USRE41812E1 - Electro-kinetic air transporter-conditioner - Google Patents
Electro-kinetic air transporter-conditioner Download PDFInfo
- Publication number
- USRE41812E1 USRE41812E1 US11/041,926 US4192605A USRE41812E US RE41812 E1 USRE41812 E1 US RE41812E1 US 4192605 A US4192605 A US 4192605A US RE41812 E USRE41812 E US RE41812E
- Authority
- US
- United States
- Prior art keywords
- housing
- electrode
- removable
- resting position
- collector electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/74—Cleaning the electrodes
- B03C3/743—Cleaning the electrodes by using friction, e.g. by brushes or sliding elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/32—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
- B01D53/323—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/08—Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/12—Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/32—Transportable units, e.g. for cleaning room air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/40—Electrode constructions
- B03C3/45—Collecting-electrodes
- B03C3/47—Collecting-electrodes flat, e.g. plates, discs, gratings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/66—Applications of electricity supply techniques
- B03C3/68—Control systems therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
- C01B13/115—Preparation of ozone by electric discharge characterised by the electrical circuits producing the electrical discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01T—SPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
- H01T23/00—Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/104—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/08—Ionising electrode being a rod
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/14—Details of magnetic or electrostatic separation the gas being moved electro-kinetically
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/10—Dischargers used for production of ozone
- C01B2201/12—Plate-type dischargers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/20—Electrodes used for obtaining electrical discharge
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/20—Electrodes used for obtaining electrical discharge
- C01B2201/22—Constructional details of the electrodes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2201/00—Preparation of ozone by electrical discharge
- C01B2201/60—Feed streams for electrical dischargers
- C01B2201/62—Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/30—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F8/00—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
- F24F8/40—Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation
Definitions
- This invention relates to electro-kinetic conversion of electrical energy into fluid flow of an ionizable dielectric medium, and more specifically to methods and devices for electro-kinetically producing a flow of air from which particulate matter has been substantially removed.
- the air flow should contain safe amounts of ozone (O 3 ).
- HEPA-compliant filter elements are expensive, and can represent a substantial portion of the sale price of a HEPA-compliant filter-fan unit. While such filter-fan units can condition the air by removing large particles, particulate matter small enough to pass through the filter element is not removed, including bacteria, for example.
- Lee's system 10 includes an array of small area (“minisectional”) electrodes 20 that is spaced-apart symmetrically from an array of larger area (“maxisectional”) electrodes 30 .
- minisectional small area
- maxisectional larger area
- the positive terminal of a pulse generator 40 that outputs a train of high voltage pulses (e.g., 0 to perhaps +5 KV) is coupled to the minisectional array, and the negative pulse generator terminal is coupled to the maxisectional array.
- the high voltage pulses ionize the air between the arrays, and an air flow 50 from the minisectional array toward the maxisectional array results, without requiring any moving parts.
- Particulate matter 60 in the air is entrained within the airflow 50 and also moves towards the maxisectional electrodes 30 .
- Much of the particulate matter is electrostatically attracted to the surface of the maxisectional electrode array, where it remains, thus conditioning the flow of air exiting system 10 .
- the high voltage field present between the electrode arrays can release ozone into the ambient environment, which appears to destroy or at least alter whatever is entrained in the airflow, including for example, bacteria.
- minisectional electrodes 20 are circular in cross-section, having a diameter of about 0.003′′ (0.08 mm), whereas the maxisectional electrodes 30 are substantially larger in area and define a “teardrop” shape in cross-section.
- the ratio of cross-sectional areas between the maxisectional and minisectional electrodes is not explicitly stated, but from Lee's figures appears to exceed 10:1.
- the bulbous front surfaces of the maxisectional electrodes face the minisectional electrodes, and the somewhat sharp trailing edges face the exit direction of the air flow.
- the “sharpened” trailing edges on the maxisectional electrodes apparently promote good electrostatic attachment of particulate matter entrained in the airflow.
- Lee does not disclose how the teardrop shaped maxisectional electrodes are fabricated, but presumably they are produced using a relatively expensive mold-casting or an extrusion process.
- Lee's maxisectional sectional electrodes 30 are symmetrical and elongated in cross-section.
- the elongated trailing edges on the maxisectional electrodes provide increased area upon which particulate matter entrained in the airflow can attach.
- Lee states that precipitation efficiency and desired reduction of anion release into the environment can result from including a passive third array of electrodes 70 . Understandably, increasing efficiency by adding a third array of electrodes will contribute to the cost of manufacturing and maintaining the resultant system.
- an electro-kinetic air transporter-conditioner that provides improved efficiency over Lee-type systems, without requiring expensive production techniques to fabricate the electrodes.
- a conditioner should function efficiently without requiring a third array of electrodes.
- such a conditioner should permit user-selection of safe amounts of ozone to be generated, for example to remove odor from the ambient environment.
- the present invention provides a method and apparatus for electro-kinetically transporting and conditioning air.
- the present invention provides an electro-kinetic system for transporting and conditioning air without moving parts.
- the air is conditioned in the sense that it is ionized and contains safe amounts of ozone.
- Applicants' electro-kinetic air transporter-conditioner includes a louvered or grilled body that houses an ionizer unit.
- the ionizer unit includes a high voltage DC inverter that boosts common 110 VAC to high voltage, and a generator that receives the high voltage DC and outputs high voltage pulses of perhaps 10 KV peak-to-peak, although an essentially 100% duty cycle (e.g., high voltage DC) output could be used instead of pulses.
- the unit also includes an electrode assembly unit comprising first and second spaced-apart arrays of conducting electrodes, the first array and second array being coupled, respectively, preferably to the positive and negative output ports of the high voltage generator.
- the electrode assembly preferably is formed using first and second arrays of readily manufacturable electrode types.
- the first array comprises wire-like electrodes and the second array comprises “U”-shaped electrodes having one or two trailing surfaces.
- the first array includes at least one pin or cone-like electrode and the second array is an annular washer-like electrode.
- the electrode assembly may comprise various combinations of the described first and second array electrodes. In the various embodiments, the ratio between effective area of the second array electrodes to the first array electrodes is at least about 20:1.
- the high voltage pulses create an electric field between the first and second electrode arrays.
- This field produces an electro-kinetic airflow going from the first array toward the second array, the airflow being rich in preferably a net surplus of negative ions and in ozone.
- the dust and other particulate matter attaches electrostatically to the second array (or collector) electrodes, and the output air is substantially clean of such particulate matter.
- ozone generated by the present invention can kill certain types of germs and the like, and also eliminates odors in the output air.
- the transporter operates in periodic bursts, and a control permits the user to temporarily increase the high voltage pulse generator output, e.g., to more rapidly eliminate odors in the environment.
- FIG. 1A is a plan, cross-sectional view, of a first embodiment of a prior art electro-kinetic air transporter-conditioner system, according to the prior art;
- FIG. 1B is a plan, cross-sectional view, of a second embodiment of a prior art electro-kinetic air transporter-conditioner system, according to the prior art;
- FIG. 2A is a perspective view of a preferred embodiment of the present invention.
- FIG. 2B is a perspective view of the embodiment of FIG. 2A , with the electrode assembly partially withdrawn, according to the present invention
- FIG. 3 is an electrical block diagram of the present invention.
- FIG. 4A is a perspective block diagram showing a first embodiment for an electrode assembly, according to the present invention.
- FIG. 4B is a plan block diagram of the embodiment of FIG. 4A ;
- FIG. 4C is a perspective block diagram showing a second embodiment for an electrode assembly, according to the present invention.
- FIG. 4D is a plan block diagram of a modified version of the embodiment of FIG. 4C ;
- FIG. 4E is a perspective block diagram showing a third embodiment for an electrode assembly, according to the present invention.
- FIG. 4F is a plan block diagram of the embodiment of FIG. 4E ;
- FIG. 4G is a perspective block diagram showing a fourth embodiment for an electrode assembly, according to the present invention.
- FIG. 4H is a plan block diagram of the embodiment of FIG. 4G ;
- FIG. 4I is a perspective block diagram showing a fifth embodiment for an electrode assembly, according to the present invention.
- FIG. 4J is a detailed cross-sectional view of a portion of the embodiment of FIG. 4I ;
- FIG. 4K is a detailed cross-sectional view of a portion of an alternative to the embodiment of FIG. 4 I.
- FIGS. 2A and 2B depict an electro-kinetic air transporter-conditioner system 100 whose housing 102 includes preferably rear-located intake vents or louvers 104 and preferably front and side-located exhaust vents 106 , and a base pedestal 108 .
- an ion generating unit 160 Internal to the transporter housing is an ion generating unit 160 , preferably powered by an AC:DC power supply that is energizable using switch S 1 .
- Ion generating unit 160 is self-contained in that other than ambient air, nothing is required from beyond the transporter housing, save external operating potential, for operation of the present invention.
- the upper surface of housing 102 includes a user-liftable handle 112 to which is affixed an electrode assembly 220 that comprises a first array 230 of electrodes 232 and a second array 240 of electrodes 242 .
- the first and second arrays of electrodes are coupled in series between the output terminals of ion generating unit 160 , as best seen in FIG. 3 .
- the ability to lift handle 112 provides ready access to the electrodes comprising the electrode assembly, for purposes of cleaning and, if necessary, replacement.
- the general shape of the invention shown in FIGS. 2A and 2B is not critical.
- the top-to-bottom height of the preferred embodiment is perhaps 1 m, with a left-to-right width of perhaps 15 cm, and a front-to-back depth of perhaps 10 cm, although other dimensions and shapes may of course be used.
- a louvered construction provides ample inlet and outlet venting in an economical housing configuration. There need be no real distinction between vents 104 and 106 , except their location relative to the second array electrodes, and indeed a common vent could be used. These vents serve to ensure that an adequate flow of ambient air may be drawn into or made available to the present invention, and that an adequate flow of ionized air that includes safe amounts of O 3 flows out from unit 130 .
- ion generator 160 when unit 100 is energized with S 1 , high voltage output by ion generator 160 produces ions at the first electrode array, which ions are attracted to the second electrode array.
- the movement of the ions in an “IN” to “OUT” direction carries with them air molecules, thus electrokinetically producing an outflow of ionized air.
- the “IN” notion in FIGS. 2A and 2B denote the intake of ambient air with particulate matter 60 .
- the “OUT” notation in the figures denotes the outflow of cleaned air substantially devoid of the particulate matter, which adheres electrostatically to the surface of the second array electrodes.
- safe amounts of ozone (O 3 ) are beneficially produced. It may be desired to provide the inner surface of housing 102 with an electrostatic shield to reduce detectable electromagnetic radiation. For example, a metal shield could be disposed within the housing, or portions of the interior of the housing could be coated with a metallic paint to reduce such radiation.
- ion generating unit 160 includes a high voltage generator unit 170 and circuitry 180 for converting raw alternating voltage (e.g., 117 VAC) into direct current (“DC”) voltage.
- Circuitry 180 preferably includes circuitry controlling the shape and/or duty cycle of the generator unit output voltage (which control is altered with user switch S 2 ).
- Circuitry 180 preferably also includes a pulse mode component, coupled to switch S 3 , to temporarily provide a burst of increased output ozone.
- Circuitry 180 can also include a timer circuit and a visual indicator such as a light emitting diode (“LED”).
- the LED or other indicator (including, if desired, audible indicator) signals when ion generation is occurring.
- the timer can automatically halt generation of ions and/or ozone after some predetermined time, e.g., 30 minutes, indicator(s), and/or audible indicator(s).
- high voltage generator unit 170 preferably comprises a low voltage oscillator circuit 190 of perhaps 20 KHz frequency, that outputs low voltage pulses to an electronic switch 200 , e.g., a thyristor or the like.
- Switch 200 switchably couples the low voltage pulses to the input winding of a step-up transformer T 1 .
- the secondary winding of T 1 is coupled to a high voltage multiplier circuit 210 that outputs high voltage pulses.
- the circuitry and components comprising high voltage pulse generator 170 and circuit 180 are fabricated on a printed circuit board that is mounted within housing 102 .
- external audio input e.g., from a stereo tuner
- oscillator 190 could be suitably coupled to oscillator 190 to acoustically modulate the kinetic airflow produced by unit 160 .
- the result would be an electrostatic loudspeaker, whose output air flow is audible to the human ear in accordance with the audio input signal. Further, the output air stream would still include ions and ozone.
- Output pulses from high voltage generator 170 preferably are at least 10 KV peak-to-peak with an effective DC offset of perhaps half the peak-to-peak voltage, and have a frequency of perhaps 20 KHz.
- the pulse train output preferably has a duty cycle of perhaps 10%, which will promote battery lifetime.
- different peak-peak amplitudes, DC offsets, pulse train waveshapes, duty cycle, and/or repetition frequencies may instead be used.
- a 100% pulse train (e.g., an essentially DC high voltage) may be used, albeit with shorter battery life-time.
- generator unit 170 may (but need not) be referred to as a high voltage pulse generator.
- Frequency of oscillation is not especially critical but frequency of at least about 20 KHz is preferred as being inaudible to humans. If pets will be in the same room as the present invention, it may be desired to utilize an even higher operating frequency, to prevent pet discomfort and/or howling by the pet.
- the output from high voltage pulse generator unit 170 is coupled to an electrode assembly 220 that comprises a first electrode array 230 and a second electrode array 240 .
- Unit 170 functions as a DC:DC high voltage generator, and could be implemented using other circuitry and/or techniques to output high voltage pulses that are input to electrode assembly 220 .
- the positive output terminal of unit 170 is coupled to first electrode array 230
- the negative output terminal is coupled to second electrode array 240 .
- This coupling polarity has been found to work well, including minimizing unwanted audible electrode vibration or hum.
- An electrostatic flow of air is created, going from the first electrode array towards the second electrode array. (This flow is denoted “OUT” in the figures.)
- electrode assembly 220 is mounted within transporter system 100 such that second electrode array 240 is closer to the OUT vents and first electrode array 230 is closer to the IN vents.
- first and second electrode arrays 230 and 240 When voltage or pulses from high voltage pulse generator 170 are coupled across first and second electrode arrays 230 and 240 , it is believed that a plasma-like field is created surrounding electrodes 232 in first array 230 . This electric field ionizes the ambient air between the first and second electrode arrays and establishes an “OUT” airflow that moves towards the second array. It is understood that the IN flow enters via vent(s) 104 , and that the OUT flow exits via vent(s) 106 .
- ozone and ions are generated simultaneously by the first array electrode(s) 232 , essentially as a function of the potential from generator 170 coupled to the first array. Ozone generation may be increased or decreased by increasing or decreasing the potential at the first array. Coupling an opposite polarity potential to the second array electrode(s) 242 essentially accelerates the motion of ions generated at the first array, producing the air flow denoted as “OUT” in the figures. As the ions move toward the second array, it is believed that they push or move air molecules toward the second array. The relative velocity of this motion may be increased by decreasing the potential at the second array relative to the potential at the first array.
- the exemplary 10 KV potential could be divided between the electrode arrays.
- generator 170 could provide +4 KV (or some other fraction) to the first array electrode(s) and ⁇ 6 KV (or some other fraction) to the second array electrode(s).
- the +4 KV and the ⁇ 6 KV are measured relative to ground. Understandably it is desired that the present invention operate to output safe amounts of ozone.
- the high voltage is preferably fractionalized with about +4 KV applied to the first array electrode(s) and about ⁇ 6 KV applied to the second array electrodes.
- outflow (OUT) preferably includes safe amounts of O 3 that can destroy or at least substantially alter bacteria, germs, and other living (or quasi-living) matter subjected to the outflow.
- pulses from high voltage pulse generator unit 170 create an outflow (OUT) of ionized air and O 3 .
- S 1 When S 1 is closed, LED will visually signal when ionization is occurring.
- operating parameters of the present invention are set during manufacture and are not user-adjustable.
- increasing the peak-to-peak output voltage and/or duty cycle in the high voltage pulses generated by unit 170 can increase air flowrate, ion content, and ozone content.
- output flowrate is about 200 feet/minute
- ion content is about 2,000,000/cc
- ozone content is about 40 ppb (over ambient) to perhaps 2,000 ppb (over ambient).
- Decreasing the R 2 /R 1 ratio below about 20:1 will decrease flow rate, as will decreasing the peak-to-peak voltage and/or duty cycle of the high voltage pulses coupled between the first and second electrode arrays.
- unit 100 is placed in a room and connected to an appropriate source of operating potential, typically 117 VAC.
- ionization unit 160 emits ionized air and preferably some ozone (O 3 ) via outlet vents 150 .
- the air flow coupled with the ions and ozone freshens the air in the room, and the ozone can beneficially destroy or at least diminish the undesired effects of certain odors, bacteria, germs, and the like.
- the air flow is indeed electro-kinetically produced, in that there are no intentionally moving parts within the present invention. (As noted, some mechanical vibration may occur within the electrodes.)
- electrode assembly 220 will comprise a first array 230 of at least one electrode 232 , and will further comprise a second array 240 of preferably at least one electrode 242 . Understandably material(s) for electrodes 232 and 242 should conduct electricity, be resilient to corrosive effects from the application of high voltage, yet be strong enough to be cleaned.
- electrode(s) 232 in the first electrode array 230 are preferably fabricated from tungsten. Tungsten is sufficiently robust to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that seems to promote efficient ionization.
- electrodes 242 preferably will have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, electrodes 242 preferably are fabricated from stainless steel, brass, among other materials. The polished surface of electrodes 232 also promotes ease of electrode cleaning.
- electrodes 232 and 242 according to the present invention are lightweight, easy to fabricate, and lend themselves to mass production. Further, electrodes 232 and 242 described herein promote more efficient generation of ionized air, and production of safe amounts of ozone, O 3 .
- a high voltage pulse generator 170 is coupled between the first electrode array 230 and the second electrode array 240 .
- the high voltage pulses produce a flow of ionized air that travels in the direction from the first array towards the second array (indicated herein by hollow arrows denoted “OUT”).
- electrode(s) 232 may be referred to as an emitting electrode
- electrodes 242 may be referred to as collector electrodes.
- This outflow advantageously contains safe amounts of O 3 , and exits the present invention from vent(s) 106 .
- the positive output terminal or port of the high voltage pulse generator be coupled to electrodes 232 , and that the negative output terminal or port be coupled to electrodes 242 . It is believed that the net polarity of the emitted ions is positive, e.g., more positive ions than negative ions are emitted. In any event, the preferred electrode assembly electrical coupling minimizes audible hum from electrodes 232 contrasted with reverse polarity (e.g., interchanging the positive and negative output port connections).
- one port (preferably the negative port) of the high voltage pulse generator may in fact be the ambient air.
- electrodes in the second array need not be connected to the high voltage pulse generator using wire. Nonetheless, there will be an “effective connection” between the second array electrodes and one output port of the high voltage pulse generator, in this instance, via ambient air.
- electrode assembly 220 comprises a first array 230 of wire electrodes 232 , and a second array 240 of generally “U”-shaped electrodes 242 .
- the number N 1 of electrodes comprising the first array will preferably differ by one relative to the number N 2 of electrodes comprising the second array. In many of the embodiments shown, N 2 >N 1 .
- additional first electrodes 232 could be added at the out ends of array 230 such that N 1 >N 2 , e.g., five electrodes 232 compared to four electrodes 242 .
- Electrodes 232 are preferably lengths of tungsten wire, whereas electrodes 242 are formed from sheet metal, preferably stainless steel, although brass or other sheet metal could be used. The sheet metal is readily formed to define side regions 244 and bulbous nose region 246 for hollow elongated “U” shaped electrodes 242 . While FIG. 4A depicts four electrodes 242 in second array 240 and three electrodes 232 in first array 230 , as noted, other numbers of electrodes in each array could be used, preferably retaining a symmetrically staggered configuration as shown. It is seen in FIG. 4A that while particulate matter 60 is present in the incoming (IN) air, the outflow (OUT) air is substantially devoid of particulate matter, which adheres to the preferably large surface area provided by the second array electrodes (see FIG. 4 B).
- the spaced-apart configuration between the arrays is staggered such that each first array electrode 232 is substantially equidistant from two second array electrodes 242 .
- This symmetrical staggering has been found to be an especially efficient electrode placement.
- the staggering geometry is symmetrical in that adjacent electrodes 232 or adjacent electrodes 242 are spaced apart a constant distance, Y 1 and Y 2 respectively.
- a non-symmetrical configuration could also be used, although ion emission and air flow would likely be diminished.
- the number of electrodes 232 and 242 may differ from what is shown.
- typically dimensions are as follows: diameter of electrodes 232 is about 0.08 mm, distances Y 1 and Y 2 are each about 16 mm, distance X 1 is about 16 mm, distance L is about 20 mm, and electrode heights Z 1 and Z 2 are each about 1 m.
- the width W of electrodes 242 is preferably about 4 mm, and the thickness of the material from which electrodes 242 are formed is about 0.5 mm. Of course other dimensions and shapes could be used. It is preferred that electrodes 232 be small in diameter to help establish a desired high voltage field. On the other hand, it is desired that electrodes 232 (as well as electrodes 242 ) be sufficiently robust to withstand occasional cleaning.
- Electrodes 232 in first array 230 are coupled by a conductor 234 to a first (preferably positive) output port of high voltage pulse generator 170
- electrodes 242 in second array 240 are coupled by a conductor 244 to a second (preferably negative) output port of generator 170 .
- FIG. 4B depicts conductor 244 making connection with some electrodes 242 internal to bulbous end 246 , while other electrodes 242 make electrical connection to conductor 244 elsewhere on the electrode. Electrical connection to the various electrodes 242 could also be made on the electrode external surface providing no substantial impairment of the outflow airstream results.
- the lower end of the various electrodes fit against mating portions of wire or other conductors 234 or 244 .
- “cup-like” members can be affixed to wires 234 and 244 into which the free ends of the various electrodes fit when electrode array 220 is inserted completely into housing 102 of unit 100 .
- the ratio of the effective electric field emanating area of electrode 232 to the nearest effective area of electrodes 242 is at least about 15:1, and preferably is at least 20:1.
- ionization appears to occur at the smaller electrode(s) 232 in the first electrode array 230 , with ozone production occurring as a function of high voltage arcing.
- increasing the peak-to-peak voltage amplitude and/or duty cycle of the pulses from the high voltage pulse generator 170 can increase ozone content in the output flow of ionized air.
- user-control S 2 can be used to somewhat vary ozone content by varying (in a safe manner) amplitude and/or duty cycle. Specific circuitry for achieving such control is known in the art and need not be described in detail herein.
- Electrode 243 preferably electrically coupled to the same potential as the second array electrodes.
- Electrode 243 preferably defines a pointed shape in side profile, e.g., a triangle.
- the sharp point on electrode(s) 243 causes generation of substantial negative ions (since the electrode is coupled to relatively negative high potential). These negative ions neutralize excess positive ions otherwise present in the output air flow, such that the OUT flow has a net negative charge.
- Electrode(s) 243 preferably are stainless steel, copper, or other conductor, and are perhaps 20 mm high and about 12 mm wide at the base.
- pointed electrodes 243 may be stationarily mounted within the housing of unit 100 , and thus are not readily reached by human hands when cleaning the unit. Were it otherwise, the sharp point on electrode(s) 243 could easily cause cuts.
- the inclusion of one electrode 243 has been found sufficient to provide a sufficient number of output negative ions, but more such electrodes may be included.
- each “U”-shaped electrode 242 has two trailing edges that promote efficient kinetic transport of the outflow of ionized air and O 3 .
- Electrode region 243 ′ helps promote output of negative ions, in the same fashion as was described with respect to FIGS. 4A and 4B .
- the particulate matter is omitted for ease of illustration. However, from what was shown in FIGS. 2A-4B , particulate matter will be present in the incoming air, and will be substantially absent from the outgoing air. As has been described, particulate matter 60 typically will be electrostatically precipitated upon the surface area of electrodes 242 .
- FIGS. 4C and 4D depict somewhat truncated versions of electrodes 242 .
- dimension L in the embodiment of FIGS. 4A and 4B was about 20 mm
- FIGS. 4C and 4D L has been shortened to about 8 mm.
- Other dimensions in FIG. 4C preferably are similar to those stated for FIGS. 4A and 4B .
- the inclusion of point-like regions 246 on the trailing edge of electrodes 242 seems to promote more efficient generation of ionized air flow.
- the configuration of second electrode array 240 in FIG. 4C can be more robust than the configuration of FIGS. 4A and 4B , by virtue of the shorter trailing edge geometry.
- a symmetrical staggered geometry for the first and second electrode arrays is preferred for the configuration of FIG. 4 C.
- the outermost second electrodes denoted 242 - 1 and 242 - 2 , have substantially no outermost trailing edges.
- Dimension L in FIG. 4D is preferably about 3 mm, and other dimensions may be as stated for the configuration of FIGS. 4A and 4B .
- the R 2 /R 1 ratio for the embodiment of FIG. 4D preferably exceeds about 20:1.
- FIGS. 4E and 4F depict another embodiment of electrode assembly 220 , in which the first electrode array comprises a single wire electrode 232 , and the second electrode array comprises a single pair of curved “L”-shaped electrodes 242 , in cross-section.
- Typical dimensions where different than what has been stated for earlier-described embodiments, are X 1 ⁇ 12 mm, Y 1 ⁇ 6 mm, Y 2 ⁇ 5 mm, and L 1 ⁇ 3 mm.
- the effective R 2 /R 1 ratio is again greater than about 20:1.
- the fewer electrodes comprising assembly 220 in FIGS. 4E and 4F promote economy of construction, and ease of cleaning, although more than one electrode 232 , and more than two electrodes 242 could of course be employed.
- This embodiment again incorporates the staggered symmetry described earlier, in which electrode 232 is equidistant from two electrodes 242 .
- FIGS. 4G and 4H show yet another embodiment for electrode assembly 220 .
- first electrode array 230 is a length of wire 232
- the second electrode array 240 comprises a pair of rod or columnar electrodes 242 .
- electrode 232 be symmetrically equidistant from electrodes 242 .
- Wire electrode 232 is preferably perhaps 0.08 mm tungsten
- columnar electrodes 242 are perhaps 2 mm diameter stainless steel.
- the R 2 /R 1 ratio is about 25:1.
- Other dimensions may be similar to other configurations, e.g., FIGS. 4E , 4 F.
- electrode assembly 220 may comprise more than one electrode 232 , and more than two electrodes 242 .
- the first electrode assembly comprises a single pin-like element 232 disposed coaxially with a second electrode array that comprises a single ring-like electrode 242 having a rounded inner opening 246 .
- electrode assembly 220 may comprise a plurality of such pin-like and ring-like elements.
- electrode 232 is tungsten
- electrode 242 is stainless steel.
- Typical dimensions for the embodiment of FIG. 4 I and FIG. 4J are L 1 ⁇ 10 mm, X 1 ⁇ 9.5 mm, T ⁇ 0.5 mm, and the diameter of opening 246 is about 12 mm.
- Dimension L 1 preferably is sufficiently long that upstream portions of electrode 232 (e.g., portions to the left in FIG. 4I ) do not interfere with the electrical field between electrode 232 and the collector electrode 242 .
- the effect R 2 /R 1 ratio is governed by the tip geometry of electrode 232 . Again, in the preferred embodiment, this ratio exceeds about 20:1. Lines drawn in phantom in FIG.
- 4J depict theoretical electric force field lines, emanating from emitter electrode 232 , and terminating on the curved surface of collector electrode 246 .
- the bulk of the field emanates within about ⁇ 45° of coaxial axis between electrode 232 and electrode 242 .
- the opening in electrode 242 and/or electrode 232 and 242 geometry is such that too narrow an angle about the coaxial axis exists, air flow will be unduly restricted.
- ring-pin electrode assembly configuration shown in FIG. 4I is that the flat regions of ring-like electrode 242 provide sufficient surface area to which particulate matter 60 entrained in the moving air stream can attach, yet be readily cleaned.
- the ring-pin configuration advantageously generates more ozone than prior art configurations, or the configurations of FIGS. 4A-4H .
- the configurations of FIGS. 4A-4H may generate perhaps 50 ppb ozone
- the configuration of FIG. 4I can generate about 2,000 ppb ozone.
- first array pin electrodes may be utilized with the second array electrodes of FIGS. 4A-4H .
- second array ring electrodes may be utilized with the first array electrodes of FIGS. 4A-4H .
- each wire or columnar electrode 232 is replaced by a column of electrically series-connected pin electrodes (e.g., as shown in FIGS. 4 I- 4 K), while retaining the second electrode arrays as depicted in these figures.
- the first array electrodes can remain as depicted, but each of the second array electrodes 242 is replaced by a column of electrically series-connected ring electrodes (e.g., as shown in FIGS. 4 I- 4 K).
- FIG. 4J a detailed cross-sectional view of the central portion of electrode 242 in FIG. 4I is shown.
- curved region 246 adjacent the central opening in electrode 242 appears to provide an acceptably large surface area to which many ionization paths from the distal tip of electrode 232 have substantially equal path length.
- the adjacent regions of electrode 242 preferably provide many equidistant interelectrode array paths.
- a high exit flowrate of perhaps 90 feet/minute and 2,000 ppb range ozone emission attainable with this configuration confirm a high operating efficiency.
- one or more electrodes 232 is replaced by a conductive block 232 ′′ of carbon fibers, the block having a distal surface in which projecting fibers 233 - 1 , . . . 233 -N take on the appearance of a “bed of nails”.
- the projecting fibers can each act as an emitting electrode and provide a plurality of emitting surfaces. Over a period of time, some or all of the electrodes will literally be consumed, whereupon graphite block 232 ′′ will be replaced. Materials other than graphite may be used for block 232 ′′ providing the material has a surface with projecting conductive fibers such as 233 -N.
- the net output of ions is influenced by placing a bias element (e.g., element 243 ) near the output stream and preferably near the downstream side of the second array electrodes. If no ion output were desired, such an element could achieve substantial neutralization. It will also be appreciated that the present invention could be adjusted to produce ions without producing ozone, if desired.
- a bias element e.g., element 243
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Automation & Control Theory (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Electrostatic Separation (AREA)
Abstract
An electro-kinetic electro-static air conditioner includes a self-contained ion generator that provides electro-kinetically moved air with ions and safe amounts of ozone. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first array comprises one or more wire electrodes spaced staggeringly apart from a second array comprising hollow “U”-shaped electrodes. Preferably a ratio between effective area of an electrode in the second array compared to effective area of an electrode in the first array exceeds about 15:1 and preferably is about 20:1. An electric field produced by the high voltage pulses between the arrays produces an electrostatic flow of ionized air containing safe amounts of ozone. A bias electrode, electrically coupled to the second array electrodes, affects net polarity of ions generated. The outflow of ionized air and ozone is thus conditioned.
Description
This is a continuation of application Ser. No. 09/186,471 filed Nov. 5, 1998 now U.S. Pat. No. 6,176,977.
This invention relates to electro-kinetic conversion of electrical energy into fluid flow of an ionizable dielectric medium, and more specifically to methods and devices for electro-kinetically producing a flow of air from which particulate matter has been substantially removed. Preferably the air flow should contain safe amounts of ozone (O3).
The use of an electric motor to rotate a fan blade to create an air flow has long been known in the art. Unfortunately, such fans produce substantial noise, and can present a hazard to children who may be tempted to poke a finger or a pencil into the moving fan blade. Although such fans can produce substantial air flow, e.g., 1,000 ft3/minute or more, substantial electrical power is required to operate the motor, and essentially no conditioning of the flowing air occurs.
It is known to provide such fans with a HEPA-compliant filter element to remove particulate matter larger than perhaps 0.3 μm. Unfortunately, the resistance to air flow presented by the filter element may require doubling the electric motor size to maintain a desired level of airflow. Further, HEPA-compliant filter elements are expensive, and can represent a substantial portion of the sale price of a HEPA-compliant filter-fan unit. While such filter-fan units can condition the air by removing large particles, particulate matter small enough to pass through the filter element is not removed, including bacteria, for example.
It is also known in the art to produce an air flow using electro-kinetic techniques, by which electrical power is directly converted into a flow of air without mechanically moving components. One such system is described in U.S. Pat. No. 4,789,801 to Lee (1988), depicted herein in simplified form as FIGS. 1A and 1B . Lee's system 10 includes an array of small area (“minisectional”) electrodes 20 that is spaced-apart symmetrically from an array of larger area (“maxisectional”) electrodes 30. The positive terminal of a pulse generator 40 that outputs a train of high voltage pulses (e.g., 0 to perhaps +5 KV) is coupled to the minisectional array, and the negative pulse generator terminal is coupled to the maxisectional array.
