiene, which works under a pressure of> 5 bar, a pumping loop 2 is connected, which contains a new double-length reciprocating piston pump 3 with positive-controlled inlet and outlet valves 4, 5 as a conveying device and an overflow valve 6, which the primary circuit 2 connects to the secondary circuit 7. The newly developed double long-stroke piston pump is shown in FIGS. 3 and 4. Its two pistons 8 and 9 are driven by an angular stroke gear 10 with an upstream control gear 11. The stroke volume of the pump heads can be adjusted by means of a ring 12, which at the same time assumes the task of actuating a contact switch 13 for changing the direction of rotation and for switching the fittings. Double seals and support rings are placed on the top of each piston to seal the housing. The head seal of the pistons enables the design of a low dead space pump head regardless of the stroke volume. The aspirated product volume is displaced quantitatively from the pump head during conveying. While on the one hand the reaction mixture is slowly sucked in by the piston 23, for example, the opposite piston 24, which is guided over the same spindle 14 as the piston 23, presses the previously sucked reaction mixture quantitatively out of the Pump head. The double-long stroke piston pump according to the invention is self-priming and self-venting at a pulsation frequency of less than 10 strokes per minute. The dead space of the pump is less than 1% of the pump head volume. It is possible to work with the pump at a pressure of up to 300 bar and a temperature of -100 to + 250 ° C. With the aid of the pump according to the invention, fluids containing solids can also be pumped if the sedimentation time of the solid is greater than the residence time of the fluid in the pump head. In a preferred embodiment, the spindle of the pump has an additional anti-rotation device.
Die Doppellanghubkolbenpumpe 3 ermöglicht, eine Teilstrommenge des Reak¬ tionsvolumens aus dem Reaktor 1 ständig produktschonend umzupumpen. Mit Hilfe der erfindungsgemäßen Vorrichtung wurden 100 ml/h Butadien-Polymerisat über 100 h bei einem Druck von 5 bar und einer Temperatur von 50°C ohne Ablagerung oder Koagulatbildung umgepumpt.The double-length reciprocating piston pump 3 enables a partial flow of the reaction volume from the reactor 1 to be pumped around in a manner that is gentle on the product. With the aid of the device according to the invention, 100 ml / h of butadiene polymer were pumped over over 100 h at a pressure of 5 bar and a temperature of 50 ° C. without deposition or coagulum formation.
Die Umpumpschleife 2 ist in einer bevorzugten Ausführung über ein Über¬ strömventil 6 mit einem Vakuumgefäß 13 verbunden. Das Überströmventil 6 verhindert eine spontane Entspannung der flüssigen Monomere, die in der Probenmenge enthalten sind. Es wird dadurch eine unkontrollierte Schaumbildung verhindert. Das Vakuumgefäß 13 hat ein definiertes Volumen und wird über eine Steuerung auf einen vorgewählten Unterdruck, z.B. 50 mbar, evakuiert. Ist der Unterdruck erreicht, schaltet die Steuerung ein in der Umpumpschleife befindliches Ventil 25 in Zustellung, so daß die Doppellanghubkolbenpumpe 3 das definierte Volumen gegen das in Zustellung befindliche Ventil 25 pumpt und den Systemdruck in der Umpumpschleife erhöht. Das Überströmventil 6 läßt die Probenmenge bei einem vorher eingestellten Druck, der über dem Reaktordruck liegt, in das Vakuumgefäß passieren. Sobald die Probenmenge aus der Umpumpschleife geschleust ist, gibt die Steuerung den Befehl, das Ventil 25 zu öffnen, so daß der Umpumpkreislauf wieder in Betrieb gesetzt wird. Die eingespritzte Probe erzeugt im Vakuumgefäß, welches aus einem geeichten, zylindrischen Meßgefäß 13 und einem Ausgleichsgefäß 15 besteht eine Druckerhöhung. Das Ausgleichsgefäß ist bevorzugt so ausgelegt, daß bei Ent¬ spannung eines niedrigsiedenden Bestandteils des mehrphasigen Fluids der max. entstehende Druck 1 bar absolut nicht übersteigt. Die Druckerhöhung wird wiederum verstärkt durch verdampfende Bestandteile der Probe. Verändert sich nach einer gewissen Zeit (z.B. < 30 min) der Druck im Meßgefäß nicht mehr, so wird die Druckdifferenz berechnet und zusammen mit der Temperatur, dem Volumen der Probe und dem Volumen des Vakuumbehälters die Monomer- konzentration bestimmt und damit Rückschluß auf die derzeitige Produkt- zusammensetzung im Reaktor getroffen. Ist der druckerzeugende Bestandteil der Reaktorprobe isoliert, wird die verbleibende, nicht verdampfte Probenmenge automatisch mit der vorgegebenen Sollprobenmenge verglichen. Ist das gemessene Probenvolumen unter dem Sollwert wird erneut das Vakuumgefäß evakuiert und eine weitere Probe von der Doppellanghubkolbenpumpe angefordert. Dieser Teilvorgang wiederholt sich so lange, bis die ausreichende Probenmenge erreicht ist. Anschließend wird das Vakuumgefäß 13 mit Inertgas belüftet und der Rest der Probe in eine Meßschleife gepumpt. Der Meßkreis 7 ist mit einer Ein- fachlanghubkolbenpumpe 16 ausgerüstet um Meßsensoren mit Produkt zu versorgen. Die Einfachlanghubkolbenpumpe ist wie die Doppellanghubkolben¬ pumpe mit zwangsgesteuerten Ventilen 17 bzw. 18 ausgerüstet. Ist die isolierte Probe aus dem Vakuumgefäß abgesaugt, schalten die Ventile 17, 18 auf den eigentlichen Meßkreis um. Dadurch wird das