WO1994001381A1 - Gas generating agent for air bags - Google Patents

Gas generating agent for air bags Download PDF

Info

Publication number
WO1994001381A1
WO1994001381A1 PCT/JP1993/000634 JP9300634W WO9401381A1 WO 1994001381 A1 WO1994001381 A1 WO 1994001381A1 JP 9300634 W JP9300634 W JP 9300634W WO 9401381 A1 WO9401381 A1 WO 9401381A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generating
generating agent
gas
nitrogen
composition
Prior art date
Application number
PCT/JP1993/000634
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Yoshida
Original Assignee
Nippon Koki Co., Ltd.
Daicel Chemical Industries, Ltd.
Otsuka Kagaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4185253A external-priority patent/JPH0632690A/en
Priority claimed from JP4185251A external-priority patent/JPH0632689A/en
Application filed by Nippon Koki Co., Ltd., Daicel Chemical Industries, Ltd., Otsuka Kagaku Kabushiki Kaisha filed Critical Nippon Koki Co., Ltd.
Priority to EP93910338A priority Critical patent/EP0607446B1/en
Priority to KR1019940700396A priority patent/KR100242401B1/en
Priority to DE69323410T priority patent/DE69323410T2/en
Priority to CA002115557A priority patent/CA2115557C/en
Publication of WO1994001381A1 publication Critical patent/WO1994001381A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/02Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate of an alkali metal
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/22Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate the salt being ammonium perchlorate

Definitions

  • the present invention relates to a gas generating agent for an airbag.
  • the gas generator is ignited and burned instantly after the collision is sensed by electrical or mechanical ignition, generating gas and inflating the bag.
  • the gas generating agent is usually used in the form of a pellet or a disk. It is essential that such a gas generating agent has an appropriate burning rate. If the combustion speed is low, the bag does not inflate instantly and does not serve as an airbag.
  • gas generating agents are made of powdered raw materials and have impact ignitability. Impact ignitability refers to the ignition sensitivity to impact.If it is too sharp, it can be used in manufacturing processes such as mixing operations and molding processes. The explosion risk of the air becomes large, which is not desirable for safety. Therefore, it is desirable that impact ignitability be as low as possible.
  • the gas generating agent does not have a very high combustion temperature. This is because airbags usually release gas inside after inflation and then contract to absorb the impact of an occupant's crash and help the occupant escape, but when the combustion temperature is high, it is released. The higher the gas temperature, the greater the risk of occupant burns, reduced functionality due to perforations in the bag, and burning of the bag causing a vehicle fire.
  • sodium azide is used as a gas generating base, and for example, an oxidizing agent (TioO,
  • KC 1 0 4 N a C 1 0 4 perchloric salts, such as, KC 1 0 3 -
  • Gas generators based on the above-mentioned azure sodium are the main sources Since the raw gas is only nitrogen gas, it is widely used as a gas generator for airbags because of its excellent performance of moderate combustion rate and relatively low combustion temperature, but sodium azide There are the following problems.
  • the gas generated by the combustion or decomposition of sodium azide has a high nitrogen concentration and a very low concentration of toxic components, so there is no practical problem. It is desired that the concentration be further reduced.
  • Crude sodium azide used as a gas generating agent has a hygroscopic property, and if it absorbs moisture, its combustion performance is reduced. Therefore, it is necessary to take measures to prevent moisture absorption.
  • a nitrogen-containing compound as a base for a gas generating agent.
  • a metal reducing agent such as Zr or Mg
  • an oxidizing agent such as perchloric acid or chloric acid or the like
  • the generated heat may be used to burn the gas generating base.
  • gas generating bases smokeless explosives, nitrocellulose, azodicarbonamide, aminoguanidine, thiourea and the like are mentioned (JP-B-49-19734, Tokiko Sho 4 9 1
  • Japanese Patent Application Laid-Open No. 50-1188979 discloses azological Airbags composed of nitrogen-containing organic compounds such as Bonamide and Trihydrazinotriazine and oxidizing agents such as potassium permanganate, manganese dioxide, barium dichromate, and parium peroxide. Disclose gas generators, but when oxidizing agents such as potassium permanganate and manganese dioxide are used, their impact ignitability and burning rate are unsatisfactory. If an oxidizing agent such as palladium or parium peroxide is used, toxic components are generated in the gas.
  • An object of the present invention is to provide a gas generating agent for airbags having an impact ignitability equal to or lower than that of a gas generating agent based on sodium azide.
  • Another object of the present invention is to provide a gas generating agent for an air bag having a combustion rate and a gas generation amount equal to or higher than that of a gas generating agent based on sodium azide. It is in.
  • Another object of the present invention is to provide a gas generating agent for an air bag which does not have the above-mentioned disadvantages (1) to (6) of an azide compound.
  • Another object of the present invention is to provide a gas generating agent for an airbag having a low combustion temperature and a lower risk and toxicity than sodium azide.
  • the present invention relates to a gas generating agent for an airbag comprising a nitrogen-containing organic compound and an oxohalogenate.
  • a nitrogen-containing compound is used as a gas generating base.
  • the nitrogen-containing compound is not particularly limited as long as it is an organic compound having a nitrogen atom in the molecule, and examples thereof include an amino group-containing organic compound, a nitramine group-containing organic compound, and a ditorosamine group. Organic compounds and the like can be mentioned. Specific examples of the organic compound having an amino group are not particularly limited.
  • Razides eg, acetate hydrazide, 1, 2— Tylhydrazine, Lauric hydrazide, Salicylic hydrazide, Oxalic dihydrazide, Carbohydrazide, Adipic dihydrazide, Sebacin Acid dihydrazide, dodecangio hydrazide, isophthalic hydrazide, methylcanolenozate, semicarno, zid, honolem hydrazide, 1, 2 — Diformylhydrazine) and the like.
  • Razides eg, acetate hydrazide, 1, 2— Tylhydrazine, Lauric hydrazide, Salicylic hydrazide, Oxalic dihydrazide, Carbohydrazide, Adipic dihydrazide, Sebacin Acid dihydrazide, dodecangio hydrazide, isophthalic hydrazide, methylcanolenozate,
  • the compound containing a nitramine group there is no particular limitation on the compound containing a nitramine group, but examples thereof include dinitropentamethylentramine, trimethylentrylenetroamine (RDX), and tetramethylamine. Examples thereof include aliphatic compounds and alicyclic compounds having one or more nitramine groups as substituents, such as lamethylentranitroamine (HMX).
  • the organic compound containing a nitrosoamine group is not particularly limited.
  • a nitrosoamine group is used as a substituent such as dinitrosopentamethylenetetrathamine (DPT).
  • DPT dinitrosopentamethylenetetrathamine
  • nitrogen-containing compounds azodicarbonamide has been widely used, for example, as a foaming agent for resins, and has a low risk of fire and low toxicity, and therefore has a low risk of handling. Therefore, it is particularly preferable.
  • One nitrogen-containing compound may be used alone, or two or more nitrogen-containing compounds may be used in combination.
  • a commercially available nitrogen-containing compound may be used as it is.
  • Nitrogen The shape and particle size of the elementary compound are not limited, and may be appropriately selected and used.
  • the oxidizing agent used in the present invention is an oxohalogenate.
  • Known oxohalogenates can be used. Of these, halides, perhalates and the like are preferred, and their alkali metal salts are particularly preferred.
  • Examples of the alkali metal halide include chlorate and sodium chlorate, sodium chlorate, potassium bromate, sodium bromate and the like. Salts and the like can be mentioned.
  • Examples of the alkali metal perhalates include potassium perchlorate, sodium perchlorate, potassium perbromate and sodium perbromate. Chlorate and perbromate can be mentioned.
  • One oxohalogenate may be used alone, or two or more oxohalogenates may be used in combination.
  • the compounding amount of the oxohalogenate may usually be a stoichiometric amount capable of completely oxidizing and burning the nitrogen-containing compound on the basis of the oxygen content, but the compounding ratio of the nitrogen-containing compound and the oxohalogenate may be adjusted. By making appropriate changes, it is possible to arbitrarily adjust the burning rate, the burning temperature, the composition of the combustion gas, and the like. 20 to 200 parts by weight of oxohalogenate, preferably 30 to 200 parts by weight. You may mix
  • the shape and dimensions of the oxohalogenate are not particularly limited, and may be appropriately selected and used.
  • composition of the present invention may contain, in addition to the above two essential components, at least one selected from a combustion control catalyst, a detonation inhibitor, and an oxygen generator as long as the performance of the composition is not impaired. Good.
  • Combustion control catalysts are one of the basic performances while maintaining safety performance such as low impact ignitability and non-detonating properties, or while maintaining the basic performance as a gas generating agent such as the amount of generated gas. This is a catalyst for appropriately changing the combustion rate, which depends on the purpose of use.
  • the combustion control catalyst include oxides, chlorides, carbonates, sulfates, cellulosic compounds, and organic polymer compounds of the fourth and sixth elements of the periodic table. Can be.
  • Oxides of Period 4 element and the sixth period elements of the Periodic Table of the Elements, chloride is a specific example of carbonate and sulfate salts, e.g., Z n O, Z n C 03, M n 0 2 , and F e C, C u O, P b 3 0 i P b ⁇ 2, P b O, P b 2 0 3, S, T i 0 2, V 2 0 5,
  • combustion control catalyst one type may be used alone, or two or more types may be used in combination.
  • the blending amount of the combustion control catalyst is not particularly limited and can be appropriately selected from a wide range. Usually, it is preferably about 0.1 to 50 parts by weight based on 100 parts by weight of the total amount of the nitrogen compound and the oxohalogenate. Should be about 0.2 to 10 parts by weight.
  • the particle size of the combustion control catalyst is not particularly limited, and may be appropriately selected and used.
  • Detonation inhibitors are added to prevent gas generating agents from being involved in a fire during a manufacturing, handling, or transportation process, or from detonating when subjected to a strong impact. If the detonation of the gas generating agent is eliminated by the addition of the detonating deterrent, the safety in each process of manufacturing, handling, and transporting the gas generating agent can be further enhanced.
  • Known explosive inhibitors can be used, for example, oxides such as bentonite, alumina, diatomaceous earth, Na, K, Ca, Mg, Zn, Cu, Al, etc. Metal carbonate, bicarbonate and the like. Distribution of detonation inhibitor The total amount is not particularly limited and can be appropriately selected from a wide range. However, it is usually 5 to 30 parts by weight with respect to 100 parts by weight of the total amount of the nitrogen-containing compound and oxohalic acid.
  • Oxygen generator the 0 2 concentration of the combustion product gas of the present invention the composition is effective to further increase.
  • an oxygen generating agent in particular can be used known ones without limitation, for example, and the like C u 0 2, K 3 ⁇ 4 0 4.
  • the amount of the oxygen generator is not particularly limited and can be selected from a wide range.However, if it is usually about 100 to 100 parts by weight based on 100 parts by weight of the total amount of the nitrogen-containing compound and the oxohalogenate, Good.
  • the composition of the present invention may contain a combustion temperature regulator or a combustion rate regulator as long as its performance is not impaired.
  • the combustion temperature regulator include Na, K, and Ca. And carbonates of metals such as Mg and bicarbonate.
  • the burn rate regulator include sulfates such as A1, Zn, Mn, and Fe.
  • the compounding amount of the combustion temperature regulator and the combustion rate regulator is, specifically, about 10 parts by weight, preferably 5 parts by weight, per 100 parts by weight of the total amount of the nitrogen-containing compound and the oxohalogenate. The range may not exceed about parts by weight.
  • composition of the present invention has a range in which its performance is not impaired.
  • additives conventionally used in gas generating agents for airbags may be included.
  • the composition of the present invention is produced by mixing the above components, and the resulting mixture may be used as it is as a gas generating agent, or may be used in the form of a formulation.
  • Formulation is performed according to a conventional method.
  • an appropriate amount of the composition of the present invention and a binder may be mixed and molded.
  • a binder that is commonly used for such a purpose may be used.
  • the formulation is not particularly limited, and examples thereof include pellets, discs, spheres, rods, hollow cylinders, sugary sugars, and tetrapods. It may be porous (for example, briquette).
  • the respective components of the composition of the present invention may be individually formulated, and these may be used as a mixture.
  • composition of the present invention has the following advantages.
  • composition of the present invention has a very low risk of decomposing or burning and causing a fire, and has a very low toxicity. Formulation is easy.
  • composition of the present invention has impact ignitability equal to or lower than that of a gas generating agent based on sodium azide, and is extremely high in safety.
  • composition of the present invention has a combustion rate and a gas generation rate equal to or higher than that of a gas generating agent based on sodium azide.
  • composition of the present invention has a relatively low combustion temperature, similarly to a gas generating agent based on sodium azide, it may cause burns to the occupants or holes in the bag. There is no danger of burning the package, and the amount of toxic components in the generated gas is extremely small.
  • the nitrogen-containing compound which is the gas base of the composition of the present invention, has no hygroscopic property, it is not necessary to take any measures to prevent moisture absorption.
  • composition of the present invention can be produced at a very low cost.
  • composition of the present invention is easier to dispose of than conventional gas generating agents.
  • a DCA azodicarbonamide
  • Example 1 A nitrogen-containing compound, an oxohalogenate and, if necessary, a combustion control catalyst were mixed in the proportions (% by weight) shown in Table 1 below to obtain a composition of the present invention (Nos. 1 to 17).
  • Table 1 a composition of the present invention (Nos. 1 to 17).
  • a predetermined amount of a sample (a gas generating agent (9), a pellet of the composition No. 1 to 15 of the present invention) is weighed in a reaction vessel (1).
  • a reaction vessel (1) There are two types of reaction vessels, large and small, large with an inner diameter of 50 111 111 and a height of 50 111 111 (FIG. 2), and small with an inner diameter of 30 mm ⁇ 50 mm in height (FIG. 3).
  • the igniter is a mixture of 0.3 or 1.0 g of boron and K N O,
  • CP max is the maximum pressure in the chamber (kgcm 2 )
  • W ⁇ 1 / / 2 is the maximum pressure of the chamber 1
  • T9Q is the time required for the pressure in the bump to reach 90 % of the maximum value (msec)
  • BT ma The Means the maximum temperature reached in the bomb (K g / cn ⁇ )
  • T 9Q is a numerical value that simulates the airbag deployment time
  • cp max is the value of the present invention.
  • An index that indicates that the composition maintains good performance as a gas generant w 1/2 is a parameter that simulates the speed of combustion of the gas generant in the chamber
  • BP max is a parameter that indicates the gas generating capacity of a unit mass of gas generating agent BT ma concertis a parameter that simulates the temperature of gas in the air bag when the air bag is deployed.
  • composition of the present invention was obtained by mixing the nitrogen-containing compound, the oxohalogenate, and, if necessary, the combustion control catalyst in the mixing ratio (% by weight) shown in Table 3 below.
  • the composition of the present invention was subjected to the following impact ignition test.
  • the current of the gas generating agent was subjected to the impact ignitability test (N a N 3 - C u 0 KC 1 0 4 - - F e J 0 4 and N a N 3). (Impact ignition test)
  • This test is a method to measure the “easiness of ignition by impact (impact ignition sensitivity)” of the gas generating composition. The experimental procedure will be described below with reference to FIGS.
  • the stainless steel container (15) is a stainless steel cylinder with a bottom (SUS304), 31 mm in inner diameter, 36 mm in outer diameter, 2.5 mm in thickness, and 55 mm in height.
  • a gas generating agent containing a hygroscopic gas generating base for example, sodium azide
  • a paraffin (20) with a stainless steel container (15) to prevent moisture absorption for example, sodium azide
  • the gap length is 1 mm but no ignition occurs, use a 20 g powder sample (16), insert a D-type detonator (19) into the sample, and use a stainless steel container (15). Attach the screw cap (21) to the test. Using this method, even very low impact ignitable substances can ignite and burn or explode.
  • Table 3 shows the limit gap length at the time of ignition (ignition up to the gap length) and the limit gap length at the time of non-ignition (ignition beyond the gap length).
  • composition of the present invention was obtained by mixing azodicarbonamide (hereinafter referred to as “ADCA”) and oxohalogenate and, if necessary, a combustion control catalyst in the mixing ratio (% by weight) shown in Table 4 below to obtain the composition of the present invention.
  • ADCA azodicarbonamide
  • Table 4 a combustion control catalyst in the mixing ratio (% by weight) shown in Table 4 below to obtain the composition of the present invention.
  • the present invention Perez preparative composition in a hydraulic tablet molding machine at a pressure of 6 0 kg / cm L (diameter 7. 6 mm, height 3 mm) was molded into said 7. 5 Li Tsu Torubonbu test Provided. The results are shown in Table 4.
  • ADCA azodicarbonamide
  • NaClO 3 sodium chlorate
  • a gas generating agent suggested in Japanese Patent Publication No. 49-221171 was manufactured. That is, 200 parts by weight of azodicarbonamide, 90 parts by weight of sodium chlorate and 10 parts by weight of Zr powder were mixed to obtain a comparative composition.
  • Example 2 Each of these was formed into a pellet (diameter 5 mm, height 5.0 mm) in the same manner as in Example 1 and subjected to a combustion test of a steel pipe with a nozzle and an impact ignition test. At that time, the presence of a flame was also observed. The results are shown in Tables 5 and 6.
  • Table 5 shows that the addition of a metal reducing agent such as Zr increases the danger of gas generating agents.
  • the reaction (combustion) of the composition of the present invention is performed without flame and at low temperature.
  • the comparative composition containing Zr becomes flammable and the temperature of the reaction product (gas) increases. Therefore, it is not preferable to add a metal reducing agent such as Zr, Al, or Mg to the composition of the present invention.
  • This composition was subjected to a strand burner test (for example, “The Combustion Characteristics of Azide Trim-based Gas Generating Agents”, pp. 98-99, Abstracts of Lectures, 1992 Annual Meeting of the Japan Industrial Explosives Association, Japan). The test was conducted to examine the flammability.
  • This composition is pressed into a prism (8 mm x 5 mm x 50 mm) (pressure: 1.25 t // cm 2 ), and a restrictor is placed on the side of the prism. Samples were prepared by applying silicon resin.
  • the burning rate was 28.3 mmZ seconds at l O kgf Z cm 2 , 37.9 mmZ seconds at 20 kgf / cm 2 , and 46. O mmZ seconds at 40 kgf Z cm 2 .
  • the burning rate (mmZ seconds) of the composition of the present invention obtained by mixing 30 parts by weight of azodicarbonamide and 70 parts by weight of sodium perchlorate was obtained in the same manner as in Example 8 above. As a result, it was found that no ignition occurred at l O kgf Z cm 2 and 48.3 mm nos at 40 kgf Z cm 2 .
  • Figure 1 is a longitudinal sectional view of a gas collecting bomb used for a bomb test.
  • FIG. 2 and FIG. 3 are enlarged views of the reaction vessel installed in the gas collecting bomb.
  • 4 to 7 are drawings showing the procedure of the impact ignition test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Air Bags (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

A gas generating agent for air bags which consists of a nitrogen-containing organic compound and an oxohalogenate, has a high impact ignitability, a high combustion rate and a high gas generation rate, and can attain a comparatively low combustion temperature.

Description

明 細 書  Specification
ェアバッグ用ガス発生剤  Gas generating agent for air bag
技 術 分 野  Technical field
本発明は、 エアバッ グ用ガス発生剤に関する。  The present invention relates to a gas generating agent for an airbag.
背 景 技 術  Background technology
自動車など車両が高速で衝突した際に、 乗員が車両の ハン ドル部分やフ ロ ン トガラスなどに衝突して死傷する のを防ぐため、 ハン ドル又はダッ シユボー ド内部に組み 込まれたナイ ロ ン性バッグが衝突を感知して膨張する所 謂エアバッグシステムは、 自動車などの安全性に対する 要求が一層高まる中その需要を飛躍的に増大させつつあ る o  When a car or other vehicle collides at a high speed, a nylon mounted inside the handle or dash board to prevent the occupant from colliding with the handle or front glass of the vehicle and causing injury or death. The demand for a so-called airbag system, in which the safety bag inflates upon sensing a collision, is increasing dramatically as the demand for safety of automobiles and the like increases further.
エアバッ グシステムにおいては、 衝突を感知した後瞬 時に電気的又は機械的に点火してガス発生剤を着火燃焼 させ、 ガスを発生させてバッグを膨脹させる。 しかして ガス発生剤は通常ペレツ ト又はディ スク状に成型されて 用いられる。 かかるガス発生剤は適度な燃焼速度を有す ることを必須とする。 燃焼速度が遅いとバッグが瞬時に 膨張せず、 エアバッ ク と しての用をなさない。 一方、 ガ ス発生剤は粉末原料からなり、 衝撃着火性を有している。 衝撃着火性とは衝撃に対する着火感度のことであり、 こ れが鋭敏すぎると混合操作や成型工程などの製造工程で の爆発危険性が大き く なつて安全上好ま しく ない。 よつ て衝撃着火性は出来るだけ低いことが望ま しい。 In an airbag system, the gas generator is ignited and burned instantly after the collision is sensed by electrical or mechanical ignition, generating gas and inflating the bag. Thus, the gas generating agent is usually used in the form of a pellet or a disk. It is essential that such a gas generating agent has an appropriate burning rate. If the combustion speed is low, the bag does not inflate instantly and does not serve as an airbag. On the other hand, gas generating agents are made of powdered raw materials and have impact ignitability. Impact ignitability refers to the ignition sensitivity to impact.If it is too sharp, it can be used in manufacturing processes such as mixing operations and molding processes. The explosion risk of the air becomes large, which is not desirable for safety. Therefore, it is desirable that impact ignitability be as low as possible.
またガス発生剤には燃焼温度が余り高く ないことも要 求される。 と言うのは、 通常エアバッグは、 乗員が激突 する際の衝撃を吸収し更に乗員の脱出を助けるために、 膨張した後に内部のガスを放出して収縮するが、 燃焼温 度が高いと放出ガス温度が高く なつて乗員が火傷を負つ たり、 バッグに穴が開いて機能が低下したり、 バッグが 燃焼して車両火災を引き起こ したりする危険性が大き く なるからである。  It is also required that the gas generating agent does not have a very high combustion temperature. This is because airbags usually release gas inside after inflation and then contract to absorb the impact of an occupant's crash and help the occupant escape, but when the combustion temperature is high, it is released. The higher the gas temperature, the greater the risk of occupant burns, reduced functionality due to perforations in the bag, and burning of the bag causing a vehicle fire.
従来エアバッグ用ガス発生剤と しては、 アジ化ナ ト リ ゥムをガス発生基剤と し、 例えば酸化剤 〔T i O o 、  Conventionally, as a gas generating agent for airbags, sodium azide is used as a gas generating base, and for example, an oxidizing agent (TioO,
M n O 2 、 F e 2 0 3 、 C u Oなどの金属酸化物、 M n O 2, F e 2 0 3, metal oxides such as C u O,
N a N 0 J 、 K N 0 0 、 C u ( N 0 3 ) などの硝酸塩-N a N 0 J, KN 0 0, C u (N 0 3) nitrates such as -
K C 1 0 4 、 N a C 1 0 4 などの過塩素塩、 K C 1 0 3 - KC 1 0 4, N a C 1 0 4 perchloric salts, such as, KC 1 0 3 -
N a C 1 O 3 などの塩素酸塩など〕 、 金属還元剤 〔 Z r .Chlorates such as NaC1O3), metal reducing agents (Zr.
M g、 A 1 、 T i など〕 、 冷却剤 〔N a 2 C O 3M g, A 1, T i, etc.], a cooling agent [N a 2 CO 3,
K 2 C 0 3 、 C a C 0 , 、 F e S 0 4 など〕 、 p H調整 剤 〔硫酸鉄など〕 、 機械的性能向上剤 〔M o S 2 、 K 2 C 0 3, C a C 0,, F e S 0 4 , etc.], p H adjusting agent [such as iron sulfate], mechanical performance enhancing agent [M o S 2,
K B r、 グラフアイ トなど〕 などの添加剤を含むものが 知られている。  It is known to include additives such as KBr, graphite, etc.].
上記ァジ化ナ ト リ ゥムを基剤とするガス発生剤は主発 生ガスが窒素ガスのみであり、 適度な燃焼速度、 比較的 低い燃焼温度という優れた性能のため、 エアバッグ用ガ ス発生剤と して汎用されているが、 アジ化ナ ト リ ウムに は以下に示す様な問題がある。 Gas generators based on the above-mentioned azure sodium are the main sources Since the raw gas is only nitrogen gas, it is widely used as a gas generator for airbags because of its excellent performance of moderate combustion rate and relatively low combustion temperature, but sodium azide There are the following problems.
( 1 ) 分解又は燃焼により火災を起こす危険性がある。  (1) There is a risk of fire due to decomposition or combustion.
よって、 製造工程時 (酸化剤との混合時、 製剤造粒 時など) に火災が起こる危険性があるので、 安全管 理を厳格に行う必要がある。  Therefore, there is a risk that a fire may occur during the manufacturing process (for example, when mixing with an oxidizing agent or during granulation of a drug product).
( 2 ) 分解して N aを生成する。 N aは水と反応すると 水素を発生して発火し、 更には有毒煙霧を出すので、 処理が非常に難しい。  (2) Decompose to generate Na. When Na reacts with water, it generates hydrogen and ignites, and further emits toxic fumes, making it extremely difficult to treat.
( 3 ) 酸化剤と反応して N a n 0、 その誘導体  (3) Reacts with oxidizing agent, Nan0, its derivative
(N a O Hなど) といった有毒成分を出すので、 製 造時に取扱い上の注意が必要になる。  It emits toxic components such as (NaOH), so care must be taken during manufacturing.
( 4 ) アジ化ナ ト リ ウムの燃焼又は分解により発生する ガスは窒素濃度が高く有毒成分濃度が非常に低いた め実用上問題はないと言われているが、 万全を期す ため、 有毒成分の更なる低濃度化が望まれる。  (4) It is said that the gas generated by the combustion or decomposition of sodium azide has a high nitrogen concentration and a very low concentration of toxic components, so there is no practical problem. It is desired that the concentration be further reduced.
( 5 ) ガス発生剤に用いられる粗製ァジ化ナ ト リ ウムは 吸湿性を有しており、 吸湿すると燃焼性能が低下す るので、 吸湿防止のための対策が必要となる。  (5) Crude sodium azide used as a gas generating agent has a hygroscopic property, and if it absorbs moisture, its combustion performance is reduced. Therefore, it is necessary to take measures to prevent moisture absorption.
( 6 ) 毒性、 危険性の高い物質なので安全確保のための 設備投資がいる。 (6) Because it is a toxic and dangerous substance, There is capital investment.
かかるァジ化ナ ト リ ゥムの問題点に鑑み、 ァジ化ナ ト リ ゥムを基剤とするガス発生剤と同等又はそれより低い 衝撃着火性、 同等又はそれ以上の燃焼速度及びガス発生 量などを有し、 燃焼温度が比較的低く ァジ化ナ ト リ ウム を基剤とするガス発生剤より も危険性及び毒性が低く、 より安価なエアパッグ用ガス発生剤が望まれている。  In view of the problem of the azified sodium, impact ignitability equal to or lower than that of the gas generator based on the azide sodium, and a combustion rate and gas equivalent or higher than that There is a demand for a gas generator for air bags that has a relatively low combustion temperature, has a low emission temperature, is less dangerous and less toxic than a sodium azide-based gas generator, and is less expensive. .
一方含窒素化合物をガス発生剤の基剤とする試みは、 種々なされている。 例えば、 Z r、 M gなどの金属還元 剤と過塩素酸力 リ ウム、 塩素酸力 リ ゥムなどの酸化剤を 酸化還元反応させ、 発生する熱によりガス発生基剤を燃 焼させることが提案されている。 そして、 ガス発生基剤 と して、 無煙火薬、 ニ トロセルロース、 ァゾジカルボン ア ミ ド、 ア ミ ノ グァ二ジン、 チォ尿素などが挙げられて いる (特公昭 4 9 一 9 7 3 4号公報、 特公昭 4 9 一  On the other hand, various attempts have been made to use a nitrogen-containing compound as a base for a gas generating agent. For example, a metal reducing agent such as Zr or Mg and an oxidizing agent such as perchloric acid or chloric acid or the like may undergo an oxidation-reduction reaction, and the generated heat may be used to burn the gas generating base. Proposed. As gas generating bases, smokeless explosives, nitrocellulose, azodicarbonamide, aminoguanidine, thiourea and the like are mentioned (JP-B-49-19734, Tokiko Sho 4 9 1
2 1 1 7 1号公報) 。 しかしながら、 前記方法による燃 焼速度はエアバッグ用と して実用するには不充分である, 加えて金属還元剤と酸化剤との混合物が非常に高い衝撃 着火性を有しているので、 取扱い上の危険性が大きいと いう問題点もある。 更に燃焼温度が非常に高いことも予 想される。  No. 211171). However, the burning rate by the above method is not sufficient for practical use for airbags. In addition, since the mixture of the metal reducing agent and the oxidizing agent has a very high impact ignitability, handling There is also a problem that the above danger is large. In addition, very high combustion temperatures are expected.
また特開昭 5 0 - 1 1 8 9 7 9号公報は、 ァゾジカル ボンア ミ ド、 ト リ ヒ ドラ ジノ ト リ アジンなどの含窒素有 機化合物と過マ ンガン酸カ リ ウム、 二酸化マンガン、 重 クロム酸バリ ウム、 過酸化パリ ウムなどの酸化剤とから なるエアバッ グ用ガス発生剤を開示しているが、 過マン ガン酸カ リ ウム、 二酸化マンガンなどの酸化剤を用いた 場合にはその衝撃着火性、 燃焼速度は満足できるもので はなく、 重クロム酸バリ ゥム、 過酸化パリ ウムなどの酸 化剤を用いた場合にはガス中に有毒成分が生成する。 Japanese Patent Application Laid-Open No. 50-1188979 discloses azological Airbags composed of nitrogen-containing organic compounds such as Bonamide and Trihydrazinotriazine and oxidizing agents such as potassium permanganate, manganese dioxide, barium dichromate, and parium peroxide. Disclose gas generators, but when oxidizing agents such as potassium permanganate and manganese dioxide are used, their impact ignitability and burning rate are unsatisfactory. If an oxidizing agent such as palladium or parium peroxide is used, toxic components are generated in the gas.
本発明の一つの目的は、 アジ化ナ ト リ ウムを基剤とす るガス発生剤と同等又はそれより低い衝撃着火性を有す るエアバッグ用ガス発生剤を提供することにある。  An object of the present invention is to provide a gas generating agent for airbags having an impact ignitability equal to or lower than that of a gas generating agent based on sodium azide.
本発明の他の一つの目的は、 アジ化ナ ト リ ウムを基剤 とするガス発生剤と同等又はそれ以上の燃焼速度及びガ ス発生量を有するエアバッグ用ガス発生剤を提供するこ とにある。  Another object of the present invention is to provide a gas generating agent for an air bag having a combustion rate and a gas generation amount equal to or higher than that of a gas generating agent based on sodium azide. It is in.
本発明の他の一つの目的は、 アジ化化合物の有する上 記 ( 1 ) 〜 ( 6 ) の欠点のないエアバッ グ用ガス発生剤 を提供することにある。  Another object of the present invention is to provide a gas generating agent for an air bag which does not have the above-mentioned disadvantages (1) to (6) of an azide compound.
