USRE33093E - Bioadhesive extruded film for intra-oral drug delivery and process - Google Patents
Bioadhesive extruded film for intra-oral drug delivery and process Download PDFInfo
- Publication number
- USRE33093E USRE33093E US07/272,354 US27235488A USRE33093E US RE33093 E USRE33093 E US RE33093E US 27235488 A US27235488 A US 27235488A US RE33093 E USRE33093 E US RE33093E
- Authority
- US
- United States
- Prior art keywords
- layer
- film
- extruded
- cellulose
- polyethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/006—Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
Definitions
- the present invention relates to a controlled-releasing medicament-containing preparation for intra-oral use, and is more especially concerned with such a preparation (and the process of using it) in the form of a very thin extruded thermoplastic film (which can be in single layer or laminated multi-layer form) having at least one bioadhesive layer containing .[.40-95.]..Iadd.20-93.Iaddend.% of a thermoplastic cellulose ether and 5-60% of a homopolymer of ethylene oxide which can adhere to the mucosa of the oral cavity.
- the extruded film drug delivery system of the present invention which has incorporated therein the medicament to be dispensed, is so thin and flexible when wet as to be unobtrusive to the patient after it has been properly positioned and placed in the mouth.
- HEMA/MMA hydroxyethyl methacrylate/methyl methacrylate copolymer
- Sodium fluoride is incorporated into the HEMA/MMA matrix to provide sustained fluoride release and enhanced anticaries activity.
- HEMA/MMA with fluoride may also be attached to the tooth in the form of a wafer-like tablet.
- Silicone/ethyl cellulose/polyethylene glycol films containing sodium fluoride are applied as coatings on orthodontic bands or in chewing gum. Controlled release of fluoride and anticaries activity is claimed.
- the above systems are discussed in the "The Compendium of Continuing Education” Vol VI, No. 1, January 1985 p. 27-36 review article "Controlled Drug Delivery: A New Means of Treatment of Dental Disease", by J. Max Goodson, D.D.S., Ph.D. of the Forsyth Dental Center.
- Other systems described in GB patent application No. 2,042,888 and U.S. Pat. Nos. 4,292,299/4,226,848 (Teijin Ltd., Japan), use combinations of cellulosic and polyacrylate polymers.
- the preferred materials are hydroxypropyl cellulose ("Klucel”) and a copolymer of acrylic acid (“Carbopol”) that is administered in the form of thin tablets (discs), granules or powder.
- Other polymers that might be added are vinyl copolymers, polysaccharides, gelatin and collagen.
- U.S. Pat. No. 4,517,173 (Nippon Soda Co. Ltd, Japan) uses various celluloses in a multi-layered non-extruded cast film preparation.
- ointments such as ORABASE* with Benzocaine (Squibb), Kenalog* (Triamcinolone Acetonide) in ORABASE* (Squibb) and Mycostatin* (Nystatin) ointment (Squibb).
- Tablets, appliances, hollow fibers are "bulky" in the mouth, are difficult to keep in place and inconvenient to apply.
- Ethyl cellulose and/or silicone films do not adhere to mucosal tissue.
- ORABASE* Ointments
- the bioadhesive film of the present invention alleviates many of the above problems. It may be applied easily by the consumer. It has very little or no mouthfeel, it has good adhesion to the mucosal tissues, and provides controlled release of the medicament.
- This technology may also be extended for controlled drug delivery in skin care, gynecological applications, wound care and like uses.
- the invention involves a pharmaceutically acceptable controlled-releasing medicament-containing extruded single or multi-layered thin film, capable of adhering to a wet mucous surface, comprising a water soluble or swellable polymer matrix bioadhesive layer which can adhere to a wet mucous surface and which bioadhesive layer consists essentially of .[.40-95.Iadd.20-93.Iaddend.% by weight of hydroxypropyl cellulose 5-60% of a homopolymer of ethylene oxide, 0-10% of a water-insoluble polymer selected from the group consisting of ethyl cellulose, propyl cellulose, polyethylene and polypropylene, and 2-10% of a plasticizer, said film having incorporated therein a pharmaceutically effective amount of said medicament.
- the present invention is directed to an extruded single or multi-layered laminated thin (1-10 mils or 0.025-0.25 mm) film, composed of selected water soluble and/or insoluble polymers.
- Various therapeutic agents are incorporated into the film during manufacture which are useful for treatment of oral disorders (i.e., denture discomfort, caries, periodontal disease, aphthous ulcers, etc.).
- the extruded film of the present invention must have at least one bioadhesive layer, but may also have a reservoir layer and/or an outer protective barrier membrane layer.
- the therapeutic agent may be incorporated into any or all of the layers. When properly formulated and fabricated, these films will adhere to wet mucosal surfaces, provide a protective barrier for injured tissue and deliver controlled/sustained dosages of medication to the infected areas.
- the film may be designed for localized drug delivery (i.e., the periodontal pocket, an aphthous lesion), or may allow diffusion of the drug into the oral cavity.
- An example of a non-localized system would be the delivery of sodium fluoride for caries prevention.
- a single or laminated film with good adhesion to the tooth or mucosal tissue may be employed in which the fluoride release rates may be controlled by varying film solubilities and/or concentration of fluoride in a multi-layered film.
- An example of a localized application of medication would be in the treatment of aphthous lesions.
- a laminated two layer film with benzocaine incorporated into the adhesive layer would directly contact the injured mucosa.
- the outer layer would consist of non-soluble/non-adhesive polymers that provide durability, protection and directs the delivery of benzocaine toward the lesion.
- the film forming polymers that are useful in this invention are selected from pharmaceutical grade materials, or those that are considered generally regarded as safe (GRAS) as food additives. They include, hydroxypropyl cellulose, and polyethylene oxide homopolymers. Small amounts of other polymers, e.g., polyvinyl ether-maleic acid copolymers and the like may be used in small amounts as well, replacing a small portion of the other polymers.
- GRAS generally regarded as safe
- Other polymers e.g., polyvinyl ether-maleic acid copolymers and the like may be used in small amounts as well, replacing a small portion of the other polymers.
- the above materials are either water soluble of swellable and are most useful in the bioadhesive layer of the film.
- non-soluble polymers may also be incorporated for modification of the film's permeability properties, such as ethyl cellulose, propyl cellulose, polyethylene, polypropylene and carboxymethylcellulose (free acid).
- ethyl cellulose, propyl cellulose, polyethylene, polypropylene and carboxymethylcellulose (free acid) By varying the ratios of the above polymers both the solubility and the adhesive properties of each layer of film may be controlled. Therefore, depending on the desired delivery rate, the type of disorder to be treated, the area to be treated and the medication being administered it is possible to custom design the film by selecting and blending various polymers.
- the final film product may also be fabricated into flexible tapes of varied thickness and width, "spots" of different sizes and shapes or other pre-shaped forms.
- the medicaments and pharmaceutical agents set forth in the prior art discussed above may generally be delivered by the drug delivery system of the present invention.
- Usable medicaments are those which are capable of withstanding the heats and pressures generated in the extrusion process involved in making the film of the present invention.
- Preferred medicaments include:
- Antibiotics i.e., tetracycline, doxycycline hyclate, meclocycline, minocycline, etc.
- therapeutic agents that are used to treat oral disorders.
- the present invention is not to be limited to these specific materials especially where it is intended to deliver drug outside of the oral cavity e.g. to skin where other drugs may be desirable.
- the film of the present invention has the advantage of being an extruded film, rather than a cast film.
- the different layers can be coextruded and then laminated together, or else each layer can be separately extruded one on the other, and then laminated together, so that the final multi-layered film is still very thin.
- the films of the present invention can be made in thicknesses of only 1-10 mils or 0.025-0.25 mm. The films are so thin that when placed in the mouth after they become wet they soon become unobtrusive, and hardly noticeable by most patients.
- the film must always have a bioadhesive layer, which enables it to adhere to wet mucosal surfaces.
- the bioadhesive layer has .[.40-95.Iadd.20-93.Iaddend.% of hydroxypropyl cellulose, 5-60% of a homopolymer of ethylene oxide and 2-10% of a glycol plasticizer (all percents are % by weight).
- HPC Hydroxypropyl cellulose
- Preferred grades include Klucel MF, with a molecular weight around 600,000 and having a viscosity of 4,000-6,000 cps (Brookfield) in 2 percent water solutions, or Klucel HF, having a molecular weight around 1,000,000 and viscosity of 1500-2500 cps in 1 percent water solution.
- any HPC having a Molecular Weight above about 100,000 is useful for purposes of this invention.
- the homopolymer of ethylene oxide useful for purposes of the present invention has a relatively high molecular weight, i.e., above 100,000 and preferably above 3,000,000. Such polymers are commercially available from various sources.
- the Union Carbide Corporation material, "Polyox WSR-301", which has a molecular weight of approximately 4,000,000-5,000,000 is most preferred for purposes of the present invention.
- the "plasticizer” useful for purposes of the present invention are selected from glycols such as propylene glycol and polyethylene glycol; polyhydric alcohols such as glycerin and sorbitol; glycerol esters such as glycerol triacetate; fatty acid triglycerides such as NEOBEE* M-5 and MYVEROLS*; mineral oil; vegetable oils such as castor oil, etc.
- the plasticizer should be non-toxic.
- the purpose of the plasticizer is to improve polymer melt processing by reducing the polymer melt viscosity and to impart flexibility to the final product.
- the preferred plasticizer for use in the present invention is either propylene glycol or polyethylene glycol (such as is available from Union Carbide Corporation as their series of Carbowaxes which runs from 200 to 600 molecular weight, of which we prefer to use Carbowax 400, which has a molecular weight of 400, average.
- the following examples will serve to illustrate the present invention in greater detail.
- the units shown in the examples are parts by weight.
- the thickness of the layers is expressed in either mils (0.001 inches) or millimeters. For easy conversion, 4 mils is approximately equal to 0.1 mm.
- This three layered film laminate is comprised of a "bioadhesive” layer, a sodium fluoride “reservoir” layer and, an “outer protective barrier membrane” layer, in which the composition and thickness of each layer are as shown below:
- Powder Blending-Each layer is made separately and all ingredients used therein except propylene glycol and Neobee M-5 (liquid plasticizers) are placed in a Patterson Kelley (PK) V-blender equipped with liquid addition capabilities. The ingredients which are all powders are blended for approximately 10-15 minutes while the liquid plasticizer is slowly added to the mix. Three separate powder blends are made, one for each layer.
- PK Patterson Kelley
- Each layer is extruded separately with the first layer extruded as a "free film”. Successive layers are extruded onto each other and laminated by passing them through heated stainless steel rollers.
- test sample is adhered to a glass slide by prewetting the film and placing the bioadhesive layer on the glass surface.
- the slide is then immersed in a beaker containing 100 ml of distilled water with continuous stirring. Five milliliter aliquots are withdrawn from the solution, at prescribed time intervals, and analyzed for fluoride content with an Orion Ionanalyzer equipped with a fluoride specific electrode. Release rates are then calculated from the data.
- fluoride release rates in the order of 0.05-0.2 mgs/cm 2 /hr for 24 hours. This falls within the desired range for maintaining constant low levels of fluoride in the mouth and enhanced anticaries activity. Release rates may be tailored to desired use levels by modification of the film composition and construction.
- composition of the film which was 0.1 mm. thick, was as follows:
- composition of the film which was 0.1 mm. thick, was as follows:
- active medicament ingredients may be incorporated into the adhesive films of any of Examples 1-3 in place of the particular medicament used in said examples. These include Benzocaine (analgesic), Potassium nitrate (analgesic), Silver sulfadiazene (antimicrobial),
- Chlorhexidine antimicrobial
- miconazole nitrate antifungal
- Benzethonium chloride antifungal
- Tetracycline antibiotic
- This example shows 5 variations of the film having different solubilities, resulting in different release rates.
- the processing conditions used were similar to those of the bioadhesive layer and outer protective barrier membrane layer of Example I.
- Part A was extruded on a Johnson extruder followed by subsequent extrusion and lamination of Part B to A.
- the identical two-layer laminate may also be made by coextruding the inner medicated bioadhesive layer (Part A) and the outer protective barrier layer (Part B) through separate die slots within a coextruder and laminating the two layers together.
- Example II Following the procedures for the bioadhesive layer of Example I, the powders were blended in P-K blender equipped with liquid addition capabilities. Resulting powders were extruded on a Killion laboratory-sized extruder.
- the three SSD films each permitted substantially faster wound contraction than that of wounds treated daily with SILVADENE* cream.
- the films may be scaled up by using an extruder. This example demonstrates the feasibility of such a film to perform its intended purpose. Use of a press for larger samples would result in a non-uniform and lower-quality film than an extruded film.
- the films were very effective antibacterial agents, while mildly inhibiting wound contraction. They offer clinicians a convenient and more effective delivery system for antimicrobials which can be place in wounds beneath any dressing or can be laminated to any acceptable dressing face.
Landscapes
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
A bioadhesive extruded single or multi-layered thin film, especially useful in intra-oral controlled-releasing delivery, having a water soluble or swellable polymer matrix bioadhesive layer which can adhere to a wet mucous surface and which bioadhesive layer consists essentially of .[.40-95.]. .Iadd.20-92.Iaddend.% by weight of a hydroxypropyl cellulose 5-60% of a homopolymer of ethylene oxide, 0-10% of a water-insoluble polymer such as ethyl cellulose, propyl cellulose, polyethylene and polypropylene, and 2-10% of a plasticizer, said film having incorporated therein a medicament, e.g. anesthetics, analgesics, anticaries agents, anti-inflammatories, antihistamines, antibiotics, antibacterials, fungistats, etc.
Description
1. Field of the Invention
The present invention relates to a controlled-releasing medicament-containing preparation for intra-oral use, and is more especially concerned with such a preparation (and the process of using it) in the form of a very thin extruded thermoplastic film (which can be in single layer or laminated multi-layer form) having at least one bioadhesive layer containing .[.40-95.]..Iadd.20-93.Iaddend.% of a thermoplastic cellulose ether and 5-60% of a homopolymer of ethylene oxide which can adhere to the mucosa of the oral cavity. The extruded film drug delivery system of the present invention, which has incorporated therein the medicament to be dispensed, is so thin and flexible when wet as to be unobtrusive to the patient after it has been properly positioned and placed in the mouth.