Vakuumgefäß zwischen Ventil 6 und Ventil 17 vom übrigen Verfahren zwischenzeitlich ausgeklammert. Jetzt kann automatisiert ein Reinigungsvorgang der Entgasungszelle, bestehend aus Spül- und Trockenvorgang, parallel zum anderen automatisierten Prozeß ablaufen. Der Spülvorgang ist bei vorangeschalteten Probenaufarbeitungsvorgängen notwendig um produktbenetzte Teile zu reinigen, damit bei Folgemessungen keine Meßwertverfälschungen erfolgen. Der Spül- und Trocknungsvorgang wird durch die Ventile 20 bzw. 21 eingeleitet. Nachdem die Spülflüssigkeit in das Vakuum- gefaß eingeleitet wurde öffnet das Ventil 22, um die eingeschleuste Spülmit¬ telmenge in ein angekoppeltes Auffanggefäß abfließen zu lassen. Der Spülvorgang kann wahlweise nach Produkteigenschaften mehrmals wiederholt werden. Nach Beendigung des Spülens erfolgt ein Trocknungsvorgang, der durch das Ventil 21 eingeleitet wird. Der Trocknungsvorgang ist nur dann erforderlich, wenn die restliche Spülflüssigkeitsmenge, die an inneren Wandungen haftet, nicht durch das anschließende Evakuieren verdampft und dadurch den Ausgangsmeßwert für die Ermittlung des Niedrigsieders verfälscht. In dieser Meßschleife können weitere Analysen- oder Meßgeräte eingebaut werden, um unterschiedliche Eigenschaften der entgasten Probe zu bestimmen.In a preferred embodiment, the pumping loop 2 is connected to a vacuum vessel 13 via an overflow valve 6. The overflow valve 6 prevents spontaneous expansion of the liquid monomers contained in the sample amount. This prevents uncontrolled foaming. The vacuum vessel 13 has a defined volume and is evacuated to a preselected negative pressure, for example 50 mbar, via a control. When the negative pressure is reached, the control switches a valve 25 in the pumping loop into delivery, so that the double-long stroke piston pump 3 pumps the defined volume against the valve 25 in delivery and increases the system pressure in the pumping loop. The overflow valve 6 allows the sample amount to pass into the vacuum vessel at a previously set pressure which is above the reactor pressure. As soon as the sample quantity has been discharged from the pumping loop, the control gives the command to open the valve 25 so that the pumping circuit is put into operation again. The injected sample produces a pressure increase in the vacuum vessel, which consists of a calibrated, cylindrical measuring vessel 13 and an expansion vessel 15. The expansion tank is preferably designed so that when a low-boiling component of the multiphase fluid is released, the max. resulting pressure does not exceed 1 bar absolutely. The pressure increase is in turn increased by evaporating components of the sample. If the pressure in the measuring vessel no longer changes after a certain time (eg <30 min), the pressure difference is calculated and, together with the temperature, the volume of the sample and the volume of the vacuum container, the monomer concentration is determined and thus conclusions can be drawn about the current one Product composition hit in the reactor. If the pressure-generating component of the reactor sample is isolated, the remaining, non-evaporated sample amount is automatically compared with the specified target sample amount. If the measured sample volume is below the setpoint, the vacuum vessel is evacuated again and a further sample is requested from the double-length reciprocating piston pump. This sub-process is repeated until the sufficient amount of sample is reached. The vacuum vessel 13 is then aerated with inert gas and the rest of the sample is pumped into a measuring loop. The measuring circuit 7 is equipped with a single long-stroke piston pump 16 in order to supply measuring sensors with product. The single long-stroke piston pump, like the double-long stroke piston pump, is equipped with positively controlled valves 17 and 18, respectively. If the isolated sample is sucked out of the vacuum vessel, the valves 17, 18 switch over to the actual measuring circuit. As a result, the vacuum vessel between valve 6 and valve 17 is temporarily excluded from the rest of the process. Now a cleaning process of the degassing cell, consisting of a rinsing and drying process, can run automatically in parallel to the other automated process. The rinsing process is necessary in the case of upstream sample preparation processes in order to clean parts wetted by the product so that there are no falsifications of measurements during subsequent measurements. The rinsing and drying process is initiated by valves 20 and 21, respectively. After the rinsing liquid has been introduced into the vacuum vessel, the valve 22 opens in order to allow the amount of detergent introduced to flow away into a coupled collecting vessel. The rinsing process can optionally be repeated several times depending on the product properties. After rinsing has ended, a drying process takes place, which is initiated by valve 21. The drying process is only necessary if the remaining amount of rinsing liquid, which adheres to the inner walls, does not evaporate due to the subsequent evacuation and thereby falsifies the initial measured value for the determination of the low boiler. In this measuring loop more Analysis or measuring devices are installed to determine different properties of the degassed sample.
Der gemessene Probenrest kann über ein weiteres Drei-Wege- Ventil aus der Meßschleife in die Umpumpschleife 2 zugeführt werden und damit in den Reaktor als Saatpolymer zurückgeführt werden. Die Förderung des Polymerisats in der Meßschleife wird bevorzugt ebenfalls mit Hilfe einer weiteren erfindungsgemäßen Fördereinrichtung, insbesondere mit Hilfe einer zweiten erfindungsgemäßen Pumpe vorgenommen. Mit Hilfe des erfindungsgemäßen Verfahrens ist es möglich, eine vollautomatische Probennahme und Bestimmung der aktuellen Monomerkon- zentration während einer Druckpolymerisation durch die genannte Druckdiffe¬ renzmessung zu erreichen. Die hierbei ermittelte Monomerkonzentration kann als Steuergröße für die Dosierung von Monomer- bzw. Initiatorzugabe verwendet werden. Als besonderer Vorteil erweist sich, daß das gemessene Polymerisat aufgrund der schonenden Förderung und der weiteren Behandlung, z.B. in der Meßschleife, dem Reaktionsgemisch im Reaktor wieder zugeführt werden kann, ohne Beeinträchtigung der Produktqualität. Eine Variante zur Überführung von Polymerisat in die Meßschleife besteht darin, ein definiertes, mit Reaktions¬ gemisch gefülltes Volumen der Umpumpschleife 2 abzusperren und im gleichen Augenblick einen Schleifenumgang zu öffnen, so daß der Produktstrom in der Umpumpschleife nicht unterbrochen wird. Die unter Druck stehende Menge Reaktionsgemisch in der Schleuse wird dann spontan in das Vakuumgefaß entleert. Anschließend wird die Schleuse wieder in den Reaktionsgemischstrom geschaltet und die Schleifenumgehung geschlossen. Die Schleuse ersetzt hierbei das Über¬ strömventil 6.The measured sample residue can be fed from the measuring loop into the pumping loop 2 via a further three-way valve and can thus be returned to the reactor as a seed polymer. The polymer is preferably conveyed in the measuring loop with the aid of a further conveying device according to the invention, in particular with the aid of a second pump according to the invention. With the aid of the method according to the invention, it is possible to achieve a fully automatic sampling and determination of the current monomer concentration during a pressure polymerization by means of the pressure difference measurement mentioned. The monomer concentration determined here can be used as a control variable for the metering of monomer or initiator addition. It proves to be a particular advantage that the measured polymer due to the gentle conveyance and further treatment, e.g. in the measuring loop, the reaction mixture can be fed back into the reactor without impairing the product quality. A variant for transferring polymer into the measuring loop is to shut off a defined volume of the pumping loop 2 filled with reaction mixture and to open a loop at the same time so that the product flow in the pumping loop is not interrupted. The pressurized amount of reaction mixture in the lock is then emptied spontaneously into the vacuum vessel. The lock is then switched back into the reaction mixture stream and the loop bypass is closed. The lock replaces the overflow valve 6.
Es ist möglich, die Entmonomerisierung oder Aufbereitung des Reaktionsge¬ misches im Vakuumgefäß durch mehrfaches Evakuieren und anschließendes Be¬ lüften mit Inertgas zu vervollständigen, wobei Lichtschranken als Schaumwächter z.B. bei schäumenden Produkten eingesetzt werden können.It is possible to complete the demonomerization or preparation of the reaction mixture in the vacuum vessel by multiple evacuation and subsequent ventilation with inert gas, with light barriers as foam monitors e.g. can be used for foaming products.
Typische Messungen, z.B. an entmonomerisiertem Latex im Zuge der Meßschleife, sind Dichte-, Brechzahl-, NIR-, Ultraschall-, pH- und Leitfähigkeitsmessungen.Typical measurements, e.g. on demonomerized latex in the course of the measuring loop are density, refractive index, NIR, ultrasound, pH and conductivity measurements.
Des weiteren können an definiert verdünnnten, entmonomerisiertem Latex Licht- extinktionsmessungen (gegebenenfalls bei verschiedenen Wellenlängen) oder eine Teilchengrößenbestimmung mit Hilfe der Laserkorrelationsspektroskopie durchge¬ führt werden. Durch eine Kombination der Informationen aus diesen Messungen wird es möglich, bei laufender Reaktion die Kinetik der Polymerisation zu bestimmen und eine Prozeßsteuerung durchzuführen.Furthermore, lightly diluted, demonomerized latex extinction measurements (possibly at different wavelengths) or a particle size determination using laser correlation spectroscopy. A combination of the information from these measurements makes it possible to determine the kinetics of the polymerization and to carry out a process control while the reaction is in progress.
Gegenstand der Erfindung ist auch eine pulsationsarme totraumfreie Doppel¬ langhubkolbenpumpe mit einer Förderleistung von 10 ml/h bis 100 1/h zur För¬ derung von scherempfindlichen Fluiden mit einer Viskosität bis 100.000 mPas aufweisend zwei Kolben 8,9 auf einer gemeinsamen Antriebsspindel 14 einem Winkelhubgetriebe 10 mit vorgeschaltetem Regelgetriebe 11 oder einem hydrauli¬ schen Getriebe zum Antrieb der Kolben 8,9 einen Ring 12 zum Einstellen des Hubvolumens der Pumpenköpfe 23, 24 einem Kontaktschalter 26 für die Dreh¬ richtungsänderung einer Initiatorscheibe 27 sowie doppelten Dichtungen am Kopf der Kolbenräume.The invention also relates to a low-pulsation, dead space-free, double long-stroke piston pump with a delivery rate of 10 ml / h to 100 1 / h for conveying shear-sensitive fluids with a viscosity of up to 100,000 mPas, comprising two pistons 8, 9 on a common drive spindle 14 and an angular stroke gear 10 with an upstream control gear 11 or a hydraulic gear for driving the pistons 8, 9, a ring 12 for adjusting the stroke volume of the pump heads 23, 24, a contact switch 26 for changing the direction of rotation of an initiator disk 27 and double seals on the head of the piston chambers.
Der Antrieb der Pumpe erfolgt z.B. über ein Untersetzungsgetriebe mit in Reihe geschaltetem Winkelhubgetriebe, welches die Drehbewegung in eine rotationsfreie Hubbewegung der Kolben 8, 9 umsetzt. Das hat den Vorteil, daß der Saug- und Druckkolbenkopf auf einer Spindel montiert werden und die Doppelkolbenpumpe kontinuierlich fördern kann. Durch diese Anordnung fahren Druck- bzw. Saugkolben absolut synchron. Jeweils die Produkt abgewandte Seite des jeweiligen Saugkolbenkopfes löst den Schalter aus, um vom Druckvorgang auf den Saugvorgang umzuschalten. Die Konstruktion kann auch so ausgelegt werden, daß anstatt des Saugkopfes der Druckkopf die Umschaltung auslöst. In dem Fall müßte der Schaltsensor nicht getriebeseitig sondern pumpenkopfseitig plaziert werden. Die Hubstange, die eine Gewindestange ist (Kolbenstange), auf der die beiden Kolbenköpfe sitzen, ist beispielsweise mit einer axialverlaufenden Nut versehen, in die bevorzugt eine Verdrehsicherung eingreift, um eine Rotation der Hubstange zu vermeiden. Der Kolbenkopf ist zum Kolbengehäuse mit mindestens einer elastischen Dichtung und mindestens einem Führungsring versehen, so daß das angesaugte Produkt auch vollständig beim Druckvorgang aus dem Kolben¬ kopfgehäuse verdrängt werden kann. Saug- und Druckkammer sind z.B. über zwei Xapillaren, in denen zwei zwangs¬ gesteuerte Drei-Wege- Ventile (Kugelhähne) (4, 5), plaziert sind, miteinander ver¬ bunden. Die Drei-Wege- Ventile sorgen für eine Trennung der beiden Kammern. Anstatt der zwei Drei-Wege- Ventile können auch vier Einzelventile vorgesehen werden. Vorzugsweise bestehen die Ventile aus Kugelhähnen, um einen scherungsfreien Produktdurchgang zu gewährleisten. Jeder Kolben hat eine Produkteintrittsöffnung und eine -austrittsöffnung, sie sind vertikal untereinander angeordnet, der Eintritt unten und der Austritt oben, um eine Selbstbelüftung und ein Selbstansaugen der Pumpe zu ermöglichen. In einer besonderen Ausfüh- rungsform wird eine Teleskopspindel (längenverstellbare Spindel) eingesetzt, um bei kleinsten Hubvolumenmengen einen Pumpkreislauf erzeugen zu können und das Restvolumen klein zu halten. Die Doppellanghubkolbenpumpe kann unab¬ hängig von der Fördermenge den Pumpenkopf restlos entleeren. Aufgrund der extrem niedrigen Hubfrequenz (z.B. max. 2 Hübe pro Minute) entsteht eine pulsationsarme Produktförderung, das Produkt wird laminar gefördert, es entsteht eine Pfropfenströmung in den Kapillaren oder Rohrleitungen. Die laminare Förderung eines Produkts ist bei konstantem Druck Voraussetzung für den scherungsfreien Transport von Latices. Vorzugsweise sollte der Pumpenantrieb und das Pumpenkopfvolumen so ausgelegt werden, daß ein Schaltzyklus größer 5 Minuten eingehalten wird. Dadurch wird ein scherungsfreies Pumpen z.B. der Polymerlatices bzw. Kunststoffdispersionen gewährleistet. Diese Frequenzmerk¬ male beschreiben ein pulsationsfreies (-armes) Förderungssystem, welches scher¬ empfindliche Produkte über lange Zeit pumpen kann.The pump is driven, for example, via a reduction gear with an angular stroke gear connected in series, which converts the rotary movement into a rotation-free stroke movement of the pistons 8, 9. This has the advantage that the suction and pressure piston head can be mounted on a spindle and the double piston pump can continuously deliver. With this arrangement, the pressure and suction pistons run absolutely synchronously. The side of the respective suction piston head facing away from the product triggers the switch in order to switch from the printing process to the suction process. The design can also be designed so that the print head triggers the switchover instead of the suction head. In this case, the switch sensor would not have to be placed on the transmission side but on the pump head side. The lifting rod, which is a threaded rod (piston rod) on which the two piston heads are seated, is provided, for example, with an axially extending groove, into which an anti-rotation lock preferably engages in order to avoid rotation of the lifting rod. The piston head is provided to the piston housing with at least one elastic seal and at least one guide ring, so that the sucked-in product can also be completely displaced from the piston head housing during the printing process. Suction and pressure chambers are connected to one another, for example, via two xapillaries in which two positively controlled three-way valves (ball valves) (4, 5) are placed. The three-way valves separate the two chambers. Instead of the two three-way valves, four individual valves can also be provided. The valves preferably consist of ball valves in order to ensure a shear-free passage of the product. Each piston has a product inlet opening and an outlet opening, they are arranged vertically one below the other, the inlet at the bottom and the outlet at the top to enable self-ventilation and self-priming of the pump. In a special embodiment, a telescopic spindle (length-adjustable spindle) is used in order to be able to generate a pump circuit with the smallest stroke volume and to keep the remaining volume small. The double-length reciprocating piston pump can completely empty the pump head regardless of the flow rate. Due to the extremely low stroke frequency (e.g. max. 2 strokes per minute) there is a low-pulsation product delivery, the product is delivered laminar, there is a plug flow in the capillaries or pipes. The laminar conveyance of a product at constant pressure is a prerequisite for the shear-free transport of latices. The pump drive and the pump head volume should preferably be designed so that a switching cycle of more than 5 minutes is maintained. This ensures shear-free pumping, for example of polymer latices or plastic dispersions. These frequency features describe a pulsation-free (low-arm) delivery system which can pump shear-sensitive products over a long period of time.
Aufgrund der einfachen Konstruktion kann die Pumpe Kleinstmengen, ab 10 ml/h kontinuierlich fördern, oder auch definierte Mengen im ml-Bereich ansaugen und als Probennehmer bei diskontinuierlichen bzw. kontinuierlichen Prozessen einge¬ setzt werden. Die Pumpe kann als Schleuse fungieren, weil Druck- und Saugseite voneinander getrennt sind, sie kann Produktmengen aus einem Unterdruck- bzw. Überdruckbereich in einem Unterdruck- bzw. Überdruckbereich überführen. Auf- grund der totraumfreien Ausführung erfolgt keine Rückvermischung mit zeitlich älteren Produktmengen. Ein besonderer Vorteil des Verfahrens mit der Doppellanghubkolbenpumpe ist, daß mit der eingestellten Probenmenge von z.B. 10 ml, eine definierte Produkt¬ menge pro Hub gefördert wird und zu einem beliebigen Zeitpunkt z.B. in einen Meßkreislauf überführt werden kann. Diese Probenmenge bzw. der max. Hubweg ist mit einer Stellmutter auf der Kolbenspindel im Inneren des Kolbengehäuses einstellbar.Due to the simple design, the pump can deliver small quantities, continuously from 10 ml / h, or can also suck in defined quantities in the ml range and be used as a sampler in discontinuous or continuous processes. The pump can act as a sluice because the pressure and suction sides are separate, it can transfer product quantities from a vacuum or pressure range to a vacuum or pressure range. Due to the dead space-free design, there is no backmixing with older product quantities. A particular advantage of the method with the double-long stroke piston pump is that with the set sample quantity of, for example, 10 ml, a defined product quantity per stroke is conveyed and can be transferred to a measuring circuit at any time, for example. This sample amount or the max. The stroke can be adjusted with an adjusting nut on the piston spindle inside the piston housing.
Die Kolbenköpfe und Pumpengehäuse können aus geeigneten metallischen und/oder nichtmetallischen Werkstoffen bestehen. In besonderen Ausführungs¬ formen kann auch das Kolbengehäuse mit Glas- oder Keramikhülsen ausgekleidet werden. Das Kolbengehäuse kann auf einfache Weise beheizt oder gekühlt werden.The piston heads and pump housings can consist of suitable metallic and / or non-metallic materials. In special embodiments, the piston housing can also be lined with glass or ceramic sleeves. The piston housing can be easily heated or cooled.
Aufgrund der Trennung von Druck- und Saugseite können zwischen diesen beliebigen positive oder negative Druckdifferenzen bestehen. Die Pumpe kann bei einer Temperatur von -100°C bis +200°C betrieben werden. Üblich ist es, die Pumpe in einem Temperaturbereich von etwa -20 bis +150°C, im Falle von Latices im Bereich von +2 bis +100°C einzusetzen. Das Verhältnis von Hubvolumen zu Restvolumen im Pumpenkopf, welches ein Maß für die Totraumfreiheit ist, beträgt bevorzugt kleiner als 1 %. Due to the separation of the pressure and suction side, there can be any positive or negative pressure differences between them. The pump can be operated at a temperature of -100 ° C to + 200 ° C. It is common to use the pump in a temperature range from around -20 to + 150 ° C, in the case of latices in the range from +2 to + 100 ° C. The ratio of stroke volume to residual volume in the pump head, which is a measure of the freedom from dead space, is preferably less than 1%.

Claims

Patentansprüche claims
1. Verfahren zum kontinuierlichen Fördern scherempfindlicher Fluide mit einer Viskosität bis 100.000 mPa s bei einer Förderleistung von 10 ml/h bis 100 1/h, dadurch gekennzeichnet, daß das Fluid über wenigstens ein totraumfreies, zwangsgesteuertes Ventil (4) von einem Kolben (8) einer1. A method for the continuous delivery of shear-sensitive fluids with a viscosity of up to 100,000 mPa s at a delivery rate of 10 ml / h to 100 1 / h, characterized in that the fluid via at least one dead space-free, positively controlled valve (4) from a piston (8 ) one
Doppellanghubkolbenpumpe (3) angesaugt wird, während synchron Fluid mit dem zweiten Kolben (9) aus dem zweiten Kolbenraum (24) ebenfalls über wenigstens ein weiteres totraumfreies, zwangsgesteuertes Ventil (5) zur Förderseite abgegeben wird und nach vollständiger Entleerung des zweiten Kolbenraums (24) das Ventil (4) abgabeseitig geöffnet und ansaugseitig geschlossen wird, während Ventil (5) abgabeseitig geschlossen und ansaugseitig geöffnet wird und synchron die Bewegungsrichtung der Kolben (8, 9) umgekehrt wird, wobei die Kolben (8) und (9) auf einer Spindel (14) sitzen.Double-long-stroke piston pump (3) is sucked in, while fluid in synchronism with the second piston (9) from the second piston chamber (24) is also discharged to the delivery side via at least one further, dead-space-free, positively controlled valve (5) and after the second piston chamber (24) has been completely emptied the valve (4) is opened on the discharge side and closed on the suction side, while valve (5) is closed on the discharge side and opened on the suction side and the direction of movement of the pistons (8, 9) is reversed synchronously, the pistons (8) and (9) being on a spindle (14) sit.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das scherem¬ pfindliche Fluid in einer Umpumpschleife (2) gefördert wird, die an einen Reaktor (1) angekoppelt ist.2. The method according to claim 1, characterized in that the scherem¬ sensitive fluid is conveyed in a pumping loop (2) which is coupled to a reactor (1).
3. Verfahren gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß das scherempfindliche Fluid ein Polymerlatex oder eine Kunststoffdispersion ist.3. The method according to claim 1 and 2, characterized in that the shear-sensitive fluid is a polymer latex or a plastic dispersion.
4. Verfahren gemäß Anspruch 2 und 3, dadurch gekennzeichnet, daß das Fluid über ein Überströmventil (6) oder eine Schleuse, die zwischen den Umpumpkreislauf (2) und einen Bereich verminderten Drucks geschaltet sind, in den Bereich verminderten Drucks gepumpt wird.4. The method according to claim 2 and 3, characterized in that the fluid is pumped into the region of reduced pressure via an overflow valve (6) or a lock, which are connected between the pumping circuit (2) and a region of reduced pressure.
5. Verfahren gemäß den Ansprüchen 3 bis 4, dadurch gekennzeichnet, daß der Bereich verminderten Drucks Teil einer Meßschleife (7) ist, die parallel zur Umpumpschleife (2) geführt ist und als Meßeinrichtungen wenigstens ein geeichtes Vakuumgefäß mit Druckmeßgerät zur Bestimmung Monomerkon- zentration des Polymerlatex aufweist. 5. The method according to claims 3 to 4, characterized in that the area of reduced pressure is part of a measuring loop (7) which is guided parallel to the pumping loop (2) and as measuring devices at least one calibrated vacuum vessel with a pressure measuring device for determining the monomer concentration Has polymer latex.
6. Vorrichtung zur Durchführung des Verfahrens gemäß Anspruch 1, auf¬ weisend eine Doppellanghubkolbenpumpe (3), mindestens ein totraumfreies Drei-Wege- Ventil (4), das über einen Kontaktschalter (26) der Doppellang¬ hubkolbenpumpe (3) zwangsgesteuert ist und mindestens ein totraumfreies Drei-Wege-Ausgangsventil (5), welches ebenfalls über einen Kontakt¬ schalter (26) der Doppellanghubkolbenpumpe (3) zwangsgesteuert ist.6. The device for carrying out the method according to claim 1, comprising a double-long-stroke piston pump (3), at least one dead-space-free three-way valve (4) which is positively controlled via a contact switch (26) of the double-long-stroke piston pump (3) and at least a dead-space-free three-way outlet valve (5), which is also positively controlled via a contact switch (26) of the double-length reciprocating piston pump (3).
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß sie in eine Umpumpschleife (2) geschaltet ist, die an einen Reaktor (1) angekoppelt ist.7. The device according to claim 6, characterized in that it is connected in a pumping loop (2) which is coupled to a reactor (1).
8. Vorrichtung gemäß Anspruch 7 mit einem Überströmventil (6) oder einer Schleuse auf der Abgabeseite der Fördereinrichtung in der Umpumpschleife zur Überführung von Fluid in einen Bereich verminderten Druckes.8. The device according to claim 7 with an overflow valve (6) or a lock on the delivery side of the conveyor in the pumping loop for transferring fluid into a region of reduced pressure.
9. Pulsationsarme totraumfreie Doppellanghubkolbenpumpe mit einer Förder¬ leistung von 10 ml h bis 100 1/h zur Förderung von scherempfindlichen Fluiden mit einer Viskosität bis 100.000 mPas aufweisend zwei Kolben (8,9. Low-pulsation, dead-space-free, double-length reciprocating piston pump with a delivery rate of 10 ml h to 100 1 / h for the delivery of shear-sensitive fluids with a viscosity of up to 100,000 mPas, comprising two pistons (8,
9) auf einer gemeinsamen Antriebsspindel (14), einem Winkelhubgetriebe (10), mit vorgeschaltetem Regelgetriebe (11) zum Antrieb der Kolben (8, 9), einem Ring (12) zum Einstellen des Hubvolumens der Pumpenköpfe (23, 24), einem Kontaktschalter (26) für die Drehrichtungsänderung, einer Initiatorscheibe (27) sowie doppelte Dichtungen am Kopf der Kolben (23,9) on a common drive spindle (14), an angular stroke gear (10), with an upstream control gear (11) for driving the pistons (8, 9), a ring (12) for adjusting the stroke volume of the pump heads (23, 24), one Contact switch (26) for changing the direction of rotation, an initiator disc (27) and double seals on the head of the pistons (23,
24).24).
10. Doppellanghubkolbenpumpe gemäß Anspruch 9, dadurch gekennzeichnet, daß die Spindel (14) eine Verdrehsicherung aufweist.10. Double-length reciprocating piston pump according to claim 9, characterized in that the spindle (14) has an anti-rotation device.
11. Doppellanghubkolbenpumpe gemäß den Ansprüchen 9 und 10, dadurch gekennzeichnet, daß die Spindel (14) eine Teleskopspindel ist und die11. Double-length reciprocating piston pump according to claims 9 and 10, characterized in that the spindle (14) is a telescopic spindle and the
Stellmutter (12) ersetzt.Set nut (12) replaced.
12. Doppellanghubkolbenpumpe gemäß den Ansprüchen 9 bis 11, dadurch gekennzeichnet, daß die Kolbenbewegung anstelle des Winkelhubgetriebes (10) mit vorgeschaltetem Regelgetriebe (11) über eine Hydraulik gesteuert wird. 12. Double-long stroke piston pump according to claims 9 to 11, characterized in that the piston movement instead of the angular stroke gear (10) with upstream control gear (11) is controlled by a hydraulic system.
PCT/EP1994/002267 1993-07-23 1994-07-11 Continuous conveying process and device for shear-sensitive fluids WO1995003491A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7504903A JPH10508073A (en) 1993-07-23 1994-07-11 Method and apparatus for continuously transporting a fluid susceptible to shear
EP94924738A EP0710328B1 (en) 1993-07-23 1994-07-11 Continuous conveying process and device for shear-sensitive fluids
DE59404484T DE59404484D1 (en) 1993-07-23 1994-07-11 METHOD AND DEVICE FOR CONTINUOUSLY CONVEYING SHEAR-SENSITIVE FLUIDS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4324777.6 1993-07-23
DE4324777A DE4324777A1 (en) 1993-07-23 1993-07-23 Method and device for the continuous delivery of shear sensitive fluids

Publications (1)

Publication Number Publication Date
WO1995003491A1 true WO1995003491A1 (en) 1995-02-02

Family

ID=6493552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/002267 WO1995003491A1 (en) 1993-07-23 1994-07-11 Continuous conveying process and device for shear-sensitive fluids

Country Status (6)

Country Link
US (1) US20030165390A1 (en)
EP (1) EP0710328B1 (en)
JP (1) JPH10508073A (en)
DE (2) DE4324777A1 (en)
ES (1) ES2108486T3 (en)
WO (1) WO1995003491A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146672B4 (en) * 2001-09-21 2004-12-09 Intec Bielenberg Gmbh & Co Kg Device for dosing viscous materials
US20110044830A1 (en) * 2004-06-07 2011-02-24 Hunter Hitech Pty Ltd Pump assembly
US9765768B2 (en) * 2014-01-15 2017-09-19 Francis Wayne Priddy Concrete pump system and method
US20210310334A1 (en) * 2020-04-03 2021-10-07 High Roller E & C, LLC Oilfield liquid waste processing facility and methods
US11911732B2 (en) 2020-04-03 2024-02-27 Nublu Innovations, Llc Oilfield deep well processing and injection facility and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2142095A (en) * 1983-05-23 1985-01-09 Bede Alfred Boyle Oscillating-deflector pump
US5066199A (en) * 1989-10-23 1991-11-19 Nalco Chemical Company Method for injecting treatment chemicals using a constant flow positive displacement pumping apparatus
US5094596A (en) * 1990-06-01 1992-03-10 Binks Manufacturing Company High pressure piston pump for fluent materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2142095A (en) * 1983-05-23 1985-01-09 Bede Alfred Boyle Oscillating-deflector pump
US5066199A (en) * 1989-10-23 1991-11-19 Nalco Chemical Company Method for injecting treatment chemicals using a constant flow positive displacement pumping apparatus
US5094596A (en) * 1990-06-01 1992-03-10 Binks Manufacturing Company High pressure piston pump for fluent materials

Also Published As

Publication number Publication date
DE4324777A1 (en) 1995-01-26
EP0710328A1 (en) 1996-05-08
DE59404484D1 (en) 1997-12-04
US20030165390A1 (en) 2003-09-04
JPH10508073A (en) 1998-08-04
ES2108486T3 (en) 1997-12-16
EP0710328B1 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
EP1886018B1 (en) Device and method for transporting medicinal liquids
DE68915865T2 (en) Multi-purpose positive displacement pump for various liquids.
DE10329314A1 (en) Pump for introducing a liquid into a chromatograph comprises chambers, plungers forming a first and a second volume with the chambers, a liquid connecting channel, a liquid inlet channel, and a liquid outlet channel
DE102012211192A1 (en) Continuous fluid delivery system and its control method
EP2788046B1 (en) Pump for medical purposes
EP3296075B1 (en) Feeding apparatus for feeding a viscous material from a container and method for operating the feeding apparatus
EP3810747B1 (en) Modular processing system and method for the modular construction of a processing system
EP3004643B1 (en) Metering pump and metering system
EP0521043B1 (en) Automatic polyelectrolyte determining device
DE68905698T2 (en) FLOW INJECTION ANALYSIS.
EP0710328B1 (en) Continuous conveying process and device for shear-sensitive fluids
EP3479855B1 (en) Device for extracorporeal blood treatment with gravimetric balancing and ultrafiltration
EP0793566B1 (en) Device for the metered feed of the individual components of fluid multi-component plastics to a mixing head
EP0997643B1 (en) Diaphragm metering pump
EP1611355B1 (en) Diaphragm pump
EP0835428B1 (en) Process and device for the wear- and leakage-monitored volumetric dosing of a free-flowing component
DE2401643C2 (en) Process for proportional metering in sludge pumps that work on filter presses
DE2931017A1 (en) PRESSURE AMPLIFIER SYSTEM, ESPECIALLY FOR LIQUID FEEDING IN LIQUID CHROMATOGRAPHS
DE102016213847A1 (en) Filling device with improved peristaltic pump
DE1911919A1 (en) Dosing pump
DE19546299B4 (en) Double piston pump
DE3536624A1 (en) Method and device for controlling the discharge of solid material or thick matter from a separator
DE112004002344T5 (en) The catalyst supply
EP1637735A1 (en) Method and apparatus to deliver fixed quantities of a high pressure fluid
EP0628390A1 (en) Proportioning and conveyer pump and employment of such a pump for making moulded resin bodies

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994924738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08581589

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994924738

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994924738

Country of ref document: EP