The high voltage pulses ionize the air between the arrays, and an air flow 50 from the minisectional array toward the maxisectional array results, without requiring any moving parts. Particulate matter 60 in the air is entrained within the airflow 50 and also moves towards the maxisectional electrodes 30. Much of the particulate matter is electrostatically attracted to the surface of the maxisectional electrode array, where it remains, thus conditioning the flow of air exiting system 10. Further, the high voltage field present between the electrode arrays can release ozone into the ambient environment, which appears to destroy or at least alter whatever is entrained in the airflow, including for example, bacteria.
In the embodiment of FIG. 1A , minisectional electrodes 20 are circular in cross-section, having a diameter of about 0.003″ (0.08 mm), whereas the maxisectional electrodes 30 are substantially larger in area and define a “teardrop” shape in cross-section. The ratio of cross-sectional areas between the maxisectional and minisectional electrodes is not explicitly stated, but from Lee's figures appears to exceed 10:1. As shown in FIG. 1A herein, the bulbous front surfaces of the maxisectional electrodes face the minisectional electrodes, and the somewhat sharp trailing edges face the exit direction of the air flow. The “sharpened” trailing edges on the maxisectional electrodes apparently promote good electrostatic attachment of particulate matter entrained in the airflow. Lee does not disclose how the teardrop shaped maxisectional electrodes are fabricated, but presumably they are produced using a relatively expensive mold-casting or an extrusion process.
In another embodiment shown herein as FIG. 1B , Lee's maxisectional sectional electrodes 30 are symmetrical and elongated in cross-section. The elongated trailing edges on the maxisectional electrodes provide increased area upon which particulate matter entrained in the airflow can attach. Lee states that precipitation efficiency and desired reduction of anion release into the environment can result from including a passive third array of electrodes 70. Understandably, increasing efficiency by adding a third array of electrodes will contribute to the cost of manufacturing and maintaining the resultant system.
While the electrostatic techniques disclosed by Lee are advantageous to conventional electric fan-filter units, Lee's maxisectional electrodes are relatively expensive to fabricate. Further, increased filter efficiency beyond what Lee's embodiments can produce would be advantageous, especially without including a third array of electrodes.
Thus, there is a need for an electro-kinetic air transporter-conditioner that provides improved efficiency over Lee-type systems, without requiring expensive production techniques to fabricate the electrodes. Preferably such a conditioner should function efficiently without requiring a third array of electrodes. Further, such a conditioner should permit user-selection of safe amounts of ozone to be generated, for example to remove odor from the ambient environment.
The present invention provides a method and apparatus for electro-kinetically transporting and conditioning air.
The present invention provides an electro-kinetic system for transporting and conditioning air without moving parts. The air is conditioned in the sense that it is ionized and contains safe amounts of ozone.
Applicants' electro-kinetic air transporter-conditioner includes a louvered or grilled body that houses an ionizer unit. The ionizer unit includes a high voltage DC inverter that boosts common 110 VAC to high voltage, and a generator that receives the high voltage DC and outputs high voltage pulses of perhaps 10 KV peak-to-peak, although an essentially 100% duty cycle (e.g., high voltage DC) output could be used instead of pulses. The unit also includes an electrode assembly unit comprising first and second spaced-apart arrays of conducting electrodes, the first array and second array being coupled, respectively, preferably to the positive and negative output ports of the high voltage generator.
The electrode assembly preferably is formed using first and second arrays of readily manufacturable electrode types. In one embodiment, the first array comprises wire-like electrodes and the second array comprises “U”-shaped electrodes having one or two trailing surfaces. In an even more efficient embodiment, the first array includes at least one pin or cone-like electrode and the second array is an annular washer-like electrode. The electrode assembly may comprise various combinations of the described first and second array electrodes. In the various embodiments, the ratio between effective area of the second array electrodes to the first array electrodes is at least about 20:1.
The high voltage pulses create an electric field between the first and second electrode arrays. This field produces an electro-kinetic airflow going from the first array toward the second array, the airflow being rich in preferably a net surplus of negative ions and in ozone. Ambient air including dust particles and other undesired components (germs, perhaps) enter the housing through the grill or louver openings, and ionized clean air (with ozone) exits through openings on the downstream side of the housing.
The dust and other particulate matter attaches electrostatically to the second array (or collector) electrodes, and the output air is substantially clean of such particulate matter. Further, ozone generated by the present invention can kill certain types of germs and the like, and also eliminates odors in the output air. Preferably the transporter operates in periodic bursts, and a control permits the user to temporarily increase the high voltage pulse generator output, e.g., to more rapidly eliminate odors in the environment.
Other features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail, in conjunction with the accompanying drawings.
The upper surface of housing 102 includes a user-liftable handle 112 to which is affixed an electrode assembly 220 that comprises a first array 230 of electrodes 232 and a second array 240 of electrodes 242. The first and second arrays of electrodes are coupled in series between the output terminals of ion generating unit 160, as best seen in FIG. 3. The ability to lift handle 112 provides ready access to the electrodes comprising the electrode assembly, for purposes of cleaning and, if necessary, replacement.
The general shape of the invention shown in FIGS. 2A and 2B is not critical. The top-to-bottom height of the preferred embodiment is perhaps 1 m, with a left-to-right width of perhaps 15 cm, and a front-to-back depth of perhaps 10 cm, although other dimensions and shapes may of course be used. A louvered construction provides ample inlet and outlet venting in an economical housing configuration. There need be no real distinction between vents 104 and 106, except their location relative to the second array electrodes, and indeed a common vent could be used. These vents serve to ensure that an adequate flow of ambient air may be drawn into or made available to the present invention, and that an adequate flow of ionized air that includes safe amounts of O3 flows out from unit 130.
As will be described, when unit 100 is energized with S1, high voltage output by ion generator 160 produces ions at the first electrode array, which ions are attracted to the second electrode array. The movement of the ions in an “IN” to “OUT” direction carries with them air molecules, thus electrokinetically producing an outflow of ionized air. The “IN” notion in FIGS. 2A and 2B denote the intake of ambient air with particulate matter 60. The “OUT” notation in the figures denotes the outflow of cleaned air substantially devoid of the particulate matter, which adheres electrostatically to the surface of the second array electrodes. In the process of generating the ionized air flow, safe amounts of ozone (O3) are beneficially produced. It may be desired to provide the inner surface of housing 102 with an electrostatic shield to reduce detectable electromagnetic radiation. For example, a metal shield could be disposed within the housing, or portions of the interior of the housing could be coated with a metallic paint to reduce such radiation.
As best seen in FIG. 3 , ion generating unit 160 includes a high voltage generator unit 170 and circuitry 180 for converting raw alternating voltage (e.g., 117 VAC) into direct current (“DC”) voltage. Circuitry 180 preferably includes circuitry controlling the shape and/or duty cycle of the generator unit output voltage (which control is altered with user switch S2). Circuitry 180 preferably also includes a pulse mode component, coupled to switch S3, to temporarily provide a burst of increased output ozone. Circuitry 180 can also include a timer circuit and a visual indicator such as a light emitting diode (“LED”). The LED or other indicator (including, if desired, audible indicator) signals when ion generation is occurring. The timer can automatically halt generation of ions and/or ozone after some predetermined time, e.g., 30 minutes, indicator(s), and/or audible indicator(s).
As shown in FIG. 3 , high voltage generator unit 170 preferably comprises a low voltage oscillator circuit 190 of perhaps 20 KHz frequency, that outputs low voltage pulses to an electronic switch 200, e.g., a thyristor or the like. Switch 200 switchably couples the low voltage pulses to the input winding of a step-up transformer T1. The secondary winding of T1 is coupled to a high voltage multiplier circuit 210 that outputs high voltage pulses. Preferably the circuitry and components comprising high voltage pulse generator 170 and circuit 180 are fabricated on a printed circuit board that is mounted within housing 102. If desired, external audio input (e.g., from a stereo tuner) could be suitably coupled to oscillator 190 to acoustically modulate the kinetic airflow produced by unit 160. The result would be an electrostatic loudspeaker, whose output air flow is audible to the human ear in accordance with the audio input signal. Further, the output air stream would still include ions and ozone.
Output pulses from high voltage generator 170 preferably are at least 10 KV peak-to-peak with an effective DC offset of perhaps half the peak-to-peak voltage, and have a frequency of perhaps 20 KHz. The pulse train output preferably has a duty cycle of perhaps 10%, which will promote battery lifetime. Of course, different peak-peak amplitudes, DC offsets, pulse train waveshapes, duty cycle, and/or repetition frequencies may instead be used. Indeed, a 100% pulse train (e.g., an essentially DC high voltage) may be used, albeit with shorter battery life-time. Thus, generator unit 170 may (but need not) be referred to as a high voltage pulse generator.
Frequency of oscillation is not especially critical but frequency of at least about 20 KHz is preferred as being inaudible to humans. If pets will be in the same room as the present invention, it may be desired to utilize an even higher operating frequency, to prevent pet discomfort and/or howling by the pet.
The output from high voltage pulse generator unit 170 is coupled to an electrode assembly 220 that comprises a first electrode array 230 and a second electrode array 240. Unit 170 functions as a DC:DC high voltage generator, and could be implemented using other circuitry and/or techniques to output high voltage pulses that are input to electrode assembly 220.
In the embodiment of FIG. 3 , the positive output terminal of unit 170 is coupled to first electrode array 230, and the negative output terminal is coupled to second electrode array 240. This coupling polarity has been found to work well, including minimizing unwanted audible electrode vibration or hum. An electrostatic flow of air is created, going from the first electrode array towards the second electrode array. (This flow is denoted “OUT” in the figures.) Accordingly electrode assembly 220 is mounted within transporter system 100 such that second electrode array 240 is closer to the OUT vents and first electrode array 230 is closer to the IN vents.
When voltage or pulses from high voltage pulse generator 170 are coupled across first and second electrode arrays 230 and 240, it is believed that a plasma-like field is created surrounding electrodes 232 in first array 230. This electric field ionizes the ambient air between the first and second electrode arrays and establishes an “OUT” airflow that moves towards the second array. It is understood that the IN flow enters via vent(s) 104, and that the OUT flow exits via vent(s) 106.
It is believed that ozone and ions are generated simultaneously by the first array electrode(s) 232, essentially as a function of the potential from generator 170 coupled to the first array. Ozone generation may be increased or decreased by increasing or decreasing the potential at the first array. Coupling an opposite polarity potential to the second array electrode(s) 242 essentially accelerates the motion of ions generated at the first array, producing the air flow denoted as “OUT” in the figures. As the ions move toward the second array, it is believed that they push or move air molecules toward the second array. The relative velocity of this motion may be increased by decreasing the potential at the second array relative to the potential at the first array.
For example, if +10 KV were applied to the first array electrode(s), and no potential were applied to the second array electrode(s), a cloud of ions (whose net charge is positive) would form adjacent the first electrode array. Further, the relatively high 10 KV potential would generate substantial ozone. By coupling a relatively negative potential to the second array electrode(s), the velocity of the air mass moved by the net emitted ions increases, as momentum of the moving ions is conserved.
On the other hand, if it were desired to maintain the same effective outflow (OUT) velocity but to generate less ozone, the exemplary 10 KV potential could be divided between the electrode arrays. For example, generator 170 could provide +4 KV (or some other fraction) to the first array electrode(s) and −6 KV (or some other fraction) to the second array electrode(s). In this example, it is understood that the +4 KV and the −6 KV are measured relative to ground. Understandably it is desired that the present invention operate to output safe amounts of ozone. Accordingly, the high voltage is preferably fractionalized with about +4 KV applied to the first array electrode(s) and about −6 KV applied to the second array electrodes.
As noted, outflow (OUT) preferably includes safe amounts of O3 that can destroy or at least substantially alter bacteria, germs, and other living (or quasi-living) matter subjected to the outflow. Thus, when switch S1 is closed and B1 has sufficient operating potential, pulses from high voltage pulse generator unit 170 create an outflow (OUT) of ionized air and O3. When S1 is closed, LED will visually signal when ionization is occurring.
Preferably operating parameters of the present invention are set during manufacture and are not user-adjustable. For example, increasing the peak-to-peak output voltage and/or duty cycle in the high voltage pulses generated by unit 170 can increase air flowrate, ion content, and ozone content. In the preferred embodiment, output flowrate is about 200 feet/minute, ion content is about 2,000,000/cc and ozone content is about 40 ppb (over ambient) to perhaps 2,000 ppb (over ambient). Decreasing the R2/R1 ratio below about 20:1 will decrease flow rate, as will decreasing the peak-to-peak voltage and/or duty cycle of the high voltage pulses coupled between the first and second electrode arrays.
In practice, unit 100 is placed in a room and connected to an appropriate source of operating potential, typically 117 VAC. With S1 energized, ionization unit 160 emits ionized air and preferably some ozone (O3) via outlet vents 150. The air flow, coupled with the ions and ozone freshens the air in the room, and the ozone can beneficially destroy or at least diminish the undesired effects of certain odors, bacteria, germs, and the like. The air flow is indeed electro-kinetically produced, in that there are no intentionally moving parts within the present invention. (As noted, some mechanical vibration may occur within the electrodes.) As will be described with respect to FIG. 4A , it is desirable that the present invention actually output a net surplus of negative ions, as these ions are deemed more beneficial to health than are positive ions.
Having described various aspects of the invention in general, preferred embodiments of electrode assembly 220 will now be described. In the various embodiments, electrode assembly 220 will comprise a first array 230 of at least one electrode 232, and will further comprise a second array 240 of preferably at least one electrode 242. Understandably material(s) for electrodes 232 and 242 should conduct electricity, be resilient to corrosive effects from the application of high voltage, yet be strong enough to be cleaned.
In the various electrode assemblies to be described herein, electrode(s) 232 in the first electrode array 230 are preferably fabricated from tungsten. Tungsten is sufficiently robust to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that seems to promote efficient ionization. On the other hand, electrodes 242 preferably will have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, electrodes 242 preferably are fabricated from stainless steel, brass, among other materials. The polished surface of electrodes 232 also promotes ease of electrode cleaning.
In contrast to the prior art electrodes disclosed by Lee, electrodes 232 and 242 according to the present invention are lightweight, easy to fabricate, and lend themselves to mass production. Further, electrodes 232 and 242 described herein promote more efficient generation of ionized air, and production of safe amounts of ozone, O3.
In the present invention, a high voltage pulse generator 170 is coupled between the first electrode array 230 and the second electrode array 240. The high voltage pulses produce a flow of ionized air that travels in the direction from the first array towards the second array (indicated herein by hollow arrows denoted “OUT”). As such, electrode(s) 232 may be referred to as an emitting electrode, and electrodes 242 may be referred to as collector electrodes. This outflow advantageously contains safe amounts of O3, and exits the present invention from vent(s) 106.
According to the present invention, it is preferred that the positive output terminal or port of the high voltage pulse generator be coupled to electrodes 232, and that the negative output terminal or port be coupled to electrodes 242. It is believed that the net polarity of the emitted ions is positive, e.g., more positive ions than negative ions are emitted. In any event, the preferred electrode assembly electrical coupling minimizes audible hum from electrodes 232 contrasted with reverse polarity (e.g., interchanging the positive and negative output port connections).
However, while generation of positive ions is conductive to a relatively silent air flow, from a health standpoint, it is desired that the output air flow be richer in negative ions, not positive ions. It is noted that in some embodiments, however, one port (preferably the negative port) of the high voltage pulse generator may in fact be the ambient air. Thus, electrodes in the second array need not be connected to the high voltage pulse generator using wire. Nonetheless, there will be an “effective connection” between the second array electrodes and one output port of the high voltage pulse generator, in this instance, via ambient air.
Turning now to the embodiments of FIGS. 4A and 4B , electrode assembly 220 comprises a first array 230 of wire electrodes 232, and a second array 240 of generally “U”-shaped electrodes 242. In preferred embodiments, the number N1 of electrodes comprising the first array will preferably differ by one relative to the number N2 of electrodes comprising the second array. In many of the embodiments shown, N2>N1. However, if desired, in FIG. 4A , additional first electrodes 232 could be added at the out ends of array 230 such that N1>N2, e.g., five electrodes 232 compared to four electrodes 242.
As best seen in FIG. 4B , the spaced-apart configuration between the arrays is staggered such that each first array electrode 232 is substantially equidistant from two second array electrodes 242. This symmetrical staggering has been found to be an especially efficient electrode placement. Preferably the staggering geometry is symmetrical in that adjacent electrodes 232 or adjacent electrodes 242 are spaced apart a constant distance, Y1 and Y2 respectively. However, a non-symmetrical configuration could also be used, although ion emission and air flow would likely be diminished. Also, it is understood that the number of electrodes 232 and 242 may differ from what is shown.
In FIG. 4A , typically dimensions are as follows: diameter of electrodes 232 is about 0.08 mm, distances Y1 and Y2 are each about 16 mm, distance X1 is about 16 mm, distance L is about 20 mm, and electrode heights Z1 and Z2 are each about 1 m. The width W of electrodes 242 is preferably about 4 mm, and the thickness of the material from which electrodes 242 are formed is about 0.5 mm. Of course other dimensions and shapes could be used. It is preferred that electrodes 232 be small in diameter to help establish a desired high voltage field. On the other hand, it is desired that electrodes 232 (as well as electrodes 242) be sufficiently robust to withstand occasional cleaning.
To facilitate removing the electrode assembly from unit 100 (as shown in FIG. 2B), it is preferred that the lower end of the various electrodes fit against mating portions of wire or other conductors 234 or 244. For example, “cup-like” members can be affixed to wires 234 and 244 into which the free ends of the various electrodes fit when electrode array 220 is inserted completely into housing 102 of unit 100.
The ratio of the effective electric field emanating area of electrode 232 to the nearest effective area of electrodes 242 is at least about 15:1, and preferably is at least 20:1. Thus, in the embodiment of FIG. 4A and FIG. 4B , the ratio R2/R1≈2 mm/0.04 mm≈50:1.
In this and the other embodiments to be described herein, ionization appears to occur at the smaller electrode(s) 232 in the first electrode array 230, with ozone production occurring as a function of high voltage arcing. For example, increasing the peak-to-peak voltage amplitude and/or duty cycle of the pulses from the high voltage pulse generator 170 can increase ozone content in the output flow of ionized air. If desired, user-control S2 can be used to somewhat vary ozone content by varying (in a safe manner) amplitude and/or duty cycle. Specific circuitry for achieving such control is known in the art and need not be described in detail herein.
Note the inclusion in FIGS. 4A and 4B of at least one output controlling electrode 243, preferably electrically coupled to the same potential as the second array electrodes. Electrode 243 preferably defines a pointed shape in side profile, e.g., a triangle. The sharp point on electrode(s) 243 causes generation of substantial negative ions (since the electrode is coupled to relatively negative high potential). These negative ions neutralize excess positive ions otherwise present in the output air flow, such that the OUT flow has a net negative charge. Electrode(s) 243 preferably are stainless steel, copper, or other conductor, and are perhaps 20 mm high and about 12 mm wide at the base.
Another advantage of including pointed electrodes 243 is that they may be stationarily mounted within the housing of unit 100, and thus are not readily reached by human hands when cleaning the unit. Were it otherwise, the sharp point on electrode(s) 243 could easily cause cuts. The inclusion of one electrode 243 has been found sufficient to provide a sufficient number of output negative ions, but more such electrodes may be included.
In the embodiment of FIGS. 4A and 4C , each “U”-shaped electrode 242 has two trailing edges that promote efficient kinetic transport of the outflow of ionized air and O3. Note the inclusion on at least one portion of a trailing edge of a pointed electrode region 243′. Electrode region 243′ helps promote output of negative ions, in the same fashion as was described with respect to FIGS. 4A and 4B . Note, however, the higher likelihood of a user cutting himself or herself when wiping electrodes 242 with a cloth or the like to remove particulate matter deposited thereon. In FIG. 4C and the figures to follow, the particulate matter is omitted for ease of illustration. However, from what was shown in FIGS. 2A-4B , particulate matter will be present in the incoming air, and will be substantially absent from the outgoing air. As has been described, particulate matter 60 typically will be electrostatically precipitated upon the surface area of electrodes 242.
Note that the embodiments of FIGS. 4C and 4D depict somewhat truncated versions of electrodes 242. Whereas dimension L in the embodiment of FIGS. 4A and 4B was about 20 mm, in FIGS. 4C and 4D , L has been shortened to about 8 mm. Other dimensions in FIG. 4C preferably are similar to those stated for FIGS. 4A and 4B . In FIGS. 4C and 4D , the inclusion of point-like regions 246 on the trailing edge of electrodes 242 seems to promote more efficient generation of ionized air flow. It will be appreciated that the configuration of second electrode array 240 in FIG. 4C can be more robust than the configuration of FIGS. 4A and 4B , by virtue of the shorter trailing edge geometry. As noted earlier, a symmetrical staggered geometry for the first and second electrode arrays is preferred for the configuration of FIG. 4C.
In the embodiment of FIG. 4D , the outermost second electrodes, denoted 242-1 and 242-2, have substantially no outermost trailing edges. Dimension L in FIG. 4D is preferably about 3 mm, and other dimensions may be as stated for the configuration of FIGS. 4A and 4B . Again, the R2/R1 ratio for the embodiment of FIG. 4D preferably exceeds about 20:1.
An especially preferred embodiment is shown in FIG. 4I and FIG. 4J. In these figures, the first electrode assembly comprises a single pin-like element 232 disposed coaxially with a second electrode array that comprises a single ring-like electrode 242 having a rounded inner opening 246. However, as indicated by phantom elements 232′, 242′, electrode assembly 220 may comprise a plurality of such pin-like and ring-like elements. Preferably electrode 232 is tungsten, and electrode 242 is stainless steel.
Typical dimensions for the embodiment of FIG. 4I and FIG. 4J are L1≈10 mm, X1≈9.5 mm, T≈0.5 mm, and the diameter of opening 246 is about 12 mm. Dimension L1 preferably is sufficiently long that upstream portions of electrode 232 (e.g., portions to the left in FIG. 4I ) do not interfere with the electrical field between electrode 232 and the collector electrode 242. However, as shown in FIG. 4J , the effect R2/R1 ratio is governed by the tip geometry of electrode 232. Again, in the preferred embodiment, this ratio exceeds about 20:1. Lines drawn in phantom in FIG. 4J depict theoretical electric force field lines, emanating from emitter electrode 232, and terminating on the curved surface of collector electrode 246. Preferably the bulk of the field emanates within about ±45° of coaxial axis between electrode 232 and electrode 242. On the other hand, if the opening in electrode 242 and/or electrode 232 and 242 geometry is such that too narrow an angle about the coaxial axis exists, air flow will be unduly restricted.
One advantage of the ring-pin electrode assembly configuration shown in FIG. 4I is that the flat regions of ring-like electrode 242 provide sufficient surface area to which particulate matter 60 entrained in the moving air stream can attach, yet be readily cleaned.
Further, the ring-pin configuration advantageously generates more ozone than prior art configurations, or the configurations of FIGS. 4A-4H . For example, whereas the configurations of FIGS. 4A-4H may generate perhaps 50 ppb ozone, the configuration of FIG. 4I can generate about 2,000 ppb ozone.
Nonetheless it will be appreciated that applicants' first array pin electrodes may be utilized with the second array electrodes of FIGS. 4A-4H . Further, applicants' second array ring electrodes may be utilized with the first array electrodes of FIGS. 4A-4H . For example, in modifications of the embodiments of FIGS. 4A-4H , each wire or columnar electrode 232 is replaced by a column of electrically series-connected pin electrodes (e.g., as shown in FIGS. 4I-4K), while retaining the second electrode arrays as depicted in these figures. By the same token, in other modifications of the embodiments of FIGS. 4A-4H , the first array electrodes can remain as depicted, but each of the second array electrodes 242 is replaced by a column of electrically series-connected ring electrodes (e.g., as shown in FIGS. 4I-4K).
In FIG. 4J , a detailed cross-sectional view of the central portion of electrode 242 in FIG. 4I is shown. As best seen in FIG. 4J , curved region 246 adjacent the central opening in electrode 242 appears to provide an acceptably large surface area to which many ionization paths from the distal tip of electrode 232 have substantially equal path length. Thus, while the distal tip (or emitting tip) of electrode 232 is advantageously small to concentrate the electric field between the electrode arrays, the adjacent regions of electrode 242 preferably provide many equidistant interelectrode array paths. A high exit flowrate of perhaps 90 feet/minute and 2,000 ppb range ozone emission attainable with this configuration confirm a high operating efficiency.
In FIG. 4K , one or more electrodes 232 is replaced by a conductive block 232″ of carbon fibers, the block having a distal surface in which projecting fibers 233-1, . . . 233-N take on the appearance of a “bed of nails”. The projecting fibers can each act as an emitting electrode and provide a plurality of emitting surfaces. Over a period of time, some or all of the electrodes will literally be consumed, whereupon graphite block 232″ will be replaced. Materials other than graphite may be used for block 232″ providing the material has a surface with projecting conductive fibers such as 233-N.
As described, the net output of ions is influenced by placing a bias element (e.g., element 243) near the output stream and preferably near the downstream side of the second array electrodes. If no ion output were desired, such an element could achieve substantial neutralization. It will also be appreciated that the present invention could be adjusted to produce ions without producing ozone, if desired.
Modifications and variations may be made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims.
Claims (23)
1. An air conditioner system, comprising:
an upstanding, elongated housing having a top surface, an inlet and an outlet; and
an ion generating unit positioned in said housing, including:
a first electrode;
a second electrode; and
a high voltage generator that provides a potential difference between said first electrode and said second electrode;
wherein said second electrode is removable, through said top surface of said housing, from a resting position within said housing to a location external to the housing, to thereby allow said second electrode to be cleaned; and
wherein said second electrode is returnable through said top surface of the housing such that gravity will assist with return of the second electrode to the resting position within said housing.
2. The system as recited in claim 1 , wherein said top surface of said housing further includes a user control.
3. The system as recited in claim 1 , wherein said first electrode is located proximate to the inlet, and the second removable electrode is located closer to the outlet than said first electrode.
4. The system as recited in claim 1 , wherein a user-liftable handle is attached to said second removable electrode, said use-liftable handle accessible through an opening in said top surface of said housing.
5. The system as recited in claim 1 , wherein said second removable electrode is elongated along a direction of said elongated housing.
6. An air conditioner system, comprising:
an upstanding, elongated housing having a top surface, an air inlet vent, and an air outlet vent;
an ion generating unit positioned in said housing, for creating an airflow from said inlet vent to said outlet vent, including:
a first emitter electrode;
a second removable collector electrode, elongated along the direction of elongation of said housing, and removable through an opening in the top surface of said housing; and
a user-liftable handle secured to said second removable collector electrode, said handle accessible through said opening in said top surface of said housing, to assist a user with lifting said second removable collector electrode out of said housing from a resting position within said housing; and
wherein said second removable electrode is returnable through said opening in said top surface of said housing such that gravity will assist with return of said second removable collector electrode to the resting position within said housing.
7. The system as recited in claim 6 , wherein said second removable collector electrode is hollow.
8. The system as recited in claim 6 , wherein said second removable collector electrode is “U”-shaped.
9. The system as recited in claim 6 , wherein said second removable collector electrode is located proximate to said air outlet vent.
10. The system of claim 6 , further comprising: a user operable control located on said top surface of said housing.
11. An ion producing system, comprising:
a housing that is vertically elongated, said housing including at least one vent;
an emitter electrode within said housing;
a collector electrode that is vertically elongated when in a resting position within said housing;
a high voltage generator to provide a potential difference between said emitter electrode and said collector electrode when said collector electrode is in the resting position within said housing; and
a handle secured to said collector electrode, said handle to assist a user with vertically lifting said collector electrode out of said housing;
wherein said collector electrode is vertically returnable with the assistance of gravity, through an opening in an upper portion of said housing, to the resting position within said housing.
12. The system of claim 11 , further comprising:
an opening in a top of said housing; and
wherein said handle assists a user with vertically lifting said collector electrode out through said opening in said top of said housing.
13. The system of claim 11 , wherein the high voltage generator comprises a first terminal at a first potential and a second terminal at a second potential that enable the high voltage generator to provide the potential difference between said emitter electrode and said collector electrode; and wherein a lower end of said collector electrode mates with said second terminal when in the resting position within said housing; and wherein said collector electrode disengages from said second terminal when vertically lifted out of said housing.
14. The system of claim 13 , wherein gravity causes said lower end of said collector electrode to mate with said second terminal when said collector electrode is in the resting position within said housing.
15. An ion producing system, comprising:
an upstanding, elongated housing having a top surface, an inlet and an outlet; and
an ion generating unit positioned in said housing, including:
a first electrode;
a second electrode; and
a high voltage generator that provides a potential difference between said first electrode and said second electrode;
wherein said second electrode is removable, through said top surface of said housing, from a resting position within said housing to a location external to the housing, to thereby allow said second electrode to be cleaned; and
wherein said second electrode is returnable through said top surface of the housing such that gravity will assist with return of the second electrode to the resting position within said housing.
16. An ion producing system, comprising:
an upstanding, elongated housing having an inlet and an outlet; and
an ion generating unit positioned in said housing, including:
a first electrode;
a second electrode; and
a high voltage generator that provides a potential difference between said first electrode and said second electrode;
wherein said second electrode is vertically removable, through an opening in an upper portion of said housing, from a resting position within said housing to a location external to the housing, to thereby allow said second electrode to be cleaned; and
wherein said second electrode is vertically returnable through said opening such that gravity will assist with return of the second electrode to the resting position within said housing.
17. An ion producing system, comprising:
an upstanding, vertically elongated housing having at least one air vent;
an ion generating unit positioned in said housing, including:
a first emitter electrode;
a second removable collector electrode, elongated along a direction of elongation of said vertically elongated housing, and vertically removable through an opening through a top portion of said housing; and
a handle secured to said second removable collector electrode, said handle accessible through said opening to assist a user with vertically lifting said second removable collector electrode out of said housing from a resting position within said housing; and
wherein said second removable electrode is vertically returnable through said opening such that gravity will assist with return of said second removable collector electrode to the resting position within said housing.
18. An ion producing air conditioning system, comprising:
an upstanding, vertically elongated housing having at least one air vent;
an ion generating unit positioned in said housing, including:
an emitter electrode;
a removable collector electrode, elongated along a direction of elongation of said vertically elongated housing, and vertically removable through an opening through a top portion of said housing such that a user can vertically lift said removable collector electrode out of said housing from a resting position within said housing; and
wherein said removable electrode is vertically returnable through said opening such that gravity will assist with return of said removable collector electrode to the resting position within said housing.
19. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
at least one air vent in said housing;
the ion generating unit including:
an emitter electrode;
a removable collector electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said removable collector electrode such that said handle extends in an upward direction from said collector electrode and isolates said ion generating unit from a user when said removable collector electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable collector electrode out of said housing from the resting position within said housing; and
wherein said removable collector electrode is vertically returnable into said housing such that gravity will assist with return of said removable collector electrode to the resting position within said housing.
20. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
at least one air vent in said housing;
the ion generating unit including a removable electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said removable electrode such that said handle extends in an upward direction from said electrode and isolates said ion generating unit from a user when said removable electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable electrode out of said housing from the resting position within said housing; and
wherein said removable electrode is vertically returnable into said housing such that gravity will assist with return of said removable electrode to the resting position within said housing.
21. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
at least one air vent in said housing;
the ion generating unit including:
an emitter electrode;
a removable collector electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said collector electrode such that said handle extends in an upward direction from said collector electrode and isolates said ion generating unit from a user, when said collector electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable collector electrode out of said housing from the resting position within said housing; and
wherein said removable collector electrode is vertically returnable into said housing such that gravity will assist with return of the second electrode to the resting position within the housing.
22. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
the ion generating unit including a removable electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said removable electrode such that said handle extends in an upward direction from said electrode and isolates said ion generating unit from a user, when said removable electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable electrode out of said housing from the resting position within said housing; and
wherein said removable electrode is vertically returnable into said housing such that gravity will assist with return of the second electrode to the resting position within the housing.
23. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
a high voltage generator that provides a potential difference in the ion generating unit;
the ion generating unit including a removable electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle fixedly attached to said removable electrode such that said handle extends in an upward direction from said electrode and isolates said ion generating unit from a user, when said removable electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable electrode out of said housing from the resting position within said housing; and
wherein said removable electrode is vertically returnable into said housing such that gravity will assist with return of the second electrode to the resting position within the housing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/041,926 USRE41812E1 (en) | 1998-11-05 | 2005-01-21 | Electro-kinetic air transporter-conditioner |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/186,471 US6176977B1 (en) | 1998-11-05 | 1998-11-05 | Electro-kinetic air transporter-conditioner |
US09/730,499 US6713026B2 (en) | 1998-11-05 | 2000-12-05 | Electro-kinetic air transporter-conditioner |
US11/041,926 USRE41812E1 (en) | 1998-11-05 | 2005-01-21 | Electro-kinetic air transporter-conditioner |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/730,499 Reissue US6713026B2 (en) | 1998-11-05 | 2000-12-05 | Electro-kinetic air transporter-conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41812E1 true USRE41812E1 (en) | 2010-10-12 |
Family
ID=22685101
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/186,471 Expired - Lifetime US6176977B1 (en) | 1998-11-05 | 1998-11-05 | Electro-kinetic air transporter-conditioner |
US09/730,499 Ceased US6713026B2 (en) | 1998-11-05 | 2000-12-05 | Electro-kinetic air transporter-conditioner |
US10/023,460 Abandoned US20020079212A1 (en) | 1998-11-05 | 2001-12-13 | Electro-kinetic air transporter-conditioner |
US10/023,197 Abandoned US20020098131A1 (en) | 1998-11-05 | 2001-12-13 | Electro-kinetic air transporter-conditioner device with enhanced cleaning features |
US10/706,390 Abandoned US20040096376A1 (en) | 1998-11-05 | 2003-11-12 | Electro-kinetic air transporter-conditioner |
US10/815,230 Expired - Fee Related US6953556B2 (en) | 1998-11-05 | 2004-03-30 | Air conditioner devices |
US11/041,926 Expired - Fee Related USRE41812E1 (en) | 1998-11-05 | 2005-01-21 | Electro-kinetic air transporter-conditioner |
US11/150,046 Expired - Fee Related US7662348B2 (en) | 1998-11-05 | 2005-06-10 | Air conditioner devices |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/186,471 Expired - Lifetime US6176977B1 (en) | 1998-11-05 | 1998-11-05 | Electro-kinetic air transporter-conditioner |
US09/730,499 Ceased US6713026B2 (en) | 1998-11-05 | 2000-12-05 | Electro-kinetic air transporter-conditioner |
US10/023,460 Abandoned US20020079212A1 (en) | 1998-11-05 | 2001-12-13 | Electro-kinetic air transporter-conditioner |
US10/023,197 Abandoned US20020098131A1 (en) | 1998-11-05 | 2001-12-13 | Electro-kinetic air transporter-conditioner device with enhanced cleaning features |
US10/706,390 Abandoned US20040096376A1 (en) | 1998-11-05 | 2003-11-12 | Electro-kinetic air transporter-conditioner |
US10/815,230 Expired - Fee Related US6953556B2 (en) | 1998-11-05 | 2004-03-30 | Air conditioner devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/150,046 Expired - Fee Related US7662348B2 (en) | 1998-11-05 | 2005-06-10 | Air conditioner devices |
Country Status (7)
Country | Link |
---|---|
US (8) | US6176977B1 (en) |
EP (1) | EP1135205A4 (en) |
JP (2) | JP4799733B2 (en) |
CN (1) | CN1331614A (en) |
AU (1) | AU1607900A (en) |
HK (1) | HK1039911A1 (en) |
WO (1) | WO2000025909A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150352564A1 (en) * | 2014-06-08 | 2015-12-10 | Headwaters, Inc | Personal rechargeable portable ionic air purifier |
US9700823B2 (en) | 2014-02-14 | 2017-07-11 | Access Business Group International Llc | Air treatment system |
US10512873B2 (en) | 2014-02-14 | 2019-12-24 | Access Business Group International Llc | Air treatment system |
US11167291B2 (en) * | 2020-02-27 | 2021-11-09 | Office Angunsa Co., Ltd. | Hybrid partition with function of removing fine dust |
Families Citing this family (178)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040071615A1 (en) * | 1997-10-23 | 2004-04-15 | Khatchatrian Robert G. | Ozone generator |
US5975090A (en) | 1998-09-29 | 1999-11-02 | Sharper Image Corporation | Ion emitting grooming brush |
US6504308B1 (en) * | 1998-10-16 | 2003-01-07 | Kronos Air Technologies, Inc. | Electrostatic fluid accelerator |
US6176977B1 (en) | 1998-11-05 | 2001-01-23 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner |
US6544485B1 (en) * | 2001-01-29 | 2003-04-08 | Sharper Image Corporation | Electro-kinetic device with enhanced anti-microorganism capability |
US20020146356A1 (en) * | 1998-11-05 | 2002-10-10 | Sinaiko Robert J. | Dual input and outlet electrostatic air transporter-conditioner |
US20020122751A1 (en) * | 1998-11-05 | 2002-09-05 | Sinaiko Robert J. | Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter |
US20070148061A1 (en) * | 1998-11-05 | 2007-06-28 | The Sharper Image Corporation | Electro-kinetic air transporter and/or air conditioner with devices with features for cleaning emitter electrodes |
US20070009406A1 (en) * | 1998-11-05 | 2007-01-11 | Sharper Image Corporation | Electrostatic air conditioner devices with enhanced collector electrode |
US7695690B2 (en) | 1998-11-05 | 2010-04-13 | Tessera, Inc. | Air treatment apparatus having multiple downstream electrodes |
US6974560B2 (en) * | 1998-11-05 | 2005-12-13 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability |
US20020155041A1 (en) * | 1998-11-05 | 2002-10-24 | Mckinney Edward C. | Electro-kinetic air transporter-conditioner with non-equidistant collector electrodes |
US7220295B2 (en) * | 2003-05-14 | 2007-05-22 | Sharper Image Corporation | Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices |
US6451266B1 (en) * | 1998-11-05 | 2002-09-17 | Sharper Image Corporation | Foot deodorizer and massager system |
US6632407B1 (en) * | 1998-11-05 | 2003-10-14 | Sharper Image Corporation | Personal electro-kinetic air transporter-conditioner |
US20050210902A1 (en) | 2004-02-18 | 2005-09-29 | Sharper Image Corporation | Electro-kinetic air transporter and/or conditioner devices with features for cleaning emitter electrodes |
US20030206837A1 (en) * | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability |
US20050163669A1 (en) * | 1998-11-05 | 2005-07-28 | Sharper Image Corporation | Air conditioner devices including safety features |
US7318856B2 (en) * | 1998-11-05 | 2008-01-15 | Sharper Image Corporation | Air treatment apparatus having an electrode extending along an axis which is substantially perpendicular to an air flow path |
US6958134B2 (en) * | 1998-11-05 | 2005-10-25 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner devices with an upstream focus electrode |
US20020150520A1 (en) * | 1998-11-05 | 2002-10-17 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode |
US6350417B1 (en) * | 1998-11-05 | 2002-02-26 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US20050199125A1 (en) * | 2004-02-18 | 2005-09-15 | Sharper Image Corporation | Air transporter and/or conditioner device with features for cleaning emitter electrodes |
US6911186B2 (en) * | 1998-11-05 | 2005-06-28 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability |
US6585935B1 (en) | 1998-11-20 | 2003-07-01 | Sharper Image Corporation | Electro-kinetic ion emitting footwear sanitizer |
JP4173233B2 (en) * | 1998-12-10 | 2008-10-29 | 和男 元内 | Ion generator |
US6312507B1 (en) * | 1999-02-12 | 2001-11-06 | Sharper Image Corporation | Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box |
EP1255694A4 (en) * | 1999-12-24 | 2008-06-25 | Sharper Image Corp | Method and apparatus to reduce ozone production in ion wind devices |
US6897617B2 (en) * | 1999-12-24 | 2005-05-24 | Zenion Industries, Inc. | Method and apparatus to reduce ozone production in ion wind device |
US20020098130A1 (en) * | 2000-08-07 | 2002-07-25 | Lentek International, Inc. | Apparatus for purifying and deodorizing air |
US6686207B2 (en) * | 2001-10-12 | 2004-02-03 | Massachusetts Institute Of Technology | Manipulating micron scale items |
US20030231459A1 (en) * | 2001-10-25 | 2003-12-18 | Robertson Reginald R. | Ion chip composite emitter |
KR100432154B1 (en) * | 2001-11-15 | 2004-05-24 | 주식회사 이온라이트 | lighting device with Anion generator |
US7224567B2 (en) * | 2001-11-16 | 2007-05-29 | Kazuo Motouchi | Structural arrangements for ion generator to promote ionization efficiency |
JP2005525221A (en) * | 2002-02-07 | 2005-08-25 | ヘッドウォーターズ, インコーポレイテッド | Air circulation / ionization type air purifier |
US6919053B2 (en) * | 2002-02-07 | 2005-07-19 | Constantinos J. Joannou | Portable ion generator and dust collector |
US7381381B2 (en) * | 2002-02-12 | 2008-06-03 | Sharper Image Corporation | Air treatment apparatus having an interstitial electrode operable to affect particle flow |
US6536418B1 (en) * | 2002-03-07 | 2003-03-25 | Yuan-Hung Ling | Combustion enhancement device for internal combustion engines |
WO2003098971A1 (en) | 2002-05-13 | 2003-11-27 | S.C. Johnson & Son, Inc. | Coordinated emission of fragrance, light, and sound |
US6749667B2 (en) | 2002-06-20 | 2004-06-15 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US7056370B2 (en) * | 2002-06-20 | 2006-06-06 | Sharper Image Corporation | Electrode self-cleaning mechanism for air conditioner devices |
US6664741B1 (en) | 2002-06-21 | 2003-12-16 | Igor A. Krichtafovitch | Method of and apparatus for electrostatic fluid acceleration control of a fluid flow |
US6919698B2 (en) * | 2003-01-28 | 2005-07-19 | Kronos Advanced Technologies, Inc. | Electrostatic fluid accelerator for and method of controlling a fluid flow |
CA2489983A1 (en) | 2002-06-21 | 2004-06-17 | Kronos Advanced Technologies Inc. | An electrostatic fluid accelerator for and method of controlling a fluid flow |
US6727657B2 (en) | 2002-07-03 | 2004-04-27 | Kronos Advanced Technologies, Inc. | Electrostatic fluid accelerator for and a method of controlling fluid flow |
US6937455B2 (en) * | 2002-07-03 | 2005-08-30 | Kronos Advanced Technologies, Inc. | Spark management method and device |
US6963479B2 (en) * | 2002-06-21 | 2005-11-08 | Kronos Advanced Technologies, Inc. | Method of and apparatus for electrostatic fluid acceleration control of a fluid flow |
US20040001786A1 (en) * | 2002-06-27 | 2004-01-01 | Te-Chin Jan | Anion-generating device |
US20040123739A1 (en) * | 2002-06-27 | 2004-07-01 | Te-Chin Jan | Anion-generating device |
US7150780B2 (en) * | 2004-01-08 | 2006-12-19 | Kronos Advanced Technology, Inc. | Electrostatic air cleaning device |
US7053565B2 (en) * | 2002-07-03 | 2006-05-30 | Kronos Advanced Technologies, Inc. | Electrostatic fluid accelerator for and a method of controlling fluid flow |
US7157704B2 (en) * | 2003-12-02 | 2007-01-02 | Kronos Advanced Technologies, Inc. | Corona discharge electrode and method of operating the same |
JP3910501B2 (en) * | 2002-07-17 | 2007-04-25 | 浜松ホトニクス株式会社 | Aerosol particle charger |
US6675780B1 (en) * | 2002-09-24 | 2004-01-13 | Antonius G. Wendels | Fuel saving and pollution emission reduction system for internal combustion engines |
US6899745B2 (en) * | 2002-10-08 | 2005-05-31 | Kaz, Inc. | Electrostatic air cleaner |
US6827642B2 (en) * | 2002-11-14 | 2004-12-07 | Omega Patents, L.L.C. | Vehicle remote control and air treatment system and associated methods |
US8551162B2 (en) * | 2002-12-20 | 2013-10-08 | Medtronic, Inc. | Biologically implantable prosthesis |
US20040250712A1 (en) * | 2002-12-31 | 2004-12-16 | Tippey Darold D. | Process of packaging a compressible article |
EP2384771B1 (en) | 2003-02-07 | 2013-01-23 | S.C.Johnson & Son, Inc. | Diffuser with light emitting diode nightlight |
US7405672B2 (en) * | 2003-04-09 | 2008-07-29 | Sharper Image Corp. | Air treatment device having a sensor |
US6984987B2 (en) * | 2003-06-12 | 2006-01-10 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features |
US8211374B2 (en) * | 2003-07-18 | 2012-07-03 | David Richard Hallam | Air cleaning device |
US8021421B2 (en) * | 2003-08-22 | 2011-09-20 | Medtronic, Inc. | Prosthesis heart valve fixturing device |
US7724492B2 (en) | 2003-09-05 | 2010-05-25 | Tessera, Inc. | Emitter electrode having a strip shape |
US7077890B2 (en) * | 2003-09-05 | 2006-07-18 | Sharper Image Corporation | Electrostatic precipitators with insulated driver electrodes |
US20050051420A1 (en) * | 2003-09-05 | 2005-03-10 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner devices with insulated driver electrodes |
US7517503B2 (en) * | 2004-03-02 | 2009-04-14 | Sharper Image Acquisition Llc | Electro-kinetic air transporter and conditioner devices including pin-ring electrode configurations with driver electrode |
US7906080B1 (en) | 2003-09-05 | 2011-03-15 | Sharper Image Acquisition Llc | Air treatment apparatus having a liquid holder and a bipolar ionization device |
US20050095182A1 (en) * | 2003-09-19 | 2005-05-05 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner devices with electrically conductive foam emitter electrode |
JP3669994B2 (en) * | 2003-09-22 | 2005-07-13 | シャープ株式会社 | Car air purifier |
US20050082160A1 (en) * | 2003-10-15 | 2005-04-21 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner devices with a mesh collector electrode |
JP4206900B2 (en) * | 2003-10-27 | 2009-01-14 | ソニー株式会社 | Bioassay substrate with extended power supply wiring |
US7767169B2 (en) * | 2003-12-11 | 2010-08-03 | Sharper Image Acquisition Llc | Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds |
US20050146712A1 (en) * | 2003-12-24 | 2005-07-07 | Lynx Photonics Networks Inc. | Circuit, system and method for optical switch status monitoring |
US20050279905A1 (en) * | 2004-02-18 | 2005-12-22 | Sharper Image Corporation | Air movement device with a quick assembly base |
US6964189B2 (en) * | 2004-02-25 | 2005-11-15 | Westinghouse Savannah River Company, Llc | Portable aerosol contaminant extractor |
US20060018812A1 (en) * | 2004-03-02 | 2006-01-26 | Taylor Charles E | Air conditioner devices including pin-ring electrode configurations with driver electrode |
US7638104B2 (en) * | 2004-03-02 | 2009-12-29 | Sharper Image Acquisition Llc | Air conditioner device including pin-ring electrode configurations with driver electrode |
US7204038B2 (en) * | 2004-03-18 | 2007-04-17 | Conair Corporation | Hairdryer with electrostatic precipitator and filter cleanout warning |
US6855190B1 (en) * | 2004-04-12 | 2005-02-15 | Sylmark Holdings Limited | Cleaning mechanism for ion emitting air conditioning device |
US6946103B1 (en) | 2004-06-01 | 2005-09-20 | Sylmark Holdings Limited | Air purifier with electrode assembly insertion lock |
US20060005703A1 (en) * | 2004-06-30 | 2006-01-12 | Chi-Hsiang Wang | Ultraviolet air purifier having multiple charged collection plates |
US20060018807A1 (en) * | 2004-07-23 | 2006-01-26 | Sharper Image Corporation | Air conditioner device with enhanced germicidal lamp |
US20060018810A1 (en) * | 2004-07-23 | 2006-01-26 | Sharper Image Corporation | Air conditioner device with 3/2 configuration and individually removable driver electrodes |
US20060016336A1 (en) * | 2004-07-23 | 2006-01-26 | Sharper Image Corporation | Air conditioner device with variable voltage controlled trailing electrodes |
US7311762B2 (en) * | 2004-07-23 | 2007-12-25 | Sharper Image Corporation | Air conditioner device with a removable driver electrode |
US20060018809A1 (en) * | 2004-07-23 | 2006-01-26 | Sharper Image Corporation | Air conditioner device with removable driver electrodes |
US7285155B2 (en) * | 2004-07-23 | 2007-10-23 | Taylor Charles E | Air conditioner device with enhanced ion output production features |
CN2730375Y (en) * | 2004-09-03 | 2005-10-05 | 劳耀光 | Attachable air cleaning device |
US7309386B2 (en) * | 2004-09-13 | 2007-12-18 | Whirlpool Corporation | Vertical air cleaner |
US7241330B2 (en) * | 2004-10-25 | 2007-07-10 | Oreck Holdings, Llc | Air cleaner electrostatic precipitator cell |
US7244290B2 (en) * | 2004-11-22 | 2007-07-17 | Headwaters, Inc. | Electrostatic room air cleaner |
US7226497B2 (en) * | 2004-11-30 | 2007-06-05 | Ranco Incorporated Of Delaware | Fanless building ventilator |
US7226496B2 (en) * | 2004-11-30 | 2007-06-05 | Ranco Incorporated Of Delaware | Spot ventilators and method for spot ventilating bathrooms, kitchens and closets |
US7182805B2 (en) * | 2004-11-30 | 2007-02-27 | Ranco Incorporated Of Delaware | Corona-discharge air mover and purifier for packaged terminal and room air conditioners |
US7311756B2 (en) * | 2004-11-30 | 2007-12-25 | Ranco Incorporated Of Delaware | Fanless indoor air quality treatment |
US20060112955A1 (en) * | 2004-11-30 | 2006-06-01 | Ranco Incorporated Of Delaware | Corona-discharge air mover and purifier for fireplace and hearth |
US7417553B2 (en) * | 2004-11-30 | 2008-08-26 | Young Scott G | Surface mount or low profile hazardous condition detector |
US20060113398A1 (en) * | 2004-11-30 | 2006-06-01 | Ranco Incorporated Of Delaware | Temperature control with induced airflow |
WO2006060741A2 (en) * | 2004-12-03 | 2006-06-08 | Sharper Image Corporation | Air conditioner device with individually removable driver electrodes |
US7713330B2 (en) * | 2004-12-22 | 2010-05-11 | Oreck Holdings, Llc | Tower ionizer air cleaner |
US7368002B2 (en) | 2005-02-14 | 2008-05-06 | Mcdonnell Joseph A | Ionic air conditioning system |
JP4239992B2 (en) * | 2005-03-16 | 2009-03-18 | トヨタ自動車株式会社 | Gas purification device |
WO2006107390A2 (en) * | 2005-04-04 | 2006-10-12 | Kronos Advanced Technologies, Inc. | An electrostatic fluid accelerator for and method of controlling a fluid flow |
US20060227491A1 (en) * | 2005-04-07 | 2006-10-12 | Rovcal, Inc. | Hair blower with positive and negative ion emitters |
US7513909B2 (en) * | 2005-04-08 | 2009-04-07 | Arbor Surgical Technologies, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
AU2005333037A1 (en) * | 2005-04-29 | 2006-12-21 | Kronos Advanced Technologies, Inc. | Electrostatic air cleaning device |
US7368003B2 (en) * | 2005-06-24 | 2008-05-06 | S.C. Johnson & Son, Inc. | Systems for and methods of providing air purification in combination with odor elimination |
US7175695B1 (en) * | 2005-07-28 | 2007-02-13 | Hess Don H | Apparatus and method for enhancing filtration |
US7404847B2 (en) * | 2005-07-28 | 2008-07-29 | Hess Don H | Apparatus and method for enhancing filtration |
US7537647B2 (en) * | 2005-08-10 | 2009-05-26 | S.C. Johnson & Son, Inc. | Air purifier |
JP4736700B2 (en) * | 2005-10-14 | 2011-07-27 | パナソニック株式会社 | Negative ion generator |
US7479175B2 (en) * | 2006-01-09 | 2009-01-20 | Sylmark Holdings Limited | Safety lid for air conditioning device and method of use |
US7833322B2 (en) * | 2006-02-28 | 2010-11-16 | Sharper Image Acquisition Llc | Air treatment apparatus having a voltage control device responsive to current sensing |
US7390352B2 (en) * | 2006-03-17 | 2008-06-24 | Sylmark Holdings Limited | Air purifier with front-load electrodes |
US7276106B1 (en) | 2006-04-18 | 2007-10-02 | Oreck Holdings Llc | Electrode wire retaining member for an electrostatic precipitator |
US7306655B2 (en) * | 2006-04-18 | 2007-12-11 | Oreck Holdings, Llc | Corona ground element |
US7481870B2 (en) * | 2006-04-18 | 2009-01-27 | Oreck Holdings, Llc | Electrode wire for an electrostatic precipitator |
US7291206B1 (en) * | 2006-04-18 | 2007-11-06 | Oreck Holdings, Llc | Pre-ionizer for use with an electrostatic precipitator |
US7306648B2 (en) * | 2006-04-18 | 2007-12-11 | Oreck Holdings, Llc | Retainer for use with a corona ground element of an electrostatic precipitator |
WO2007127810A2 (en) * | 2006-04-25 | 2007-11-08 | Kronos Advanced Technologies, Inc. | Electrostatic loudspeaker and method of acoustic waves generation |
EP2023860A2 (en) * | 2006-04-29 | 2009-02-18 | Arbor Surgical Technologies, Inc. | Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them |
US7597749B2 (en) * | 2006-07-18 | 2009-10-06 | Oreck Holdings, Llc | Frame for electrostatic precipitator cell |
US20080063559A1 (en) * | 2006-09-13 | 2008-03-13 | Joseph Alexander | Fan forced electric unit that incorporates a low power cold plasma generator and method of making same |
KR100903315B1 (en) * | 2006-10-31 | 2009-06-16 | 한라공조주식회사 | Ionizer and air conditioning system for automotive vehicles using the same |
WO2008092083A2 (en) * | 2007-01-25 | 2008-07-31 | Ion A-Z, Llc | Electrical ionizer and methods of making and using |
US7655928B2 (en) * | 2007-03-29 | 2010-02-02 | Varian Semiconductor Equipment Associates, Inc. | Ion acceleration column connection mechanism with integrated shielding electrode and related methods |
US20090010801A1 (en) * | 2007-05-15 | 2009-01-08 | Murphy Oliver J | Air cleaner |
CN101377336B (en) * | 2007-08-31 | 2014-01-15 | 全解生 | Air full-purifying machine easy to dismount and clean |
US20090095266A1 (en) * | 2007-10-10 | 2009-04-16 | Oburtech Motor Corporation | Ozonation apparatus |
US20090168344A1 (en) | 2007-12-31 | 2009-07-02 | Ploeg Johan F | Thermal device with electrokinetic air flow |
US7623333B2 (en) * | 2008-01-23 | 2009-11-24 | Reginald R Robertson | Ion chip operating module |
US8807204B2 (en) * | 2010-08-31 | 2014-08-19 | International Business Machines Corporation | Electrohydrodynamic airflow across a heat sink using a non-planar ion emitter array |
US9028588B2 (en) | 2010-09-15 | 2015-05-12 | Donald H. Hess | Particle guide collector system and associated method |
CN102000632A (en) * | 2010-10-26 | 2011-04-06 | 苏州辰戈电子有限公司 | Electrostatic air cleaner |
US9149551B2 (en) | 2010-11-09 | 2015-10-06 | Samsung Electronics Co., Ltd. | Plasma generating device, plasma generating method, and method for suppressing ozone generation |
WO2012177744A1 (en) * | 2011-06-20 | 2012-12-27 | Jimmy Luther Lee | Solar powered plant ionizer |
EP2551017A3 (en) * | 2011-07-29 | 2013-04-03 | Technische Universiteit Delft | Gas purification system |
EP2776168B1 (en) * | 2011-11-09 | 2020-01-08 | Memic Europe B.V. | Apparatus with conductive strip for dust removal and method therefore |
CN104185737B (en) * | 2012-04-09 | 2016-08-24 | 夏普株式会社 | Pressure fan |
JP2015516297A (en) | 2012-05-15 | 2015-06-11 | ユニヴァーシティ オブ ワシントン センター フォー コマーシャライゼーション | Electronic air purifier and method thereof |
JP2014014644A (en) * | 2012-06-13 | 2014-01-30 | Sharp Corp | Moisturizer, electrical equipment equipped with the same, and moisturizing method |
KR101936632B1 (en) * | 2012-07-05 | 2019-01-09 | 엘지전자 주식회사 | Air Conditioner |
US9468935B2 (en) | 2012-08-31 | 2016-10-18 | Donald H. Hess | System for filtering airborne particles |
US9308537B2 (en) | 2012-12-26 | 2016-04-12 | Igor Krichtafovitch | Electrostatic air conditioner |
US9808547B2 (en) | 2013-04-18 | 2017-11-07 | Dm Tec, Llc | Sanitizer |
US20150070812A1 (en) * | 2013-09-12 | 2015-03-12 | Jimmy Luther Lee | Solar powered plant ionizer |
US20150114608A1 (en) * | 2013-10-30 | 2015-04-30 | Forcecon Technology Co., Ltd. | Electrostatic air-cooled heat sink |
CN104677415A (en) * | 2013-12-02 | 2015-06-03 | 哈尔滨智木科技有限公司 | Detection system for temperature and humidity of central air conditioner based on single bus |
US9950086B2 (en) | 2014-03-12 | 2018-04-24 | Dm Tec, Llc | Fixture sanitizer |
WO2015163829A1 (en) * | 2014-04-21 | 2015-10-29 | Chitiparlungsri Somsak | Sterilizing air conditioner |
US9700643B2 (en) | 2014-05-16 | 2017-07-11 | Michael E. Robert | Sanitizer with an ion generator |
US9827573B2 (en) | 2014-09-11 | 2017-11-28 | University Of Washington | Electrostatic precipitator |
US10245577B2 (en) * | 2015-05-05 | 2019-04-02 | Inspirotec, Inc. | Removal of ozone from electrokinetic devices |
US10124083B2 (en) | 2015-06-18 | 2018-11-13 | Dm Tec, Llc | Sanitizer with an ion generator and ion electrode assembly |
US10128075B2 (en) * | 2015-10-19 | 2018-11-13 | Global Plasma Solutions, Inc. | Ion generation device having attachment devices |
EP3193417A1 (en) | 2016-01-12 | 2017-07-19 | Naturion Pte. Ltd. | Ion generator device |
CN205518200U (en) * | 2016-01-29 | 2016-08-31 | 深圳嘉润茂电子有限公司 | High -speed ionic wind is from inhaling formula low temperature plasma air purification equipment |
MX2018009286A (en) * | 2016-01-29 | 2018-11-29 | Optimized Fuel Tech Inc | Ionizing device for improving combustion engine performance and methods of use. |
EP3225982A1 (en) | 2016-03-28 | 2017-10-04 | Naturion Pte. Ltd. | Device for measuring ion concentration |
CN105880022A (en) * | 2016-05-06 | 2016-08-24 | 珠海格力电器股份有限公司 | Air purifier and high-voltage electrostatic dust collection device thereof |
CN106095120A (en) * | 2016-06-06 | 2016-11-09 | 赵旭 | A kind of keyboard with air-cleaning function |
CN108344039A (en) * | 2017-01-22 | 2018-07-31 | 青岛海尔空调器有限总公司 | Air conditioner indoor unit |
CN108344040A (en) * | 2017-01-22 | 2018-07-31 | 青岛海尔空调器有限总公司 | Air conditioner indoor unit |
JP7198803B2 (en) * | 2017-07-27 | 2023-01-04 | ナチュリオン ピーティーイー.リミテッド | ion generator |
CN108380015A (en) * | 2018-02-02 | 2018-08-10 | 李明科 | A kind of boiler desulfurization denitrification apparatus |
JP6400259B1 (en) * | 2018-03-14 | 2018-10-03 | 三菱電機株式会社 | Water treatment apparatus and water treatment method |
KR102046926B1 (en) * | 2018-04-13 | 2019-11-20 | 엘지전자 주식회사 | Electric Dust Collection Device |
EP3671983A1 (en) * | 2018-12-19 | 2020-06-24 | Blueair Cabin Air AB | Ioniser |
EP3884551A1 (en) * | 2018-11-19 | 2021-09-29 | CabinAir Sweden AB | An ionizing unit for negatively charging airborne particles present in an airflow, an air-purifying device and a vehicle-adapted device |
DE102019008139A1 (en) * | 2019-11-22 | 2021-05-27 | Woco Industrietechnik Gmbh | Electrostatic precipitator |
DE102019008127A1 (en) * | 2019-11-22 | 2021-05-27 | Woco Industrietechnik Gmbh | Electrostatic precipitator |
CN111229467B (en) * | 2020-01-15 | 2022-05-24 | 启迪设计集团股份有限公司 | Wind power generation device capable of self-cleaning blades |
CN111672445A (en) * | 2020-06-25 | 2020-09-18 | 曾秋香 | Vertical high-efficient reation kettle is used to chemical industry |
CN113952894A (en) * | 2020-07-21 | 2022-01-21 | 李辉雄 | Reaction device for reducing capacity or decomposing organic matters |
CN112336905A (en) * | 2020-10-05 | 2021-02-09 | 德清创赢机械科技有限公司 | Gas dynamic disinfection device for medical field |
WO2023122236A1 (en) * | 2021-12-22 | 2023-06-29 | KBC Air Designs LLC | Dynamic particle separation for use in hvac systems |
CN114526532B (en) * | 2022-04-24 | 2022-07-05 | 北京福乐云数据科技有限公司 | Air sterilizing equipment and active fog ion generating device thereof |
Citations (473)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US653421A (en) | 1899-08-22 | 1900-07-10 | William Lorey | Filter. |
US895729A (en) | 1907-07-09 | 1908-08-11 | Int Precipitation Co | Art of separating suspended particles from gaseous bodies. |
US995958A (en) | 1911-02-10 | 1911-06-20 | Louis Goldberg | Ozonator. |
US1791338A (en) | 1927-04-12 | 1931-02-03 | Research Corp | Electrical precipitator |
US1869335A (en) | 1926-12-13 | 1932-07-26 | Day Leonard | Electric precipitator |
US1882949A (en) | 1930-11-15 | 1932-10-18 | Int Precipitation Co | Electrical precipitation apparatus |
US2129783A (en) | 1935-10-15 | 1938-09-13 | Westinghouse Electric & Mfg Co | Electrical precipitator for atmospheric dust |
US2327588A (en) | 1940-06-01 | 1943-08-24 | Games Slayter | Apparatus for conversion of energy |
US2359057A (en) | 1941-10-13 | 1944-09-26 | Skinner George Donald | Heating and ventilating system |
US2509548A (en) | 1948-05-27 | 1950-05-30 | Research Corp | Energizing electrical precipitator |
GB643363A (en) | 1946-10-30 | 1950-09-20 | Westinghouse Electric Int Co | Improvements in or relating to electrostatic dust precipitation |
US2590447A (en) | 1950-06-30 | 1952-03-25 | Jr Simon R Nord | Electrical comb |
US2949550A (en) | 1957-07-03 | 1960-08-16 | Whitehall Rand Inc | Electrokinetic apparatus |
US3018394A (en) | 1957-07-03 | 1962-01-23 | Whitehall Rand Inc | Electrokinetic transducer |
US3026964A (en) | 1959-05-06 | 1962-03-27 | Gaylord W Penney | Industrial precipitator with temperature-controlled electrodes |
US3374941A (en) | 1964-06-30 | 1968-03-26 | American Standard Inc | Air blower |
US3518462A (en) | 1967-08-21 | 1970-06-30 | Guidance Technology Inc | Fluid flow control system |
US3540191A (en) | 1967-01-31 | 1970-11-17 | Marc Victor Edgard Herman | Electrostatic separator |
US3581470A (en) | 1969-12-30 | 1971-06-01 | Emerson Electric Co | Electronic air cleaning cell |
US3638058A (en) | 1970-06-08 | 1972-01-25 | Robert S Fritzius | Ion wind generator |
US3744216A (en) | 1970-08-07 | 1973-07-10 | Environmental Technology | Air purifier |
DE2206057A1 (en) | 1972-02-09 | 1973-08-16 | Dortmunder Brueckenbau C H Juc | Electrofilter for flue gas - high tension electrodes extend vertically downward into precipitation electrodes and are removable |
US3803808A (en) | 1972-09-20 | 1974-04-16 | Ishikawajima Harima Heavy Ind | Two-stage type of electric dust arrester |
US3806763A (en) | 1971-04-08 | 1974-04-23 | S Masuda | Electrified particles generating apparatus |
US3892927A (en) | 1973-09-04 | 1975-07-01 | Theodore Lindenberg | Full range electrostatic loudspeaker for audio frequencies |
US3945813A (en) | 1971-04-05 | 1976-03-23 | Koichi Iinoya | Dust collector |
US3958962A (en) | 1972-12-30 | 1976-05-25 | Nafco Giken, Ltd. | Electrostatic precipitator |
US3958960A (en) | 1973-02-02 | 1976-05-25 | United States Filter Corporation | Wet electrostatic precipitators |
US3958961A (en) | 1973-02-02 | 1976-05-25 | United States Filter Corporation | Wet electrostatic precipitators |
JPS5190077A (en) | 1975-02-06 | 1976-08-06 | ||
US3981695A (en) | 1972-11-02 | 1976-09-21 | Heinrich Fuchs | Electronic dust separator system |
US3984215A (en) | 1975-01-08 | 1976-10-05 | Hudson Pulp & Paper Corporation | Electrostatic precipitator and method |
US3988131A (en) | 1975-07-09 | 1976-10-26 | Alpha Denshi Kabushiki Kaisha | Electronic air cleaner |
US4007024A (en) | 1975-06-09 | 1977-02-08 | Air Control Industries, Inc. | Portable electrostatic air cleaner |
US4052177A (en) | 1975-03-03 | 1977-10-04 | Nea-Lindberg A/S | Electrostatic precipitator arrangements |
US4056372A (en) | 1971-12-29 | 1977-11-01 | Nafco Giken, Ltd. | Electrostatic precipitator |
US4070163A (en) | 1974-08-29 | 1978-01-24 | Maxwell Laboratories, Inc. | Method and apparatus for electrostatic precipitating particles from a gaseous effluent |
US4092134A (en) | 1976-06-03 | 1978-05-30 | Nipponkai Heavy Industries Co., Ltd. | Electric dust precipitator and scraper |
US4097252A (en) | 1975-04-05 | 1978-06-27 | Apparatebau Rothemuhle Brandt & Kritzler | Electrostatic precipitator |
US4102654A (en) | 1976-07-27 | 1978-07-25 | Raymond Bommer | Negative ionizer |
US4104042A (en) | 1977-04-29 | 1978-08-01 | American Air Filter Company, Inc. | Multi-storied electrostatic precipitator |
US4110086A (en) | 1974-08-19 | 1978-08-29 | Air Pollution Systems, Inc. | Method for ionizing gases, electrostatically charging particles, and electrostatically charging particles or ionizing gases for removing contaminants from gas streams |
US4119415A (en) | 1977-06-22 | 1978-10-10 | Nissan Motor Company, Ltd. | Electrostatic dust precipitator |
US4126434A (en) | 1975-09-13 | 1978-11-21 | Hara Keiichi | Electrostatic dust precipitators |
US4138233A (en) | 1976-06-21 | 1979-02-06 | Senichi Masuda | Pulse-charging type electric dust collecting apparatus |
US4147522A (en) | 1976-04-23 | 1979-04-03 | American Precision Industries Inc. | Electrostatic dust collector |
US4155792A (en) | 1976-09-13 | 1979-05-22 | Metallgesellschaft Aktiengesellschaft | Process for producing a honeycomb of synthetic-resin material for use in an electrostatic precipitator |
US4171975A (en) | 1977-02-10 | 1979-10-23 | Konishiroku Photo Industry Co., Ltd. | Light-sensitive silver halide color photographic materials |
US4185971A (en) | 1977-07-14 | 1980-01-29 | Koyo Iron Works & Construction Co., Ltd. | Electrostatic precipitator |
US4189308A (en) | 1978-10-31 | 1980-02-19 | Research-Cottrell, Inc. | High voltage wetted parallel plate collecting electrode arrangement for an electrostatic precipitator |
US4205969A (en) | 1977-03-21 | 1980-06-03 | Masahiko Fukino | Electrostatic air filter having honeycomb filter elements |
US4209306A (en) | 1978-11-13 | 1980-06-24 | Research-Cottrell | Pulsed electrostatic precipitator |
US4218225A (en) | 1974-05-20 | 1980-08-19 | Apparatebau Rothemuhle Brandt & Kritzler | Electrostatic precipitators |
US4225323A (en) | 1979-05-31 | 1980-09-30 | General Electric Company | Ionization effected removal of alkali composition from a hot gas |
US4227894A (en) | 1978-10-10 | 1980-10-14 | Proynoff John D | Ion generator or electrostatic environmental conditioner |
US4231766A (en) | 1978-12-11 | 1980-11-04 | United Air Specialists, Inc. | Two stage electrostatic precipitator with electric field induced airflow |
US4232355A (en) | 1979-01-08 | 1980-11-04 | Santek, Inc. | Ionization voltage source |
US4244712A (en) | 1979-03-05 | 1981-01-13 | Tongret Stewart R | Cleansing system using treated recirculating air |
US4244710A (en) | 1977-05-12 | 1981-01-13 | Burger Manfred R | Air purification electrostatic charcoal filter and method |
US4251234A (en) | 1979-09-21 | 1981-02-17 | Union Carbide Corporation | High intensity ionization-electrostatic precipitation system for particle removal |
US4253852A (en) | 1979-11-08 | 1981-03-03 | Tau Systems | Air purifier and ionizer |
US4259093A (en) | 1976-04-09 | 1981-03-31 | Elfi Elektrofilter Ab | Electrostatic precipitator for air cleaning |
US4259452A (en) | 1978-05-15 | 1981-03-31 | Bridgestone Tire Company Limited | Method of producing flexible reticulated polyether polyurethane foams |
US4259707A (en) | 1979-01-12 | 1981-03-31 | Penney Gaylord W | System for charging particles entrained in a gas stream |
US4266948A (en) | 1980-01-04 | 1981-05-12 | Envirotech Corporation | Fiber-rejecting corona discharge electrode and a filtering system employing the discharge electrode |
US4282014A (en) | 1975-01-31 | 1981-08-04 | Siemens Aktiengesellschaft | Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator |
US4284420A (en) | 1979-08-27 | 1981-08-18 | Borysiak Ralph A | Electrostatic air cleaner with scraper cleaning of collector plates |
US4289504A (en) | 1978-06-12 | 1981-09-15 | Ball Corporation | Modular gas cleaner and method |
US4293319A (en) | 1977-09-28 | 1981-10-06 | The United States Of America As Represented By The Secretary Of Agriculture | Electrostatic precipitator apparatus using liquid collection electrodes |
US4308036A (en) | 1979-08-23 | 1981-12-29 | Efb Inc. | Filter apparatus and method for collecting fly ash and fine dust |
US4315188A (en) | 1980-02-19 | 1982-02-09 | Ball Corporation | Wire electrode assemblage having arc suppression means and extended fatigue life |
US4318718A (en) | 1979-07-19 | 1982-03-09 | Ichikawa Woolen Textile Co., Ltd. | Discharge wire cleaning device for an electric dust collector |
US4338560A (en) | 1979-10-12 | 1982-07-06 | The United States Of America As Represented By The Secretary Of The Navy | Albedd radiation power converter |
US4342571A (en) | 1974-05-08 | 1982-08-03 | United Mcgill Corporation | Electrostatic precipitator |
US4349359A (en) | 1978-03-30 | 1982-09-14 | Maxwell Laboratories, Inc. | Electrostatic precipitator apparatus having an improved ion generating means |
US4351648A (en) | 1979-09-24 | 1982-09-28 | United Air Specialists, Inc. | Electrostatic precipitator having dual polarity ionizing cell |
US4354861A (en) | 1981-03-26 | 1982-10-19 | Kalt Charles G | Particle collector and method of manufacturing same |
US4357150A (en) | 1980-06-05 | 1982-11-02 | Midori Anzen Co., Ltd. | High-efficiency electrostatic air filter device |
US4362632A (en) | 1974-08-02 | 1982-12-07 | Lfe Corporation | Gas discharge apparatus |
US4363072A (en) | 1980-07-22 | 1982-12-07 | Zeco, Incorporated | Ion emitter-indicator |
US4366525A (en) | 1980-03-13 | 1982-12-28 | Elcar Zurich AG | Air ionizer for rooms |
US4369776A (en) | 1979-04-11 | 1983-01-25 | Roberts Wallace A | Dermatological ionizing vaporizer |
US4375364A (en) | 1980-08-21 | 1983-03-01 | Research-Cottrell, Inc. | Rigid discharge electrode for electrical precipitators |
US4380900A (en) | 1980-05-24 | 1983-04-26 | Robert Bosch Gmbh | Apparatus for removing solid components from the exhaust gas of internal combustion engines, in particular soot components |
US4386395A (en) | 1980-12-19 | 1983-05-31 | Webster Electric Company, Inc. | Power supply for electrostatic apparatus |
US4391614A (en) | 1981-11-16 | 1983-07-05 | Kelsey-Hayes Company | Method and apparatus for preventing lubricant flow from a vacuum source to a vacuum chamber |
US4394239A (en) | 1980-09-09 | 1983-07-19 | Bayer Aktiengesellschaft | Electro-chemical sensor for the detection of reducing gases, in particular carbon monoxide, hydrazine and hydrogen in air |
US4405342A (en) | 1982-02-23 | 1983-09-20 | Werner Bergman | Electric filter with movable belt electrode |
US4406671A (en) | 1981-11-16 | 1983-09-27 | Kelsey-Hayes Company | Assembly and method for electrically degassing particulate material |
US4412850A (en) | 1981-07-11 | 1983-11-01 | Neat Shujinki Kogyo Kabushiki Kaisha | Electric dust collector |
US4413225A (en) | 1980-07-17 | 1983-11-01 | Siemens Aktiengesellschaft | Method of operating an electrostatic precipitator |
US4414603A (en) | 1980-03-27 | 1983-11-08 | Senichi Masuda | Particle charging apparatus |
US4435190A (en) | 1981-03-14 | 1984-03-06 | Office National D'etudes Et De Recherches Aerospatiales | Method for separating particles in suspension in a gas |
US4440552A (en) | 1980-03-06 | 1984-04-03 | Hitachi Plant Engineering & Construction Co., Ltd. | Electrostatic particle precipitator |
US4443234A (en) | 1981-04-03 | 1984-04-17 | Flakt Aktiebolag | Device at a dust filter |
US4445911A (en) | 1980-12-17 | 1984-05-01 | F. L. Smidth & Co. | Method of controlling operation of an electrostatic precipitator |
US4477263A (en) | 1982-06-28 | 1984-10-16 | Shaver John D | Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas |
US4477268A (en) | 1981-03-26 | 1984-10-16 | Kalt Charles G | Multi-layered electrostatic particle collector electrodes |
US4481017A (en) | 1983-01-14 | 1984-11-06 | Ets, Inc. | Electrical precipitation apparatus and method |
US4496375A (en) | 1981-07-13 | 1985-01-29 | Vantine Allan D Le | An electrostatic air cleaning device having ionization apparatus which causes the air to flow therethrough |
US4502002A (en) | 1982-09-02 | 1985-02-26 | Mitsubishi Jukogyo Kabushiki Kaisha | Electrostatically operated dust collector |
US4505724A (en) | 1982-04-24 | 1985-03-19 | Metallgesellschaft Aktiengesellschaft | Wet-process dust-collecting apparatus especially for converter exhaust gases |
US4509958A (en) | 1981-10-12 | 1985-04-09 | Senichi Masuda | High-efficiency electrostatic filter device |
US4514780A (en) | 1983-01-07 | 1985-04-30 | Wm. Neundorfer & Co., Inc. | Discharge electrode assembly for electrostatic precipitators |
US4515982A (en) | 1981-12-28 | 1985-05-07 | Basf Aktiengesellschaft | Aminoreductones |
US4516991A (en) | 1982-12-30 | 1985-05-14 | Nihon Electric Co. Ltd. | Air cleaning apparatus |
US4521229A (en) | 1983-11-01 | 1985-06-04 | Combustion Engineering, Inc. | Tubular discharge electrode for electrostatic precipitator |
US4522634A (en) | 1983-01-20 | 1985-06-11 | Walther & Cie Aktiengesellschaft | Method and apparatus for automatic regulation of the operation of an electrostatic filter |
US4534776A (en) | 1982-08-16 | 1985-08-13 | At&T Bell Laboratories | Air cleaner |
US4536698A (en) | 1983-08-25 | 1985-08-20 | Vsesojuzny Nauchno-Issledovatelsky I Proektny Institut Po Ochikh Tke Tekhnologichesky Gazov, Stochnykh Vod I Ispolzovaniju Vtorichnykh Energoresursov Predpriyaty Chernoi Metallurgii Vnipichermetenergoochist Ka | Method and apparatus for supplying voltage to high-ohmic dust electrostatic precipitator |
US4544382A (en) | 1980-05-19 | 1985-10-01 | Office National D'etudes Et De Recherches Aerospatiales (Onera) | Apparatus for separating particles in suspension in a gas |
US4555252A (en) | 1983-06-04 | 1985-11-26 | Dragerwerk Aktiengesellschaft | Electrostatic filter construction |
US4569684A (en) | 1981-07-31 | 1986-02-11 | Ibbott Jack Kenneth | Electrostatic air cleaner |
US4582961A (en) | 1981-11-13 | 1986-04-15 | Aktieselskabet Bruel & Kjar | Capacitive transducer |
US4587475A (en) | 1983-07-25 | 1986-05-06 | Foster Wheeler Energy Corporation | Modulated power supply for an electrostatic precipitator |
US4588423A (en) | 1982-06-30 | 1986-05-13 | Donaldson Company, Inc. | Electrostatic separator |
US4590042A (en) | 1984-12-24 | 1986-05-20 | Tegal Corporation | Plasma reactor having slotted manifold |
US4597781A (en) | 1984-11-21 | 1986-07-01 | Donald Spector | Compact air purifier unit |
US4597780A (en) | 1981-06-04 | 1986-07-01 | Santek, Inc. | Electro-inertial precipitator unit |
US4600411A (en) | 1984-04-06 | 1986-07-15 | Lucidyne, Inc. | Pulsed power supply for an electrostatic precipitator |
US4601733A (en) | 1983-09-29 | 1986-07-22 | Dominique Bacot | High voltage generator for an electrostatic dust precipitator |
US4604174A (en) | 1985-04-30 | 1986-08-05 | Dorr-Oliver Incorporated | High flow electrofiltration |
US4614573A (en) | 1984-05-09 | 1986-09-30 | Senichi Masuda | Method for producing an ozone gas and apparatus for producing the same |
US4623365A (en) | 1985-01-09 | 1986-11-18 | The United States Of America As Represented By The Department Of Energy | Recirculating electric air filter |
US4626261A (en) | 1984-12-12 | 1986-12-02 | F. L. Smidth & Co. A/S | Method of controlling intermittent voltage supply to an electrostatic precipitator |
US4632746A (en) | 1984-12-06 | 1986-12-30 | National Research Development Corp. | Electrochemical cell with thin wire electrode |
US4632135A (en) | 1984-01-17 | 1986-12-30 | U.S. Philips Corporation | Hair-grooming means |
US4636981A (en) | 1982-07-19 | 1987-01-13 | Tokyo Shibaura Denki Kabushiki Kaisha | Semiconductor memory device having a voltage push-up circuit |
US4643744A (en) | 1984-02-13 | 1987-02-17 | Triactor Holdings Limited | Apparatus for ionizing air |
US4643745A (en) | 1983-12-20 | 1987-02-17 | Nippon Soken, Inc. | Air cleaner using ionic wind |
US4647836A (en) | 1984-03-02 | 1987-03-03 | Olsen Randall B | Pyroelectric energy converter and method |
US4650648A (en) | 1984-10-25 | 1987-03-17 | Bbc Brown, Boveri & Company, Limited | Ozone generator with a ceramic-based dielectric |
US4656010A (en) | 1984-06-22 | 1987-04-07 | Messer Griesheim Gmbh | Device for producing ozone |
US4657738A (en) | 1984-04-30 | 1987-04-14 | Westinghouse Electric Corp. | Stack gas emissions control system |
US4662903A (en) | 1986-06-02 | 1987-05-05 | Denki Kogyo Company Limited | Electrostatic dust collector |
JPS6220653B2 (en) | 1977-09-30 | 1987-05-08 | Denki Kagaku Kogyo Kk | |
US4666474A (en) | 1986-08-11 | 1987-05-19 | Amax Inc. | Electrostatic precipitators |
US4668479A (en) | 1984-06-12 | 1987-05-26 | Toyoda Gosei Co., Ltd. | Plasma processing apparatus |
US4670026A (en) | 1986-02-18 | 1987-06-02 | Desert Technology, Inc. | Method and apparatus for electrostatic extraction of droplets from gaseous medium |
US4674003A (en) | 1984-04-03 | 1987-06-16 | J. Wagner Ag | Electronic high-voltage generator for electrostatic sprayer devices |
US4680496A (en) | 1985-07-31 | 1987-07-14 | Centre National de la Recherche Scintifique | Apparatus for conveying electrostatic charges, in particular for very high voltage electrostatic generators |
US4686370A (en) | 1984-02-13 | 1987-08-11 | Biomed-Electronic Gmbh & Co. Medizinischer Geratebau Kg | Ionizing chamber for gaseous oxygen |
US4689056A (en) | 1983-11-23 | 1987-08-25 | Nippon Soken, Inc. | Air cleaner using ionic wind |
US4692174A (en) | 1982-02-26 | 1987-09-08 | Gelfand Peter C | Ionizer assembly having a bell-mouth outlet |
US4691829A (en) | 1980-11-03 | 1987-09-08 | Coulter Corporation | Method of and apparatus for detecting change in the breakoff point in a droplet generation system |
US4693869A (en) | 1986-03-20 | 1987-09-15 | Pfaff Ernest H | Electrode arrangement for creating corona |
US4694376A (en) | 1982-03-12 | 1987-09-15 | Rudolf Gesslauer | Circuit for the pulsed operation of one or more high-frequency ozonizers |
US4702752A (en) | 1985-05-30 | 1987-10-27 | Research Development Corporation Of Japan | Electrostatic dust collector |
US4713093A (en) | 1985-07-15 | 1987-12-15 | Kraftelektronik Ab | Electrostatic dust precipitator |
US4713092A (en) | 1984-08-14 | 1987-12-15 | Corona Engineering Co., Ltd. | Electrostatic precipitator |
US4713724A (en) | 1985-07-20 | 1987-12-15 | HV Hofmann and Volkel | Portable ion generator |
US4715870A (en) | 1984-02-18 | 1987-12-29 | Senichi Masuda | Electrostatic filter dust collector |
US4725289A (en) | 1986-11-28 | 1988-02-16 | Quintilian B Frank | High conversion electrostatic precipitator |
US4726812A (en) | 1986-03-26 | 1988-02-23 | Bbc Brown, Boveri Ag | Method for electrostatically charging up solid or liquid particles suspended in a gas stream by means of ions |
US4726814A (en) | 1985-07-01 | 1988-02-23 | Jacob Weitman | Method and apparatus for simultaneously recovering heat and removing gaseous and sticky pollutants from a heated, polluted gas flow |
US4736127A (en) | 1983-04-08 | 1988-04-05 | Sarcos, Inc. | Electric field machine |
US4743275A (en) | 1986-08-25 | 1988-05-10 | Flanagan G Patrick | Electron field generator |
US4749390A (en) | 1987-02-26 | 1988-06-07 | Air Purification Products, International | Four-sided air filter |
US4750921A (en) | 1984-06-22 | 1988-06-14 | Midori Anzen Industry Co., Ltd. | Electrostatic filter dust collector |
CN87210843U (en) | 1987-07-27 | 1988-07-06 | 王世强 | Ozone-removing air negative ion generator |
US4760303A (en) | 1985-06-11 | 1988-07-26 | Japan Physitec Instrument Co., Ltd. | Electrostatic high-voltage generator |
US4760302A (en) | 1986-12-11 | 1988-07-26 | Sarcos, Inc. | Electric field machine |
US4765802A (en) | 1987-07-15 | 1988-08-23 | Wheelabrator Air Pollution Control Inc. | Electrostatic precipitator plate spacer and method of installing same |
US4771361A (en) | 1985-09-16 | 1988-09-13 | Dr. Engelter & Nitsch, Wirtschaftsberatung | Electrode arrangement for corona discharges |
US4772297A (en) | 1985-09-20 | 1988-09-20 | Kyowa Seiko Co., Ltd. | Air cleaner |
US4779182A (en) | 1985-06-24 | 1988-10-18 | Metallgesellschaft Ag | Power supply for an electrostatic filter |
JPS63164948U (en) | 1987-04-13 | 1988-10-27 | ||
US4781736A (en) | 1986-11-20 | 1988-11-01 | United Air Specialists, Inc. | Electrostatically enhanced HEPA filter |
US4786844A (en) | 1987-03-30 | 1988-11-22 | Rpc Industries | Wire ion plasma gun |
US4789801A (en) | 1986-03-06 | 1988-12-06 | Zenion Industries, Inc. | Electrokinetic transducing methods and apparatus and systems comprising or utilizing the same |
US4808200A (en) | 1986-11-24 | 1989-02-28 | Siemens Aktiengesellschaft | Electrostatic precipitator power supply |
US4811159A (en) | 1988-03-01 | 1989-03-07 | Associated Mills Inc. | Ionizer |
US4822381A (en) | 1988-05-09 | 1989-04-18 | Government Of The United States As Represented By Administrator Environmental Protection Agency | Electroprecipitator with suppression of rapping reentrainment |
US4853005A (en) | 1985-10-09 | 1989-08-01 | American Filtrona Corporation | Electrically stimulated filter method and apparatus |
US4869736A (en) | 1989-02-02 | 1989-09-26 | Combustion Engineering, Inc. | Collecting electrode panel assembly with coupling means |
US4892713A (en) | 1988-06-01 | 1990-01-09 | Newman James J | Ozone generator |
US4929139A (en) | 1989-07-26 | 1990-05-29 | The Perkin-Elmer Corporation | Passive electrostatic vacuum particle collector |
US4941068A (en) | 1988-03-10 | 1990-07-10 | Hofmann & Voelkel Gmbh | Portable ion generator |
US4940894A (en) | 1987-12-10 | 1990-07-10 | Enercon Industries Corporation | Electrode for a corona discharge apparatus |
US4940470A (en) | 1988-03-23 | 1990-07-10 | American Filtrona Corporation | Single field ionizing electrically stimulated filter |
US4941224A (en) | 1988-08-01 | 1990-07-17 | Matsushita Electric Industrial Co., Ltd. | Electrostatic dust collector for use in vacuum system |
US4954320A (en) | 1988-04-22 | 1990-09-04 | The United States Of America As Represented By The Secretary Of The Army | Reactive bed plasma air purification |
US4955991A (en) | 1986-04-21 | 1990-09-11 | Astra-Vent Ab | Arrangement for generating an electric corona discharge in air |
US4966666A (en) | 1986-11-24 | 1990-10-30 | Waltonen Laboratories | Fluid energizing method and apparatus |
US4967119A (en) | 1985-06-06 | 1990-10-30 | Astra-Vent Ab | Air transporting arrangement |
US4976752A (en) | 1988-09-26 | 1990-12-11 | Astra Vent Ab | Arrangement for generating an electric corona discharge in air |
US4978372A (en) | 1988-03-11 | 1990-12-18 | William Pick | Pleated charged media air filter |
USD315598S (en) | 1989-02-15 | 1991-03-19 | Hitachi, Ltd. | Electric fan |
US5003774A (en) | 1987-10-09 | 1991-04-02 | Kerr-Mcgee Chemical Corporation | Apparatus for soot removal from exhaust gas |
US5006761A (en) | 1985-12-20 | 1991-04-09 | Astra-Vent Ab | Air transporting arrangement |
US5012094A (en) | 1990-02-05 | 1991-04-30 | Hamade Thomas A | Electrostatic charging apparatus and method |
US5012093A (en) | 1988-08-29 | 1991-04-30 | Minolta Camera Co., Ltd. | Cleaning device for wire electrode of corona discharger |
US5010869A (en) | 1989-08-11 | 1991-04-30 | Zenion Industries, Inc. | Air ionization system for internal combustion engines |
US5012159A (en) | 1987-07-03 | 1991-04-30 | Astra Vent Ab | Arrangement for transporting air |
US5022979A (en) | 1987-10-26 | 1991-06-11 | Tokyo Ohka Kogyo Co., Ltd. | Electrode for use in the treatment of an object in a plasma |
US5024685A (en) | 1986-12-19 | 1991-06-18 | Astra-Vent Ab | Electrostatic air treatment and movement system |
EP0433152A1 (en) | 1989-12-12 | 1991-06-19 | Commissariat A L'energie Atomique | Electrofilter with cleaning system |
US5030254A (en) | 1989-01-11 | 1991-07-09 | Bleiwerk Goslar Gmbh & Co. Kg Besserer & Ernst | Lead-plate electric precipitator |
US5034033A (en) | 1990-07-13 | 1991-07-23 | U.S. Natural Resources, Inc. | Modular electronic air cleaning device |
US5037456A (en) | 1989-09-30 | 1991-08-06 | Samsung Electronics Co., Ltd. | Electrostatic precipitator |
US5045095A (en) | 1989-06-15 | 1991-09-03 | Samsung Electronics Co., Ltd. | Dust collector for an air cleaner |
US5053912A (en) | 1988-03-10 | 1991-10-01 | Astra-Vent Ab | Air transporting arrangement |
US5059219A (en) | 1990-09-26 | 1991-10-22 | The United States Goverment As Represented By The Administrator Of The Environmental Protection Agency | Electroprecipitator with alternating charging and short collector sections |
US5061462A (en) | 1987-11-12 | 1991-10-29 | Nagatoshi Suzuki | Apparatus for producing a streamer corona |
US5066313A (en) | 1990-09-20 | 1991-11-19 | Southern Environmental, Inc. | Wire electrode replacement for electrostatic precipitators |
US5072746A (en) | 1990-04-04 | 1991-12-17 | Epilady International Inc. | Hair grooming device |
US5076820A (en) | 1989-12-29 | 1991-12-31 | Alexander Gurvitz | Collector electrode structure and electrostatic precipitator including same |
US5077500A (en) | 1987-02-05 | 1991-12-31 | Astra-Vent Ab | Air transporting arrangement |
US5077468A (en) | 1990-02-05 | 1991-12-31 | Hamade Thomas A | Electrostatic charging apparatus and method |
EP0332624B1 (en) | 1986-10-30 | 1992-01-02 | Astravent Ab | An electrostatic precipitator for use in electrofilters |
US5100440A (en) | 1990-01-17 | 1992-03-31 | Elex Ag | Emission electrode in an electrostatic dust separator |
WO1992005875A1 (en) | 1990-10-03 | 1992-04-16 | Astra-Vent Ab | Apparatus for generating and cleaning an air flow |
USRE33927E (en) | 1985-11-08 | 1992-05-19 | Kankyo Company Limited | Air cleaner |
USD326514S (en) | 1990-02-27 | 1992-05-26 | U.S. Natural Resources, Inc. | Electronic air cleaner |
US5118942A (en) | 1990-02-05 | 1992-06-02 | Hamade Thomas A | Electrostatic charging apparatus and method |
US5125936A (en) | 1988-06-03 | 1992-06-30 | Boliden Contech Ab | Emission electrode |
CN2111112U (en) | 1991-06-28 | 1992-07-29 | 段沫石 | Ultraviolet sterilized air purifying unit |
US5136461A (en) | 1988-06-07 | 1992-08-04 | Max Zellweger | Apparatus for sterilizing and deodorizing rooms having a grounded electrode cover |
US5137546A (en) | 1989-08-31 | 1992-08-11 | Metallgesellschaft Aktiengesellschaft | Process and apparatus for electrostatic purification of dust- and pollutant-containing exhaust gases in multiple-field precipitators |
US5141715A (en) | 1991-04-09 | 1992-08-25 | University Of Alaska | Electrical device for conversion of molecular weights using dynodes |
US5141529A (en) | 1990-06-19 | 1992-08-25 | Neg-Ions (North America) Inc. | Dust precipitation from air by negative ionization |
USD329284S (en) | 1991-04-15 | 1992-09-08 | Patton Electric Company, Inc. | Portable electric fan |
US5147429A (en) | 1990-04-09 | 1992-09-15 | James Bartholomew | Mobile airborne air cleaning station |
US5154733A (en) | 1990-03-06 | 1992-10-13 | Ebara Research Co., Ltd. | Photoelectron emitting member and method of electrically charging fine particles with photoelectrons |
US5158580A (en) | 1989-12-15 | 1992-10-27 | Electric Power Research Institute | Compact hybrid particulate collector (COHPAC) |
US5180404A (en) | 1988-12-08 | 1993-01-19 | Astra-Vent Ab | Corona discharge arrangements for the removal of harmful substances generated by the corona discharge |
USD332655S (en) | 1991-10-04 | 1993-01-19 | Patton Electric Company, Inc. | Portable electric fan |
US5183480A (en) | 1991-10-28 | 1993-02-02 | Mobil Oil Corporation | Apparatus and method for collecting particulates by electrostatic precipitation |
US5196171A (en) | 1991-03-11 | 1993-03-23 | In-Vironmental Integrity, Inc. | Electrostatic vapor/aerosol/air ion generator |
US5198003A (en) | 1991-07-02 | 1993-03-30 | Carrier Corporation | Spiral wound electrostatic air cleaner and method of assembling |
US5199257A (en) | 1989-02-10 | 1993-04-06 | Centro Sviluppo Materiali S.P.A. | Device for removal of particulates from exhaust and flue gases |
US5210678A (en) | 1991-12-16 | 1993-05-11 | Industrial Technology Research Institute | Chain-type discharge wire for use in an electrostatic precipitator |
US5215558A (en) | 1990-06-12 | 1993-06-01 | Samsung Electronics Co., Ltd. | Electrical dust collector |
US5217511A (en) | 1992-01-24 | 1993-06-08 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration |
US5217504A (en) | 1989-03-28 | 1993-06-08 | Abb Flakt Aktiebolag | Method for controlling the current pulse supply to an electrostatic precipitator |
CN2138764Y (en) | 1992-12-19 | 1993-07-21 | 许泉源 | Air purifier for filtering poison, dust-removing and sterifization |
US5234555A (en) | 1991-02-05 | 1993-08-10 | Ibbott Jack Kenneth | Method and apparatus for ionizing fluids utilizing a capacitive effect |
US5248324A (en) | 1991-08-02 | 1993-09-28 | Filtration Japan Co., Ltd. | Electrostatic precipitator |
US5250267A (en) | 1992-06-24 | 1993-10-05 | The Babcock & Wilcox Company | Particulate collection device with integral wet scrubber |
US5254155A (en) | 1992-04-27 | 1993-10-19 | Mensi Fred E | Wet electrostatic ionizing element and cooperating honeycomb passage ways |
FR2690509A1 (en) | 1992-04-22 | 1993-10-29 | Electricite De France | Convector heater incorporating air purification and humidity control - has filter in air intake, with humidifying, ionising and ozonising unit placed in heated air-stream. |
US5266004A (en) | 1990-03-19 | 1993-11-30 | Hitachi, Ltd. | Blower |
US5271763A (en) | 1991-12-31 | 1993-12-21 | Samsung Electronics Co., Ltd. | Electrical dust collector |
CN2153231Y (en) | 1992-05-12 | 1994-01-19 | 沈阳市仁义有限公司 | Electronic chemical comprehensive fresh keeping machine for fruit and vegetable |