2. Description of the Prior Art
Several systems have previously been described which pertain to the delivery of drugs into the oral cavity. These include:
1. Treatment of periodontal disease with tetracycline, chlorhexidine or metronidazole loaded into hollow cellulose acetate fibers. These fibers are packed in the periodontal pockets and provide controlled release of the drug to the infected area.
2. Cast films containing ethyl cellulose/propylene glycol with chlorhexidine or metronidazole for treatment of periodontal disease.
3. An orthodontic appliance with a hydroxyethyl methacrylate/methyl methacrylate copolymer (HEMA/MMA) matrix. Sodium fluoride is incorporated into the HEMA/MMA matrix to provide sustained fluoride release and enhanced anticaries activity. HEMA/MMA with fluoride may also be attached to the tooth in the form of a wafer-like tablet.
4. Silicone/ethyl cellulose/polyethylene glycol films containing sodium fluoride are applied as coatings on orthodontic bands or in chewing gum. Controlled release of fluoride and anticaries activity is claimed. The above systems are discussed in the "The Compendium of Continuing Education" Vol VI, No. 1, January 1985 p. 27-36 review article "Controlled Drug Delivery: A New Means of Treatment of Dental Disease", by J. Max Goodson, D.D.S., Ph.D. of the Forsyth Dental Center. Other systems, described in GB patent application No. 2,042,888 and U.S. Pat. Nos. 4,292,299/4,226,848 (Teijin Ltd., Japan), use combinations of cellulosic and polyacrylate polymers. The preferred materials are hydroxypropyl cellulose ("Klucel") and a copolymer of acrylic acid ("Carbopol") that is administered in the form of thin tablets (discs), granules or powder. Other polymers that might be added are vinyl copolymers, polysaccharides, gelatin and collagen. U.S. Pat. No. 4,517,173 (Nippon Soda Co. Ltd, Japan) uses various celluloses in a multi-layered non-extruded cast film preparation.
Examples of prior art products currently on the market include ointments such as ORABASE* with Benzocaine (Squibb), Kenalog* (Triamcinolone Acetonide) in ORABASE* (Squibb) and Mycostatin* (Nystatin) ointment (Squibb).
The prior art products and delivery systems described above are useful but have the following disadvantages:
Tablets, appliances, hollow fibers are "bulky" in the mouth, are difficult to keep in place and inconvenient to apply.
Ethyl cellulose and/or silicone films do not adhere to mucosal tissue.
Ointments (i.e., ORABASE*) have an unpleasant feel and do not last very long.
Except for ORABASE*, all the foregoing systems require professional application to the tooth or periodontal pockets.
The bioadhesive film of the present invention alleviates many of the above problems. It may be applied easily by the consumer. It has very little or no mouthfeel, it has good adhesion to the mucosal tissues, and provides controlled release of the medicament.
It is an object of this invention to provide an extruded film that is an effective and convenient intra-oral drug delivery system and method for applying and delivering controlled dosages of therapeutic agents into the oral cavity. This technology may also be extended for controlled drug delivery in skin care, gynecological applications, wound care and like uses.
The invention involves a pharmaceutically acceptable controlled-releasing medicament-containing extruded single or multi-layered thin film, capable of adhering to a wet mucous surface, comprising a water soluble or swellable polymer matrix bioadhesive layer which can adhere to a wet mucous surface and which bioadhesive layer consists essentially of .[.40-95.Iadd.20-93.Iaddend.% by weight of hydroxypropyl cellulose 5-60% of a homopolymer of ethylene oxide, 0-10% of a water-insoluble polymer selected from the group consisting of ethyl cellulose, propyl cellulose, polyethylene and polypropylene, and 2-10% of a plasticizer, said film having incorporated therein a pharmaceutically effective amount of said medicament.
The present invention is directed to an extruded single or multi-layered laminated thin (1-10 mils or 0.025-0.25 mm) film, composed of selected water soluble and/or insoluble polymers. Various therapeutic agents are incorporated into the film during manufacture which are useful for treatment of oral disorders (i.e., denture discomfort, caries, periodontal disease, aphthous ulcers, etc.).
The extruded film of the present invention must have at least one bioadhesive layer, but may also have a reservoir layer and/or an outer protective barrier membrane layer. The therapeutic agent may be incorporated into any or all of the layers. When properly formulated and fabricated, these films will adhere to wet mucosal surfaces, provide a protective barrier for injured tissue and deliver controlled/sustained dosages of medication to the infected areas. The film may be designed for localized drug delivery (i.e., the periodontal pocket, an aphthous lesion), or may allow diffusion of the drug into the oral cavity.
An example of a non-localized system would be the delivery of sodium fluoride for caries prevention. A single or laminated film with good adhesion to the tooth or mucosal tissue may be employed in which the fluoride release rates may be controlled by varying film solubilities and/or concentration of fluoride in a multi-layered film.
An example of a localized application of medication would be in the treatment of aphthous lesions. A laminated two layer film with benzocaine incorporated into the adhesive layer would directly contact the injured mucosa. The outer layer would consist of non-soluble/non-adhesive polymers that provide durability, protection and directs the delivery of benzocaine toward the lesion.
The film forming polymers that are useful in this invention are selected from pharmaceutical grade materials, or those that are considered generally regarded as safe (GRAS) as food additives. They include, hydroxypropyl cellulose, and polyethylene oxide homopolymers. Small amounts of other polymers, e.g., polyvinyl ether-maleic acid copolymers and the like may be used in small amounts as well, replacing a small portion of the other polymers. The above materials are either water soluble of swellable and are most useful in the bioadhesive layer of the film. Various non-soluble polymers may also be incorporated for modification of the film's permeability properties, such as ethyl cellulose, propyl cellulose, polyethylene, polypropylene and carboxymethylcellulose (free acid). By varying the ratios of the above polymers both the solubility and the adhesive properties of each layer of film may be controlled. Therefore, depending on the desired delivery rate, the type of disorder to be treated, the area to be treated and the medication being administered it is possible to custom design the film by selecting and blending various polymers. The final film product may also be fabricated into flexible tapes of varied thickness and width, "spots" of different sizes and shapes or other pre-shaped forms.
The medicaments and pharmaceutical agents set forth in the prior art discussed above may generally be delivered by the drug delivery system of the present invention. Usable medicaments are those which are capable of withstanding the heats and pressures generated in the extrusion process involved in making the film of the present invention. Preferred medicaments include:
Anesthetics/Analgesics-benzocaine, dyclonine HCl, phenol, aspirin, phenacetin, acetaminophen, potassium nitrate, etc.
Anticaries Agents-sodium fluoride, sodium monofluorophosphate, stannous fluoride, etc.
Anti-inflammatories-hydrocortisone acetate, triamcinolone acetonide, dipotassium, glycyrrhizinate, etc.
Antihistamines-chlorpheniramine maleate, ephedrine HCL, diphenhydramine HCL, etc.
Antibiotics-i.e., tetracycline, doxycycline hyclate, meclocycline, minocycline, etc.
Antibacterials-chlorhexidine, cetyl pyridinium chloride, benzethonium chloride, dequalinium chloride, silver sulfadiazene, phenol, thymol, hexedine, hexetidine, alexidine, etc.
Fungistats-nystatin, miconazole, ketoconazole, etc.
The above are illustrative examples of therapeutic agents that are used to treat oral disorders. The present invention is not to be limited to these specific materials especially where it is intended to deliver drug outside of the oral cavity e.g. to skin where other drugs may be desirable.
The film of the present invention has the advantage of being an extruded film, rather than a cast film. When a multi-layered film is involved, the different layers can be coextruded and then laminated together, or else each layer can be separately extruded one on the other, and then laminated together, so that the final multi-layered film is still very thin. The films of the present invention can be made in thicknesses of only 1-10 mils or 0.025-0.25 mm. The films are so thin that when placed in the mouth after they become wet they soon become unobtrusive, and hardly noticeable by most patients.
The film must always have a bioadhesive layer, which enables it to adhere to wet mucosal surfaces. The bioadhesive layer has .[.40-95.Iadd.20-93.Iaddend.% of hydroxypropyl cellulose, 5-60% of a homopolymer of ethylene oxide and 2-10% of a glycol plasticizer (all percents are % by weight).
The Hydroxypropyl cellulose (HPC), useful for purposes of the present invention is commercially available from Hercules, Inc. (Wilmington, DE) under the tradename KLUCEL*. Preferred grades include Klucel MF, with a molecular weight around 600,000 and having a viscosity of 4,000-6,000 cps (Brookfield) in 2 percent water solutions, or Klucel HF, having a molecular weight around 1,000,000 and viscosity of 1500-2500 cps in 1 percent water solution. In general, any HPC having a Molecular Weight above about 100,000 is useful for purposes of this invention.
The homopolymer of ethylene oxide useful for purposes of the present invention has a relatively high molecular weight, i.e., above 100,000 and preferably above 3,000,000. Such polymers are commercially available from various sources. The Union Carbide Corporation material, "Polyox WSR-301", which has a molecular weight of approximately 4,000,000-5,000,000 is most preferred for purposes of the present invention.
The "plasticizer" useful for purposes of the present invention are selected from glycols such as propylene glycol and polyethylene glycol; polyhydric alcohols such as glycerin and sorbitol; glycerol esters such as glycerol triacetate; fatty acid triglycerides such as NEOBEE* M-5 and MYVEROLS*; mineral oil; vegetable oils such as castor oil, etc.
For the uses for the present invention contemplated here, the plasticizer should be non-toxic. The purpose of the plasticizer is to improve polymer melt processing by reducing the polymer melt viscosity and to impart flexibility to the final product.
The preferred plasticizer for use in the present invention is either propylene glycol or polyethylene glycol (such as is available from Union Carbide Corporation as their series of Carbowaxes which runs from 200 to 600 molecular weight, of which we prefer to use Carbowax 400, which has a molecular weight of 400, average.
In addition to the polymers and plasticizer which are required ingredients of the films of the present invention, minor amounts of other non-essential but customary ingredients will often be used if desired, e.g., antioxidants, preservatives, flavors, colorants.
The following examples will serve to illustrate the present invention in greater detail. The units shown in the examples are parts by weight. The thickness of the layers is expressed in either mils (0.001 inches) or millimeters. For easy conversion, 4 mils is approximately equal to 0.1 mm.
Triple Layered Laminate Containing Sodium Fluoride for Anticaries Protection
This three layered film laminate is comprised of a "bioadhesive" layer, a sodium fluoride "reservoir" layer and, an "outer protective barrier membrane" layer, in which the composition and thickness of each layer are as shown below:
______________________________________ Outer Protective Bio- % w/w Barrier adhesive Reservoir Membrane Layer Layer Layer (4 mils) (1 mil) (1 mil) Ingredients (0.1 mm) (0.025 mm) (0.025 mm) ______________________________________ Polyethylene oxide 60.0 -- -- homopolymer (Unison Carbide-Polyox* WSR-301) Hydroxypropyl Cellulose 30.0 20.0 24.0 (Hercules, Inc.-Klucel* MF) Polyethylene (Allied 5.0 -- -- Chemical-6A) (Low Density) Propylene Glycol, U.S.P. 3.0 -- -- Polyethylene Glycol 2.0 -- -- 400 (Union Carbide) Ethyl Cellulose (Hercules, -- 59.0 69.6 Inc.-N100F) Caprylic/Capric -- 5.0 6.0 Triglyceride(PVO Incorporated-Neobee M-5) Sodium Fluoride, U.S.P. -- 16.0 0.4 100.0 100.0 100.0 ______________________________________
The process used to make the above laminate was:
a. Powder Blending-Each layer is made separately and all ingredients used therein except propylene glycol and Neobee M-5 (liquid plasticizers) are placed in a Patterson Kelley (PK) V-blender equipped with liquid addition capabilities. The ingredients which are all powders are blended for approximately 10-15 minutes while the liquid plasticizer is slowly added to the mix. Three separate powder blends are made, one for each layer.
b. Extrusion Process-A standard Johnson 2-1/2 inch vinyl/polyolefin extruder equipped with a single three stage screw was used to extrude the "powder blend". The temperature conditions for the water soluble powders are however quite different from those used for vinyls and polyolefins. The temperature (°C.) profile for the "reservoir" and "membrane layers" of the triple laminate was as follows:
______________________________________ Barrel Zone 1 100 Barrel Zone 2 125 Barrel Zone 3 135 Barrel Zone 4 145 Barrel Zone 5 160 Barrel Zone 6 170 Adapter 180 Die Zone 1 180 Die Zone 2 180 Die Zone 3 180 ______________________________________
The films which had a width of 18 inches, were extruded at approximately 20 feet/minute through a flat lipped die. The temperature profile for the "bioadhesive layer" was:
______________________________________ Barrel Zone 1 125 Barrel Zone 2 140 Barrel Zone 3 165 Barrel Zone 4 170 Barrel Zone 5 185 Barrel Zone 6 185 Adapter 185 Die Zone 1 185 Die Zone 2 185 Die Zone 3 185 ______________________________________
Each layer is extruded separately with the first layer extruded as a "free film". Successive layers are extruded onto each other and laminated by passing them through heated stainless steel rollers.
Test Results:
In vitro fluoride ion release studies were conducted on samples of the above described triple laminate film measuring 0.5 cm×1.25 cm (0.625 cm2) according to the following procedures:
The test sample is adhered to a glass slide by prewetting the film and placing the bioadhesive layer on the glass surface. The slide is then immersed in a beaker containing 100 ml of distilled water with continuous stirring. Five milliliter aliquots are withdrawn from the solution, at prescribed time intervals, and analyzed for fluoride content with an Orion Ionanalyzer equipped with a fluoride specific electrode. Release rates are then calculated from the data.
The results obtained indicated fluoride release rates in the order of 0.05-0.2 mgs/cm2 /hr for 24 hours. This falls within the desired range for maintaining constant low levels of fluoride in the mouth and enhanced anticaries activity. Release rates may be tailored to desired use levels by modification of the film composition and construction.
Single Layer Adhesive Film Containing Hydrocortisone Acetate (0.5%) As An Anti-Inflammatory Agent
The composition of the film, which was 0.1 mm. thick, was as follows:
______________________________________ Ingredients % w/w ______________________________________ Ethylene Oxide Homopolymer 59.4 (Polyox* WSR-301) Hydroxypropyl Cellulose 30.0 (Klucel* MF) Polyethylene (AC-6A) 5.0 Propylene Glycol 3.0 Polyethylene Glycol 400 2.0 Butylated Hydroxy Toluene (BHT) 0.1 FCC (preservative) Hydrocortisone Acetate 0.5 100.0 ______________________________________
The powder blending process and extruder conditions used were the same as those described in Example I for the "bioadhesive layer" of the sodium fluoride trilaminate. In vitro tests were performed on the above film and demonstrated a prolonged drug release pattern.
Single Layer Adhesive Film Containing Triamcinolone Acetonide (0.1%) As An Anti-Inflammatory
The composition of the film, which was 0.1 mm. thick, was as follows:
______________________________________ Ingredients % w/w ______________________________________ Ethylene Oxide Homopolymer 59.9 (Polyox WSR-301) Hydroxypropyl Cellulose 29.9 (Klucel MF) Polyethylene (AC-6A) 5.0 Propylene Glycol 3.0 Polyethylene Glycol 400 2.0 BHT 0.1 Triamcinolone Acetonide 0.1 100.0 ______________________________________
The powder blending process and extruder conditions used to make the film of this Example 3 were the same as those of the "bioadhesive layer" of Example I.
Other desired active medicament ingredients may be incorporated into the adhesive films of any of Examples 1-3 in place of the particular medicament used in said examples. These include Benzocaine (analgesic), Potassium nitrate (analgesic), Silver sulfadiazene (antimicrobial),
Chlorhexidine (antimicrobial), miconazole nitrate (antifungal), Benzethonium chloride (antimicrobial), Tetracycline (antibiotic) and other similar therapeutic compounds.
Analgesic Films with Potassium Nitrate
This example shows 5 variations of the film having different solubilities, resulting in different release rates.
______________________________________ % w/w Ingredients 1 2 3 4 5 ______________________________________ Polyethylene oxide 23.75 57.00 55.00 55.00 57.00 homopolymer (Polyox* WSR-301) Hydroxypropyl Cell- 68.30 -- -- -- -- ulose, N.F. (Klucel* HF) Hydroxypropyl Cell- -- 28.40 29.90 22.40 22.40 ulose, N.F. (Klucel* MF) Ethyl Cellulose -- 4.75 5.00 12.50 12.50 Polyethylene Glycol 400 1.90 1.90 2.00 2.00 2.00 Polyethylene Glycol 8000 0.95 -- -- -- -- Propylene Glycol, U.S.P. -- 2.85 3.00 3.00 3.00 BHT, F.C.C. 0.10 0.10 0.10 0.10 0.10 Potassium Nitrate, F.C.C. 5.00 5.00 5.00 5.00 3.00 ______________________________________
The above ingredients are blended in a Patterson-Kelly powder blender equipped with liquid addition capabilities. The resulting powder blend is then extruded into film on a Killion or Johnson vinyl extruder using processing procedures similar to those of the bioadhesive layer of Example I.
Anesthetic Films with Benzocaine (Laminate)
This is an example of a two-layer laminate. The processing conditions used were similar to those of the bioadhesive layer and outer protective barrier membrane layer of Example I.
______________________________________ A. Inner medicated bioadhesive layer Polyoxyethylene Homopolymer 57.00 (Polyox* WSR-301) Hydroxypropyl Cellulose, N.F. 28.40 (Klucel* MF) Polyethylene (AC-6A) 4.75 Propylene Glycol, U.S.P. 2.85 Polyethylene Glycol 400 1.90 BHT, F.C.C. 0.10 Benzocaine, U.S.P. 5.00 100.00 B. Outer protective/barrier layer Hydroxypropyl Cellulose 78.00 (Klucel* MF) Ethyl Cellulose 20.00 Polyethylene Glycol 400 2.00 100.00 ______________________________________
Part A was extruded on a Johnson extruder followed by subsequent extrusion and lamination of Part B to A.
Samples were applied to oral lesions, and provided profound anesthetic effects (lasting several hours) within minutes of application.
The identical two-layer laminate may also be made by coextruding the inner medicated bioadhesive layer (Part A) and the outer protective barrier layer (Part B) through separate die slots within a coextruder and laminating the two layers together.
Anesthetic Films with Phenol and Dyclonine HCl
Four variations of a single layer bioadhesive film were made as shown below:
______________________________________ Ingredients 1 2 3 4 ______________________________________ Polyethylene oxide homo- 59.10 54.00 59.70 58.20 polymer (Polyox* WSR-301) Hydroxypropyl Cellulose 29.45 26.91 29.75 29.00 (Klucel HF) Ethyl Cellulose 4.93 4.50 4.98 4.85 Propylene Glycol, U.S.P. 2.96 2.70 2.99 2.91 Polyethylene Glycol 400 1.97 1.80 1.99 1.94 BHT, F.C.C. 0.09 0.09 0.09 0.10 Phenol, U.S.P. 1.50 -- -- -- Dyclonine HCl -- 10.00 0.50 3.00 ______________________________________
Following the procedures for the bioadhesive layer of Example I, the powders were blended in P-K blender equipped with liquid addition capabilities. Resulting powders were extruded on a Killion laboratory-sized extruder.
Silver Sulfadiazene Films-Antimicrobial
Three different single-layered bioadhesive films containing 1.0% 0.5% and 0.5% respectively of silver sulfadiazene (SSD) were prepared on a heated Carver laboratory press (designed to simulate extruded conditions) as shown below.
______________________________________ % w/w Ingredients A B ______________________________________ Polyethylene oxide homopolymer 60.00 60.00 (Polyox* WSR-301) Hydroxypropyl Cellulose 28.9 29.4 (Klucel* HF) Polyethylene (AC-6A) 5.0 5.0 Propylene Glycol, U.S.P. 3.0 3.0 Polyethylene Glycol 400 2.0 2.0 BHT, F.C.C. 0.1 0.1 Silver Sulfadiazine 1.0 0.5 100.0 100.0 ______________________________________
Effects on wound repair and activity against Staphylococcus aureus were evaluated in the guinea pig model. Full-thickness excisions were inoculated with 3.8×105 organisms, (Staph. aureus) and wound surface microbiology samples taken 10 minutes and 24 hours after treatment. Test films were placed on the wound and covered with BIOCLUSIVE* Transparent Dressings secured with elastic tape. Wound contraction was measured over an eight-day period using OPTOMAX* Computer-Assisted Image Analysis. The three films tested were the following:
A. 1.0% Silver Sulfadiazene, 125° C./2 minutes/4 tons
B. 0.5% Silver Sulfadiazene, 125° C./2 minutes/4 tons
C. 0.5% Silver Sulfadiazene, 150° C./3 minutes/4 tons
SILVADENE Cream and an untreated occluded control. The results indicated that:
1. SILVADENE* treated wounds significantly inhibited full-thickness wound contraction.
2. Film A, B and C inhibited wound contraction relative to that of BIOCLUSIVE* dressed wounds.
3. The three SSD films each permitted substantially faster wound contraction than that of wounds treated daily with SILVADENE* cream.
4. All films were very active against S. Aureus 24 hours after inoculation.
The films may be scaled up by using an extruder. This example demonstrates the feasibility of such a film to perform its intended purpose. Use of a press for larger samples would result in a non-uniform and lower-quality film than an extruded film.
Based on the above findings, the films were very effective antibacterial agents, while mildly inhibiting wound contraction. They offer clinicians a convenient and more effective delivery system for antimicrobials which can be place in wounds beneath any dressing or can be laminated to any acceptable dressing face.
Claims (9)
1. A pharmaceutically acceptable controlled-releasing medicament-containing extruded single or multi-layered thin film, capable of adhering to a wet mucous surface, comprising a water soluble or swellable polymer matrix bioadhesive layer which can adhere to a wet mucous surface and which bioadhesive layer consists essentially of .[.40-95.]..Iadd.20-93.Iaddend.% by weight of a hydroxypropyl cellulose having a molecular weight above 100,000, 5-60% of a homopolymer of ethylene oxide having a molecular weight from 3,000,000 to 5,000,000, 0-10% of a water-insoluble polymer selected from the group consisting of ethyl cellulose, propyl cellulose, polyethylene and polypropylene, and 2-10% of a plasticizer, said film having incorporated therein a pharmaceutically effective amount of said medicament.
2. The extruded film of claim 1, made in a form which is so thin and flexible when wet as to be unobtrusive to the patient when properly positioned and placed in the patients mouth.
3. The extruded film of claim 2 having a thickness no greater than 0.25 millimeters.
4. The extruded film of claim 1, in single layer form, which also contains up to 10% by weight of a non-soluble polymer selected from the group consisting of ethyl cellulose, polyethylene, polypropylene and carboxymethyl cellulose free acid.
5. The extruded film of claim 1, in multi-layer laminated form, which is addition to the bioadhesive layer also contains a reservoir layer in which at least a major portion of the medicament is contained.
6. The extruded multi-layer film of claim 5 in which the reservoir layer consists essentially of a polymer matrix comprised of both a water soluble or swellable polymer and a non-water soluble polymer selected from the group consisting of ethyl cellulose, propyl cellulose, polyethylene and polypropylene, and also hydroxypropyl cellulose.
7. The extruded film of claim 1 in multi-layer laminated form, which in addition to the bioadhesive layer also contains an outer protective-barrier membrane layer.
8. The extruded multi-layer film of claim 7 in which the outer protective-barrier membrane layer is thinner than the bioadhesive layer, and said outer protective barrier layer consists essentially of a polymer matrix of a major proportion of a non-water-soluble polymer selected from the group consisting of ethyl cellulose, propyl cellulose, polyethylene and polypropylene, and a minor proportion of hydroxypropyl cellulose.
9. The extruded multi-layer film of claim 1 in the form of a triple layered laminate containing sodium fluoride for anticaries protection having the following composition:
______________________________________ Outer Protective Bio- % w/w Barrier adhesive Reservoir Membrane Layer Layer Layer Ingredients (0.1 mm) (0.025 mm) (0.025 mm) ______________________________________ Polyethylene oxide 60.0 -- -- homopolymer (MW 3,000,000 minimum) Hydroxypropyl Cellulose 30.0 20.0 24.0 (MW 1,000,000) Polyethylene (Low Density) 5.0 -- -- Propylene Glycol U.S.P. 3.0 -- -- Polyethylene Glycol 2.0 -- -- (MW 400) Ethyl Cellulose -- 59.0 69.6 Caprylic/Capric -- 5.0 6.0 Triglyceride Sodium Flouride -- 16.0 0.4 100.0 100.0 100.0 ______________________________________
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/272,354 USRE33093E (en) | 1986-06-16 | 1988-11-16 | Bioadhesive extruded film for intra-oral drug delivery and process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/874,904 US4713243A (en) | 1986-06-16 | 1986-06-16 | Bioadhesive extruded film for intra-oral drug delivery and process |
US07/272,354 USRE33093E (en) | 1986-06-16 | 1988-11-16 | Bioadhesive extruded film for intra-oral drug delivery and process |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/874,904 Reissue US4713243A (en) | 1986-06-16 | 1986-06-16 | Bioadhesive extruded film for intra-oral drug delivery and process |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE33093E true USRE33093E (en) | 1989-10-17 |
Family
ID=26955461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/272,354 Expired - Lifetime USRE33093E (en) | 1986-06-16 | 1988-11-16 | Bioadhesive extruded film for intra-oral drug delivery and process |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE33093E (en) |
Cited By (176)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4997830A (en) * | 1990-02-07 | 1991-03-05 | The Research Foundation Of State University Of New York | Pharmaceutical composition for the treatment of periodontitis |
US5064650A (en) * | 1988-04-19 | 1991-11-12 | Southwest Research Institute | Controlled-release salt sensitive capsule for oral use and adhesive system |
US5112620A (en) * | 1990-09-20 | 1992-05-12 | Mikkur, Inc. | Polyethylene glycol ointment for apthous ulcers |
WO1992007640A1 (en) * | 1990-10-29 | 1992-05-14 | Fmc Corporation | Polysaccharide-based porous sheets |
US5114718A (en) * | 1990-09-20 | 1992-05-19 | The Procter & Gamble Company | Sustained release compositions for treating periodontol disease |
US5133971A (en) * | 1988-12-14 | 1992-07-28 | Phoebe Copelan | Personal dental hygiene assembly |
US5135752A (en) * | 1988-10-14 | 1992-08-04 | Zetachron, Inc. | Buccal dosage form |
US5262164A (en) * | 1989-11-17 | 1993-11-16 | The Procter & Gamble Company | Sustained release compositions for treating periodontal disease |
US5288532A (en) * | 1990-08-28 | 1994-02-22 | Viskase Corporation | Transferable modifier-containing film |
EP0598606A1 (en) * | 1992-11-18 | 1994-05-25 | JOHNSON & JOHNSON CONSUMER PRODUCTS, INC. | Extrudable compositions for topical or transdermal drug delivery |
US5364634A (en) * | 1991-11-08 | 1994-11-15 | Southwest Research Institute | Controlled-release PH sensitive capsule and adhesive system and method |
US5447725A (en) * | 1993-06-11 | 1995-09-05 | The Procter & Gamble Company | Methods for aiding periodontal tissue regeneration |
US5700478A (en) * | 1993-08-19 | 1997-12-23 | Cygnus, Inc. | Water-soluble pressure-sensitive mucoadhesive and devices provided therewith for emplacement in a mucosa-lined body cavity |
US5714165A (en) * | 1990-09-20 | 1998-02-03 | Mikkur, Inc. | Bioadhesive polyethylene glycol ointment for medicaments |
US5851551A (en) * | 1991-08-23 | 1998-12-22 | The Gillette Company | Sustained-release matrices for dental application |
US5894017A (en) * | 1997-06-06 | 1999-04-13 | The Procter & Gamble Company | Delivery system for an oral care substance using a strip of material having low flexural stiffness |
US5906814A (en) * | 1995-12-07 | 1999-05-25 | The Andrew Jergens Company | Topical film-forming compositions |
US5906834A (en) * | 1992-06-15 | 1999-05-25 | The Gillette Company | Color changing matrix as wear indicator |
US5914118A (en) | 1995-12-26 | 1999-06-22 | Sanwa Kagaku Kenkyusho Co., Ltd. | Multi-layered drug containing film preparation having powder adhesive thereon |
US5958452A (en) | 1994-11-04 | 1999-09-28 | Euro-Celtique, S.A. | Extruded orally administrable opioid formulations |
US6068855A (en) | 1994-11-03 | 2000-05-30 | Euro-Celtique S. A. | Pharmaceutical composition containing a fusible carrier and method for producing the same |
US6153210A (en) | 1997-08-14 | 2000-11-28 | Periodontix, Inc. | Use of locally delivered metal ions for treatment of periodontal disease |
US6231957B1 (en) | 1999-05-06 | 2001-05-15 | Horst G. Zerbe | Rapidly disintegrating flavor wafer for flavor enrichment |
US6375963B1 (en) | 1999-06-16 | 2002-04-23 | Michael A. Repka | Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof |
US6419906B1 (en) * | 2001-03-12 | 2002-07-16 | Colgate Palmolive Company | Strip for whitening tooth surfaces |
US6503486B2 (en) * | 2001-03-12 | 2003-01-07 | Colgate Palmolive Company | Strip for whitening tooth surfaces |
US6514483B2 (en) * | 2001-03-12 | 2003-02-04 | Colgate Palmolive Company | Strip for whitening tooth surfaces |
US20030053962A1 (en) * | 2001-06-19 | 2003-03-20 | Zerbe Horst G. | Flavored film |
US20030059381A1 (en) * | 1997-06-06 | 2003-03-27 | Goodhart Lesle Marie | Structures and compositions increasing the stability of peroxide actives |
US6551579B2 (en) | 1997-06-06 | 2003-04-22 | The Procter & Gamble Company | Delivery systems for a tooth whitener |
US6562363B1 (en) | 1997-09-26 | 2003-05-13 | Noven Pharmaceuticals, Inc. | Bioadhesive compositions and methods for topical administration of active agents |
US6566350B2 (en) * | 2000-05-23 | 2003-05-20 | Showa Yakuhin Kako Co., Ltd. | Minocycline-containing compositions |
US6582708B1 (en) | 2000-06-28 | 2003-06-24 | The Procter & Gamble Company | Tooth whitening substance |
US20030167556A1 (en) * | 2002-03-05 | 2003-09-11 | Consumers Choice Systems, Inc. | Methods and devices for transdermal delivery of anti-aging compounds for treatment and prevention of facial or neck skin aging |
US6638881B2 (en) | 1999-12-23 | 2003-10-28 | Combe Incorporated | Dental adhesive device and method of producing same |
US6682721B2 (en) | 2000-03-17 | 2004-01-27 | Lg Household & Healthcare Ltd. | Patches for teeth whitening |
US20040018241A1 (en) * | 1997-09-26 | 2004-01-29 | Noven Pharmaceuticals, Inc. | Bioadhesive compositions and methods for topical administration of active agents |
US6689344B2 (en) | 2000-03-17 | 2004-02-10 | Lg Household & Healthcare Ltd. | Patches for teeth whitening |
US20040120991A1 (en) * | 2002-09-07 | 2004-06-24 | Mars Incorporated | Edible films having distinct regions |
US20040146836A1 (en) * | 2003-01-24 | 2004-07-29 | Andersen Scot N. | Pre-shaped dental trays and treatment devices and methods that utilize such dental trays |
US20040219111A1 (en) * | 2000-03-17 | 2004-11-04 | Ji-Young Kim | Method and device for teeth whitening using a dry type adhesive |
US20040241616A1 (en) * | 2003-05-27 | 2004-12-02 | Ultradent Products, Inc. | Substantially solid bleaching composition in a tray-like configuration |
US20040241615A1 (en) * | 2003-05-27 | 2004-12-02 | Allred Peter M. | Tray-like dental bleaching devices having a barrier layer and a substantially solid bleaching composition |
US20040241294A1 (en) * | 2003-05-31 | 2004-12-02 | Barabolak Roman M. | Edible films including aspartame and methods of making same |
US20040241617A1 (en) * | 2003-05-27 | 2004-12-02 | Allred Peter M. | Substantially solid desensitizing compositions and devices having a tray-like configuration and methods of manufacturing and using such compositions and devices |
US20040258896A1 (en) * | 2001-10-12 | 2004-12-23 | Monosolrx Llc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20050037055A1 (en) * | 2002-04-11 | 2005-02-17 | Monosolrx Llc. | Polyethylene oxide-based films and drug delivery systems made therefrom |
US6860736B2 (en) | 2003-05-23 | 2005-03-01 | Ultradent Products, Inc. | Oral treatment devices that include a thin, flexible barrier layer and an endoskeleton treatment or adhesive composition |
US6884426B2 (en) | 1997-06-06 | 2005-04-26 | The Procter & Gamble Co. | Methods for whitening teeth |
US20050089820A1 (en) * | 2003-10-22 | 2005-04-28 | Allred Peter M. | Treatment compositions and strips having a solid adhesive layer and treatment gel adjacent thereto |
US20050100515A1 (en) * | 2002-09-11 | 2005-05-12 | The Procter & Gamble Company | Tooth whitening products |
US20050136381A1 (en) * | 2003-01-24 | 2005-06-23 | Andersen Scot N. | Preshaped thin-walled dental trays and methods of manufacturing and using such trays |
US20050143303A1 (en) * | 2003-12-26 | 2005-06-30 | Nastech Pharmaceutical Company Inc. | Intranasal administration of glucose-regulating peptides |
US20050186150A1 (en) * | 2004-02-19 | 2005-08-25 | Allred Peter M. | Dental bleaching devices having a protective adhesive region |
US20050186539A1 (en) * | 2004-02-19 | 2005-08-25 | Mclean Bruce S. | Universal tray design having anatomical features to enhance fit |
US20050196443A1 (en) * | 2001-08-22 | 2005-09-08 | Isis Pharmaceuticals, Inc. | Pulsatile release compositions and methods for enhanced intestinal drug absorption |
US6946142B2 (en) | 2001-06-23 | 2005-09-20 | Lg Household & Healthcare Ltd. | Multi-layer patches for teeth whitening |
US20050208108A1 (en) * | 2004-03-19 | 2005-09-22 | Jannusch Leonard C | Thermoplastic films and methods for making |
US6949240B2 (en) | 2002-05-23 | 2005-09-27 | The Procter & Gamble Company | Tooth whitening products |
US6981874B2 (en) | 2003-10-22 | 2006-01-03 | Ultradent Products, Inc. | Dental bleaching compositions and devices having a solid activation adhesive layer or region and bleaching gel layer or region |
US7011523B2 (en) | 2003-10-22 | 2006-03-14 | Ultradent Products, Inc. | Bleaching compositions and devices having a solid adhesive layer and bleaching gel adjacent thereto |
US20060057165A1 (en) * | 2004-09-10 | 2006-03-16 | Dimitrios Dimitrakoudis | Clostridium botulinum toxin formulation and method for reducing weight |
US20060074025A1 (en) * | 2003-12-26 | 2006-04-06 | Nastech Pharmaceutical Company Inc. | Therapeutic formulations for transmucosal administration that increase glucagon-like peptide-1 bioavailability |
US7040897B2 (en) | 2003-05-23 | 2006-05-09 | Ultradent Products, Inc. | Thin, flexible membrane dental trays and systems and methods utilizing such trays |
US7052275B2 (en) | 2003-05-27 | 2006-05-30 | Ultradent Products, Inc. | Kits and methods for bleaching and desensitizing teeth |
EP1659976A2 (en) * | 2003-08-08 | 2006-05-31 | Ultradent Products, Inc. | Compositons and devices having a tray-like configuration for delivering an oral medicament and methods of manufacturing and using such compositions and devices |
US20060115785A1 (en) * | 2004-11-30 | 2006-06-01 | Chunhua Li | Systems and methods for intra-oral drug delivery |
US20060115782A1 (en) * | 2004-11-30 | 2006-06-01 | Chunhua Li | Systems and methods for coating a dental appliance |
US20060116561A1 (en) * | 2004-11-30 | 2006-06-01 | Tricca Robert E | Systems and methods for intra-oral diagnosis |
US20060171905A1 (en) * | 2005-01-31 | 2006-08-03 | Allred Peter M | Dental bleaching compositions having a protective coating applied thereto |
US20060172260A1 (en) * | 2005-01-31 | 2006-08-03 | Allred Peter M | Dental tray system with releasable hold inner and outer dental trays |
US20060207721A1 (en) * | 2005-03-17 | 2006-09-21 | Greg Slominski | Polymer adhesive splicing of water-soluble, orally ingestible thin film webs |
US20070172515A1 (en) * | 2006-01-20 | 2007-07-26 | Monosolrx, Llc | Film bandage for mucosal administration of actives |
US7264471B2 (en) | 2004-05-05 | 2007-09-04 | Ultradent Products, Inc. | Methods and kits for bleaching teeth while protecting adjacent gingival tissue |
WO2007112285A2 (en) | 2006-03-24 | 2007-10-04 | Auxilium Pharmaceuticals, Inc. | Process for the preparation of a hot-melt extruded laminate |
US20070298380A1 (en) * | 2006-06-26 | 2007-12-27 | Ultradent Products, Inc. | Dental treatment devices adapted for improved lingual side adhesion |
US20070298087A1 (en) * | 2006-06-27 | 2007-12-27 | Biegajski James E | Two-phase mucoadhesive composition |
US7338664B2 (en) | 1991-08-23 | 2008-03-04 | The Gillette Company | Color changing matrix as wear indicator |
US20080075825A1 (en) * | 2006-09-20 | 2008-03-27 | Fuisz Richard C | Edible Water-Soluble Film Containing a Foam Reducing Flavoring Agent |
US20080119698A1 (en) * | 2004-11-30 | 2008-05-22 | Tricca Robert E | Systems and methods for intra-oral diagnosis |
US20080200452A1 (en) * | 2005-07-20 | 2008-08-21 | Petra Obermeier | Oral, Rapidly Disintegrating Film, Which Cannot be Spat Out, for a Neuroleptic |
US7425292B2 (en) | 2001-10-12 | 2008-09-16 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20080234200A1 (en) * | 2003-12-26 | 2008-09-25 | Nastech Pharmaceutical Company Inc. | Method of treatment of a metabolic disease using intranasal administration of exendin peptide |
US7452209B2 (en) | 2005-05-02 | 2008-11-18 | Ultradent Products, Inc. | Exoskeleton support for placement of a dental treatment strip |
US20080292683A1 (en) * | 2007-05-24 | 2008-11-27 | Monosolrx, Llc. | Film shreds and delivery system incorporating same |
US20080299005A1 (en) * | 2003-10-24 | 2008-12-04 | Meathrel William G | Disintegratable films for diagnostic devices |
US20080318837A1 (en) * | 2003-12-26 | 2008-12-25 | Nastech Pharmaceutical Company Inc. | Pharmaceutical Formation For Increased Epithelial Permeability of Glucose-Regulating Peptide |
US20080318861A1 (en) * | 2005-12-08 | 2008-12-25 | Nastech Pharmaceutical Company Inc. | Mucosal Delivery of Stabilized Formulations of Exendin |
EP2010156A2 (en) * | 2006-03-24 | 2009-01-07 | Auxilium International Holdings, Inc. | Stabilized compositions containing alkaline labile drugs |
US20090087812A1 (en) * | 2007-10-02 | 2009-04-02 | Ultradent Products, Inc. | Self-customizable dental treatment trays |
US20090095313A1 (en) * | 2007-10-11 | 2009-04-16 | Fuisz Richard C | Smokeless Tobacco Product, Smokeless Tobacco Product in the Form of a Sheet, Extrudable Tobacco Composition, Method for Manufacturing a Smokeless Tobacco Product, Method for Delivering Super Bioavailable Nicotine Contained in Tobacco to a User, and Packaged Smokeless Tobacco Product Sheet |
WO2009048522A1 (en) | 2007-10-11 | 2009-04-16 | Richard Fuisz | Smokeless tobacco product |
US20090098192A1 (en) * | 2007-10-11 | 2009-04-16 | Fuisz Richard C | Extrudable and Extruded Compositions for Delivery of Bioactive Agents, Method of Making Same and Method of Using Same |
US20090130058A1 (en) * | 2006-01-19 | 2009-05-21 | Hall Mark J | Biologically active composition comprising ethylcellulose |
US7625210B2 (en) | 2004-08-09 | 2009-12-01 | Ultradent Products, Inc. | Treatment devices for providing oral treatments and kits and methods that utilize such treatment devices |
US20100028829A1 (en) * | 2008-07-31 | 2010-02-04 | Ultradent Products, Inc. | Chemically activated dental bleaching trays |
US20100040727A1 (en) * | 2008-08-18 | 2010-02-18 | Monosol Rx, Llc | Method for Improving Uniformity of Content in Edible Film Manufacturing |
US20100150987A1 (en) * | 2008-12-15 | 2010-06-17 | Monosol Rx, Llc | Method for Manufacturing Edible Film |
US20100221309A1 (en) * | 2001-10-12 | 2010-09-02 | Monosol Rx, Llc | Film compositions for delivery of actives |
US20100285130A1 (en) * | 2009-05-06 | 2010-11-11 | Monosol Rx, Llc | Coating of complexed actives in film formulations |
US20100297232A1 (en) * | 2009-05-19 | 2010-11-25 | Monosol Rx, Llc | Ondansetron film compositions |
US20110009834A1 (en) * | 2008-03-15 | 2011-01-13 | Lts Lohmann Therapie-Systeme Ag | Gingival wafer |
US7910641B2 (en) | 2001-10-12 | 2011-03-22 | Monosol Rx, Llc | PH modulated films for delivery of actives |
US20110086329A1 (en) * | 2004-11-10 | 2011-04-14 | Ranir/Dcp Corporation | Device and method for delivering an oral care agent |
US20110142942A1 (en) * | 2009-12-10 | 2011-06-16 | Monosol Rx, Llc | USE OF pH SENSITIVE COMPOUNDS IN TASTE MASKING OF DRUG SUBSTANCES WITHIN ORAL THIN FILM STRIPS |
US20110160264A1 (en) * | 2009-12-28 | 2011-06-30 | Monosol Rx, Llc | Orally administrable film dosage forms containing ondansetron |
WO2011081625A1 (en) | 2009-12-30 | 2011-07-07 | Novartis Ag | Melt extruded thin strips containing coated pharmaceutical actives |
WO2011081628A1 (en) | 2009-12-30 | 2011-07-07 | Novartis Ag | Melt extruded nicotine thin strips |
US20110178048A1 (en) * | 2006-05-08 | 2011-07-21 | Repka Michael A | Stabilized formulation of triamcinolone acetonide |
US20110200715A1 (en) * | 2002-10-11 | 2011-08-18 | Monosol Rx, Llc | Multi-layer films having uniform content |
US8007277B2 (en) | 2006-08-25 | 2011-08-30 | Ultradent Products, Inc. | Non-custom dental treatment trays and mouth guards having improved anatomical features |
US8017150B2 (en) | 2002-04-11 | 2011-09-13 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US8049426B2 (en) | 2005-04-04 | 2011-11-01 | Tessera, Inc. | Electrostatic fluid accelerator for controlling a fluid flow |
US8075872B2 (en) | 2003-08-06 | 2011-12-13 | Gruenenthal Gmbh | Abuse-proofed dosage form |
US8114383B2 (en) | 2003-08-06 | 2012-02-14 | Gruenenthal Gmbh | Abuse-proofed dosage form |
US8114384B2 (en) | 2004-07-01 | 2012-02-14 | Gruenenthal Gmbh | Process for the production of an abuse-proofed solid dosage form |
US8192722B2 (en) | 2003-08-06 | 2012-06-05 | Grunenthal Gmbh | Abuse-proof dosage form |
US8202091B2 (en) | 2007-08-31 | 2012-06-19 | Ultradent Products, Inc. | Dental treatment trays comprising silicone elastomeric material |
US8383152B2 (en) | 2008-01-25 | 2013-02-26 | Gruenenthal Gmbh | Pharmaceutical dosage form |
US8475832B2 (en) | 2009-08-07 | 2013-07-02 | Rb Pharmaceuticals Limited | Sublingual and buccal film compositions |
US8557286B1 (en) | 1999-04-22 | 2013-10-15 | Euroceltique, S.A. | Method for producing a water-insoluble amorphous or partially amorphous controlled release matrix |
US8603514B2 (en) | 2002-04-11 | 2013-12-10 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US8652446B2 (en) | 2000-03-17 | 2014-02-18 | Lg Household & Healthcare Ltd. | Apparatus and method for whitening teeth |
US8663696B2 (en) | 2007-10-19 | 2014-03-04 | Monosol Rx, Llc | Film delivery system for tetrahydrolipstatin |
US8722086B2 (en) | 2007-03-07 | 2014-05-13 | Gruenenthal Gmbh | Dosage form with impeded abuse |
US8765167B2 (en) | 2001-10-12 | 2014-07-01 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US8815289B2 (en) | 2006-08-25 | 2014-08-26 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8900498B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US8900497B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for making a film having a substantially uniform distribution of components |
US8956160B2 (en) | 2002-07-02 | 2015-02-17 | Ranir, Llc | Device and method for delivering an oral care agent |
US8974826B2 (en) | 2010-06-10 | 2015-03-10 | Monosol Rx, Llc | Nanoparticle film delivery systems |
US9108340B2 (en) | 2001-10-12 | 2015-08-18 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US9161917B2 (en) | 2008-05-09 | 2015-10-20 | Grünenthal GmbH | Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet |
US9498410B2 (en) | 2002-12-30 | 2016-11-22 | Colgate-Palmolive Company | Oral and personal care compositions and methods |
US9554976B2 (en) | 2002-09-11 | 2017-01-31 | The Procter & Gamble Company | Tooth whitening product |
US9579285B2 (en) | 2010-02-03 | 2017-02-28 | Gruenenthal Gmbh | Preparation of a powdery pharmaceutical composition by means of an extruder |
US9636303B2 (en) | 2010-09-02 | 2017-05-02 | Gruenenthal Gmbh | Tamper resistant dosage form comprising an anionic polymer |
US9642850B2 (en) | 1997-02-24 | 2017-05-09 | Purdue Pharma L.P. | Method of providing sustained analgesia with buprenorphine |
US9655853B2 (en) | 2012-02-28 | 2017-05-23 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
WO2017093941A1 (en) | 2015-12-03 | 2017-06-08 | Niconovum Usa, Inc. | Multi-phase delivery compositions and products incorporating such compositions |
US9675610B2 (en) | 2002-06-17 | 2017-06-13 | Grünenthal GmbH | Abuse-proofed dosage form |
US9717682B2 (en) | 2009-12-08 | 2017-08-01 | Intelgenx Corporation | Solid oral film dosage forms and methods for making same |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
US9855263B2 (en) | 2015-04-24 | 2018-01-02 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
US9913814B2 (en) | 2014-05-12 | 2018-03-13 | Grünenthal GmbH | Tamper resistant immediate release capsule formulation comprising tapentadol |
US9925146B2 (en) | 2009-07-22 | 2018-03-27 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10034833B2 (en) | 2009-08-07 | 2018-07-31 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US10058548B2 (en) | 2003-08-06 | 2018-08-28 | Grünenthal GmbH | Abuse-proofed dosage form |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
US10080721B2 (en) | 2009-07-22 | 2018-09-25 | Gruenenthal Gmbh | Hot-melt extruded pharmaceutical dosage form |
US10154966B2 (en) | 2013-05-29 | 2018-12-18 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
US10201502B2 (en) | 2011-07-29 | 2019-02-12 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
US10272607B2 (en) | 2010-10-22 | 2019-04-30 | Aquestive Therapeutics, Inc. | Manufacturing of small film strips |
US10285915B2 (en) | 2012-10-17 | 2019-05-14 | The Procter & Gamble Company | Strip for the delivery of an oral care active and methods for applying oral care actives |
US10285910B2 (en) | 2001-10-12 | 2019-05-14 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US10300141B2 (en) | 2010-09-02 | 2019-05-28 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
US10335373B2 (en) | 2012-04-18 | 2019-07-02 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US10449547B2 (en) | 2013-11-26 | 2019-10-22 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
US10610528B2 (en) | 2009-12-08 | 2020-04-07 | Intelgenx Corp. | Solid oral film dosage forms and methods for making same |
US10624862B2 (en) | 2013-07-12 | 2020-04-21 | Grünenthal GmbH | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
EP3663336A1 (en) * | 2018-12-04 | 2020-06-10 | Adhesives Research, Inc. | Disintegrable thin film adhesive barrier |
US10695297B2 (en) | 2011-07-29 | 2020-06-30 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10729658B2 (en) | 2005-02-04 | 2020-08-04 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
US11077068B2 (en) | 2001-10-12 | 2021-08-03 | Aquestive Therapeutics, Inc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US11191737B2 (en) | 2016-05-05 | 2021-12-07 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US11207805B2 (en) | 2001-10-12 | 2021-12-28 | Aquestive Therapeutics, Inc. | Process for manufacturing a resulting pharmaceutical film |
US11224505B2 (en) | 2018-11-02 | 2022-01-18 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages including discrete lens unit with segmented lens haptics |
US11224576B2 (en) | 2003-12-24 | 2022-01-18 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US11273131B2 (en) | 2016-05-05 | 2022-03-15 | Aquestive Therapeutics, Inc. | Pharmaceutical compositions with enhanced permeation |
US11452698B2 (en) | 2013-03-15 | 2022-09-27 | Smith & Nephew, Inc. | Dissolvable gel-forming film for delivery of active agents |
US11589980B2 (en) | 2016-05-22 | 2023-02-28 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages |
US11672757B2 (en) | 2017-06-28 | 2023-06-13 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Hot melt extrusion for pharmaceutical vaginal film products |
US11844865B2 (en) | 2004-07-01 | 2023-12-19 | Grünenthal GmbH | Abuse-proofed oral dosage form |
US12016907B2 (en) | 2012-11-14 | 2024-06-25 | Smith & Nephew, Inc. | Stable thermolysin hydrogel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4292299A (en) * | 1978-11-06 | 1981-09-29 | Teijin Limited | Slow-releasing medical preparation to be administered by adhering to a wet mucous surface |
US4421738A (en) * | 1979-07-31 | 1983-12-20 | Eisai Co., Ltd. | Sugar-coated tablet containing fat-soluble pharmaceutical material |
US4517173A (en) * | 1980-09-26 | 1985-05-14 | Nippon Soda Co. Ltd. | Mucous membrane-adhering film preparation and process for its preparation |
-
1988
- 1988-11-16 US US07/272,354 patent/USRE33093E/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4292299A (en) * | 1978-11-06 | 1981-09-29 | Teijin Limited | Slow-releasing medical preparation to be administered by adhering to a wet mucous surface |
US4421738A (en) * | 1979-07-31 | 1983-12-20 | Eisai Co., Ltd. | Sugar-coated tablet containing fat-soluble pharmaceutical material |
US4517173A (en) * | 1980-09-26 | 1985-05-14 | Nippon Soda Co. Ltd. | Mucous membrane-adhering film preparation and process for its preparation |
Cited By (323)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5064650A (en) * | 1988-04-19 | 1991-11-12 | Southwest Research Institute | Controlled-release salt sensitive capsule for oral use and adhesive system |
US5135752A (en) * | 1988-10-14 | 1992-08-04 | Zetachron, Inc. | Buccal dosage form |
US5133971A (en) * | 1988-12-14 | 1992-07-28 | Phoebe Copelan | Personal dental hygiene assembly |
US5262164A (en) * | 1989-11-17 | 1993-11-16 | The Procter & Gamble Company | Sustained release compositions for treating periodontal disease |
US4997830A (en) * | 1990-02-07 | 1991-03-05 | The Research Foundation Of State University Of New York | Pharmaceutical composition for the treatment of periodontitis |
US5374457A (en) * | 1990-08-28 | 1994-12-20 | Viskase Corporation | Transferable modifier-containing film |
US5288532A (en) * | 1990-08-28 | 1994-02-22 | Viskase Corporation | Transferable modifier-containing film |
US5382391A (en) * | 1990-08-28 | 1995-01-17 | Viskase Corporation | Method for producing transferable modifier-containing film |
US5114718A (en) * | 1990-09-20 | 1992-05-19 | The Procter & Gamble Company | Sustained release compositions for treating periodontol disease |
US5112620A (en) * | 1990-09-20 | 1992-05-12 | Mikkur, Inc. | Polyethylene glycol ointment for apthous ulcers |
US5714165A (en) * | 1990-09-20 | 1998-02-03 | Mikkur, Inc. | Bioadhesive polyethylene glycol ointment for medicaments |
US5155144A (en) * | 1990-10-29 | 1992-10-13 | Manganaro James L | Polysaccharide-based porous sheets |
WO1992007640A1 (en) * | 1990-10-29 | 1992-05-14 | Fmc Corporation | Polysaccharide-based porous sheets |
US5998431A (en) | 1991-08-23 | 1999-12-07 | Gillette Canada Inc. | Sustained-release matrices for dental application |
US7338664B2 (en) | 1991-08-23 | 2008-03-04 | The Gillette Company | Color changing matrix as wear indicator |
US5851551A (en) * | 1991-08-23 | 1998-12-22 | The Gillette Company | Sustained-release matrices for dental application |
US5364634A (en) * | 1991-11-08 | 1994-11-15 | Southwest Research Institute | Controlled-release PH sensitive capsule and adhesive system and method |
US5906834A (en) * | 1992-06-15 | 1999-05-25 | The Gillette Company | Color changing matrix as wear indicator |
EP0598606A1 (en) * | 1992-11-18 | 1994-05-25 | JOHNSON & JOHNSON CONSUMER PRODUCTS, INC. | Extrudable compositions for topical or transdermal drug delivery |
US5447725A (en) * | 1993-06-11 | 1995-09-05 | The Procter & Gamble Company | Methods for aiding periodontal tissue regeneration |
US5700478A (en) * | 1993-08-19 | 1997-12-23 | Cygnus, Inc. | Water-soluble pressure-sensitive mucoadhesive and devices provided therewith for emplacement in a mucosa-lined body cavity |
US6068855A (en) | 1994-11-03 | 2000-05-30 | Euro-Celtique S. A. | Pharmaceutical composition containing a fusible carrier and method for producing the same |
US6743442B2 (en) | 1994-11-04 | 2004-06-01 | Euro-Celtique, S.A. | Melt-extruded orally administrable opioid formulations |
US20050089568A1 (en) * | 1994-11-04 | 2005-04-28 | Euro-Celtique S.A. | Melt-extruded orally administrable opioid formulations |
US5958452A (en) | 1994-11-04 | 1999-09-28 | Euro-Celtique, S.A. | Extruded orally administrable opioid formulations |
US5965161A (en) | 1994-11-04 | 1999-10-12 | Euro-Celtique, S.A. | Extruded multi-particulates |
US7510727B2 (en) | 1994-11-04 | 2009-03-31 | Purdue Pharma L.P. | Melt-extrusion multiparticulates |
US6706281B2 (en) | 1994-11-04 | 2004-03-16 | Euro-Celtique, S.A. | Melt-extrusion multiparticulates |
US6261599B1 (en) | 1994-11-04 | 2001-07-17 | Euro-Celtique, S.A. | Melt-extruded orally administrable opioid formulations |
US6335033B2 (en) | 1994-11-04 | 2002-01-01 | Euro-Celtique, S.A. | Melt-extrusion multiparticulates |
US5906814A (en) * | 1995-12-07 | 1999-05-25 | The Andrew Jergens Company | Topical film-forming compositions |
US5914118A (en) | 1995-12-26 | 1999-06-22 | Sanwa Kagaku Kenkyusho Co., Ltd. | Multi-layered drug containing film preparation having powder adhesive thereon |
US9642850B2 (en) | 1997-02-24 | 2017-05-09 | Purdue Pharma L.P. | Method of providing sustained analgesia with buprenorphine |
US7122199B2 (en) | 1997-06-06 | 2006-10-17 | The Procter & Gamble Company | Methods for whitening teeth |
US6884426B2 (en) | 1997-06-06 | 2005-04-26 | The Procter & Gamble Co. | Methods for whitening teeth |
US20030059381A1 (en) * | 1997-06-06 | 2003-03-27 | Goodhart Lesle Marie | Structures and compositions increasing the stability of peroxide actives |
US6551579B2 (en) | 1997-06-06 | 2003-04-22 | The Procter & Gamble Company | Delivery systems for a tooth whitener |
US5894017A (en) * | 1997-06-06 | 1999-04-13 | The Procter & Gamble Company | Delivery system for an oral care substance using a strip of material having low flexural stiffness |
US7018622B2 (en) | 1997-06-06 | 2006-03-28 | The Procter & Gamble Company | Structures and compositions increasing the stability of peroxide actives |
US6153210A (en) | 1997-08-14 | 2000-11-28 | Periodontix, Inc. | Use of locally delivered metal ions for treatment of periodontal disease |
US6562363B1 (en) | 1997-09-26 | 2003-05-13 | Noven Pharmaceuticals, Inc. | Bioadhesive compositions and methods for topical administration of active agents |
US20040018241A1 (en) * | 1997-09-26 | 2004-01-29 | Noven Pharmaceuticals, Inc. | Bioadhesive compositions and methods for topical administration of active agents |
US8557286B1 (en) | 1999-04-22 | 2013-10-15 | Euroceltique, S.A. | Method for producing a water-insoluble amorphous or partially amorphous controlled release matrix |
US6231957B1 (en) | 1999-05-06 | 2001-05-15 | Horst G. Zerbe | Rapidly disintegrating flavor wafer for flavor enrichment |
US6375963B1 (en) | 1999-06-16 | 2002-04-23 | Michael A. Repka | Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof |
US6638881B2 (en) | 1999-12-23 | 2003-10-28 | Combe Incorporated | Dental adhesive device and method of producing same |
US6682721B2 (en) | 2000-03-17 | 2004-01-27 | Lg Household & Healthcare Ltd. | Patches for teeth whitening |
US8652446B2 (en) | 2000-03-17 | 2014-02-18 | Lg Household & Healthcare Ltd. | Apparatus and method for whitening teeth |
US7785572B2 (en) | 2000-03-17 | 2010-08-31 | Lg Household And Health Care Ltd. | Method and device for teeth whitening using a dry type adhesive |
US6689344B2 (en) | 2000-03-17 | 2004-02-10 | Lg Household & Healthcare Ltd. | Patches for teeth whitening |
US6780401B2 (en) | 2000-03-17 | 2004-08-24 | Lg Household & Healthcare Ltd. | Patches for teeth whitening |
US20040219111A1 (en) * | 2000-03-17 | 2004-11-04 | Ji-Young Kim | Method and device for teeth whitening using a dry type adhesive |
US20060193794A1 (en) * | 2000-03-17 | 2006-08-31 | Ji-Young Kim | Patches for teeth whitening |
US7862802B2 (en) | 2000-03-17 | 2011-01-04 | Lg Household & Health Care Ltd. | Patches for teeth whitening |
US8647607B2 (en) | 2000-03-17 | 2014-02-11 | Lg Household & Health Care Ltd. | Patches for teeth whitening |
US6566350B2 (en) * | 2000-05-23 | 2003-05-20 | Showa Yakuhin Kako Co., Ltd. | Minocycline-containing compositions |
US6582708B1 (en) | 2000-06-28 | 2003-06-24 | The Procter & Gamble Company | Tooth whitening substance |
US6514483B2 (en) * | 2001-03-12 | 2003-02-04 | Colgate Palmolive Company | Strip for whitening tooth surfaces |
US6503486B2 (en) * | 2001-03-12 | 2003-01-07 | Colgate Palmolive Company | Strip for whitening tooth surfaces |
US6419906B1 (en) * | 2001-03-12 | 2002-07-16 | Colgate Palmolive Company | Strip for whitening tooth surfaces |
US7132113B2 (en) | 2001-06-19 | 2006-11-07 | Intelgenx Corp. | Flavored film |
US20030053962A1 (en) * | 2001-06-19 | 2003-03-20 | Zerbe Horst G. | Flavored film |
US6660292B2 (en) | 2001-06-19 | 2003-12-09 | Hf Flavoring Technology Llp | Rapidly disintegrating flavored film for precooked foods |
US6946142B2 (en) | 2001-06-23 | 2005-09-20 | Lg Household & Healthcare Ltd. | Multi-layer patches for teeth whitening |
US20050196443A1 (en) * | 2001-08-22 | 2005-09-08 | Isis Pharmaceuticals, Inc. | Pulsatile release compositions and methods for enhanced intestinal drug absorption |
US7576067B2 (en) | 2001-08-22 | 2009-08-18 | Isis Pharmaceuticals, Inc. | Pulsatile release compositions and methods for enhanced intestinal oligonucleotide drug absorption |
US9855221B2 (en) | 2001-10-12 | 2018-01-02 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US11077068B2 (en) | 2001-10-12 | 2021-08-03 | Aquestive Therapeutics, Inc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US10285910B2 (en) | 2001-10-12 | 2019-05-14 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US10888499B2 (en) | 2001-10-12 | 2021-01-12 | Aquestive Therapeutics, Inc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8900498B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US11207805B2 (en) | 2001-10-12 | 2021-12-28 | Aquestive Therapeutics, Inc. | Process for manufacturing a resulting pharmaceutical film |
US8906277B2 (en) | 2001-10-12 | 2014-12-09 | Monosol Rx, Llc | Process for manufacturing a resulting pharmaceutical film |
US9108340B2 (en) | 2001-10-12 | 2015-08-18 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US20100221309A1 (en) * | 2001-10-12 | 2010-09-02 | Monosol Rx, Llc | Film compositions for delivery of actives |
US7824588B2 (en) | 2001-10-12 | 2010-11-02 | Monosol Rx, Llc | Method of making self-supporting therapeutic active-containing film |
US9931305B2 (en) | 2001-10-12 | 2018-04-03 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US7910641B2 (en) | 2001-10-12 | 2011-03-22 | Monosol Rx, Llc | PH modulated films for delivery of actives |
US20110182969A1 (en) * | 2001-10-12 | 2011-07-28 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8765167B2 (en) | 2001-10-12 | 2014-07-01 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20080268027A1 (en) * | 2001-10-12 | 2008-10-30 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20080260805A1 (en) * | 2001-10-12 | 2008-10-23 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8900497B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for making a film having a substantially uniform distribution of components |
US8685437B2 (en) | 2001-10-12 | 2014-04-01 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20040258896A1 (en) * | 2001-10-12 | 2004-12-23 | Monosolrx Llc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8663687B2 (en) | 2001-10-12 | 2014-03-04 | Monosol Rx, Llc | Film compositions for delivery of actives |
US20080226695A1 (en) * | 2001-10-12 | 2008-09-18 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US7425292B2 (en) | 2001-10-12 | 2008-09-16 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8652378B1 (en) | 2001-10-12 | 2014-02-18 | Monosol Rx Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US7357891B2 (en) | 2001-10-12 | 2008-04-15 | Monosol Rx, Llc | Process for making an ingestible film |
US20030167556A1 (en) * | 2002-03-05 | 2003-09-11 | Consumers Choice Systems, Inc. | Methods and devices for transdermal delivery of anti-aging compounds for treatment and prevention of facial or neck skin aging |
US7666337B2 (en) | 2002-04-11 | 2010-02-23 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US8017150B2 (en) | 2002-04-11 | 2011-09-13 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US20050037055A1 (en) * | 2002-04-11 | 2005-02-17 | Monosolrx Llc. | Polyethylene oxide-based films and drug delivery systems made therefrom |
US10111810B2 (en) | 2002-04-11 | 2018-10-30 | Aquestive Therapeutics, Inc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8603514B2 (en) | 2002-04-11 | 2013-12-10 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US6949240B2 (en) | 2002-05-23 | 2005-09-27 | The Procter & Gamble Company | Tooth whitening products |
US9675610B2 (en) | 2002-06-17 | 2017-06-13 | Grünenthal GmbH | Abuse-proofed dosage form |
US10369109B2 (en) | 2002-06-17 | 2019-08-06 | Grünenthal GmbH | Abuse-proofed dosage form |
US8956160B2 (en) | 2002-07-02 | 2015-02-17 | Ranir, Llc | Device and method for delivering an oral care agent |
US20040120991A1 (en) * | 2002-09-07 | 2004-06-24 | Mars Incorporated | Edible films having distinct regions |
US20070269491A1 (en) * | 2002-09-11 | 2007-11-22 | The Procter & Gamble Company | Tooth whitening strips |
US10493016B2 (en) | 2002-09-11 | 2019-12-03 | The Procter & Gamble Company | Tooth whitening product |
US20070269388A1 (en) * | 2002-09-11 | 2007-11-22 | The Procter & Gamble Company | Tooth whitening strips |
US20070275023A1 (en) * | 2002-09-11 | 2007-11-29 | The Procter & Gamble Company | Tooth whitening strips |
US20050100515A1 (en) * | 2002-09-11 | 2005-05-12 | The Procter & Gamble Company | Tooth whitening products |
US20080038211A1 (en) * | 2002-09-11 | 2008-02-14 | Sagel Paul A | Tooth whitening strips |
US9554976B2 (en) | 2002-09-11 | 2017-01-31 | The Procter & Gamble Company | Tooth whitening product |
US20070269520A1 (en) * | 2002-09-11 | 2007-11-22 | The Procter & Gamble Company | Tooth whitening strips |
US20110200715A1 (en) * | 2002-10-11 | 2011-08-18 | Monosol Rx, Llc | Multi-layer films having uniform content |
US9498410B2 (en) | 2002-12-30 | 2016-11-22 | Colgate-Palmolive Company | Oral and personal care compositions and methods |
US9827172B2 (en) | 2002-12-30 | 2017-11-28 | Colgate-Palmolive Company | Dentifrice containing functional film flakes |
US9918909B2 (en) | 2002-12-30 | 2018-03-20 | Colgate-Palmolive Company | Oral and personal care compositions and methods |
US6964571B2 (en) | 2003-01-24 | 2005-11-15 | Ultradent Products, Inc. | Pre-shaped dental trays and treatment devices and methods that utilize such dental trays |
US7004756B2 (en) | 2003-01-24 | 2006-02-28 | Ultradent Products, Inc. | Pre-shaped dental trays and treatment devices and methods that utilize such dental trays |
US20050136381A1 (en) * | 2003-01-24 | 2005-06-23 | Andersen Scot N. | Preshaped thin-walled dental trays and methods of manufacturing and using such trays |
US20040146836A1 (en) * | 2003-01-24 | 2004-07-29 | Andersen Scot N. | Pre-shaped dental trays and treatment devices and methods that utilize such dental trays |
US7481653B2 (en) | 2003-01-24 | 2009-01-27 | Oratech Lc | Preshaped thin-walled dental trays and methods of manufacturing and using such trays |
US7040897B2 (en) | 2003-05-23 | 2006-05-09 | Ultradent Products, Inc. | Thin, flexible membrane dental trays and systems and methods utilizing such trays |
US6860736B2 (en) | 2003-05-23 | 2005-03-01 | Ultradent Products, Inc. | Oral treatment devices that include a thin, flexible barrier layer and an endoskeleton treatment or adhesive composition |
US7059857B2 (en) | 2003-05-27 | 2006-06-13 | Ultradent Products, Inc. | Substantially solid desensitizing compositions and devices having a tray-like configuration and methods of manufacturing and using such compositions and devices |
US7048543B2 (en) | 2003-05-27 | 2006-05-23 | Ultradent Products, Inc. | Substantially solid bleaching composition in a tray-like configuration |
US7074042B2 (en) | 2003-05-27 | 2006-07-11 | Ultradent Products, Inc. | Tray-like dental bleaching devices having a barrier layer and a substantially solid bleaching composition |
US20040241617A1 (en) * | 2003-05-27 | 2004-12-02 | Allred Peter M. | Substantially solid desensitizing compositions and devices having a tray-like configuration and methods of manufacturing and using such compositions and devices |
US7056118B2 (en) | 2003-05-27 | 2006-06-06 | Ultradent Products, Inc. | Compositions and devices having a tray-like configuration for delivering a medicament and methods of manufacturing and using such compositions and devices |
US20040241615A1 (en) * | 2003-05-27 | 2004-12-02 | Allred Peter M. | Tray-like dental bleaching devices having a barrier layer and a substantially solid bleaching composition |
US7052275B2 (en) | 2003-05-27 | 2006-05-30 | Ultradent Products, Inc. | Kits and methods for bleaching and desensitizing teeth |
US20040241616A1 (en) * | 2003-05-27 | 2004-12-02 | Ultradent Products, Inc. | Substantially solid bleaching composition in a tray-like configuration |
US20040241294A1 (en) * | 2003-05-31 | 2004-12-02 | Barabolak Roman M. | Edible films including aspartame and methods of making same |
US8420056B2 (en) | 2003-08-06 | 2013-04-16 | Grunenthal Gmbh | Abuse-proofed dosage form |
US8309060B2 (en) | 2003-08-06 | 2012-11-13 | Grunenthal Gmbh | Abuse-proofed dosage form |
US8075872B2 (en) | 2003-08-06 | 2011-12-13 | Gruenenthal Gmbh | Abuse-proofed dosage form |
US10058548B2 (en) | 2003-08-06 | 2018-08-28 | Grünenthal GmbH | Abuse-proofed dosage form |
US8114383B2 (en) | 2003-08-06 | 2012-02-14 | Gruenenthal Gmbh | Abuse-proofed dosage form |
US8192722B2 (en) | 2003-08-06 | 2012-06-05 | Grunenthal Gmbh | Abuse-proof dosage form |
US9629807B2 (en) | 2003-08-06 | 2017-04-25 | Grünenthal GmbH | Abuse-proofed dosage form |
US10130591B2 (en) | 2003-08-06 | 2018-11-20 | Grünenthal GmbH | Abuse-proofed dosage form |
EP1659976A4 (en) * | 2003-08-08 | 2009-03-04 | Ultradent Products Inc | Compositons and devices having a tray-like configuration for delivering an oral medicament and methods of manufacturing and using such compositions and devices |
EP1659976A2 (en) * | 2003-08-08 | 2006-05-31 | Ultradent Products, Inc. | Compositons and devices having a tray-like configuration for delivering an oral medicament and methods of manufacturing and using such compositions and devices |
US6981874B2 (en) | 2003-10-22 | 2006-01-03 | Ultradent Products, Inc. | Dental bleaching compositions and devices having a solid activation adhesive layer or region and bleaching gel layer or region |
US20050089820A1 (en) * | 2003-10-22 | 2005-04-28 | Allred Peter M. | Treatment compositions and strips having a solid adhesive layer and treatment gel adjacent thereto |
US7011523B2 (en) | 2003-10-22 | 2006-03-14 | Ultradent Products, Inc. | Bleaching compositions and devices having a solid adhesive layer and bleaching gel adjacent thereto |
US6997708B2 (en) | 2003-10-22 | 2006-02-14 | Ultradent Products, Inc. | Treatment compositions and strips having a solid adhesive layer and treatment gel adjacent thereto |
US7470397B2 (en) | 2003-10-24 | 2008-12-30 | Adhesives Research, Inc. | Disintegratable films for diagnostic devices |
US9937123B2 (en) | 2003-10-24 | 2018-04-10 | Adhesives Research, Inc. | Rapidly disintegrating films for delivery of pharmaceutical or cosmetic agents |
US9585961B2 (en) | 2003-10-24 | 2017-03-07 | Adhesives Research, Inc. | Rapidly disintegrating films for delivery of pharmaceutical or cosmetic agents |
US7727466B2 (en) | 2003-10-24 | 2010-06-01 | Adhesives Research, Inc. | Disintegratable films for diagnostic devices |
US20080299005A1 (en) * | 2003-10-24 | 2008-12-04 | Meathrel William G | Disintegratable films for diagnostic devices |
US11224576B2 (en) | 2003-12-24 | 2022-01-18 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US20080234200A1 (en) * | 2003-12-26 | 2008-09-25 | Nastech Pharmaceutical Company Inc. | Method of treatment of a metabolic disease using intranasal administration of exendin peptide |
US20080318837A1 (en) * | 2003-12-26 | 2008-12-25 | Nastech Pharmaceutical Company Inc. | Pharmaceutical Formation For Increased Epithelial Permeability of Glucose-Regulating Peptide |
US20050143303A1 (en) * | 2003-12-26 | 2005-06-30 | Nastech Pharmaceutical Company Inc. | Intranasal administration of glucose-regulating peptides |
US20060074025A1 (en) * | 2003-12-26 | 2006-04-06 | Nastech Pharmaceutical Company Inc. | Therapeutic formulations for transmucosal administration that increase glucagon-like peptide-1 bioavailability |
US8277215B2 (en) | 2004-02-19 | 2012-10-02 | Ultradent Products, Inc. | Universal non-custom dental tray having anatomical features to enhance fit |
US20050186150A1 (en) * | 2004-02-19 | 2005-08-25 | Allred Peter M. | Dental bleaching devices having a protective adhesive region |
US20050186539A1 (en) * | 2004-02-19 | 2005-08-25 | Mclean Bruce S. | Universal tray design having anatomical features to enhance fit |
US9717577B2 (en) | 2004-02-19 | 2017-08-01 | Ultradent Products, Inc. | Non-custom dental tray having anatomical cuspid-bicuspid cuts and/or V or U-shaped indentation in bottom wall |
US7059858B2 (en) | 2004-02-19 | 2006-06-13 | Ultradent Products, Inc. | Universal tray design having anatomical features to enhance fit |
US7192280B2 (en) | 2004-02-19 | 2007-03-20 | Ultradent Products, Inc. | Dental bleaching devices having a protective adhesive region |
US20050208108A1 (en) * | 2004-03-19 | 2005-09-22 | Jannusch Leonard C | Thermoplastic films and methods for making |
US7264471B2 (en) | 2004-05-05 | 2007-09-04 | Ultradent Products, Inc. | Methods and kits for bleaching teeth while protecting adjacent gingival tissue |
US11844865B2 (en) | 2004-07-01 | 2023-12-19 | Grünenthal GmbH | Abuse-proofed oral dosage form |
US8323889B2 (en) | 2004-07-01 | 2012-12-04 | Gruenenthal Gmbh | Process for the production of an abuse-proofed solid dosage form |
US8114384B2 (en) | 2004-07-01 | 2012-02-14 | Gruenenthal Gmbh | Process for the production of an abuse-proofed solid dosage form |
US7625210B2 (en) | 2004-08-09 | 2009-12-01 | Ultradent Products, Inc. | Treatment devices for providing oral treatments and kits and methods that utilize such treatment devices |
US20060057165A1 (en) * | 2004-09-10 | 2006-03-16 | Dimitrios Dimitrakoudis | Clostridium botulinum toxin formulation and method for reducing weight |
US8944819B2 (en) | 2004-11-10 | 2015-02-03 | Ranir, Llc | Device and method for delivering an oral care agent |
US20110086329A1 (en) * | 2004-11-10 | 2011-04-14 | Ranir/Dcp Corporation | Device and method for delivering an oral care agent |
US20080119698A1 (en) * | 2004-11-30 | 2008-05-22 | Tricca Robert E | Systems and methods for intra-oral diagnosis |
US7947508B2 (en) | 2004-11-30 | 2011-05-24 | Align Technology, Inc. | Systems and methods for intra-oral diagnosis |
US8075309B2 (en) | 2004-11-30 | 2011-12-13 | Align Technology, Inc. | Systems and methods for intra-oral drug delivery |
US20060115782A1 (en) * | 2004-11-30 | 2006-06-01 | Chunhua Li | Systems and methods for coating a dental appliance |
US20060115785A1 (en) * | 2004-11-30 | 2006-06-01 | Chunhua Li | Systems and methods for intra-oral drug delivery |
US20060116561A1 (en) * | 2004-11-30 | 2006-06-01 | Tricca Robert E | Systems and methods for intra-oral diagnosis |
US7766658B2 (en) | 2004-11-30 | 2010-08-03 | Align Technology, Inc. | Systems and methods for intra-oral diagnosis |
US8439674B2 (en) | 2004-11-30 | 2013-05-14 | Align Technology, Inc. | Systems and methods for intra-oral drug delivery |
US7247022B2 (en) | 2005-01-31 | 2007-07-24 | Ultradent Products, Inc. | Dental tray system with releasable hold inner and outer dental trays |
US20060172260A1 (en) * | 2005-01-31 | 2006-08-03 | Allred Peter M | Dental tray system with releasable hold inner and outer dental trays |
US20060171905A1 (en) * | 2005-01-31 | 2006-08-03 | Allred Peter M | Dental bleaching compositions having a protective coating applied thereto |
US10729658B2 (en) | 2005-02-04 | 2020-08-04 | Grünenthal GmbH | Process for the production of an abuse-proofed dosage form |
US10675278B2 (en) | 2005-02-04 | 2020-06-09 | Grünenthal GmbH | Crush resistant delayed-release dosage forms |
US20060207721A1 (en) * | 2005-03-17 | 2006-09-21 | Greg Slominski | Polymer adhesive splicing of water-soluble, orally ingestible thin film webs |
US8049426B2 (en) | 2005-04-04 | 2011-11-01 | Tessera, Inc. | Electrostatic fluid accelerator for controlling a fluid flow |
US7452209B2 (en) | 2005-05-02 | 2008-11-18 | Ultradent Products, Inc. | Exoskeleton support for placement of a dental treatment strip |
US20080200452A1 (en) * | 2005-07-20 | 2008-08-21 | Petra Obermeier | Oral, Rapidly Disintegrating Film, Which Cannot be Spat Out, for a Neuroleptic |
US20080318861A1 (en) * | 2005-12-08 | 2008-12-25 | Nastech Pharmaceutical Company Inc. | Mucosal Delivery of Stabilized Formulations of Exendin |
US20090130058A1 (en) * | 2006-01-19 | 2009-05-21 | Hall Mark J | Biologically active composition comprising ethylcellulose |
JP2009523793A (en) * | 2006-01-19 | 2009-06-25 | ダウ グローバル テクノロジーズ インコーポレイティド | Bioactive composition comprising ethylcellulose |
US9198865B2 (en) * | 2006-01-19 | 2015-12-01 | Dow Global Technologies Llc | Biologically active composition comprising ethylcellulose |
US20070172515A1 (en) * | 2006-01-20 | 2007-07-26 | Monosolrx, Llc | Film bandage for mucosal administration of actives |
US8465759B2 (en) | 2006-03-24 | 2013-06-18 | Auxilium Us Holdings, Llc | Process for the preparation of a hot-melt extruded laminate |
US20090264385A1 (en) * | 2006-03-24 | 2009-10-22 | Crowley Michael M | Stabilized compositions containing alkaline labile drugs |
US20090136555A1 (en) * | 2006-03-24 | 2009-05-28 | Crowley Michael M | Process for the preparation of a hot-melt extruded laminate |
WO2007112285A3 (en) * | 2006-03-24 | 2008-10-02 | Auxilium Pharmaceuticals Inc | Process for the preparation of a hot-melt extruded laminate |
CN101489756B (en) * | 2006-03-24 | 2013-08-07 | 奥克思利尤姆国际控股公司 | Process for the preparation of a hot-melt extruded laminate |
EP3141248A1 (en) * | 2006-03-24 | 2017-03-15 | Auxilium International Holdings, Inc. | Stabilized compositions containing alkaline labile drugs |
AU2007230729B2 (en) * | 2006-03-24 | 2011-07-28 | Auxilium International Holdings, Inc. | Process for the preparation of a hot-melt extruded laminate |
WO2007112285A2 (en) | 2006-03-24 | 2007-10-04 | Auxilium Pharmaceuticals, Inc. | Process for the preparation of a hot-melt extruded laminate |
US9867786B2 (en) | 2006-03-24 | 2018-01-16 | Auxilium Us Holdings, Llc | Stabilized compositions containing alkaline labile drugs |
EP2010156A2 (en) * | 2006-03-24 | 2009-01-07 | Auxilium International Holdings, Inc. | Stabilized compositions containing alkaline labile drugs |
EP2010156A4 (en) * | 2006-03-24 | 2012-07-18 | Auxilium Int Holdings Inc | Stabilized compositions containing alkaline labile drugs |
US9364445B2 (en) | 2006-03-24 | 2016-06-14 | Auxilium Us Holdings, Llc | Stabilized compositions containing alkaline labile drugs |
US8173152B2 (en) | 2006-03-24 | 2012-05-08 | Auxilium Us Holdings, Llc | Stabilized compositions containing alkaline labile drugs |
US8883187B2 (en) | 2006-03-24 | 2014-11-11 | Auxilium Us Holdings, Llc | Stabilized compositions containing alkaline labile drugs |
US10335381B2 (en) | 2006-05-08 | 2019-07-02 | University Of Mississippi | Stabilized formulation of triamcinolone acetonide |
US9801837B2 (en) | 2006-05-08 | 2017-10-31 | The University Of Mississippi | Stabilized formulation of triamcinolone acetonide |
US20110178048A1 (en) * | 2006-05-08 | 2011-07-21 | Repka Michael A | Stabilized formulation of triamcinolone acetonide |
US20070298380A1 (en) * | 2006-06-26 | 2007-12-27 | Ultradent Products, Inc. | Dental treatment devices adapted for improved lingual side adhesion |
US20070298087A1 (en) * | 2006-06-27 | 2007-12-27 | Biegajski James E | Two-phase mucoadhesive composition |
US9084816B2 (en) | 2006-08-25 | 2015-07-21 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9763886B2 (en) | 2006-08-25 | 2017-09-19 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8894988B2 (en) | 2006-08-25 | 2014-11-25 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8894987B2 (en) | 2006-08-25 | 2014-11-25 | William H. McKenna | Tamper resistant dosage forms |
US11938225B2 (en) | 2006-08-25 | 2024-03-26 | Purdue Pharm L.P. | Tamper resistant dosage forms |
US10076499B2 (en) | 2006-08-25 | 2018-09-18 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9095615B2 (en) | 2006-08-25 | 2015-08-04 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9095614B2 (en) | 2006-08-25 | 2015-08-04 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9101661B2 (en) | 2006-08-25 | 2015-08-11 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8846086B2 (en) | 2006-08-25 | 2014-09-30 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US10076498B2 (en) | 2006-08-25 | 2018-09-18 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US11964056B1 (en) | 2006-08-25 | 2024-04-23 | Purdue Pharma L.P | Tamper resistant dosage forms |
US8834925B2 (en) | 2006-08-25 | 2014-09-16 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8821929B2 (en) | 2006-08-25 | 2014-09-02 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9486412B2 (en) | 2006-08-25 | 2016-11-08 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9486413B2 (en) | 2006-08-25 | 2016-11-08 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9492389B2 (en) | 2006-08-25 | 2016-11-15 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9492391B2 (en) | 2006-08-25 | 2016-11-15 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9492393B2 (en) | 2006-08-25 | 2016-11-15 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9492390B2 (en) | 2006-08-25 | 2016-11-15 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9492392B2 (en) | 2006-08-25 | 2016-11-15 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8815289B2 (en) | 2006-08-25 | 2014-08-26 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9545380B2 (en) | 2006-08-25 | 2017-01-17 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8721332B2 (en) | 2006-08-25 | 2014-05-13 | Ultradent Products, Inc. | Non-custom dental treatment trays having improved anatomical features |
US11904055B2 (en) | 2006-08-25 | 2024-02-20 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8007277B2 (en) | 2006-08-25 | 2011-08-30 | Ultradent Products, Inc. | Non-custom dental treatment trays and mouth guards having improved anatomical features |
US11298322B2 (en) | 2006-08-25 | 2022-04-12 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9775810B2 (en) | 2006-08-25 | 2017-10-03 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9775812B2 (en) | 2006-08-25 | 2017-10-03 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9775811B2 (en) | 2006-08-25 | 2017-10-03 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US11826472B2 (en) | 2006-08-25 | 2023-11-28 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US11304909B2 (en) | 2006-08-25 | 2022-04-19 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9775809B2 (en) | 2006-08-25 | 2017-10-03 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9775808B2 (en) | 2006-08-25 | 2017-10-03 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8444413B2 (en) | 2006-08-25 | 2013-05-21 | Ultradent Products, Inc. | Non-custom dental treatment trays having improved anatomical features |