本発明の他の一つの目的は、 燃焼温度が低く アジ化ナ ト リ ゥムより も危険性及び毒性が低いエアバッグ用ガス 発生剤を提供することにある。  Another object of the present invention is to provide a gas generating agent for an airbag having a low combustion temperature and a lower risk and toxicity than sodium azide.
発 明 の 開 示 本発明者は上記のような目的を達成すべく、 分解又は 燃焼により火災を起こす危険性及び毒性が極めて低い含 窒素化合物に着目 して鋭意研究を重ねた結果、 酸化還元 反応により発生する熱を利用して含窒素化合物を燃焼さ せるという 2次的な反応でなく、 該含窒素化合物の還元 性を利用してこれと特定の酸化剤、 すなわちォキソハロ ゲン酸塩を直接反応させることにより、 アジ化ナ ト リ ウ ムを基剤とするガス発生剤と同等又はより低い衝撃着火 性、 同等又はそれ以上の燃焼速度及びガス発生量、 並び に実用上充分に満足し得る低い燃焼温度を達成できるこ とを見い出した。 Disclosure of the invention In order to achieve the above object, the present inventors have conducted intensive studies focusing on nitrogen-containing compounds which are extremely low in toxicity and risk of fire due to decomposition or combustion, and as a result, the heat generated by the oxidation-reduction reaction has been reduced. This is not a secondary reaction of burning the nitrogen-containing compound by utilizing it, but the reaction of the nitrogen-containing compound directly with a specific oxidizing agent, that is, an oxohalogenate, by utilizing the reducibility of the nitrogen-containing compound. Impact ignitability equivalent to or lower than that of sodium fluoride-based gas generating agents, equivalent or higher combustion speed and gas generation amount, and low combustion temperature that is sufficiently satisfactory for practical use can be achieved. I found this.
すなわち本発明は、 含窒素有機化合物とォキソハロゲ ン酸塩とからなるエアバッグ用ガス発生剤に係る。  That is, the present invention relates to a gas generating agent for an airbag comprising a nitrogen-containing organic compound and an oxohalogenate.
本発明では、 ガス発生基剤と して含窒素化合物を用い る。 含窒素化合物と しては分子中に窒素原子を有する有 機化合物であれば特に制限されないが、 例えば、 ァ ミ ノ 基含有有機化合物、 ニ トラ ミ ン基含有有機化合物、 二 ト ロソア ミ ン基含有有機化合物などを挙げることができる。 ァミ ノ基含有有機化合物の具体例と しては特に制限はな いが、 例えば、 ァゾジカルボンア ミ ド、 尿素、 重炭酸ァ ミ ノ グァニジ ン、 ビウ レ ッ ト、 ジシア ン ジア ミ ド、 ヒ ド ラジ ド類 (例えば、 ァセ ト ヒ ドラジ ド、 1, 2 —ジァセ チルヒ ドラ ジ ン、 ラ ウ リ ン酸ヒ ドラ ジ ド、 サ リ チル酸ヒ ドラ ジ ド、 シユ ウ酸ジ ヒ ドラ ジ ド、 カルボヒ ドラ ジ ド、 ア ジ ピン酸ジ ヒ ドラ ジ ド、 セバシ ン酸ジ ヒ ドラ ジ ド、 ド デカ ン ジォ ヒ ドラ ジ ド、 イ ソ フ タル酸ヒ ドラ ジ ド、 メ チ ルカノレノ ゼー ト、 セ ミ カルノ 、ジ ド、 ホノレム ヒ ドラ ジ ド、 1 , 2 —ジホルミ ルヒ ドラジン) などを挙げることがで きる。 ニ トラ ミ ン基含有化合物と しても特に制限はない が、 例えば、 ジニ ト ロペンタ メ チ レ ンテ ト ラ ミ ン、 ト リ メ チ レ ン ト リ 二 ト ロア ミ ン ( R D X ) 、 テ ト ラ メ チ レ ン テ ト ラニ トロア ミ ン (H M X ) など置換基と してニ ト ラ ミ ン基を 1〜複数個有する脂肪族化合物及び脂環式化合 物を挙げることができる。 またニ トロソア ミ ン基含有有 機化合物と しても特に制限はないが、 例えば、 ジニ ト ロ ソペンタメチレンテ トラ ミ ン (D P T ) など置換基と し てニ ト ロ ソァ ミ ン基を 1〜複数個有する脂肪族化合物及 び脂環式化合物を挙げることができる。 これら含窒素化 合物の中でもァゾジカルボンア ミ ドは、 従来から例えば 樹脂用発泡剤などと して汎用されているものであり、 火 災を起こす危険性や毒性も低く従って取扱い上の危険性 も少ないので、 特に好適である。 含窒素化合物は 1種を 単独で使用してもよく或いは 2種以上を併用してもよい 含窒素化合物は市販品をそのまま使用してもよい。 含窒 素化合物の形状、 粒度などは制限されず、 適宜選択して 使用すればよい。 In the present invention, a nitrogen-containing compound is used as a gas generating base. The nitrogen-containing compound is not particularly limited as long as it is an organic compound having a nitrogen atom in the molecule, and examples thereof include an amino group-containing organic compound, a nitramine group-containing organic compound, and a ditorosamine group. Organic compounds and the like can be mentioned. Specific examples of the organic compound having an amino group are not particularly limited. Razides (eg, acetate hydrazide, 1, 2— Tylhydrazine, Lauric hydrazide, Salicylic hydrazide, Oxalic dihydrazide, Carbohydrazide, Adipic dihydrazide, Sebacin Acid dihydrazide, dodecangio hydrazide, isophthalic hydrazide, methylcanolenozate, semicarno, zid, honolem hydrazide, 1, 2 — Diformylhydrazine) and the like. There is no particular limitation on the compound containing a nitramine group, but examples thereof include dinitropentamethylentramine, trimethylentrylenetroamine (RDX), and tetramethylamine. Examples thereof include aliphatic compounds and alicyclic compounds having one or more nitramine groups as substituents, such as lamethylentranitroamine (HMX). The organic compound containing a nitrosoamine group is not particularly limited. For example, a nitrosoamine group is used as a substituent such as dinitrosopentamethylenetetrathamine (DPT). To a plurality of aliphatic compounds and alicyclic compounds. Among these nitrogen-containing compounds, azodicarbonamide has been widely used, for example, as a foaming agent for resins, and has a low risk of fire and low toxicity, and therefore has a low risk of handling. Therefore, it is particularly preferable. One nitrogen-containing compound may be used alone, or two or more nitrogen-containing compounds may be used in combination. A commercially available nitrogen-containing compound may be used as it is. Nitrogen The shape and particle size of the elementary compound are not limited, and may be appropriately selected and used.
本発明で用いられる酸化剤はォキソハロゲン酸塩であ る。 ォキソハロゲン酸塩と しては公知のものが使用でき る。 その中でもハロゲン酸塩、 過ハロゲン酸塩などが好 ま しく、 それらのアルカ リ金属塩が特に好ま しい。 アル カ リ金属のハロゲン酸塩と しては、 例えば、 塩素酸力 リ ゥム、 塩素酸ナ ト リ ウム、 臭素酸カ リ ウム、 臭素酸ナ ト リ ゥムなどの塩素酸塩及び臭素酸塩などを挙げることが できる。 またアルカ リ金属の過ハロゲン酸塩と しては、 例えば、 過塩素酸力 リ ウム、 過塩素酸ナ ト リ ウム、 過臭 素酸カ リ ウム、 過臭素酸ナ ト リ ゥムなどの過塩素酸塩及 び過臭素酸塩などを挙げることができる。 ォキソハロゲ ン酸塩は 1種を単独で使用してもよく或いは 2種以上を 併用してもよい。 ォキソハロゲン酸塩の配合量は、 通常、 酸素量を基準と して含窒素化合物を完全に酸化燃焼し得 る化学量論量とすればよいが、 含窒素化合物とォキソハ ロゲン酸塩の配合割合を適宜変更させることにより、 燃 焼速度、 燃焼温度、 燃焼ガス組成などを任意に調整する ことができるので、 広い範囲から適宜選択してもよく、 例えば、 含窒素化合物 1 0 0重量部に対してォキソハロ ゲン酸塩を 2 0〜 2 0 0重量部程度、 好ま しく は 3 0〜 2 0 0重量部程度配合してもよい。 ォキソハロゲン酸塩 の形状、 寸法などは特に制限されず、 適宜選択して使用 すればよい。 The oxidizing agent used in the present invention is an oxohalogenate. Known oxohalogenates can be used. Of these, halides, perhalates and the like are preferred, and their alkali metal salts are particularly preferred. Examples of the alkali metal halide include chlorate and sodium chlorate, sodium chlorate, potassium bromate, sodium bromate and the like. Salts and the like can be mentioned. Examples of the alkali metal perhalates include potassium perchlorate, sodium perchlorate, potassium perbromate and sodium perbromate. Chlorate and perbromate can be mentioned. One oxohalogenate may be used alone, or two or more oxohalogenates may be used in combination. The compounding amount of the oxohalogenate may usually be a stoichiometric amount capable of completely oxidizing and burning the nitrogen-containing compound on the basis of the oxygen content, but the compounding ratio of the nitrogen-containing compound and the oxohalogenate may be adjusted. By making appropriate changes, it is possible to arbitrarily adjust the burning rate, the burning temperature, the composition of the combustion gas, and the like. 20 to 200 parts by weight of oxohalogenate, preferably 30 to 200 parts by weight. You may mix | blend about 200 weight part. The shape and dimensions of the oxohalogenate are not particularly limited, and may be appropriately selected and used.
本発明組成物には、 その性能を損なわない範囲で、 上 記 2種の必須成分の他に燃焼調節触媒、 爆ごう防止剤及 び酸素発生剤から選ばれる少なく とも 1種を含んでいて もよい。  The composition of the present invention may contain, in addition to the above two essential components, at least one selected from a combustion control catalyst, a detonation inhibitor, and an oxygen generator as long as the performance of the composition is not impaired. Good.
燃焼調節触媒は、 低衝撃着火性、 非爆ごう性などの安 全性能を維持したまま、 或いはガス発生量などのガス発 生剤と しての基本性能を維持したまま、 基本性能の一つ である燃焼速度を使用目的に応じて適宜変更するための 触媒である。 燃焼調節触媒と しては、 例えば、 元素周期 律表の第 4周期元素及び第 6周期元素の酸化物、 塩化物、 炭酸塩、 硫酸塩、 セルロース系化合物、 有機高分子化合 物などを挙げることができる。 元素周期律表の第 4周期 元素及び第 6周期元素の酸化物、 塩化物、 炭酸塩及び硫 酸塩の具体例と しては、 例えば、 Z n O、 Z n C 03 、 M n 02 、 F e C し 、 C u O、 P b 3 0ぃ P b 〇 2 、 P b O、 P b 2 03 、 S、 T i 02 、 V 2 05Combustion control catalysts are one of the basic performances while maintaining safety performance such as low impact ignitability and non-detonating properties, or while maintaining the basic performance as a gas generating agent such as the amount of generated gas. This is a catalyst for appropriately changing the combustion rate, which depends on the purpose of use. Examples of the combustion control catalyst include oxides, chlorides, carbonates, sulfates, cellulosic compounds, and organic polymer compounds of the fourth and sixth elements of the periodic table. Can be. Oxides of Period 4 element and the sixth period elements of the Periodic Table of the Elements, chloride, is a specific example of carbonate and sulfate salts, e.g., Z n O, Z n C 03, M n 0 2 , and F e C, C u O, P b 3 0 i P b 〇 2, P b O, P b 2 0 3, S, T i 0 2, V 2 0 5,
C e 02 、 H o 2 03 、 C a 02 、 Y b 2 03 C e 0 2, H o 2 0 3, C a 0 2, Y b 2 0 3,
A 1 2 ( S O 4 ) 3 、 Z n S 04 、 M n S 04A 1 2 (SO 4 ) 3 , Z n S 0 4 , M n S 0 4 ,
F e S 04 などを挙げることができる。 セルロース系化 合物の具体例と しては、 例えば、 カルボキシメ チルセル ロース及びそのエーテル、 ヒ ドロキシメチルセルロース などを挙げることができる。 また有機高分子化合物の具 体例と しては、 例えば、 可溶性デンプン、 ポリ ビニルァ ルコール及びその部分ゲン化物などを挙げることができ る。 燃焼調節触媒は、 1種を単独で使用してもよく或い は 2種以上を併用してもよい。 燃焼調節触媒の配合量は 特に制限されず広い範囲から適宜選択できるが、 通常窒 素化合物とォキソハロゲン酸塩の合計量 1 0 0重量部に 対して 0 . 1〜 5 0重量部程度、 好ま しく は 0 . 2〜 1 0重量部程度とすればよい。 燃焼調節触媒の粒度は特 に制限されず、 適宜選択して使用すればよい。 Such as F e S 0 4 can be mentioned. Cellulose based Specific examples of the compound include, for example, carboxymethyl cellulose and ethers thereof, and hydroxymethyl cellulose. Specific examples of the organic polymer compound include, for example, soluble starch, polyvinyl alcohol and partially genated products thereof. As the combustion control catalyst, one type may be used alone, or two or more types may be used in combination. The blending amount of the combustion control catalyst is not particularly limited and can be appropriately selected from a wide range. Usually, it is preferably about 0.1 to 50 parts by weight based on 100 parts by weight of the total amount of the nitrogen compound and the oxohalogenate. Should be about 0.2 to 10 parts by weight. The particle size of the combustion control catalyst is not particularly limited, and may be appropriately selected and used.
爆ごう防止剤は、 製造、 取扱い、 輸送などの各工程で ガス発生剤が火災に巻き込まれたり、 強い衝撃を受けた 時に爆ごうを起こすのを防ぐために添加されるものであ る。 爆ごう妨止剤の添加により、 ガス発生剤が爆ごうを 起こす可能性がなく なれば、 ガス発生剤の製造、 取扱い、 輸送などの各工程での安全性を更に高めることができる。 爆ごう防止剤と しては公知のものが使用でき、 例えば、 ベン トナイ ト、 アルミ ナ、 珪藻土などの酸化物、 N a、 K、 C a、 M g、 Z n、 C u、 A l などの金属の炭酸塩、 重炭酸塩などを挙げることができる。 爆ごう防止剤の配 合量は特に制限されず広い範囲から適宜選択できるが、 通常含窒素化合物とォキソハロゲン酸の合計量 1 0 0重 量部に対して 5〜 3 0重量部程度とすればよい。 Detonation inhibitors are added to prevent gas generating agents from being involved in a fire during a manufacturing, handling, or transportation process, or from detonating when subjected to a strong impact. If the detonation of the gas generating agent is eliminated by the addition of the detonating deterrent, the safety in each process of manufacturing, handling, and transporting the gas generating agent can be further enhanced. Known explosive inhibitors can be used, for example, oxides such as bentonite, alumina, diatomaceous earth, Na, K, Ca, Mg, Zn, Cu, Al, etc. Metal carbonate, bicarbonate and the like. Distribution of detonation inhibitor The total amount is not particularly limited and can be appropriately selected from a wide range. However, it is usually 5 to 30 parts by weight with respect to 100 parts by weight of the total amount of the nitrogen-containing compound and oxohalic acid.
酸素発生剤は、 本発明組成物の燃焼生成ガス中の 0 2 濃度を一層増加させるのに有効である。 酸素発生剤と し ては、 特に制限されず公知のものが使用でき、 例えば、 C u 0 2 、 K ¾ 0 4 などを挙げることができる。 酸素発 生剤の配合量は特に制限されず広い範囲から選択できる が、 通常含窒素化合物とォキソハロゲン酸塩の合計量 1 0 0重量部に対して 1 0〜 1 0 0重量部程度とすれば よい。 Oxygen generator, the 0 2 concentration of the combustion product gas of the present invention the composition is effective to further increase. And an oxygen generating agent, in particular can be used known ones without limitation, for example, and the like C u 0 2, K ¾ 0 4. The amount of the oxygen generator is not particularly limited and can be selected from a wide range.However, if it is usually about 100 to 100 parts by weight based on 100 parts by weight of the total amount of the nitrogen-containing compound and the oxohalogenate, Good.
更に本発明組成物には、 その性能を損なわない範囲で 燃焼温度調節剤や燃焼速度調節剤が含まれていてもよい, 燃焼温度調節剤と しては、 例えば、 N a、 K、 C a、 M gなどの金属の炭酸塩、 重炭酸塩などを挙げることが できる。 また燃焼速度調節剤と しては、 例えば、 A 1、 Z n、 M n、 F eなどの硫酸塩などを挙げることができ る。 燃焼温度調節剤及びノ又は燃焼速度調節剤の配合量 は、 具体的には、 通常含窒素化合物とォキソハロゲン酸 塩の合計量 1 0 0重量部に対して 1 0重量部程度、 好ま しく は 5重量部程度を越えない範囲とすればよい。  Further, the composition of the present invention may contain a combustion temperature regulator or a combustion rate regulator as long as its performance is not impaired. Examples of the combustion temperature regulator include Na, K, and Ca. And carbonates of metals such as Mg and bicarbonate. Examples of the burn rate regulator include sulfates such as A1, Zn, Mn, and Fe. The compounding amount of the combustion temperature regulator and the combustion rate regulator is, specifically, about 10 parts by weight, preferably 5 parts by weight, per 100 parts by weight of the total amount of the nitrogen-containing compound and the oxohalogenate. The range may not exceed about parts by weight.
更に本発明組成物には、 その性能を損なわない範囲で 従来からエアバッグ用ガス発生剤に用いられている各種 添加剤が含まれていてもよい。 Furthermore, the composition of the present invention has a range in which its performance is not impaired. Various additives conventionally used in gas generating agents for airbags may be included.
本発明組成物は上記各成分を混合することにより製造 され、 得られる混合物をそのままガス発生剤と して用い てもよいが、 製剤化して用いてもよい。 製剤化は常法に 従って行われる。 例えば、 本発明組成物とバイ ンダーを 適量混合し成形すればよい。 バイ ンダ一と してはかかる 目的に常用されているものを使用すればよい。 製剤形状 は特に制限はなく、 例えば、 ペレツ ト状、 ディ スク状、 球状、 棒状、 中空円筒状、 こんぺい糖状、 テ トラポッ ト 状などを挙げることができ、 無孔のものでもよいが有孔 状のもの (例えば煉炭状のもの) でもよい。 或いは、 本 発明組成物の各成分をそれぞれ単独で製剤化し、 これら を混合して使用してもよい。  The composition of the present invention is produced by mixing the above components, and the resulting mixture may be used as it is as a gas generating agent, or may be used in the form of a formulation. Formulation is performed according to a conventional method. For example, an appropriate amount of the composition of the present invention and a binder may be mixed and molded. A binder that is commonly used for such a purpose may be used. The formulation is not particularly limited, and examples thereof include pellets, discs, spheres, rods, hollow cylinders, sugary sugars, and tetrapods. It may be porous (for example, briquette). Alternatively, the respective components of the composition of the present invention may be individually formulated, and these may be used as a mixture.
本発明の組成物は、 以下の利点を有している。  The composition of the present invention has the following advantages.
( a ) 本発明組成物は、 分解又は燃焼して火災を引き起 こす危険性及び毒性が著しく低いので、 製造工程に おける取扱い上の危険性も非常に少ない。 製剤化も 容易である。  (a) The composition of the present invention has a very low risk of decomposing or burning and causing a fire, and has a very low toxicity. Formulation is easy.
( b ) 本発明組成物は、 アジ化ナ ト リ ウムを基剤とする ガス発生剤と同等又はそれより も低い衝撃着火性を 有し、 安全性が非常に高い。 ( c ) 本発明組成物は、 アジ化ナ ト リ ウムを基剤とする ガス発生剤と同等又はそれ以上の燃焼速度及びガス 発生量を有する。 (b) The composition of the present invention has impact ignitability equal to or lower than that of a gas generating agent based on sodium azide, and is extremely high in safety. (c) The composition of the present invention has a combustion rate and a gas generation rate equal to or higher than that of a gas generating agent based on sodium azide.
( d ) 本発明組成物はアジ化ナ ト リ ゥムを基剤とするガ ス発生剤と同様に燃焼温度が比較的低いので、 乗員 に火傷を負わせたり、 バッ グに穴が開いたり、 パッ グが燃える様な危険性がなく、 また発生ガス中の有 毒成分量も極めて少ない。  (d) Since the composition of the present invention has a relatively low combustion temperature, similarly to a gas generating agent based on sodium azide, it may cause burns to the occupants or holes in the bag. There is no danger of burning the package, and the amount of toxic components in the generated gas is extremely small.
( e ) 本発明組成物のガス基剤である含窒素化合物は吸 湿性を有しないので、 吸湿を防止するための対策が 必要でない。  (e) Since the nitrogen-containing compound, which is the gas base of the composition of the present invention, has no hygroscopic property, it is not necessary to take any measures to prevent moisture absorption.
( f ) 本発明組成物は非常に低コス トで生産できる。  (f) The composition of the present invention can be produced at a very low cost.
( g ) 本発明組成物は、 従来のガス発生剤に比べ廃棄処 理が容易である。  (g) The composition of the present invention is easier to dispose of than conventional gas generating agents.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を挙げ、 本発明を一層明瞭なものとする。 なお、 下記実施例において、 略号又は化学式で示される 化合物の正式名は以下の通りである。  The following examples are provided to further clarify the present invention. In the following examples, the formal names of the compounds represented by abbreviations or chemical formulas are as follows.
A D C A : ァゾジカルボンア ミ ド  A DCA: azodicarbonamide
D P T : ジニ小 口ソペンタメ チレンテ トラ ミ ン  D P T: Gini small mouth sopentamethylenthramine
R D X : ト リ メ チレ ン ト リ ニ ト ロア ミ ン  R D X: Trimethylene Trinitrin Amin
H M X : テ ト ラメ チ レンテ ト ラニ ト ロア ミ ン N Q : ニ トログァニジン HMX: Tetramethylentry Tranitromin NQ: Nitroguanidine
実施例 1 下記表 1に示す配合割合 (重量%) で含窒素化合物と ォキソハロゲン酸塩、 更に必要に応じて燃焼調節触媒を 混合し、 本発明組成物 (N o . 1〜 1 7 ) を得た。 Example 1 A nitrogen-containing compound, an oxohalogenate and, if necessary, a combustion control catalyst were mixed in the proportions (% by weight) shown in Table 1 below to obtain a composition of the present invention (Nos. 1 to 17). Was.
Figure imgf000016_0001
Figure imgf000016_0001
ADCA (30%ZnO) : 30重量%の Z n Oを含む AD C Aと ADCA (30% ZnO): ADCA containing 30% by weight of ZnO
ZnOの混合物 上記本発明組成物 N o . :!〜 1 7を油圧式打錠成形機 にて 6 0 k gノ c m2 の圧力で押圧してペレツ ト (径 5 m m、 高さ 5. 0 m m ) に成形し、 7. 5 リ ッ トルボン ブ試験に供した。 結果を表 2に示す。 ZnO mixture The aforementioned compositions of the invention N o:.! ~ Molding 1 7 a hydraulic tablet molding machine at 6 0 kg Roh pressed at a pressure of cm 2 to Perez bets (the diameter 5 mm, height 5. 0 mm) And subjected to a 7.5-liter bomb test. Table 2 shows the results.
〔ボンブ試験〕  [Bomb test]
以下図 1〜 3を参照しつつボンブ試験の手順を説明す る。  The procedure of the bomb test will be described below with reference to Figs.
1. 反応容器 ( 1 ) に試料 (ガス発生剤 ( 9 ) 、 本発明 組成物 N o . 1〜 1 5のペレ ツ ト) を所定量秤取る。 反応容器には、 大 · 小の 2種があり、 大は内径 5 0 111111 高さ 5 0 111111 (図 2 ) 、 小は内径 3 0 m m x高さ 5 0 mm (図 3 ) である。  1. A predetermined amount of a sample (a gas generating agent (9), a pellet of the composition No. 1 to 15 of the present invention) is weighed in a reaction vessel (1). There are two types of reaction vessels, large and small, large with an inner diameter of 50 111 111 and a height of 50 111 111 (FIG. 2), and small with an inner diameter of 30 mm × 50 mm in height (FIG. 3).
2. 反応容器に所定径のノズル ( 1 0 ) とアルミ破裂板 ( 1 1 ) ( 0. 2 mm厚) を取り付ける。  2. Attach a nozzle (10) of specified diameter and an aluminum rupture plate (1 1) (0.2 mm thick) to the reaction vessel.
3. 反応容器内に点火剤 ( 1 2 ) を取りつける。 点火剤 は、 0. 3又は 1. 0 gのホウ素と K N O , の混合物 3. Install the igniter (12) in the reaction vessel. The igniter is a mixture of 0.3 or 1.0 g of boron and K N O,
( 2 : 8 ) をサラ ンラップでく るみ、 その中にコイル 伏に巻いたニクロム線 ( 1 3 ) (径 0. 3 mm x長さ 1 0 0 mm) を通したものである。 (2: 8) was wrapped in Saran wrap, and a Nichrome wire (13) (diameter 0.3 mm x length 100 mm) wound around the coil was passed through it.
4. 反応容器に蓋を取りつけ、 反応容器をガス捕集ボン プ ( 2 ) に取りつける。  4. Attach the lid to the reaction vessel, and attach the reaction vessel to the gas collection pump (2).
5. 点火脚線 ( 4 ) をボンブ蓋の電極 ( 5 ) に取りつけ る o 5. Attach ignition leg (4) to bomb lid electrode (5) O
6. ボンブ蓋 ( 3 ) をボンブ ( 2 ) に取りつける。  6. Attach the bomb lid (3) to the bomb (2).
7. 測定系の回路を結線する。  7. Connect the measurement system circuit.
8. 秒読みの後点火し、 反応容器内の時間 · 圧力曲線及 びボンブ内温度を記録する。 8. After the countdown, ignite and record the time and pressure curves inside the reaction vessel and the temperature inside the bomb.
表 2 使用量 点火剤 容 器 C Pmax Wl/2 Β Ρ max Β TmaxTable 2 Amount used Ignition container C Pmax Wl / 2 Β Ρ max Β Tmax
Να Τ90 Να Τ 90
(g) (g) 大小 ノズル径 (kgf/cnf) (ms e c) (kgf/cnf) (msec) (°C) (g) (g) Large and small Nozzle diameter (kgf / cnf) (ms e c) (kgf / cnf) (msec) (° C)
1 5 0. 3 小 6mm > 140 ― 7. 5 — 400 1 5 0.3 Small 6mm> 140 ― 7.5 ― 400
5 1. 0 大 4mm 140 39 4. 7 34 1 50 5 1.0 Large 4mm 140 39 4.7 34 1 50
2 0. 3 小 6mm 46 4. 2 0. 7 1 0 722 0.3 Small 6 mm 46 4.2 0 0.7 1 0 72
2 1. 0 小 6mm 140 7. 2 4. 4 8 2802 1.0 Small 6mm 140 7.2 4. 4 8 280
5 1. 0 大 6mm 1 00 29 4. 8 28 2255 1.0 Large 6mm 1 00 29 4.8 28 225
5 1. 0 大 4mm 1 49 27 4. 6 26 2495 1.0 Large 4mm 1 49 27 4. 6 26 249
2 5 1. 0 大 4mm 約 1 34 ― 3. 4 ― 1 762 5 1.0 Large 4 mm Approx. 1 34 ― 3.4 ― 1 76
3 5 1. 0 大 4mm 65 66 3. 5 66 1 763 51.0 Large 4mm 65 66 3.5 5.66 1 76
5 5 1. 0 大 4mm 74 42 4. 8 84 3665 51.0 Large 4mm 74 42 4.8 84 366
6 5 1. 0 大 4mm 82 56 2. 4 38 1 286 51.0 Large 4mm 82 56 2.4 38 1 28
7 5 1. 0 大 4mm 54 54 2. 3 49 1477 5 1.0 Large 4mm 54 54 2.3 49 147
"
8 5 1. 0 大 6mm 54 22 4. 7 5 1 1 92 8 51.0 0 6mm 54 22 4.7 5 1 1 92
1 2 5 1. 0 大 4mm 50 1 5 1. 4 25 1 2 5 1.0 Large 4mm 50 1 5 1. 4 25
1. 0 大 4mm 65 1 5 1. 6 20 7 6 1.0 0 4mm 65 1 5 1.6 20 7 6
1 3 5 1 3 5
5 1. 0 小 6mm 79 4 1. 8 3 1 06 5 1.0 Small 6mm 79 4 1.8 3 1 06
1. 4 5 1. 0 大 4mm 1 40 2 9 5. 6 1 8 2641.45 11.0 Large 4mm 1 40 2 9 5.6 1 8 264
1 5 5 1. 0 大 4mm 90 5 7 4. 2 50 2431 5 5 1.0 Large 4mm 90 5 7 4.2 50 243
1. 6 5 1. 0 大 8mm 1 20 1 0 6. 0 1 0 1.65 11.0 Large 8mm 1 20 1 0 6.0 0 1 0
1 7 5 1. 0 大 9mm 70 1 2 6. 0 1 5 1 7 5 1.0 Large 9mm 70 1 2 6.0 0 1 5
表 2中、 C Pmax はチャ ンバ一内の最大圧力 (k g c m2 ) 、 W〗 1/ /り2 はチャ ンバ一の圧力が最大圧力の 1In Table 2, CP max is the maximum pressure in the chamber (kgcm 2 ), and W〗 1 / / 2 is the maximum pressure of the chamber 1
2になる時間 (m s e c ) 、 B P ma. はボンブ内の最大 圧力 (k g Z c m2 ) 、 T 9Qはボンプ内圧力が最大値の 9 0 %になるまでの所要時間 (m s e c ) 、 B Tma„ は ボンブ内の最高到達温度 (K g/ c n^ ) をそれぞれ意 味する。 これらのパラメ ータの中で、 T 9Qはエアバッグ の展開時間を模擬する数値である。 c p max は本発明の 組成物がガス発生剤と して良好な性能を維持するこ とを 示す指標である。 w1/2 はチャ ンバ一内でのガス発生剤 の燃焼の速さを模擬するパラメ ータである。 B Pmax は 単位質量のガス発生剤のガス発生能力を示すパラメ一夕 である。 B Tma„ はエアバッグが展開した時の該バッグ 内のガスの温度を模擬するパラメータである。 2 (msec), BP ma . Is the maximum pressure in the bomb (kg Z cm 2 ), T9Q is the time required for the pressure in the bump to reach 90 % of the maximum value (msec), BT ma „ Means the maximum temperature reached in the bomb (K g / cn ^) Of these parameters, T 9Q is a numerical value that simulates the airbag deployment time, and cp max is the value of the present invention. An index that indicates that the composition maintains good performance as a gas generant w 1/2 is a parameter that simulates the speed of combustion of the gas generant in the chamber BP max is a parameter that indicates the gas generating capacity of a unit mass of gas generating agent BT ma „is a parameter that simulates the temperature of gas in the air bag when the air bag is deployed.
実施例 2 Example 2
下記表 3に示す配合割合 (重量%) で含窒素化合物及 びォキソハロゲン酸塩、 更に必要に応じて燃焼調節触媒 を混合し、 本発明組成物を得た。  The composition of the present invention was obtained by mixing the nitrogen-containing compound, the oxohalogenate, and, if necessary, the combustion control catalyst in the mixing ratio (% by weight) shown in Table 3 below.
本発明組成物を下記衝撃着火性試験に供した。 比較の ため、 現行のガス発生剤 (N a N 3 - K C 1 04 - F e J 04 と N a N 3 — C u 0 ) を衝撃着火性試験に供 した。 〔衝撃着火性試験〕 The composition of the present invention was subjected to the following impact ignition test. For comparison, the current of the gas generating agent was subjected to the impact ignitability test (N a N 3 - C u 0 KC 1 0 4 - - F e J 0 4 and N a N 3). (Impact ignition test)
本試験は、 ガス発生組成物の 「衝撃による着火の起こ り易さ (衝撃着火感度) 」 を測定する方法である。 以下 に図 4〜図 7を参照しつつ実験手順を説明する。  This test is a method to measure the “easiness of ignition by impact (impact ignition sensitivity)” of the gas generating composition. The experimental procedure will be described below with reference to FIGS.
1. 〔図 4〕 1. [Fig. 4]
試験用ステ ン レス容器 ( 1 5 ) に粉体試料 ( 1 6 ) 5 gを量り取る。 ステンレス容器 ( 1 5 ) は底付きのステ ン レス ( S U S 3 0 4 ) 製の円筒で、 内径 3 1 mm、 外 径 3 6 mm、 厚さ 2. 5 mm、 高さ 5 5 mmである。 Weigh 5 g of powder sample (16) into stainless steel container (15) for test. The stainless steel container (15) is a stainless steel cylinder with a bottom (SUS304), 31 mm in inner diameter, 36 mm in outer diameter, 2.5 mm in thickness, and 55 mm in height.
2. 〔図 5〕 2. [Fig. 5]
必要な厚さのポリエチレンカー ド ( 1 7 ) を試料の上 に載せる。 ポリエチレンカー ド ( 1 7 ) の厚さの総和を ギャ ップ長という。  Place the required thickness of polyethylene card (17) on the sample. The total thickness of the polyethylene card (17) is called the gap length.
3. 〔図 6〕  3. [Fig. 6]
2枚の l mm厚ポリエチレンカー ド ( 1 8 ) に径 6. 5 mmの孔をあけ、 これに雷管 ( 1 9 ) を差し込み、 ス テンレス容器 ( 1 5 ) 中にセッ トする。 雷管と しては、 日本化薬 (株) 製の 0号電気雷管を用いた。  Drill a hole with a diameter of 6.5 mm in two lmm-thick polyethylene cards (18), insert a primer (19) into them, and set them in a stainless steel container (15). A No. 0 electric detonator manufactured by Nippon Kayaku Co., Ltd. was used as the detonator.
4. 〔図 7〕  4. [Fig. 7]
吸湿性のガス発生基剤 (例えば、 アジ化ナ ト リ ウム) を含有するガス発生剤の場合には、 吸湿を防ぐため、 パ ラ フィ ン ( 2 0) でステ ン レス容器 ( 1 5 ) 上部に蓋を する。 In the case of a gas generating agent containing a hygroscopic gas generating base (for example, sodium azide), use a paraffin (20) with a stainless steel container (15) to prevent moisture absorption. Lid on top I do.
5. このステン レス容器を爆発 ドーム内で万力に固定し、 通電して雷管を爆発させる。  5. Fix the stainless steel container in a vise inside the explosion dome, and turn on electricity to explode the primer.
6. この時、 試料が着火するか否かを観察する。  6. At this time, observe whether the sample ignites.
7. 〔図 8〕  7. (Fig. 8)
ギャ ップ長が 1 mmでも不着火の場合は、 2 0 gの粉 体試料 ( 1 6 ) を用い、 D号雷管 ( 1 9 ) を試料中に揷 入し、 ステン レス容器 ( 1 5 ) にネジ蓋 ( 2 1 ) をつけ て試験する。 この方法を用いると、 衝撃着火性の極めて 低い物質でも着火燃焼又は爆発する。  If the gap length is 1 mm but no ignition occurs, use a 20 g powder sample (16), insert a D-type detonator (19) into the sample, and use a stainless steel container (15). Attach the screw cap (21) to the test. Using this method, even very low impact ignitable substances can ignite and burn or explode.
表 3に、 着火時の限界ギャ ップ長 (そのギャ ップ長ま では着火する) 及び不着火時の限界ギャ ップ長 (そのギ ヤ ップ長以上は着火しない) を示す。  Table 3 shows the limit gap length at the time of ignition (ignition up to the gap length) and the limit gap length at the time of non-ignition (ignition beyond the gap length).
本試験においては、 限界ギャ ップ長さが長い程衝撃着 火性の感度が高いことを意味する。 すなわち、 着火する 限界ギヤ ップ長さが長いほど衝撃に対する着火感度が高 く危険性が大きいことになる。 表 3 In this test, the longer the limit gap length, the higher the sensitivity to impact ignition. In other words, the longer the limit gap length for ignition, the higher the ignition sensitivity to impact and the greater the danger. Table 3
Figure imgf000023_0001
Figure imgf000023_0001
表 3 (続 き) Table 3 (continued)
C
Figure imgf000024_0001
C
Figure imgf000024_0001
表 3から、 本発明組成物の衝撃着火性が現行品と同等 又はより鈍感であり、 現行品と同等又はそれ以上の安全 性を有していることが判る。 From Table 3, it can be seen that the impact ignition properties of the composition of the present invention are equivalent to or less insensitive to the current product, and have the same or higher safety as the current product.
実施例 3 Example 3
下記表 4に示す配合割合 (重量%) でァゾジカルボン ア ミ ド (下記表中 「A D C A」 とする) 及びォキソハロ ゲン酸塩、 更に必要に応じて燃焼調節触媒を混合し、 本 発明組成物を得た。  The composition of the present invention was obtained by mixing azodicarbonamide (hereinafter referred to as “ADCA”) and oxohalogenate and, if necessary, a combustion control catalyst in the mixing ratio (% by weight) shown in Table 4 below to obtain the composition of the present invention. Was.
上記本発明組成物を油圧式打錠成形機にて 6 0 k g / c m L の圧力でペレツ ト (径 7. 6 mm、 高さ 3 mm) に成形し、 前記 7. 5 リ ッ トルボンブ試験に供した。 結 果を表 4に併記する。 The present invention Perez preparative composition in a hydraulic tablet molding machine at a pressure of 6 0 kg / cm L (diameter 7. 6 mm, height 3 mm) was molded into said 7. 5 Li Tsu Torubonbu test Provided. The results are shown in Table 4.
比較のため、 現行のガス発生剤 (N a N , — C u O) を 7. 5 リ ッ トルボンブ試験に供した。 結果を表 4に併 gじ- 9 る。  For comparison, the current gas generant (NaN, —CuO) was subjected to a 7.5 liter bomb test. The results are shown in Table 4-9.
なお、 この 7. 5 リ ッ トルポンブ試験においては、 反 応容器蓋に取り付ける破裂板と して 0. 1 mm厚のアル ミニゥム 2枚を用いた。 表 4 In this 7.5-liter pump test, two 0.1 mm thick aluminum rupture plates were used to attach to the reaction vessel lid. Table 4
C
Figure imgf000026_0001
C
Figure imgf000026_0001
実施例 4 Example 4
ァゾジカルボンア ミ ド 4 5重量部と塩素酸ナ ト リ ウム 5 5重量部と M n 02 2. 7 5重量部からなる本発明組 成物のペレッ ト (径 1 2. 3 mm x厚 3 mm) 2 0 gを 自動車エアバッ グ用ガス発生チャ ンバ一に入れ、 これを 圧力セ ンサー付き内容量 2 8. 6 1 のポンプに装着した。 ペレツ トを B— K N 03 の 1 gを用いて点火し本組成物 を燃焼させた。 その際のタ ンク内の最大圧力は 4. 3 k g f / c m 2 ゲージであり、 本組成物の燃焼による夕 ンク内圧力上昇時間は 5 0 ミ リ秒であった。 Azojikarubon'a mi de 4 5 parts by weight of chlorine Sanna Application Benefits um 5 5 parts by weight and M n 0 2 2. 7 pellet of the present invention sets Narubutsu consisting of five parts by weight (diameter 1 2. 3 mm x thickness 3 mm ) 20 g was put into a gas generating chamber for an automobile airbag, and this was attached to a pump with a pressure sensor and a capacity of 28.61. The Perez bets B- ignited using 1 g of KN 0 3 to burn the composition. At that time, the maximum pressure in the tank was 4.3 kgf / cm 2 gauge, and the pressure rise time in the tank due to combustion of the composition was 50 milliseconds.
比較のため、 特公昭 4 9 - 2 1 1 7 1号に示唆のある 組成物、 すなわちァゾジカルボンア ミ ド 2 0 0重量部と 塩素酸ナ ト リ ウム 9 0重量部と A 1 1 0重量部とからな るガス発生組成物のペレッ ト (径 1 2. 3 mm x厚 3 mm) 2 0 gを、 上記と同様のタ ンク試験に供した。 そ の結果、 着火剤の急速な燃焼だけが観測され、 ガス組成 物の急速な燃焼は観測されなかった。 またタ ンクの最高 到達圧力は 0. 3 k g f c m 2 ゲージにすぎなかった。 実施例 5及び実施例 6 For comparison, the composition suggested in JP-B-49-221171, namely 200 parts by weight of azodicarbonamide, 90 parts by weight of sodium chlorate and 110 parts by weight of A 20 g of a pellet (diameter: 12.3 mm × thickness: 3 mm) of a gas generating composition composed of the following gas was subjected to the same tank test as described above. As a result, only rapid burning of the igniting agent was observed, and no rapid burning of the gas composition was observed. The maximum ultimate pressure of the tank was only 0.3 kgfcm 2 gauge. Example 5 and Example 6
ァゾジカルボンア ミ ド (下記表中 「A D C A」 とする) 2 0 0重量部と塩素酸ナ ト リ ウム (N a C l O 3 ) 9 0 重量部を混合し、 本発明組成物を得た。 比較のため、 特公昭 4 9 - 2 1 1 7 1号に示唆のある ガス発生剤を製造した。 即ち、 ァゾジカルボンア ミ ド 2 0 0重量部と塩素酸ナ ト リ ウム 9 0重量部と Z r粉末 1 0重量部を混合し、 比較組成物を得た。 200 parts by weight of azodicarbonamide (hereinafter referred to as “ADCA” in the table below) and 90 parts by weight of sodium chlorate (NaClO 3 ) were mixed to obtain a composition of the present invention. For comparison, a gas generating agent suggested in Japanese Patent Publication No. 49-221171 was manufactured. That is, 200 parts by weight of azodicarbonamide, 90 parts by weight of sodium chlorate and 10 parts by weight of Zr powder were mixed to obtain a comparative composition.
これらをそれぞれ実施例 1 と同様にしてペレッ ト (径 5 mm、 高さ 5. 0 mm) に成形し、 ノズル付鋼管燃焼 試験及び衝撃着火性試験に供した。 その際、 火炎発生の 有無も観察した。 結果を表 5及び表 6に示す。  Each of these was formed into a pellet (diameter 5 mm, height 5.0 mm) in the same manner as in Example 1 and subjected to a combustion test of a steel pipe with a nozzle and an impact ignition test. At that time, the presence of a flame was also observed. The results are shown in Tables 5 and 6.
〔ノズル付鋼管燃焼試験〕  [Steel tube with nozzle combustion test]
1. 耐燃性鋼製容器 (内径 5 0 mm、 高さ 5 0 mmの円 筒) 内にガス発生剤 5 gを入れ、 ニクロム線をセッ ト し て蓋をする。 蓋には径 7 m mの孔が開いている。  1. Put 5 g of gas generating agent into a flame-resistant steel container (a cylinder with an inner diameter of 50 mm and a height of 50 mm), set a nichrome wire, and close the lid. The lid has a 7 mm diameter hole.
2. ニクロム線をスライダッ クに通じて 1 0 Vの電圧を かけ、 ガス発生剤を点火する。  2. Apply a voltage of 10 V through the nichrome wire through the slider to ignite the gas generant.
3. 最初孔から白煙が出て、 次いで発火する。 発火から 炎が消えるまでの火炎の持続時間 (燃焼時間) を目視及 びビデオで測定記録する。 表 5 ガス発 配合量 ォキシハロ 配合量 燃焼調 配合量 ギヤップ長 (龍) 燃焼 火災の 生基剤 (wt¾) ゲ ン 酸 塩 (wt¾) 節触媒 (wt%) 着火時 不着火時 時間 有 無 実施例 6 ADCA 200 Na C 103 90 6 8 18秒 ハ、、 ノ、 比 較 ADCA 200 Na C 103 90 Z r 10 12 16 14秒 有 災 3. White smoke first comes out of the hole, then ignites. The duration (flame time) of the flame from ignition to the extinguishing of the flame shall be measured and recorded visually and by video. Table 5 Gas emission compounding amount Oxyhalo compounding amount Combustion control compounding amount Gap length (dragon) Combustion Fire base (wt¾) Genoic acid salt (wt) Reduced catalyst (wt%) Ignition time Non-ignition time Yes No Example 6 ADCA 200 Na C 10 3 90 6 8 18 seconds C, NO, comparison ADCA 200 Na C 10 3 90 Zr 10 12 16 14 seconds
D D
-4 表 6 ガス発 配合量 ォキシハロ 配合量 燃焼調 配合量 燃焼 火災の  -4 Table 6 Gas generation compounding amount Oxyhalo compounding amount Combustion control compounding amount Combustion
生基剤 (wt¾) ゲ ン 酸 塩 (f t¾) 節触媒 (wt¾) 時間 有 無  Raw base (wt¾) Genate (ft¾) Node catalyst (wt¾) Time Yes No
実施例 7 ADCA 200 Na C 103 90 15秒 無 災 Example 7 ADCA 200 Na C 10 3 90 15 seconds No disaster
比 較 ADCA 200 Na C 103 90 Z r 10 7秒 一部有災 Comparison ADCA 200 Na C 10 3 90 Zr 10 7 seconds Partial disaster
表 5から、 Z rの様な金属還元剤の添加によりガス発 生剤の危険性が増大することが判る。 また、 本発明組成 物の反応 (燃焼) は無炎 , 低温で行われるが、 Table 5 shows that the addition of a metal reducing agent such as Zr increases the danger of gas generating agents. In addition, the reaction (combustion) of the composition of the present invention is performed without flame and at low temperature.
Z rを含む比較組成物は有炎燃焼となり、 反応生成物 (ガス) の温度が高く なる。 よって、 本発明組成物に Z r、 A l、 M gなどの金属還元剤を加えることは好ま しく ない。 The comparative composition containing Zr becomes flammable and the temperature of the reaction product (gas) increases. Therefore, it is not preferable to add a metal reducing agent such as Zr, Al, or Mg to the composition of the present invention.
表 6から、 Z rを含む比較組成物は有炎燃焼となり、 反応生成物 (ガス) の温度が高く なることが判る。  From Table 6, it can be seen that the comparative composition containing Zr was flammable and the temperature of the reaction product (gas) was high.
実施例 7 Example 7
本組成物をス ト ラ ン ドバーナー試験 (例えば、 社団法 人工業火薬協会平成 4年度年会、 講演要旨集 「アジ化ナ ト リム系ガス発生剤の燃焼特性」 、 第 9 8〜 9 9頁を参 照) に供し、 その燃焼性を調べた。  This composition was subjected to a strand burner test (for example, “The Combustion Characteristics of Azide Trim-based Gas Generating Agents”, pp. 98-99, Abstracts of Lectures, 1992 Annual Meeting of the Japan Industrial Explosives Association, Japan). The test was conducted to examine the flammability.
1. まずァゾジカルボンア ミ ド 5 5重量部と過塩素酸ナ ト リ ウム 5 5重量部と酸化亜鉛 5重量部を混合し、 本発 明組成物を得た。  1. First, 55 parts by weight of azodicarbonamide, 55 parts by weight of sodium perchlorate and 5 parts by weight of zinc oxide were mixed to obtain the present invention composition.
2. 本組成物を角柱状 ( 8 mm x 5 mm x 5 0 mm) に 加圧成形し (圧力 : 1. 2 5 t // c m2 ) 、 この角柱の 側面にレス ト リ クターと してシリ コン樹脂を塗布し、 試 料を作成した。 2. This composition is pressed into a prism (8 mm x 5 mm x 50 mm) (pressure: 1.25 t // cm 2 ), and a restrictor is placed on the side of the prism. Samples were prepared by applying silicon resin.
3. 本試験には、 チムニー型ス トラ ン ド燃焼試験装置を 用いた。 測定に際しては、 試料に約 4 0 mmの間隔で 2 つの孔 (径 0. 6 mm) を開け、 ヒューズ (径 0. 5 mm) を通して装置中に固定した。 3. For this test, a chimney-type strand combustion test device was used. Using. At the time of measurement, two holes (0.6 mm in diameter) were opened in the sample at intervals of about 40 mm, and the sample was fixed in the instrument through a fuse (0.5 mm in diameter).
4. この状態で試験温度 ( 2 0 °C) と した後、 上部より ニクロム線によって点火し、 試料を燃焼させ、 2本のヒ ユ ーズの溶断時間の差と孔の間隔から燃焼速度 (mmZ 秒) を算出した。 4. After setting the test temperature (20 ° C) in this state, ignite with a nichrome wire from the top to burn the sample, and determine the burning rate ( mmZ seconds).
5. この測定を 1 0、 2 0及び 4 0 k g f / c m2 の加 圧下に行った。 5. This measurement was performed under a pressure of 10, 20, and 40 kgf / cm 2 .
燃焼速度は、 l O k g f Z c m2 で 2 8. 3 mmZ秒、 2 0 k g f / c m2 で 3 7. 9 mmZ秒、 4 0 k g f Z c m2 で 4 6. O mmZ秒であった。 The burning rate was 28.3 mmZ seconds at l O kgf Z cm 2 , 37.9 mmZ seconds at 20 kgf / cm 2 , and 46. O mmZ seconds at 40 kgf Z cm 2 .
実施例 8 Example 8
ァゾジカルボンア ミ ド 3 0重量部と過塩素酸ナ ト リ ウ ム 7 0重量部とを混合して得られた本発明組成物につい ても上記実施例 8 と同様にして、 燃焼速度 (mmZ秒) を算出したところ、 l O k g f Z c m2 の時には不着火、 4 0 k g f Z c m2 の時には 4 8. 3 mmノ秒であつた。 実施例 9 The burning rate (mmZ seconds) of the composition of the present invention obtained by mixing 30 parts by weight of azodicarbonamide and 70 parts by weight of sodium perchlorate was obtained in the same manner as in Example 8 above. As a result, it was found that no ignition occurred at l O kgf Z cm 2 and 48.3 mm nos at 40 kgf Z cm 2 . Example 9
ァゾジカルボンア ミ ド 4 5重量部、 過塩素酸力 リ ウム 5 5重量部及び酸化銅 1 0重量部を混合して得られる本 発明組成物のペレッ ト (径 1 2. 3 mm x厚 3 mm) 4 0 gを自動車エアバッグ用ガス発生チヤ ンバ一に入れ これを圧力セ ンサ一付き内容積 2 8. 6 リ ッ トルのボン ブに装着した。 ペレツ トを B— K N O 3 gを用いて点 火し、 本発明組成物を燃焼させた。 その結果、 従来のガ ス発生剤 (N a N3 : K C I O ^ : F e 04 = 6 0 : 1 0 : 3 0 ) 8 0 gを用いて得られたのと同じ 2 8. 6 リ ッ トルボンブ内の時間一圧力曲線が得られた。 Pellet of the composition of the present invention obtained by mixing 45 parts by weight of azodicarbonamide, 55 parts by weight of potassium perchlorate and 10 parts by weight of copper oxide (diameter 12.3 mm x thickness 3 mm) 40 g was put into a gas generating chamber for an automobile airbag, and this was attached to a 28.6 liter bomb with a pressure sensor and an internal volume. The pellet was ignited with 3 g of B-KNO to burn the composition of the present invention. As a result, the conventional gas generator (N a N3: KCIO ^: F e 0 4 = 6 0: 1 0: 3 0) 2 same as obtained with 8 0 g 8. 6 Li Tsu Torubonbu The time-in-pressure curve was obtained.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ボンブ試験に使用されるガス捕集ボンブの縦 断面図である。 図 2及び図 3は、 ガス捕集ボンブ中に取 り付けられた反応容器の拡大図である。 図 4〜図 7は、 衝撃着火試験の手順を示す図面である。  Figure 1 is a longitudinal sectional view of a gas collecting bomb used for a bomb test. FIG. 2 and FIG. 3 are enlarged views of the reaction vessel installed in the gas collecting bomb. 4 to 7 are drawings showing the procedure of the impact ignition test.
1 …反応容器  1… Reaction vessel
2 …ガス捕集ボンブ  2… Gas collecting bomb
3 …ボンブ蓋  3… Bomb lid
4 …脚線  4… leg lines
5 …電極  5… Electrode
6 …熱電^ τ  6 ... thermoelectric ^ τ
7 …圧力セ ンサー  7… Pressure sensor
8 …ガス抜き  8 ... venting
9 …ガス発生剤  9 ... gas generating agent
1 0 …ノ ズル アルミ破裂板 1 0… Nozzle Aluminum bursting plate
2 点火剤 2 Ignition agent
3 ニク ロム線 3 nikrom wire
4 圧力セ ンサー 4 Pressure sensor
5 ステンレス容器 6 粉体試料 5 Stainless steel container 6 Powder sample
7 ポ リ エチレンカー ド 8 ポ リ エチ レンカー ド 9 7 Polyethylene card 8 Polyethylene card 9
0 パラフィ ン 0 paraffin
1 ネジ蓋 1 Screw lid

Claims

請 求 の 範 囲 The scope of the claims
1 . 含窒素有機化合物とォキソハロゲン酸塩とからな るェアバッグ用ガス発生剤。  1. A gas generator for airbags consisting of a nitrogen-containing organic compound and an oxohalogenate.
2 . ォキソハロゲン酸塩がハロゲン酸塩及び Z又は過 5 ハロゲン酸塩である請求の範囲第 1項記載のガス発生剤 c  2. The gas generating agent according to claim 1, wherein the oxohalogenate is a halogenate and Z or a perhalogenate c.
3 . ハロゲン酸塩がアル力 リ金属のハロゲン酸塩であ る請求の範囲第 1項記載のガス発生剤。  3. The gas generant according to claim 1, wherein the halogenate is an alkali metal halide.
4 . 過ハロゲン酸塩がアル力 リ金属の過ハロゲン酸塩 である請求の範囲第 1項記載のガス発生剤。 4. The gas generating agent according to claim 1, wherein the perhalate is an alkali metal perhalate.
0 5 . 含窒素有機化合物がア ミ ノ基含有有機化合物、 二 トラ ミ ン基含有有機化合物及び二 トロソア ミ ン基含有有 機化合物から選ばれる少なく とも 1種である請求の範囲 第 1項記載のガス発生剤。  0 5. The claim 1, wherein the nitrogen-containing organic compound is at least one selected from an amino group-containing organic compound, a dithramine group-containing organic compound, and a ditrosoamine group-containing organic compound. Gas generating agent.
6 . 含窒素有機化合物がァゾジカルボンア ミ ドである i s 請求の範囲第 1項記載のガス発生剤。  6. The gas generating agent according to claim 1, wherein the nitrogen-containing organic compound is azodicarbonamide.
7 . 含窒素有機化合物とォキソハロゲン酸塩とともに 燃焼調節触媒、 爆ごう防止剤及び酸素発生剤から選ばれ る少なく とも 1種を含む請求の範囲第 1項記載のガス発 生剤。  7. The gas generating agent according to claim 1, comprising at least one selected from a combustion control catalyst, a detonation inhibitor, and an oxygen generating agent together with the nitrogen-containing organic compound and the oxohalogenate.
2 0 8 . 燃焼調節触媒が、 元素周期律表の第 4周期元素及 び第 6周期元素の酸化物、 塩化物及び炭酸塩から選ばれ る少なく とも 1種である請求の範囲第 7項記載のガス発 生剤。 208. The combustion control catalyst according to claim 7, wherein the combustion control catalyst is at least one selected from oxides, chlorides and carbonates of the fourth and sixth elements of the periodic table. Departure from gas Crude drug.
9 . 燃焼調節触媒が、 セルロース系化合物及び有機高 分子化合物から選ばれる少なく とも 1種である請求の範 囲第 7項記載のガス発生剤。  9. The gas generating agent according to claim 7, wherein the combustion control catalyst is at least one selected from a cellulosic compound and an organic high molecular compound.
PCT/JP1993/000634 1992-07-13 1993-05-13 Gas generating agent for air bags WO1994001381A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93910338A EP0607446B1 (en) 1992-07-13 1993-05-13 Gas generating agent for air bags
KR1019940700396A KR100242401B1 (en) 1992-07-13 1993-05-13 Gas generating agent for air bags
DE69323410T DE69323410T2 (en) 1992-07-13 1993-05-13 GAS GENERATOR FOR AIRBAGS
CA002115557A CA2115557C (en) 1992-07-13 1993-05-13 Air bag gas generating composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/185253 1992-07-13
JP4185253A JPH0632690A (en) 1992-07-13 1992-07-13 Gas-generating agent for air bag
JP4185251A JPH0632689A (en) 1992-07-13 1992-07-13 Gas-generating agent for air bag
JP4/185251 1992-07-13

Publications (1)

Publication Number Publication Date
WO1994001381A1 true WO1994001381A1 (en) 1994-01-20

Family

ID=26502995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000634 WO1994001381A1 (en) 1992-07-13 1993-05-13 Gas generating agent for air bags

Country Status (5)

Country Link
EP (1) EP0607446B1 (en)
KR (1) KR100242401B1 (en)
CA (1) CA2115557C (en)
DE (1) DE69323410T2 (en)
WO (1) WO1994001381A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026169A1 (en) * 1995-02-18 1996-08-29 Dynamit Nobel Gmbh Gas-generating mixtures
CN107192631A (en) * 2017-05-08 2017-09-22 浙江物产汽车安全科技有限公司 A kind of performance test methods of air bag gas generant composition in accordance

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0694511A4 (en) * 1994-02-15 1997-02-26 Nippon Koki Kk Gas generator composition, process for producing tablet therefrom, and transportation method
US5538567A (en) * 1994-03-18 1996-07-23 Olin Corporation Gas generating propellant
FR2719578B1 (en) * 1994-05-09 1996-12-20 Nof Corp Gas generator compositions comprising a deoxidized agent and an oxidizing agent.
US5656793A (en) * 1994-05-09 1997-08-12 Eiwa Chemical Ind. Co., Ltd. Gas generator compositions
US5557062A (en) * 1994-12-13 1996-09-17 United Technologies Corporation Breathable gas generators
DE19581542T1 (en) 1994-12-21 1999-04-01 Daicel Chem Gas generating composition
WO1996023748A1 (en) * 1995-02-03 1996-08-08 Otsuka Kagaku Kabushiki Kaisha Air bag gas generating agent
GB9503066D0 (en) * 1995-02-16 1995-04-05 Royal Ordnance Plc Gas generating composition
EP0801045A4 (en) * 1995-09-29 2000-11-02 Otsuka Kagaku Kk Gas generator for air bag
JP3247929B2 (en) 1995-11-14 2002-01-21 ダイセル化学工業株式会社 Gas generating composition
DE19617538C1 (en) * 1996-05-02 1997-10-30 Temic Bayern Chem Airbag Gmbh Gas-generating, acid-free mixture of substances
US6527886B1 (en) * 1996-07-22 2003-03-04 Daicel Chemical Industries, Ltd. Gas generant for air bag
US6497774B2 (en) 1996-07-22 2002-12-24 Daicel Chemical Industries, Ltd. Gas generant for air bag
DE19643468A1 (en) * 1996-10-22 1998-04-23 Temic Bayern Chem Airbag Gmbh Gas-generating, azide-free solid mixture
SE509312C2 (en) 1997-05-21 1999-01-11 Foersvarets Forskningsanstalt Compound consisting of guanyl urea dinitramide, explosive containing the compound and use of the compound in gas generators.
JPH11292678A (en) 1998-04-15 1999-10-26 Daicel Chem Ind Ltd Gas generating agent composition for air bag
US6651565B1 (en) 1998-04-20 2003-11-25 Daicel Chemical Industries, Ltd. Method of reducing NOx
DE20111410U1 (en) * 2001-07-10 2001-08-30 TRW Airbag Systems GmbH & Co. KG, 84544 Aschau Nitrocellulose free gas generating composition
FR2883868B1 (en) * 2005-03-30 2007-08-03 Davey Bickford Snc SELF-INITIATING COMPOSITIONS, ELECTRIC INITIATORS USING SUCH COMPOSITIONS AND GAS GENERATORS COMPRISING SUCH INITIATORS

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083270A (en) * 1973-11-29 1975-07-05
JPS6028797B2 (en) * 1976-04-22 1985-07-06 チオコ−ル コ−ポレ−シヨン Solid propellant containing combustion rate regulating catalyst
JPH02221179A (en) * 1989-02-22 1990-09-04 Daicel Chem Ind Ltd Gas generating agent generating gas having same composition as clean air
JPH03153593A (en) * 1989-11-06 1991-07-01 Automot Syst Lab Inc Azide gas generating composition
JPH0426579A (en) * 1990-05-21 1992-01-29 Daicel Chem Ind Ltd Gas generating composition
JPH04265292A (en) * 1990-10-25 1992-09-21 Automot Syst Lab Inc Azide-free gas generating composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1063438A (en) * 1952-09-18 1954-05-03 France Etat Charges producing gas by combustion
US3214304A (en) * 1963-03-20 1965-10-26 Thiokol Chemical Corp Gas-generating compositions containing coolants and methods for their use
GB1290418A (en) * 1969-12-26 1972-09-27
JPS5522359B2 (en) * 1972-05-30 1980-06-16
JPS4921171A (en) * 1972-06-15 1974-02-25
US4386979A (en) * 1979-07-19 1983-06-07 Jackson Jr Charles H Gas generating compositions
US4358327A (en) * 1980-10-14 1982-11-09 The United States Of America As Represented By The Secretary Of The Navy Gas generant propellants
US5125684A (en) * 1991-10-15 1992-06-30 Hercules Incorporated Extrudable gas generating propellants, method and apparatus
CA2118698A1 (en) * 1992-07-10 1994-01-20 Naosuke Moriyuki Gas generating agent and gas generator for automobile air bags

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5083270A (en) * 1973-11-29 1975-07-05
JPS6028797B2 (en) * 1976-04-22 1985-07-06 チオコ−ル コ−ポレ−シヨン Solid propellant containing combustion rate regulating catalyst
JPH02221179A (en) * 1989-02-22 1990-09-04 Daicel Chem Ind Ltd Gas generating agent generating gas having same composition as clean air
JPH03153593A (en) * 1989-11-06 1991-07-01 Automot Syst Lab Inc Azide gas generating composition
JPH0426579A (en) * 1990-05-21 1992-01-29 Daicel Chem Ind Ltd Gas generating composition
JPH04265292A (en) * 1990-10-25 1992-09-21 Automot Syst Lab Inc Azide-free gas generating composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0607446A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026169A1 (en) * 1995-02-18 1996-08-29 Dynamit Nobel Gmbh Gas-generating mixtures
CN107192631A (en) * 2017-05-08 2017-09-22 浙江物产汽车安全科技有限公司 A kind of performance test methods of air bag gas generant composition in accordance

Also Published As

Publication number Publication date
EP0607446A1 (en) 1994-07-27
EP0607446A4 (en) 1995-03-29
DE69323410D1 (en) 1999-03-18
KR100242401B1 (en) 2000-02-01
EP0607446B1 (en) 1999-02-03
DE69323410T2 (en) 1999-09-02
CA2115557C (en) 2000-07-25

Similar Documents

Publication Publication Date Title
WO1994001381A1 (en) Gas generating agent for air bags
US5898126A (en) Air bag gas generating composition
US6287400B1 (en) Gas generant composition
JP2551738B2 (en) Gas generant composition
US5747730A (en) Pyrotechnic method of generating a particulate-free, non-toxic odorless and colorless gas
EP1003696B1 (en) Ignition enhancement composition for an airbag inflator
US6132480A (en) Gas forming igniter composition for a gas generant
WO1995021805A1 (en) Gas generator composition, process for producing tablet therefrom, and transportation method
US6120058A (en) Air bag inflator
JPH11502497A (en) Heat stable gas generating composition
JPH0657629B2 (en) Composition, method and airbag device for automobile for generating nitrogen-containing gas
EP0400809B1 (en) Gas generant compositions containing salts of 5-nitrobarbituric acid, salts of nitroorotic acid, or 5-nitrouracil
WO1998042642A1 (en) Gas generator composition and molding thereof
US5850053A (en) Eutectic mixtures of ammonium nitrate, guanidine nitrate and potassium perchlorate
US6475312B1 (en) Method of formulating a gas generant composition
CA2420218A1 (en) Apparatus for igniting gas generating material
JPH06227884A (en) Gas generator for air bag
JPH10158086A (en) Gas producing preparation and its use for air bag
US5997666A (en) GN, AGN and KP gas generator composition
JPH0632690A (en) Gas-generating agent for air bag
US20040231770A1 (en) Gas-generating substances
US20060118218A1 (en) Gas generant composition
JP4021491B2 (en) Auto-ignition composition for gas generator of inflator
JPH0632689A (en) Gas-generating agent for air bag
JPH07195999A (en) Inflator for air bag

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2115557

Country of ref document: CA

Ref document number: 1993910338

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1994 185970

Country of ref document: US

Date of ref document: 19940722

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993910338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 956495

Country of ref document: US

Date of ref document: 19971022

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 1997 977943

Country of ref document: US

Date of ref document: 19971124

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 1993910338

Country of ref document: EP