US5282891A (en) | 1992-05-01 | 1994-02-01 | Ada Technologies, Inc. | Hot-side, single-stage electrostatic precipitator having reduced back corona discharge |
US5290343A (en) | 1991-07-19 | 1994-03-01 | Kabushiki Kaisha Toshiba | Electrostatic precipitator machine for charging dust particles contained in air and capturing dust particles with coulomb force |
US5296019A (en) | 1990-06-19 | 1994-03-22 | Neg-Ions (North America) Inc. | Dust precipitation from air by negative ionization |
US5302190A (en) | 1992-06-08 | 1994-04-12 | Trion, Inc. | Electrostatic air cleaner with negative polarity power and method of using same |
US5308586A (en) | 1992-05-01 | 1994-05-03 | General Atomics | Electrostatic separator using a bead bed |
US5315838A (en) | 1993-08-16 | 1994-05-31 | Whirlpool Corporation | Air conditioner filter monitor |
US5316741A (en) | 1991-05-30 | 1994-05-31 | Zontec Inc. | Ozone generator |
US5330559A (en) | 1992-08-11 | 1994-07-19 | United Air Specialists, Inc. | Method and apparatus for electrostatically cleaning particulates from air |
US5348571A (en) | 1992-01-09 | 1994-09-20 | Metallgesellschaft Aktiengesellschaft | Apparatus for dedusting a gas at high temperature |
US5376168A (en) | 1990-02-20 | 1994-12-27 | The L. D. Kichler Co. | Electrostatic particle filtration |
US5378978A (en) | 1993-04-02 | 1995-01-03 | Belco Technologies Corp. | System for controlling an electrostatic precipitator using digital signal processing |
US5386839A (en) | 1992-12-24 | 1995-02-07 | Chen; Hong Y. | Comb |
US5395430A (en) | 1993-02-11 | 1995-03-07 | Wet Electrostatic Technology, Inc. | Electrostatic precipitator assembly |
US5401302A (en) | 1991-12-19 | 1995-03-28 | Metallgesellschaft Aktiegesellschaft | Electrostatic separator comprising honeycomb collecting electrodes |
US5401301A (en) | 1991-07-17 | 1995-03-28 | Metallgesellschaft Aktiengesellschaft | Device for the transport of materials and electrostatic precipitation |
US5403383A (en) | 1992-08-26 | 1995-04-04 | Jaisinghani; Rajan | Safe ionizing field electrically enhanced filter and process for safely ionizing a field of an electrically enhanced filter |
US5405434A (en) | 1990-02-20 | 1995-04-11 | The Scott Fetzer Company | Electrostatic particle filtration |
US5407639A (en) | 1991-10-14 | 1995-04-18 | Toto, Ltd. | Method of manufacturing a corona discharge device |
US5407469A (en) | 1993-12-20 | 1995-04-18 | Sunova Company | Improved air ionizing apparatus |
US5417936A (en) | 1992-06-08 | 1995-05-23 | Nippon Ozone Co., Ltd. | Plate-type ozone generator |
US5419953A (en) | 1993-05-20 | 1995-05-30 | Chapman; Rick L. | Multilayer composite air filtration media |
US5433772A (en) | 1993-10-15 | 1995-07-18 | Sikora; David | Electrostatic air filter for mobile equipment |
US5435978A (en) | 1991-08-08 | 1995-07-25 | Sumitomo Precision Products Co., Ltd. | Plate-type ozonizer |
US5435817A (en) | 1992-12-23 | 1995-07-25 | Honeywell Inc. | Portable room air purifier |
US5437713A (en) | 1994-12-01 | 1995-08-01 | Chang; Chin-Chu | Removal device for electrostatic precipitators |
US5437843A (en) | 1993-07-08 | 1995-08-01 | Kuan; Yu-Hung | Ozonizer |
US5445798A (en) | 1992-11-24 | 1995-08-29 | Mitsubishi Denki Kabushiki Kaisha | Microbe propagation preventing apparatus and microbe propagation preventing method |
US5466279A (en) | 1990-11-30 | 1995-11-14 | Kabushiki Kaisha Toshiba | Electric dust collector system |
US5468454A (en) | 1994-04-05 | 1995-11-21 | Samsung Electronics Co., Ltd. | Compact sterilizing deodorizing and freshness-preserving apparatus for use in a refrigerator |
US5474599A (en) | 1992-08-11 | 1995-12-12 | United Air Specialists, Inc. | Apparatus for electrostatically cleaning particulates from air |
US5484473A (en) | 1993-07-28 | 1996-01-16 | Bontempi; Luigi | Two-stage electrostatic filter with extruded modular components particularly for air recirculation units |
US5484472A (en) | 1995-02-06 | 1996-01-16 | Weinberg; Stanley | Miniature air purifier |
WO1996004703A1 (en) | 1994-08-05 | 1996-02-15 | Strainer Lpb Aktiebolag | Device for transporting and/or cleaning air by corona discharge |
US5492678A (en) | 1993-07-23 | 1996-02-20 | Hokushin Industries, Inc. | Gas-cleaning equipment and its use |
US5501844A (en) | 1994-06-01 | 1996-03-26 | Oxidyn, Incorporated | Air treating apparatus and method therefor |
US5503808A (en) | 1993-12-27 | 1996-04-02 | Ozact, Inc. | Portable integrated ozone generator |
US5503809A (en) | 1993-04-19 | 1996-04-02 | John T. Towles | Compact ozone generator |
US5505914A (en) | 1994-01-20 | 1996-04-09 | Tona-Serra; Jaime | Device for ozonizing small areas or surfaces for therapeutic purposes |
US5508008A (en) | 1994-10-27 | 1996-04-16 | Wasser; Robert E. | Apparatus for producing ozone with local and remote application |
US5514345A (en) | 1994-03-11 | 1996-05-07 | Ozact, Inc. | Method and apparatus for disinfecting an enclosed space |
US5516493A (en) | 1991-02-21 | 1996-05-14 | Bell; Maxwell G. | Method and apparatus for producing ozone by corona discharge |
US5518531A (en) | 1994-05-05 | 1996-05-21 | Joannu; Constantinos J. | Ion injector for air handling systems |
US5520887A (en) | 1993-11-22 | 1996-05-28 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Apparatus for generating and condensing ozone |
US5525310A (en) | 1995-08-02 | 1996-06-11 | Decker; R. Scott | Continuous corona discharge ozone generation device |
US5529760A (en) | 1994-12-13 | 1996-06-25 | Burris; William A. | Ozone generator |
US5529613A (en) | 1993-05-18 | 1996-06-25 | Amron Ltd. | Air ionization device |
US5532798A (en) | 1993-05-26 | 1996-07-02 | Minolta Camera Kabushiki Kaisha | Charging device having a plate electrode and a cleaning device for cleaning edges of the plate electrode |
US5535089A (en) | 1994-10-17 | 1996-07-09 | Jing Mei Industrial Holdings, Ltd. | Ionizer |
US5536477A (en) | 1995-03-15 | 1996-07-16 | Chang Yul Cha | Pollution arrestor |
US5538695A (en) | 1992-07-03 | 1996-07-23 | Ebara Corporation | Ozonizer |
US5540761A (en) | 1991-12-11 | 1996-07-30 | Yamamoto; Yujiro | Filter for particulate materials in gaseous fluids |
US5542967A (en) | 1994-10-06 | 1996-08-06 | Ponizovsky; Lazar Z. | High voltage electrical apparatus for removing ecologically noxious substances from gases |
US5545380A (en) | 1993-02-05 | 1996-08-13 | Teledyne Industries, Inc. | Corona discharge system with conduit structure |
US5545379A (en) | 1993-02-05 | 1996-08-13 | Teledyne Industries, Inc. | Corona discharge system with insulated wire |
US5547643A (en) | 1994-08-16 | 1996-08-20 | Ebara Corporation | Apparatus for treating flue gases by irradiation with electron beams |
US5549874A (en) | 1992-04-23 | 1996-08-27 | Ebara Corporation | Discharge reactor |
US5554345A (en) | 1992-10-14 | 1996-09-10 | Novozone (N.V.) Limited | Ozone generation apparatus and method |
US5554344A (en) | 1994-05-11 | 1996-09-10 | Duarte; Fernando C. | Gas ionization device |
US5569368A (en) | 1995-01-06 | 1996-10-29 | Larsky; Edvin G. | Electrophoretic apparatus and method for applying therapeutic, cosmetic and dyeing solutions to hair |
US5569437A (en) | 1994-01-07 | 1996-10-29 | Sorbios Verfahrenstechnische Gerate Und Systeme Gmbh | Ozone generating apparatus |
US5571483A (en) | 1990-01-26 | 1996-11-05 | Exolon-Esk Company | System of converting environmentally pollutant waste gases to a useful product |
US5573730A (en) | 1995-05-09 | 1996-11-12 | Gillum; Theodore J. | Method and apparatus for treating airborne residues |
US5573577A (en) | 1995-01-17 | 1996-11-12 | Joannou; Constantinos J. | Ionizing and polarizing electronic air filter |
USD375546S (en) | 1995-06-29 | 1996-11-12 | Myoung Woull Electronics Co., Ltd. | Air purifier |
US5578112A (en) | 1995-06-01 | 1996-11-26 | 999520 Ontario Limited | Modular and low power ionizer |
US5578280A (en) | 1995-04-28 | 1996-11-26 | Americal Environmental Technologies, Inc. | Ozone generator with a generally spherical corona chamber |
US5582632A (en) | 1994-05-11 | 1996-12-10 | Kimberly-Clark Corporation | Corona-assisted electrostatic filtration apparatus and method |
US5587131A (en) | 1993-03-25 | 1996-12-24 | Ozontech Ltd. | System for an efficient manufacture of ozone |
US5591253A (en) | 1995-03-07 | 1997-01-07 | Electric Power Research Institute, Inc. | Electrostatically enhanced separator (EES) |
US5591334A (en) | 1993-10-19 | 1997-01-07 | Geochto Ltd. | Apparatus for generating negative ions |
US5591412A (en) | 1995-04-26 | 1997-01-07 | Alanco Environmental Resources Corp. | Electrostatic gun for injection of an electrostatically charged sorbent into a polluted gas stream |
US5593476A (en) | 1994-06-09 | 1997-01-14 | Coppom Technologies | Method and apparatus for use in electronically enhanced air filtration |
USD377523S (en) | 1995-08-15 | 1997-01-21 | Duracraft Corp. | Air cleaner |
US5601636A (en) | 1995-05-30 | 1997-02-11 | Appliance Development Corp. | Wall mounted air cleaner assembly |
US5603752A (en) | 1994-06-07 | 1997-02-18 | Filtration Japan Co., Ltd. | Electrostatic precipitator |
US5603893A (en) | 1995-08-08 | 1997-02-18 | University Of Southern California | Pollution treatment cells energized by short pulses |
US5614002A (en) | 1995-10-24 | 1997-03-25 | Chen; Tze L. | High voltage dust collecting panel |
US5624476A (en) | 1991-08-21 | 1997-04-29 | Ecoprocess | Method and device for purifying gaseous effluents |
US5630866A (en) | 1995-07-28 | 1997-05-20 | Gregg; Lloyd M. | Static electricity exhaust treatment device |
US5630990A (en) | 1994-11-07 | 1997-05-20 | T I Properties, Inc. | Ozone generator with releasable connector and grounded current collector |
US5637198A (en) | 1990-07-19 | 1997-06-10 | Thermo Power Corporation | Volatile organic compound and chlorinated volatile organic compound reduction methods and high efficiency apparatus |
US5637279A (en) | 1994-08-31 | 1997-06-10 | Applied Science & Technology, Inc. | Ozone and other reactive gas generator cell and system |
US5641342A (en) | 1995-12-26 | 1997-06-24 | Carrier Corporation | Interlock between cells of an electronic air cleaner |
US5641461A (en) | 1996-01-26 | 1997-06-24 | Ferone; Daniel A. | Ozone generating apparatus and cell therefor |
US5647890A (en) | 1991-12-11 | 1997-07-15 | Yamamoto; Yujiro | Filter apparatus with induced voltage electrode and method |
US5648049A (en) | 1995-11-29 | 1997-07-15 | Alanco Environmental Resources Corp. | Purging electrostatic gun for a charged dry sorbent injection and control system for the remediation of pollutants in a gas stream |
US5655210A (en) | 1994-08-25 | 1997-08-05 | Hughes Aircraft Company | Corona source for producing corona discharge and fluid waste treatment with corona discharge |
US5656063A (en) | 1996-01-29 | 1997-08-12 | Airlux Electrical Co., Ltd. | Air cleaner with separate ozone and ionizer outputs and method of purifying air |
US5665147A (en) | 1993-04-27 | 1997-09-09 | Bha Group, Inc. | Collector plate for electrostatic precipitator |
US5667565A (en) | 1995-03-21 | 1997-09-16 | Sikorsky Aircraft Corporation | Aerodynamic-electrostatic particulate collection system |
US5667563A (en) | 1995-07-13 | 1997-09-16 | Silva, Jr.; John C. | Air ionization system |
US5667564A (en) | 1996-08-14 | 1997-09-16 | Wein Products, Inc. | Portable personal corona discharge device for destruction of airborne microbes and chemical toxins |
US5667756A (en) | 1996-12-18 | 1997-09-16 | Lin-Chang International Co., Ltd. | Structure of ozonizer |
US5669963A (en) | 1995-12-26 | 1997-09-23 | Carrier Corporation | Electronic air cleaner |
US5678237A (en) | 1996-06-24 | 1997-10-14 | Associated Universities, Inc. | In-situ vitrification of waste materials |
US5681533A (en) | 1993-03-15 | 1997-10-28 | Yushin Engineering | Environment decontaminating system having air cleaning and deodorizing function |
US5681434A (en) | 1996-03-07 | 1997-10-28 | Eastlund; Bernard John | Method and apparatus for ionizing all the elements in a complex substance such as radioactive waste and separating some of the elements from the other elements |
US5698164A (en) | 1994-12-27 | 1997-12-16 | Takashi Kishioka | Low-temperature plasma generator |
US5702507A (en) | 1996-09-17 | 1997-12-30 | Yih Change Enterprise Co., Ltd. | Automatic air cleaner |
USD389567S (en) | 1996-05-14 | 1998-01-20 | Calor S.A. | Combined fan and cover therefor |
JPH10137007A (en) | 1996-11-13 | 1998-05-26 | Sanyo Electric Co Ltd | Charging type shoe deodorizing system |
US5766318A (en) | 1993-11-24 | 1998-06-16 | Tl-Vent Aktiebolag | Precipitator for an electrostatic filter |
US5779769A (en) | 1995-10-24 | 1998-07-14 | Jiang; Pengming | Integrated multi-function lamp for providing light and purification of indoor air |
WO1999007474A1 (en) | 1997-08-06 | 1999-02-18 | Eurus Airtech Ab | Device for air cleaning |
US5879435A (en) | 1997-01-06 | 1999-03-09 | Carrier Corporation | Electronic air cleaner with germicidal lamp |
US5893977A (en) | 1997-05-12 | 1999-04-13 | Hercules Products | Water ionizer having vibration sensor to sense flow in electrode housing |
JPH11104223A (en) | 1997-09-30 | 1999-04-20 | Nippon Dennetsu Co Ltd | Ozone deodorizing and sterilizing device for shoes |
DE19741621C1 (en) | 1997-09-20 | 1999-06-10 | Wilhelm Hertfelder | Air purification device |
US5911957A (en) | 1997-10-23 | 1999-06-15 | Khatchatrian; Robert G. | Ozone generator |
US5972076A (en) | 1997-08-11 | 1999-10-26 | Nichols; Grady B. | Method of charging an electrostatic precipitator |
US5975090A (en) | 1998-09-29 | 1999-11-02 | Sharper Image Corporation | Ion emitting grooming brush |
US5980614A (en) | 1994-01-17 | 1999-11-09 | Tl-Vent Ab | Air cleaning apparatus |
US5993521A (en) | 1992-02-20 | 1999-11-30 | Tl-Vent Ab | Two-stage electrostatic filter |
US5997619A (en) | 1997-09-04 | 1999-12-07 | Nq Environmental, Inc. | Air purification system |
WO2000010713A1 (en) | 1998-08-20 | 2000-03-02 | Baltic Metalltechnik Gmbh | Electrostatic air cleaner |
US6086657A (en) | 1999-02-16 | 2000-07-11 | Freije; Joseph P. | Exhaust emissions filtering system |
JP2000236914A (en) | 1999-02-24 | 2000-09-05 | Kyoritsu Denki Sangyo Kk | Deodorizer for shoes |
US6118645A (en) | 1990-08-15 | 2000-09-12 | Ion Systems, Inc. | Self-balancing bipolar air ionizer |
US6117216A (en) | 1995-09-08 | 2000-09-12 | Strainer Lpb Aktiebolag | Precipitator for cleaning of air from electrically charged aerosols |
US6126722A (en) | 1998-07-28 | 2000-10-03 | The United States Of America As Represented By The Secretary Of Agriculture | Electrostatic reduction system for reducing airborne dust and microorganisms |
US6126727A (en) | 1999-01-28 | 2000-10-03 | Lo; Ching-Hsiang | Electrode panel-drawing device of a static ion discharger |
US6149717A (en) | 1997-01-06 | 2000-11-21 | Carrier Corporation | Electronic air cleaner with germicidal lamp |
US6149815A (en) | 1999-11-23 | 2000-11-21 | Sauter; Andrew D. | Precise electrokinetic delivery of minute volumes of liquid(s) |
US6163098A (en) | 1999-01-14 | 2000-12-19 | Sharper Image Corporation | Electro-kinetic air refreshener-conditioner with optional night light |
US6176977B1 (en) | 1998-11-05 | 2001-01-23 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner |
US6182461B1 (en) | 1999-07-16 | 2001-02-06 | Carrier Corporation | Photocatalytic oxidation enhanced evaporator coil surface for fly-by control |
US6193852B1 (en) | 1997-05-28 | 2001-02-27 | The Boc Group, Inc. | Ozone generator and method of producing ozone |
US6203600B1 (en) | 1996-06-04 | 2001-03-20 | Eurus Airtech Ab | Device for air cleaning |
US6212883B1 (en) | 2000-03-03 | 2001-04-10 | Moon-Ki Cho | Method and apparatus for treating exhaust gas from vehicles |
US6228149B1 (en) | 1999-01-20 | 2001-05-08 | Patterson Technique, Inc. | Method and apparatus for moving, filtering and ionizing air |
US6252012B1 (en) | 1996-06-27 | 2001-06-26 | International Business Machines Corporation | Method for producing a diffusion barrier and polymeric article having a diffusion barrier |
WO2001047803A1 (en) | 1999-12-24 | 2001-07-05 | Lee Jim L | Method and apparatus to reduce ozone production in ion wind devices |
US6270733B1 (en) | 1998-04-09 | 2001-08-07 | Raymond M. Rodden | Ozone generator |
US6277248B1 (en) | 1996-07-02 | 2001-08-21 | Fuji Electric Co., Ltd. | Ozone production facilities and method of their operation |
US6282106B2 (en) | 1999-12-23 | 2001-08-28 | Siemens Aktiengesellschaft | Power supply for an electrostatic precipitator |
WO2001064349A1 (en) | 2000-03-03 | 2001-09-07 | Matsushita Seiko Co., Ltd. | Dust collecting apparatus and air-conditioning apparatus |
US6296692B1 (en) | 1995-05-08 | 2001-10-02 | Rudolf Gutmann | Air purifier |
USD449097S1 (en) | 2000-05-01 | 2001-10-09 | Hamilton Beach/Proctor-Silex, Inc. | Air cleaner |
US6302944B1 (en) | 1999-04-23 | 2001-10-16 | Stuart Alfred Hoenig | Apparatus for extracting water vapor from air |
USD449679S1 (en) | 2000-05-01 | 2001-10-23 | Hamilton Beach/Proctor-Silex, Inc. | Air cleaner filter |
US6309514B1 (en) | 1994-11-07 | 2001-10-30 | Ti Properties, Inc. | Process for breaking chemical bonds |
US6312507B1 (en) | 1999-02-12 | 2001-11-06 | Sharper Image Corporation | Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box |
US6315821B1 (en) | 2000-05-03 | 2001-11-13 | Hamilton Beach/Proctor-Silex, Inc. | Air filtration device including filter change indicator |
WO2001085348A2 (en) | 2000-05-11 | 2001-11-15 | University Of Southern California | Electrostatic precipitator with grounded stainless steel collector electrode and method of using same |
US20010048906A1 (en) | 1998-11-05 | 2001-12-06 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US6328791B1 (en) | 2000-05-03 | 2001-12-11 | Hamilton Beach/Proctor-Silex, Inc. | Air filtration device |
US6348103B1 (en) | 1998-05-19 | 2002-02-19 | Firma Ing. Walter Hengst Gmbh & Co. Kg | Method for cleaning electrofilters and electrofilters with a cleaning device |
WO2002020163A2 (en) | 2000-09-11 | 2002-03-14 | Joannou Constantinos J | Electrostatically polarized air filter |
WO2002020162A2 (en) | 2000-09-11 | 2002-03-14 | Joannou Constantinos J | Electrostatic cartridge filter |
US6362604B1 (en) | 1998-09-28 | 2002-03-26 | Alpha-Omega Power Technologies, L.L.C. | Electrostatic precipitator slow pulse generating circuit |
US6372097B1 (en) | 1999-11-12 | 2002-04-16 | Chen Laboratories | Method and apparatus for efficient surface generation of pure O3 |
US6373723B1 (en) | 1998-06-18 | 2002-04-16 | Kraftelektronik Ab | Method and device for generating voltage peaks in an electrostatic precipitator |
WO2002030574A1 (en) | 2000-10-09 | 2002-04-18 | Siemens Aktiengesellschaft | Method for operating an electrostatic filter |
WO2002032578A1 (en) | 2000-10-19 | 2002-04-25 | Fedders Corporation | Modular electrostatic precipitator system |
US6379427B1 (en) | 1999-12-06 | 2002-04-30 | Harold E. Siess | Method for protecting exposed surfaces |
US6391259B1 (en) | 1996-06-26 | 2002-05-21 | Ozontech Ltd. | Ozone applications for disinfection, purification and deodorization |
WO2002042003A1 (en) | 2000-11-21 | 2002-05-30 | Indigo Technologies Group Pty Ltd | Electrostatic filter |
US6398852B1 (en) | 1997-03-05 | 2002-06-04 | Eurus Airtech Ab | Device for air cleaning |
WO2002066167A1 (en) | 2001-02-23 | 2002-08-29 | Elex Ag | Electrostatic dust separator with integrated filter tubing |
US20020122751A1 (en) | 1998-11-05 | 2002-09-05 | Sinaiko Robert J. | Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter |
US20020122752A1 (en) | 1998-11-05 | 2002-09-05 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with interstitial electrode |
US20020127156A1 (en) | 1998-11-05 | 2002-09-12 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with enhanced collector electrode |
US6451266B1 (en) | 1998-11-05 | 2002-09-17 | Sharper Image Corporation | Foot deodorizer and massager system |
US20020134664A1 (en) | 1998-11-05 | 2002-09-26 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with an upstream focus electrode |
US20020134665A1 (en) | 1998-11-05 | 2002-09-26 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with trailing electrode |
US20020144601A1 (en) | 1992-10-09 | 2002-10-10 | Palestro Richard P. | Ultraviolet germicidal apparatus and method |
US20020146356A1 (en) | 1998-11-05 | 2002-10-10 | Sinaiko Robert J. | Dual input and outlet electrostatic air transporter-conditioner |
US6464754B1 (en) | 1999-10-07 | 2002-10-15 | Kairos, L.L.C. | Self-cleaning air purification system and process |
US20020150520A1 (en) | 1998-11-05 | 2002-10-17 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode |
US20020155041A1 (en) | 1998-11-05 | 2002-10-24 | Mckinney Edward C. | Electro-kinetic air transporter-conditioner with non-equidistant collector electrodes |
US20020152890A1 (en) | 2001-04-24 | 2002-10-24 | Leiser Randal D. | Electrically enhanced air filter with coated ground electrode |
US6471753B1 (en) | 1999-10-26 | 2002-10-29 | Ace Lab., Inc. | Device for collecting dust using highly charged hyperfine liquid droplets |
US20020170435A1 (en) | 2001-04-04 | 2002-11-21 | Joannou Constantinos J. | Self ionizing pleated air filter system |
US6494940B1 (en) | 2000-09-29 | 2002-12-17 | Hamilton Beach/Proctor-Silex, Inc. | Air purifier |
US20020190658A1 (en) | 1999-12-24 | 2002-12-19 | Lee Jim L. | Method and apparatus to reduce ozone production in ion wind device |
US6504308B1 (en) | 1998-10-16 | 2003-01-07 | Kronos Air Technologies, Inc. | Electrostatic fluid accelerator |
US6508982B1 (en) | 1998-04-27 | 2003-01-21 | Kabushiki Kaisha Seisui | Air-cleaning apparatus and air-cleaning method |
WO2003009944A1 (en) | 2001-07-16 | 2003-02-06 | Ragne Svadil | An air cleaner |
WO2003013620A1 (en) | 2001-08-07 | 2003-02-20 | Sharp Kabushiki Kaisha | Ion generating element and ion generator, air conditioning appar atus, cleaner and refrigerator containing the same |
US6544485B1 (en) | 2001-01-29 | 2003-04-08 | Sharper Image Corporation | Electro-kinetic device with enhanced anti-microorganism capability |
US6585935B1 (en) | 1998-11-20 | 2003-07-01 | Sharper Image Corporation | Electro-kinetic ion emitting footwear sanitizer |
US6613277B1 (en) | 1999-06-18 | 2003-09-02 | Gerald C. Monagan | Air purifier |
US6632407B1 (en) | 1998-11-05 | 2003-10-14 | Sharper Image Corporation | Personal electro-kinetic air transporter-conditioner |
US6635105B2 (en) | 2000-07-11 | 2003-10-21 | Ing. Walter Hengst Gmbh & Co. Kg | Electrostatic precipitator |
US20030206839A1 (en) | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability |
US20030206840A1 (en) | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability |
US20030206837A1 (en) | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability |
US20040033176A1 (en) | 2002-02-12 | 2004-02-19 | Lee Jim L. | Method and apparatus for increasing performance of ion wind devices |
US20040052700A1 (en) | 2001-03-27 | 2004-03-18 | Kotlyar Gennady Mikhailovich | Device for air cleaning from dust and aerosols |
US20040065202A1 (en) | 2002-10-08 | 2004-04-08 | Kaz, Inc. | Electrostatic air cleaner |
US6735830B1 (en) | 1999-05-31 | 2004-05-18 | Genie Et Environnement | Ion generating device |
US6749667B2 (en) | 2002-06-20 | 2004-06-15 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US6753652B2 (en) | 2001-05-30 | 2004-06-22 | Samsung Electronics Co., Ltd. | Ion implanter |
US6761796B2 (en) | 2001-04-06 | 2004-07-13 | Axcelis Technologies, Inc. | Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing |
US20040136863A1 (en) | 2003-01-14 | 2004-07-15 | Honeywell International Inc. | Filtering system including panel with photocatalytic agent |
US6768120B2 (en) | 2001-08-31 | 2004-07-27 | The Regents Of The University Of California | Focused electron and ion beam systems |
US6768108B2 (en) | 2002-07-02 | 2004-07-27 | Anelva Corporation | Ion attachment mass spectrometry apparatus, ionization apparatus, and ionization method |
US6768110B2 (en) | 2000-06-21 | 2004-07-27 | Gatan, Inc. | Ion beam milling system and method for electron microscopy specimen preparation |
US6768121B2 (en) | 2000-08-07 | 2004-07-27 | Axcelis Technologies, Inc. | Ion source having replaceable and sputterable solid source material |
US6770878B2 (en) | 2000-04-26 | 2004-08-03 | Ceos Corrected Electron Optical Systems Gmbh | Electron/ion gun for electron or ion beams with high monochromasy or high current density |
US6774359B1 (en) | 1998-08-06 | 2004-08-10 | Hitachi, Ltd. | Sample-introduction tool, and an ion source and a mass spectrometer using the sample-introduction tool |
US6777686B2 (en) | 2000-05-17 | 2004-08-17 | Varian Semiconductor Equipment Associates, Inc. | Control system for indirectly heated cathode ion source |
US6777699B1 (en) | 2002-03-25 | 2004-08-17 | George H. Miley | Methods, apparatus, and systems involving ion beam generation |
US6777882B2 (en) | 2002-01-11 | 2004-08-17 | Applied Materials, Inc. | Ion beam generator |
US6781136B1 (en) | 1999-06-11 | 2004-08-24 | Lambda Co., Ltd. | Negative ion emitting method and apparatus therefor |
US20040166037A1 (en) | 2003-02-25 | 2004-08-26 | Youdell Harry F. | Air filtration and treatment apparatus |
US6785912B1 (en) | 2003-01-24 | 2004-09-07 | Burt V. Julio | Ion toilet seat |
US6791814B2 (en) | 2001-11-26 | 2004-09-14 | Nihon Pachinko Parts Co., Ltd. | Ion generating apparatus |
US6794661B2 (en) | 2001-05-29 | 2004-09-21 | Sumitomo Eaton Nova Corporation | Ion implantation apparatus capable of increasing beam current |
US6799068B1 (en) | 1999-02-19 | 2004-09-28 | Gesellschaft Fuer Schwerionenforschung Mbh | Method for verifying the calculated radiation dose of an ion beam therapy system |
US6797964B2 (en) | 2000-02-25 | 2004-09-28 | Nissin Electric Co., Ltd. | Ion source and operation method thereof |
US6797339B2 (en) | 1994-09-06 | 2004-09-28 | Research Development Corporation Of Japan | Method for forming thin film with a gas cluster ion beam |
US6800862B2 (en) | 2001-12-10 | 2004-10-05 | Nissin Electric Co., Ltd. | Ion implanting apparatus and ion implanting method |
US6803585B2 (en) | 2000-01-03 | 2004-10-12 | Yuri Glukhoy | Electron-cyclotron resonance type ion beam source for ion implanter |
US6805916B2 (en) | 2001-01-17 | 2004-10-19 | Research Foundation Of The City University Of New York | Method for making films utilizing a pulsed laser for ion injection and deposition |
US6806163B2 (en) | 2002-07-05 | 2004-10-19 | Taiwan Semiconductor Manufacturing Co., Ltd | Ion implant method for topographic feature corner rounding |
US6806035B1 (en) | 2002-06-25 | 2004-10-19 | Western Digital (Fremont), Inc. | Wafer serialization manufacturing process for read/write heads using photolithography and selective reactive ion etching |
US6806468B2 (en) | 2001-03-01 | 2004-10-19 | Science & Engineering Services, Inc. | Capillary ion delivery device and method for mass spectroscopy |
US6809325B2 (en) | 2001-02-05 | 2004-10-26 | Gesellschaft Fuer Schwerionenforschung Mbh | Apparatus for generating and selecting ions used in a heavy ion cancer therapy facility |
US6808606B2 (en) | 1999-05-03 | 2004-10-26 | Guardian Industries Corp. | Method of manufacturing window using ion beam milling of glass substrate(s) |
US6809310B2 (en) | 1999-05-20 | 2004-10-26 | Lee Chen | Accelerated ion beam generator |
US6809312B1 (en) | 2000-05-12 | 2004-10-26 | Bruker Daltonics, Inc. | Ionization source chamber and ion beam delivery system for mass spectrometry |
US6812647B2 (en) | 2003-04-03 | 2004-11-02 | Wayne D. Cornelius | Plasma generator useful for ion beam generation |
US6815690B2 (en) | 2002-07-23 | 2004-11-09 | Guardian Industries Corp. | Ion beam source with coated electrode(s) |
US6819053B2 (en) | 2000-11-03 | 2004-11-16 | Tokyo Electron Limited | Hall effect ion source at high current density |
US6818909B2 (en) | 2001-12-03 | 2004-11-16 | Applied Materials, Inc. | Ion sources for ion implantation apparatus |
US6818257B2 (en) | 1999-04-17 | 2004-11-16 | Advanced Energy Industries, Inc. | Method of providing a material processing ion beam |
US20040226447A1 (en) | 2003-05-14 | 2004-11-18 | Sharper Image Corporation | Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices |
US20040251909A1 (en) | 2003-06-12 | 2004-12-16 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5190077U (en) | 1975-01-17 | 1976-07-19 | ||
US4264343A (en) | 1979-05-18 | 1981-04-28 | Monsanto Company | Electrostatic particle collecting apparatus |
JPS60122062A (en) * | 1983-12-05 | 1985-06-29 | Nippon Soken Inc | Air purifier |
JPS60119938U (en) * | 1984-01-20 | 1985-08-13 | 三菱重工業株式会社 | air purification device |
JPS6115753A (en) * | 1984-06-29 | 1986-01-23 | Matsushita Electric Ind Co Ltd | Electrostatic air purifier |
JPS6150658A (en) * | 1984-08-20 | 1986-03-12 | Matsushita Electric Ind Co Ltd | Ion wind air purifier |
JPS61149261A (en) * | 1984-12-22 | 1986-07-07 | Matsushita Electric Ind Co Ltd | Apparatus for detecting regeneration period of ionic wind generator |
JPS6336857A (en) * | 1986-07-28 | 1988-02-17 | Nippon Denso Co Ltd | Air cleaner |
JPS63147567A (en) * | 1986-12-12 | 1988-06-20 | Mitsubishi Electric Corp | Blower apparatus |
JPH07121265B2 (en) | 1986-12-26 | 1995-12-25 | 京セラ株式会社 | Cervical artificial disc |
JPH0248049Y2 (en) * | 1987-01-20 | 1990-12-17 | ||
JP2536134B2 (en) * | 1989-02-27 | 1996-09-18 | ティアツク株式会社 | Electrostatic air purifier |
JPH0490428A (en) * | 1990-08-02 | 1992-03-24 | Matsushita Electric Ind Co Ltd | Air conditioner with ion generator |
EP0549476B1 (en) * | 1991-12-24 | 1998-09-23 | Tokyo Gas Co., Ltd. | Surface combustion burner |
JP3131540B2 (en) * | 1994-08-04 | 2001-02-05 | 日本碍子株式会社 | Support structure of filter element in dust collector |
JPH08117638A (en) * | 1994-10-24 | 1996-05-14 | Giichi Terasawa | Air purifier |
JP3477950B2 (en) * | 1995-10-25 | 2003-12-10 | 三菱電機株式会社 | Refrigeration and air conditioning equipment |
US5925172A (en) * | 1996-06-11 | 1999-07-20 | Amway Corporation | Air treatment system |
JPH10199653A (en) * | 1997-01-09 | 1998-07-31 | Mitsubishi Electric Corp | Wind generating device by negative ion |
JPH11156237A (en) * | 1997-11-28 | 1999-06-15 | Hitachi Taga Technol Co Ltd | Air cleaner |
US6036757A (en) * | 1998-07-10 | 2000-03-14 | Honeywell Inc. | Portable room air purifier |
US6188645B1 (en) * | 1999-06-11 | 2001-02-13 | Geosensor Corporation | Seismic sensor array with electrical-to optical transformers |
FR2811090B1 (en) * | 2000-06-28 | 2002-10-11 | St Microelectronics Sa | INTEGRATION OF A VOLTAGE REGULATOR |
US20020015020A1 (en) * | 2000-07-29 | 2002-02-07 | Farzad Mobin | Radio-style hollow appliance for interactive use with a computer |
JP2004211576A (en) * | 2002-12-27 | 2004-07-29 | Sanden Corp | Swash plate compressor |
-
1998
- 1998-11-05 US US09/186,471 patent/US6176977B1/en not_active Expired - Lifetime
-
1999
- 1999-11-05 CN CN99815037A patent/CN1331614A/en active Pending
- 1999-11-05 AU AU16079/00A patent/AU1607900A/en not_active Abandoned
- 1999-11-05 WO PCT/US1999/026130 patent/WO2000025909A1/en not_active Application Discontinuation
- 1999-11-05 JP JP2000579341A patent/JP4799733B2/en not_active Expired - Fee Related
- 1999-11-05 EP EP99958787A patent/EP1135205A4/en not_active Withdrawn
-
2000
- 2000-12-05 US US09/730,499 patent/US6713026B2/en not_active Ceased
-
2001
- 2001-12-13 US US10/023,460 patent/US20020079212A1/en not_active Abandoned
- 2001-12-13 US US10/023,197 patent/US20020098131A1/en not_active Abandoned
-
2002
- 2002-02-27 HK HK02101505.4A patent/HK1039911A1/en unknown
-
2003
- 2003-11-12 US US10/706,390 patent/US20040096376A1/en not_active Abandoned
-
2004
- 2004-03-30 US US10/815,230 patent/US6953556B2/en not_active Expired - Fee Related
-
2005
- 2005-01-21 US US11/041,926 patent/USRE41812E1/en not_active Expired - Fee Related
- 2005-06-10 US US11/150,046 patent/US7662348B2/en not_active Expired - Fee Related
-
2011
- 2011-02-04 JP JP2011022315A patent/JP5356428B2/en not_active Expired - Fee Related
Patent Citations (501)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US653421A (en) | 1899-08-22 | 1900-07-10 | William Lorey | Filter. |
US895729A (en) | 1907-07-09 | 1908-08-11 | Int Precipitation Co | Art of separating suspended particles from gaseous bodies. |
US995958A (en) | 1911-02-10 | 1911-06-20 | Louis Goldberg | Ozonator. |
US1869335A (en) | 1926-12-13 | 1932-07-26 | Day Leonard | Electric precipitator |
US1791338A (en) | 1927-04-12 | 1931-02-03 | Research Corp | Electrical precipitator |
US1882949A (en) | 1930-11-15 | 1932-10-18 | Int Precipitation Co | Electrical precipitation apparatus |
US2129783A (en) | 1935-10-15 | 1938-09-13 | Westinghouse Electric & Mfg Co | Electrical precipitator for atmospheric dust |
US2327588A (en) | 1940-06-01 | 1943-08-24 | Games Slayter | Apparatus for conversion of energy |
US2359057A (en) | 1941-10-13 | 1944-09-26 | Skinner George Donald | Heating and ventilating system |
GB643363A (en) | 1946-10-30 | 1950-09-20 | Westinghouse Electric Int Co | Improvements in or relating to electrostatic dust precipitation |
US2509548A (en) | 1948-05-27 | 1950-05-30 | Research Corp | Energizing electrical precipitator |
US2590447A (en) | 1950-06-30 | 1952-03-25 | Jr Simon R Nord | Electrical comb |
US2949550A (en) | 1957-07-03 | 1960-08-16 | Whitehall Rand Inc | Electrokinetic apparatus |
US3018394A (en) | 1957-07-03 | 1962-01-23 | Whitehall Rand Inc | Electrokinetic transducer |
US3026964A (en) | 1959-05-06 | 1962-03-27 | Gaylord W Penney | Industrial precipitator with temperature-controlled electrodes |
US3374941A (en) | 1964-06-30 | 1968-03-26 | American Standard Inc | Air blower |
US3540191A (en) | 1967-01-31 | 1970-11-17 | Marc Victor Edgard Herman | Electrostatic separator |
US3518462A (en) | 1967-08-21 | 1970-06-30 | Guidance Technology Inc | Fluid flow control system |
US3581470A (en) | 1969-12-30 | 1971-06-01 | Emerson Electric Co | Electronic air cleaning cell |
US3638058A (en) | 1970-06-08 | 1972-01-25 | Robert S Fritzius | Ion wind generator |
US3744216A (en) | 1970-08-07 | 1973-07-10 | Environmental Technology | Air purifier |
US3945813A (en) | 1971-04-05 | 1976-03-23 | Koichi Iinoya | Dust collector |
US3806763A (en) | 1971-04-08 | 1974-04-23 | S Masuda | Electrified particles generating apparatus |
US4056372A (en) | 1971-12-29 | 1977-11-01 | Nafco Giken, Ltd. | Electrostatic precipitator |
DE2206057A1 (en) | 1972-02-09 | 1973-08-16 | Dortmunder Brueckenbau C H Juc | Electrofilter for flue gas - high tension electrodes extend vertically downward into precipitation electrodes and are removable |
US3803808A (en) | 1972-09-20 | 1974-04-16 | Ishikawajima Harima Heavy Ind | Two-stage type of electric dust arrester |
US3981695A (en) | 1972-11-02 | 1976-09-21 | Heinrich Fuchs | Electronic dust separator system |
US3958962A (en) | 1972-12-30 | 1976-05-25 | Nafco Giken, Ltd. | Electrostatic precipitator |
US3958960A (en) | 1973-02-02 | 1976-05-25 | United States Filter Corporation | Wet electrostatic precipitators |
US3958961A (en) | 1973-02-02 | 1976-05-25 | United States Filter Corporation | Wet electrostatic precipitators |
US4074983A (en) | 1973-02-02 | 1978-02-21 | United States Filter Corporation | Wet electrostatic precipitators |
US3892927A (en) | 1973-09-04 | 1975-07-01 | Theodore Lindenberg | Full range electrostatic loudspeaker for audio frequencies |
US4342571A (en) | 1974-05-08 | 1982-08-03 | United Mcgill Corporation | Electrostatic precipitator |
US4218225A (en) | 1974-05-20 | 1980-08-19 | Apparatebau Rothemuhle Brandt & Kritzler | Electrostatic precipitators |
US4362632A (en) | 1974-08-02 | 1982-12-07 | Lfe Corporation | Gas discharge apparatus |
US4110086A (en) | 1974-08-19 | 1978-08-29 | Air Pollution Systems, Inc. | Method for ionizing gases, electrostatically charging particles, and electrostatically charging particles or ionizing gases for removing contaminants from gas streams |
US4070163A (en) | 1974-08-29 | 1978-01-24 | Maxwell Laboratories, Inc. | Method and apparatus for electrostatic precipitating particles from a gaseous effluent |
US3984215A (en) | 1975-01-08 | 1976-10-05 | Hudson Pulp & Paper Corporation | Electrostatic precipitator and method |
US4282014A (en) | 1975-01-31 | 1981-08-04 | Siemens Aktiengesellschaft | Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator |
JPS5190077A (en) | 1975-02-06 | 1976-08-06 | ||
US4052177A (en) | 1975-03-03 | 1977-10-04 | Nea-Lindberg A/S | Electrostatic precipitator arrangements |
US4097252A (en) | 1975-04-05 | 1978-06-27 | Apparatebau Rothemuhle Brandt & Kritzler | Electrostatic precipitator |
US4007024A (en) | 1975-06-09 | 1977-02-08 | Air Control Industries, Inc. | Portable electrostatic air cleaner |
US3988131A (en) | 1975-07-09 | 1976-10-26 | Alpha Denshi Kabushiki Kaisha | Electronic air cleaner |
US4126434A (en) | 1975-09-13 | 1978-11-21 | Hara Keiichi | Electrostatic dust precipitators |
US4259093A (en) | 1976-04-09 | 1981-03-31 | Elfi Elektrofilter Ab | Electrostatic precipitator for air cleaning |
US4147522A (en) | 1976-04-23 | 1979-04-03 | American Precision Industries Inc. | Electrostatic dust collector |
US4092134A (en) | 1976-06-03 | 1978-05-30 | Nipponkai Heavy Industries Co., Ltd. | Electric dust precipitator and scraper |
US4138233A (en) | 1976-06-21 | 1979-02-06 | Senichi Masuda | Pulse-charging type electric dust collecting apparatus |
US4102654A (en) | 1976-07-27 | 1978-07-25 | Raymond Bommer | Negative ionizer |
US4155792A (en) | 1976-09-13 | 1979-05-22 | Metallgesellschaft Aktiengesellschaft | Process for producing a honeycomb of synthetic-resin material for use in an electrostatic precipitator |
US4171975A (en) | 1977-02-10 | 1979-10-23 | Konishiroku Photo Industry Co., Ltd. | Light-sensitive silver halide color photographic materials |
US4205969A (en) | 1977-03-21 | 1980-06-03 | Masahiko Fukino | Electrostatic air filter having honeycomb filter elements |
US4104042A (en) | 1977-04-29 | 1978-08-01 | American Air Filter Company, Inc. | Multi-storied electrostatic precipitator |
US4244710A (en) | 1977-05-12 | 1981-01-13 | Burger Manfred R | Air purification electrostatic charcoal filter and method |
US4119415A (en) | 1977-06-22 | 1978-10-10 | Nissan Motor Company, Ltd. | Electrostatic dust precipitator |
US4185971A (en) | 1977-07-14 | 1980-01-29 | Koyo Iron Works & Construction Co., Ltd. | Electrostatic precipitator |
US4293319A (en) | 1977-09-28 | 1981-10-06 | The United States Of America As Represented By The Secretary Of Agriculture | Electrostatic precipitator apparatus using liquid collection electrodes |
JPS6220653B2 (en) | 1977-09-30 | 1987-05-08 | Denki Kagaku Kogyo Kk | |
US4349359A (en) | 1978-03-30 | 1982-09-14 | Maxwell Laboratories, Inc. | Electrostatic precipitator apparatus having an improved ion generating means |
US4259452A (en) | 1978-05-15 | 1981-03-31 | Bridgestone Tire Company Limited | Method of producing flexible reticulated polyether polyurethane foams |
US4289504A (en) | 1978-06-12 | 1981-09-15 | Ball Corporation | Modular gas cleaner and method |
US4227894A (en) | 1978-10-10 | 1980-10-14 | Proynoff John D | Ion generator or electrostatic environmental conditioner |
US4189308A (en) | 1978-10-31 | 1980-02-19 | Research-Cottrell, Inc. | High voltage wetted parallel plate collecting electrode arrangement for an electrostatic precipitator |
US4209306A (en) | 1978-11-13 | 1980-06-24 | Research-Cottrell | Pulsed electrostatic precipitator |
US4231766A (en) | 1978-12-11 | 1980-11-04 | United Air Specialists, Inc. | Two stage electrostatic precipitator with electric field induced airflow |
US4232355A (en) | 1979-01-08 | 1980-11-04 | Santek, Inc. | Ionization voltage source |
US4259707A (en) | 1979-01-12 | 1981-03-31 | Penney Gaylord W | System for charging particles entrained in a gas stream |
US4244712A (en) | 1979-03-05 | 1981-01-13 | Tongret Stewart R | Cleansing system using treated recirculating air |
US4369776A (en) | 1979-04-11 | 1983-01-25 | Roberts Wallace A | Dermatological ionizing vaporizer |
US4225323A (en) | 1979-05-31 | 1980-09-30 | General Electric Company | Ionization effected removal of alkali composition from a hot gas |
US4318718A (en) | 1979-07-19 | 1982-03-09 | Ichikawa Woolen Textile Co., Ltd. | Discharge wire cleaning device for an electric dust collector |
US4308036A (en) | 1979-08-23 | 1981-12-29 | Efb Inc. | Filter apparatus and method for collecting fly ash and fine dust |
US4284420A (en) | 1979-08-27 | 1981-08-18 | Borysiak Ralph A | Electrostatic air cleaner with scraper cleaning of collector plates |
US4251234A (en) | 1979-09-21 | 1981-02-17 | Union Carbide Corporation | High intensity ionization-electrostatic precipitation system for particle removal |
US4351648A (en) | 1979-09-24 | 1982-09-28 | United Air Specialists, Inc. | Electrostatic precipitator having dual polarity ionizing cell |
US4338560A (en) | 1979-10-12 | 1982-07-06 | The United States Of America As Represented By The Secretary Of The Navy | Albedd radiation power converter |
US4253852A (en) | 1979-11-08 | 1981-03-03 | Tau Systems | Air purifier and ionizer |
US4266948A (en) | 1980-01-04 | 1981-05-12 | Envirotech Corporation | Fiber-rejecting corona discharge electrode and a filtering system employing the discharge electrode |
US4315188A (en) | 1980-02-19 | 1982-02-09 | Ball Corporation | Wire electrode assemblage having arc suppression means and extended fatigue life |
US4440552A (en) | 1980-03-06 | 1984-04-03 | Hitachi Plant Engineering & Construction Co., Ltd. | Electrostatic particle precipitator |
US4366525A (en) | 1980-03-13 | 1982-12-28 | Elcar Zurich AG | Air ionizer for rooms |
US4414603A (en) | 1980-03-27 | 1983-11-08 | Senichi Masuda | Particle charging apparatus |
US4544382A (en) | 1980-05-19 | 1985-10-01 | Office National D'etudes Et De Recherches Aerospatiales (Onera) | Apparatus for separating particles in suspension in a gas |
US4380900A (en) | 1980-05-24 | 1983-04-26 | Robert Bosch Gmbh | Apparatus for removing solid components from the exhaust gas of internal combustion engines, in particular soot components |
US4357150A (en) | 1980-06-05 | 1982-11-02 | Midori Anzen Co., Ltd. | High-efficiency electrostatic air filter device |
US4413225A (en) | 1980-07-17 | 1983-11-01 | Siemens Aktiengesellschaft | Method of operating an electrostatic precipitator |
US4363072A (en) | 1980-07-22 | 1982-12-07 | Zeco, Incorporated | Ion emitter-indicator |
US4375364A (en) | 1980-08-21 | 1983-03-01 | Research-Cottrell, Inc. | Rigid discharge electrode for electrical precipitators |
US4394239A (en) | 1980-09-09 | 1983-07-19 | Bayer Aktiengesellschaft | Electro-chemical sensor for the detection of reducing gases, in particular carbon monoxide, hydrazine and hydrogen in air |
US4691829A (en) | 1980-11-03 | 1987-09-08 | Coulter Corporation | Method of and apparatus for detecting change in the breakoff point in a droplet generation system |
US4445911A (en) | 1980-12-17 | 1984-05-01 | F. L. Smidth & Co. | Method of controlling operation of an electrostatic precipitator |
US4659342A (en) | 1980-12-17 | 1987-04-21 | F.L. Smidth & Co. | Method of controlling operation of an electrostatic precipitator |
US4386395A (en) | 1980-12-19 | 1983-05-31 | Webster Electric Company, Inc. | Power supply for electrostatic apparatus |
US4435190A (en) | 1981-03-14 | 1984-03-06 | Office National D'etudes Et De Recherches Aerospatiales | Method for separating particles in suspension in a gas |
US4354861A (en) | 1981-03-26 | 1982-10-19 | Kalt Charles G | Particle collector and method of manufacturing same |
US4477268A (en) | 1981-03-26 | 1984-10-16 | Kalt Charles G | Multi-layered electrostatic particle collector electrodes |
US4443234A (en) | 1981-04-03 | 1984-04-17 | Flakt Aktiebolag | Device at a dust filter |
US4597780A (en) | 1981-06-04 | 1986-07-01 | Santek, Inc. | Electro-inertial precipitator unit |
US4412850A (en) | 1981-07-11 | 1983-11-01 | Neat Shujinki Kogyo Kabushiki Kaisha | Electric dust collector |
US4496375A (en) | 1981-07-13 | 1985-01-29 | Vantine Allan D Le | An electrostatic air cleaning device having ionization apparatus which causes the air to flow therethrough |
US4569684A (en) | 1981-07-31 | 1986-02-11 | Ibbott Jack Kenneth | Electrostatic air cleaner |
US4509958A (en) | 1981-10-12 | 1985-04-09 | Senichi Masuda | High-efficiency electrostatic filter device |
US4582961A (en) | 1981-11-13 | 1986-04-15 | Aktieselskabet Bruel & Kjar | Capacitive transducer |
US4391614A (en) | 1981-11-16 | 1983-07-05 | Kelsey-Hayes Company | Method and apparatus for preventing lubricant flow from a vacuum source to a vacuum chamber |
US4406671A (en) | 1981-11-16 | 1983-09-27 | Kelsey-Hayes Company | Assembly and method for electrically degassing particulate material |
US4515982A (en) | 1981-12-28 | 1985-05-07 | Basf Aktiengesellschaft | Aminoreductones |
US4405342A (en) | 1982-02-23 | 1983-09-20 | Werner Bergman | Electric filter with movable belt electrode |
US4692174A (en) | 1982-02-26 | 1987-09-08 | Gelfand Peter C | Ionizer assembly having a bell-mouth outlet |
US4694376A (en) | 1982-03-12 | 1987-09-15 | Rudolf Gesslauer | Circuit for the pulsed operation of one or more high-frequency ozonizers |
US4505724A (en) | 1982-04-24 | 1985-03-19 | Metallgesellschaft Aktiengesellschaft | Wet-process dust-collecting apparatus especially for converter exhaust gases |
US4477263A (en) | 1982-06-28 | 1984-10-16 | Shaver John D | Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas |
US4588423A (en) | 1982-06-30 | 1986-05-13 | Donaldson Company, Inc. | Electrostatic separator |
US4636981A (en) | 1982-07-19 | 1987-01-13 | Tokyo Shibaura Denki Kabushiki Kaisha | Semiconductor memory device having a voltage push-up circuit |
US4534776A (en) | 1982-08-16 | 1985-08-13 | At&T Bell Laboratories | Air cleaner |
US4502002A (en) | 1982-09-02 | 1985-02-26 | Mitsubishi Jukogyo Kabushiki Kaisha | Electrostatically operated dust collector |
US4516991A (en) | 1982-12-30 | 1985-05-14 | Nihon Electric Co. Ltd. | Air cleaning apparatus |
US4514780A (en) | 1983-01-07 | 1985-04-30 | Wm. Neundorfer & Co., Inc. | Discharge electrode assembly for electrostatic precipitators |
US4481017A (en) | 1983-01-14 | 1984-11-06 | Ets, Inc. | Electrical precipitation apparatus and method |
US4522634A (en) | 1983-01-20 | 1985-06-11 | Walther & Cie Aktiengesellschaft | Method and apparatus for automatic regulation of the operation of an electrostatic filter |
US4736127A (en) | 1983-04-08 | 1988-04-05 | Sarcos, Inc. | Electric field machine |
US4555252A (en) | 1983-06-04 | 1985-11-26 | Dragerwerk Aktiengesellschaft | Electrostatic filter construction |
US4587475A (en) | 1983-07-25 | 1986-05-06 | Foster Wheeler Energy Corporation | Modulated power supply for an electrostatic precipitator |
US4536698A (en) | 1983-08-25 | 1985-08-20 | Vsesojuzny Nauchno-Issledovatelsky I Proektny Institut Po Ochikh Tke Tekhnologichesky Gazov, Stochnykh Vod I Ispolzovaniju Vtorichnykh Energoresursov Predpriyaty Chernoi Metallurgii Vnipichermetenergoochist Ka | Method and apparatus for supplying voltage to high-ohmic dust electrostatic precipitator |
US4601733A (en) | 1983-09-29 | 1986-07-22 | Dominique Bacot | High voltage generator for an electrostatic dust precipitator |
US4521229A (en) | 1983-11-01 | 1985-06-04 | Combustion Engineering, Inc. | Tubular discharge electrode for electrostatic precipitator |
US4689056A (en) | 1983-11-23 | 1987-08-25 | Nippon Soken, Inc. | Air cleaner using ionic wind |
US4643745A (en) | 1983-12-20 | 1987-02-17 | Nippon Soken, Inc. | Air cleaner using ionic wind |
US4632135A (en) | 1984-01-17 | 1986-12-30 | U.S. Philips Corporation | Hair-grooming means |
US4686370A (en) | 1984-02-13 | 1987-08-11 | Biomed-Electronic Gmbh & Co. Medizinischer Geratebau Kg | Ionizing chamber for gaseous oxygen |
US4643744A (en) | 1984-02-13 | 1987-02-17 | Triactor Holdings Limited | Apparatus for ionizing air |
US4715870A (en) | 1984-02-18 | 1987-12-29 | Senichi Masuda | Electrostatic filter dust collector |
US4647836A (en) | 1984-03-02 | 1987-03-03 | Olsen Randall B | Pyroelectric energy converter and method |
US4674003A (en) | 1984-04-03 | 1987-06-16 | J. Wagner Ag | Electronic high-voltage generator for electrostatic sprayer devices |
US4600411A (en) | 1984-04-06 | 1986-07-15 | Lucidyne, Inc. | Pulsed power supply for an electrostatic precipitator |
US4657738A (en) | 1984-04-30 | 1987-04-14 | Westinghouse Electric Corp. | Stack gas emissions control system |
US4614573A (en) | 1984-05-09 | 1986-09-30 | Senichi Masuda | Method for producing an ozone gas and apparatus for producing the same |
US4668479A (en) | 1984-06-12 | 1987-05-26 | Toyoda Gosei Co., Ltd. | Plasma processing apparatus |
US4656010A (en) | 1984-06-22 | 1987-04-07 | Messer Griesheim Gmbh | Device for producing ozone |
US4750921A (en) | 1984-06-22 | 1988-06-14 | Midori Anzen Industry Co., Ltd. | Electrostatic filter dust collector |
US4713092A (en) | 1984-08-14 | 1987-12-15 | Corona Engineering Co., Ltd. | Electrostatic precipitator |
US4650648A (en) | 1984-10-25 | 1987-03-17 | Bbc Brown, Boveri & Company, Limited | Ozone generator with a ceramic-based dielectric |
US4597781A (en) | 1984-11-21 | 1986-07-01 | Donald Spector | Compact air purifier unit |
US4632746A (en) | 1984-12-06 | 1986-12-30 | National Research Development Corp. | Electrochemical cell with thin wire electrode |
US4626261A (en) | 1984-12-12 | 1986-12-02 | F. L. Smidth & Co. A/S | Method of controlling intermittent voltage supply to an electrostatic precipitator |
US4590042A (en) | 1984-12-24 | 1986-05-20 | Tegal Corporation | Plasma reactor having slotted manifold |
US4623365A (en) | 1985-01-09 | 1986-11-18 | The United States Of America As Represented By The Department Of Energy | Recirculating electric air filter |
US4604174A (en) | 1985-04-30 | 1986-08-05 | Dorr-Oliver Incorporated | High flow electrofiltration |
US4702752A (en) | 1985-05-30 | 1987-10-27 | Research Development Corporation Of Japan | Electrostatic dust collector |
US4944778A (en) | 1985-05-30 | 1990-07-31 | Research Development Corporation Of Japan | Electrostatic dust collector |
US4967119A (en) | 1985-06-06 | 1990-10-30 | Astra-Vent Ab | Air transporting arrangement |
US4760303A (en) | 1985-06-11 | 1988-07-26 | Japan Physitec Instrument Co., Ltd. | Electrostatic high-voltage generator |
US4779182A (en) | 1985-06-24 | 1988-10-18 | Metallgesellschaft Ag | Power supply for an electrostatic filter |
US4726814A (en) | 1985-07-01 | 1988-02-23 | Jacob Weitman | Method and apparatus for simultaneously recovering heat and removing gaseous and sticky pollutants from a heated, polluted gas flow |
US4713093A (en) | 1985-07-15 | 1987-12-15 | Kraftelektronik Ab | Electrostatic dust precipitator |
US4713724A (en) | 1985-07-20 | 1987-12-15 | HV Hofmann and Volkel | Portable ion generator |
US4680496A (en) | 1985-07-31 | 1987-07-14 | Centre National de la Recherche Scintifique | Apparatus for conveying electrostatic charges, in particular for very high voltage electrostatic generators |
US4771361A (en) | 1985-09-16 | 1988-09-13 | Dr. Engelter & Nitsch, Wirtschaftsberatung | Electrode arrangement for corona discharges |
US4772297A (en) | 1985-09-20 | 1988-09-20 | Kyowa Seiko Co., Ltd. | Air cleaner |
US4853005A (en) | 1985-10-09 | 1989-08-01 | American Filtrona Corporation | Electrically stimulated filter method and apparatus |
USRE33927E (en) | 1985-11-08 | 1992-05-19 | Kankyo Company Limited | Air cleaner |
US5006761A (en) | 1985-12-20 | 1991-04-09 | Astra-Vent Ab | Air transporting arrangement |
US4670026A (en) | 1986-02-18 | 1987-06-02 | Desert Technology, Inc. | Method and apparatus for electrostatic extraction of droplets from gaseous medium |
US4789801A (en) | 1986-03-06 | 1988-12-06 | Zenion Industries, Inc. | Electrokinetic transducing methods and apparatus and systems comprising or utilizing the same |
US4693869A (en) | 1986-03-20 | 1987-09-15 | Pfaff Ernest H | Electrode arrangement for creating corona |
US4726812A (en) | 1986-03-26 | 1988-02-23 | Bbc Brown, Boveri Ag | Method for electrostatically charging up solid or liquid particles suspended in a gas stream by means of ions |
US4955991A (en) | 1986-04-21 | 1990-09-11 | Astra-Vent Ab | Arrangement for generating an electric corona discharge in air |
US4662903A (en) | 1986-06-02 | 1987-05-05 | Denki Kogyo Company Limited | Electrostatic dust collector |
US4666474A (en) | 1986-08-11 | 1987-05-19 | Amax Inc. | Electrostatic precipitators |
US4743275A (en) | 1986-08-25 | 1988-05-10 | Flanagan G Patrick | Electron field generator |
EP0332624B1 (en) | 1986-10-30 | 1992-01-02 | Astravent Ab | An electrostatic precipitator for use in electrofilters |
US4781736A (en) | 1986-11-20 | 1988-11-01 | United Air Specialists, Inc. | Electrostatically enhanced HEPA filter |
US4966666A (en) | 1986-11-24 | 1990-10-30 | Waltonen Laboratories | Fluid energizing method and apparatus |
US4808200A (en) | 1986-11-24 | 1989-02-28 | Siemens Aktiengesellschaft | Electrostatic precipitator power supply |
US4725289A (en) | 1986-11-28 | 1988-02-16 | Quintilian B Frank | High conversion electrostatic precipitator |
US4760302A (en) | 1986-12-11 | 1988-07-26 | Sarcos, Inc. | Electric field machine |
US5024685A (en) | 1986-12-19 | 1991-06-18 | Astra-Vent Ab | Electrostatic air treatment and movement system |
US5077500A (en) | 1987-02-05 | 1991-12-31 | Astra-Vent Ab | Air transporting arrangement |
US4749390A (en) | 1987-02-26 | 1988-06-07 | Air Purification Products, International | Four-sided air filter |
US4786844A (en) | 1987-03-30 | 1988-11-22 | Rpc Industries | Wire ion plasma gun |
JPS63164948U (en) | 1987-04-13 | 1988-10-27 | ||
US5012159A (en) | 1987-07-03 | 1991-04-30 | Astra Vent Ab | Arrangement for transporting air |
US4765802A (en) | 1987-07-15 | 1988-08-23 | Wheelabrator Air Pollution Control Inc. | Electrostatic precipitator plate spacer and method of installing same |
CN87210843U (en) | 1987-07-27 | 1988-07-06 | 王世强 | Ozone-removing air negative ion generator |
US5003774A (en) | 1987-10-09 | 1991-04-02 | Kerr-Mcgee Chemical Corporation | Apparatus for soot removal from exhaust gas |
US5022979A (en) | 1987-10-26 | 1991-06-11 | Tokyo Ohka Kogyo Co., Ltd. | Electrode for use in the treatment of an object in a plasma |
US5061462A (en) | 1987-11-12 | 1991-10-29 | Nagatoshi Suzuki | Apparatus for producing a streamer corona |
US4940894A (en) | 1987-12-10 | 1990-07-10 | Enercon Industries Corporation | Electrode for a corona discharge apparatus |
US4811159A (en) | 1988-03-01 | 1989-03-07 | Associated Mills Inc. | Ionizer |
US4941068A (en) | 1988-03-10 | 1990-07-10 | Hofmann & Voelkel Gmbh | Portable ion generator |
US5053912A (en) | 1988-03-10 | 1991-10-01 | Astra-Vent Ab | Air transporting arrangement |
US4978372A (en) | 1988-03-11 | 1990-12-18 | William Pick | Pleated charged media air filter |
US4940470A (en) | 1988-03-23 | 1990-07-10 | American Filtrona Corporation | Single field ionizing electrically stimulated filter |
US4954320A (en) | 1988-04-22 | 1990-09-04 | The United States Of America As Represented By The Secretary Of The Army | Reactive bed plasma air purification |
US4822381A (en) | 1988-05-09 | 1989-04-18 | Government Of The United States As Represented By Administrator Environmental Protection Agency | Electroprecipitator with suppression of rapping reentrainment |
US4892713A (en) | 1988-06-01 | 1990-01-09 | Newman James J | Ozone generator |
US5125936A (en) | 1988-06-03 | 1992-06-30 | Boliden Contech Ab | Emission electrode |
US5136461A (en) | 1988-06-07 | 1992-08-04 | Max Zellweger | Apparatus for sterilizing and deodorizing rooms having a grounded electrode cover |
US4941224A (en) | 1988-08-01 | 1990-07-17 | Matsushita Electric Industrial Co., Ltd. | Electrostatic dust collector for use in vacuum system |
US5012093A (en) | 1988-08-29 | 1991-04-30 | Minolta Camera Co., Ltd. | Cleaning device for wire electrode of corona discharger |
US4976752A (en) | 1988-09-26 | 1990-12-11 | Astra Vent Ab | Arrangement for generating an electric corona discharge in air |
US5180404A (en) | 1988-12-08 | 1993-01-19 | Astra-Vent Ab | Corona discharge arrangements for the removal of harmful substances generated by the corona discharge |
US5030254A (en) | 1989-01-11 | 1991-07-09 | Bleiwerk Goslar Gmbh & Co. Kg Besserer & Ernst | Lead-plate electric precipitator |
US4869736A (en) | 1989-02-02 | 1989-09-26 | Combustion Engineering, Inc. | Collecting electrode panel assembly with coupling means |
US5199257A (en) | 1989-02-10 | 1993-04-06 | Centro Sviluppo Materiali S.P.A. | Device for removal of particulates from exhaust and flue gases |
USD315598S (en) | 1989-02-15 | 1991-03-19 | Hitachi, Ltd. | Electric fan |
US5217504A (en) | 1989-03-28 | 1993-06-08 | Abb Flakt Aktiebolag | Method for controlling the current pulse supply to an electrostatic precipitator |
US5045095A (en) | 1989-06-15 | 1991-09-03 | Samsung Electronics Co., Ltd. | Dust collector for an air cleaner |
US4929139A (en) | 1989-07-26 | 1990-05-29 | The Perkin-Elmer Corporation | Passive electrostatic vacuum particle collector |
US5010869A (en) | 1989-08-11 | 1991-04-30 | Zenion Industries, Inc. | Air ionization system for internal combustion engines |
US5137546A (en) | 1989-08-31 | 1992-08-11 | Metallgesellschaft Aktiengesellschaft | Process and apparatus for electrostatic purification of dust- and pollutant-containing exhaust gases in multiple-field precipitators |
US5037456A (en) | 1989-09-30 | 1991-08-06 | Samsung Electronics Co., Ltd. | Electrostatic precipitator |
EP0433152A1 (en) | 1989-12-12 | 1991-06-19 | Commissariat A L'energie Atomique | Electrofilter with cleaning system |
US5158580A (en) | 1989-12-15 | 1992-10-27 | Electric Power Research Institute | Compact hybrid particulate collector (COHPAC) |
US5076820A (en) | 1989-12-29 | 1991-12-31 | Alexander Gurvitz | Collector electrode structure and electrostatic precipitator including same |
US5100440A (en) | 1990-01-17 | 1992-03-31 | Elex Ag | Emission electrode in an electrostatic dust separator |
US5571483A (en) | 1990-01-26 | 1996-11-05 | Exolon-Esk Company | System of converting environmentally pollutant waste gases to a useful product |
US5118942A (en) | 1990-02-05 | 1992-06-02 | Hamade Thomas A | Electrostatic charging apparatus and method |
US5012094A (en) | 1990-02-05 | 1991-04-30 | Hamade Thomas A | Electrostatic charging apparatus and method |
US5077468A (en) | 1990-02-05 | 1991-12-31 | Hamade Thomas A | Electrostatic charging apparatus and method |
US5376168A (en) | 1990-02-20 | 1994-12-27 | The L. D. Kichler Co. | Electrostatic particle filtration |
US5405434A (en) | 1990-02-20 | 1995-04-11 | The Scott Fetzer Company | Electrostatic particle filtration |
USD326514S (en) | 1990-02-27 | 1992-05-26 | U.S. Natural Resources, Inc. | Electronic air cleaner |
US5154733A (en) | 1990-03-06 | 1992-10-13 | Ebara Research Co., Ltd. | Photoelectron emitting member and method of electrically charging fine particles with photoelectrons |
US5266004A (en) | 1990-03-19 | 1993-11-30 | Hitachi, Ltd. | Blower |
US5072746A (en) | 1990-04-04 | 1991-12-17 | Epilady International Inc. | Hair grooming device |
US5147429A (en) | 1990-04-09 | 1992-09-15 | James Bartholomew | Mobile airborne air cleaning station |
US5215558A (en) | 1990-06-12 | 1993-06-01 | Samsung Electronics Co., Ltd. | Electrical dust collector |
US5141529A (en) | 1990-06-19 | 1992-08-25 | Neg-Ions (North America) Inc. | Dust precipitation from air by negative ionization |
US5296019A (en) | 1990-06-19 | 1994-03-22 | Neg-Ions (North America) Inc. | Dust precipitation from air by negative ionization |
US5034033A (en) | 1990-07-13 | 1991-07-23 | U.S. Natural Resources, Inc. | Modular electronic air cleaning device |
US5637198A (en) | 1990-07-19 | 1997-06-10 | Thermo Power Corporation | Volatile organic compound and chlorinated volatile organic compound reduction methods and high efficiency apparatus |
US6118645A (en) | 1990-08-15 | 2000-09-12 | Ion Systems, Inc. | Self-balancing bipolar air ionizer |
US5066313A (en) | 1990-09-20 | 1991-11-19 | Southern Environmental, Inc. | Wire electrode replacement for electrostatic precipitators |
US5059219A (en) | 1990-09-26 | 1991-10-22 | The United States Goverment As Represented By The Administrator Of The Environmental Protection Agency | Electroprecipitator with alternating charging and short collector sections |
WO1992005875A1 (en) | 1990-10-03 | 1992-04-16 | Astra-Vent Ab | Apparatus for generating and cleaning an air flow |
US5466279A (en) | 1990-11-30 | 1995-11-14 | Kabushiki Kaisha Toshiba | Electric dust collector system |
US5234555A (en) | 1991-02-05 | 1993-08-10 | Ibbott Jack Kenneth | Method and apparatus for ionizing fluids utilizing a capacitive effect |
US5516493A (en) | 1991-02-21 | 1996-05-14 | Bell; Maxwell G. | Method and apparatus for producing ozone by corona discharge |
US5196171A (en) | 1991-03-11 | 1993-03-23 | In-Vironmental Integrity, Inc. | Electrostatic vapor/aerosol/air ion generator |
US5141715A (en) | 1991-04-09 | 1992-08-25 | University Of Alaska | Electrical device for conversion of molecular weights using dynodes |
USD329284S (en) | 1991-04-15 | 1992-09-08 | Patton Electric Company, Inc. | Portable electric fan |
US5316741A (en) | 1991-05-30 | 1994-05-31 | Zontec Inc. | Ozone generator |
CN2111112U (en) | 1991-06-28 | 1992-07-29 | 段沫石 | Ultraviolet sterilized air purifying unit |
US5198003A (en) | 1991-07-02 | 1993-03-30 | Carrier Corporation | Spiral wound electrostatic air cleaner and method of assembling |
US5401301A (en) | 1991-07-17 | 1995-03-28 | Metallgesellschaft Aktiengesellschaft | Device for the transport of materials and electrostatic precipitation |
US5290343A (en) | 1991-07-19 | 1994-03-01 | Kabushiki Kaisha Toshiba | Electrostatic precipitator machine for charging dust particles contained in air and capturing dust particles with coulomb force |
US5248324A (en) | 1991-08-02 | 1993-09-28 | Filtration Japan Co., Ltd. | Electrostatic precipitator |
US5435978A (en) | 1991-08-08 | 1995-07-25 | Sumitomo Precision Products Co., Ltd. | Plate-type ozonizer |
US5624476A (en) | 1991-08-21 | 1997-04-29 | Ecoprocess | Method and device for purifying gaseous effluents |
USD332655S (en) | 1991-10-04 | 1993-01-19 | Patton Electric Company, Inc. | Portable electric fan |
US5407639A (en) | 1991-10-14 | 1995-04-18 | Toto, Ltd. | Method of manufacturing a corona discharge device |
US5183480A (en) | 1991-10-28 | 1993-02-02 | Mobil Oil Corporation | Apparatus and method for collecting particulates by electrostatic precipitation |
US5647890A (en) | 1991-12-11 | 1997-07-15 | Yamamoto; Yujiro | Filter apparatus with induced voltage electrode and method |
US5540761A (en) | 1991-12-11 | 1996-07-30 | Yamamoto; Yujiro | Filter for particulate materials in gaseous fluids |
US5210678A (en) | 1991-12-16 | 1993-05-11 | Industrial Technology Research Institute | Chain-type discharge wire for use in an electrostatic precipitator |
US5401302A (en) | 1991-12-19 | 1995-03-28 | Metallgesellschaft Aktiegesellschaft | Electrostatic separator comprising honeycomb collecting electrodes |
US5271763A (en) | 1991-12-31 | 1993-12-21 | Samsung Electronics Co., Ltd. | Electrical dust collector |
US5348571A (en) | 1992-01-09 | 1994-09-20 | Metallgesellschaft Aktiengesellschaft | Apparatus for dedusting a gas at high temperature |
US5217511A (en) | 1992-01-24 | 1993-06-08 | The United States Of America As Represented By The Administrator Of The Environmental Protection Agency | Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration |
US5993521A (en) | 1992-02-20 | 1999-11-30 | Tl-Vent Ab | Two-stage electrostatic filter |
FR2690509A1 (en) | 1992-04-22 | 1993-10-29 | Electricite De France | Convector heater incorporating air purification and humidity control - has filter in air intake, with humidifying, ionising and ozonising unit placed in heated air-stream. |
US5549874A (en) | 1992-04-23 | 1996-08-27 | Ebara Corporation | Discharge reactor |
US5254155A (en) | 1992-04-27 | 1993-10-19 | Mensi Fred E | Wet electrostatic ionizing element and cooperating honeycomb passage ways |
US5308586A (en) | 1992-05-01 | 1994-05-03 | General Atomics | Electrostatic separator using a bead bed |
US5282891A (en) | 1992-05-01 | 1994-02-01 | Ada Technologies, Inc. | Hot-side, single-stage electrostatic precipitator having reduced back corona discharge |
CN2153231Y (en) | 1992-05-12 | 1994-01-19 | 沈阳市仁义有限公司 | Electronic chemical comprehensive fresh keeping machine for fruit and vegetable |
US5417936A (en) | 1992-06-08 | 1995-05-23 | Nippon Ozone Co., Ltd. | Plate-type ozone generator |
US5302190A (en) | 1992-06-08 | 1994-04-12 | Trion, Inc. | Electrostatic air cleaner with negative polarity power and method of using same |
US5250267A (en) | 1992-06-24 | 1993-10-05 | The Babcock & Wilcox Company | Particulate collection device with integral wet scrubber |
US5538695A (en) | 1992-07-03 | 1996-07-23 | Ebara Corporation | Ozonizer |
US5474599A (en) | 1992-08-11 | 1995-12-12 | United Air Specialists, Inc. | Apparatus for electrostatically cleaning particulates from air |
US5330559A (en) | 1992-08-11 | 1994-07-19 | United Air Specialists, Inc. | Method and apparatus for electrostatically cleaning particulates from air |
US5403383A (en) | 1992-08-26 | 1995-04-04 | Jaisinghani; Rajan | Safe ionizing field electrically enhanced filter and process for safely ionizing a field of an electrically enhanced filter |
US20020144601A1 (en) | 1992-10-09 | 2002-10-10 | Palestro Richard P. | Ultraviolet germicidal apparatus and method |
US5554345A (en) | 1992-10-14 | 1996-09-10 | Novozone (N.V.) Limited | Ozone generation apparatus and method |
US5445798A (en) | 1992-11-24 | 1995-08-29 | Mitsubishi Denki Kabushiki Kaisha | Microbe propagation preventing apparatus and microbe propagation preventing method |
CN2138764Y (en) | 1992-12-19 | 1993-07-21 | 许泉源 | Air purifier for filtering poison, dust-removing and sterifization |
US5435817A (en) | 1992-12-23 | 1995-07-25 | Honeywell Inc. | Portable room air purifier |
US5386839A (en) | 1992-12-24 | 1995-02-07 | Chen; Hong Y. | Comb |
US5545379A (en) | 1993-02-05 | 1996-08-13 | Teledyne Industries, Inc. | Corona discharge system with insulated wire |
US5545380A (en) | 1993-02-05 | 1996-08-13 | Teledyne Industries, Inc. | Corona discharge system with conduit structure |
US5395430A (en) | 1993-02-11 | 1995-03-07 | Wet Electrostatic Technology, Inc. | Electrostatic precipitator assembly |
US5681533A (en) | 1993-03-15 | 1997-10-28 | Yushin Engineering | Environment decontaminating system having air cleaning and deodorizing function |
US5587131A (en) | 1993-03-25 | 1996-12-24 | Ozontech Ltd. | System for an efficient manufacture of ozone |
US5378978A (en) | 1993-04-02 | 1995-01-03 | Belco Technologies Corp. | System for controlling an electrostatic precipitator using digital signal processing |
US5503809A (en) | 1993-04-19 | 1996-04-02 | John T. Towles | Compact ozone generator |
US5665147A (en) | 1993-04-27 | 1997-09-09 | Bha Group, Inc. | Collector plate for electrostatic precipitator |
US5529613A (en) | 1993-05-18 | 1996-06-25 | Amron Ltd. | Air ionization device |
US5419953A (en) | 1993-05-20 | 1995-05-30 | Chapman; Rick L. | Multilayer composite air filtration media |
US5532798A (en) | 1993-05-26 | 1996-07-02 | Minolta Camera Kabushiki Kaisha | Charging device having a plate electrode and a cleaning device for cleaning edges of the plate electrode |
US5437843A (en) | 1993-07-08 | 1995-08-01 | Kuan; Yu-Hung | Ozonizer |
US5492678A (en) | 1993-07-23 | 1996-02-20 | Hokushin Industries, Inc. | Gas-cleaning equipment and its use |
US5484473A (en) | 1993-07-28 | 1996-01-16 | Bontempi; Luigi | Two-stage electrostatic filter with extruded modular components particularly for air recirculation units |
US5315838A (en) | 1993-08-16 | 1994-05-31 | Whirlpool Corporation | Air conditioner filter monitor |
US5433772A (en) | 1993-10-15 | 1995-07-18 | Sikora; David | Electrostatic air filter for mobile equipment |
US5591334A (en) | 1993-10-19 | 1997-01-07 | Geochto Ltd. | Apparatus for generating negative ions |
US5520887A (en) | 1993-11-22 | 1996-05-28 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Apparatus for generating and condensing ozone |
US5766318A (en) | 1993-11-24 | 1998-06-16 | Tl-Vent Aktiebolag | Precipitator for an electrostatic filter |
US5407469A (en) | 1993-12-20 | 1995-04-18 | Sunova Company | Improved air ionizing apparatus |
US5503808A (en) | 1993-12-27 | 1996-04-02 | Ozact, Inc. | Portable integrated ozone generator |
US5569437A (en) | 1994-01-07 | 1996-10-29 | Sorbios Verfahrenstechnische Gerate Und Systeme Gmbh | Ozone generating apparatus |
US5980614A (en) | 1994-01-17 | 1999-11-09 | Tl-Vent Ab | Air cleaning apparatus |
US5505914A (en) | 1994-01-20 | 1996-04-09 | Tona-Serra; Jaime | Device for ozonizing small areas or surfaces for therapeutic purposes |
US5514345A (en) | 1994-03-11 | 1996-05-07 | Ozact, Inc. | Method and apparatus for disinfecting an enclosed space |
US5468454A (en) | 1994-04-05 | 1995-11-21 | Samsung Electronics Co., Ltd. | Compact sterilizing deodorizing and freshness-preserving apparatus for use in a refrigerator |
US5518531A (en) | 1994-05-05 | 1996-05-21 | Joannu; Constantinos J. | Ion injector for air handling systems |
US5554344A (en) | 1994-05-11 | 1996-09-10 | Duarte; Fernando C. | Gas ionization device |
US5582632A (en) | 1994-05-11 | 1996-12-10 | Kimberly-Clark Corporation | Corona-assisted electrostatic filtration apparatus and method |
US5501844A (en) | 1994-06-01 | 1996-03-26 | Oxidyn, Incorporated | Air treating apparatus and method therefor |
US5603752A (en) | 1994-06-07 | 1997-02-18 | Filtration Japan Co., Ltd. | Electrostatic precipitator |
US5593476A (en) | 1994-06-09 | 1997-01-14 | Coppom Technologies | Method and apparatus for use in electronically enhanced air filtration |
WO1996004703A1 (en) | 1994-08-05 | 1996-02-15 | Strainer Lpb Aktiebolag | Device for transporting and/or cleaning air by corona discharge |
US5547643A (en) | 1994-08-16 | 1996-08-20 | Ebara Corporation | Apparatus for treating flue gases by irradiation with electron beams |
US5655210A (en) | 1994-08-25 | 1997-08-05 | Hughes Aircraft Company | Corona source for producing corona discharge and fluid waste treatment with corona discharge |
US5637279A (en) | 1994-08-31 | 1997-06-10 | Applied Science & Technology, Inc. | Ozone and other reactive gas generator cell and system |
US6797339B2 (en) | 1994-09-06 | 2004-09-28 | Research Development Corporation Of Japan | Method for forming thin film with a gas cluster ion beam |
US5542967A (en) | 1994-10-06 | 1996-08-06 | Ponizovsky; Lazar Z. | High voltage electrical apparatus for removing ecologically noxious substances from gases |
US5535089A (en) | 1994-10-17 | 1996-07-09 | Jing Mei Industrial Holdings, Ltd. | Ionizer |
US5508008A (en) | 1994-10-27 | 1996-04-16 | Wasser; Robert E. | Apparatus for producing ozone with local and remote application |
US6309514B1 (en) | 1994-11-07 | 2001-10-30 | Ti Properties, Inc. | Process for breaking chemical bonds |
US5630990A (en) | 1994-11-07 | 1997-05-20 | T I Properties, Inc. | Ozone generator with releasable connector and grounded current collector |
US5437713A (en) | 1994-12-01 | 1995-08-01 | Chang; Chin-Chu | Removal device for electrostatic precipitators |
US5529760A (en) | 1994-12-13 | 1996-06-25 | Burris; William A. | Ozone generator |
US5698164A (en) | 1994-12-27 | 1997-12-16 | Takashi Kishioka | Low-temperature plasma generator |
US5569368A (en) | 1995-01-06 | 1996-10-29 | Larsky; Edvin G. | Electrophoretic apparatus and method for applying therapeutic, cosmetic and dyeing solutions to hair |
US5573577A (en) | 1995-01-17 | 1996-11-12 | Joannou; Constantinos J. | Ionizing and polarizing electronic air filter |
US5484472A (en) | 1995-02-06 | 1996-01-16 | Weinberg; Stanley | Miniature air purifier |
US5484472C1 (en) | 1995-02-06 | 2001-02-20 | Wein Products Inc | Miniature air purifier |
US5591253A (en) | 1995-03-07 | 1997-01-07 | Electric Power Research Institute, Inc. | Electrostatically enhanced separator (EES) |
US5536477A (en) | 1995-03-15 | 1996-07-16 | Chang Yul Cha | Pollution arrestor |
US5667565A (en) | 1995-03-21 | 1997-09-16 | Sikorsky Aircraft Corporation | Aerodynamic-electrostatic particulate collection system |
US5591412A (en) | 1995-04-26 | 1997-01-07 | Alanco Environmental Resources Corp. | Electrostatic gun for injection of an electrostatically charged sorbent into a polluted gas stream |
US5578280A (en) | 1995-04-28 | 1996-11-26 | Americal Environmental Technologies, Inc. | Ozone generator with a generally spherical corona chamber |
US6296692B1 (en) | 1995-05-08 | 2001-10-02 | Rudolf Gutmann | Air purifier |
US5573730A (en) | 1995-05-09 | 1996-11-12 | Gillum; Theodore J. | Method and apparatus for treating airborne residues |
US5601636A (en) | 1995-05-30 | 1997-02-11 | Appliance Development Corp. | Wall mounted air cleaner assembly |
US5578112A (en) | 1995-06-01 | 1996-11-26 | 999520 Ontario Limited | Modular and low power ionizer |
USD375546S (en) | 1995-06-29 | 1996-11-12 | Myoung Woull Electronics Co., Ltd. | Air purifier |
US5667563A (en) | 1995-07-13 | 1997-09-16 | Silva, Jr.; John C. | Air ionization system |
US5630866A (en) | 1995-07-28 | 1997-05-20 | Gregg; Lloyd M. | Static electricity exhaust treatment device |
US5525310A (en) | 1995-08-02 | 1996-06-11 | Decker; R. Scott | Continuous corona discharge ozone generation device |
US5603893A (en) | 1995-08-08 | 1997-02-18 | University Of Southern California | Pollution treatment cells energized by short pulses |
USD377523S (en) | 1995-08-15 | 1997-01-21 | Duracraft Corp. | Air cleaner |
US6117216A (en) | 1995-09-08 | 2000-09-12 | Strainer Lpb Aktiebolag | Precipitator for cleaning of air from electrically charged aerosols |
US5779769A (en) | 1995-10-24 | 1998-07-14 | Jiang; Pengming | Integrated multi-function lamp for providing light and purification of indoor air |
US5614002A (en) | 1995-10-24 | 1997-03-25 | Chen; Tze L. | High voltage dust collecting panel |
US5648049A (en) | 1995-11-29 | 1997-07-15 | Alanco Environmental Resources Corp. | Purging electrostatic gun for a charged dry sorbent injection and control system for the remediation of pollutants in a gas stream |
US5669963A (en) | 1995-12-26 | 1997-09-23 | Carrier Corporation | Electronic air cleaner |
US5641342A (en) | 1995-12-26 | 1997-06-24 | Carrier Corporation | Interlock between cells of an electronic air cleaner |
US5641461A (en) | 1996-01-26 | 1997-06-24 | Ferone; Daniel A. | Ozone generating apparatus and cell therefor |
US5656063A (en) | 1996-01-29 | 1997-08-12 | Airlux Electrical Co., Ltd. | Air cleaner with separate ozone and ionizer outputs and method of purifying air |
US5681434A (en) | 1996-03-07 | 1997-10-28 | Eastlund; Bernard John | Method and apparatus for ionizing all the elements in a complex substance such as radioactive waste and separating some of the elements from the other elements |
USD389567S (en) | 1996-05-14 | 1998-01-20 | Calor S.A. | Combined fan and cover therefor |
US6203600B1 (en) | 1996-06-04 | 2001-03-20 | Eurus Airtech Ab | Device for air cleaning |
US5678237A (en) | 1996-06-24 | 1997-10-14 | Associated Universities, Inc. | In-situ vitrification of waste materials |
US6391259B1 (en) | 1996-06-26 | 2002-05-21 | Ozontech Ltd. | Ozone applications for disinfection, purification and deodorization |
US6252012B1 (en) | 1996-06-27 | 2001-06-26 | International Business Machines Corporation | Method for producing a diffusion barrier and polymeric article having a diffusion barrier |
US6277248B1 (en) | 1996-07-02 | 2001-08-21 | Fuji Electric Co., Ltd. | Ozone production facilities and method of their operation |
US5667564A (en) | 1996-08-14 | 1997-09-16 | Wein Products, Inc. | Portable personal corona discharge device for destruction of airborne microbes and chemical toxins |
US5814135A (en) | 1996-08-14 | 1998-09-29 | Weinberg; Stanley | Portable personal corona discharge device for destruction of airborne microbes and chemical toxins |
US6042637A (en) | 1996-08-14 | 2000-03-28 | Weinberg; Stanley | Corona discharge device for destruction of airborne microbes and chemical toxins |
US5702507A (en) | 1996-09-17 | 1997-12-30 | Yih Change Enterprise Co., Ltd. | Automatic air cleaner |
JPH10137007A (en) | 1996-11-13 | 1998-05-26 | Sanyo Electric Co Ltd | Charging type shoe deodorizing system |
US5667756A (en) | 1996-12-18 | 1997-09-16 | Lin-Chang International Co., Ltd. | Structure of ozonizer |
US6019815A (en) | 1997-01-06 | 2000-02-01 | Carrier Corporation | Method for preventing microbial growth in an electronic air cleaner |
US6149717A (en) | 1997-01-06 | 2000-11-21 | Carrier Corporation | Electronic air cleaner with germicidal lamp |
US5879435A (en) | 1997-01-06 | 1999-03-09 | Carrier Corporation | Electronic air cleaner with germicidal lamp |
US6398852B1 (en) | 1997-03-05 | 2002-06-04 | Eurus Airtech Ab | Device for air cleaning |
US5893977A (en) | 1997-05-12 | 1999-04-13 | Hercules Products | Water ionizer having vibration sensor to sense flow in electrode housing |
US6193852B1 (en) | 1997-05-28 | 2001-02-27 | The Boc Group, Inc. | Ozone generator and method of producing ozone |
WO1999007474A1 (en) | 1997-08-06 | 1999-02-18 | Eurus Airtech Ab | Device for air cleaning |
US6063168A (en) | 1997-08-11 | 2000-05-16 | Southern Company Services | Electrostatic precipitator |
US5972076A (en) | 1997-08-11 | 1999-10-26 | Nichols; Grady B. | Method of charging an electrostatic precipitator |
US5997619A (en) | 1997-09-04 | 1999-12-07 | Nq Environmental, Inc. | Air purification system |
DE19741621C1 (en) | 1997-09-20 | 1999-06-10 | Wilhelm Hertfelder | Air purification device |
JPH11104223A (en) | 1997-09-30 | 1999-04-20 | Nippon Dennetsu Co Ltd | Ozone deodorizing and sterilizing device for shoes |
US5911957A (en) | 1997-10-23 | 1999-06-15 | Khatchatrian; Robert G. | Ozone generator |
US6270733B1 (en) | 1998-04-09 | 2001-08-07 | Raymond M. Rodden | Ozone generator |
US6508982B1 (en) | 1998-04-27 | 2003-01-21 | Kabushiki Kaisha Seisui | Air-cleaning apparatus and air-cleaning method |
US6348103B1 (en) | 1998-05-19 | 2002-02-19 | Firma Ing. Walter Hengst Gmbh & Co. Kg | Method for cleaning electrofilters and electrofilters with a cleaning device |
US6373723B1 (en) | 1998-06-18 | 2002-04-16 | Kraftelektronik Ab | Method and device for generating voltage peaks in an electrostatic precipitator |
US6126722A (en) | 1998-07-28 | 2000-10-03 | The United States Of America As Represented By The Secretary Of Agriculture | Electrostatic reduction system for reducing airborne dust and microorganisms |
US6774359B1 (en) | 1998-08-06 | 2004-08-10 | Hitachi, Ltd. | Sample-introduction tool, and an ion source and a mass spectrometer using the sample-introduction tool |
WO2000010713A1 (en) | 1998-08-20 | 2000-03-02 | Baltic Metalltechnik Gmbh | Electrostatic air cleaner |
US6362604B1 (en) | 1998-09-28 | 2002-03-26 | Alpha-Omega Power Technologies, L.L.C. | Electrostatic precipitator slow pulse generating circuit |
US6182671B1 (en) | 1998-09-29 | 2001-02-06 | Sharper Image Corporation | Ion emitting grooming brush |
US6672315B2 (en) | 1998-09-29 | 2004-01-06 | Sharper Image Corporation | Ion emitting grooming brush |
US6588434B2 (en) | 1998-09-29 | 2003-07-08 | Sharper Image Corporation | Ion emitting grooming brush |
US5975090A (en) | 1998-09-29 | 1999-11-02 | Sharper Image Corporation | Ion emitting grooming brush |
US6152146A (en) | 1998-09-29 | 2000-11-28 | Sharper Image Corporation | Ion emitting grooming brush |
US6504308B1 (en) | 1998-10-16 | 2003-01-07 | Kronos Air Technologies, Inc. | Electrostatic fluid accelerator |
US20050000793A1 (en) | 1998-11-05 | 2005-01-06 | Sharper Image Corporation | Air conditioner device with trailing electrode |
US6176977B1 (en) | 1998-11-05 | 2001-01-23 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner |
US20020098131A1 (en) | 1998-11-05 | 2002-07-25 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner device with enhanced cleaning features |
US20030206839A1 (en) | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced anti-microorganism capability |
US20030206840A1 (en) | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced housing configuration and enhanced anti-microorganism capability |
US20030206837A1 (en) | 1998-11-05 | 2003-11-06 | Taylor Charles E. | Electro-kinetic air transporter and conditioner device with enhanced maintenance features and enhanced anti-microorganism capability |
US20020155041A1 (en) | 1998-11-05 | 2002-10-24 | Mckinney Edward C. | Electro-kinetic air transporter-conditioner with non-equidistant collector electrodes |
US20010048906A1 (en) | 1998-11-05 | 2001-12-06 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US20020150520A1 (en) | 1998-11-05 | 2002-10-17 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode |
US6709484B2 (en) | 1998-11-05 | 2004-03-23 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter conditioner devices |
US6350417B1 (en) | 1998-11-05 | 2002-02-26 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US20020146356A1 (en) | 1998-11-05 | 2002-10-10 | Sinaiko Robert J. | Dual input and outlet electrostatic air transporter-conditioner |
US6713026B2 (en) | 1998-11-05 | 2004-03-30 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner |
US6632407B1 (en) | 1998-11-05 | 2003-10-14 | Sharper Image Corporation | Personal electro-kinetic air transporter-conditioner |
US20020141914A1 (en) | 1998-11-05 | 2002-10-03 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner with a multiple pin-ring configuration |
US20020079212A1 (en) | 1998-11-05 | 2002-06-27 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner |
US20020134665A1 (en) | 1998-11-05 | 2002-09-26 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with trailing electrode |
US20020134664A1 (en) | 1998-11-05 | 2002-09-26 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with an upstream focus electrode |
US6451266B1 (en) | 1998-11-05 | 2002-09-17 | Sharper Image Corporation | Foot deodorizer and massager system |
US20020122751A1 (en) | 1998-11-05 | 2002-09-05 | Sinaiko Robert J. | Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter |
US20020127156A1 (en) | 1998-11-05 | 2002-09-12 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with enhanced collector electrode |
US20040234431A1 (en) | 1998-11-05 | 2004-11-25 | Sharper Image Corporation | Electro-kinetic air transporter-conditioner devices with trailing electrode |
US20020122752A1 (en) | 1998-11-05 | 2002-09-05 | Taylor Charles E. | Electro-kinetic air transporter-conditioner devices with interstitial electrode |
US6585935B1 (en) | 1998-11-20 | 2003-07-01 | Sharper Image Corporation | Electro-kinetic ion emitting footwear sanitizer |
US6163098A (en) | 1999-01-14 | 2000-12-19 | Sharper Image Corporation | Electro-kinetic air refreshener-conditioner with optional night light |
US6228149B1 (en) | 1999-01-20 | 2001-05-08 | Patterson Technique, Inc. | Method and apparatus for moving, filtering and ionizing air |
US6126727A (en) | 1999-01-28 | 2000-10-03 | Lo; Ching-Hsiang | Electrode panel-drawing device of a static ion discharger |
US6312507B1 (en) | 1999-02-12 | 2001-11-06 | Sharper Image Corporation | Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box |
US6086657A (en) | 1999-02-16 | 2000-07-11 | Freije; Joseph P. | Exhaust emissions filtering system |
US6799068B1 (en) | 1999-02-19 | 2004-09-28 | Gesellschaft Fuer Schwerionenforschung Mbh | Method for verifying the calculated radiation dose of an ion beam therapy system |
JP2000236914A (en) | 1999-02-24 | 2000-09-05 | Kyoritsu Denki Sangyo Kk | Deodorizer for shoes |
US6818257B2 (en) | 1999-04-17 | 2004-11-16 | Advanced Energy Industries, Inc. | Method of providing a material processing ion beam |
US6302944B1 (en) | 1999-04-23 | 2001-10-16 | Stuart Alfred Hoenig | Apparatus for extracting water vapor from air |
US6808606B2 (en) | 1999-05-03 | 2004-10-26 | Guardian Industries Corp. | Method of manufacturing window using ion beam milling of glass substrate(s) |
US6809310B2 (en) | 1999-05-20 | 2004-10-26 | Lee Chen | Accelerated ion beam generator |
US6735830B1 (en) | 1999-05-31 | 2004-05-18 | Genie Et Environnement | Ion generating device |
US6781136B1 (en) | 1999-06-11 | 2004-08-24 | Lambda Co., Ltd. | Negative ion emitting method and apparatus therefor |
US6613277B1 (en) | 1999-06-18 | 2003-09-02 | Gerald C. Monagan | Air purifier |
US6182461B1 (en) | 1999-07-16 | 2001-02-06 | Carrier Corporation | Photocatalytic oxidation enhanced evaporator coil surface for fly-by control |
US6464754B1 (en) | 1999-10-07 | 2002-10-15 | Kairos, L.L.C. | Self-cleaning air purification system and process |
US6471753B1 (en) | 1999-10-26 | 2002-10-29 | Ace Lab., Inc. | Device for collecting dust using highly charged hyperfine liquid droplets |
US6372097B1 (en) | 1999-11-12 | 2002-04-16 | Chen Laboratories | Method and apparatus for efficient surface generation of pure O3 |
US6149815A (en) | 1999-11-23 | 2000-11-21 | Sauter; Andrew D. | Precise electrokinetic delivery of minute volumes of liquid(s) |
US6379427B1 (en) | 1999-12-06 | 2002-04-30 | Harold E. Siess | Method for protecting exposed surfaces |
US6282106B2 (en) | 1999-12-23 | 2001-08-28 | Siemens Aktiengesellschaft | Power supply for an electrostatic precipitator |
US20020195951A1 (en) | 1999-12-24 | 2002-12-26 | Lee Jim L | Method and apparatus for reducing ozone output from ion wind devices |
WO2001047803A1 (en) | 1999-12-24 | 2001-07-05 | Lee Jim L | Method and apparatus to reduce ozone production in ion wind devices |
WO2001048781A1 (en) | 1999-12-24 | 2001-07-05 | Lee Jim L | Method and apparatus for reducing ozone output from ion wind devices |
US20020190658A1 (en) | 1999-12-24 | 2002-12-19 | Lee Jim L. | Method and apparatus to reduce ozone production in ion wind device |
US6603268B2 (en) | 1999-12-24 | 2003-08-05 | Zenion Industries, Inc. | Method and apparatus for reducing ozone output from ion wind devices |
US6803585B2 (en) | 2000-01-03 | 2004-10-12 | Yuri Glukhoy | Electron-cyclotron resonance type ion beam source for ion implanter |
US6797964B2 (en) | 2000-02-25 | 2004-09-28 | Nissin Electric Co., Ltd. | Ion source and operation method thereof |
US20030005824A1 (en) | 2000-03-03 | 2003-01-09 | Ryou Katou | Dust collecting apparatus and air-conditioning apparatus |
WO2001064349A1 (en) | 2000-03-03 | 2001-09-07 | Matsushita Seiko Co., Ltd. | Dust collecting apparatus and air-conditioning apparatus |
US6212883B1 (en) | 2000-03-03 | 2001-04-10 | Moon-Ki Cho | Method and apparatus for treating exhaust gas from vehicles |
US6770878B2 (en) | 2000-04-26 | 2004-08-03 | Ceos Corrected Electron Optical Systems Gmbh | Electron/ion gun for electron or ion beams with high monochromasy or high current density |
USD449679S1 (en) | 2000-05-01 | 2001-10-23 | Hamilton Beach/Proctor-Silex, Inc. | Air cleaner filter |
USD449097S1 (en) | 2000-05-01 | 2001-10-09 | Hamilton Beach/Proctor-Silex, Inc. | Air cleaner |
US6328791B1 (en) | 2000-05-03 | 2001-12-11 | Hamilton Beach/Proctor-Silex, Inc. | Air filtration device |
US6447587B1 (en) | 2000-05-03 | 2002-09-10 | Hamilton Beach/Proctor-Silex, Inc. | Air filtration device |
US6315821B1 (en) | 2000-05-03 | 2001-11-13 | Hamilton Beach/Proctor-Silex, Inc. | Air filtration device including filter change indicator |
WO2001085348A2 (en) | 2000-05-11 | 2001-11-15 | University Of Southern California | Electrostatic precipitator with grounded stainless steel collector electrode and method of using same |
US6809312B1 (en) | 2000-05-12 | 2004-10-26 | Bruker Daltonics, Inc. | Ionization source chamber and ion beam delivery system for mass spectrometry |
US6777686B2 (en) | 2000-05-17 | 2004-08-17 | Varian Semiconductor Equipment Associates, Inc. | Control system for indirectly heated cathode ion source |
US6768110B2 (en) | 2000-06-21 | 2004-07-27 | Gatan, Inc. | Ion beam milling system and method for electron microscopy specimen preparation |
US6635105B2 (en) | 2000-07-11 | 2003-10-21 | Ing. Walter Hengst Gmbh & Co. Kg | Electrostatic precipitator |
US6768121B2 (en) | 2000-08-07 | 2004-07-27 | Axcelis Technologies, Inc. | Ion source having replaceable and sputterable solid source material |
WO2002020162A2 (en) | 2000-09-11 | 2002-03-14 | Joannou Constantinos J | Electrostatic cartridge filter |
WO2002020163A2 (en) | 2000-09-11 | 2002-03-14 | Joannou Constantinos J | Electrostatically polarized air filter |
US6494940B1 (en) | 2000-09-29 | 2002-12-17 | Hamilton Beach/Proctor-Silex, Inc. | Air purifier |
WO2002030574A1 (en) | 2000-10-09 | 2002-04-18 | Siemens Aktiengesellschaft | Method for operating an electrostatic filter |
WO2002032578A1 (en) | 2000-10-19 | 2002-04-25 | Fedders Corporation | Modular electrostatic precipitator system |
US20020069760A1 (en) | 2000-10-19 | 2002-06-13 | Pruette Dean B. | Modular electrostatic precipitator system |
US6819053B2 (en) | 2000-11-03 | 2004-11-16 | Tokyo Electron Limited | Hall effect ion source at high current density |
WO2002042003A1 (en) | 2000-11-21 | 2002-05-30 | Indigo Technologies Group Pty Ltd | Electrostatic filter |
US6805916B2 (en) | 2001-01-17 | 2004-10-19 | Research Foundation Of The City University Of New York | Method for making films utilizing a pulsed laser for ion injection and deposition |
US6544485B1 (en) | 2001-01-29 | 2003-04-08 | Sharper Image Corporation | Electro-kinetic device with enhanced anti-microorganism capability |
US6809325B2 (en) | 2001-02-05 | 2004-10-26 | Gesellschaft Fuer Schwerionenforschung Mbh | Apparatus for generating and selecting ions used in a heavy ion cancer therapy facility |
WO2002066167A1 (en) | 2001-02-23 | 2002-08-29 | Elex Ag | Electrostatic dust separator with integrated filter tubing |
US6806468B2 (en) | 2001-03-01 | 2004-10-19 | Science & Engineering Services, Inc. | Capillary ion delivery device and method for mass spectroscopy |
US20040052700A1 (en) | 2001-03-27 | 2004-03-18 | Kotlyar Gennady Mikhailovich | Device for air cleaning from dust and aerosols |
US20020170435A1 (en) | 2001-04-04 | 2002-11-21 | Joannou Constantinos J. | Self ionizing pleated air filter system |
US6761796B2 (en) | 2001-04-06 | 2004-07-13 | Axcelis Technologies, Inc. | Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing |
US20020152890A1 (en) | 2001-04-24 | 2002-10-24 | Leiser Randal D. | Electrically enhanced air filter with coated ground electrode |
US6794661B2 (en) | 2001-05-29 | 2004-09-21 | Sumitomo Eaton Nova Corporation | Ion implantation apparatus capable of increasing beam current |
US6753652B2 (en) | 2001-05-30 | 2004-06-22 | Samsung Electronics Co., Ltd. | Ion implanter |
WO2003009944A1 (en) | 2001-07-16 | 2003-02-06 | Ragne Svadil | An air cleaner |
WO2003013620A1 (en) | 2001-08-07 | 2003-02-20 | Sharp Kabushiki Kaisha | Ion generating element and ion generator, air conditioning appar atus, cleaner and refrigerator containing the same |
US6768120B2 (en) | 2001-08-31 | 2004-07-27 | The Regents Of The University Of California | Focused electron and ion beam systems |
US6791814B2 (en) | 2001-11-26 | 2004-09-14 | Nihon Pachinko Parts Co., Ltd. | Ion generating apparatus |
US6818909B2 (en) | 2001-12-03 | 2004-11-16 | Applied Materials, Inc. | Ion sources for ion implantation apparatus |
US6800862B2 (en) | 2001-12-10 | 2004-10-05 | Nissin Electric Co., Ltd. | Ion implanting apparatus and ion implanting method |
US6777882B2 (en) | 2002-01-11 | 2004-08-17 | Applied Materials, Inc. | Ion beam generator |
US20040033176A1 (en) | 2002-02-12 | 2004-02-19 | Lee Jim L. | Method and apparatus for increasing performance of ion wind devices |
US6777699B1 (en) | 2002-03-25 | 2004-08-17 | George H. Miley | Methods, apparatus, and systems involving ion beam generation |
US20040237787A1 (en) | 2002-06-20 | 2004-12-02 | Sharper Image Corporation | Electrode self-cleaning mechanism for air conditioner devices |
US6749667B2 (en) | 2002-06-20 | 2004-06-15 | Sharper Image Corporation | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
US6806035B1 (en) | 2002-06-25 | 2004-10-19 | Western Digital (Fremont), Inc. | Wafer serialization manufacturing process for read/write heads using photolithography and selective reactive ion etching |
US6768108B2 (en) | 2002-07-02 | 2004-07-27 | Anelva Corporation | Ion attachment mass spectrometry apparatus, ionization apparatus, and ionization method |
US6806163B2 (en) | 2002-07-05 | 2004-10-19 | Taiwan Semiconductor Manufacturing Co., Ltd | Ion implant method for topographic feature corner rounding |
US6815690B2 (en) | 2002-07-23 | 2004-11-09 | Guardian Industries Corp. | Ion beam source with coated electrode(s) |
US20040065202A1 (en) | 2002-10-08 | 2004-04-08 | Kaz, Inc. | Electrostatic air cleaner |
US20040136863A1 (en) | 2003-01-14 | 2004-07-15 | Honeywell International Inc. | Filtering system including panel with photocatalytic agent |
US6785912B1 (en) | 2003-01-24 | 2004-09-07 | Burt V. Julio | Ion toilet seat |
US20040166037A1 (en) | 2003-02-25 | 2004-08-26 | Youdell Harry F. | Air filtration and treatment apparatus |
US6812647B2 (en) | 2003-04-03 | 2004-11-02 | Wayne D. Cornelius | Plasma generator useful for ion beam generation |
US20040226447A1 (en) | 2003-05-14 | 2004-11-18 | Sharper Image Corporation | Electrode self-cleaning mechanisms with anti-arc guard for electro-kinetic air transporter-conditioner devices |
US20040251909A1 (en) | 2003-06-12 | 2004-12-16 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner devices with enhanced arching detection and suppression features |
US20040251124A1 (en) | 2003-06-12 | 2004-12-16 | Sharper Image Corporation | Electro-kinetic air transporter and conditioner devices with features that compensate for variations in line voltage |
Non-Patent Citations (117)
Title |
---|
"Household Air Cleaners," Consumer Reports Magazine, Oct. 1992, 6 pp. |
"Zenion Elf Device," drawing, prior art. |
Answer and Counterclaim in Sharper Image Corporation v. Brookstone, Inc., Case No. 04-1572 MMC, dated: Jun. 3, 2004. |
Blueair AV 402 Air Purifier, https://www.air-purifiers-usa.biz/Blueair_AV402.htm, 4 pp., 1996. |
Blueair AV 501 Air Purifier, https://www.air-purifiers-usa.biz/Blueair_AV501.htm, 15 pp., 1997. |
Brookstone's Preliminary Claim Construction and Extrinsic Evidence Under Patent Local Rule 4-2 Disclosure and Attached Exhibits A-L, Dated: Dec. 6, 2004. |
Brookstone's Preliminary Invalidity Contentions and Attached Exhibits A-N, Dated: Nov. 5, 2004. |
Brookstone's Proposed Terms and Claim Elements for Construction; Correction of Errata in Invalidity Contentions, Dated: Nov. 15, 2004. |
Claim Construction Order for Case No.'s C 02-4860 and C 04-0824, Issued by Claudia Wilken, United States District Judge, Dated: Mar. 21, 2005. |
ConsumerReports.org, "Air Cleaners: Behind the Hype," https://www.consumerreports.org/main/content/printable.jsp?FOLDER%3C%3EFOLDER_id, Oct. 2003, 6 pp. |
Copending U.S. Appl. No. 09/924,624; 10/074,082; 10/074,207; 10/074,208; 10/074,209; 10/074,339; 10/074,549. * |
Court Docket for Sharper Image Corporation v. Brookstone Company, Inc., Case No. 04-1572 MMC, United States District Court, Northern District of California, San Francisco Division. |
Court Docket for Sharper Image Corporation v. Honeywell International Inc. and Kaz, Inc., Case No. 02-4860 CW (Consolidated), United States District Court, Northern District of California, Oakland Division. |
Court Docket for Sharper Image Corporation v. Target Corporation, Ionic Pro, LLC, Sylmark, Inc., Sylmark LLC, Qwik Cook, Inc., Home Trends, Factories2U, LLC, and Chaim Mark Bess, Case No. 04-0824 CW, United States District Court, Northern District of California, Oakland Division. |
Declaration of Jonathan Kagan in Support of Defendants' Opening Claim Construction Brief (Document 534) and Attached Exhibits G-N, Dated: Sep. 30, 2004. |
Declaration of Jonathan Kagan in Support of Defendants' Opposition to Plaintiff Sharper Image Corp.'s Motion for a Preliminary Injunction (Document 530) and Attached Exhibits A-B, Dated: Jul. 23, 2004. |
Declaration of Peter Spiegel in Support of Defendants' Opposition to Plaintiff Sharper Image Corp's Motion for a Preliminary Injunction (Document 530) and Attached Exhibits A-H, Dated Jul. 21, 2004. |
Defendant Honeywell International Inc.'s Answer and Counterclaim to Plaintiff's Consolidated Amended Complaint, Dated: May 5, 2003. |
Defendant Kaz, Inc.'s Answer and Counterclaim to Plaintiff's Consolidated Amended Complaint, Dated: May 5, 2003. |
Defendants Honeywell and Kaz, Inc.'s Final Invalidity Contentions and Attached Exhibits A, B, and C, Dated: Mar. 24, 2004. |
Defendants Honeywell and Kaz, Inc.'s Preliminary Invalidity Contentions Relating to U.S. Patent No. 4,789,801, U.S. Patent No. 6,176,977, and U.S. Patent No. 6,350,417 and Attached Exhibits A, B, and C, Dated: Apr. 28, 2003. The analysis and all references from this Document have been incorporated by reference to Defendants'Second Preliminary Invalidity Contentions Relating to U.S. Patent Nos. 6,713,026 and 6,709,484 (Document 521) Exhibit A: List of Cited Prior Art of Record for Asserted U.S. Patent Nos. 6,176,977; 4,789,801; 6,350,417 Exhibit B: Supplemental List of the Following U.S. Patent Cited as Prior Art by Defendants: Exhibit C: Charts Preliminary Invalidity Contentions for U.S. Patent Nos. 6,176,977; 4,789,801; 6,350,417. |
Defendants Ideal Products, LLC's, Sylmark, Inc.'s, Sylmark LLC's, and Chaim Mark Bess's Answer to Second Amended Complaint, Dated: May 24, 2004. |
Defendants' L.R. 3-3 Preliminary Invalidity Contentions and Attached Exhibits A, B, and C, Dated: Jun. 1, 2004. Exhibit A: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,709,484. Exhibit B: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,713,026. |
Defendants' Opposition to Plaintiff Sharper Image Corporation's Motion for a Preliminary Injunction, Dated: Jul. 23, 2004. |
Defendants' Second Amended L.R. 3-3 Preliminary Invalidity Contentions, Dated: Nov. 29, 2004, and Attached Exhibits A, B, and C: |
Defendants' Second Preliminary Invalidity Contentions Relating to U.S. Patents Nos. 6,713,026 and 6,709,484 and Attached Exhibits A and B, Dated: Jun. 1, 2004. |
Defendants' Supplemental Patent L.R. 3-3 Preliminary Invalidity Contentions, Dated: Jun. 25, 2004. |
Defendants Target Corporation's, Ionic Pro, LLC's, Qwik Cook, Inc.'s, and Factories2U, LLC's Answer and Counterclaim to Plaintiff Sharper Image Corporation's Second Amended Complaint, Dated: May 27, 2004. |
Defendants'Opening Claim Construction Brief, Dated: Sep. 30, 2004. |
Electrical schematic and promotional material available from Zenion Industries, 7 pages, Aug. 1990. |
European Search Report, mailed Feb. 6, 2006. |
Exhibit A: Charts of Invalidity Contentions for U.S. Patent No. 6,709,484. |
Exhibit A: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,713,026. |
Exhibit A: Defendants'Charts of Final Invalidity Contentions Relating to Claim 24 of U.S. Patent No. 4,789,801. |
Exhibit A: Ed Leiber, "Air Purifiers: Growth of Iconic Cleaners Refuels Overall High-End Segment, "Homeworld Business Magazine,Home Health Care Report, 2004, 1 page. |
Exhibit A: English Translation of Japanese Unexamined Utility Model Application No. S62-20653; Publication Date: Feb. 7, 1987. |
Exhibit A: Excerpts from Webster's Third New International Dictionary (Unabridged) (Merriam Webster, Inc. 1989) pp. 732, 737, 742, 1027, 1097, 1192, 1768, 1936, 2053, 2409-2410, 2518, 2541, 2546, and 2627. |
Exhibit A: List of Cited Prior Art of Record for Asserted U.S. Patent Nos. 6,176,977; 4,789,801; 6,350,417. |
Exhibit A: U.S. Patent No. D 389,567; Inventor: Gudefin; Issued: Jan. 10, 1998; filed Nov. 14, 1996. |
Exhibit B: Charts of Invalidity Contentions for U.S. Patent No. 6,713,026. |
Exhibit B: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,709,484. |
Exhibit B: ConsumerReports.org, "Air Cleaners: Behind the Hype, "https://www.consumereports.org/main/content/printable.jsp?FOLDER%3C%EFOLDER_id, Oct. 2003, 6 pp. |
Exhibit B: Defendants'Charts of Final Invalidity Contentions Relating to the Claims of U.S. Patent No. 6,176,977. |
Exhibit B: Excerpts from VanNorstrand's Scientific Encyclopedia. |
Exhibit B: Japanese Unexamined Utility Model Application No. S62-20653; Publication Date: Feb. 7, 1987. |
Exhibit B: Supplemental List of the Following U.S. Patent Cited as Prior Art by Defendants. |
Exhibit B: U.S. Patent No. 6,296,692 B1; Inventor: Gutmann; Issued: Oct. 2, 2001; filed May 8, 1996. |
Exhibit C: "Household Air Cleaners, " Consumer Reports Magazine, Oct. 1992, 6 pp. |
Exhibit C: Charts Preliminary Invalidity Contentions for U.S. Patent Nos. 6,176,977; 4,789,801; 6,350,417. |
Exhibit C: Copy of the Following References Cited by Defendants as Prior Art: U.S. Patent D 326,514, Inventor: Alsup et al.; Issued May 26, 1992; filed Feb. 27, 1990 U.S. Patent 5,043,033 (Friedrich Unit); Inventor: Alsup et al.; Issued Jul. 23, 1991, filed Jul. 13, 1990 ConsumerReports.org, "Air Cleaners: Behind the Hype," https://www.consumerreports.org/main/content/printable.jsp?FOLDER%3C%3EFOLDER_id, Oct. 2003, 6 pp. "Household Air Cleaners," Consumer Reports Magazine, Oct. 1992, 6 pp. |
Exhibit C: Defendants'Charts of Final Invalidity Contentions Relating to Claim 16 of U.S. Patent No. 6,350,417. |
Exhibit C: English Translation of Japanese Unexamined Patent Application Bulletin No. S51-90077; Publication Date: Aug. 6, 1976. |
Exhibit C: Excerpts from the McGraw-Hill Dictionary of Engineering (2d Ed. 2002). |
Exhibit D: Excerpts from Old English Dictionary (on-line version) |
Exhibit D: Friedrich C-90A, "How the C-90A Works," BestAirCleaner.com, https://www.bestaircleaner.com/faq/c90works.asp, 1 page. |
Exhibit D: Japanese Unexamined Patent Application Bulletin No. S51-90077; Publication Date: Aug. 6, 1976. |
Exhibit E: 1) U.S. Patent No. 4,227,894 (Proynoff) 2) U.S. Patent No. 4,253,852 (Adams) 3) U.S. Patent No. 4,772,297 (Anzai) 4) U.S. Patent No. 4,789,801 (Lee) 5) U.S. Patent No. 4,496,375 (Levantine) 6) U.S. Patent No. 5,386,839 (Chen) 7) U.S. Patent No. 4,231,766 (Spurgin) |
Exhibit E: English Translation of German Published Patent Application 2206057; Publication Date: Aug. 16, 1973. |
Exhibit E: Service Information for the Friedrich C-90A Electronic Air Cleaner, 2003. 12 pp. |
Exhibit F: Brief Description of the Substance of Expert's Proposed Testimony-Summary of Expert Testimony Pursuant to Local Rule 4-2(b). |
Exhibit F: German Published Patent Application 2206057; Publication Date: Aug. 16, 1973. |
Exhibit F: Information on the Ionic Breeze Quadra Silent Air Purifier, Sharperimage.com https://www.sharperimage.com/us/en/catalog/productview/sku=SI637SNX/hppos=1, 2 pp. Exhibit G: Richard Thalheimer, "The 7 Reasons Why IBQ is the Best Air Cleaner for Your Home," https://www.sharperimage.com/us/en/templates/products/pipmorework1printable.jhtml, 3 pp. Exhibit H: Ionic Pro Ionic Air Purifier Owner's Guide, No date. 19 pp. |
Exhibit G: English Translation of Japanese Unexamined Utility Model Application No. S63-164948; Publication Date: Oct. 27, 1988. |
Exhibit G: Final Transcript of SHRP Q4 Sharper Image Corporation's Earning Conference Call, Mar. 25, 2004 Exhibit H: Sharper Image Web Page for Deluxe Spire Feel-Good Fan Exhibit I: Transcript of the Markman Hearing, Oct. 22, 2004 Exhibit J: Hearing Transcript of Defendant's Motion to Strike, from Sharper Image Corporation v. Consumer's Union of United States, Incorporated, Case No. C03-4094 MMC, N. Dist. California, San Francisco Division. Exhibit K: Photograph of Installed Honeywell Electrostatic Precipitator Exhibit L: List of the Following U.S. Patents Cited as Prior Art by Defendants:. |
Exhibit G: Plaintiff Sharper Image Corporation's Preliminary Claim Constructions and Extrinsic Evidence Pursuant to Patent Local Rule 4-2, Dated: Jul. 6, 2004, 6 pp. |
Exhibit G: Richard Thalheimer, "The 7 Reasons Why IBQ is the Best Air Cleaner for Your Home, " https://www.sharperimage.com/us/en/templates/products/pipmorework1printable.jhtml, 3 pp. |
Exhibit H: Excerpts from Webster's Third New International Dictionary of the English Language, p. 1097. |
Exhibit H: Ionic Pro Air Purifier Owner's Guide, No date. 19 pp. |
Exhibit H: Japanese Unexamined Utility Model Application No. S63-164948; Publication Date: Oct. 27, 1988. |
Exhibit H: Sharper Image Web Page for Deluxe Spire Feel-Good Fan. |
Exhibit I: English Translation of German Patent Document DE 197 41 621 C1; Publication Date: Jun. 10, 1999. |
Exhibit I: Excerpts from Webster's Third New International Dictionary of the English Language, p. 737. |
Exhibit I: Transcript of the Markman Hearing, Oct. 22, 2004. |
Exhibit J: Excerpts from Webster's Third New International Dictionary Dictionary of the English Language, p. 2546. |
Exhibit J: German Patent Document DE 197 41 621 C1; Publication Date: Jun. 10, 1999. |
Exhibit J: Hearing Transcript of Defendant's Motion to Strike, from Sharper Image Corporationv. Consumer's Union of United States, Incorporated, Case No. CO3-4094 MMC, N. Dist. California, San Francisco Division. |
Exhibit K: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,713,026. |
Exhibit K: Excerpts from Webster's Third New International Dictionary of theEnglish Language, p. 132. Exhibit L: Excerpts from Webster's Third New International Dictionary of the English Language, p. 99 and 1079. Exhibit M: Office Action for Plaintiff's '026 Patent, Feb. 27, 2003. 11 pp. Exhibit N: Amendment and Response to Office Action for Plaintiff's '026 Patent, Jun. 18, 2003. 19 pp. |
Exhibit K: Photograph of Installed Honeywell Electrostatic Precipitor. |
Exhibit L: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,713,026. |
Exhibit L: Excerpts from Webster's Third New International Dictionalry of the English Language, p. 99 and 1079.. |
Exhibit L: List of U.S. Patents Cited as Prior Art by Defendants. |
Exhibit M: Charts of Preliminary Invalidity Contentions for U.S. Patent No. 6,713,026. |
Exhibit M: Office Action for Plaintiff's '026 Patent, Feb. 27, 2003, 11 pp. |
Exhibit N: Amendment N: Amendment and Response to Office Action for Plaintiff's '026 Patent, Jun. 18, 2003. 19 pp. |
Exhibit N: The Pure Ion UV Air Purifier Sales Guide, No date. |
Friedrich C-90A Electronic Air Cleaner, Service Information, Friedrich Air Conditioning Co., 12 pp., 1985. |
Kaz's Final Invalidity Contentions, Dated: Apr. 11, 2005. |
Kaz's Responsive Claim Construction Brief, Dated: Sep. 30, 2004. |
LakeAir Excel and Maxum Portable Electronic Air Cleaners, Operating and Service Manual, LakeAir International, Inc., 11 pp., 1971. |
LENTEK Sila(TM) Plug-In Air Purifier/Deodorizer product box copyrighted 1999, 13 pages. |
LENTEK Sila™ Plug-In Air Purifier/Deodorizer product box copyrighted 1999, 13 pages. |
LENTEY Sila(TM) Plug-In Air Purifier/Deodorizer product box copyrighted 1999. |
LENTEY Sila™ Plug-In Air Purifier/Deodorizer product box copyrighted 1999. |
Letter From Mr. Alan Barry, Counsel for Sharper Image, to Mr. Pierre Yanney, Counsel for Kaz, Inc., Dated: Mar. 25, 2005. |
Letter from Mr. Pierre Yanney to Mr. Alan Barry, Dated: Mar. 22, 2005. |
Miscellaneous Administrative Request to File Sur-Reply in Opposition to Plaintiff's Motion for Preliminary Injunction, Dated: Aug. 4, 2004. |
Miscellaneous Administrative Request to File Sur-Reply Re: Claim Construction, Dated: Oct. 12, 2004. |
Promotional material available from Zenion Industries for the Plasma-Pure 100/200/300, 2 pages, Aug. 1990. |
Promotional material available from Zenion Industries for the Plasma-Tron, 2 pages, Aug. 1990. |
Trion 120 Air Purifier, Model 442501-025, https://www.feddersoutlet.com/trion120.html, 16 pp., believed to be at least one year prior to Nov. 5, 1998. |
Trion 150 Air Purifier, Model 45000-002, https://www.feddersoutlet.com/trion150.html, 11 pp., believed to be at least one year prior to Nov. 5, 1998. |
Trion 350 Air Purifier, Model 450111-010, https://www.feddersoutlet.com/trion350.html, 12 pp., believed to be at least one year prior to Nov. 5, 1998. |
Trion Console 250 Electronic Air Cleaner, Model Series 442857 and 445600, Manual for Installation Operation Maintenance, Trion Inc., 7 pp., believed to be at least one year prior to Nov. 5, 1998. |
U.S. Appl. No. 10/023,197, Taylor et al., filed Dec. 13, 2001. |
U.S. Appl. No. 10/023,460, Taylor et al., filed Dec. 13, 2001. |
U.S. Appl. No. 10/074,096, Taylor et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,103, Sinaiko et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,207, Taylor et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,208, Taylor, filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,209, Taylor et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,339, Taylor et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,347, Taylor et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,379, Taylor et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,549, Sinaiko et al., filed Feb. 12, 2002. |
U.S. Appl. No. 10/074,827, McKinney, Jr. et al., filed Feb. 12, 2002. |
U.S. Appl. No. 60/104,573, filed Oct. 16, 1998, Krichtafovitch. |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9700823B2 (en) | 2014-02-14 | 2017-07-11 | Access Business Group International Llc | Air treatment system |
US10512873B2 (en) | 2014-02-14 | 2019-12-24 | Access Business Group International Llc | Air treatment system |
US20150352564A1 (en) * | 2014-06-08 | 2015-12-10 | Headwaters, Inc | Personal rechargeable portable ionic air purifier |
US9737895B2 (en) * | 2014-06-08 | 2017-08-22 | Headwaters Inc | Personal rechargeable portable ionic air purifier |
US11167291B2 (en) * | 2020-02-27 | 2021-11-09 | Office Angunsa Co., Ltd. | Hybrid partition with function of removing fine dust |
Also Published As
Publication number | Publication date |
---|---|
JP2002528260A (en) | 2002-09-03 |
CN1331614A (en) | 2002-01-16 |
US20040191134A1 (en) | 2004-09-30 |
WO2000025909A1 (en) | 2000-05-11 |
EP1135205A1 (en) | 2001-09-26 |
US20050232831A1 (en) | 2005-10-20 |
US20020098131A1 (en) | 2002-07-25 |
EP1135205A4 (en) | 2006-03-22 |
JP2011115791A (en) | 2011-06-16 |
US20020079212A1 (en) | 2002-06-27 |
US6713026B2 (en) | 2004-03-30 |
HK1039911A1 (en) | 2002-05-17 |
US6176977B1 (en) | 2001-01-23 |
AU1607900A (en) | 2000-05-22 |
US20040096376A1 (en) | 2004-05-20 |
US20010004046A1 (en) | 2001-06-21 |
JP4799733B2 (en) | 2011-10-26 |
JP5356428B2 (en) | 2013-12-04 |
US6953556B2 (en) | 2005-10-11 |
US7662348B2 (en) | 2010-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41812E1 (en) | Electro-kinetic air transporter-conditioner | |
US6163098A (en) | Electro-kinetic air refreshener-conditioner with optional night light | |
US6863869B2 (en) | Electro-kinetic air transporter-conditioner with a multiple pin-ring configuration | |
US6312507B1 (en) | Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box | |
US7695690B2 (en) | Air treatment apparatus having multiple downstream electrodes | |
US7767165B2 (en) | Personal electro-kinetic air transporter-conditioner | |
US7381381B2 (en) | Air treatment apparatus having an interstitial electrode operable to affect particle flow | |
US6972057B2 (en) | Electrode cleaning for air conditioner devices | |
US20030233935A1 (en) | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices | |
US20020122751A1 (en) | Electro-kinetic air transporter-conditioner devices with a enhanced collector electrode for collecting more particulate matter | |
US6958134B2 (en) | Electro-kinetic air transporter-conditioner devices with an upstream focus electrode | |
US20020155041A1 (en) | Electro-kinetic air transporter-conditioner with non-equidistant collector electrodes | |
US20020122752A1 (en) | Electro-kinetic air transporter-conditioner devices with interstitial electrode | |
US20020146356A1 (en) | Dual input and outlet electrostatic air transporter-conditioner | |
US20020127156A1 (en) | Electro-kinetic air transporter-conditioner devices with enhanced collector electrode | |
US20020150520A1 (en) | Electro-kinetic air transporter-conditioner devices with enhanced emitter electrode | |
EP1494802A1 (en) | Method and apparatus for increasing performance of ion wind devices | |
US20070009406A1 (en) | Electrostatic air conditioner devices with enhanced collector electrode | |
US20050095182A1 (en) | Electro-kinetic air transporter-conditioner devices with electrically conductive foam emitter electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |