USRE40787E1 - Multilayer plastic substrates - Google Patents
Multilayer plastic substrates Download PDFInfo
- Publication number
- USRE40787E1 USRE40787E1 US10/889,640 US88964004A USRE40787E US RE40787 E1 USRE40787 E1 US RE40787E1 US 88964004 A US88964004 A US 88964004A US RE40787 E USRE40787 E US RE40787E
- Authority
- US
- United States
- Prior art keywords
- plastic substrate
- multilayer plastic
- thin film
- polymer
- multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 109
- 239000004033 plastic Substances 0.000 title claims abstract description 86
- 229920003023 plastic Polymers 0.000 title claims abstract description 86
- 229920000642 polymer Polymers 0.000 claims abstract description 76
- 239000010409 thin film Substances 0.000 claims abstract description 41
- 238000002834 transmittance Methods 0.000 claims abstract description 22
- 230000003746 surface roughness Effects 0.000 claims description 10
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 claims description 5
- 229920002313 fluoropolymer Polymers 0.000 claims description 5
- 230000009477 glass transition Effects 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920006393 polyether sulfone Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims 1
- 150000002790 naphthalenes Chemical class 0.000 claims 1
- 229920002223 polystyrene Polymers 0.000 claims 1
- 239000010410 layer Substances 0.000 description 70
- 230000004888 barrier function Effects 0.000 description 37
- 239000002243 precursor Substances 0.000 description 36
- 238000000576 coating method Methods 0.000 description 24
- 238000000151 deposition Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 229920000058 polyacrylate Polymers 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 9
- 239000002346 layers by function Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000008021 deposition Effects 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- -1 oligomers Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000001723 curing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000000165 glow discharge ionisation Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 239000006116 anti-fingerprint coating Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229920002457 flexible plastic Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000006223 plastic coating Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000006120 scratch resistant coating Substances 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
- H10K50/8445—Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
- Y10T428/24975—No layer or component greater than 5 mils thick
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
Definitions
- the present invention relates generally to plastic substrates which may be useful in products including, but not limited to, visual display devices, and more particularly to multilayer plastic substrates having improved light transmittance.
- (meth)acrylic is defined as “acrylic or methacrylic.”
- (meth)acrylate is defined as “acrylate or methacrylate.”
- average visible light transmittance means the average light transmittance over the visible range from 400 to 800 nm.
- peak visible light transmittance means the peak light transmittance over the visible range from 400 to 800 nm.
- the term “polymer precursor” includes monomers, oligomers, and resins, and combinations thereof.
- the term “monomer” is defined as a molecule of simple structure and low molecular weight that is capable of combining with a number of like or unlike molecules to form a polymer. Examples include, but are not limited to, simple acrylate molecules, for example, hexanedioldiacrylate, or tetraethyleneglycoldiacrylate, styrene, methyl styrene, and combinations thereof.
- the molecular weight of monomers is generally less than 1000, while for fluorinated monomers, it is generally less than 2000.
- Monomers may be combined to form oligomers and resins but do not combine to form other monomers.
- oligomer is defined as a compound molecule of at least two monomers that maybe cured by radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing. Oligomers include low molecular weight resins. Low molecular weight is defined herein as about 1000 to about 20,000 exclusive of fluorinated monomers. Oligomers are usually liquid or easily liquifiable. Oligomers do not combine to form monomers.
- the term “resin” is defined as a compound having a higher molecular weight (generally greater than 20,000) which is generally solid with no definite melting point. Examples include, but are not limited to, polystyrene resins, epoxy polyamine resins, phenolic resins, and acrylic resins (for example, polymethylmethacrylate), and combinations thereof.
- the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m 2 /day/micron of thickness (or 8.7 cc/m 2 /day for 7 mil thickness PET), and the water vapor transmission rates are also in this range.
- Certain display applications, such as those using organic light emitting devices (OLEDs) require encapsulation that has a maximum oxygen transmission rate of 10 ⁇ 4 to 10 ⁇ 2 cc/m 2 /day, and a maximum water vapor transmission rate of 10 ⁇ 5 to 10 ⁇ 6 g/m 2 /day.
- Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability.
- Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiO x , AlO x , and Si 3 N 4 vacuum deposited on polymeric substrates.
- a single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m 2 /day, and water vapor permeability of about 0.1 to 1.0 g/m 2 /day. However, those levels are still insufficient for many display devices.
- the high temperatures needed for such processes can deform and damage a plastic substrate, and subsequently destroy the display. If displays are to be manufactured on flexible plastic materials, the plastic must be able to withstand the necessary processing conditions, including high temperatures over 100° C., harsh chemicals, and mechanical damage.
- the present invention meets this need by providing a multilayer plastic substrate.
- the substrate consists essentially of a plurality of thin film layers of at least one polymer, the plurality of thin films layers being adjacent to one another and having sufficient strength to be self-supporting, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
- the average visible light transmittance is typically greater than about 85%, and it can be greater than about 90%.
- the peak visible transmittance is typically greater than about 85% and it can be greater than about 90%.
- the number of layers depends on the thickness of the thin film layers and the desired overall thickness of the multilayer plastic substrate.
- the multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick.
- Each thin film layer is typically less than about 50 ⁇ m thick.
- Polymers include, but are not limited to (meth)acrylate-containing polymers, styrene containing polymers, methyl styrene containing polymers, and fluorinated polymers, and combinations thereof.
- the glass transition temperature of the at least one polymer is generally greater than about 150° C., and it may be greater than about 200° C.
- the surface roughness of the multilayer plastic substrate is generally less than about 10 nm, and it may be less than about 5 nm, or less than about 2 nm.
- the multilayer plastic substrate can have a refractive index of greater than about 1.4 or greater than about 1.5.
- the multilayer plastic substrate can include additional layers, including, but not limited to, scratch resistant layers, antireflective coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, to provide functionality to the substrate if desired.
- Another aspect of the invention involves a method of making the multilayer plastic substrate.
- the method includes providing a support, depositing a plurality of thin film layers of at least one polymer on the support so that the plurality of thin film layers have sufficient strength to be self-supporting to form the multilayer substrate, and removing the support from the multilayer substrate, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
- the thin film layers can be deposited in a vacuum.
- a vacuum deposition process is flash evaporation.
- depositing the plurality of thin film layers includes flash evaporating a polymer precursor, condensing the polymer precursor as a liquid film, and cross-linking the polymer precursor to form the polymer.
- the polymer precursor can be cross-linked by any suitable method, including, but not limited to, radiation curing, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- the plurality of thin film layers can be deposited by extruding or casting a layer of polymer precursor, and cross-linking the polymer precursor to form the polymer using any suitable cross-linking method.
- FIG. 1 is a cross-section of one embodiment of the substrate of the present invention.
- FIG. 1 shows one embodiment of a multilayer plastic substrate of the present invention.
- the multilayer plastic substrate 100 is formed on a support 110 . After the multilayer plastic substrate is formed, the support 110 is removed.
- the multilayer plastic substrate of the present invention consists essentially of a plurality of thin film layers 120 of at least one polymer adjacent to one another.
- adjacent we mean next to, but not necessarily directly next to.
- the polymer thin film layers will be directly next to one another.
- the plurality of thin film layers have sufficient strength to be self-supporting after they are formed.
- the exact number of thin film layers is not critical. It depends on the thickness of each of the individual thin film layers and the desired overall thickness of the multilayer plastic substrate. There must be enough thin film layers so that the plurality of thin film layers have sufficient strength to be self-supporting.
- the term self-supporting means the substrate can be handled and processed without the need for an underlying support once the plurality of thin film layers have been deposited. There are typically at least about 50 thin film layers, more typically at least about 100 thin film layers. There are generally in the range of about 500 thin film layers to about 1000 thin film layers or more.
- Each thin film layer is typically between about 0.05 to about 2 ⁇ m thick, generally between about 0.2 to about 0.3 ⁇ m. If the thin film layers are extruded, they are usually thicker, typically up to about 50 ⁇ m thick, in that case.
- the multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick. A 0.007 inch thick substrate would require about 90 to 350 passes of the web past the polymer precursor sources.
- the multilayer plastic substrate can be flexible or rigid.
- the average visible light transmittance of the multilayer plastic substrate is greater than about 80%, generally greater than 85%, and it may be greater than 90%.
- the peak visible light transmittance is generally greater than 85%, and it may be greater than 90%.
- the at least one polymer can be any suitable polymer, including, but not limited to, polymers made from styrene polymer precursors, polymers made from methyl styrene polymer precursors, polymers made from (meth)acrylate polymer precursors, for example, polymers made from hexanedioldiacrylate or tetraethyleneglycoldiacrylate polymer precursors, and fluorinated polymers, and combinations thereof. Polymers made from (meth)acrylate polymer precursors work well.
- the multilayer plastic substrate can be flexible or rigid.
- Multilayer plastic substrates made from polymers including, but not limited to, (meth)acrylate polymer precursors will be flexible.
- One advantage of multilayer laminated materials is that they typically have greater strength and flexibility than comparable single layer substrates.
- a multilayer plastic substrate of the present invention generally has hundreds of cross-linked layers that provide mechanical strength and sufficient rigidity to support the circuitry and devices on the display.
- a multilayer plastic substrate made from (meth)acrylate polymer precursors will have excellent transmission at visible wavelengths. Because polymers made from (meth) acrylate polymer precursors have very low optical absorption, a multilayer plastic substrate made entirely from such polymers will have high optical transparency, typically an average visible light transmittance of greater than about 90%. Multilayer substrates made entirely from fluorinated polymers will also have an average visible light transmittance of greater than 90%. Substrates made from styrene and methyl styrene polymers would have an average visible light transmittance of about 89%.
- the birefringence present in many flexible substrates can be reduced or eliminated with the present invention because the multilayer plastic substrate is not mechanically stressed during deposition.
- Fully cured layers of polymers made from (meth)acrylate polymer precursors generally have a refractive index of greater than about 1.5, while fully cured fluorinated polymers generally have a refractive index of greater than about 1.4. Styrene containing polymers would have a refractive index of about 1.6.
- substrates with a surface roughness of less than 2 nm are the root mean square of peak-to-valley measurement over a specified distance, usually 1 nm. It can be measured using an atomic force microscope or back reflection distribution function. Many substrates do not have the necessary surface smoothness. For example, the surface roughness of PET is about 20-50 nm with 100 nm spikes. In contrast, flash evaporated polymer coatings have a very low surface roughness, generally less than about 10 nm, and it may be less than 5 nm, or less than about 2 nm. Surface roughness on the order of 1 nm has been demonstrated. The surface of the multilayer plastic substrate is specular because of the exceptional smoothness of the polymer layers.
- the multilayer plastic substrate can have a high glass transition temperature and excellent chemical resistance.
- the glass transition temperature of the at least one polymer is generally greater than about 150° C., and may be greatr than about 200° C.
- Polymers including, but not limited to, (meth)acrylates, polycarbonates, polysulfones, polyethersulfones, polymides, polyamides, and polyether napthteates have demonstrated excellent resistance to solvents. This provides protection from processing chemicals, ultraviolet light exposure, and photoresists during lithography processes used to manufacture flat panel displays and their devices.