US9770417B2 (en) | 2006-08-25 | 2017-09-26 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US11304908B2 (en) | 2006-08-25 | 2022-04-19 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9770416B2 (en) | 2006-08-25 | 2017-09-26 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US9763933B2 (en) | 2006-08-25 | 2017-09-19 | Purdue Pharma L.P. | Tamper resistant dosage forms |
US8911719B2 (en) | 2006-08-25 | 2014-12-16 | Purdue Pharma Lp | Tamper resistant dosage forms |
US7972618B2 (en) | 2006-09-20 | 2011-07-05 | Monosol Rx, Llc | Edible water-soluble film containing a foam reducing flavoring agent |
US20080075825A1 (en) * | 2006-09-20 | 2008-03-27 | Fuisz Richard C | Edible Water-Soluble Film Containing a Foam Reducing Flavoring Agent |
US8722086B2 (en) | 2007-03-07 | 2014-05-13 | Gruenenthal Gmbh | Dosage form with impeded abuse |
US20080292683A1 (en) * | 2007-05-24 | 2008-11-27 | Monosolrx, Llc. | Film shreds and delivery system incorporating same |
US8202091B2 (en) | 2007-08-31 | 2012-06-19 | Ultradent Products, Inc. | Dental treatment trays comprising silicone elastomeric material |
US9949809B2 (en) | 2007-08-31 | 2018-04-24 | Ultradent Products, Inc. | Dental treatment devices comprising silicone-like elastomeric material |
US11033374B2 (en) | 2007-08-31 | 2021-06-15 | Ultradent Products, Inc. | Dental treatment devices comprising silicone-like elastomeric material |
US20090087812A1 (en) * | 2007-10-02 | 2009-04-02 | Ultradent Products, Inc. | Self-customizable dental treatment trays |
US8613285B2 (en) | 2007-10-11 | 2013-12-24 | Philip Morris Products S.A. | Extrudable and extruded compositions for delivery of bioactive agents, method of making same and method of using same |
WO2009048606A1 (en) | 2007-10-11 | 2009-04-16 | Fuisz Richard C | Extrudable and extruded compositions for delivery of bioactive agents, method of making the same and method of using same |
US20090095313A1 (en) * | 2007-10-11 | 2009-04-16 | Fuisz Richard C | Smokeless Tobacco Product, Smokeless Tobacco Product in the Form of a Sheet, Extrudable Tobacco Composition, Method for Manufacturing a Smokeless Tobacco Product, Method for Delivering Super Bioavailable Nicotine Contained in Tobacco to a User, and Packaged Smokeless Tobacco Product Sheet |
US20090098192A1 (en) * | 2007-10-11 | 2009-04-16 | Fuisz Richard C | Extrudable and Extruded Compositions for Delivery of Bioactive Agents, Method of Making Same and Method of Using Same |
US9125434B2 (en) | 2007-10-11 | 2015-09-08 | Philip Morris Products S.A. | Smokeless tobacco product, smokeless tobacco product in the form of a sheet, extrudable tobacco composition, method for manufacturing a smokeless tobacco product, method for delivering super bioavailable nicotine contained in tobacco to a user, and packaged smokeless tobacco product sheet |
WO2009048522A1 (en) | 2007-10-11 | 2009-04-16 | Richard Fuisz | Smokeless tobacco product |
US10334872B2 (en) | 2007-10-11 | 2019-07-02 | Philip Morris Products S.A. | Smokeless tobacco product, smokeless tobacco product in the form of a sheet, extrudable tobacco composition, method for manufacturing a smokeless tobacco product, method for delivering super bioavailable nicotine contained in tobacco to a user, and packaged smokeless tobacco product sheet |
US8663696B2 (en) | 2007-10-19 | 2014-03-04 | Monosol Rx, Llc | Film delivery system for tetrahydrolipstatin |
US9750701B2 (en) | 2008-01-25 | 2017-09-05 | Grünenthal GmbH | Pharmaceutical dosage form |
US8383152B2 (en) | 2008-01-25 | 2013-02-26 | Gruenenthal Gmbh | Pharmaceutical dosage form |
US20110009834A1 (en) * | 2008-03-15 | 2011-01-13 | Lts Lohmann Therapie-Systeme Ag | Gingival wafer |
US8647314B2 (en) * | 2008-03-15 | 2014-02-11 | Lts Lohmann Therapie-Systeme Ag | Gingival wafer |
US9161917B2 (en) | 2008-05-09 | 2015-10-20 | Grünenthal GmbH | Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet |
US20100028829A1 (en) * | 2008-07-31 | 2010-02-04 | Ultradent Products, Inc. | Chemically activated dental bleaching trays |
US20100040727A1 (en) * | 2008-08-18 | 2010-02-18 | Monosol Rx, Llc | Method for Improving Uniformity of Content in Edible Film Manufacturing |
US8282954B2 (en) | 2008-12-15 | 2012-10-09 | Monosol Rx, Llc | Method for manufacturing edible film |
US20100150987A1 (en) * | 2008-12-15 | 2010-06-17 | Monosol Rx, Llc | Method for Manufacturing Edible Film |
US20100285130A1 (en) * | 2009-05-06 | 2010-11-11 | Monosol Rx, Llc | Coating of complexed actives in film formulations |
US20100297232A1 (en) * | 2009-05-19 | 2010-11-25 | Monosol Rx, Llc | Ondansetron film compositions |
US10080721B2 (en) | 2009-07-22 | 2018-09-25 | Gruenenthal Gmbh | Hot-melt extruded pharmaceutical dosage form |
US9925146B2 (en) | 2009-07-22 | 2018-03-27 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10493033B2 (en) | 2009-07-22 | 2019-12-03 | Grünenthal GmbH | Oxidation-stabilized tamper-resistant dosage form |
US10034833B2 (en) | 2009-08-07 | 2018-07-31 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US10821074B2 (en) | 2009-08-07 | 2020-11-03 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US11135216B2 (en) | 2009-08-07 | 2021-10-05 | Indivior Uk Limited | Sublingual and buccal film compositions |
US8475832B2 (en) | 2009-08-07 | 2013-07-02 | Rb Pharmaceuticals Limited | Sublingual and buccal film compositions |
US9687454B2 (en) | 2009-08-07 | 2017-06-27 | Indivior Uk Limited | Sublingual and buccal film compositions |
US10610528B2 (en) | 2009-12-08 | 2020-04-07 | Intelgenx Corp. | Solid oral film dosage forms and methods for making same |
US9717682B2 (en) | 2009-12-08 | 2017-08-01 | Intelgenx Corporation | Solid oral film dosage forms and methods for making same |
US20110142942A1 (en) * | 2009-12-10 | 2011-06-16 | Monosol Rx, Llc | USE OF pH SENSITIVE COMPOUNDS IN TASTE MASKING OF DRUG SUBSTANCES WITHIN ORAL THIN FILM STRIPS |
US20110160264A1 (en) * | 2009-12-28 | 2011-06-30 | Monosol Rx, Llc | Orally administrable film dosage forms containing ondansetron |
WO2011081625A1 (en) | 2009-12-30 | 2011-07-07 | Novartis Ag | Melt extruded thin strips containing coated pharmaceutical actives |
WO2011081628A1 (en) | 2009-12-30 | 2011-07-07 | Novartis Ag | Melt extruded nicotine thin strips |
US9579285B2 (en) | 2010-02-03 | 2017-02-28 | Gruenenthal Gmbh | Preparation of a powdery pharmaceutical composition by means of an extruder |
US8974826B2 (en) | 2010-06-10 | 2015-03-10 | Monosol Rx, Llc | Nanoparticle film delivery systems |
US9636303B2 (en) | 2010-09-02 | 2017-05-02 | Gruenenthal Gmbh | Tamper resistant dosage form comprising an anionic polymer |
US10300141B2 (en) | 2010-09-02 | 2019-05-28 | Grünenthal GmbH | Tamper resistant dosage form comprising inorganic salt |
US10940626B2 (en) | 2010-10-22 | 2021-03-09 | Aquestive Therapeutics, Inc. | Manufacturing of small film strips |
US10272607B2 (en) | 2010-10-22 | 2019-04-30 | Aquestive Therapeutics, Inc. | Manufacturing of small film strips |
US10864164B2 (en) | 2011-07-29 | 2020-12-15 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10695297B2 (en) | 2011-07-29 | 2020-06-30 | Grünenthal GmbH | Tamper-resistant tablet providing immediate drug release |
US10201502B2 (en) | 2011-07-29 | 2019-02-12 | Gruenenthal Gmbh | Tamper-resistant tablet providing immediate drug release |
US9655853B2 (en) | 2012-02-28 | 2017-05-23 | Grünenthal GmbH | Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer |
US10335373B2 (en) | 2012-04-18 | 2019-07-02 | Grunenthal Gmbh | Tamper resistant and dose-dumping resistant pharmaceutical dosage form |
US10064945B2 (en) | 2012-05-11 | 2018-09-04 | Gruenenthal Gmbh | Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc |
US10285916B2 (en) | 2012-10-17 | 2019-05-14 | The Procter & Gamble Company | Strip for the delivery of an oral care active and methods for applying oral care actives |
US10285915B2 (en) | 2012-10-17 | 2019-05-14 | The Procter & Gamble Company | Strip for the delivery of an oral care active and methods for applying oral care actives |
US12016907B2 (en) | 2012-11-14 | 2024-06-25 | Smith & Nephew, Inc. | Stable thermolysin hydrogel |
US12023412B2 (en) | 2013-03-15 | 2024-07-02 | Smith & Nephew, Inc. | Dissolvable gel-forming film for delivery of active agents |
US11452698B2 (en) | 2013-03-15 | 2022-09-27 | Smith & Nephew, Inc. | Dissolvable gel-forming film for delivery of active agents |
US10154966B2 (en) | 2013-05-29 | 2018-12-18 | Grünenthal GmbH | Tamper-resistant dosage form containing one or more particles |
US9737490B2 (en) | 2013-05-29 | 2017-08-22 | Grünenthal GmbH | Tamper resistant dosage form with bimodal release profile |
US10624862B2 (en) | 2013-07-12 | 2020-04-21 | Grünenthal GmbH | Tamper-resistant dosage form containing ethylene-vinyl acetate polymer |
US10449547B2 (en) | 2013-11-26 | 2019-10-22 | Grünenthal GmbH | Preparation of a powdery pharmaceutical composition by means of cryo-milling |
US9913814B2 (en) | 2014-05-12 | 2018-03-13 | Grünenthal GmbH | Tamper resistant immediate release capsule formulation comprising tapentadol |
US9872835B2 (en) | 2014-05-26 | 2018-01-23 | Grünenthal GmbH | Multiparticles safeguarded against ethanolic dose-dumping |
US9855263B2 (en) | 2015-04-24 | 2018-01-02 | Grünenthal GmbH | Tamper-resistant dosage form with immediate release and resistance against solvent extraction |
US10842750B2 (en) | 2015-09-10 | 2020-11-24 | Grünenthal GmbH | Protecting oral overdose with abuse deterrent immediate release formulations |
WO2017093941A1 (en) | 2015-12-03 | 2017-06-08 | Niconovum Usa, Inc. | Multi-phase delivery compositions and products incorporating such compositions |
US11273131B2 (en) | 2016-05-05 | 2022-03-15 | Aquestive Therapeutics, Inc. | Pharmaceutical compositions with enhanced permeation |
US11191737B2 (en) | 2016-05-05 | 2021-12-07 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US12023309B2 (en) | 2016-05-05 | 2024-07-02 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US11589980B2 (en) | 2016-05-22 | 2023-02-28 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages |
US11672757B2 (en) | 2017-06-28 | 2023-06-13 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Hot melt extrusion for pharmaceutical vaginal film products |
US11224505B2 (en) | 2018-11-02 | 2022-01-18 | Rayner Intraocular Lenses Limited | Hybrid accommodating intraocular lens assemblages including discrete lens unit with segmented lens haptics |
EP3663336A1 (en) * | 2018-12-04 | 2020-06-10 | Adhesives Research, Inc. | Disintegrable thin film adhesive barrier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE33093E (en) | Bioadhesive extruded film for intra-oral drug delivery and process | |
US4713243A (en) | Bioadhesive extruded film for intra-oral drug delivery and process | |
AU679937B2 (en) | Extrudable compositions for topical or transdermal drug delivery | |
US4307075A (en) | Topical treatment of aphthous stomatitis | |
JP3964465B2 (en) | Pharmaceutical carrier device suitable for delivery of pharmaceutical compounds to mucosal surfaces | |
US6072100A (en) | Extrudable compositions for topical or transdermal drug delivery | |
US5780045A (en) | Transmucosal drug delivery device | |
US6375963B1 (en) | Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof | |
US9161909B2 (en) | Adhesive compositions for the treatment of xerostomia | |
JP4619894B2 (en) | Drug carrier device suitable for delivery of drug compounds to mucosal surfaces | |
US6585997B2 (en) | Mucoadhesive erodible drug delivery device for controlled administration of pharmaceuticals and other active compounds | |
EP0200508B1 (en) | Adhesive oral bandages and oral pharmaceutical preparations | |
JPH09504810A (en) | Water-soluble pressure sensitive mucoadhesive | |
US20090053309A1 (en) | Adhesive compositions for the treatment of xerostomia | |
GB2574878A (en) | Oral compositions and mucoadhesive thin films formed therefrom | |
US20020192287A1 (en) | Extrudable compositions for topical or transdermal drug delivery | |
EP2889030A1 (en) | Controlling the erosion rates of mucoadhesive devices that deliver actives and other compounds and providing increased and variable therapeutic blood levels | |
JP6806388B1 (en) | An anti-inflammatory liquid composition for covering the oral mucosa, and a pharmaceutical composition for preventing and / or treating aphthous ulcer using the same. | |
CA2366411A1 (en) | Topical medicated bioadhesive compositions and methods of use and preparation thereof | |
JPS62255417A (en) | Pharmaceutical preparation for oral cavity | |
AU769500B2 (en) | Pharmaceutical carrier device suitable for delivery of pharmaceutical compounds to mucosal surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |