WO1994004710A1 - Method and apparatus for producing sintered ore - Google Patents

Method and apparatus for producing sintered ore Download PDF

Info

Publication number
WO1994004710A1
WO1994004710A1 PCT/JP1993/001164 JP9301164W WO9404710A1 WO 1994004710 A1 WO1994004710 A1 WO 1994004710A1 JP 9301164 W JP9301164 W JP 9301164W WO 9404710 A1 WO9404710 A1 WO 9404710A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
magnetic levitation
sinter
cake
layer
Prior art date
Application number
PCT/JP1993/001164
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Inazumi
Masami Fujimoto
Yoshio Okuno
Shuichi Sato
Masaaki Nakayama
Yuichi Terada
Kenro Nozaki
Shinichi Matsunaga
Tsutomu NAKAYASU
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24253892A external-priority patent/JP2627125B2/en
Priority claimed from JP11922093A external-priority patent/JPH06306496A/en
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP94908106A priority Critical patent/EP0608436A4/en
Priority to BR9305616A priority patent/BR9305616A/en
Priority to AU47619/93A priority patent/AU668756B2/en
Publication of WO1994004710A1 publication Critical patent/WO1994004710A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0039Means for moving, conveying, transporting the charge in the furnace or in the charging facilities comprising magnetic means

Definitions

  • the present invention relates to a method and an apparatus for producing iron ore sintered ore and non-ferrous metal sintered ore by an air suction type sintering machine such as a D L (Dwight-Lloyd) type or a GW (Greenawalt) type.
  • an air suction type sintering machine such as a D L (Dwight-Lloyd) type or a GW (Greenawalt) type.
  • the sintering of the coke fines is continued by the air sucked downward, thereby increasing the height above the pallet.
  • the sintering reaction proceeds in such a manner that the combustion zone having a thickness of several mm to several tens of mm moves downward in the direction of the length.
  • the heat of oxidation of the sulfur component in the ore is used without using coke breeze, or it is operated by pressing air, but it passes through the sintering bed. There is no change in the basics of the process of oxidizing sulfur as fuel contained in the generated air and generating heat, and sintering with the heat.
  • the lower the lower layer the larger the amount of melt that becomes a factor for closing pores. Soshi Since the upper layer of the thin cake serves as a push lid to apply a load to the lower layer, the force of crushing the pores acts in the presence of the melt, and the lower the layer, the stronger the tendency to close the pores.
  • Nonuniform firing reduces the yield.
  • poor cooling deteriorates the low-temperature reduction pulverizability, and also reduces the porosity to reduce the reducibility.
  • the actual surface of the sintered layer has irregularities on the surface of the thin cake at the position where the magnetic levitation force is to be applied due to disturbances in the charging of the raw materials and ignition mura, etc. It has been clarified that the difference in the magnetic levitation force that occurs because the gap with the device differs depending on the location, and therefore the effect varies somewhat depending on the location.
  • the magnetic levitation devices are dispersed and fixed in the direction of the sintering strand, and the sintering raw material conditions and the sintering conditions change, resulting in poor ventilation in the sintered layer.
  • the zone or the degree of poor ventilation changes, the positions of the magnetic levitation devices cannot be shifted or the distance between the magnetic levitation devices cannot be easily changed, which poses a problem in effective application of the magnetic levitation force. is there. Disclosure of the invention
  • the present invention solves the problem that such a magnetic levitation force acts unevenly in the sintered layer or partially floats away, thereby hindering the stable development of the magnetic levitation effect.
  • An object of the present invention is to provide a method and an apparatus for producing sintered ore, which can enhance the permeability of a layer and can significantly improve the productivity of sintered ore production.
  • the surface of the raw material layer is ignited, and the sintering is started in the upper part of the raw material layer, and then the firing is finished
  • Power It is characterized by having a distribution and sintering.
  • the distribution of the magnetic levitation force in the width direction by the magnetic levitation means can be adjusted.
  • the magnetic levitation means is formed by, for example, a magnetic coil divided in the width direction.
  • the current value of each of the magnetic coils can be individually changed to adjust the firing in the width direction to be uniform.
  • the distribution of the magnetic levitation force is controlled by adjusting the current value of the magnetic coil divided in the width direction so that firing in the width direction is constant.
  • the distribution of the magnetic levitation force may be controlled so that the temperature distribution in the width direction of the exhaust gas under the pallet and / or the descending state of the red tropics in the width direction in the mining part are constant.
  • a raw material packed bed is ignited and sintering is started, and In the section from the point at which the sinter cake is generated on the surface layer after the sintering to the mining section at the rear of the strand, the sinter cake is disposed in direct contact with the surface layer of the sinter cake, and Using a plurality of intermittently connected magnetic levitation means that move in synchronism with the strand in the direction of the axis, the thin cake on the strand is magnetized, and the levitation force is continuously applied to the sinter cake. And sintering.
  • the surface layer of the sintered sinter cake is compared with the method of applying a levitation force by magnetic levitation means disposed on the sintering bed in a non-contact state.
  • the magnetic levitation means directly contacts the sinter cake and magnetically adheres to the sinter cake, there is no difference in the gap between the surface and the location.
  • Magnetically levitating elements, and a mechanism for movably supporting the magnetically levitating elements, and these magnetically levitating elements complete the firing of the surface layer of the material-filled layer, and the The section from the start of the sinter cake production to the mining section behind the strand is in direct contact with the surface of the sinter cake, and magnetizes the sinter cake on the sinter cake. It is characterized in that it moves while applying a levitation force to the wing continuously.
  • a mechanism for movably supporting a plurality of intermittently connected magnetic levitation elements a seamless chain-like structure for supporting a plurality of intermittently connected magnets on an outer surface is provided.
  • a rotating band of the dress and a mechanism for rotatably supporting the rotating band are provided.
  • the raw material layer is ignited, and the sintering is started in the upper layer of the raw material.
  • a magnetic field is applied to the upper sinter cake that has completed the sintering, and sintering proceeds with the magnetic levitation force applied. It is characterized by controlling the magnetic levitation force to act on the poorly ventilated area.
  • the CT image analysis of the cross section of the sinter cake in the height direction identifies the poorly ventilated area, Levitation force can be applied.
  • a load control by a stand can be combined in place of the magnetic levitation force in order to partially adjust the ventilation in the lower layer.
  • One or more magnetic levitation devices for operating the sintering machine are provided, and the one or more magnetic levitation devices can be moved in the longitudinal direction of the sintering machine.
  • a bogie on which the magnetic levitation device is mounted and which can be moved to any position in the longitudinal direction of the sintering machine, and a dedicated rail for running the bogie are provided.
  • a stand can be provided in the lower portion of the sintered layer instead of the magnetic levitation device that applies a magnetic levitation force to the lower portion.
  • the sintering raw material conditions and the sintering conditions fluctuate considerably, and the The magnetic levitation device is moved so that the magnetic levitation force can be applied to such a ventilation network zone, although the degree of the poor ventilation zone and the degree of poor ventilation may change.
  • To determine whether the firing in the length direction of the sintering machine is uneven take a sample in the height direction of the sinter cake and use the ventilation net data obtained from the CT image of the cross section. be able to.
  • the zone of poor ventilation in the height direction of the sintering layer and its degree are detected, and the range of the sintering machine corresponding to that zone in the longitudinal direction and the required magnetic levitation pitch Then, one or more magnetic levitation devices are moved to the target position, and control is performed so that the magnetic levitation force is applied at that position.
  • the magnetic levitation device for applying the magnetic levitation force can be omitted, and the size of the magnetic levitation device can be reduced and power consumption can be reduced.
  • FIG. 1 is a conceptual diagram illustrating a sintering operation in which a non-contact type magnetic levitation device is provided in a DL sintering machine.
  • FIG. 2 is a perspective view conceptually showing the structure of a magnetic levitation device divided into two parts in the width direction.
  • FIG. 3 is a conceptual diagram illustrating a sintering operation with a contact-type magnetic levitation device consisting of a rotating band that supports a plurality of magnets intermittently connected to a DL-type sintering machine.
  • FIG. 4 is an enlarged perspective view showing a detailed structure of an example of the magnetic levitation device in FIG.
  • FIG. 5 is a perspective view showing a detailed structure of an example of a rotating band that supports a plurality of intermittently connected magnets.
  • FIG. 6 is a perspective view showing a detailed structure of another example of a rotating belt that supports a plurality of intermittently connected magnets.
  • Fig. 7 shows an example of a DL type sintering machine equipped with a non-contact type magnetic levitation device whose position can be adjusted in the longitudinal direction and operating with a magnetic load control for air permeability adjustment. It is a conceptual diagram.
  • FIG. 8 is a perspective view showing a configuration of an example of a magnetic levitation device whose position can be adjusted.
  • FIG. 9 is a front view of the lower portion of the magnetic levitation device of FIG.
  • FIG. 10 is a side view of the lower portion of the magnetic levitation device of FIG.
  • FIG. 11 is a characteristic diagram illustrating various load control conditions.
  • Fig. 12 shows the sintering results under various load control conditions in Fig. 11.
  • FIG. 13 is an explanatory diagram for explaining a combined mode of a compound magnetic levitation device combining load control by a stand.
  • FIG. 14 is a characteristic diagram for explaining the sintering effect of the sintering method using the stand composite magnetic levitation apparatus.
  • FIG. 1 is a conceptual diagram illustrating a sintering operation in which a non-contact type magnetic levitation device is provided in a DL sintering machine.
  • the sintering raw material stored in the sintering loss surge hopper 1 is charged into a sintering machine 2 via a raw material charging device 3 and then ignited in an ignition furnace 4, and sequentially from the surface layer to the lower layer.
  • an ignition furnace 4 Sintered for After passing through the ignition furnace 4, sintering is completed and solidified from the upper layer of the sintering layer as the strand progresses.
  • the sinter cake is produced by cooling.
  • the sintering reaction zone 5 where the sintering reaction is taking place is indicated by the dashed line in the figure.
  • the upper part of the sintering reaction zone 5 has completed the sintering reaction.
  • the sinter cake 5-1 is placed on a pallet 2-1, 2-1, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ of the sintering machine 2, and a magnetic levitation device placed on a stand 6 provided independently of the sintering machine 2 By levitating by 7, the load applied to the combustion melting zone 5 and the lower raw material layer 5-2 is reduced.
  • the magnetic levitation device 7 has a plurality of magnetic levitation devices 7 in the direction of the strand, here, five, and an array of magnetic levitation devices 7, 7 2 , 7 3 7 4 7 5, and each magnetic levitation device 7, 1-7 5 widthwise two or more
  • the magnetic levitation elements 7-1 and 7-2 are divided and installed, each of which is not shown in detail (see Fig. 8 if necessary), but is configured as a magnetic coil type. I have.
  • the value of the current flowing through each magnetic coil of these magnetic levitation elements can be adjusted independently, and the magnetic levitation force of each magnetic levitation device and each magnetic levitation element can be adjusted. Thereby, the magnetic levitation force with respect to the sinter cake can be changed as the pallet travels, and the magnetic levitation force can be distributed in the width direction.
  • each magnetic levitation device 7, 7 to 7 5 also has two or more magnetic levitation elements 7—1 and 7—1 ′ in the strand direction. It is divided into 7-2 and 7-2 ', and the current value can be adjusted independently to make it possible to adjust the distribution of magnetic levitation force in the strand direction on a pallet basis. .
  • the magnetic levitation force with respect to the sinter cake in units of ', ⁇ can be distributed in the width direction and the Z or strand direction.
  • the magnetic levitation device 7, for 1-7 5 the larger the division number of the magnetic levitation element in the width direction and the Z Oh Ruiwasu Trang de direction, control of the magnetic levitation force in the width direction and Z or scan Trang de direction
  • the number of divisions is economically limited in relation to equipment costs.
  • the magnitude and distribution of the magnetic levitation force are controlled according to the sintering raw material conditions and the sintering conditions, and it is necessary to detect various state parameters.
  • the airflow distribution in the width direction can be measured by installing an anemometer on the sintering bed. It can also be measured with an attached flow meter.
  • the firing loss can be measured by a normal level meter such as an ultrasonic level meter.
  • the distribution of the exhaust gas temperature in the width direction can be measured by a plurality of thermocouples (not shown) provided in the width direction on a wind box directly below the bullet 2-1.
  • the state of the red tropic descent of the mining section 8 can be observed with the naked eye, but it can also be configured to accurately grasp the state with an infrared camera (not shown).
  • Fig. 3 is a conceptual diagram illustrating a sintering operation in which a DL-type sintering machine is equipped with a contact-type magnetic levitation device consisting of a rotating band that supports a plurality of intermittently connected magnets.
  • FIG. 3 the sintering raw material stored in the sintering hopper 1 is charged into a sintering machine 2 via a raw material charging device 3 and then ignited in an ignition furnace 4, and sequentially from the surface layer to the lower layer.
  • sintering is completed sequentially from the upper layer of the sintering layer as the strand proceeds, and after consolidation, it is cooled to produce a sinter cake.
  • the combustion melting zone 5 where the sintering reaction is taking place is indicated by a dashed-dotted line, and above the combustion melting zone 5 is the sinter cake portion 5-1 where the sintering reaction is completed.
  • the lower part is part 5-2, which is still in the raw material state.
  • FIG. 4 is an enlarged perspective view showing a detailed structure of a portion where an example of a magnetic levitation device 17 composed of a rotating band that supports a plurality of intermittently connected magnets is mounted.
  • these rotating bands 1 7 — 1, 1 7-2 Are linked to each other via sprockets 1 0-1, 1 0-1 and 1 0-2, 1 0-2, which are linked together. It is configured to receive.
  • 11, 11, 11, 11, ⁇ ⁇ ⁇ are pallet wheels for moving pallets 2-1, 2-1, ⁇ ⁇ ⁇ .
  • the magnets 18, 18, 18, mounted on the rotating bands 17-1, 17-2 When the magnetic levitation device 17 is activated, the magnets 18, 18, 18, mounted on the rotating bands 17-1, 17-2 generate the sinter generated in the opposite pallet.
  • the surface layer of the cake is magnetically attached, and is attracted to the corresponding sinter cake by magnetic attraction.
  • the magnets in the attracted state move-so that the rotating bands 17-1 and 17-2 rotate synchronously by the above-mentioned caster pillar mechanism. Will be done.
  • the magnetic levitation device 17 in the present embodiment can directly contact the sinter cake to exert a magnetic lifting force, so that the magnetic levitation device is installed with a gap on the sinter cake. Compared to the case, the magnetic levitation does not become unstable, and the effect of improving the productivity, yield, and quality of the sinter by the magnetic levitation is stably exhibited.
  • the size of the magnet 18, for example, a permanent magnet can be reduced.
  • the amount of power required to achieve the same levitation force should be reduced. Can be.
  • FIG. 5 is a perspective view showing a detailed structure of an example of the intermittently connected magnet supported by the rotating belt 17 described above.
  • 18 and 18 are identical to the figure.
  • each magnet 18 is composed of a permanent magnet 18-1 magnetized in the width direction, a core member 18-2, 18-2, and a non-magnetic material supporting member 18— Consists of three.
  • the magnetic flux generated from the permanent magnet 18-1 passes through both core members 18-2 and 18-2, and the sinter cake 5-1 located at the lower part of the support members 18-13 (see Fig. 3) To generate the desired magnetic field, it is generated so as to connect the lower ends of both core members 18-2 and 18-2.
  • a magnetic leakage preventing member made of a non-magnetic material is further provided outside the core member 18-2 as necessary. Set up. According to this structure, each magnet can be formed compactly, and equipment costs can be reduced.
  • FIG. 6 is a perspective view showing a detailed structure of another example of a plurality of intermittently connected magnets.
  • the magnet 18-1 ′ is formed by a magnetic coil type magnet in which a plate-shaped core is wound. I have.
  • the magnetic field strength of each magnetic coil type magnet 18-1 ' can be changed independently, and the magnetic levitation force in the pallet width direction and / or the strand direction can be changed according to the position. Therefore, the magnetic levitation effect can be further stabilized.
  • the magnetic levitation device 17 in this embodiment exerts the necessary magnetic levitation force while contacting the surface of the cake during the sintering process.
  • a rotating band lifting / lowering device 9 is mounted on a gantry 6 supporting a rotating band 17 of a magnetic levitation device. Is provided. The height of the gantry 6 can be adjusted by the lifting device 9 to adjust the position of the magnetic levitation device 17 with respect to the sinter cake.
  • the width of each magnet of the plurality of intermittently connected magnets supported on the rotating belt impedes the passage of air sucked downward. It is preferable that the air flow is as narrow as possible, but the ventilation in the actual sintered layer is cross-flow, and free air can be supplied.Therefore, a slit for air supply is provided for each magnet. The shape of the magnet can be freely selected. In a small-sized sintering machine, by providing at least one rotating band equipped with a magnet at the center of the strand width direction, sufficient levitation ability can be exhibited.
  • any of a permanent magnet and a magnetic coil type magnet can be used, and each magnet is usually configured by arranging a plurality of plate-shaped magnets.
  • the magnetic levitation force can be enhanced, and the magnetic levitation force can be controlled.
  • equipment such as arranging electrical contacts for power supply becomes complicated, equipment costs increase, and costs corresponding to power consumption are required.
  • a composite type of a permanent magnet and a magnetic coil type magnet can be used. According to this, power consumption can be reduced as compared with the case of using only a magnetic coil type magnet.
  • magnets are vulnerable to heat, equipment such as water cooling and electronic cooling can be provided as necessary.However, in general, cold air is sucked from the surface of the sintering bed. Because of the environment, cooling equipment is not usually required.
  • the magnet and the surface layer of the sintered layer Since a frictional force is applied to the magnet surface and the magnet surface may be damaged, a coating layer for protecting the surface can be provided as necessary. In this case, the magnetic levitation force decreases with an increase in the thickness of the protective coating layer. Therefore, a material that is as thin and strong as possible must be selected.
  • a material that is abrasion-resistant and has some heat resistance for example, a ceramic material such as silicon carbide or silicon nitride can be used.
  • the loss on firing can be measured by a normal level meter such as an ultrasonic level meter.
  • a normal level meter such as an ultrasonic level meter.
  • the air distribution is measured by installing an anemone all over the sintered bed, but it can also be measured by a flow meter with a plurality of units installed in the width direction directly below the pallet.
  • the magnetic coil of the magnetic levitation device is divided into five equal parts in the width direction (modification of Fig. 2).
  • the current value can be changed independently, and the magnetic coil is designed so that the ventilation is as flat as possible in the width direction. Adjusted the current value of In other words, the current values of the magnetic coils of both sides were 10% of the value of the 82% yield, and the current values of the magnetic coil of the 80% yield were reduced by 10%. However, the overall yield was improved to 82.5%, and the difference between the left and right inside was almost eliminated to 83%. At this time, the production rate hardly changed.
  • the current value can be changed independently, and the current of the magnetic coil at 350 ° C is increased. gradually exhaust gas temperature rises reached the 3 8 0 e C, yield was improved to 8 5%.
  • Example 1 a magnetic levitation device consisting of a rotating band (FIGS. 3 and 4) supporting a plurality of intermittent and chain-connected magnets was used in place of the non-contact type magnetic levitation device. was performed operations by the same operating conditions, the magnetic levitation effect is stabilized, production rates are 3 3. 6 t / d / m 2, the product yield was improved to 8 2.0%.
  • Example 2 instead of a non-contact type magnetic levitation device, an intermittent and Three rotating bands (see Fig. 4) supporting a plurality of magnets connected in a chain are used at the center of the pallet and magnetic levitation devices placed on both sides of the pallet. The operation was performed under the same operating conditions. .
  • the magnetic levitation force is changed by shifting the position of the magnetic levitation devices or changing the distance between the magnetic levitation devices. It is difficult to arbitrarily change the position where the force acts.
  • the sinter production method and production apparatus described below improve this point.
  • FIG. 7 shows the operation of a DL type sintering machine equipped with a non-contact type magnetic levitation device capable of adjusting the position in the longitudinal direction and controlling the magnetic load for air permeability control according to the present invention.
  • It is a conceptual diagram which illustrates two states (a, b, c).
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and here, five magnetic levitation devices 7, 7 2 , 7 2 7 3 , 7 4 and 7 5 show an embodiment in which they are provided at appropriate intervals and are movable independently of each other.
  • FIG. 7 (a) shows a normal operation state
  • the magnetic levitation device is arranged and operated so that the magnetic levitation force acts mainly on the zone from the middle layer up to the upper part of the lower layer of the consolidation layer, and Fig. 7 (c) shows the lower part.
  • the figure shows the state of operation with magnetic levitation force with emphasis on.
  • the magnetic levitation device 7 is movably mounted, a perspective view showing an example of the configuration of a 1-7 5, 9 is a front view of the device under ⁇ , 1 0 is a side of the apparatus bottom FIG.
  • the open side is a magnetic coil type having a magnetic coil 27 wound on the center leg of an E-shaped core with a cross section facing the sintered bed in pallet 2-1. It is supported by the device 20 and suspended from the bridge of the carriage 21.
  • Magnetic levitation elements 7-1, 7-2 and 7-1 ', 7-2' which are divided into two in the width direction and the traveling direction, that is, the strand direction, respectively.
  • the configuration is such that the distribution of magnetic levitation force in the width direction and the strand direction can be given.
  • Wheels 25 and their drive motors 22 are provided at the lower part of the bogie 21.
  • Each magnetic levitation device 1! Is on a rail 23 independent of the sintering machine.
  • ⁇ 76 are independently movably mounted.
  • 1 2 is a dedicated rail of the pallet 2-1
  • the drive motor 2 2 is arranged at a position higher than the wheels of the pallet 2-1, and is connected to the bogie wheel 24 by a chain 25.
  • drive motors and wheels of the same specifications are provided on the opposite side of the bullet 2-1. Control such as starting and stopping is performed by the same electric signal, and smooth running is performed. Is possible.
  • the sintering raw material conditions and sintering conditions may fluctuate considerably, and the poor ventilation zone and the degree of poor ventilation in the sintered layer may change.
  • the magnetic levitation device is moved so that the air can be focused. Whether or not the firing in the longitudinal direction of the sintering machine is uneven is determined by installing an anemometer on the sintering bed as usual, or by palletizing.
  • a plurality of flow meters, thermocouples and exhaust gas analyzers can be attached in the longitudinal direction of the
  • a columnar sample in the height direction of Shin Yuichi cake was collected. Then, CT tomography is performed on the columnar sample, and based on the obtained CT images, the zones of poor ventilation in the sintered layer and the degree of poor ventilation are analyzed.
  • the data of the poor ventilation zone and the degree of poor ventilation obtained in this way are processed by a control device such as a computer (not shown). If the poor ventilation is concentrated in the middle and / or lower layers of the sintered layer, the air permeability is impeded by the load of the sinter cake on the middle and / or lower layer of the sintered layer and the raw material layer. becomes possible and, moving as a countermeasure, as shown in FIG.
  • magnetic levitation device 7 (b) the magnetic levitation device 7, a 7-5 in a region close to the front half portion or the ignition furnace 4 growth of sinter cake layer It is, and analyzed venting defective data each magnetic levitation device in accordance with 7, to adjust the magnetic field strength and their mutual spacing to 7 5, in addition, magnetic levitation element 7 in each magnetic levitation device - 1 , 7-2, 7-1 ′, and 7-2 ′ are adjusted to form a suitable magnetic levitation force distribution, and are controlled so that good air permeability is given to the middle layer and the lower layer.
  • each magnetic levitation device 7, ⁇ Move intensively to the area close to the part 8. And according to the analyzed air leakage data, each of the magnetic levitation devices 7, to 7 5 and its magnetic levitation elements 7 — 1, 7 — 2, 7 — 1 ', By controlling the magnetic field strength of 7-2 ′, a suitable magnetic levitation force distribution is formed intensively in the lower layer of the sintered layer, and is controlled so that good air permeability is given.
  • FIG. 11 illustrates various load control conditions, and is a characteristic diagram showing the relationship between the depth D of the sintering bed and the load L of the combustion melting zone in a pattern.
  • the illustrated example is a case of a sintered layer having a thickness of 600 mm.
  • Fig. 11 (a) shows the relationship pattern in the state where no magnetic levitation force is applied.In the combustion melting zone, only the load due to air suction is applied to the uppermost layer, and it depends on the depth of the sintering bed. This indicates that the load from the thin cake that grows with the load from air suction is proportionally received.
  • Fig. 11 (d) is a magnetic levitation equipment 7, by adjusting the placement and or their magnetic field strength of ⁇ 7 5, the load combustion melting zone is subjected
  • Fig. 11 (b) shows an example of a change to three patterns.
  • Fig. 11 (c) shows magnetic levitation only in the middle layer, that is, when magnetic levitation is applied to the sinter cake that has grown to the middle layer, and the load in the middle layer is reduced to zero.
  • (d) illustrates the magnetic levitation of the lower layer only, that is, the load control condition when the magnetic levitation is applied to the sinter cake grown to the lower layer and the load on the lower layer is zero.
  • Fig. 12 is a table showing the results of sintering under the various load control conditions in Fig. 11, where a to d correspond to the load control condition patterns (a) to (d) in Fig. 11, respectively. ing.
  • the FFS Flume Front Speed is the descent speed of the Kotus combustion front.
  • the sinter cake load and the air suction load on the middle and lower combustion melting zones and the raw material layer during the sintering were reduced by the magnetic levitation force.
  • the sintering speed (FFS) increases and the sintering time is shortened, but there is no decrease in yield or loss of sintering.
  • a special sintering effect that sintering can be eliminated is achieved.
  • the load control conditions as shown in FIG. 11 are set only by the magnetic levitation device.
  • the load control by the load can be combined.
  • the stand is composed of a plurality of plate-like support members 28, 28, erected on the bottom surface of the bullet 2-1 as shown by dotted lines in FIG. 8, for example. If the sinter cake load, especially in the lower part of the sintered layer, is supported instead of the magnetic levitation force, the magnetic levitation range shared by the magnetic levitation device to set the load control conditions described above is minimized. Therefore, it is possible to reduce the size and power consumption of the magnetic levitation device.
  • Fig. 13 shows the composite form of the magnetic levitation device combined with the stand.
  • FIG. 7 is a diagram for explaining the load control of the sintered layer with a layer height of 600 mm in the air suction type sintering method at a negative pressure of 100 O mmaq by magnetic levitation and a stand. States with different ranges of sharing And with aspects not provided even with both (base) is shown.
  • the stands of 15 O mm, 25 O mm and 35 O mm in height are combined with the magnetic levitation device, and the magnetic levitation range is
  • the upper layer has a range of up to 40 Omm.
  • the load control condition is Base: no magnetic levitation
  • FIGS. 14 (a) to 14 (d) show the sintering effect of the sintering method using the composite magnetic levitation apparatus of the above three embodiments together with the sintering method of the base without load control.
  • Fig. 14 (a) is the production rate
  • Fig. 14 (b) is the yield
  • Fig. 14 (c) is the FFS
  • Fig. 14 is a characteristic diagram for comparison and explanation.
  • 14 (d) shows the sintering effect of burnout. According to this method, a sufficient sintering effect is exhibited as compared to a base without load control, and even if a stand is partially used instead of magnetic levitation, the air permeability adjustment effect by load control is sufficient. It shows that it can be used for In particular, the load control of the lower layer can be achieved by the stand without losing the sintering effect of magnetic levitation, which is extremely practical.
  • the relative magnetic permeability varies depending on the sintering raw material conditions and sintering conditions, in order to secure stable and strong magnetic properties, for example, iron powder, scrap small pieces, poor reduced iron powder, Steel or the like can be attached or mixed. These are introduced onto the sintering raw material layer before ignition by, for example, dropping.
  • the unevenness of the sintered state in the width direction of the sintered ore is corrected, the yield is improved, the quality is stabilized, and the like.
  • a further improvement in the magnetic levitation effect is achieved, especially in the production of air-sintered sinters, the distribution of the pressure gradient based on the suction blower pressure or the load distribution of the Shin-Yuichi cake is calculated.
  • the downward force applied to the sintering combustion and melting zone is adjusted by a rotating zone equipped with a connected magnet, and sintering is performed under the condition that a levitation force is applied to the sinter cake, so that the sinter cake magnetic
  • the levitation effect is always exhibited stably, which makes it possible to improve productivity, improve the yield, and further stabilize the quality in the sinter production process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