- the thin film layers that form the multilayer substrate can be deposited by any suitable method, including vacuum flash evaporation, extrusion, or casting. With vacuum flash evaporation, deposition can be performed using a rotating drum or strap configuration.
- the polymer precursor is degassed and metered into a hot tube where it flash evaporates and exits through a nozzle as a polymer precursor gas.
- the flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, continuously atomizing the polymer precursor into a continuous flow of droplets, and continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid polymer precursor, but below a pyrolysis temperature, forming the evaporate.
- the droplets typically range in size from about 1 micrometer to about 50 micrometers, by they could be smaller or larger.
- the flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, and continuously directly vaporizing the liquid flow of the polymer precursor by continuously contacting the liquid polymer precursor on a heated surface having a temperature at or above the boiling point of the liquid polymer precursor, but below the pyrolysis temperature, forming the evaporate.
- This may be done using the vaporizer disclosed in U.S. Pat. Nos. 5,402,314, 5,536,323, and 5,711,816, which are incorporated herein by reference.
- the polymer precursor then condenses on the support as a liquid film which is subsequently cross-linked to form a polymer by any suitable method, including, but not limited to, radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- radiation such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
- This process is capable of depositing thousands of polymer layers at web speeds up to 100 m/min.
- the polymer precursor can be deposited by extruding, spraying, or casting layers of polymer precursor on the support.
- the polymer precursor is then cross-linked using any suitable method, such as those described above.
- the functionality of the multilayer plastic substrate can be increased by the incorporation of functional layers 130 , 140 , and 150 during the deposition process.
- These functional layers 130 , 140 , and 150 can be deposited at any time during the deposition process. They can be deposited below, 130 , in between, 140 , or on top of, 150 , the plurality of thin film layers 120 of the multilayer plastic substrate, as shown in FIG. 1 .
- depositing a coating adjacent to the multilayer plastic substrate includes: depositing the coating on the top layer of the multilayer plastic coating; depositing the coating on the multilayer plastic substrate and then depositing additional layers of the multilayer plastic substrate over the coating so that the coating is between the layers of the multilayer plastic substrate; and depositing the coating first and then depositing the layers of the multilayer plastic substrate, and combinations thereof.
- Functional layers 130 , 140 , and 150 include, but are not limited to, scratch resistant coatings, antirefelctive coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, and other functional layers. Depositing these additional layers allows the multilayer plastic substrate to be specifically tailored to different applications. Little or no surface modification is necessary for deposition of other layers because of the very smooth surface of the multilayer plastic substrate. Interfaces can be graded to bond all integrated functional layers firmly during the same coating run and pumpdown.
- the presence of functional layers not reduce the average visible light transmittance below 80%, for others, not below 85%, and still others, not below 90%. In others, it may be important that the peak visible light transmittance not drop below 85%, and for others, not below 90%. In others, it may be important that the functional layers not increase the surface roughness to greater than about 10 nm, for others, not greater than about 5 nm, and for others, not greater than 2 nm.
- the barrier coating can be a barrier stack having one or more barrier layers and one or more polymer layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers.
- the important feature is that the barrier stack have at least one polymer layer and at least one barrier layer.
- the barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material.
- the barrier layers are typically in the range of about 100-400 ⁇ thick, and the polymer layers are typically in the range of about 1000-10,000 ⁇ thick.
- barrier stacks are not limited. The number of barrier stacks needed depends on the material used for the polymer of the substrate and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
- the barrier layers should be transparent.
- Transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
- the metal oxides include, but are not limited to, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof.
- the metal carbides include, but are not limited to, boron carbide, tungsten carbide, silicon carbide, and combinations thereof.
- the metal nitrides include, but are not limited to, aluminum nitride, silicon nitride, boron nitride, and combinations thereof.
- the metal oxynitrides include, but are not limited to, aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.
- the metal oxyborides include, but are not limited to, zirconium oxyboride, titanium oxyboride, and combinations thereof.
- the polymer layers of the barrier stacks can be made from (meth)acrylate polymer precursors.
- the polymer layers in the barrier stacks can be the same or different.
- the barrier stacks can be made by vacuum deposition.
- the barrier layer can be vacuum deposited onto, or into, the multilayer plastic substrate, or another functional layer.
- the polymer layer is then deposited on the barrier layer, preferably by flash evaporating (meth)acrylate polymer precursors, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber.
- flash evaporating (meth)acrylate polymer precursors condensing on the barrier layer, and polymerizing in situ in a vacuum chamber.
- Vacuum deposition includes flash evaporation of (meth) acrylate polymer precursors with in situ polymerization under vacuum, plasma deposition and polymerization of (meth)acrylate polymer precursors, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
- ECR-PECVD electron cyclotron resonance-plasma enhanced vapor deposition
- the multilayer plastic substrate is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/889,640 USRE40787E1 (en) | 1999-10-25 | 2004-07-12 | Multilayer plastic substrates |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/427,138 US6522067B1 (en) | 1998-12-16 | 1999-10-25 | Environmental barrier material for organic light emitting device and method of making |
US09/835,768 US6623861B2 (en) | 2001-04-16 | 2001-04-16 | Multilayer plastic substrates |
US10/889,640 USRE40787E1 (en) | 1999-10-25 | 2004-07-12 | Multilayer plastic substrates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,768 Reissue US6623861B2 (en) | 1999-10-25 | 2001-04-16 | Multilayer plastic substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE40787E1 true USRE40787E1 (en) | 2009-06-23 |
Family
ID=25270403
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,768 Ceased US6623861B2 (en) | 1999-10-25 | 2001-04-16 | Multilayer plastic substrates |
US10/443,410 Expired - Lifetime US6962671B2 (en) | 1999-10-25 | 2003-05-22 | Multilayer plastic substrates |
US10/889,640 Expired - Lifetime USRE40787E1 (en) | 1999-10-25 | 2004-07-12 | Multilayer plastic substrates |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,768 Ceased US6623861B2 (en) | 1999-10-25 | 2001-04-16 | Multilayer plastic substrates |
US10/443,410 Expired - Lifetime US6962671B2 (en) | 1999-10-25 | 2003-05-22 | Multilayer plastic substrates |
Country Status (2)
Country | Link |
---|---|
US (3) | US6623861B2 (en) |
WO (1) | WO2002083411A1 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100068382A1 (en) * | 2006-12-29 | 2010-03-18 | Strobel Mark A | Method of curing metal alkoxide-containing films |
US20100068542A1 (en) * | 2006-12-29 | 2010-03-18 | 3M Innovative Properties Company | Method of making inorganic or inorganic/organic hybrid films |
US20100119840A1 (en) * | 2003-04-02 | 2010-05-13 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
US20100272933A1 (en) * | 2007-12-28 | 2010-10-28 | Mccormick Fred B | Flexible encapsulating film systems |
US20110081502A1 (en) * | 2008-06-30 | 2011-04-07 | Bright Clark I | Method of making inorganic or inorganic/organic hybrid barrier films |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US20150188079A1 (en) * | 2014-01-02 | 2015-07-02 | Samsung Display Co., Ltd. | Flexible organic light-emitting display apparatus and method of manufacturing the same |
US20150280153A1 (en) * | 2014-03-28 | 2015-10-01 | Nec Lighting, Ltd. | Organic el panel translucent substrate, control method for refractive index anisotropy of organic el panel translucent substrate, manufacturing method for organic el panel translucent substrate, organic el panel, and organic el device |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US11393679B2 (en) | 2016-06-13 | 2022-07-19 | Gvd Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US11679412B2 (en) | 2016-06-13 | 2023-06-20 | Gvd Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040241454A1 (en) * | 1993-10-04 | 2004-12-02 | Shaw David G. | Barrier sheet and method of making same |
US20040005482A1 (en) * | 2001-04-17 | 2004-01-08 | Tomio Kobayashi | Antireflection film and antireflection layer-affixed plastic substrate |
US7211828B2 (en) | 2001-06-20 | 2007-05-01 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and electronic apparatus |
TW548860B (en) * | 2001-06-20 | 2003-08-21 | Semiconductor Energy Lab | Light emitting device and method of manufacturing the same |
JP4166455B2 (en) * | 2001-10-01 | 2008-10-15 | 株式会社半導体エネルギー研究所 | Polarizing film and light emitting device |
TWI237716B (en) * | 2001-12-18 | 2005-08-11 | Chi Mei Optoelectronics Corp | Liquid crystal display device and its manufacturing method |
US7038377B2 (en) | 2002-01-16 | 2006-05-02 | Seiko Epson Corporation | Display device with a narrow frame |
US7164155B2 (en) | 2002-05-15 | 2007-01-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20070264564A1 (en) | 2006-03-16 | 2007-11-15 | Infinite Power Solutions, Inc. | Thin film battery on an integrated circuit or circuit board and method thereof |
US8404376B2 (en) | 2002-08-09 | 2013-03-26 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8236443B2 (en) | 2002-08-09 | 2012-08-07 | Infinite Power Solutions, Inc. | Metal film encapsulation |
US8431264B2 (en) | 2002-08-09 | 2013-04-30 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US8394522B2 (en) | 2002-08-09 | 2013-03-12 | Infinite Power Solutions, Inc. | Robust metal film encapsulation |
US8535396B2 (en) | 2002-08-09 | 2013-09-17 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8021778B2 (en) | 2002-08-09 | 2011-09-20 | Infinite Power Solutions, Inc. | Electrochemical apparatus with barrier layer protected substrate |
US8445130B2 (en) | 2002-08-09 | 2013-05-21 | Infinite Power Solutions, Inc. | Hybrid thin-film battery |
US20040121146A1 (en) * | 2002-12-20 | 2004-06-24 | Xiao-Ming He | Composite barrier films and method |
JP2007516347A (en) * | 2003-05-16 | 2007-06-21 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Barrier film for plastic substrates manufactured by atomic layer deposition |
US8728285B2 (en) | 2003-05-23 | 2014-05-20 | Demaray, Llc | Transparent conductive oxides |
JP2005123012A (en) * | 2003-10-16 | 2005-05-12 | Pioneer Electronic Corp | Organic electroluminescent display panel, and method of manufacturing the same |
US8722160B2 (en) * | 2003-10-31 | 2014-05-13 | Aeris Capital Sustainable Ip Ltd. | Inorganic/organic hybrid nanolaminate barrier film |
US20050181535A1 (en) * | 2004-02-17 | 2005-08-18 | Yun Sun J. | Method of fabricating passivation layer for organic devices |
US8642455B2 (en) * | 2004-02-19 | 2014-02-04 | Matthew R. Robinson | High-throughput printing of semiconductor precursor layer from nanoflake particles |
US20090032108A1 (en) * | 2007-03-30 | 2009-02-05 | Craig Leidholm | Formation of photovoltaic absorber layers on foil substrates |
WO2006054668A1 (en) * | 2004-11-18 | 2006-05-26 | Mitsui Chemicals, Inc. | Laminate comprising multilayered film bonded through hydrogen bond, self-supporting thin film provided from said laminate, and their production process and use |
KR101021536B1 (en) | 2004-12-08 | 2011-03-16 | 섬모픽스, 인코포레이티드 | Deposition of ?????? |
US7959769B2 (en) | 2004-12-08 | 2011-06-14 | Infinite Power Solutions, Inc. | Deposition of LiCoO2 |
US7852562B2 (en) * | 2005-02-28 | 2010-12-14 | Nalux Co., Ltd. | Optical element with laser damage suppression film |
US20070020451A1 (en) * | 2005-07-20 | 2007-01-25 | 3M Innovative Properties Company | Moisture barrier coatings |
US20070040501A1 (en) | 2005-08-18 | 2007-02-22 | Aitken Bruce G | Method for inhibiting oxygen and moisture degradation of a device and the resulting device |
US7722929B2 (en) | 2005-08-18 | 2010-05-25 | Corning Incorporated | Sealing technique for decreasing the time it takes to hermetically seal a device and the resulting hermetically sealed device |
US7829147B2 (en) | 2005-08-18 | 2010-11-09 | Corning Incorporated | Hermetically sealing a device without a heat treating step and the resulting hermetically sealed device |
US20070148346A1 (en) * | 2005-12-23 | 2007-06-28 | General Electric Company | Systems and methods for deposition of graded materials on continuously fed objects |
US7790237B2 (en) * | 2006-02-21 | 2010-09-07 | Cbrite Inc. | Multilayer films for package applications and method for making same |
US20070210420A1 (en) * | 2006-03-11 | 2007-09-13 | Nelson Curt L | Laser delamination of thin metal film using sacrificial polymer layer |
US8158450B1 (en) * | 2006-05-05 | 2012-04-17 | Nanosolar, Inc. | Barrier films and high throughput manufacturing processes for photovoltaic devices |
US20080006819A1 (en) * | 2006-06-19 | 2008-01-10 | 3M Innovative Properties Company | Moisture barrier coatings for organic light emitting diode devices |
JP4178190B2 (en) * | 2006-08-25 | 2008-11-12 | ナルックス株式会社 | Optical element having multilayer film and method for producing the same |
US8088502B2 (en) * | 2006-09-20 | 2012-01-03 | Battelle Memorial Institute | Nanostructured thin film optical coatings |
CN101523571A (en) | 2006-09-29 | 2009-09-02 | 无穷动力解决方案股份有限公司 | Masking of and material constraint for depositing battery layers on flexible substrates |
US8197781B2 (en) | 2006-11-07 | 2012-06-12 | Infinite Power Solutions, Inc. | Sputtering target of Li3PO4 and method for producing same |
US8115326B2 (en) * | 2006-11-30 | 2012-02-14 | Corning Incorporated | Flexible substrates having a thin-film barrier |
KR100875099B1 (en) * | 2007-06-05 | 2008-12-19 | 삼성모바일디스플레이주식회사 | Organic light emitting device and method for manufacturing same |
US9334557B2 (en) | 2007-12-21 | 2016-05-10 | Sapurast Research Llc | Method for sputter targets for electrolyte films |
US8268488B2 (en) | 2007-12-21 | 2012-09-18 | Infinite Power Solutions, Inc. | Thin film electrolyte for thin film batteries |
EP2229706B1 (en) | 2008-01-11 | 2014-12-24 | Infinite Power Solutions, Inc. | Thin film encapsulation for thin film batteries and other devices |
JP5595377B2 (en) | 2008-04-02 | 2014-09-24 | インフィニット パワー ソリューションズ, インコーポレイテッド | Control and protection of passive over and under voltage for energy storage devices associated with energy intake |
JP2012500610A (en) | 2008-08-11 | 2012-01-05 | インフィニット パワー ソリューションズ, インコーポレイテッド | Energy device with integrated collector surface and method for electromagnetic energy acquisition |
CN102150185B (en) | 2008-09-12 | 2014-05-28 | 无穷动力解决方案股份有限公司 | Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof |
US8508193B2 (en) | 2008-10-08 | 2013-08-13 | Infinite Power Solutions, Inc. | Environmentally-powered wireless sensor module |
FR2938375A1 (en) * | 2009-03-16 | 2010-05-14 | Commissariat Energie Atomique | Flexible, transparent and self-supporting multi-layer film for e.g. organic LED device, has organic and inorganic layers whose thicknesses are chosen such that total thickness of film is greater than or equal to ten micrometers |
EP2236520A1 (en) * | 2009-03-31 | 2010-10-06 | Leukocare Ag | Stabilizing composition for immobilized biomolecules |
DE102009018518A1 (en) * | 2009-04-24 | 2010-10-28 | Tesa Se | Transparent barrier laminates |
US8823154B2 (en) * | 2009-05-08 | 2014-09-02 | The Regents Of The University Of California | Encapsulation architectures for utilizing flexible barrier films |
US20120127578A1 (en) * | 2009-08-03 | 2012-05-24 | Bright Clark I | Antireflective transparent emi shielding optical filter |
JP5492998B2 (en) | 2009-09-01 | 2014-05-14 | インフィニット パワー ソリューションズ, インコーポレイテッド | Printed circuit board with built-in thin film battery |
CN102947976B (en) | 2010-06-07 | 2018-03-16 | 萨普拉斯特研究有限责任公司 | Chargeable, highdensity electrochemical apparatus |
CN109375307A (en) * | 2012-08-15 | 2019-02-22 | 3M创新有限公司 | The polarization beam apparatus plate of high-definition picture and the system using such polarization beam apparatus plate are provided |
CN104124387A (en) * | 2013-04-28 | 2014-10-29 | 海洋王照明科技股份有限公司 | Flexible conductive electrode and preparation method thereof |
US9946047B2 (en) * | 2014-03-04 | 2018-04-17 | Largan Precision Co., Ltd. | Annual optical spacer, image lens system, and mobile terminal |
KR20170036701A (en) | 2014-07-25 | 2017-04-03 | 카티바, 인크. | Organic Thin Film Ink Compositions and Methods |
WO2016138195A1 (en) | 2015-02-25 | 2016-09-01 | Corning Incorporated | Optical structures and articles with multilayer stacks having high hardness and methods for making the same |
US10351077B2 (en) * | 2015-08-25 | 2019-07-16 | Mazda Motor Corporation | Vehicle member |
EP3344712A4 (en) | 2015-08-31 | 2019-05-15 | Kateeva, Inc. | Di- and mono(meth)acrylate based organic thin film ink compositions |
CN105552247B (en) * | 2015-12-08 | 2018-10-26 | 上海天马微电子有限公司 | Composite substrate, flexible display device and preparation method thereof |
CN105374952A (en) * | 2015-12-15 | 2016-03-02 | 信利半导体有限公司 | OLED member manufacture method and OLED member and application |
US11124658B2 (en) * | 2016-01-13 | 2021-09-21 | Nippon Paint Holdings Co., Ltd | Infrared reflective coating composition |
CN118510305A (en) | 2017-04-21 | 2024-08-16 | 柯狄公司 | Compositions and techniques for forming organic thin films |
CN109148711B (en) * | 2017-06-19 | 2020-11-17 | Tcl科技集团股份有限公司 | Device packaging method based on inorganic thin film |
CN110372222B (en) * | 2019-06-28 | 2022-07-22 | 华为技术有限公司 | Glass panel, preparation method thereof, display screen comprising glass panel and terminal |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2382432A (en) | 1940-08-02 | 1945-08-14 | Crown Cork & Seal Co | Method and apparatus for depositing vaporized metal coatings |
US2384500A (en) | 1942-07-08 | 1945-09-11 | Crown Cork & Seal Co | Apparatus and method of coating |
US3475307A (en) | 1965-02-04 | 1969-10-28 | Continental Can Co | Condensation of monomer vapors to increase polymerization rates in a glow discharge |
US3607365A (en) | 1969-05-12 | 1971-09-21 | Minnesota Mining & Mfg | Vapor phase method of coating substrates with polymeric coating |
US3941630A (en) | 1974-04-29 | 1976-03-02 | Rca Corporation | Method of fabricating a charged couple radiation sensing device |
US4061835A (en) | 1975-02-27 | 1977-12-06 | Standard Oil Company (Indiana) | Process of forming a polypropylene coated substrate from an aqueous suspension of polypropylene particles |
US4098965A (en) | 1977-01-24 | 1978-07-04 | Polaroid Corporation | Flat batteries and method of making the same |
US4266223A (en) | 1978-12-08 | 1981-05-05 | W. H. Brady Co. | Thin panel display |
US4283482A (en) | 1979-03-29 | 1981-08-11 | Nihon Shinku Gijutsu Kabushiki Kaisha | Dry Lithographic Process |
US4313254A (en) | 1979-10-30 | 1982-02-02 | The Johns Hopkins University | Thin-film silicon solar cell with metal boride bottom electrode |
US4426275A (en) | 1981-11-27 | 1984-01-17 | Deposition Technology, Inc. | Sputtering device adaptable for coating heat-sensitive substrates |
US4521458A (en) | 1983-04-01 | 1985-06-04 | Nelson Richard C | Process for coating material with water resistant composition |
US4537814A (en) | 1983-01-27 | 1985-08-27 | Toyoda Gosei Co., Ltd. | Resin article having a ceramics coating layer |
US4555274A (en) | 1982-03-15 | 1985-11-26 | Fuji Photo Film Co., Ltd. | Ion selective electrode and process of preparing the same |
US4557978A (en) | 1983-12-12 | 1985-12-10 | Primary Energy Research Corporation | Electroactive polymeric thin films |
US4572845A (en) | 1983-07-05 | 1986-02-25 | Draiswerke Gmbh | Process for gluing wood chips and the like with liquid glue and apparatus for performing the process |
US4581337A (en) | 1983-07-07 | 1986-04-08 | E. I. Du Pont De Nemours And Company | Polyether polyamines as linking agents for particle reagents useful in immunoassays |
US4624867A (en) | 1984-03-21 | 1986-11-25 | Nihon Shinku Gijutsu Kabushiki Kaisha | Process for forming a synthetic resin film on a substrate and apparatus therefor |
US4695618A (en) | 1986-05-23 | 1987-09-22 | Ameron, Inc. | Solventless polyurethane spray compositions and method for applying them |
US4710426A (en) | 1983-11-28 | 1987-12-01 | Polaroid Corporation, Patent Dept. | Solar radiation-control articles with protective overlayer |
US4722515A (en) | 1984-11-06 | 1988-02-02 | Spectrum Control, Inc. | Atomizing device for vaporization |
US4768666A (en) | 1987-05-26 | 1988-09-06 | Milton Kessler | Tamper proof container closure |
US4843036A (en) | 1987-06-29 | 1989-06-27 | Eastman Kodak Company | Method for encapsulating electronic devices |
US4842893A (en) | 1983-12-19 | 1989-06-27 | Spectrum Control, Inc. | High speed process for coating substrates |
US4855186A (en) | 1987-03-06 | 1989-08-08 | Hoechst Aktiengesellschaft | Coated plastic film and plastic laminate prepared therefrom |
US4854186A (en) | 1987-12-02 | 1989-08-08 | Kuster & Co. Gmbh | Apparatus for adjusting the length of a bowden cable |
US4889609A (en) | 1988-09-06 | 1989-12-26 | Ovonic Imaging Systems, Inc. | Continuous dry etching system |
US4913090A (en) | 1987-10-02 | 1990-04-03 | Mitsubishi Denki Kabushiki Kaisha | Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber |
US4931158A (en) | 1988-03-22 | 1990-06-05 | The Regents Of The Univ. Of Calif. | Deposition of films onto large area substrates using modified reactive magnetron sputtering |
US4934315A (en) | 1984-07-23 | 1990-06-19 | Alcatel N.V. | System for producing semicondutor layer structures by way of epitaxial growth |
US4954371A (en) | 1986-06-23 | 1990-09-04 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
US4977013A (en) | 1988-06-03 | 1990-12-11 | Andus Corporation | Tranparent conductive coatings |
US5032461A (en) | 1983-12-19 | 1991-07-16 | Spectrum Control, Inc. | Method of making a multi-layered article |
US5036249A (en) | 1989-12-11 | 1991-07-30 | Molex Incorporated | Electroluminescent lamp panel and method of fabricating same |
US5047131A (en) | 1989-11-08 | 1991-09-10 | The Boc Group, Inc. | Method for coating substrates with silicon based compounds |
US5059861A (en) | 1990-07-26 | 1991-10-22 | Eastman Kodak Company | Organic electroluminescent device with stabilizing cathode capping layer |
US5124204A (en) | 1988-07-14 | 1992-06-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent (EL) panel |
US5189405A (en) | 1989-01-26 | 1993-02-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
US5204314A (en) | 1990-07-06 | 1993-04-20 | Advanced Technology Materials, Inc. | Method for delivering an involatile reagent in vapor form to a CVD reactor |
US5203898A (en) | 1991-12-16 | 1993-04-20 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
US5237439A (en) | 1991-09-30 | 1993-08-17 | Sharp Kabushiki Kaisha | Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide |
US5260095A (en) | 1992-08-21 | 1993-11-09 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
US5336324A (en) | 1991-12-04 | 1994-08-09 | Emcore Corporation | Apparatus for depositing a coating on a substrate |
US5354497A (en) | 1992-04-20 | 1994-10-11 | Sharp Kabushiki Kaisha | Liquid crystal display |
US5356947A (en) | 1990-03-29 | 1994-10-18 | Minnesota Mining And Manufacturing Company | Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith |
US5376467A (en) | 1992-03-06 | 1994-12-27 | Sony Corporation | Organic electrolyte battery |
US5393607A (en) | 1992-01-13 | 1995-02-28 | Mitsui Toatsu Chemiclas, Inc. | Laminated transparent plastic material and polymerizable monomer |
US5402314A (en) | 1992-02-10 | 1995-03-28 | Sony Corporation | Printed circuit board having through-hole stopped with photo-curable solder resist |
US5427638A (en) | 1992-06-04 | 1995-06-27 | Alliedsignal Inc. | Low temperature reaction bonding |
US5440446A (en) | 1993-10-04 | 1995-08-08 | Catalina Coatings, Inc. | Acrylate coating material |
US5451449A (en) | 1994-05-11 | 1995-09-19 | The Mearl Corporation | Colored iridescent film |
US5461545A (en) | 1990-08-24 | 1995-10-24 | Thomson-Csf | Process and device for hermetic encapsulation of electronic components |
US5464667A (en) | 1994-08-16 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Jet plasma process and apparatus |
US5510173A (en) | 1993-08-20 | 1996-04-23 | Southwall Technologies Inc. | Multiple layer thin films with improved corrosion resistance |
US5512320A (en) | 1993-01-28 | 1996-04-30 | Applied Materials, Inc. | Vacuum processing apparatus having improved throughput |
US5536323A (en) | 1990-07-06 | 1996-07-16 | Advanced Technology Materials, Inc. | Apparatus for flash vaporization delivery of reagents |
US5554220A (en) | 1995-05-19 | 1996-09-10 | The Trustees Of Princeton University | Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities |
US5576101A (en) | 1992-12-18 | 1996-11-19 | Bridgestone Corporation | Gas barrier rubber laminate for minimizing refrigerant leakage |
US5578141A (en) | 1993-07-01 | 1996-11-26 | Canon Kabushiki Kaisha | Solar cell module having excellent weather resistance |
US5607789A (en) | 1995-01-23 | 1997-03-04 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
US5620524A (en) | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
US5629389A (en) | 1995-06-06 | 1997-05-13 | Hewlett-Packard Company | Polymer-based electroluminescent device with improved stability |
US5652192A (en) | 1992-07-10 | 1997-07-29 | Battelle Memorial Institute | Catalyst material and method of making |
US5654084A (en) | 1994-07-22 | 1997-08-05 | Martin Marietta Energy Systems, Inc. | Protective coatings for sensitive materials |
US5660961A (en) | 1996-01-11 | 1997-08-26 | Xerox Corporation | Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference |
US5665280A (en) | 1996-01-30 | 1997-09-09 | Becton Dickinson Co | Blood collection tube assembly |
US5681615A (en) | 1995-07-27 | 1997-10-28 | Battelle Memorial Institute | Vacuum flash evaporated polymer composites |
US5684084A (en) | 1995-12-21 | 1997-11-04 | E. I. Du Pont De Nemours And Company | Coating containing acrylosilane polymer to improve mar and acid etch resistance |
US5686360A (en) | 1995-11-30 | 1997-11-11 | Motorola | Passivation of organic devices |
US5693956A (en) | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
US5695564A (en) | 1994-08-19 | 1997-12-09 | Tokyo Electron Limited | Semiconductor processing system |
US5711816A (en) | 1990-07-06 | 1998-01-27 | Advanced Technolgy Materials, Inc. | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
US5725909A (en) | 1993-10-04 | 1998-03-10 | Catalina Coatings, Inc. | Acrylate composite barrier coating process |
US5731661A (en) | 1996-07-15 | 1998-03-24 | Motorola, Inc. | Passivation of electroluminescent organic devices |
US5736207A (en) | 1994-10-27 | 1998-04-07 | Schott Glaswerke | Vessel of plastic having a barrier coating and a method of producing the vessel |
US5747182A (en) | 1992-07-27 | 1998-05-05 | Cambridge Display Technology Limited | Manufacture of electroluminescent devices |
US5759329A (en) | 1992-01-06 | 1998-06-02 | Pilot Industries, Inc. | Fluoropolymer composite tube and method of preparation |
US5771177A (en) | 1993-05-17 | 1998-06-23 | Kyoei Automatic Control Technology Co., Ltd. | Method and apparatus for measuring dynamic load |
US5771562A (en) | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
US5782355A (en) | 1994-09-30 | 1998-07-21 | Fuji Photo Film Co., Ltd. | Cassette case |
US5792550A (en) | 1989-10-24 | 1998-08-11 | Flex Products, Inc. | Barrier film having high colorless transparency and method |
US5795399A (en) | 1994-06-30 | 1998-08-18 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product |
US5811177A (en) | 1995-11-30 | 1998-09-22 | Motorola, Inc. | Passivation of electroluminescent organic devices |
US5811183A (en) | 1995-04-06 | 1998-09-22 | Shaw; David G. | Acrylate polymer release coated sheet materials and method of production thereof |
US5821138A (en) | 1995-02-16 | 1998-10-13 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device using a metal which promotes crystallization of silicon and substrate bonding |
US5821692A (en) | 1996-11-26 | 1998-10-13 | Motorola, Inc. | Organic electroluminescent device hermetic encapsulation package |
US5844363A (en) | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
US5869791A (en) | 1995-04-18 | 1999-02-09 | U.S. Philips Corporation | Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element |
US5872355A (en) | 1997-04-09 | 1999-02-16 | Hewlett-Packard Company | Electroluminescent device and fabrication method for a light detection system |
US5891554A (en) | 1994-02-25 | 1999-04-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US5895228A (en) | 1996-11-14 | 1999-04-20 | International Business Machines Corporation | Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives |
US5902688A (en) | 1996-07-16 | 1999-05-11 | Hewlett-Packard Company | Electroluminescent display device |
US5902641A (en) | 1997-09-29 | 1999-05-11 | Battelle Memorial Institute | Flash evaporation of liquid monomer particle mixture |
US5904958A (en) | 1998-03-20 | 1999-05-18 | Rexam Industries Corp. | Adjustable nozzle for evaporation or organic monomers |
US5912069A (en) | 1996-12-19 | 1999-06-15 | Sigma Laboratories Of Arizona | Metal nanolaminate composite |
Family Cites Families (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US125822A (en) * | 1872-04-16 | Improvement in straw-cutters | ||
FR1393629A (en) | 1965-09-13 | 1965-03-26 | Continental Oil Co | Method and apparatus for coating solid sheets |
JP2530350B2 (en) | 1986-06-23 | 1996-09-04 | スペクトラム コントロール,インコーポレイテッド | Monomer Flash evaporation of fluids |
JPH07105034B2 (en) | 1986-11-28 | 1995-11-13 | 株式会社日立製作所 | Magnetic recording body |
JP2627619B2 (en) | 1987-07-13 | 1997-07-09 | 日本電信電話株式会社 | Organic amorphous film preparation method |
US4847469A (en) | 1987-07-15 | 1989-07-11 | The Boc Group, Inc. | Controlled flow vaporizer |
JPH02183230A (en) | 1989-01-09 | 1990-07-17 | Sharp Corp | Organic nonlinear optical material and production thereof |
JP2678055B2 (en) | 1989-03-30 | 1997-11-17 | シャープ株式会社 | Manufacturing method of organic compound thin film |
