US9669546B2 - Robotic work object cell calibration method - Google Patents

Robotic work object cell calibration method Download PDF

Info

Publication number
US9669546B2
US9669546B2 US14/724,966 US201514724966A US9669546B2 US 9669546 B2 US9669546 B2 US 9669546B2 US 201514724966 A US201514724966 A US 201514724966A US 9669546 B2 US9669546 B2 US 9669546B2
Authority
US
United States
Prior art keywords
work object
laser
robot
projecting
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active - Reinstated
Application number
US14/724,966
Other versions
US20160016317A1 (en
Inventor
Matthew E. Trompeter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/385,091 external-priority patent/US9266241B2/en
Application filed by Individual filed Critical Individual
Priority to US14/724,966 priority Critical patent/US9669546B2/en
Priority to US14/818,205 priority patent/US9713869B2/en
Publication of US20160016317A1 publication Critical patent/US20160016317A1/en
Application granted granted Critical
Publication of US9669546B2 publication Critical patent/US9669546B2/en
Active - Reinstated legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39033Laser tracking of end effector, measure orientation of rotatable mirror
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller

Definitions

  • the work object emits a pair of beam-projecting lasers from an E-shaped extension extending from a central frame.
  • the beam-projecting lasers serve as a crosshair, intersecting at a tool contact point.
  • the work object includes a horizontal frame member that includes a pair of opposing frame ends, and a vertical frame member that includes a pair of opposing frame ends.
  • a plane-projecting laser is preferably disposed at each frame end, respectively, and a projected laser plane is emitted from each of the plane-projecting lasers, respectively.
  • the plane-projecting lasers are used to adjust the roll, yaw, and pitch of the robot tool positioned at the tool contact point on the shop floor.
  • FIG. 7 depicts another exploded view of the first preferred embodiment of the work object for use in the robotic work object calibration method of FIG. 6 , further depicting the work object being mounted to the fixture with the robot tool aligned to the tool contact point alignment lasers and the roll, yaw, and pitch alignment lasers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Laser Beam Processing (AREA)

Abstract

The robotic work object cell calibration method includes a work object or emitter. Initially, placing the work object is placed in a selected position on a fixture or work piece on the shop floor. The work object emits a pair of beam-projecting lasers which intersect at a tool contact point and act as a crosshair. The robot tool is manipulated into the tool contact point. The work object emits four plane-projecting lasers which are used to adjust the roll, yaw, and pitch of the robot tool relative to the tool contact point. The robotic work object cell calibration method of the present invention increases the accuracy of the off-line programming and decreases robot teaching time.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is related to and claims priority to U.S. Provisional Application No. 61/465,080, entitled “Robotic Work Object Cell Calibration System and Method,” filed on Mar. 14, 2011; to U.S. Provisional Application No. 61/518,912, entitled “Robotic Work Object Cell Calibration System and Method,” filed on May 13, 2011; to U.S. Ser. No. 13/385,797 “Robotic Work Object Cell Calibration Method” filed on Mar. 7, 2012; and to U.S. Ser. No. 13/385,091 “Robotic Work Object Cell Calibration System,” filed on Feb. 1, 2012. The disclosures of these Applications are hereby incorporated by reference into this specification in their entireties.
FIELD OF USE
The present invention relates to a calibration device and method for an industrial robot and, more particularly, to a calibration method for the industrial robot provided with an imaging device of a visual sensor for detecting a working tool and a working position.
BACKGROUND OF THE INVENTION
The sales of industrial robots that has been driven by the automotive industry, is now moving into tasks as diverse as cleaning sewers, detecting bombs, and performing intricate surgery. The number of units sold increased to 120,000 units in 2010, twice the number as the previous year, with automotive, metal and electronics industries driving the growth.
Prior approaches to calibrating robots use measuring devices that measure either the inaccuracies of the robot after the robot is built or devices which measure work piece positions relative to the robot position prior to off-line programs. Prior art systems involve expensive equipment and specialized users and take longer.
    • U.S. Patent Application Disclosure No. 20090157226 (de Smet) discloses a robot-cell calibration system for a robot and it's peripheral. The system includes an emitter attached to the robot or its peripheral and emits a laser beam and a receiver also mounted to the robot or its peripheral at a point to permit calibration and for receiving the laser beam and to permit calculations to determine the dimension between the emitter and the receiver.
    • U.S. Pat. No. 6,408,252 (de Smet) discloses a calibration system and displacement measurement device for calibrating a robot system. The system comprises a linear displacement measurement device in conjunction with a robot calibration system. The linear displacement measurement device comprises an elongated member, a drum, a shaft, a drum displacement mechanism and a drum rotation sensor. The drum is displaced axially upon the shaft as the drum rotates when the elongated member is moved. The drum rotation sensor provides accurate information regarding the distance the elongated member travels. The displacement measuring device is used in an iterative manner with the calibration system for the purpose of the calibration of a robotic device.
    • U.S. Pat. No. 6,321,137 (de Smet) discloses a method for calibration of a robot inspection system. The system is used for inspecting a work piece to maintain the accuracy of the robot during inspection of work pieces on a production basis. The system includes means for storing a mathematical model of the robot, means for measuring the position of a target, and then calibrating the robot based upon input from the mathematical model and the position of the target.
    • U.S. Pat. No. 6,044,308 (Huissoon) discloses a method for calibration of pose of a tool contact point (TCP) of a robot controlled tool with respect to a tool sensor means in which the robot controlled tool is attached at an end-point of the robot. A TCP sensor is located in a preselected second pose with respect to the reference fixture for sensing position of the tool contact point. The method includes positioning the tool sensor so that the reference fixture is in a field of view of the tool sensor and calculating a pose of the robot end point with respect to the robot frame of reference, calculating a pose of the reference fixture with respect to the tool sensor means from a sensed position of the four topographically defined features of the reference fixture, and calculating a position of the tool contact point with respect to the reference fixture from a sensed position of the tool contact point with respect to the TCP sensor means.
The primary object of the robotic work object cell calibration method of the present invention is to increase the accuracy of the off-line program and decrease robot teaching time. Still another object of the robotic work object cell calibration method of the present invention is to provide a calibration method which is simpler, results in improved precision, involves a lower investment cost, and which entails lower operating costs than the prior art.
What is needed is a robotic work object cell calibration method for using different robot tools on a shop floor without having to perform a recalibration for each tool. What is needed is a robotic work object cell calibration method that requires no additional computers or software to determine the accuracy of the robot tool or location of peripheral equipment, which uses existing body-in-white procedures, personnel computers and software and ways of communicating information amongst the trades, and requires little or no retraining to deploy.
SUMMARY OF THE INVENTION
The robotic work object cell calibration method of the present invention addresses these objectives and these needs.
In the first preferred embodiment of the present invention, the robotic work object cell calibration method includes a work object or emitter. Initially, the work object is placed in a selected position on a fixture or work piece on the shop floor proximate to the robot.
The work object emits a pair of beam-projecting lasers from an E-shaped extension extending from a central frame. The beam-projecting lasers serve as a crosshair, intersecting at a tool contact point. The work object includes a horizontal frame member that includes a pair of opposing frame ends, and a vertical frame member that includes a pair of opposing frame ends. A plane-projecting laser is preferably disposed at each frame end, respectively, and a projected laser plane is emitted from each of the plane-projecting lasers, respectively. The plane-projecting lasers are used to adjust the roll, yaw, and pitch of the robot tool positioned at the tool contact point on the shop floor.
Method for calibrating a robot using the work object:
    • First, attach the emitter to the fixture. Using the calibration control unit of the robot, or a laptop computer with a control interface, the tool contact point is aligned to the horizontal beam-projecting lasers emitted from the work object.
    • Using the horizontal and vertical plane-projecting lasers, align the robot tool for roll, yaw, and pitch. Once this is done, note the coordinates and set this position as the zero position in the robot control unit, or in the control panel on the laptop being used to control the robot. This sets the point which the robot will use for its work path. After the point has been set, the robot work path is ready to be used.
    • Now, test the calibration. If the robot does not impact the work object in any way and completes the intended operations, the calibration is done. If not, repeat the above until the work path is properly set.
A second and third preferred embodiments of the work object for use in the robotic work object calibration method of the present invention, comprises only two plane-projecting lasers attached to either the horizontal frame ends or the vertical frame ends. If only two plane-projecting lasers are used, adjustment is limited to either roll and yaw, roll and pitch, or yaw and pitch of the robot tool using said pair of plane-projecting lasers of said work object.
A fourth preferred embodiment of the work object of the present invention comprises only one plane-projecting laser attached to the middle of the work object. The laser head is capable of 360 degrees of rotation, enabling the robot tool to align first on the x-axis, then on the y-axis after the laser head has been rotated.
The robotic work object cell calibration system includes a work object. The work object emits a pair of beam-projecting lasers from an E-shaped extension extending from a central frame. The beam-projecting lasers serve as a crosshair, intersecting at a tool contact point. The work object includes a horizontal frame member that includes a pair of opposing frame ends, and a vertical frame member that includes a pair of opposing frame ends. A plane-projecting laser is preferably disposed at each frame end, respectively, and a projected laser plane is emitted from each of the plane-projecting lasers, respectively. The plane-projecting lasers are used to adjust the roll, yaw, and pitch of the robot tool relative to the tool contact point.
For a complete understanding of the robotic work object cell calibration method of the present invention, reference is made to the following summary of the invention detailed description and accompanying drawings in which the presently preferred embodiments of the invention are shown by way of example. As the invention may be embodied in many forms without departing from spirit of essential characteristics thereof, it is expressly understood that the drawings are for purposes of illustration and description only, and are not intended as a definition of the limits of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts the first preferred embodiment of the work object for use in the robotic work object calibration method of the present invention, the two beam-projecting lasers being used for aligning the tool contact point with the work object.
FIG. 2 depicts the first preferred embodiment of the work object for use in the robotic work object calibration method of FIG. 1, the four plane-projecting lasers being emitted from the work object.
FIG. 3 depicts an exploded view of the first preferred embodiment of the work object for use in the robotic work object calibration method of FIG. 1, further depicting the weld gun with the tool contact point of the weld gun aligned to the horizontal and vertical alignment lasers.
FIG. 4 depicts the exploded view of the first preferred embodiment of the work object for use in the robotic work object calibration method of FIG. 3, further depicting the addition of two pairs of plane-projecting lasers for adjusting the roll, yaw, and pitch of the tool head of the weld gun.
FIG. 5 depicts an assembly view of the first preferred embodiment of the work object for use in the robotic work object calibration method of FIG. 1, further depicting the work object being mounted onto a fixture with the robot tool head aligned to the two beam-projecting lasers using the tool contact point.
FIG. 6 depicts the assembly view of the work object for use in the robotic work object calibration method of FIG. 5, further depicting the four plane-projecting lasers being used for adjusting the roll, yaw, and pitch of the tool head of the robot.
FIG. 7 depicts another exploded view of the first preferred embodiment of the work object for use in the robotic work object calibration method of FIG. 6, further depicting the work object being mounted to the fixture with the robot tool aligned to the tool contact point alignment lasers and the roll, yaw, and pitch alignment lasers.
FIG. 8 depicts an assembly view of a second preferred embodiment of the work object of the work object for use in the robotic work object calibration method of the present invention, two plane-projecting lasers being emitted along the horizontal axis of the work object, a pair of beam-projecting lasers intersecting at a tool contact point, the robot tool being aligned to the tool contact point and to this pair of plane-projecting lasers.
FIG. 9 depicts an assembly view of a third preferred embodiment of the work object of the work object for use in the robotic work object calibration method of the present invention, two plane-projecting lasers being emitted along the vertical axis of the work object, a pair of beam-projecting lasers intersecting at a tool contact point, the robot tool being aligned to the tool contact point and to this pair of plane-projecting lasers.
FIG. 10 depicts a fourth preferred embodiment of the work object of the work object for use in the robotic work object calibration method of the present invention, one plane-projecting laser being emitted along the vertical axis of the work object, and a beam-projecting laser intersecting one of the vertical plane-projecting lasers at a tool contact point.
FIG. 11A depicts a robot and a fixture for use on a shop floor in a prior art embodiment without the work object of FIG. 1, and FIGS. 11 B and 11 C depict a similar robot, fixture with the work object used in the present invention, showing how in a simplified manner the work object is used to obtain a new zero location and calibrate the path between the fixture and the robot.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the drawings, FIGS. 1 and 2 disclose a first preferred embodiment of a work object or emitter [10] for use in the robotic work object calibration method of the present invention. The work object [10] is used to calibrate the work path of a robot tool based on a tool contact point (point in space) [60]. The known point in space
is defined in three dimensions (X, Y, and Z) and relative to their rotational axes Rx (pitch), Ry (yaw), and Rz (roll).
The work object [10] includes a horizontal frame member [22] that includes a pair of opposing frame ends [32A and 32B], and a vertical frame member [24] that includes a pair of opposing frame ends [32C and 32D]. A plane-projecting laser [41, 42, 43, and 44] is preferably disposed at each frame end [32A, 32B, 32C, and 32D], respectively, and a projected laser plane [51, 52, 53, and 54] is emitted from each of the plane-projecting lasers [41, 42, 43, and 44], respectively.
Extending along the horizontal frame member [22] are three arms parallel which combine to form the general shape of the letter “E” of an E-shaped structure [25] which is horizontally aligned and generally centrally disposed relative to horizontal frame member [22]. The center arm (not numbered) of the E-shaped structure [25] is shorter than the two end arms [26A and 26B].
A first beam-projecting laser [58] is emitted from the center arm of the “E” disposed at the proximate center of the work object [10]. A second beam-projecting laser [56] is emitted from one of the arms [26A] of an E-shaped structure [25] and is directed into the opposing arm [26B].
The first beam-projecting laser [58] intersects and is essentially perpendicular and coplanar with the second beam-projecting laser [56] at a known point in space [60], defined in three dimensions in terms of X, Y, and Z coordinates.
The first beam-projecting laser [58] is essentially coplanar with the two projected laser planes [51 and 52] emitted from the plane-projecting lasers [41 and 42] emitted from frame ends [32A and 32B]. Also, the first beam-projecting laser [58] is essentially coplanar with the two projected laser planes [53 and 54] emitted from the plane-projecting lasers [43 and 44] emitted from frame ends [32C and 32D]. The work object
is mountable onto a fixture [90] and enables a robot work path to be calibrated relative to the known point in space [60].
The plane-projecting lasers [41, 42, 43, and 44] project the four projected laser planes [51, 52, 53, and 54, respectively] from the frame ends [32A, 32B, 32C, and 32D, respectively] of the work object [10]. The plane-projecting lasers [41, 42, 43, and 44] are red laser modules, having focused lines (3.5 v-4.5 v 16 mm 5 mw).
The beam-projecting lasers [56 and 58] are focusable points that project the two laser beams emitted from the arm [26A] of the work object [10]. The beam-projecting lasers [56 and 58] are red laser modules, having focusable dots (3.5 v-4.5 v 16 mm 5 mw).
FIG. 3 depicts an exploded view of the work object [10] for use with a weld gun. The tool contact point [60] of the weld gun is positioned with respect to the two beam-projecting alignment lasers [56 and 58]. FIG. 4 further depicts the addition of the four projected laser planes [51, 52, 53, and 54, respectively] from the plane-projecting lasers [41, 42, 43, and 44, respectively] for adjusting the roll, yaw, and pitch of the robot tool head [80].
FIG. 5 depicts the work object [10] being mounted onto the fixture [90]. The robot tool head [80] is aligned to the two beam-projecting lasers [56 and 58] using the tool contact point [60]. FIG. 6 further depicts the four projected laser planes [51, 52, 53, and 54, respectively] from the plane-projecting lasers [41, 42, 43, and 44, respectively] of work piece [10], which are used to adjust the roll, yaw, and pitch of the robot tool head [80].
FIG. 7 depicts the work object [10] mounted onto the fixture [90] with the robot tool [80] positioned with respect to the tool contact point [60] alignment laser beams [56 and 58] setting the X, Y, and Z coordinates.
FIG. 8 depicts a second preferred embodiment of a work object [10] for use in the robotic work object calibration method of the present invention. In this embodiment, two projected laser planes [51 and 52] are emitted from two plane-projecting lasers [41 and 42, respectively] along the horizontal axis of the frame member [32] of the work object [10]. The robot tool [80] is aligned with the tool contact point [60] and with this pair of projected laser planes [51 and 52].
FIG. 9 depicts a third preferred embodiment of the work object [210] for use in the robotic work object calibration method of the present invention. In this embodiment, two projected laser planes [53 and 54] are emitted from two plane-projecting lasers [43 and 44] are emitted along the vertical axis of the frame member [24] of the work object [210]. The robot tool [80] is aligned with the tool contact point [60] and with this pair of projected laser planes [53 and 54].
FIG. 10 depicts yet another preferred embodiment of the work object [10] for use in the robotic work object calibration method of the present invention. In this embodiment, one plane projected laser [51] is emitted from plane-projecting laser along the vertical axis of the work object [10]. A beam-projecting laser [56] intersects with the vertical plane-projecting laser [53] at a tool contact point [60]. The plane projecting laser [51] has a rotating head capable of rotating 360°, enabling the robot tool to align first on the x-axis, then on the y-axis after the laser head has been rotated.
FIG. 11A depicts a robot [81] and a fixture [90] for use on a shop floor in a prior art embodiment without the work object of the present invention. FIGS. 11 B and 11C depict a similar robot [81], and fixture [90] with the work object [10], depicting how in a simplified manner the work object [10] is used to obtain a new zero location and calibrate the path between the fixture [90] and the robot [81].
Using CAD simulation software, the CAD user selects a position on the tool to place that is best suited to avoid crashes with other tooling and for ease of access for the robot [81] or end-of-arm tooling. The offline programs are then downloaded relative to the work object [10]. The work object [10] is then placed onto the tool or work piece in the position that is defined by the CAD user on the shop floor. The robot technician then manipulates the tool contact point [60] of the robot tool [80] into the device and positions it with respect to the beam-projecting lasers [56 and 58] to obtain the difference between the CAD world and shop floor. This difference is then entered into the robot and used to define the new work object [10]. This calibrates the offline programs and defines the distance and orientation of the tool, fixture, and peripheral.
The offline programming with the work object [10] on the fixture [90] enable the work object [10] to be touched up to the “real world position” of the fixture [90] relative to the robot [81]. If the fixture [90] ever needs to be moved or is accidently bumped, simply touch up the work object [10] and the entire path shifts to accommodate.
The robotic work cell calibrations method of the present invention is compatible with robotic simulation packages, including but not limited to, ROBCAD, Process Simulate, DELMIA, Roboguide and RobotStudio CAD software.
The beam-projecting lasers [56 and 58] and the projected laser planes [51, 52, 53, and 54] are projected onto known features of the robot tool [80], and then used to calibrate the path of the robot tool [80] and measure the relationship of the fixture relative to the robot tool [80].
The CAD user initially selects a position best suited on a tool or work piece to avoid crashes with other tooling and for ease of access for the robot or end-of-arm tooling. The work object [10] preferably mounts onto a fixture [90] using a standard NAMM's hole pattern mount [40]. The mounts are laser cut to ensure the exact matching of hole sizes for the mounting of parts.
The robotic work object cell calibration method of the present invention uses a work object [10] having a zero point, a zero reference frame, and a zero theoretical frame in space, which is positioned on the fixture [90].
The work object [10] is placed onto the fixture [90] which visually represents the work object [10] enabling the tool contact point of the weld gun to be orientated into the work object [10] obtaining the “real-world” relationship of the robot tool [80] to the fixture [90] while updating the work object [10] to this “real-world” position.
The robotic work object cell calibration system of the present invention requires that the position of the work object [10] correlate with the position of the robot tool [80] to calibrate the path of the robot tool [80] while acquiring the “real-world” distance and orientation of the fixture [90] relative to the robot tool [80].
The robotic work object cell calibration method positions the robot tool [80] with the work object [10] and determines the difference.
The robotic work object cell calibration method of the present invention is used to calibrate the work path of a robot tool based on a tool contact point (point in space) [60]. The calibration uses a “known” work object or frame (robotic simulation CAD software provided work object). The robotic work object cell calibration method of the present invention works by projecting laser beams to a known X, Y, and Z position and defining known geometric planes used to adjust the roll, yaw, and pitch of the robot tool [80] relative to the tool contact point [60].
The laser is projected onto the robotic end of the robot arm tooling (weld guns, material handlers, mig torches, etc) where the user will manipulate the robot with end-of-arm tooling into these lasers to obtain the positional difference between the “known” off-line program (simulation provided work object) and the actual (shop floor) work object calibration. The reverse is also true—for instance; a material handler robot can carry the work object [10] to a know work piece with known features.
The CAD model of the work object [10] is placed in the robotic simulation CAD world. The CAD user selects a position best suited on a toot or work piece to avoid crashes with other tooling and for ease of access for the robot or end-of-arm tooling. The off-line programs are then downloaded relative to this work object [10]. The work object
will be placed onto the tool or work piece in the position that was defined by the CAD user on the shop floor. The robot technician then manipulates the tool contact point [60] into the device, aligning it to the laser beams to obtain the difference between the CAD world and shop floor. This difference is then entered into the robot and used to define the new work object, thus calibrating the off-line programs and defining the distance and orientation of the tool, fixture, peripheral, and other key components.
The robotic work object cell calibration method of the present invention calibrates the paths to the robot [81] while involving the calibration of the peripherals of the robot.
The laser plane generating system deployed in the robotic work object cell calibration method of the present invention is well known in the art—see for example U.S. Pat. No. 5,689,330 (Gerard, et al.), entitled “Laser Plane Generator Having Self-Calibrating Leveling System”; and U.S. Pat. No. 6,314,650 (Falb), entitled “Laser System for Generating a Reference Plane”.
The robotic work object cell calibration method of the present invention aids in the kiting or reverse engineering of robotic systems for future use in conjunction with robotic simulation software allowing integrators the ability to update their simulation CAD files to the “real world” positions.
The technology uses existing body-in-white procedures, personnel computers and software and ways of communicating information amongst the trades.
Throughout this application, various Patents and Applications are referenced by number and inventor. The disclosures of these documents are hereby incorporated by reference into this specification in their entireties in order to more fully describe the state of the art to which this invention pertains.
It is evident that many alternatives, modifications, and variations of the robotic work object cell calibration system of the present invention will be apparent to those skilled in the art in light of the disclosure herein. It is intended that the metes and bounds of the present invention be determined by the appended claims rather than by the language of the above specification, and that all such alternatives, modifications, and variations which form a conjointly cooperative equivalent are intended to be included within the spirit and scope of these claims.
PARTS LIST
  • 10. work object (1st preferred embodiment)
  • 22. horizontal frame member
  • 24. vertical frame member
  • 25 E-shaped structure
  • 26A and 26B. arms
  • 32A. left frame end (horizontal)
  • 32B. right frame end (horizontal)
  • 32C. upper frame end (vertical)
  • 32D. lower frame end (vertical)
  • 40. NAMM's mounting
  • 41. plane-emitting laser from left-side of horizontal frame
  • 42. plane-emitting laser from right-side of horizontal frame
  • 43. plane-emitting laser from upper vertical frame
  • 44. plane-emitting laser from lower vertical frame
  • 51. projected laser plane from plane-emitting laser (41)
  • 52. projected laser plane from plane-emitting laser (42)
  • 53. projected laser plane from plane-emitting laser (43)
  • 54. projected laser plane from plane-emitting laser (44)
  • 56. laser beam from arm (26A)
  • 58. laser beam from center of “E”
  • 60. tool contact point
  • 80. robot tool
  • 81. robot
  • 82. robot joint
  • 85A. & 85B. robot linkages
  • 87. robot base
  • 90. fixture
  • 110. 2nd work object
  • 210. 3rd work object 310. 4th work object

Claims (18)

I claim:
1. A method for calibrating a robot work path for a robot tool, said method comprising:
a. placing a work object relative to a selected position on a fixture on an automotive shop floor, said fixture being positioned on said automotive shop floor, said work object including first and second lasers, said first laser emitting a first laser beam, said second laser emitting a second laser beam, said first and second laser beams intersecting at a laser intersection point;
b. manipulating said robot tool into alignment with said laser intersection point of said work object so as to enable calibration of said robot work path for said robot tool relative to said laser intersection point when said work object is mounted onto said fixture; and
c. downloading an offline program relative to said work object, said work object being placed onto said robot tool in a position defined by CAD simulation software on said automotive shop floor;
whereby said offline program enables said robot work path to be calibrated relative to a known point in space when said work object is mounted on said fixture on said automotive shop floor.
2. The method of claim 1, further comprising said work object including a plane-projecting laser, said plane-projecting laser being capable of projecting a laser plane.
3. The method of claim 1, further comprising said work object including first and second plane-projecting lasers, said first and second plane-projecting lasers being capable of projecting first and second laser planes.
4. The method of claim 1, wherein said fixture comprises a NAAMS hole pattern mount disposed on said work object.
5. The method of claim 1, wherein said fixture comprises a NAAMS hole pattern mount disposed on said work object, said work object being mountable upon said fixture on said automotive shop floor.
6. The method of claim 1, wherein said CAD simulation software is compatible with robotic simulation packages.
7. A method for calibrating a robot work path, said method comprising:
a. providing a work object being mountable onto a fixture on an automotive shop floor relative to said robot tool, said work object including a first and second laser, said work object being positionable on said automotive shop floor;
b. providing first and second lasers positioned on said work object, said first laser being capable of emitting a first laser beam, said second laser being capable of emitting a second laser beam, said first and second laser beams intersecting at a laser intersection point;
c. enabling a manipulation of said robot tool into alignment with said laser intersection point of said work object for calibration of said robot work path, an offline program being downloadable relative to said work object when said work object is placed onto said robot tool in a position defined by CAD simulation software on said automotive shop floor, that allows for calibration of said robot work path for said robot tool relative to said laser intersection point when said work object is mounted onto said fixture on said automotive shop floor.
8. The method of claim 7, further comprising said work object including a plane-projecting laser, said plane-projecting laser being capable of projecting a laser plane.
9. The method of claim 7, further comprising said work object including first and second plane-projecting lasers, said first and second plane-projecting lasers being capable of projecting first and second laser planes.
10. The method of claim 7, wherein said fixed mounting position comprises a NAAMS hole pattern mount disposed on said work object.
11. The method of claim 7, wherein said fixed mounting position comprises a NAAMS hole pattern mount disposed on said work object, said work object being mountable upon said fixture on said automotive shop floor.
12. The method of claim 7, wherein said CAD simulation software is compatible with robotic simulation packages.
13. A system for calibrating a robot work path, said system comprising:
a. a robot having a robot tool disposed thereon; and
b. a work object being mountable onto a fixture, said fixture being disposed on an automotive shop floor relative to said robot tool, said work object including first and second lasers, said first laser emitting a first laser beam and said second laser emitting a second laser beam, said first and second lasers being positioned on said work object, said first and second laser beams intersecting at a laser intersection point, said work object being positionable relative to said robot tool and being cooperatively engageable with CAD simulation software, an offline program being downloadable relative to said work object using said CAD simulation software, said offline program enabling said robot work path to be calibrated relative to a known point in space with said work object mounted on said fixture on said automotive shop floor, said known point in space being defined in three dimensions (X,Y, and Z) and relative to three rotational axes (Rx, Ry, and Rz).
14. The system of claim 13, further comprising said work object including a plane-projecting laser, said plane-projecting laser being capable of projecting a laser plane.
15. The system of claim 13, further comprising said work object including first and second plane-projecting lasers, said first and second plane-projecting lasers being capable of projecting first and second laser planes.
16. The system of claim 15, wherein said fixture is a NAAMS hole pattern mount disposed on said work object.
17. The system of claim 15, wherein said fixture comprises a NAAMS hole pattern mount disposed on said work object, said work object being mountable upon said fixture on said automotive shop floor.
18. The system of claim 15, wherein said CAD simulation software is compatible with robotic simulation packages.
US14/724,966 2011-03-14 2015-05-29 Robotic work object cell calibration method Active - Reinstated US9669546B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/724,966 US9669546B2 (en) 2011-03-14 2015-05-29 Robotic work object cell calibration method
US14/818,205 US9713869B2 (en) 2012-03-07 2015-08-04 Calibration of robot work paths

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161465080P 2011-03-14 2011-03-14
US201161518912P 2011-05-13 2011-05-13
US13/385,091 US9266241B2 (en) 2011-03-14 2012-02-01 Robotic work object cell calibration system
US13/385,797 US9061421B2 (en) 2011-03-14 2012-03-07 Robotic work object cell calibration method
US14/724,966 US9669546B2 (en) 2011-03-14 2015-05-29 Robotic work object cell calibration method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/385,797 Continuation-In-Part US9061421B2 (en) 2011-03-14 2012-03-07 Robotic work object cell calibration method
US14/710,933 Continuation-In-Part US20150306769A1 (en) 2011-03-14 2015-05-13 Calibration for robotic systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/818,205 Continuation-In-Part US9713869B2 (en) 2012-03-07 2015-08-04 Calibration of robot work paths

Publications (2)

Publication Number Publication Date
US20160016317A1 US20160016317A1 (en) 2016-01-21
US9669546B2 true US9669546B2 (en) 2017-06-06

Family

ID=55073836

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/724,966 Active - Reinstated US9669546B2 (en) 2011-03-14 2015-05-29 Robotic work object cell calibration method

Country Status (1)

Country Link
US (1) US9669546B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2754039T3 (en) * 2014-04-30 2020-04-15 Abb Schweiz Ag Procedure for calibrating a tool center point for an industrial robot system
CN108475051B (en) * 2016-02-02 2022-01-25 Abb瑞士股份有限公司 Method and system for aligning a tool during programming of an industrial robot
CN109789548B (en) * 2016-11-08 2022-06-28 Abb瑞士股份有限公司 Method for workpiece calibration and robot system using the same
US10373474B2 (en) * 2017-03-09 2019-08-06 Keithley Instruments, Llc Auto setting of alarm limits
TWI650626B (en) * 2017-08-15 2019-02-11 由田新技股份有限公司 Robot processing method and system based on 3d image
US10551169B1 (en) * 2018-04-27 2020-02-04 Epsilon Technology Corporation Positioning system for materials testing
CN110909653B (en) * 2019-11-18 2022-03-15 南京七宝机器人技术有限公司 Method for automatically calibrating screen cabinet of distribution room by indoor robot
TWI837533B (en) * 2021-10-27 2024-04-01 財團法人工業技術研究院 Cross laser correction device and correction system using the same
US20230390933A1 (en) * 2022-06-03 2023-12-07 Oliver Crispin Robotics Limited Systems and methods for aligning and localizing a tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157226A1 (en) * 2004-11-19 2009-06-18 Dynalog ,Inc. Robot-cell calibration
US20110129792A1 (en) * 2008-04-15 2011-06-02 Berckmans Iii Bruce Method of creating an accurate bone and soft-tissue digital dental model

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090157226A1 (en) * 2004-11-19 2009-06-18 Dynalog ,Inc. Robot-cell calibration
US20110129792A1 (en) * 2008-04-15 2011-06-02 Berckmans Iii Bruce Method of creating an accurate bone and soft-tissue digital dental model

Also Published As

Publication number Publication date
US20160016317A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
US9061421B2 (en) Robotic work object cell calibration method
US9669546B2 (en) Robotic work object cell calibration method
US8485017B1 (en) Robotic work object cell calibration system
US8989897B2 (en) Robot-cell calibration
US9114534B2 (en) Robot calibration systems
US6822412B1 (en) Method for calibrating and programming of a robot application
CN102985232B (en) For being positioned at the method for the calibration of the robot on moveable platform
US5929584A (en) Tool center point calibration apparatus and method
US20140365006A1 (en) Visual Datum Reference Tool
JP4171488B2 (en) Offline programming device
US9713869B2 (en) Calibration of robot work paths
KR101797122B1 (en) Method for Measurement And Compensation of Error on Portable 3D Coordinate Measurement Machine
JP2010149267A (en) Robot calibration method and device
Gaudreault et al. Local and closed-loop calibration of an industrial serial robot using a new low-cost 3D measuring device
JP6603289B2 (en) Robot, robot system, and robot coordinate system setting method
US20140365007A1 (en) Visual Datum Reference Tool
Santolaria et al. Self-alignment of on-board measurement sensors for robot kinematic calibration
KR100644174B1 (en) Method for compensating in welding robot
Cakir et al. High precise and zero-cost solution for fully automatic industrial robot TCP calibration
WO2014042668A2 (en) Automatic and manual robot work finder calibration systems and methods
WO2022181688A1 (en) Robot installation position measurement device, installation position measurement method, robot control device, teaching system, and simulation device
CN112476435A (en) Calibration method and calibration device for gravity acceleration direction and storage medium
Liu et al. An automated method to calibrate industrial robot kinematic parameters using Spherical Surface constraint approach
US20150306769A1 (en) Calibration for robotic systems
JPH05329786A (en) Industrial robot device

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

PRDP Patent reinstated due to the acceptance of a late maintenance fee

Effective date: 20210616

FEPP Fee payment procedure

Free format text: SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL. (ORIGINAL EVENT CODE: M2558); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8