In production of sintered ore using an air suction type sintering process, a method and an apparatus for producing sintered ore by allowing sintering to progress under a state in which a magnetic levitation force is applied characterized in that the surface of a raw material layer is ignited, that after sintering has started at the upper layer portion of the raw material layer, a magnetic field is applied to the raw material by means of a magnetic levitation device that is not in contact with a sintered cake in which burning is completed so that a magnetic levitation force is applied thereto, and that while the magnetic levitation force is being applied, a magnetic levitation force acting in a widthwise direction which is normal to a sintered strand is distributed so that uniform sintering is achieved through uniform ventilation distribution. The method and apparatus are further characterized in that uniform sintering is achieved through continuous application of magnetic levitation force by means of a magnetic levitation device which can be moved while in contact with the sintered cake. The method and apparatus are still further characterized in that uniform sintering is achieved by applying magnetic levitation force mainly to portions of the sintered layer where ventilation is poor by means of a plurality of non-contact and movable magnetic levitation devices.

Description

明 細 書 焼結鉱の製造方法および製造装置 技術分野  Description Sinter production method and production equipment Technical field
本発明は、 D L (Dwi ght-Ll oyd)式あるいは G W (Greenawal t)式な どの空気吸引式焼結機による鉄鉱石焼結鉱、 非鉄金属焼結鉱の製造 方法および製造装置に関する。 背景技術  The present invention relates to a method and an apparatus for producing iron ore sintered ore and non-ferrous metal sintered ore by an air suction type sintering machine such as a D L (Dwight-Lloyd) type or a GW (Greenawalt) type. Background art
例えば D L式鉄鉱石焼結法においては、 原料中に含まれる粉コー クスに表層で着火した後、 引き続き下方に吸引される空気によって 粉コークスの焼結を継続させることにより、 パレツ ト上の高さ方向 を数 m m乃至数十 m mの厚みの燃焼帯が下方へ移動していく形で焼 結反応が進行する。 非鉄金属焼結法の場合には、 粉コークスは使わ ずに鉱石中の硫黄成分の酸化熱が利用されたり、 また、 空気を押圧 することにより操業されたりするが、 焼結べッ ド内を通過する空気 で内蔵された燃料としての硫黄が酸化されて発熱し、 その熱で焼結 するというプロセスの基本において変わりはない。  For example, in the DL iron ore sintering method, after igniting the coke fines contained in the raw material on the surface layer, the sintering of the coke fines is continued by the air sucked downward, thereby increasing the height above the pallet. The sintering reaction proceeds in such a manner that the combustion zone having a thickness of several mm to several tens of mm moves downward in the direction of the length. In the case of the nonferrous metal sintering method, the heat of oxidation of the sulfur component in the ore is used without using coke breeze, or it is operated by pressing air, but it passes through the sintering bed. There is no change in the basics of the process of oxidizing sulfur as fuel contained in the generated air and generating heat, and sintering with the heat.
このような自己燃焼型の焼結においては、 必要最小限の通気孔を 確保することが必要である。 しかしながら、 空気が下方に吸引また は押圧され、 燃焼帯が下方に移動するプロセスにおいては、 焼結層 の下層において上層の焼結完了帯において予熱された空気により焼 結されるために上層が熱不足となり、 下層になるほど熱過剰となつ て焼結される傾向にある。  In such self-combustion type sintering, it is necessary to secure the minimum necessary air holes. However, in the process in which air is sucked or pressed downward and the combustion zone moves downward, the upper layer is heated by the air preheated in the upper sintering completed zone in the lower layer of the sintering layer. Insufficient heat tends to be sintered in the lower layer due to excessive heat.
このような焼結層の高さ方向に存在する熱傾斜に応じて、 下層に なるほど気孔を閉塞させる要素となる融液生成量が増加する。 そし て、 上層のシン夕一ケーキが押し蓋となって下層に荷重がかかるた めに、 融液存在下において気孔を押しつぶす力が作用し、 下層にな るほど気孔を閉塞させる傾向が強くなる。 In accordance with such a thermal gradient existing in the height direction of the sintered layer, the lower the lower layer, the larger the amount of melt that becomes a factor for closing pores. Soshi Since the upper layer of the thin cake serves as a push lid to apply a load to the lower layer, the force of crushing the pores acts in the presence of the melt, and the lower the layer, the stronger the tendency to close the pores.
そのため、 一般には、 下層になるほど高密度化し、 コ一クスが安 定して燃焼するのに必要な通気条件の確保が困難となる。 これによ り、 コ一クスの燃焼速度が低下して焼結速度が低下し、 したがって. 焼結鉱製造における生産性を低下させている。 加えて、 焼けムラ Therefore, in general, the lower the layer, the higher the density, and it becomes difficult to secure the ventilation conditions necessary for stable combustion of the coke. As a result, the burning rate of the coke is reduced and the sintering rate is reduced, thus reducing the productivity of sinter production. In addition, burn unevenness
(不均一焼成) が生じて歩留りを低下させ、 一方、 冷却不足により 低温還元粉化性も悪化するとともに、 気孔率が減少して被還元性も 低下させている。 (Nonuniform firing) reduces the yield. On the other hand, poor cooling deteriorates the low-temperature reduction pulverizability, and also reduces the porosity to reduce the reducibility.
上述した下方吸引式焼結プロセスの本質的な問題に対する焼結改 善策として、 先に発明者らは、 特開平 4一 1 2 4 2 2 5号公報、 特 願平 3 — 1 2 4 5 3 2号の発明等において、 焼成が完了した上層シ ンターケーキに磁場を印加して磁気浮揚力を作用させ、 下層にかか る荷重を軽減した伏態下で焼結を進行させる焼結法を提案し、 改善 効果をあげている。 これらはいずれも、 磁気浮揚装置が焼結べッ ド 上にあって、 非接触によりシン夕一ケーキに浮揚力を作用させるよ うにしている。  As measures to improve the sintering for the essential problem of the downward suction sintering process described above, the inventors have previously described Japanese Patent Application Laid-Open No. HEI 4-124,225 and Japanese Patent Application No. HEI-3-1245 In the invention of No. 2, etc., a sintering method in which a magnetic field is applied to the sintered upper layer cake to apply a magnetic levitation force to progress sintering in a lower state in which the load on the lower layer is reduced. Proposed and improved. In each of these, the magnetic levitation device is on the sintering bed, and the levitation force is applied to the thin cake in a non-contact manner.
しかしながら、 実際の焼結層表面には、 原料装入の乱れ、 着火ム ラ等により、 磁気浮揚力をかけよう とする位置のシン夕一ケーキ表 面に凹凸があり、 表面が平らな磁気浮揚装置とのギヤ ップが場所に よって異なるために、 作用する磁気浮揚力に差が生じ、 したがって 場所によって効果に多少のばらつきが発生することが明らかになつ た。  However, the actual surface of the sintered layer has irregularities on the surface of the thin cake at the position where the magnetic levitation force is to be applied due to disturbances in the charging of the raw materials and ignition mura, etc. It has been clarified that the difference in the magnetic levitation force that occurs because the gap with the device differs depending on the location, and therefore the effect varies somewhat depending on the location.
また、 シン夕一ケーキの強度が弱いところにおいては剝離浮上す る場合もあり、 その剝離した部分の割れ目を通して局所的に過剰な 空気が流れることにより、 また、 特に焼結機のパレッ トのサイ ド ウォール近辺においては、 原料充塡時の壁効果などから過剰通気状 態となることにより、 以後の焼結が不均一となる等の問題が発生し、 安定した磁気浮揚効果の発揮が阻害されることが判明した。 In addition, when the strength of the thin cake is weak, it may float away, and excessive air flows locally through the cracks in the separated part, and in particular, the size of the sintering machine pallet. Do In the vicinity of the wall, excessive ventilation due to the wall effect at the time of material filling causes problems such as non-uniform sintering, which hinders stable magnetic levitation. It has been found.
更に、 上記した焼結法においては、 磁気浮揚装置を焼結ス トラ ン ド方向に分散して固定配置しており、 焼結原料条件や焼成条件が変 動して焼結層内の通気不良ゾーンや通気不良程度が変化した場合に、 磁気浮揚装置群の位置をずらしたり、 磁気浮揚装置相互間の間隔を 容易に変えることができず、 効果的に磁気浮揚力を作用させる点で 問題がある。 発明の開示  Furthermore, in the sintering method described above, the magnetic levitation devices are dispersed and fixed in the direction of the sintering strand, and the sintering raw material conditions and the sintering conditions change, resulting in poor ventilation in the sintered layer. When the zone or the degree of poor ventilation changes, the positions of the magnetic levitation devices cannot be shifted or the distance between the magnetic levitation devices cannot be easily changed, which poses a problem in effective application of the magnetic levitation force. is there. Disclosure of the invention
本発明は、 このような磁気浮揚力が焼結層内に不均一に作用した り、 部分的に剝離浮上する等により、 磁気浮揚効果が安定して発現 することが阻害されるという問題を解決し、 磁気浮揚効果を常に安 定して発揮させ、 焼結鉱の生産性、 歩留り、 品質の一層の向上を図 ることのできる焼結鉱の製造方法および製造装置を提供することを 目的とする。  The present invention solves the problem that such a magnetic levitation force acts unevenly in the sintered layer or partially floats away, thereby hindering the stable development of the magnetic levitation effect. In addition, it is an object of the present invention to provide a method and an apparatus for producing sinter which can always exhibit a magnetic levitation effect stably and further improve the productivity, yield and quality of sinter. I do.
また、 本発明は、 焼結原料条件や焼成条件が変動して焼結層内の 通気不良ゾーンや通気不良程度が変化した場合においても、 磁気浮 楊効果を安定して発揮させて、 焼結層の通気性を高め、 焼結鉱製造 の生産性を格段に向上させることのできる焼結鉱の製造方法および 製造装置を提供することを目的とする。  In addition, the present invention can stably exhibit the magnetic floating effect even when the sintering raw material conditions and the sintering conditions fluctuate to change the poor ventilation zone and the degree of poor ventilation in the sintered layer. An object of the present invention is to provide a method and an apparatus for producing sintered ore, which can enhance the permeability of a layer and can significantly improve the productivity of sintered ore production.
本発明による焼結鉱の製造方法は、 空気吸引式焼結法により焼結 鉱を製造する際、 原料層表面に着火し、 原料層の上層部において焼 結が始まった後、 焼成の終わったシン夕一ケーキに磁場を印加し、 磁気浮揚力を作用させた状態下で焼結を進行させる焼結鉱の製造方 法において、 焼結ス トラ ン ド方向と垂直をなす幅方向の磁気浮揚力 に分布を持たせて焼結することを特徵とする。 In the method for producing a sintered ore according to the present invention, when producing the sintered ore by the air suction sintering method, the surface of the raw material layer is ignited, and the sintering is started in the upper part of the raw material layer, and then the firing is finished A magnetic levitation in the width direction perpendicular to the direction of the sintering strand in a method for producing a sinter that applies sintering while applying a magnetic field to the Shin-Yuichi cake and applying magnetic levitation. Power It is characterized by having a distribution and sintering.
この焼結鉱の製造方法において、 幅方向の焼成が均一になってい るか否かは、 パレッ トを抜き取ってパレッ ト内の幅方向の歩留り分 布を調べて決定するのが一般的である。 しかし、 この調査における 試験負荷は大きいので、 焼結機を運転したままの状態においてシン ターケーキサンプルを採取し、 その構造を評価するようにすること も可能である。 このような判定法により得られた結果に従って、 磁 気浮揚手段による幅方向の磁気浮揚力の分布を調整することができ このため、 磁気浮揚手段を例えば幅方向に分割した磁気コィルに より形成し、 それら磁気コイルの電流値を個々に変化させ、 幅方向 の焼成が均一となるように調整することができる。 日常の操業の際. 原料条件、 操業条件が大き く変わらない状態においては、 幅方向の 風量分布および Zあるいは焼成減量 (焼き減り) が一定となるよう に、 これらの焼結操業因子を見ながら幅方向に分割した磁気コィル の電流値を調整して、 磁気浮揚力の分布を制御し、 幅方向の焼成が 一定になるようにする。 または、 パレツ ト下の排ガスの幅方向の温 度分布および あるいは排鉱部における幅方向の赤熱帯の降下状態 が一定となるように磁気浮揚力の分布を制御してもよい。  In this sinter production method, whether or not firing in the width direction is uniform is generally determined by extracting the pallet and examining the yield distribution in the width direction in the pallet. . However, since the test load in this study is large, it is possible to take a sinter cake sample while operating the sintering machine and evaluate its structure. According to the result obtained by such a determination method, the distribution of the magnetic levitation force in the width direction by the magnetic levitation means can be adjusted.Therefore, the magnetic levitation means is formed by, for example, a magnetic coil divided in the width direction. However, the current value of each of the magnetic coils can be individually changed to adjust the firing in the width direction to be uniform. During daily operation. In the state where the raw material conditions and operating conditions do not change significantly, look at these sintering operation factors so that the air flow distribution in the width direction and Z or firing loss (burnout loss) are constant. The distribution of the magnetic levitation force is controlled by adjusting the current value of the magnetic coil divided in the width direction so that firing in the width direction is constant. Alternatively, the distribution of the magnetic levitation force may be controlled so that the temperature distribution in the width direction of the exhaust gas under the pallet and / or the descending state of the red tropics in the width direction in the mining part are constant.
次に、 本発明による焼結鉱の製造方法は、 空気吸引式焼結法によ り焼結鉱を製造する際に、 原料充塡層に着火して焼結を開始し、 表 層部の焼成が終了して表層部にシンターケーキの生成が開始された 時点からス トラン ド後方の排鉱部までの区間内において、 シン夕一 ケーキ表層に直接接触して配設され、 かつ、 ス トラン ド方向にス ト ラン ドと同期して移動する断続的に連結された複数の磁気浮揚手段 を用いて、 ス トラン ド上のシン夕一ケーキを磁着し、 シンターケー キに連続的に浮揚力を作用させて焼結することを特徴とする。 この焼結鉱の製造方法によれば、 焼結べッ ド上にあって非接触状 態に配設された磁気浮揚手段により浮揚力を作用させるものに対し て、 焼成の終了したシンターケーキの表層に磁気浮揚手段が直接シ ンタ一ケーキに接触して磁着させるので、 表層に対するギャ ップが 場所により差を生じるこ とが無くなる。 Next, in the method for producing a sintered ore according to the present invention, when producing a sintered ore by an air suction type sintering method, a raw material packed bed is ignited and sintering is started, and In the section from the point at which the sinter cake is generated on the surface layer after the sintering to the mining section at the rear of the strand, the sinter cake is disposed in direct contact with the surface layer of the sinter cake, and Using a plurality of intermittently connected magnetic levitation means that move in synchronism with the strand in the direction of the axis, the thin cake on the strand is magnetized, and the levitation force is continuously applied to the sinter cake. And sintering. According to the method for producing a sintered ore, the surface layer of the sintered sinter cake is compared with the method of applying a levitation force by magnetic levitation means disposed on the sintering bed in a non-contact state. In addition, since the magnetic levitation means directly contacts the sinter cake and magnetically adheres to the sinter cake, there is no difference in the gap between the surface and the location.
また、 この焼結鉱の製造方法を実施するための本発明による焼結 鉱の製造装置は、 空気吸引式焼結法により焼結鉱を製造する焼結機 と、 ス トラ ン ド方向に断続的に連結された複数の磁気浮揚要素と、 それらの磁気浮揚要素を移動可能に支持する機構とを備え、 それら の磁気浮揚要素が、 原料充塡層表層部の焼成が終了し、 表層部にシ ンターケーキの生成が開始する位置からス トラン ド後方の排鉱部ま での区間を、 シンターケーキ表層に直接接触し、 かつ、 ス トラン ド 上のシン夕一ケーキを磁着してシンターケーキに連続的に浮揚力を 作用させつつ移動することを特徴とする。  Further, the sinter ore manufacturing apparatus according to the present invention for implementing the sinter ore manufacturing method includes a sintering machine for manufacturing sinter by an air suction sintering method and a sinter machine intermittently in a strand direction. Magnetically levitating elements, and a mechanism for movably supporting the magnetically levitating elements, and these magnetically levitating elements complete the firing of the surface layer of the material-filled layer, and the The section from the start of the sinter cake production to the mining section behind the strand is in direct contact with the surface of the sinter cake, and magnetizes the sinter cake on the sinter cake. It is characterized in that it moves while applying a levitation force to the wing continuously.
更に、 本発明によれば、 断続的に連結された複数の磁気浮揚要素 を移動可能に支持する機構として、 断続的に連結された複数の磁石 を外側面上に支持する継ぎ目なし鎖状すなわちェン ドレスの回転帯 と、 その回転帯を回転可能に支持する機構とが設けられる。  Further, according to the present invention, as a mechanism for movably supporting a plurality of intermittently connected magnetic levitation elements, a seamless chain-like structure for supporting a plurality of intermittently connected magnets on an outer surface is provided. A rotating band of the dress and a mechanism for rotatably supporting the rotating band are provided.
次に、 本発明による焼結鉱の製造方法は、 空気吸引式焼結法によ り焼結鉱を製造する際に、 原料層へ着火し、 原料上層部において焼 結が開始した後、 焼成の完了した上層のシンターケーキに磁場を印 加し、 磁気浮揚力を作用させた状態で焼結を進行させる焼結鉱の製 造方法において、 焼結層の高さ方向の通気情報から得られた通気不 良部位に磁気浮揚力を作用させるように制御することを特徴とする, この場合、 シンターケーキの高さ方向断面の C T画像解析から、 通 気不良部位を特定し、 その部位に磁気浮揚力を作用させるようにす ることができる。 この焼結鉱の製造方法において、 特に下層部における通気調整の ために、 部分的に磁気浮揚力に代えてスタン ドによる荷重制御を組 み合わせることができる。 Next, in the method for producing a sintered ore according to the present invention, when producing the sintered ore by the air suction type sintering method, the raw material layer is ignited, and the sintering is started in the upper layer of the raw material. A magnetic field is applied to the upper sinter cake that has completed the sintering, and sintering proceeds with the magnetic levitation force applied. It is characterized by controlling the magnetic levitation force to act on the poorly ventilated area.In this case, the CT image analysis of the cross section of the sinter cake in the height direction identifies the poorly ventilated area, Levitation force can be applied. In this method for producing a sintered ore, a load control by a stand can be combined in place of the magnetic levitation force in order to partially adjust the ventilation in the lower layer.
この焼結鉱の製造方法を実施するための、 本発明による焼結鉱の 製造装置は、 空気吸引式焼結法により焼結鉱を製造する焼結機と、 焼結層に磁気浮揚力を作用させるための 1基あるいは複数基の磁気 浮揚装置とを備え、 その 1 基あるいは複数基の磁気浮揚装置を焼結 機の長手方向に移動可能とすることを特徵とする。 このために、 磁 気浮揚装置が載置され、 かつ、 焼結機の長手方向の任意の位置に移 動しうる台車と、 その台車を走行させるための専用軌条とが設けら れる。  The sinter ore manufacturing apparatus according to the present invention for implementing the sinter ore manufacturing method includes a sintering machine for manufacturing a sinter by an air suction type sintering method, and a magnetic levitation force applied to a sintered layer. One or more magnetic levitation devices for operating the sintering machine are provided, and the one or more magnetic levitation devices can be moved in the longitudinal direction of the sintering machine. For this purpose, a bogie on which the magnetic levitation device is mounted and which can be moved to any position in the longitudinal direction of the sintering machine, and a dedicated rail for running the bogie are provided.
また、 特に下層部に磁気浮揚力を作用させる磁気浮揚装置に代え て、 焼結層下層部にスタン ドを設けることができる。  In addition, a stand can be provided in the lower portion of the sintered layer instead of the magnetic levitation device that applies a magnetic levitation force to the lower portion.
この焼結鉱の製造方法およびそれを実施するための焼結鉱の製造 装置によれば、 焼結の操業においては焼結原料条件や焼成条件が少 なからず変動し、 焼結層内の通気不良ゾーンや通気不良の程度が変 化する場合があるが、 そのような通気ネッ クゾーンに磁気浮揚力を 重点的に作用させることができるように、 磁気浮揚装置が移動され る。 焼結機の長さ方向の焼成が不均一になっているか否かの判定の ために、 シンターケーキ高さ方向のサンプルを採取して、 その断面 の C T画像から得られる通気網データを利用することができる。  According to the method for producing a sintered ore and the apparatus for producing a sintered ore for carrying out the method, in the sintering operation, the sintering raw material conditions and the sintering conditions fluctuate considerably, and the The magnetic levitation device is moved so that the magnetic levitation force can be applied to such a ventilation network zone, although the degree of the poor ventilation zone and the degree of poor ventilation may change. To determine whether the firing in the length direction of the sintering machine is uneven, take a sample in the height direction of the sinter cake and use the ventilation net data obtained from the CT image of the cross section. be able to.
こう して得た焼成に関する情報から、 焼結層の高さ方向における 通気不良のゾーンとその程度を検知し、 そのゾーンに対応する焼結 機の長さ方向の範囲および必要とする磁気浮揚ピッチを求めて、 1 基あるいは複数基の磁気浮揚装置を目的の位置まで移動させ、 その 位置において磁気浮揚力を作用させるように制御する。  From the sintering information obtained in this way, the zone of poor ventilation in the height direction of the sintering layer and its degree are detected, and the range of the sintering machine corresponding to that zone in the longitudinal direction and the required magnetic levitation pitch Then, one or more magnetic levitation devices are moved to the target position, and control is performed so that the magnetic levitation force is applied at that position.
また、 焼結層下層部にスタン ドを設ける場合は、 焼結層下層部に 磁気浮揚力を作用させる磁気浮揚装置を省略することができ、 磁気 浮揚装置の小型化、 省電力化を図ることができる。 図面の簡単な説明 If a stand is provided in the lower part of the sintered layer, The magnetic levitation device for applying the magnetic levitation force can be omitted, and the size of the magnetic levitation device can be reduced and power consumption can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 D L式焼結機に非接触型の磁気浮揚装置を装備して、 焼 結操業を行っている状態を例示する概念図である。  FIG. 1 is a conceptual diagram illustrating a sintering operation in which a non-contact type magnetic levitation device is provided in a DL sintering machine.
図 2は、 幅方向に二分割した磁気浮揚装置の構造を概念的に示す 斜視図である。  FIG. 2 is a perspective view conceptually showing the structure of a magnetic levitation device divided into two parts in the width direction.
図 3は、 D L式焼結機に断続的に連結された複数の磁石を支持す る回転帯からなる接触型の磁気浮揚装置を装備して、 焼結操業を 行っている状態を例示する概念図である。  Fig. 3 is a conceptual diagram illustrating a sintering operation with a contact-type magnetic levitation device consisting of a rotating band that supports a plurality of magnets intermittently connected to a DL-type sintering machine. FIG.
図 4は、 図 3における磁気浮揚装置部分の一例の詳細な構造を示 す拡大斜視図である。  FIG. 4 is an enlarged perspective view showing a detailed structure of an example of the magnetic levitation device in FIG.
図 5は、 断続的に連結された複数の磁石を支持する回転帯の一例 の詳細な構造を示す斜視図である。  FIG. 5 is a perspective view showing a detailed structure of an example of a rotating band that supports a plurality of intermittently connected magnets.
図 6は、 断続的に連結された複数の磁石を支持する回転帯の他の 例の詳細な構造を示す斜視図である。  FIG. 6 is a perspective view showing a detailed structure of another example of a rotating belt that supports a plurality of intermittently connected magnets.
図 7は、 D L式焼結機に長手方向に位置調整可能な非接触型の磁 気浮揚装置を装備し、 通気性調整のための磁気荷重制御を行って操 業している状態を例示する概念図である。  Fig. 7 shows an example of a DL type sintering machine equipped with a non-contact type magnetic levitation device whose position can be adjusted in the longitudinal direction and operating with a magnetic load control for air permeability adjustment. It is a conceptual diagram.
図 8は、 位置調整可能な磁気浮揚装置の一例の構成を示す斜視図 である。  FIG. 8 is a perspective view showing a configuration of an example of a magnetic levitation device whose position can be adjusted.
図 9 は、 図 8の磁気浮揚装置の装置下部の正面図である。  FIG. 9 is a front view of the lower portion of the magnetic levitation device of FIG.
図 1 0は、 図 8の磁気浮揚装置の装置下部の側面図である。  FIG. 10 is a side view of the lower portion of the magnetic levitation device of FIG.
図 1 1 は、 各種の荷重制御条件を例示する特性図である。  FIG. 11 is a characteristic diagram illustrating various load control conditions.
図 1 2は、 図 1 1 の各種の荷重制御条件における焼結結果を示す Fig. 12 shows the sintering results under various load control conditions in Fig. 11.
¾ ある。 図 1 3は、 スタン ドによる荷重制御を組み合わせたス夕ン ド複合 型の磁気浮揚装置の複合の態様を説明するための説明図である。 あ る There is. FIG. 13 is an explanatory diagram for explaining a combined mode of a compound magnetic levitation device combining load control by a stand.
図 1 4は、 スタン ド複合型磁気浮揚装置を用いた焼結法の焼結効 果を説明するための特性図である。 発明を実施するための最良の形態  FIG. 14 is a characteristic diagram for explaining the sintering effect of the sintering method using the stand composite magnetic levitation apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明による焼結鉱の製造方法を適用することができるも のであり、 かつ、 本発明による焼結鉱の製造装置の実施例について. 図面を参照しつつ、 詳細に説明する。  Hereinafter, an embodiment of an apparatus for producing a sintered ore according to the present invention, to which the method for producing a sintered ore according to the present invention can be applied, will be described in detail with reference to the drawings.
図 1 は、 D L式焼結機に非接触型の磁気浮揚装置を装備して、 焼 結操業を行っている状態を例示する概念図である。 図 1 において、 焼結減量サージホッパー 1 に蓄えられた焼結原料は、 焼結機 2上に 原料装入装置 3を経て装入された後、 点火炉 4において着火され、 順次表層から下層に向けて焼結される。 点火炉 4を通過した後は、 ス トラン ドの進行とともに焼結層の上層から焼結が完了して固結し. 冷却されてシンターケーキが生成される。  FIG. 1 is a conceptual diagram illustrating a sintering operation in which a non-contact type magnetic levitation device is provided in a DL sintering machine. In FIG. 1, the sintering raw material stored in the sintering loss surge hopper 1 is charged into a sintering machine 2 via a raw material charging device 3 and then ignited in an ignition furnace 4, and sequentially from the surface layer to the lower layer. Sintered for After passing through the ignition furnace 4, sintering is completed and solidified from the upper layer of the sintering layer as the strand progresses. The sinter cake is produced by cooling.
焼結反応が行われている燃焼溶融帯 5が図中一点鎖線により示さ れており、 その燃焼溶融帯 5 より上方は焼結反応が完了した、 いわ ゆるシンターケーキ部分 5 — 1、 下方は原料状態にある部分 5 — 2 である。 このシンターケーキ 5 — 1 を焼結機 2のパレッ ト 2 — 1、 2 — 1、 · · · の上方に、 焼結機 2 とは独立して設けられた架台 6 に載せられた磁気浮揚装置 7により浮揚させることによって、 燃焼 溶融帯 5およびそれよりも下方の原料層 5 — 2に加わる荷重を軽減 する。  The sintering reaction zone 5 where the sintering reaction is taking place is indicated by the dashed line in the figure. The upper part of the sintering reaction zone 5 has completed the sintering reaction. The part 5 — 2 in the state. The sinter cake 5-1 is placed on a pallet 2-1, 2-1, · · · · · · · · of the sintering machine 2, and a magnetic levitation device placed on a stand 6 provided independently of the sintering machine 2 By levitating by 7, the load applied to the combustion melting zone 5 and the lower raw material layer 5-2 is reduced.
磁気浮揚装置 7は、 図 2に示すように、 ス トラ ン ド方向に複数、 ここでは 5個、 配列された磁気浮揚装置 7 , 、 7 2 、 7 3 7 4 7 5 を有し、 かつ、 各磁気浮揚装置 7 , 〜 7 5 は幅方向二つ以上の 磁気浮揚要素 7 — 1、 7 — 2に分割されて設置されており、 それぞ れは、 詳細な構成は図示されていないが (必要ならば、 図 8参照) 、 磁気コィル型に構成されている。 これらの磁気浮揚要素の各磁気コ ィルを流れる電流値を独立して調整して、 磁気浮揚装置単位および 各磁気浮揚要素単位の磁気浮揚力を調整することができるように なっている。 これによつて、 シンターケーキに対する磁気浮揚力を パレッ トの走行とともに変化させることができ、 しかも、 その磁気 浮揚力に幅方向の分布をもたせることができる。 As shown in FIG. 2, the magnetic levitation device 7 has a plurality of magnetic levitation devices 7 in the direction of the strand, here, five, and an array of magnetic levitation devices 7, 7 2 , 7 3 7 4 7 5, and each magnetic levitation device 7, 1-7 5 widthwise two or more The magnetic levitation elements 7-1 and 7-2 are divided and installed, each of which is not shown in detail (see Fig. 8 if necessary), but is configured as a magnetic coil type. I have. The value of the current flowing through each magnetic coil of these magnetic levitation elements can be adjusted independently, and the magnetic levitation force of each magnetic levitation device and each magnetic levitation element can be adjusted. Thereby, the magnetic levitation force with respect to the sinter cake can be changed as the pallet travels, and the magnetic levitation force can be distributed in the width direction.
また、 各磁気浮揚装置の磁気浮揚要素への分割は、 幅方向だけで なく、 必要に応じて、 ス トラン ド方向についても行われる。 すなわ ち、 例えば図 2に示されているように、 各磁気浮揚装置 7 , 〜 7 5 はス ト ラ ン ド方向にも二つ以上の磁気浮揚要素 7 — 1 と 7 — 1 ' お よび 7 — 2 と 7 — 2 ' に分割されて設置され、 それぞれ独立して電 流値を調整して、 パレッ ト単位におけるス トラン ド方向の磁気浮揚 力の分布をも調整可能にすることができる。 これによつて、 ノ、'レツ ト単位のシンターケーキに対する磁気浮揚力を幅方向および Zある いはス トラン ド方向に分布をもたせることができることとなる。 The division of each magnetic levitation device into magnetic levitation elements is performed not only in the width direction but also in the strand direction as necessary. That is, as shown in FIG. 2, for example, each of the magnetic levitation devices 7, 7 to 7 5 also has two or more magnetic levitation elements 7—1 and 7—1 ′ in the strand direction. It is divided into 7-2 and 7-2 ', and the current value can be adjusted independently to make it possible to adjust the distribution of magnetic levitation force in the strand direction on a pallet basis. . As a result, the magnetic levitation force with respect to the sinter cake in units of ', レ can be distributed in the width direction and the Z or strand direction.
この場合、 磁気浮揚装置 7 , 〜 7 5 について、 幅方向および Zあ るいはス トラン ド方向における磁気浮揚要素の分割数が多いほど、 幅方向および Zあるいはス トラン ド方向の磁気浮揚力の制御性ある いは調整能力は向上するが、 設備費用との関係で分割数は経済的に 制限される。 In this case, the magnetic levitation device 7, for 1-7 5, the larger the division number of the magnetic levitation element in the width direction and the Z Oh Ruiwasu Trang de direction, control of the magnetic levitation force in the width direction and Z or scan Trang de direction However, the number of divisions is economically limited in relation to equipment costs.
本発明による焼結鉱の製造方法の実施に当たっては、 焼結原料条 件および焼結条件に応じて、 磁気浮揚力の大きさや分布を制御する こととなり、 各種の状態パラメータを検知する必要がある。 例えば 幅方向の通気分布は、 通常、 ァネモメータを焼結べッ ド上に設置し て測定することができるが、 バレッ ト 2 — 1 の直下に幅方向に複数 個付設した流量計によっても測定することができる。 一方、 焼成減 量は、 超音波レベル計などの通常のレベル計により測定することが できる。 また、 排ガス温度の幅方向の分布は、 バレッ ト 2 — 1 の直 下のウィン ドボックス上にその幅方向に複数個付設した熱電対 (図 示せず) により測定することができる。 更に、 排鉱部 8の赤熱帯の 降下状態は、 肉眼により観察することが可能であるが、 赤外線カメ ラ (図示せず) により精密に状態を把握するように構成することも できる。 In implementing the method for producing a sintered ore according to the present invention, the magnitude and distribution of the magnetic levitation force are controlled according to the sintering raw material conditions and the sintering conditions, and it is necessary to detect various state parameters. . For example, the airflow distribution in the width direction can be measured by installing an anemometer on the sintering bed. It can also be measured with an attached flow meter. On the other hand, the firing loss can be measured by a normal level meter such as an ultrasonic level meter. The distribution of the exhaust gas temperature in the width direction can be measured by a plurality of thermocouples (not shown) provided in the width direction on a wind box directly below the bullet 2-1. Further, the state of the red tropic descent of the mining section 8 can be observed with the naked eye, but it can also be configured to accurately grasp the state with an infrared camera (not shown).
図 3は、 D L式焼結機に、 断続的に連結された複数の磁石を支持 する回転帯からなる接触型の磁気浮揚装置を装備して、 焼結操業を 行っている状態を例示する概念図である。 図 3において、 焼結原料 サージホッパー 1 に蓄えられた焼結原料は、 原料装入装置 3を介し て焼結機 2に装入された後、 点火炉 4において着火され、 順次表層 から下層に向けて焼結される。  Fig. 3 is a conceptual diagram illustrating a sintering operation in which a DL-type sintering machine is equipped with a contact-type magnetic levitation device consisting of a rotating band that supports a plurality of intermittently connected magnets. FIG. In FIG. 3, the sintering raw material stored in the sintering hopper 1 is charged into a sintering machine 2 via a raw material charging device 3 and then ignited in an ignition furnace 4, and sequentially from the surface layer to the lower layer. Sintered for
点火炉 4を通過した後、 ス トラ ン ドの進行とともに、 焼結層の上 層から順次焼結が完了し、 固結後冷却されてシンターケーキが生成 される。 図 1 と同様に、 焼結反応が行われている燃焼溶融帯 5がー 点鎖線により示されており、 この燃焼溶融帯 5 より上方は焼結反応 が完了したシンターケーキ部分 5 — 1 であり、 下方はまだ原料状態 にある部分 5 — 2である。  After passing through the ignition furnace 4, sintering is completed sequentially from the upper layer of the sintering layer as the strand proceeds, and after consolidation, it is cooled to produce a sinter cake. As in FIG. 1, the combustion melting zone 5 where the sintering reaction is taking place is indicated by a dashed-dotted line, and above the combustion melting zone 5 is the sinter cake portion 5-1 where the sintering reaction is completed. The lower part is part 5-2, which is still in the raw material state.
図 4は、 断続的に連結された複数の磁石を支持する回転帯からな る磁気浮揚装置 1 7の一例が装着されている部分の詳細な構造を示 す拡大斜視図であり、 本例においては、 二本の回転帯 1 7 — 1、 1 7 — 2が幅方向に並列して配設されている。 これらの回転帯 1 7 — 1、 1 7 — 2には、 その外側面上に複数の磁石 1 8、 1 8、 · · · が連結ピン 1 9、 1 9、 · · , により断続的でかつ連鎖状に連結さ れて配列されている。 そして、 これらの回転帯 1 7 — 1、 1 7 - 2 は、 対向するものが互いに連動されているスプロケッ ト 1 0 — 1、 1 0 — 1 および 1 0 — 2、 1 0 — 2を介して、 キヤ夕ビラ一類似の 機構により、 連動して移動しうるように構成されている。 なお、 図 中、 1 1、 1 1、 · · · はパレッ ト 2 - 1、 2 — 1、 · , · を移動 させるためのパレツ ト車輪である。 FIG. 4 is an enlarged perspective view showing a detailed structure of a portion where an example of a magnetic levitation device 17 composed of a rotating band that supports a plurality of intermittently connected magnets is mounted. Has two rotating bands 17-1 and 17-2 in parallel in the width direction. On the outer surface of these rotating bands 17-1 and 17-2, a plurality of magnets 18, 18 and so on are intermittently connected by connecting pins 19, 19, and so on. They are arranged in a chain. And these rotating bands 1 7 — 1, 1 7-2 Are linked to each other via sprockets 1 0-1, 1 0-1 and 1 0-2, 1 0-2, which are linked together. It is configured to receive. In the figure, 11, 11, 11, · · · are pallet wheels for moving pallets 2-1, 2-1, · · ·.
磁気浮揚装置 1 7の作動時、 回転帯 1 7 - 1、 1 7 - 2に装着さ れている磁石 1 8、 1 8、 · · · は、 対向するパレツ ト内に生成さ れつつあるシンターケーキの表層を磁着し、 磁力による吸引によつ て対応するシンタ一ケーキに吸着される。 この状態において、 ス ト ラン ド方向へのパレッ トの移動につれて、 吸着状態の磁石が移動し- したがって、 回転帯 1 7 — 1、 1 7 — 2が上述のキヤ夕ピラー機構 により同期して回転することとなる。  When the magnetic levitation device 17 is activated, the magnets 18, 18, 18, mounted on the rotating bands 17-1, 17-2 generate the sinter generated in the opposite pallet. The surface layer of the cake is magnetically attached, and is attracted to the corresponding sinter cake by magnetic attraction. In this state, as the pallet moves in the strand direction, the magnets in the attracted state move-so that the rotating bands 17-1 and 17-2 rotate synchronously by the above-mentioned caster pillar mechanism. Will be done.
この構成において、 磁気浮揚装置 1 7の作動時には、 回転帯 1 7 - 1、 1 7 — 2にはスプロケッ ト 1 0による張力が与えられており - その張力によりシン夕一ケーキ 5 — 1 に吸着されている磁石 1 8、 1 8、 · · · は、 シンターケーキ 5 — 1 の荷重に対抗して、 支持さ れることとなる。  In this configuration, when the magnetic levitation device 17 is activated, the rotating bands 17-1 and 17-2 are tensioned by the sprocket 10-the tension causes the suction to the cake 5-1 The magnets 18, 18,... Are supported against the load of the sinter cake 5-1.
このように、 本実施例における磁気浮揚装置 1 7はシンターケー キに直接接触して磁気淳揚力を作用させることができるので、 磁気 浮揚装置がシンターケーキ上にギャ ップを置いて設置されている場 合と比較して、 磁気浮揚力が不安定になることがなくなり、 磁気浮 揚による焼結鉱の生産性、 歩留り、 品質の向上効果が安定して発揮 されることとなる。  As described above, the magnetic levitation device 17 in the present embodiment can directly contact the sinter cake to exert a magnetic lifting force, so that the magnetic levitation device is installed with a gap on the sinter cake. Compared to the case, the magnetic levitation does not become unstable, and the effect of improving the productivity, yield, and quality of the sinter by the magnetic levitation is stably exhibited.
更に、 磁石 1 8 とシンターケーキ 5 — 1 との間にギャップが形成 されないことにより、 磁石 1 8、 例えば永久磁石、 を小型化するこ とができるし、 また、 磁気コイル型磁石を使用した磁気浮揚装置の 場合には、 同一浮揚力を発現するために必要な電力量を低減するこ とができる。 Further, since no gap is formed between the magnet 18 and the sinter cake 5-1, the size of the magnet 18, for example, a permanent magnet, can be reduced. In the case of levitation devices, the amount of power required to achieve the same levitation force should be reduced. Can be.
図 5は、 上述した回転帯 1 7に支持される断続的に連結された磁 石の一例の詳細な構造を示す斜視図である。 図中、 1 8、 1 8、 · FIG. 5 is a perspective view showing a detailed structure of an example of the intermittently connected magnet supported by the rotating belt 17 described above. In the figure, 18 and 18
• · は断続的でかつ連鎖状に連結された複数の磁石、 1 9、 1 9、• · are multiple magnets intermittently connected in a chain, 19, 19,
• · · は連結ビンであり、 各磁石 1 8は、 幅方向に磁化された永久 磁石 1 8 - 1、 コア部材 1 8 - 2、 1 8 - 2および非磁性材料の支 持部材 1 8 — 3から構成されている。 永久磁石 1 8 — 1 から発生さ れた磁束は、 両コア部材 1 8 — 2、 1 8 — 2を経て、 支持部材 1 8 一 3の下部に位置するシンターケーキ 5 — 1 (図 3参照) に向けて, 両コア部材 1 8 — 2、 1 8 — 2の下端部を結ぶように発生され、 シ ン夕一ケーキ 5 — 1 に所望の磁場が及ぼされる。 なお、 磁石 1 8の サイ ドからの磁気漏洩を防止して磁気的効率をあげるために、 必要 に応じて、 コア部材 1 8 — 2の外側に更に非磁性材料の磁気漏洩防 止部材を配設する。 この構造によれば、 各磁石をコンパク トに形成 することができ、 設備費を低減することができる。 Is a connecting bin, and each magnet 18 is composed of a permanent magnet 18-1 magnetized in the width direction, a core member 18-2, 18-2, and a non-magnetic material supporting member 18— Consists of three. The magnetic flux generated from the permanent magnet 18-1 passes through both core members 18-2 and 18-2, and the sinter cake 5-1 located at the lower part of the support members 18-13 (see Fig. 3) To generate the desired magnetic field, it is generated so as to connect the lower ends of both core members 18-2 and 18-2. In order to prevent magnetic leakage from the side of the magnet 18 and increase magnetic efficiency, a magnetic leakage preventing member made of a non-magnetic material is further provided outside the core member 18-2 as necessary. Set up. According to this structure, each magnet can be formed compactly, and equipment costs can be reduced.
また、 図 6は、 断続的に連結された複数の磁石の他の例の詳細な 構造を示す斜視図である。 図中、 図 5 と同一の構成要素には同一の 符号が付されており、 ここでは、 磁石 1 8 — 1 ' が板状のコアに巻 線の施された磁気コイル型磁石により形成されている。 この構造に おいては、 各磁気コイル型磁石 1 8 - 1 ' の磁界強度を独立して変 更することができ、 パレッ トの幅方向および あるいはス トラン ド 方向における磁気浮揚力を位置に応じて調整することができること となるので、 磁気浮揚効果の一層の安定化を図ることができる。 なお、 本実施例における磁気浮揚装置 1 7は焼結過程のシン夕一 ケーキ表層に接触しつつ必要な磁気浮揚力を作用させることとなる が、 焼結原料条件、 焼結条件等により、 シンターケーキと磁気浮揚 装置 1 7 との間の間隔に変動が生じる。 これを調整するために、 本 発明による焼結鉱の製造装置の実施例においては、 例えば、 図 3お よび図 4 に示されているように、 磁気浮揚装置の回転帯 1 7を支持 する架台 6 に回転帯昇降装置 9が設けられている。 この昇降装置 9 により架台 6の高さを調整して、 磁気浮揚装置 1 7をシンターケ一 キに対して位置調整することができる。 FIG. 6 is a perspective view showing a detailed structure of another example of a plurality of intermittently connected magnets. In the figure, the same components as those in FIG. 5 are denoted by the same reference numerals. Here, the magnet 18-1 ′ is formed by a magnetic coil type magnet in which a plate-shaped core is wound. I have. In this structure, the magnetic field strength of each magnetic coil type magnet 18-1 'can be changed independently, and the magnetic levitation force in the pallet width direction and / or the strand direction can be changed according to the position. Therefore, the magnetic levitation effect can be further stabilized. The magnetic levitation device 17 in this embodiment exerts the necessary magnetic levitation force while contacting the surface of the cake during the sintering process. The distance between the cake and the magnetic levitation device 17 varies. To adjust for this, In the embodiment of the sinter ore manufacturing apparatus according to the present invention, for example, as shown in FIGS. 3 and 4, a rotating band lifting / lowering device 9 is mounted on a gantry 6 supporting a rotating band 17 of a magnetic levitation device. Is provided. The height of the gantry 6 can be adjusted by the lifting device 9 to adjust the position of the magnetic levitation device 17 with respect to the sinter cake.
本実施例における焼結鉱の製造装置において、 回転帯上に支持さ れている断続的に連結された複数の磁石における各磁石の幅は、 下 方に吸引される空気が通過するのを阻害しないように可能な限り狭 い方が好ましいが、 実際の焼結層内の通風はクロスフローとなり、 自由な空気の供給が可能であるので、 各磁石に空気供給用のスリ ツ トを設ける等、 磁石の形状は自由に選択することができる。 なお、 小型の焼結機においては、 磁石を装着された回転帯はス トラ ン ド幅 方向の中央部に少なく とも一本設けることにより、 十分に浮揚能力 を発揮することができる。  In the sintered ore manufacturing apparatus of the present embodiment, the width of each magnet of the plurality of intermittently connected magnets supported on the rotating belt impedes the passage of air sucked downward. It is preferable that the air flow is as narrow as possible, but the ventilation in the actual sintered layer is cross-flow, and free air can be supplied.Therefore, a slit for air supply is provided for each magnet. The shape of the magnet can be freely selected. In a small-sized sintering machine, by providing at least one rotating band equipped with a magnet at the center of the strand width direction, sufficient levitation ability can be exhibited.
本実施例に用いる磁石としては、 永久磁石、 磁気コイル型磁石の いずれも使用可能であり、 各磁石は、 通常、 板状の複数の磁石を配 列して構成される。 磁気コイル型磁石の場合は、 磁気浮揚力の強化 が可能となり、 かつ、 磁気浮揚力を制御することができる。 しかし. 電力供給のための電気接点の配設等の設備が複雑となり、 設備費が 高くなり、 また、 消費電力に応じたコス トが必要となる。 他の場合 として、 永久磁石と磁気コィル型磁石の複合型を用いることも可能 であり、 これによれば、 磁気コイル型磁石のみの場合と比較して、 消費電力を節減することができる。 更に、 磁石は熱に弱いため、 必 要に応じて、 水冷、 電子冷却等の設備を備えることができるが、 一 般には、 焼結べッ ド表層から冷風が吸引されており、 磁石はこの環 境下にあるので、 通常、 冷却装置は必要とされない。  As the magnet used in this embodiment, any of a permanent magnet and a magnetic coil type magnet can be used, and each magnet is usually configured by arranging a plurality of plate-shaped magnets. In the case of a magnetic coil type magnet, the magnetic levitation force can be enhanced, and the magnetic levitation force can be controlled. However, equipment such as arranging electrical contacts for power supply becomes complicated, equipment costs increase, and costs corresponding to power consumption are required. As another case, a composite type of a permanent magnet and a magnetic coil type magnet can be used. According to this, power consumption can be reduced as compared with the case of using only a magnetic coil type magnet. Furthermore, since magnets are vulnerable to heat, equipment such as water cooling and electronic cooling can be provided as necessary.However, in general, cold air is sucked from the surface of the sintering bed. Because of the environment, cooling equipment is not usually required.
—方、 磁石と焼結層表層とは、 磁着の際、 あるいは、 剝離の際に 磁石表面に摩擦力がかかり、 磁石表面が傷つけられることがあるの で、 表面保護のための被覆層を必要に応じて設けることができる。 この場合、 保護用の被覆層が厚くなるほど磁気浮揚力が低下するこ ととなるので、 可能な限り薄くかつ強いものが選択されなければな らない。 材質としては、 酎磨耗性材料であって多少の耐熱性を有す る材料、 例えば炭化珪素、 窒化珪素等のセラ ミ ッ ク材料を用いるこ とができる。 —On the other hand, the magnet and the surface layer of the sintered layer Since a frictional force is applied to the magnet surface and the magnet surface may be damaged, a coating layer for protecting the surface can be provided as necessary. In this case, the magnetic levitation force decreases with an increase in the thickness of the protective coating layer. Therefore, a material that is as thin and strong as possible must be selected. As the material, a material that is abrasion-resistant and has some heat resistance, for example, a ceramic material such as silicon carbide or silicon nitride can be used.
また、 上述したように、 焼成減量は、 超音波レベル計などの通常 のレベル計により測定することができる。 通気分布は、 通常、 ァネ モメ一夕一を焼結べッ ド上に設置して測定するが、 パレッ ト直下に 複数個を幅方向に付設した流量計によっても測定することができる, 以下、 上述した本発明による焼結鉱の製造方法を用いた施工例に ついて、 説明する。  Further, as described above, the loss on firing can be measured by a normal level meter such as an ultrasonic level meter. Normally, the air distribution is measured by installing an anemone all over the sintered bed, but it can also be measured by a flow meter with a plurality of units installed in the width direction directly below the pallet. An example of a construction using the above-described method for producing a sintered ore according to the present invention will be described.
実例 1 Example 1
焼結面積 6 0 0 m2 ( 5 m幅 X I 2 0 mス トラ ン ド長さ) の D L 式鉄鉱石焼結機により、 層厚 6 0 0 mm、 負圧 1 5 0 O mm a qで 幅方向一体型の従来の磁気浮揚装置を用いた操業を行ったときの生 産率は 3 2 t / ά /m2 、 製品歩留は 8 1 . 4 %であった。 焼結機 を止めて排鉱部近くの焼結が完了した場所のバレツ トを抜き、 焼結 パレッ ト内の焼結状態を歩留によって調べた。 パレツ トサイ ドから 2 0 O mm内側の両サイ ドの歩留が 7 8 %、 それより内側の半分の 歩留が 8 0 %、 残り半分が 8 2 %であった。 操業時のパレッ ト上の 風量分布を測定すると、 両サイ ドとも風が流れ過ぎ、 また、 歩留が 8 0 %の部分は風が片引きになつていることが判明した。 By sintering area 6 0 0 m 2 (5 m wide XI 2 0 m scan tiger down de length) of DL Shikitetsu ore sintering machine, thickness 6 0 0 mm, the width at the negative pressure of 1 5 0 O mm aq raw Sanritsu when performing operations using a conventional magnetic levitation device direction integral 3 2 t / ά / m 2 , the product yield was 81. 4%. The sintering machine was stopped, and the sintering state in the sintering pallet was checked by the yield by removing the bullet at the place where sintering was completed near the mining section. The yield of both sides 20 O mm inside the pallet side was 78%, the yield of the inner half was 80%, and the other half was 82%. Measurements of the air flow distribution on the pallet during operation showed that both sides had too much wind, and that the 80% yield was partially offset by the wind.
磁気浮揚装置の磁気コイルを幅方向に 5等分して (図 2の変形) . それぞれ独立に電流値を変化できるようにし、 通気が幅方向におい て可能な限りフラッ 卜になるように磁気コィルの電流値を調整した, すなわち、 両サイ ドの磁気コィルの電流値は歩留 8 2 %の部分の 1 0 %の値、 また、 歩留 8 0 %の部分の磁気コィルの電流値は 1 0 % 低減した値としたところ、 全体の歩留 8 2. 5 %まで向上し、 それ より内側の左右の差は殆ど無くなって 8 3 %になっていた。 なお、 このときの生産率は殆ど変化しなかった。 The magnetic coil of the magnetic levitation device is divided into five equal parts in the width direction (modification of Fig. 2). The current value can be changed independently, and the magnetic coil is designed so that the ventilation is as flat as possible in the width direction. Adjusted the current value of In other words, the current values of the magnetic coils of both sides were 10% of the value of the 82% yield, and the current values of the magnetic coil of the 80% yield were reduced by 10%. However, the overall yield was improved to 82.5%, and the difference between the left and right inside was almost eliminated to 83%. At this time, the production rate hardly changed.
実例 2 Example 2
焼結面積 2 8 0 m2 ( 4 m幅 X 7 0 mス トラン ド長さ) の D L式 鉄鉱石焼結機により、 層厚 5 0 O mm、 負圧 1 0 0 O mm a qで幅 方向一体型の従来の磁気浮揚装置を用いた操業を行ったときの生産 率は 3 2 t / d /m2 、 製品歩留は 8 1 . 4 %であった。 ス トラン ドの 4 5の地点の排ガス温度の幅方向の分布を測定したところ、 片方半分の温度が 3 5 0て、 もう一方は 3 9 0でであった。 また、 同じ地点の幅方向の通気分布を測定したところ、 片方半分の風速が 0. 6 mZ s e c、 他の半分は 0. 7 5 mZ s e c、 中央は 0. 5 5 m/ s e cであった。 By sintering area 2 8 0 m 2 (4 m wide X 7 0 m scan Trang de length) DL type iron ore sintering machine, thickness 5 0 O mm, a width direction by a negative pressure 1 0 0 O mm aq When operating with the integrated magnetic levitation system, the production rate was 32 t / d / m 2 and the product yield was 81.4%. The distribution of the exhaust gas temperature in the width direction at 45 points of the strand was measured, and it was found that the temperature of one half was 350, and that of the other was 390. In addition, when the ventilation distribution in the width direction at the same point was measured, the wind speed of one half was 0.6 mZ sec, the other half was 0.75 mZ sec, and the center was 0.55 m / sec.
磁気浮揚装置の磁気コイルを幅方向に 2等分し (図 2 ) 、 それぞ れ独立に電流値を変化できるようにし、 3 5 0 °Cの方の磁気コイル の電流を増していく と、 次第に排ガス温度が上昇して 3 8 0 eCに達 し、 歩留は 8 5 %に向上した。 When the magnetic coil of the magnetic levitation device is bisected in the width direction (Fig. 2), the current value can be changed independently, and the current of the magnetic coil at 350 ° C is increased. gradually exhaust gas temperature rises reached the 3 8 0 e C, yield was improved to 8 5%.
実例 3 Example 3
実例 1 において、 '非接触型の磁気浮揚装置に代えて、 断続的で且 つ連鎖状に連結された複数の磁石を支持する回転帯 (図 3および図 4 ) からなる磁気浮揚装置を用い、 同じ操業条件により操業を実施 したところ、 磁気浮揚効果が安定し、 生産率が 3 3. 6 t / d /m 2 、 製品歩留は 8 2. 0 %に改善された。 In Example 1, a magnetic levitation device consisting of a rotating band (FIGS. 3 and 4) supporting a plurality of intermittent and chain-connected magnets was used in place of the non-contact type magnetic levitation device. was performed operations by the same operating conditions, the magnetic levitation effect is stabilized, production rates are 3 3. 6 t / d / m 2, the product yield was improved to 8 2.0%.
¾ I5"J 4  ¾ I5 "J 4
実例 2において、 非接触型の磁気浮揚装置に代えて、 断続的で且 つ連鎖状に連結された複数の磁石を支持する回転帯 (図 4参照) ) の 3本をパレツ トの中央とその両側に配設した磁気浮揚装置を用い. 同じ操業条件により操業を実施した。 なお、 風速の大きい 0. 7 5 m/ s e c側の磁気浮揚装置 (回転帯) を他の 2本よりも 1 5 %ほ ど広く した。 この場合、 生産率は 3 4. 2 t / d/m2 , 製品歩留 が 8 2. 4 %に改善され、 また、 磁気浮揚のための電力消費量 3 k W/ t · sは、 永久磁石を用いたことにより、 不要となった。 In Example 2, instead of a non-contact type magnetic levitation device, an intermittent and Three rotating bands (see Fig. 4) supporting a plurality of magnets connected in a chain are used at the center of the pallet and magnetic levitation devices placed on both sides of the pallet. The operation was performed under the same operating conditions. . The magnetic levitation device (rotating band) on the 0.75 m / sec side, where the wind speed is high, is 15% wider than the other two. In this case, the production rate is improved to 34.2 t / d / m 2 , the product yield is improved to 82.4%, and the power consumption for magnetic levitation is 3 kW / t It became unnecessary by using magnets.
上述した図 1 および図 2に示されている焼結鉱の制御方法および 製造装置においては、 磁気浮揚装置群の位置をずらしたり、 磁気浮 揚装置相互間の間隔を変える等により、 磁気浮揚力を作用させる部 位を任意に変更することが困難である。 以下に説明する焼結鉱の製 造方法および製造装置は、 この点を改良するものである。  In the sinter control method and the manufacturing apparatus shown in FIGS. 1 and 2 described above, the magnetic levitation force is changed by shifting the position of the magnetic levitation devices or changing the distance between the magnetic levitation devices. It is difficult to arbitrarily change the position where the force acts. The sinter production method and production apparatus described below improve this point.
図 7は、 D L式焼結機に長手方向に位置調整可能な非接触型の磁 気浮揚装置を装備し、 本発明による通気性調整のための磁気荷重制 御を行って操業している三つの状態 ( a、 b、 c ) を例示する概念 図である。 図中、 図 1 における構成要素と同等の構成要素には同一 の符号が付されており、 ここでは、 ノ、'レッ トの走行方向に 5基の磁 気浮揚装置 7 , 、 72 、 73 、 7 4および 75 が適宜間隔をおいて かつ、 それぞれ独立に移動可能に設けられた実施例が示されている, 図 7 ( a ) は通常の操業状態、 図 7 ( b ) は焼結層の上下方向の中 層から下層上部にかけてのゾーンに重点的に磁気浮揚力を作用させ るように磁気浮揚装置を配置して操業している状態、 そして、 図 7 ( c ) は下層部に重点的に磁気浮揚力をさせて操業している状態を 示している。 Fig. 7 shows the operation of a DL type sintering machine equipped with a non-contact type magnetic levitation device capable of adjusting the position in the longitudinal direction and controlling the magnetic load for air permeability control according to the present invention. It is a conceptual diagram which illustrates two states (a, b, c). In the figure, the same components as those in FIG. 1 are denoted by the same reference numerals, and here, five magnetic levitation devices 7, 7 2 , 7 2 7 3 , 7 4 and 7 5 show an embodiment in which they are provided at appropriate intervals and are movable independently of each other. FIG. 7 (a) shows a normal operation state, and FIG. The magnetic levitation device is arranged and operated so that the magnetic levitation force acts mainly on the zone from the middle layer up to the upper part of the lower layer of the consolidation layer, and Fig. 7 (c) shows the lower part. The figure shows the state of operation with magnetic levitation force with emphasis on.
図 8は、 移動可能に装着された各磁気浮揚装置 7 , 〜 75 の一例 の構成を示す斜視図であり、 図 9はその装置下^の正面図、 図 1 0 はその装置下部の側面図である。 各磁気浮揚装置 7 , 〜 75 は、 例 えば、 図示されているように、 開放側がパレッ ト 2 — 1 内の焼結 ベッ ドに向けられた断面 E型コアの中央脚に巻かれた磁気コィル 2 7を有する磁気コイル型であり、 昇降装置 2 0に支持されて台車 2 1 の架橋に懸垂されている。 本例においては、 各磁気浮揚装置 7 , 〜 7 5 は、 パレ ッ ト 2 — ;! の幅方向およびその走行方向すなわちス トラ ン ド方向にそれぞれ二つづつに分割された四つの磁気浮揚要素 7 — 1、 7 — 2および 7 — 1 ' 、 7 — 2 ' に分割されており、 図 2 に示されている磁気浮揚装置と同様に、 幅方向およびス トラ ン ド方 向における磁気浮揚力の分布を与えることができるように構成され ている。 8, the magnetic levitation device 7 is movably mounted, a perspective view showing an example of the configuration of a 1-7 5, 9 is a front view of the device under ^, 1 0 is a side of the apparatus bottom FIG. Each magnetic levitation device 7, 1-7 5, Example For example, as shown, the open side is a magnetic coil type having a magnetic coil 27 wound on the center leg of an E-shaped core with a cross section facing the sintered bed in pallet 2-1. It is supported by the device 20 and suspended from the bridge of the carriage 21. In this example, the magnetic levitation device 7, 1-7 5, palette 2 -;! Magnetic levitation elements 7-1, 7-2 and 7-1 ', 7-2', which are divided into two in the width direction and the traveling direction, that is, the strand direction, respectively. As with the magnetic levitation device shown in FIG. 2, the configuration is such that the distribution of magnetic levitation force in the width direction and the strand direction can be given.
台車 2 1 の下部には、 車輪 2 5 とその駆動モータ 2 2が設けられ ており、 焼結機とは独立した軌条 2 3の上に、 各磁気浮揚装置 1 ! 〜 7 6 が独立して移動可能に載置されている。 1 2はパレツ ト 2 — 1 の専用軌条であり、 駆動モータ 2 2はパレ ッ ト 2 — 1 の車輪より も高い位置に配置され、 台車の車輪 2 4 とはチヱーン 2 5により連 結されている。 図示されているように、 例えばバレッ ト 2 — 1 の反 対側にも同一仕様の駆動モータおよび車輪が設けられており、 同一 の電気信号により起動、 停止等の制御が行われ、 円滑な走行を可能 としている。  Wheels 25 and their drive motors 22 are provided at the lower part of the bogie 21. Each magnetic levitation device 1! Is on a rail 23 independent of the sintering machine. ~ 76 are independently movably mounted. 1 2 is a dedicated rail of the pallet 2-1, the drive motor 2 2 is arranged at a position higher than the wheels of the pallet 2-1, and is connected to the bogie wheel 24 by a chain 25. I have. As shown in the figure, for example, drive motors and wheels of the same specifications are provided on the opposite side of the bullet 2-1. Control such as starting and stopping is performed by the same electric signal, and smooth running is performed. Is possible.
焼結の操業においては焼結原料条件や焼成条件が少なからず変動 し、 焼結層内の通気不良ゾーンや通気不良の程度が変化する場合が あるが、 そのような通気ネッ クゾーンに磁気浮揚力を重点的に作用 させることができるように、 磁気浮揚装置が移動される。 焼結機の 長さ方向の焼成が不均一になっているか否かの判定は、 通常実施さ れているように、 ァネモメータ一を焼結べッ ド上に設置して測定す るか、 パレツ トの長手方向に複数個の流量計や熱電対、 排ガス分析 計を付設して測定することができるが、 本発明によれば、 より確か な方法として、 例えば特願昭 5 9 — 2 3 0 2 9 8号 「焼結体の焼結 度測定方法」 において提案されているように、 シン夕一ケーキの高 さ方向に関する柱状サンプルを採取し、 その柱状サンプルに対して C T断層撮影を行い、 得られた C T画像に基づいて焼結層内の通気 不良ゾーンや通気不良の程度を解析する。 In the sintering operation, the sintering raw material conditions and sintering conditions may fluctuate considerably, and the poor ventilation zone and the degree of poor ventilation in the sintered layer may change. The magnetic levitation device is moved so that the air can be focused. Whether or not the firing in the longitudinal direction of the sintering machine is uneven is determined by installing an anemometer on the sintering bed as usual, or by palletizing. A plurality of flow meters, thermocouples and exhaust gas analyzers can be attached in the longitudinal direction of the For example, as proposed in Japanese Patent Application No. Sho 59-23028 “Method for measuring the degree of sintering of a sintered body”, a columnar sample in the height direction of Shin Yuichi cake was collected. Then, CT tomography is performed on the columnar sample, and based on the obtained CT images, the zones of poor ventilation in the sintered layer and the degree of poor ventilation are analyzed.
こう して得られた通気不良ゾーンや通気不良の程度のデータは、 図示されていないコンピュー夕等の制御装置においてデータ処理さ れる。 通気不良が焼結層の中層および あるいは下層に集中してい る場合は、 焼結層中における中および あるいは下層部に位置する 燃焼溶融帯と原料層にかかるシンターケーキの荷重により通気性が 阻害されていることとなり、 その対応策として、 図 7 ( b ) に示さ れているように、 各磁気浮揚装置 7 , 〜7 5 をシンターケーキ層の 成長の前半部分すなわち点火炉 4 に近い領域に移動させ、 かつ、 解 析された通気不良データに応じて各磁気浮揚装置 7 , 〜 7 5 の磁界 強度およびそれらの相互間隔を調整し、 加えて、 各磁気浮揚装置内 における磁気浮揚要素 7 — 1、 7 — 2、 7 - 1 ' 、 7 - 2 ' の磁界 強度を調整して好適な磁気浮揚力分布を形成し、 中層および ある いは下層に良好な通気性が与えられるように制御する。 The data of the poor ventilation zone and the degree of poor ventilation obtained in this way are processed by a control device such as a computer (not shown). If the poor ventilation is concentrated in the middle and / or lower layers of the sintered layer, the air permeability is impeded by the load of the sinter cake on the middle and / or lower layer of the sintered layer and the raw material layer. becomes possible and, moving as a countermeasure, as shown in FIG. 7 (b), the magnetic levitation device 7, a 7-5 in a region close to the front half portion or the ignition furnace 4 growth of sinter cake layer It is, and analyzed venting defective data each magnetic levitation device in accordance with 7, to adjust the magnetic field strength and their mutual spacing to 7 5, in addition, magnetic levitation element 7 in each magnetic levitation device - 1 , 7-2, 7-1 ′, and 7-2 ′ are adjusted to form a suitable magnetic levitation force distribution, and are controlled so that good air permeability is given to the middle layer and the lower layer.
通気不良が焼結層の下層に集中している場合は、 図 7 ( c ) に示 されているように、 各磁気浮揚装置 7 , 〜 7 5 をシンターケーキ層 の成長の後半部分すなわち排鉱部 8に近い領域に集中的に移動させ. かつ、 解析された通気不良データに応じて各磁気浮揚装置 7 , 〜 7 5 およびその磁気浮揚要素 7 — 1、 7 — 2、 7 — 1 ' 、 7 - 2 ' の 磁界強度を調整して好適な磁気浮揚力分布を焼結層下層部に集中的 に形成して、 良好な通気性が与えられるように制御する。  If poor ventilation is concentrated in the lower layer of the sintered layer, as shown in Fig. 7 (c), each magnetic levitation device 7, ~ Move intensively to the area close to the part 8. And according to the analyzed air leakage data, each of the magnetic levitation devices 7, to 7 5 and its magnetic levitation elements 7 — 1, 7 — 2, 7 — 1 ', By controlling the magnetic field strength of 7-2 ′, a suitable magnetic levitation force distribution is formed intensively in the lower layer of the sintered layer, and is controlled so that good air permeability is given.
この焼結鉱の製造方法および製造装置においては、 特に焼結機の 長手方向に沿う磁気浮揚装置 7 , 〜7 5 の配置を変更し、 焼結進行 中の各位置におけるシンターケーキ層に作用する磁気浮揚力が変更 される。 それにより、 燃焼溶融帯 5に及ぼされるシンターケーキ層 の荷重が磁気浮揚力によって変化し、 したがって、 焼結進行中の各 位置におけるシンターケーキ層の厚さ、 すなわち、 焼結べッ ドの或 る深さにおける燃焼溶融帯 5に対する負荷を調整し、 特定の荷重制 御条件を設定することができる。 In this method and apparatus for manufacturing a sintered ore it is to change the arrangement of the magnetic levitation device 7, to 7 5, particularly along the longitudinal direction of the sintering machine, the sintering progresses The magnetic levitation force acting on the sinter cake layer at each position in the middle is changed. As a result, the load of the sinter cake layer exerted on the combustion melting zone 5 changes due to the magnetic levitation force, and therefore, the thickness of the sinter cake layer at each position during sintering, that is, a certain depth of the sintering bed In this case, the load on the combustion melting zone 5 can be adjusted to set specific load control conditions.
図 1 1 は、 各種の荷重制御条件を例示しており、 焼結べッ ドの深 さ Dと燃焼溶融帯の負荷 Lとの間の関係をパターンにより示す特性 図である。 図示の例は層厚 6 0 0 m mの焼結層の場合である。 図 1 1 ( a ) は磁気浮揚力が作用していない状態の関係パターンであり、 燃焼溶融帯は最上層において空気吸引による負荷のみを受け、 焼結 べッ ドの深さに応じて、 その空気吸引による負荷とともに成長する シン夕一ケーキの荷重による負荷を比例的に受けることを示してい る。 図 1 1 ( b ) 、 図 1 1 ( c ) および図 1 1 ( d ) は磁気浮揚装 置 7 , 〜 7 5 の配置および あるいはそれらの磁界強度を調整して, 燃焼溶融帯が受ける負荷を三つのパターンに変更した例を示してお り、 図 1 1 ( b ) は中下層磁気浮揚、 すなわち、 中下層まで成長し たシン夕一ケーキに磁気浮揚を作用させて、 それらの層域における 負荷を零とする場合、 図 1 1 ( c ) は中層のみ磁気浮揚、 すなわち- 中層まで成長したシンターケーキに磁気浮揚を作用させて、 中層に おける負荷を零とする場合、 そして、 図 1 1 ( d ) は下層のみ磁気 浮揚、 すなわち、 下層まで成長したシンターケーキに磁気浮揚を作 用させて、 下層における負荷を零とする場合の荷重制御条件を例示 している。 FIG. 11 illustrates various load control conditions, and is a characteristic diagram showing the relationship between the depth D of the sintering bed and the load L of the combustion melting zone in a pattern. The illustrated example is a case of a sintered layer having a thickness of 600 mm. Fig. 11 (a) shows the relationship pattern in the state where no magnetic levitation force is applied.In the combustion melting zone, only the load due to air suction is applied to the uppermost layer, and it depends on the depth of the sintering bed. This indicates that the load from the thin cake that grows with the load from air suction is proportionally received. Figure 1 1 (b), FIG. 1 1 (c) and FIG. 1 1 (d) is a magnetic levitation equipment 7, by adjusting the placement and or their magnetic field strength of ~ 7 5, the load combustion melting zone is subjected Fig. 11 (b) shows an example of a change to three patterns. When the load is reduced to zero, Fig. 11 (c) shows magnetic levitation only in the middle layer, that is, when magnetic levitation is applied to the sinter cake that has grown to the middle layer, and the load in the middle layer is reduced to zero. (d) illustrates the magnetic levitation of the lower layer only, that is, the load control condition when the magnetic levitation is applied to the sinter cake grown to the lower layer and the load on the lower layer is zero.
図 1 2は、 図 1 1 の各種の荷重制御条件における焼結結果を示す 表であり、 表中の a〜 dは図 1 1 の荷重制御条件パターン ( a ) 〜 ( d ) にそれぞれ対応している。 なお、 表中の F F S (Flame Front Speedは、 コータスの燃焼前線の降下速度である。 この焼結結果か ら明らかなように、 焼結進行中に中、 下層部の燃焼溶融帯および原 料層にかかるシンターケーキの荷重および空気吸引による負荷を磁 気浮揚力により軽減、 更には、 零負荷とすることで、 焼結速度 ( F F S ) が上がって焼結時間が短縮されるにもかかわらず、 歩留りの 低下や焼き減りがなく、 焼結鉱の品質が安定化する等の不均一焼結 を解消することができるという格別の焼結効果が達成される。 Fig. 12 is a table showing the results of sintering under the various load control conditions in Fig. 11, where a to d correspond to the load control condition patterns (a) to (d) in Fig. 11, respectively. ing. The FFS (Flame Front Speed is the descent speed of the Kotus combustion front. As is evident from the sintering results, the sinter cake load and the air suction load on the middle and lower combustion melting zones and the raw material layer during the sintering were reduced by the magnetic levitation force. By reducing the load to zero, the sintering speed (FFS) increases and the sintering time is shortened, but there is no decrease in yield or loss of sintering. A special sintering effect that sintering can be eliminated is achieved.
上述した例においては、 図 1 1 に示されているような荷重制御条 件を磁気浮揚装置のみにより設定するようにしているが、 この磁気 浮揚装置による荷重制御に、 従来から用いられているスタン ドによ る荷重制御を組み合わせることもできる。 スタ ン ドは、 例えば図 8 中に点線により示されているように、 バレツ ト 2 — 1 の底面に立設 された複数のプレー ト状の支え部材 2 8、 2 8、 · · · からなり、 特に焼結層下層部におけるシンターケーキ荷重を、 磁気浮揚力に代 わって、 支えるようにすれば、 上述した荷重制御条件を設定するた めに磁気浮揚装置が分担する磁気浮揚範囲を最小化することができ. したがって、 磁気浮揚装置の小型化、 省電力化を図ることができる, 図 1 3は、 スタン ドによる荷重制御を組み合わせたスタン ド複合 型の磁気浮揚装置について、 その複合の態様を説明するための説明 図であり、 負圧 1 0 0 O m m a qでの空気吸引式焼結方法における 層高 6 0 0 m mの焼結層に対して、 磁気浮揚およぴスタン ドにより 荷重制御を分担する範囲が異なる三つの態様を、 両者とも設けない 態様 (ベース) とともに、 示している。 こ こで、 三つの態様は、 そ れぞれ、 高さ 1 5 O m m、 2 5 O m mおよび 3 5 O m mのスタン ド が磁気浮揚装置に複合されており、 磁気浮揚範囲はスタン ドの上層 部の層高 4 0 O m mまでの範囲とされている。  In the example described above, the load control conditions as shown in FIG. 11 are set only by the magnetic levitation device. The load control by the load can be combined. The stand is composed of a plurality of plate-like support members 28, 28, erected on the bottom surface of the bullet 2-1 as shown by dotted lines in FIG. 8, for example. If the sinter cake load, especially in the lower part of the sintered layer, is supported instead of the magnetic levitation force, the magnetic levitation range shared by the magnetic levitation device to set the load control conditions described above is minimized. Therefore, it is possible to reduce the size and power consumption of the magnetic levitation device. Fig. 13 shows the composite form of the magnetic levitation device combined with the stand. FIG. 7 is a diagram for explaining the load control of the sintered layer with a layer height of 600 mm in the air suction type sintering method at a negative pressure of 100 O mmaq by magnetic levitation and a stand. States with different ranges of sharing And with aspects not provided even with both (base) is shown. Here, in the three embodiments, the stands of 15 O mm, 25 O mm and 35 O mm in height are combined with the magnetic levitation device, and the magnetic levitation range is The upper layer has a range of up to 40 Omm.
すなわち、 荷重制御条件は、 ベース : 磁気浮揚なし That is, the load control condition is Base: no magnetic levitation
1 5 0 : 深さ 2 0 0〜 4 5 0 mm磁気浮揚  150: Depth 200 to 450 mm magnetic levitation
深さ 4 5 0〜 6 0 0 mmスタン ド  Depth 450-600 mm stand
2 5 0 : 深さ 2 0 0〜 3 5 0 mm磁気浮揚  250: Depth 200 to 350 mm magnetic levitation
深さ 3 5 0〜 6 0 0 mmスタン ド  Depth 350 to 600 mm stand
3 5 0 : 深さ 2 0 0〜 2 5 0 mm磁気浮揚  350: Magnetic levitation depth 200 to 250 mm
深さ 2 5 0〜 6 0 0 mmスタン ド  Depth 250-600 mm Stand
である。 It is.
図 1 4 ( a ) 乃至図 1 4 ( d ) は、 上記した三つの態様の複合型 磁気浮揚装置を用いた焼結法の焼結効果を、 荷重制御を行わない ベースの焼結法ととも比較して、 説明するための特性図であり、 そ れぞれ、 図 1 4 ( a ) は生産率、 図 1 4 (b ) は歩留、 図 1 4 ( c ) は F F S、 そして、 図 1 4 ( d ) は焼き減りの焼結効果を示し ている。 本法によれば、 荷重制御を行わないベースに比べて十分な 焼結効果を示しており、 また、 磁気浮揚に代えてスタン ドを部分的 に用いても荷重制御による通気性調整効果を十分に発揮することが できることを示している。 特に、 磁気浮揚の焼結効果を失う ことな く、 下層部の荷重制御をスタン ドにより達成することができ、 極め て実用的である。  FIGS. 14 (a) to 14 (d) show the sintering effect of the sintering method using the composite magnetic levitation apparatus of the above three embodiments together with the sintering method of the base without load control. Fig. 14 (a) is the production rate, Fig. 14 (b) is the yield, Fig. 14 (c) is the FFS, and Fig. 14 is a characteristic diagram for comparison and explanation. 14 (d) shows the sintering effect of burnout. According to this method, a sufficient sintering effect is exhibited as compared to a base without load control, and even if a stand is partially used instead of magnetic levitation, the air permeability adjustment effect by load control is sufficient. It shows that it can be used for In particular, the load control of the lower layer can be achieved by the stand without losing the sintering effect of magnetic levitation, which is extremely practical.
以上説明した磁気浮揚による焼結鉱の製造方法および製造装置の 実施に当たっては、 磁気浮揚力を効果的に作用させるために、 シン ターケーキの表層部の比透磁率を高めることが望まれる。 この比透 磁率は焼結原料条件、 焼結条件により変動することから、 安定かつ 強力な磁気特性を確保するために、 シンターケーキ表層部に例えば 鉄粉、 スクラップ小片、 不良な還元鉄粉、 磁鉄鋼などを付着あるい は混合することができる。 これらは、 点火前の焼結原料層上に、 例 えば落下等の方法により投入される。 産業上の利用可能性 In implementing the method and apparatus for producing a sintered ore by magnetic levitation described above, it is desirable to increase the relative permeability of the surface layer of the sinter cake in order to effectively apply magnetic levitation. Since the relative magnetic permeability varies depending on the sintering raw material conditions and sintering conditions, in order to secure stable and strong magnetic properties, for example, iron powder, scrap small pieces, poor reduced iron powder, Steel or the like can be attached or mixed. These are introduced onto the sintering raw material layer before ignition by, for example, dropping. Industrial applicability
以上説明したように、 本発明の焼結鉱の製造方法および製造装置 によれば、 焼結鉱の幅方向の焼結状態の不均一性が是正され、 歩留 りの向上、 品質の安定等の磁気浮揚効果の一層の向上が達成される, 特に、 空気吸引式の焼結鉱の製造において、 吸引ブロア一圧に基 づく圧力勾配の分布、 あるいは、 シン夕一ケーキの荷重分布を計算 し、 焼結の燃焼溶融帯にかかる下向きの力を連結された磁石を備え た回転帯により調整し、 シン夕一ケーキに浮揚力を作用させた状態 下において焼結することにより、 シンターケーキの磁気浮揚効果を 常に安定して発揮させ、 これにより、 焼結鉱の製造過程における生 産性の向上、 歩留りの向上、 品質の一層の安定を図ることが可能と なる。  As described above, according to the method and the apparatus for manufacturing a sintered ore of the present invention, the unevenness of the sintered state in the width direction of the sintered ore is corrected, the yield is improved, the quality is stabilized, and the like. A further improvement in the magnetic levitation effect is achieved, especially in the production of air-sintered sinters, the distribution of the pressure gradient based on the suction blower pressure or the load distribution of the Shin-Yuichi cake is calculated. The downward force applied to the sintering combustion and melting zone is adjusted by a rotating zone equipped with a connected magnet, and sintering is performed under the condition that a levitation force is applied to the sinter cake, so that the sinter cake magnetic The levitation effect is always exhibited stably, which makes it possible to improve productivity, improve the yield, and further stabilize the quality in the sinter production process.

Claims

請 求 の 範 囲 The scope of the claims
1 . 空気吸引式焼結法により焼結鉱を製造する際に、 原料層表面に 着火し、 原料層上層部において焼結が開始した後、 焼成の完了した シン夕一ケーキに磁場を印加し、 磁気浮揚力を作用させた状態下に おいて焼結を進行させる焼結鉱の製造方法において、  1. When sinter is manufactured by the air suction sintering method, the surface of the raw material layer is ignited, and after the sintering starts in the upper layer of the raw material layer, a magnetic field is applied to the baked Shin Yuichi cake. In a method for producing a sintered ore in which sintering proceeds under a state in which a magnetic levitation force is applied,
焼結ス トラ ン ドの方向と垂直をなす幅方向の磁気浮揚力に分布を 持たせて焼結することを特徵とする焼結鉱の製造方法。  A method for producing sinter, characterized by sintering with a distribution of magnetic levitation force in the width direction perpendicular to the direction of the sintering strand.
2 . 空気吸引式焼結法により焼結鉱を製造する際に、 原料層表面に 着火し、 原料層上層部において焼結が開始した後、 焼成の完了した シンターケーキに磁場を印加し、 磁気浮揚力を作用させた状態下に おいて焼結を進行させる焼結鉱の製造方法において、  2. When producing sinter by the air suction type sintering method, the surface of the raw material layer is ignited, sintering starts in the upper part of the raw material layer, and a magnetic field is applied to the sintered sinter cake. In a method for producing a sintered ore in which sintering proceeds under a state in which a levitation force is applied,
焼結ス トラン ドの方向と垂直をなす幅方向の風量分布および Zま たは焼成減量が一定になるように磁気浮揚力の分布を制御して焼結 することを特徴とする焼結鉱の製造方法。  The sinter is characterized by controlling the distribution of air flow in the width direction perpendicular to the direction of the sintering strand and the distribution of magnetic levitation force so that the Z or firing loss is constant. Production method.
3 . 空気吸引式焼結法により焼結鉱を製造する際に、 原料層表面に 着火し、 原料層上層部において焼結が開始した後、 焼成の完了した シン夕一ケーキに磁場を印加し、 磁気浮揚力を作用させた状態下に おいて焼結を進行させる焼結鉱の製造方法において、  3. When producing sinter by the air suction sintering method, the surface of the raw material layer is ignited, sintering starts in the upper layer of the raw material layer, and a magnetic field is applied to the baked Shin Yuichi cake. In a method for producing a sintered ore in which sintering proceeds under a state in which a magnetic levitation force is applied,
焼結ス トラン ドの方向と垂直をなす幅方向の排ガス温度分布およ び/または排鉱部における幅方向の赤熱帯降下状態が一定になるよ うに磁気浮揚力の分布を制御して焼結することを特徵とする焼結鉱 の製造方法。  The sintering is controlled by controlling the distribution of the magnetic levitation force so that the exhaust gas temperature distribution in the width direction perpendicular to the direction of the sintering strand and / or the state of red tropical descent in the width direction in the mining area is constant. A method for producing sintered ore characterized by performing
4 . 空気吸引式焼結法により焼結鉱を製造する焼結機と、 原料層表 面に着火し、 原料層上層部において焼結が開始した後、 焼成の完了 したシン夕一ケーキに磁場を印加し、 磁気浮揚力を作用させるため の磁気浮揚装置を備えた焼結鉱の製造装置において、  4. A sintering machine that produces sinter by the air suction sintering method, and after igniting the surface of the raw material layer and sintering in the upper layer of the raw material layer, a magnetic field is applied to the baked Shin Yuichi cake. In a sintered ore manufacturing apparatus provided with a magnetic levitation device for applying a magnetic levitation force,
上記磁気浮揚装置が少なく とも焼結ス ト ラ ン ドの方向と垂直をな す幅方向に分割された複数の磁気浮揚要素を有することを特徴とす る焼結鉱の製造装置。 At least the magnetic levitation device must be perpendicular to the direction of the sintering strand. An apparatus for producing a sintered ore having a plurality of magnetic levitation elements divided in a width direction.
5 . 空気吸引式焼結法により焼結鉱を製造する際に、 原料充塡層へ 着火して焼結を開始し、 表層部の焼成が終了して表層部にシン夕一 ケーキを生成開始した時点からス トラン ド後方の排鉱部までの区間 内において、 シンターケーキ表層に直接接触して配設され、 かつ、 ス トラン ド方向にス トラン ドと同期して移動する断続的に連なる複 数の磁石によりス トラン ド上のシンターケーキを磁着し、 シン夕一 ケーキに連続的に浮揚力を作用させつつ焼結することを特徵とする 焼結鉱の製造方法。  5. When producing sinter by the air suction sintering method, sintering is started by igniting the raw material packed bed, sintering of the surface layer is completed, and the formation of Shin-Yuichi cake on the surface layer is started. In the section from the time of the strike to the mining section behind the strand, it is arranged in direct contact with the surface of the sinter cake, and it moves intermittently in the direction of the strand in synchronization with the strand. A method for producing sinter, characterized by magnetizing a sinter cake on a strand with a number of magnets and sintering the sinter cake while continuously applying a buoyancy to the cake.
6 . 請求項 5に記載の焼結項の制御方法において、 磁石の位置をシ ンタ—ケーキに対して上下方向に調整し、 ス トラン ド幅方向の焼成 減量分布または焼結べッ ドの通過風量分布を均一にして、 シン夕一 ケーキに作用させる浮揚力を制御することを特徴とする方法。  6. The method for controlling a sintering term according to claim 5, wherein the position of the magnet is adjusted up and down with respect to the sinter cake, and the sintering weight distribution in the strand width direction or the air flow rate through the sintering bed. A method characterized by making the distribution uniform and controlling the levitation force acting on the cake.
7 . 空気吸引式焼結法により焼結鉱を製造する焼結機と、 原料充塡 層の表層部の焼成が終了して表層部にシン夕一ケーキを生成開始す る位置からス トラン ド後方の排鉱部までの区間内を、 ス トラン ド進 行方向にス トラン ドと同期してシンターケーキ表層に直接接触して 移動し、 かつ、 ス トラン ド上のシンターケーキを磁着してシンタ一 ケーキに連続的に浮揚力を作用させることが可能なス トラン ド方向 に断続的に連なる複数の磁石と、 上記断続的に連なる複数の磁石を 支持し、 かつ、 移動させる機構とを備えたことを特徴とする焼結鉱 の製造装置。  7. A sintering machine that produces sintered ore by air suction type sintering, and a strand from the position where the baking of the surface layer of the raw material packed bed is completed and a thin cake is formed on the surface layer In the section up to the mining section in the rear, it moves in direct contact with the strand in the direction of the strand in direct contact with the surface of the sinter cake, and magnetizes the sinter cake on the strand. The sinter includes a plurality of magnets intermittently connected in a strand direction capable of continuously applying a levitation force to the cake, and a mechanism for supporting and moving the plurality of intermittently magnets. A sinter ore production apparatus characterized by the following.
8 . 請求項 7に記載の焼結鉱の製造装置において、 断続的に連なる 複数の磁石を支持し、 かつ、 移動させる機構が、 個々の磁石を互い に連結して支持する継ぎ目なし鎖状の回転帯と、 該回転帯を回転移 動させる駆動および制御ュニッ トとを有することを特徴とする装置, 8. The sinter ore manufacturing apparatus according to claim 7, wherein the mechanism for supporting and moving the plurality of intermittently connected magnets has a seamless chain shape for connecting and supporting the individual magnets. A device having a rotating band, and a drive and control unit for rotating and moving the rotating band.
9 . 空気吸引式焼結法により焼結鉱を製造する際に、 原料層へ着火 し、 原料上層部において焼結が開始した後、 焼成の完了した上層の シンターケーキに磁場を印加し、 磁気浮揚力を作用させた状態で焼 結を進行させる焼結鉱の製造方法において、 焼結層の高さ方向の通 気情報から得られた通気不良部位に磁気浮揚力を作用させるように 制御することを特徵とする焼結鉱の製造方法。 9. When sinter is manufactured by the air suction sintering method, the raw material layer is ignited, sintering is started in the upper layer of the raw material, and then a magnetic field is applied to the sinter cake in the upper layer where firing is completed. In a sinter ore manufacturing method in which sintering proceeds while a levitation force is applied, control is performed so that a magnetic levitation force is applied to a poorly ventilated portion obtained from air information in the height direction of the sintered layer. A method for producing a sintered ore.
1 0 . 請求項 9に記載の焼結鉱の製造方法において、 磁気浮揚力を 少なく とも焼結層の中層部を含む中、 下層部に作用させることを特 徵とする焼結鉱の製造方法。  10. The method for producing a sintered ore according to claim 9, wherein the magnetic levitation force is applied to a lower part of the sintered layer including at least a middle part thereof. .
1 1 . 請求項 9あるいは請求項 1 0に記載の焼結鉱の製造方法にお いて、 通気情報としてシンターケーキの高さ方向断面の C T画像解 析を用いることを特徵とする焼結鉱の製造方法。  11. The method for producing a sintered ore according to claim 9 or 10, characterized in that a CT image analysis of a cross section in the height direction of the sinter cake is used as aeration information. Production method.
1 2 . 請求項 1乃至請求項 3のいずれか、 あるいは、 請求項 9乃至 請求項 1 1 のいずれかに記載の焼結鉱の製造方法において、 下層部 における通気調整のために、 部分的に磁気浮揚力に代えてスタン ド による荷重制御を組み合わせることを特徵とする焼結鉱の製造方法 < 1 3 . 空気吸引式焼結法により焼結鉱を製造する焼結機と、 焼結機 の長手方向に移動可能とされた焼結層に磁気浮揚力を作用させるた めの 1 基あるいは複数基の磁気浮揚装置と、 焼結層の高さ方向の通 気情報から得られた通気不良部位に磁気浮揚力を作用させるように 上記磁気浮揚装置を移動させる制御装置とを備えることを特徴する 焼結鉱の製造装置。  12. The method for producing a sintered ore according to any one of claims 1 to 3, or any one of claims 9 to 11, wherein, in order to adjust the ventilation in the lower layer part, Sinter production method characterized by combining load control with a stand instead of magnetic levitation <13. Sintering machine that produces sinter by air suction sintering method One or more magnetic levitation devices for applying a magnetic levitation force to the sintering layer that can be moved in the longitudinal direction, and poorly ventilated areas obtained from the airflow information in the height direction of the sintering layer And a control device for moving the magnetic levitation device so as to apply a magnetic levitation force to the sinter.
1 4 . 請求項 1 3に記載の焼結鉱の製造装置であって、 磁気浮揚装 置が載置され、 かつ、 焼結機の長手方向の任意の位置に移動しうる 台車と、 上記台車を走行させるための専用軌条とを更に備えること を特徴とする焼結鉱の製造装置。  14. The sinter production apparatus according to claim 13, wherein a magnetic levitation device is mounted, and the trolley can move to an arbitrary position in a longitudinal direction of the sintering machine. And a dedicated rail for running the sinter.
1 5 . 請求項 4、 請求項 1 3あるいは請求項 1 4に記載の焼結鉱の 製造装置であって、 焼結層下層部に焼結機に立設されたスタン ドを 更に備えることを特徴とする焼結鉱の製造装置。 15. The sinter according to claim 4, claim 13 or claim 14. A sintering ore manufacturing apparatus, further comprising a stand provided on a sintering machine below a sintering layer.
PCT/JP1993/001164 1992-08-20 1993-08-19 Method and apparatus for producing sintered ore WO1994004710A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP94908106A EP0608436A4 (en) 1992-08-20 1993-08-19 Method and apparatus for producing sintered ore.
BR9305616A BR9305616A (en) 1992-08-20 1993-08-19 Process and apparatus for the production of sintered iron ores
AU47619/93A AU668756B2 (en) 1992-08-20 1993-08-19 Method and apparatus for producing sintered ores

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP24253892A JP2627125B2 (en) 1992-08-20 1992-08-20 Method and apparatus for producing sintered ore
JP4/242538 1992-08-20
JP11922093A JPH06306496A (en) 1993-04-23 1993-04-23 Method and device for adjusting air permeability in sintering layer
JP5/119220 1993-04-23

Publications (1)

Publication Number Publication Date
WO1994004710A1 true WO1994004710A1 (en) 1994-03-03

Family

ID=26456999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001164 WO1994004710A1 (en) 1992-08-20 1993-08-19 Method and apparatus for producing sintered ore

Country Status (5)

Country Link
EP (1) EP0608436A4 (en)
CN (1) CN1086266A (en)
AU (1) AU668756B2 (en)
BR (1) BR9305616A (en)
WO (1) WO1994004710A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512198A1 (en) * 1995-03-31 1996-10-02 Boellhoff Gmbh Verbindungs Und Riveting device with equipment to supply and hold rivet
CN103994660A (en) * 2013-02-16 2014-08-20 北京斯蒂奇科技有限公司 Circulation method and device of bridge type sintering machine
CN113865359A (en) * 2021-08-30 2021-12-31 中信重工机械股份有限公司 Sintered ore magnetic suspension cooling device and waste heat recovery process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349833B1 (en) * 1995-12-22 2002-02-26 Kawasaki Steel Corporation Method of feeding sintering material by use of magnetic forces
JP5585503B2 (en) * 2010-03-24 2014-09-10 Jfeスチール株式会社 Method for producing sintered ore
CN104962732B (en) * 2014-10-29 2017-06-16 安徽工业大学 A kind of sintering process SO2, bioxin cooperates with discharge-reducing method and system
CN106337119B (en) * 2016-09-12 2018-06-26 鞍钢股份有限公司 Sintering ignition method for ultra-thick material layer by adopting presintering
WO2018101530A1 (en) * 2016-12-01 2018-06-07 주식회사 포스코 Facility for manufacturing sintered ores
CN108895837A (en) * 2018-03-23 2018-11-27 武汉钢铁有限公司 Low NO based on the igniting of double-layer cloth bilayerxSintering system
TWI688771B (en) * 2018-12-06 2020-03-21 中國鋼鐵股份有限公司 Device and method for measuring effective wind speed of sintering bed

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194024A (en) * 1984-03-13 1985-10-02 Sumitomo Metal Ind Ltd Production of sintered ore
JPH04124225A (en) * 1990-09-14 1992-04-24 Nippon Steel Corp Operating method for sintering
JPH04329837A (en) * 1991-04-30 1992-11-18 Nippon Steel Corp Method for operating sintering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU964017A1 (en) * 1980-11-14 1982-10-07 Киевский институт автоматики им.ХХУ съезда КПСС Method for agglomeration of iron ore materials
AU631504B2 (en) * 1990-09-14 1992-11-26 Nippon Steel Corporation Method and apparatus for sintering operation
JPH05256582A (en) * 1992-03-12 1993-10-05 Nippon Steel Corp Magnetically lifting apparatus for feebly magnetic substance such as sintered ore
JP2715215B2 (en) * 1992-03-12 1998-02-18 新日本製鐵株式会社 Magnetic levitation device for weak magnetic materials such as sinter
JPH05255766A (en) * 1992-03-13 1993-10-05 Nippon Steel Corp Sintering operation method and device by magnetic floating plus oxygen enriching
JPH05255767A (en) * 1992-03-13 1993-10-05 Nippon Steel Corp Magnetic flotation method and device for sintered ore
JP2663796B2 (en) * 1992-07-03 1997-10-15 双葉電子工業株式会社 Display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194024A (en) * 1984-03-13 1985-10-02 Sumitomo Metal Ind Ltd Production of sintered ore
JPH04124225A (en) * 1990-09-14 1992-04-24 Nippon Steel Corp Operating method for sintering
JPH04329837A (en) * 1991-04-30 1992-11-18 Nippon Steel Corp Method for operating sintering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0608436A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512198A1 (en) * 1995-03-31 1996-10-02 Boellhoff Gmbh Verbindungs Und Riveting device with equipment to supply and hold rivet
DE19512198C2 (en) * 1995-03-31 1999-07-29 Boellhoff Gmbh Riveting device
CN103994660A (en) * 2013-02-16 2014-08-20 北京斯蒂奇科技有限公司 Circulation method and device of bridge type sintering machine
CN103994660B (en) * 2013-02-16 2016-06-22 北京斯蒂奇科技有限公司 The round-robin method of bridge-type sintering machine and device
CN113865359A (en) * 2021-08-30 2021-12-31 中信重工机械股份有限公司 Sintered ore magnetic suspension cooling device and waste heat recovery process

Also Published As

Publication number Publication date
EP0608436A4 (en) 1995-02-01
EP0608436A1 (en) 1994-08-03
CN1086266A (en) 1994-05-04
BR9305616A (en) 1996-01-02
AU4761993A (en) 1994-03-15
AU668756B2 (en) 1996-05-16

Similar Documents

Publication Publication Date Title
WO1994004710A1 (en) Method and apparatus for producing sintered ore
EP3550282A1 (en) Air permeability measuring device and sintering apparatus
KR930012178B1 (en) Method and apparatus for sintering operation
KR101461479B1 (en) Apparatus and method for controlling the air volume of a sintering machine
JP2627125B2 (en) Method and apparatus for producing sintered ore
JPH0339424A (en) Method for controlling air permeability of sintered raw material bed
JP2627122B2 (en) Sinter production method
US20050281946A1 (en) Method for producing a stratified composite material
CS216904B2 (en) Appliance for continuous production of the metal band from the powder
JP2523415B2 (en) Sintering operation method
JP2668613B2 (en) Sinter production method
JPH04124225A (en) Operating method for sintering
JPH0422562A (en) Precision casting method for ti, ti alloy and precision casting device
JP2003170265A (en) Device for manufacturing composite metallic member
US7040379B2 (en) Method and apparatus for the regulation of strip temperature in a continuous metallic strip casting plant
JP2007144428A5 (en)
KR101909514B1 (en) Apparatus for measuring permeability and Sintering apparatus
JPH08277426A (en) Production of sintered ore
JP2622645B2 (en) Method for judging suitability of sintered ore pore structure and method for producing sintered ore
JP2001343191A (en) High temperature continuous furnace and conveyor belt material for the same
JP2582711B2 (en) Method for improving air permeability of sintered layer
JPS61250120A (en) Operating method for sintering machine
JPH06322451A (en) Production of sintered ore
JPH09166385A (en) Manufacture of sintered mineral
JPH1180846A (en) Operation of sintering machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1994908106

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 211932

Date of ref document: 19940420

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1994908106

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994908106

Country of ref document: EP