US5372851A (en) | 1991-12-16 | 1994-12-13 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a chemically adsorbed film |
DE4232390A1 (en) | 1992-09-26 | 1994-03-31 | Roehm Gmbh | Process for producing silicon oxide scratch-resistant layers on plastics by plasma coating |
US5393067A (en) | 1993-01-21 | 1995-02-28 | Igt | System, method and apparatus for generating large jackpots on live game card tables |
WO1996010483A1 (en) | 1994-09-30 | 1996-04-11 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Laminated heat-resistant optical plastic sheet and process for producing the same |
US6083628A (en) | 1994-11-04 | 2000-07-04 | Sigma Laboratories Of Arizona, Inc. | Hybrid polymer film |
JPH08325713A (en) | 1995-05-30 | 1996-12-10 | Matsushita Electric Works Ltd | Formation of metallic film on organic substrate surface |
NZ310926A (en) | 1995-06-30 | 1999-02-25 | Commw Scient Ind Res Org | Improved surface treatment of polymers by oxidising the surface of the polymer and treatment the surface with at least one multifunctional amine-containing organic compound to bind to its surface |
JPH0959763A (en) | 1995-08-25 | 1997-03-04 | Matsushita Electric Works Ltd | Formation of metallic film on surface of organic substrate |
US5723219A (en) | 1995-12-19 | 1998-03-03 | Talison Research | Plasma deposited film networks |
DE19603746A1 (en) | 1995-10-20 | 1997-04-24 | Bosch Gmbh Robert | Electroluminescent layer system |
US6195142B1 (en) | 1995-12-28 | 2001-02-27 | Matsushita Electrical Industrial Company, Ltd. | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
US5955161A (en) | 1996-01-30 | 1999-09-21 | Becton Dickinson And Company | Blood collection tube assembly |
US5738920A (en) | 1996-01-30 | 1998-04-14 | Becton, Dickinson And Company | Blood collection tube assembly |
US5763033A (en) | 1996-01-30 | 1998-06-09 | Becton, Dickinson And Company | Blood collection tube assembly |
US5716683A (en) | 1996-01-30 | 1998-02-10 | Becton, Dickinson And Company | Blood collection tube assembly |
US5731948A (en) | 1996-04-04 | 1998-03-24 | Sigma Labs Inc. | High energy density capacitor |
US6106627A (en) | 1996-04-04 | 2000-08-22 | Sigma Laboratories Of Arizona, Inc. | Apparatus for producing metal coated polymers |
US5948552A (en) | 1996-08-27 | 1999-09-07 | Hewlett-Packard Company | Heat-resistant organic electroluminescent device |
WO1998010116A1 (en) | 1996-09-05 | 1998-03-12 | Talison Research | Ultrasonic nozzle feed for plasma deposited film networks |
KR19980033213A (en) | 1996-10-31 | 1998-07-25 | 조셉제이.스위니 | How to reduce the generation of particulate matter in the sputtering chamber |
US5952778A (en) | 1997-03-18 | 1999-09-14 | International Business Machines Corporation | Encapsulated organic light emitting device |
US6117266A (en) | 1997-12-19 | 2000-09-12 | Interuniversifair Micro-Elektronica Cenirum (Imec Vzw) | Furnace for continuous, high throughput diffusion processes from various diffusion sources |
JP3290375B2 (en) * | 1997-05-12 | 2002-06-10 | 松下電器産業株式会社 | Organic electroluminescent device |
US6198220B1 (en) * | 1997-07-11 | 2001-03-06 | Emagin Corporation | Sealing structure for organic light emitting devices |
US6203898B1 (en) * | 1997-08-29 | 2001-03-20 | 3M Innovatave Properties Company | Article comprising a substrate having a silicone coating |
EP2098906A1 (en) * | 1997-08-29 | 2009-09-09 | Sharp Kabushiki Kaisha | Liquid crystal display device |
US6224948B1 (en) * | 1997-09-29 | 2001-05-01 | Battelle Memorial Institute | Plasma enhanced chemical deposition with low vapor pressure compounds |
US5994174A (en) | 1997-09-29 | 1999-11-30 | The Regents Of The University Of California | Method of fabrication of display pixels driven by silicon thin film transistors |
US5965907A (en) | 1997-09-29 | 1999-10-12 | Motorola, Inc. | Full color organic light emitting backlight device for liquid crystal display applications |
EP0916394B1 (en) | 1997-11-14 | 2004-03-10 | Sharp Kabushiki Kaisha | Method of manufacturing modified particles and manufacturing device therefor |
KR100249784B1 (en) | 1997-11-20 | 2000-04-01 | 정선종 | Encapsulation of the polymeric or organic light light emitting device using multiple polymer layers |
US6045864A (en) | 1997-12-01 | 2000-04-04 | 3M Innovative Properties Company | Vapor coating method |
US6569515B2 (en) * | 1998-01-13 | 2003-05-27 | 3M Innovative Properties Company | Multilayered polymer films with recyclable or recycled layers |
DE19802740A1 (en) | 1998-01-26 | 1999-07-29 | Leybold Systems Gmbh | Process for treating surfaces of plastic substrates |
US6178082B1 (en) | 1998-02-26 | 2001-01-23 | International Business Machines Corporation | High temperature, conductive thin film diffusion barrier for ceramic/metal systems |
US5996498A (en) | 1998-03-12 | 1999-12-07 | Presstek, Inc. | Method of lithographic imaging with reduced debris-generated performance degradation and related constructions |
US6066826A (en) | 1998-03-16 | 2000-05-23 | Yializis; Angelo | Apparatus for plasma treatment of moving webs |
US6146462A (en) | 1998-05-08 | 2000-11-14 | Astenjohnson, Inc. | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
US6146225A (en) | 1998-07-30 | 2000-11-14 | Agilent Technologies, Inc. | Transparent, flexible permeability barrier for organic electroluminescent devices |
US6040017A (en) | 1998-10-02 | 2000-03-21 | Sigma Laboratories, Inc. | Formation of multilayered photonic polymer composites |
US6084702A (en) | 1998-10-15 | 2000-07-04 | Pleotint, L.L.C. | Thermochromic devices |
US6322860B1 (en) * | 1998-11-02 | 2001-11-27 | Rohm And Haas Company | Plastic substrates for electronic display applications |
US6268695B1 (en) * | 1998-12-16 | 2001-07-31 | Battelle Memorial Institute | Environmental barrier material for organic light emitting device and method of making |
US6217947B1 (en) * | 1998-12-16 | 2001-04-17 | Battelle Memorial Institute | Plasma enhanced polymer deposition onto fixtures |
US6207239B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition of conjugated polymer |
US6207238B1 (en) * | 1998-12-16 | 2001-03-27 | Battelle Memorial Institute | Plasma enhanced chemical deposition for high and/or low index of refraction polymers |
US6228434B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making a conformal coating of a microtextured surface |
US6274204B1 (en) * | 1998-12-16 | 2001-08-14 | Battelle Memorial Institute | Method of making non-linear optical polymer |
US6228436B1 (en) * | 1998-12-16 | 2001-05-08 | Battelle Memorial Institute | Method of making light emitting polymer composite material |
US6118218A (en) | 1999-02-01 | 2000-09-12 | Sigma Technologies International, Inc. | Steady-state glow-discharge plasma at atmospheric pressure |
US6172810B1 (en) * | 1999-02-26 | 2001-01-09 | 3M Innovative Properties Company | Retroreflective articles having polymer multilayer reflective coatings |
US6358570B1 (en) * | 1999-03-31 | 2002-03-19 | Battelle Memorial Institute | Vacuum deposition and curing of oligomers and resins |
US6083313A (en) | 1999-07-27 | 2000-07-04 | Advanced Refractory Technologies, Inc. | Hardcoats for flat panel display substrates |
US6413645B1 (en) * | 2000-04-20 | 2002-07-02 | Battelle Memorial Institute | Ultrabarrier substrates |
JP2001249221A (en) * | 1999-12-27 | 2001-09-14 | Nitto Denko Corp | Transparent laminate, its manufacturing method and filter for plasma-display panel |
EP1268189A4 (en) * | 2000-03-15 | 2003-04-16 | Cpfilms Inc | Flame retardant optical films |
US6537688B2 (en) * | 2000-12-01 | 2003-03-25 | Universal Display Corporation | Adhesive sealed organic optoelectronic structures |
US6614057B2 (en) * | 2001-02-07 | 2003-09-02 | Universal Display Corporation | Sealed organic optoelectronic structures |
US6624568B2 (en) * | 2001-03-28 | 2003-09-23 | Universal Display Corporation | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
US6888307B2 (en) * | 2001-08-21 | 2005-05-03 | Universal Display Corporation | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
US6888305B2 (en) * | 2001-11-06 | 2005-05-03 | Universal Display Corporation | Encapsulation structure that acts as a multilayer mirror |
US6597111B2 (en) * | 2001-11-27 | 2003-07-22 | Universal Display Corporation | Protected organic optoelectronic devices |
-
2001
- 2001-04-16 US US09/835,768 patent/US6623861B2/en not_active Ceased
-
2002
- 2002-04-12 WO PCT/US2002/011325 patent/WO2002083411A1/en not_active Application Discontinuation
-
2003
- 2003-05-22 US US10/443,410 patent/US6962671B2/en not_active Expired - Lifetime
-
2004
- 2004-07-12 US US10/889,640 patent/USRE40787E1/en not_active Expired - Lifetime
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2382432A (en) | 1940-08-02 | 1945-08-14 | Crown Cork & Seal Co | Method and apparatus for depositing vaporized metal coatings |
US2384500A (en) | 1942-07-08 | 1945-09-11 | Crown Cork & Seal Co | Apparatus and method of coating |
US3475307A (en) | 1965-02-04 | 1969-10-28 | Continental Can Co | Condensation of monomer vapors to increase polymerization rates in a glow discharge |
US3607365A (en) | 1969-05-12 | 1971-09-21 | Minnesota Mining & Mfg | Vapor phase method of coating substrates with polymeric coating |
US3941630A (en) | 1974-04-29 | 1976-03-02 | Rca Corporation | Method of fabricating a charged couple radiation sensing device |
US4061835A (en) | 1975-02-27 | 1977-12-06 | Standard Oil Company (Indiana) | Process of forming a polypropylene coated substrate from an aqueous suspension of polypropylene particles |
US4098965A (en) | 1977-01-24 | 1978-07-04 | Polaroid Corporation | Flat batteries and method of making the same |
US4266223A (en) | 1978-12-08 | 1981-05-05 | W. H. Brady Co. | Thin panel display |
US4283482A (en) | 1979-03-29 | 1981-08-11 | Nihon Shinku Gijutsu Kabushiki Kaisha | Dry Lithographic Process |
US4313254A (en) | 1979-10-30 | 1982-02-02 | The Johns Hopkins University | Thin-film silicon solar cell with metal boride bottom electrode |
US4426275A (en) | 1981-11-27 | 1984-01-17 | Deposition Technology, Inc. | Sputtering device adaptable for coating heat-sensitive substrates |
US4555274A (en) | 1982-03-15 | 1985-11-26 | Fuji Photo Film Co., Ltd. | Ion selective electrode and process of preparing the same |
US4537814A (en) | 1983-01-27 | 1985-08-27 | Toyoda Gosei Co., Ltd. | Resin article having a ceramics coating layer |
US4521458A (en) | 1983-04-01 | 1985-06-04 | Nelson Richard C | Process for coating material with water resistant composition |
US4572845A (en) | 1983-07-05 | 1986-02-25 | Draiswerke Gmbh | Process for gluing wood chips and the like with liquid glue and apparatus for performing the process |
US4581337A (en) | 1983-07-07 | 1986-04-08 | E. I. Du Pont De Nemours And Company | Polyether polyamines as linking agents for particle reagents useful in immunoassays |
US4710426A (en) | 1983-11-28 | 1987-12-01 | Polaroid Corporation, Patent Dept. | Solar radiation-control articles with protective overlayer |
US4557978A (en) | 1983-12-12 | 1985-12-10 | Primary Energy Research Corporation | Electroactive polymeric thin films |
US4842893A (en) | 1983-12-19 | 1989-06-27 | Spectrum Control, Inc. | High speed process for coating substrates |
US5032461A (en) | 1983-12-19 | 1991-07-16 | Spectrum Control, Inc. | Method of making a multi-layered article |
US4624867A (en) | 1984-03-21 | 1986-11-25 | Nihon Shinku Gijutsu Kabushiki Kaisha | Process for forming a synthetic resin film on a substrate and apparatus therefor |
US4934315A (en) | 1984-07-23 | 1990-06-19 | Alcatel N.V. | System for producing semicondutor layer structures by way of epitaxial growth |
US4722515A (en) | 1984-11-06 | 1988-02-02 | Spectrum Control, Inc. | Atomizing device for vaporization |
US4695618A (en) | 1986-05-23 | 1987-09-22 | Ameron, Inc. | Solventless polyurethane spray compositions and method for applying them |
US4954371A (en) | 1986-06-23 | 1990-09-04 | Spectrum Control, Inc. | Flash evaporation of monomer fluids |
US4855186A (en) | 1987-03-06 | 1989-08-08 | Hoechst Aktiengesellschaft | Coated plastic film and plastic laminate prepared therefrom |
US4768666A (en) | 1987-05-26 | 1988-09-06 | Milton Kessler | Tamper proof container closure |
US4843036A (en) | 1987-06-29 | 1989-06-27 | Eastman Kodak Company | Method for encapsulating electronic devices |
US4913090A (en) | 1987-10-02 | 1990-04-03 | Mitsubishi Denki Kabushiki Kaisha | Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber |
US4854186A (en) | 1987-12-02 | 1989-08-08 | Kuster & Co. Gmbh | Apparatus for adjusting the length of a bowden cable |
US4931158A (en) | 1988-03-22 | 1990-06-05 | The Regents Of The Univ. Of Calif. | Deposition of films onto large area substrates using modified reactive magnetron sputtering |
US4977013A (en) | 1988-06-03 | 1990-12-11 | Andus Corporation | Tranparent conductive coatings |
US5124204A (en) | 1988-07-14 | 1992-06-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent (EL) panel |
US4889609A (en) | 1988-09-06 | 1989-12-26 | Ovonic Imaging Systems, Inc. | Continuous dry etching system |
US5189405A (en) | 1989-01-26 | 1993-02-23 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
US5792550A (en) | 1989-10-24 | 1998-08-11 | Flex Products, Inc. | Barrier film having high colorless transparency and method |
US5047131A (en) | 1989-11-08 | 1991-09-10 | The Boc Group, Inc. | Method for coating substrates with silicon based compounds |
US5036249A (en) | 1989-12-11 | 1991-07-30 | Molex Incorporated | Electroluminescent lamp panel and method of fabricating same |
US5356947A (en) | 1990-03-29 | 1994-10-18 | Minnesota Mining And Manufacturing Company | Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith |
US5204314A (en) | 1990-07-06 | 1993-04-20 | Advanced Technology Materials, Inc. | Method for delivering an involatile reagent in vapor form to a CVD reactor |
US5536323A (en) | 1990-07-06 | 1996-07-16 | Advanced Technology Materials, Inc. | Apparatus for flash vaporization delivery of reagents |
US5711816A (en) | 1990-07-06 | 1998-01-27 | Advanced Technolgy Materials, Inc. | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
US5059861A (en) | 1990-07-26 | 1991-10-22 | Eastman Kodak Company | Organic electroluminescent device with stabilizing cathode capping layer |
US5461545A (en) | 1990-08-24 | 1995-10-24 | Thomson-Csf | Process and device for hermetic encapsulation of electronic components |
US5237439A (en) | 1991-09-30 | 1993-08-17 | Sharp Kabushiki Kaisha | Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide |
US5336324A (en) | 1991-12-04 | 1994-08-09 | Emcore Corporation | Apparatus for depositing a coating on a substrate |
US5203898A (en) | 1991-12-16 | 1993-04-20 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
US5759329A (en) | 1992-01-06 | 1998-06-02 | Pilot Industries, Inc. | Fluoropolymer composite tube and method of preparation |
US5393607A (en) | 1992-01-13 | 1995-02-28 | Mitsui Toatsu Chemiclas, Inc. | Laminated transparent plastic material and polymerizable monomer |
US5402314A (en) | 1992-02-10 | 1995-03-28 | Sony Corporation | Printed circuit board having through-hole stopped with photo-curable solder resist |
US5376467A (en) | 1992-03-06 | 1994-12-27 | Sony Corporation | Organic electrolyte battery |
US5354497A (en) | 1992-04-20 | 1994-10-11 | Sharp Kabushiki Kaisha | Liquid crystal display |
US5427638A (en) | 1992-06-04 | 1995-06-27 | Alliedsignal Inc. | Low temperature reaction bonding |
US5652192A (en) | 1992-07-10 | 1997-07-29 | Battelle Memorial Institute | Catalyst material and method of making |
US5747182A (en) | 1992-07-27 | 1998-05-05 | Cambridge Display Technology Limited | Manufacture of electroluminescent devices |
US5260095A (en) | 1992-08-21 | 1993-11-09 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
US5547508A (en) | 1992-08-21 | 1996-08-20 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers apparatus |
US5395644A (en) | 1992-08-21 | 1995-03-07 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
US5576101A (en) | 1992-12-18 | 1996-11-19 | Bridgestone Corporation | Gas barrier rubber laminate for minimizing refrigerant leakage |
US5512320A (en) | 1993-01-28 | 1996-04-30 | Applied Materials, Inc. | Vacuum processing apparatus having improved throughput |
US5771177A (en) | 1993-05-17 | 1998-06-23 | Kyoei Automatic Control Technology Co., Ltd. | Method and apparatus for measuring dynamic load |
US5578141A (en) | 1993-07-01 | 1996-11-26 | Canon Kabushiki Kaisha | Solar cell module having excellent weather resistance |
US5510173A (en) | 1993-08-20 | 1996-04-23 | Southwall Technologies Inc. | Multiple layer thin films with improved corrosion resistance |
US5725909A (en) | 1993-10-04 | 1998-03-10 | Catalina Coatings, Inc. | Acrylate composite barrier coating process |
US5440446A (en) | 1993-10-04 | 1995-08-08 | Catalina Coatings, Inc. | Acrylate coating material |
US5891554A (en) | 1994-02-25 | 1999-04-06 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
US5451449A (en) | 1994-05-11 | 1995-09-19 | The Mearl Corporation | Colored iridescent film |
US5795399A (en) | 1994-06-30 | 1998-08-18 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product |
US5654084A (en) | 1994-07-22 | 1997-08-05 | Martin Marietta Energy Systems, Inc. | Protective coatings for sensitive materials |
US5464667A (en) | 1994-08-16 | 1995-11-07 | Minnesota Mining And Manufacturing Company | Jet plasma process and apparatus |
US5695564A (en) | 1994-08-19 | 1997-12-09 | Tokyo Electron Limited | Semiconductor processing system |
US5782355A (en) | 1994-09-30 | 1998-07-21 | Fuji Photo Film Co., Ltd. | Cassette case |
US5736207A (en) | 1994-10-27 | 1998-04-07 | Schott Glaswerke | Vessel of plastic having a barrier coating and a method of producing the vessel |
US5681666A (en) | 1995-01-23 | 1997-10-28 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical celltester and cell employing same |
US5607789A (en) | 1995-01-23 | 1997-03-04 | Duracell Inc. | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
US5821138A (en) | 1995-02-16 | 1998-10-13 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device using a metal which promotes crystallization of silicon and substrate bonding |
US5620524A (en) | 1995-02-27 | 1997-04-15 | Fan; Chiko | Apparatus for fluid delivery in chemical vapor deposition systems |
US5811183A (en) | 1995-04-06 | 1998-09-22 | Shaw; David G. | Acrylate polymer release coated sheet materials and method of production thereof |
US5869791A (en) | 1995-04-18 | 1999-02-09 | U.S. Philips Corporation | Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element |
US5771562A (en) | 1995-05-02 | 1998-06-30 | Motorola, Inc. | Passivation of organic devices |
US5554220A (en) | 1995-05-19 | 1996-09-10 | The Trustees Of Princeton University | Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities |
US5629389A (en) | 1995-06-06 | 1997-05-13 | Hewlett-Packard Company | Polymer-based electroluminescent device with improved stability |
US5681615A (en) | 1995-07-27 | 1997-10-28 | Battelle Memorial Institute | Vacuum flash evaporated polymer composites |
US5686360A (en) | 1995-11-30 | 1997-11-11 | Motorola | Passivation of organic devices |
US5811177A (en) | 1995-11-30 | 1998-09-22 | Motorola, Inc. | Passivation of electroluminescent organic devices |
US5757126A (en) | 1995-11-30 | 1998-05-26 | Motorola, Inc. | Passivated organic device having alternating layers of polymer and dielectric |
US5684084A (en) | 1995-12-21 | 1997-11-04 | E. I. Du Pont De Nemours And Company | Coating containing acrylosilane polymer to improve mar and acid etch resistance |
US5660961A (en) | 1996-01-11 | 1997-08-26 | Xerox Corporation | Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference |
US5665280A (en) | 1996-01-30 | 1997-09-09 | Becton Dickinson Co | Blood collection tube assembly |
US5731661A (en) | 1996-07-15 | 1998-03-24 | Motorola, Inc. | Passivation of electroluminescent organic devices |
US5902688A (en) | 1996-07-16 | 1999-05-11 | Hewlett-Packard Company | Electroluminescent display device |
US5693956A (en) | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
US5895228A (en) | 1996-11-14 | 1999-04-20 | International Business Machines Corporation | Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives |
US5821692A (en) | 1996-11-26 | 1998-10-13 | Motorola, Inc. | Organic electroluminescent device hermetic encapsulation package |
US5912069A (en) | 1996-12-19 | 1999-06-15 | Sigma Laboratories Of Arizona | Metal nanolaminate composite |
US5844363A (en) | 1997-01-23 | 1998-12-01 | The Trustees Of Princeton Univ. | Vacuum deposited, non-polymeric flexible organic light emitting devices |
US5872355A (en) | 1997-04-09 | 1999-02-16 | Hewlett-Packard Company | Electroluminescent device and fabrication method for a light detection system |
US5902641A (en) | 1997-09-29 | 1999-05-11 | Battelle Memorial Institute | Flash evaporation of liquid monomer particle mixture |
US5904958A (en) | 1998-03-20 | 1999-05-18 | Rexam Industries Corp. | Adjustable nozzle for evaporation or organic monomers |
Non-Patent Citations (71)
Title |
---|
Afffinto, J.D. et al.;Polymer/polymer, Polymer/Oxide, and Polymer/Metal Vacuum Deposited Interference Filters; Tenth International Vacuum Web Coating Conference; pp. 0-14. |
Affinito, J.D. et al., "Molecularly Doped Polymer Composite Films for Light Emitting Polymer Applications Fabricated by the PML Process" 41st Technical Conference of Society of Vacuum Coaters, Apr. 1998, pp. 1-6. |
Affinito, J.D. et al., "Vacuum Deposition of Polymer Electrolytes on Flexible Substrates" The Ninth International Conference on Vacuum Web Coating, pp. 0-16. |
Affinito, J.D. et al., PML/Oxide/PML Barrier Layer Performance Differences Arising From Use OF UV Or Electron Beam Polymerization Of The PML Layers, SVC 40th Annual Technical Conference, Apr. 12-17, 1997, pp. 19-25. |
Affinito, J.D. et al.; A new method for fabricating transparent barrier layers, Thin Solid Films 290-291; 1996; pp. 63-67. |
Affinito, J.D. et al.; High Rate Vacuum Deposition of Polymer Electrolytes; Journal Vacuum Science Technology A 14(3), May/Jun. 1996. |
Affinito, J.D. et al.; Molecularly Doped Polymer Composit Films for Light Emitting Polymer Application Fabricated by the PML Process; 41st Technical Conference of the Society of Vacuum Coaters; 1998; pp. 220-225. |
Affinito, J.D. et al.; Molecularly Doped Polymer Composite Films for Light Emitting Polymer Application Fabricated by the PML Process; 41st Technical Conference of the Society of Vacuum Coaters; Apr. 1998; pp. 220-225. |
Affinito, J.D. et al.; Polymer/Polymer, Polymer/Oxide, and Polymer/Metal Vacuum Deposited Interference Filters; Tenth International Vacuum Web Coating Conference; Nov. 1996; pp. 0-14. |
Affinito, J.D. et al.; Polymer-Oxide Transparent Barrier Layers; SVC 39th Annual Technical Conference; Vacuum Web Coating Session; 1996; pp. 392-397. |
Affinito, J.D. et al.; Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Liquid/Solid Suspension Monomer Precursors; MRS Conference; Nov. 29-Dec. 3, 1998; Paper No. Y12.1 |
Affinito, J.D. et al.; Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; 45th International Symposium of the American Vacuum Society; Nov. 2-6, 1998; pp. 0-26. |
Affinito, J.D. et al.; Ultra High Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; 45th International Symposium of the American Vacuum Society; pp. 0-26. |
Affinito, J.D. et al.; Ultrahigh Rate, Wide Area, Plasma Polymerized Films from High Molecular Weight/Low Vapor Pressure Liquid or Solid Monomer Precursors; Journal Vacuum Science Technology A 17(4); Jul./Aug. 1999; pp. 1974-1981; American Vacuum Society. |
Affinito, J.D. et al.; Vacuum Deposited Conductive Polymer Films; The Eleventh International Conference on Vacuum Web Coating; Nov. 9-11, 1997; pp. 0-12. |
Affinito, J.D. et al.; Vacuum Deposited Conductive Polymer Films; The Eleventh International Conference on Vacuum Web Coating; pp. 0-12. |
Affinito, J.D. et al.; Vacuum Deposited Conductive Polymer Films; The Eleventh International Conference on Vacuum Web Coatings, pp. 1-12. |
Affinito, J.D. et al.; Vacuum Deposited Polymer/metal Multilayer Films for Optical Applications; Paper No. C1.13; International Conference on Metallurgical Coatings; Apr. 15-21, 1995; pp. 1-14. |
Affinito, J.D. et al.; Vacuum Deposited Polymer/metal Multilayer Films for Optical Applications; Paper No. C1.13; pp. 1-14. |
Affinito, J.D. et al.; Vacuum Deposition of Polymer Electrolytes On Flexible Substrates, The Ninth International Conference on Vacuum Web Coating; pp. 20-37. |
Affinito, J.D. et al.; Vacuum Deposition of Polymer Electrolytes On Flexible Substrates; The Ninth International Conference on Vacuum Web Coating; 1995; pp. 0-16. |
Affinito, J.D. et al.; Vacuum Deposition of Polymer Electrolytes On Flexible Substrates; The Ninth International Conference on Vacuum Web Coating; 1995; pp. 20-37. |
Affinito, J.D., Energy Res. Abstr. 18(6), #17171, 1993. |
Affinto, J.D. et al.; PML/Oxide/PML Barrier Layer Performance Differences Arising From Use Of UV or Electron Beam Polymerization of the PML Layers; Thin Solid Films; Elsevier Science S.A.; vol. 308-309; Oct. 31, 1997; pp. 19-25. |
Affinto, J.D. et al.; Vacuum Deposited Polymer/Metal Multilayer Films for Optical Application; Thin Solid Films 270, 1995; pp. 43-48. |
Akedo et al., "LP-5: Lake-News Poster: Plasma-CVD SiNx/Plasma-Polymerized CNx:H Multi-layer Passivation Films for Organic Light Emmitting Diods", SID 03 Digest. * |
Bright, Clark I.; Transparent Barrier Coatings Based on ITO for Flexible Plastic Displays; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 247-255. |
Bright, Clark, I.; Transparent Barrier Coatings Based on ITo for Flexible Plastic Displays; pp. 247-255. |
Bunshah, R.F. et al., "Deposition Technologies for Films and Coatings" Noyes Publications, Park Ridge, New Jersey, 1982, p. 339. |
Chahroudi, D.; Transparent Glass Barrier Coatings for Flexible Film Packaging; 1991; pp. 130-133; Society of Vacuum Coaters. |
Chwang et al., "Thin Film encapsulated flexible organic electroluminescent displays", American Institute of Physics, 2003. * |
Clark I. Bright, et al., Transparent Barrier Coatings Based on ITO for Flexible Plastic Displays, Oct. 17-19, 1999, pp. 247-264, Tucson, Arizona. |
Czeremuszkin, G. et al.; Permeation Through Defects in Transparent Barrier Coated Plastic Films; 43rd Annual Technical Conference Proceedings; Apr. 15, 2000; pp. 408-413. |
De Gryse, R. et al.; Sputtered Transparent Barrier Layers, Tenth International Conference on Vacuum Web Coating, Nov. 1996, pp. 190-198. |
F.M. Penning; Electrical Discharges in Gases; 1965; pp. 1-51; Gordon and Breach, Science Publishers, New York-London-Paris. |
Felts, J.T.; Transparent Barrier Coatings Update: Flexible Substrates; pp. 324-331. |
Felts, J.T.; Transparent Barrier Coatings Update: Flexible Substrates; Society of Vacuum Coaters; 36th Annual Technical Conference Proceedings; Apr. 25-30, 1993; pp. 324-331. |
Finson, E. et al.; Transparent SiO2 Barrier Coatings: Conversion and Production Status; 1994; pp. 139-143; Society of Vacuum Coaters. |
G. Gustafason, et al.; Flexible light-emitting diodes made from soluble conducting polymers; Letters to Nature; vol. 357; Jun. 11, 1992; pp. 477-479. |
Graupner, W. et al.; "High Resolution Color Organic Light Emitting Diode Microdisplay Fabrication Method", SPIE Proceedings 4207; 11-19 (2000); pp. 1-9. |
Graupner, W. et al.; "High Resolution Color Organic Light Emitting Diode Microdisplay Fabrication Method", SPIE Proceedings, Nov. 6, 2000; pp. 11-19. |
Henry, B.M. et al.; Microstructural and Gas Barrier Properties of Transparent Aluminium Oxide and Indium Tin Oxide Films; 2000; pp. 373-378; Society of Vacuum Coaters. |
Henry, B.M. et al.; Microstructural and Gas Barrier Properties of Transparent Aluminum Oxide and Indium Tim Oxide Films; Denver, Apr. 15-20, 2000; pp. 373-378; Society of Vacuum Coaters. |
Henry, B.M. et al.; Microstructural Studies of Transparent Gas Barrier Coatings on Polymer Substates; pp. 265-273. |
Henry, B.M. et al.; Microstructural Studies of Transparent Gas Barrier Coatings on Polymer Substrates; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 265-273. |
Hibino, N. et al.; Transparent Barrier A1203 Coating By Activated Reactive Evaporation; Thirteenth International Conference on Vacuum Web Coating ; Oct. 17-19, 1999; pp. 234-245. |
Hibino, N. et al.; Transparent Barrier Al/2O3 Coating By Activated Reactive Evaporation; pp. 234-245. |
Hoffmann, G. et al.; Transparent Barrier Coatings by Reactive Evaporation; 1994; pp. 155-160; Society of Vacuum Coaters. |
Klemberg-Sapieha, J.E. et al.; Transparent Gas Barrier Coatings Produced by Dual-Frequency PECVD; 1993; pp. 445-449; Society of Vacuum Coaters. |
Krug, T. et al.; New Developments in Transparent Barrier Coatings; 1993; pp. 302-305; Society Vacuum Coaters. |
Kukla, R. et al.; Transparent Barrier Coatings with EB-Evaporation, an Update; Section Five; Transparent Barrier Coating Papers; pp. 222-233. |
Kukla, R. et al.; Transparent Barrier Coatings with EB-Evaporation, an Update; Section Five; Transparent Barrier Coating Papers; Thirteenth International Conference on Vacuum Web Coating; Oct. 17-19, 1999; pp. 222-233. |
Mahon, J.K. et al.; Requirements of Flexible Substrates for Organic Light Emitting Devices in Flat Panel Display Applications; Society of Vacuum Coaters; 42nd Annual Technical Conference Proceedings; Apr. 1999; pp. 456-459. |
Mahon, J.K., et al.; Requirements of Flexible Substrates for Organic Light Emitting Devices in Flat Panel Display Applications, Society of Vacuum Coaters, 42nd Annual Technical Conference Proceedings, 1999, pp. 456-459. |
Norenberg, H. et al.; Comparative Study of Oxygen Permeation Through Polymers and Gas Barrier Films; 2000; pp. 347-351; Society of Vacuum Coaters. |
Norenberg, H. et al.; Comparative Study of Oxygen Permeation Through Polymers and Gas Barrier Films; Denver, Apr. 15-20, 2000; pp. 347-351; Society of Vacuum Coaters. |
Notification of Transmittal of the International Search Report Or The Declaration, Mar. 3, 2000, PCT/US99/29853. |
Phillips, R.W.; Evaporated Dielectric Colorless Films on PET and Opp Exhibiting High Barriers Toward Moisture and Oxygen; Society of Vacuum Coaters; 36th Annual Technical Conference Proceedings; 1993; pp. 293-300. |
Shaw, D.G. et al.; Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of MetalLized Film; 1994; pp. 240-244; Society of Vacuum Coaters. |
Shi, M.K. et al.; In situ and real-time monitoring of plasma-induced etching PET and acrylic films, Plasmas and Polymers; Dec. 1999, 494); pp. 1-25. |
Shi, M.K. et al.; Plasma treatment of PET and acrylic coating surfaces-I. In situ XPS measurements; Journal of Adhesion Science and Technology; Mar. 2000 14(12); pp. 1-8. |
Tropsha et al., Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terphthalate) Composite Barrier Structures; J. Phys. Chem B Mar. 1997; pp. 2259-2266. |
Tropsha et al.; Activated Rate Theory Treatment of Oxygen and Water Transport through Silicon Oxide/Poly(ethylene terphthalate) Composite Barrier Structures; J. Phys. Chem B 1997 pp. 2259-2266. |
Tropsha et al.; Combinatorial Barrier Effect of the Multilayer SiOx Coatings on Polymer Substrates; 1997 Society of Vacuum Coaters, 40th Annual Technical Conferences Proceedings; pp. 64-69. |
Tropsha et al.; Combinatorial Barrier Effect of the Multilayer SiOx Coatings on Polymer Substrates; 1997 Society of Vacuum Coaters; 40th Annual Technical Conference Proceedings; Apr. 12-17, 1997; pp. 64-69. |
Vossen, J.L. et al.; Thin Film Porcesses; Academic Press, 1978, Part II, Chapter II-1, Glow Dischareg Sputter Deposition, pp. 12-63; Part IV, Chapter IV-1 Plasma Deposition of Inorganic Compounds and Chapter IV-2 Glow Discharge Polymerization, pp. 335-397. |
Wong, F.L., et al., "Long-lifetime thin-film encapsulated organic light-emitting diodes," Journal of Applied Physics 104, pp. 014509-1-4 (2008). |
Yamada, Y. et al.; The Properties of a New Transparent and Colorless Barrier Film; 1995; pp. 28-31; Society of Vacuum Coaters. |
Yializis, A. et al.; High Oxygen Barrier Polypropylene Films Using Transparent Acrylate-A2O3 and Opaque Al-Acrylate Coatings; 1995; pp. 95-102; Society of Vacuum Coaters. |
Yializis, A. et al.; Ultra High Barrier Films; 2000; pp. 404-407; Society Vacuum Coaters. |
Yializis, A. et al.; Ultra High Barrier Films; Denver, Apr. 15-20, 2000; pp. 404-407; Society of Vacuum Coaters. |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100119840A1 (en) * | 2003-04-02 | 2010-05-13 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
US20100068542A1 (en) * | 2006-12-29 | 2010-03-18 | 3M Innovative Properties Company | Method of making inorganic or inorganic/organic hybrid films |
US20100068382A1 (en) * | 2006-12-29 | 2010-03-18 | Strobel Mark A | Method of curing metal alkoxide-containing films |
US8227040B2 (en) | 2006-12-29 | 2012-07-24 | 3M Innovative Properties Company | Method of curing metal alkoxide-containing films |
US8846169B2 (en) | 2007-12-28 | 2014-09-30 | 3M Innovative Properties Company | Flexible encapsulating film systems |
US20100272933A1 (en) * | 2007-12-28 | 2010-10-28 | Mccormick Fred B | Flexible encapsulating film systems |
US20110081502A1 (en) * | 2008-06-30 | 2011-04-07 | Bright Clark I | Method of making inorganic or inorganic/organic hybrid barrier films |
US9481927B2 (en) | 2008-06-30 | 2016-11-01 | 3M Innovative Properties Company | Method of making inorganic or inorganic/organic hybrid barrier films |
US9545360B2 (en) | 2009-05-13 | 2017-01-17 | Sio2 Medical Products, Inc. | Saccharide protective coating for pharmaceutical package |
US7985188B2 (en) | 2009-05-13 | 2011-07-26 | Cv Holdings Llc | Vessel, coating, inspection and processing apparatus |
US10390744B2 (en) | 2009-05-13 | 2019-08-27 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
US8834954B2 (en) | 2009-05-13 | 2014-09-16 | Sio2 Medical Products, Inc. | Vessel inspection apparatus and methods |
US9572526B2 (en) | 2009-05-13 | 2017-02-21 | Sio2 Medical Products, Inc. | Apparatus and method for transporting a vessel to and from a PECVD processing station |
US10537273B2 (en) | 2009-05-13 | 2020-01-21 | Sio2 Medical Products, Inc. | Syringe with PECVD lubricity layer |
US8512796B2 (en) | 2009-05-13 | 2013-08-20 | Si02 Medical Products, Inc. | Vessel inspection apparatus and methods |
US9458536B2 (en) | 2009-07-02 | 2016-10-04 | Sio2 Medical Products, Inc. | PECVD coating methods for capped syringes, cartridges and other articles |
US11624115B2 (en) | 2010-05-12 | 2023-04-11 | Sio2 Medical Products, Inc. | Syringe with PECVD lubrication |
US11123491B2 (en) | 2010-11-12 | 2021-09-21 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9878101B2 (en) | 2010-11-12 | 2018-01-30 | Sio2 Medical Products, Inc. | Cyclic olefin polymer vessels and vessel coating methods |
US9272095B2 (en) | 2011-04-01 | 2016-03-01 | Sio2 Medical Products, Inc. | Vessels, contact surfaces, and coating and inspection apparatus and methods |
US11724860B2 (en) | 2011-11-11 | 2023-08-15 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11148856B2 (en) | 2011-11-11 | 2021-10-19 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11116695B2 (en) | 2011-11-11 | 2021-09-14 | Sio2 Medical Products, Inc. | Blood sample collection tube |
US10189603B2 (en) | 2011-11-11 | 2019-01-29 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US10577154B2 (en) | 2011-11-11 | 2020-03-03 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US11884446B2 (en) | 2011-11-11 | 2024-01-30 | Sio2 Medical Products, Inc. | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
US9664626B2 (en) | 2012-11-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Coating inspection method |
US9903782B2 (en) | 2012-11-16 | 2018-02-27 | Sio2 Medical Products, Inc. | Method and apparatus for detecting rapid barrier coating integrity characteristics |
US9764093B2 (en) | 2012-11-30 | 2017-09-19 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US11406765B2 (en) | 2012-11-30 | 2022-08-09 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US10201660B2 (en) | 2012-11-30 | 2019-02-12 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
US10363370B2 (en) | 2012-11-30 | 2019-07-30 | Sio2 Medical Products, Inc. | Controlling the uniformity of PECVD deposition |
US9662450B2 (en) | 2013-03-01 | 2017-05-30 | Sio2 Medical Products, Inc. | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
US10912714B2 (en) | 2013-03-11 | 2021-02-09 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US11298293B2 (en) | 2013-03-11 | 2022-04-12 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US11684546B2 (en) | 2013-03-11 | 2023-06-27 | Sio2 Medical Products, Inc. | PECVD coated pharmaceutical packaging |
US10016338B2 (en) | 2013-03-11 | 2018-07-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US10537494B2 (en) | 2013-03-11 | 2020-01-21 | Sio2 Medical Products, Inc. | Trilayer coated blood collection tube with low oxygen transmission rate |
US9554968B2 (en) | 2013-03-11 | 2017-01-31 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging |
US9937099B2 (en) | 2013-03-11 | 2018-04-10 | Sio2 Medical Products, Inc. | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
US11344473B2 (en) | 2013-03-11 | 2022-05-31 | SiO2Medical Products, Inc. | Coated packaging |
US9863042B2 (en) | 2013-03-15 | 2018-01-09 | Sio2 Medical Products, Inc. | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
US9312512B2 (en) * | 2014-01-02 | 2016-04-12 | Samsung Display Co., Ltd. | Flexible organic light-emitting display apparatus and method of manufacturing the same |
US20150188079A1 (en) * | 2014-01-02 | 2015-07-02 | Samsung Display Co., Ltd. | Flexible organic light-emitting display apparatus and method of manufacturing the same |
US9698361B2 (en) * | 2014-03-28 | 2017-07-04 | Nec Lighting, Ltd. | Organic EL panel translucent substrate, control method for refractive index anisotropy of organic EL panel translucent substrate, manufacturing method for organic EL panel translucent substrate, organic EL panel, and organic EL device |
US11066745B2 (en) | 2014-03-28 | 2021-07-20 | Sio2 Medical Products, Inc. | Antistatic coatings for plastic vessels |
US10270048B2 (en) | 2014-03-28 | 2019-04-23 | Nec Lighting, Ltd. | Organic EL panel translucent substrate, control method for refractive index anisotrophy of organic EL panel translucent substrate, manufacturing method for organic EL panel translucent substrate, organic EL panel, and organic EL device |
US20150280153A1 (en) * | 2014-03-28 | 2015-10-01 | Nec Lighting, Ltd. | Organic el panel translucent substrate, control method for refractive index anisotropy of organic el panel translucent substrate, manufacturing method for organic el panel translucent substrate, organic el panel, and organic el device |
US11077233B2 (en) | 2015-08-18 | 2021-08-03 | Sio2 Medical Products, Inc. | Pharmaceutical and other packaging with low oxygen transmission rate |
US11393679B2 (en) | 2016-06-13 | 2022-07-19 | Gvd Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
US11679412B2 (en) | 2016-06-13 | 2023-06-20 | Gvd Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
Also Published As
Publication number | Publication date |
---|---|
US20030215575A1 (en) | 2003-11-20 |
WO2002083411A1 (en) | 2002-10-24 |
US6962671B2 (en) | 2005-11-08 |
US6623861B2 (en) | 2003-09-23 |
US20020150745A1 (en) | 2002-10-17 |
US20050158476A9 (en) | 2005-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE40787E1 (en) | Multilayer plastic substrates | |
JP5436640B2 (en) | Smooth layer and barrier layer on Tg substrate | |
JP5176950B2 (en) | Film having fine irregularities and method for producing the same | |
KR101119702B1 (en) | Flexible high-temperature ultrabarrier | |
JPWO2005100014A1 (en) | Transparent gas barrier laminate film | |
US11254101B2 (en) | Structured film and articles thereof | |
TWI613075B (en) | Photovoltaic devices with encapsulating barrier film | |
JP5098450B2 (en) | Method for producing uneven pattern forming sheet and uneven pattern forming sheet | |
JP2015146244A (en) | Transparent conductive film and manufacturing method thereof | |
EP2050780A2 (en) | Barrier laminate, barrier film substrate, device, and method for producing barrier laminate | |
JP4059480B2 (en) | Laminated body and method for producing the same | |
US20200216950A1 (en) | Structured film and articles thereof | |
US20130071641A1 (en) | Hard coat film and process of making hard coat film | |
CN115734875A (en) | Optical film, method for producing optical film, transparent conductive film, and gas barrier film | |
JP2003341003A (en) | Laminate and manufacturing method therefor | |
JP4145636B2 (en) | Optical film sheet and display element using the same | |
JP2000108241A (en) | Transparent conductive film and its manufacture | |
JP6469605B2 (en) | Gas barrier film | |
JP3403882B2 (en) | Transparent conductive film | |
US20210146651A1 (en) | Structured film and articles thereof | |
US20220001644A1 (en) | Structured film and articles thereof | |
JPH09277426A (en) | Transparent conductive film and its production | |
JPH09234817A (en) | Layered film | |
JP6143965B2 (en) | GAS BARRIER FILM, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING GAS BARRIER FILM | |
JP2004130709A (en) | Transparent sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAMSUNG MOBILE DISPLAY CO., LTD., KOREA, REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BATTELLE MEMORIAL INSTITUTE;REEL/FRAME:025516/0773 Effective date: 20101028 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: MERGER;ASSIGNOR:SAMSUNG MOBILE DISPLAY CO., LTD.;REEL/FRAME:028912/0083 Effective date: 20120702 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |